
SOME QUESTIONS OF UNIFORM TOPOLOGY 

By JU. SMIRNOV 

My report contains three parts: the proximity, the uniformity and the 
general metrics. I should like to tell you about some themes which are 
interesting for Moscow's topologists. I should like to suggest a few open 
questions also. 

I. Proximity 
The first axioms of the proximity were given by F. Riesz at the mathe

matical congress in Bologna in 1908. He gave the definition of general 
proximity-space. The complete axiomatic was given by W. Ephremovitsch 
[1] in 1935. He added a separation axiom. With this axiom the apparatus 
of real-valued functions and pseudometrics can be applied. I proved that 
the notion of proximity-space is closely connected and is indeed equivalent 
to the notion of compactification. Thus the proximity-theory can be con
sidered as a part of the theory of topological spaces. In fact, every compact 
C has one and only one proximity: 

AdBi1) if and only if Äc n Bc *<f>,(2) (1) 

where A^C,B^C. 

Therefore every compactification C of the given space X defines this 
natural proximity (1) on the X. The received correspondence between all 
compactifications of a given space X and all its proximities is one-to-one 
and onto [2]. Thus every proximity-space P can be defined as a completely 
regular space considered together with some compactification uP. From 
this point of view the bounded real-valued function g on the P is proximity-
continuous if and only if it has a continuous extension on the uP. Moreover 
the map / of the proximity-space X into the proximity-space Y is proximity 
coninuous if and only if it has a continuous extension / mapping the compac
tification uX. into uY [2]. These facts have been reproved by many authors 
for example [3], [10]. 

Therefore we have connection between the proximity-spaces and subrings 
of the ring C(X) of all bounded real-valued continuous functions. The 
classical Weierstrass-Stone's theorem for proximity-spaces is a consequence 
of this situation [4]. 

The metric spaces have the following natural proximity: 

AÔB if and only if Q(A,B)=0.(B) (2) 

I note that the notion of proximity-continuity and the notion of uniform 
continuity are equivalent for the mappings of the metric spaces. For 

(!) A ô B =A is near to B. 
(2) Äc is the closure of A. 
(3) Q{A,B) =inf o(x,y), where x EAy y EB and q{x,y) is the given metric. 
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proximity-spaces I have given notions of completeness, of the completion 
and of full-boundness [5]. These notions are founded on the consideration 
of some kind of coverings or of pseudometrics [6]. All these notions are 
equivalent to the corresponding metrical notions for metric spaces conside
red with the natural proximity (2). We can get the completion cP of the 
given metric space P from the corresponding compactification uP by remov
ing all the points with first countable-axiom [2]. Therefore, the metric 
space P is complete if and only if no one point of the difference uP \ P 
satisfies the first countable-axiom. Thus some uniform properties of the 
metric space P can be characterised by topological properties of the difference 
uP\P. The second example: The metric space P is full-bounded in usual 
sense if and only if the difference uP\P is hereditary-normal [17]. I note 
that not all uniform properties of the metric space P can be characterized in 
this manner (for example, the property being zero-uniform-dimensional). 

In topological groups there are also a natural proximity: 

AôB if and only if A fi 0 • B 4= <f> tor every neigbourhood 0 of the unity.(*) (3) 

The proximity of groups was studied very little. 

QUESTION 1 (A. N. Kolmogoroff). Is it possible to define the completeness 
of a topological group P using only the properties of this natural proximity? 
In other words: are there proximity-homeomorphic groups G and H where 
G is complete and H is not? 

QUESTION 2. Are there uniform properties of topological groups which 
can not be characterized by proximity-properties? 

I note that for metric spaces each uniform property is a proximity-
property. I t follows that all the theorems of the uniform topology of metric 
spaces can be formulated and proved in terms of proximity. 

I I . Uniformity 

The theory of uniform spaces has been constructed by A. Weil in 1935 
earlier than the theory of proximity [7]. The uniform space can be defined 
by many ways: the Bourbaki's way [8] by a certain system of neighbour
hoods of diagonal of square XxX, the Tuckey's way [9] by a certain sys
tem of coverings of X, the very general Csâszàr's way [10] by a certain 
ordering of set of all subsets of X. The natural notions of completeness and 
full-boundness (precompactness) are equivalent to the corresponding metric 
properties for metric space. 

For uniform spaces there are given generalizations of some theorems of 
analysis (for instance, theorem of AscoH). The apparatus of uniform topology 
is very convenient for linear topologie spaces [11]. 

Every uniform space U has a natural proximity: Let the uniformity of 
topological space X be defined by the structure 2 = {cox} of coverings cox-
Then 

AòB if and only if each covering cox has an element Ox that A fl Ox =¥</> and 
BOOx^. (4) 

(*} We can get the other proximity putting A 0 B.O 4= </> for non-commutative groups. 
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Let P be some proximity-space and P a is some uniform space on the set P 
for which the proximity (4) coincide with the proximity of P. Let S a be the 
uniform structure of the coverings which defines the uniform space P a . In 
this situation the completion cPK ot the space Px is the maximal among 
those subsets of the compactification uP on which every open covering of 
the structure S a can be extended into an open covering [5,12]. Thus we have 
a well defined map of the set of all uniform spaces P a with the same proxi
mity P into the set of all subsets of the compactification uP. 

But this map is no one-to-one even for complete uniform spaces. On the 
set of all natural numbers one can define many (continuum!) uniform spaces 
where every such space is complete and proximity-discrete. Moreover on 
the set M of the cardinality of the continuum one can construct hyperconti-
nuum complete uniform spaces with discrete proximity where every such 
space has the same set of all uniform-continuous real-valued functions. 
Thus the uniform space U can not be in general characterised by the group 
C'(U) of all uniform continuous real-valued functions. 

There is the minimal space among all uniform spaces Ux defined on the 
same proximity-space P and having the same group C'(UX) (i.e. all these 
groups are naturally isomorphic). These minimal spaces are defined in 
another way by J. Isbell [13]. He calls these spaces weak-uniform. The 
natural map of the set of all weak-uniform spaces (defined on the same 
topological space X) into the set of all subgroups of the group C'(X) of all 
real-valued continuous functions is one-to-one. 

Let C'(X) be the ring of all real-valued continuous functions on the 
topological space X and C'(P) the group of all real-valued proximity-con
tinuous functions on the proximity-space P. 

QUESTION 3. Is it possible to characterize groups C'(Ua) where Ua are the 
uniform spaces on X (or on P) among all subgroups of the group C'(X) (or 
corresponding of C'(P)) by their structural, algebraic and topological 
properties? 

J. Isbell proved the Weierstrass-Stone's theorem for all these weak-
uniform spaces U for which the groups C'(U) are algebras having some 
composition-property. Let us have PÇ^SS^ uP where P is a some proximity-
space, uP is its natural compactification and S—some Ç-space in the sense 
of E. Hewitt. Then the group C'(S) is an algebra and it has the composition-
property. 

QUESTION 4. Are only these groups C'(S) algebras with the composition-
property or not? 

I I I . General metrics 
At the last year there appeared a new theory of general metric spaces. 

I t is clear that in every such case the distances between other points of a 
given metric space can be no real numbers—the elements of the real line 
E'—but elements of some its generalization. This generalization is a notion 
of a topological semifield given by T. Sarymsacov, V. Boltianski and 
M. Antonovski [14]. 

The topological semifield is defined as a commutative and associative 
ring in which some subset of its elements is chosen. They call these elements 
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positive and this subset—cone. This cone should have a number of natural 
properties. I t is easy to define the notion of completeness for topological 
semifields. The fundamental example of complete topological semifield 
is the product E" of a finite or infinite number of real lines E1, where topo
logy is Tychonov topology and the operations are the following: 

R } + {2/«} = R+2/a}> R H ^ a } = R'2/a}. (5) 

There are a natural ordering: {xx}<{yx} if xx<yx for every a. The cone of 
the Ea is a set of all elements {xx} which > {o}. Thus every euclidean space 
En is a complete topological semifield. I t was proved tha t every complete 
topological semifield is topological isomorph to some space E". By definition 
and by this proposition the distances g(x,y} between other points of a given 
general metric space are the elements of some semifield Ex. Analogically 
we can define the general normed space: the norm ||g|| of every point x from 
this space is a element of some semifield Ex. Of course the axioms are the 
usual axioms of real-valued metric or real-valued norm. The every semifield 
E" is a general normed space because we can put tha t || {xx}\\ ={xx}. Thus 
it is a general metric space with distance Q({XX}, {yx}) = {|#a

— 2/<%| }• 
Every general metric space has a natural "metr ic" uniformity. Let e be 

a some neighbourhood of the uni ty {1} of Ex. Then we have the ' ̂ -neigh
bourhood" Uex for every point x of the general metric space R. This "e-
neighbourhood" is a set of all this points y ot R for which q(x,y) Ee. The set 
2 of all coverings of R having a refinement coe = {Uex,xER} for some £ is 
a uniform structure. The (by other ways defined) notions of the compactness, 
of the full-boundness, of the completeness for general metric space are 
equivalent to corresponding notions for this metrical uniformity. I t is easy 
to prove tha t every uniform space is metrizable by some general metric. 

The three authors have proved the Kolmogoroff's theorem on a possibility 
of introducing the norm for linear topological spaces. They have generalized 
the Banach's theorem on open mappings on the general normed (and 
metric) spaces and the theory of abstract ergodic theorems of Eberlein [15]. 

Thus we see tha t this new theory of general metric (and normed) spaces 
is very convenient for analysis (more than uniform spaces and semiordered 
spaces of Kantorovitsch [18]). 

QUESTION 5. Is it possible to make the axiomafcic of topological semifields 
more and essential simple than the given? 

QUESTION 6. Is it possible to prove the Banach's theorem on open map
pings (see 12.2. from [16]) on the uniform spaces? 
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