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Abstract A number of architectural models, such as PAC, are available for
the software design of interactive systems. These design abstractions,
however, are not always clearly articulated nor do they explicitly exploit the
foundational concepts developed recently in main-stream software
architecture engineering. Similarly, technical solutions from main-stream
software engineering may improve portability and reusability at the code
level while hindering the quality of the resulting user interfaces. This article
is an attempt to undertake an explicit bridging effort between software
engineering and the specific domain of user interface software design using
PAC as the running example. We present a brief evolution of the
architectural models for single-user systems that motivated PAC. We then
unfold PAC into PAC* for designing the conceptual architecture of multi-user
systems.
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1 Introduction

Software architectural design is progressing from craft skill to engineering discipline.
We observe an increasing interest in applying scientific knowledge to resolve
conflicting constraints and requirements in a form suitable for software practitioners
[28]. While architecture modelling as a recognized research field is a recent
phenomenon in software engineering, it emerged explicitly in the early eighties in the
specific domain of interactive systems. In this particular area, the iterative nature of
the development process stimulated the design of conceptual tools that would
minimize the effects of future changes: necessity triggered invention.

Today, a number of architectural models, such as PAC, are available for the software
design of interactive systems. These design abstractions, however, are not always
clearly articulated nor do they explicitly exploit the foundational concepts developed
recently in main-stream software architecture engineering. The time is ripe to
undertake an explicit bridging effort.

In this article, we analyze the PAC model in the light of the concepts devised in main-
stream software engineering. These contributions are summarized in the following
section. In Section 3, we present a brief evolution of architectural models such as
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PAC for single-user systems. Section 4 unfolds PAC into PAC* and demonstrates the
extension of PAC for designing the conceptual architecture of multi-user systems.

2 Foundational concepts and factors

Foundational concepts for software architecture modelling define an initial common
ground for understanding the nature of an architecture. Factors make explicit
requirements that a particular design solution should satisfy.

2.1 Concepts

Foundational concepts include the notions of component, connector, style, pattern, as
well as the acknowledgment of the multiplicity of perspectives on a software
architecture.

One perspective is the static structural decomposition of a system at the conceptual
level. Another one is the dynamic behavioral description of the structure. A static
structural decomposition is expressed in terms of primary computational and storage
entities, called components, mediated by connectors such as procedure calls, client-
server protocols, and event-based message passing.  The structure may emerge from
implicit hand-crafted knowledge or may be inspired from a style.

A style includes a vocabulary of design elements (e.g., pipes and filters), imposes
configuration constraints on these elements (e.g., pipes are mono-directional
connectors between two filter components), and determines a semantic interpretation
that gives meaning to the system description [13, 28].  Within a style, patterns may
emerge.

A pattern describes a particular recurring design problem, proposes a pre-defined
scheme for its solution, and includes heuristic rules for how and when to use it [12].
Patterns solutions can be viewed as micro-architectures within a broad architectural
picture.

 Architectural static descriptions are primarily expressed using boxes to represent
components, and arrows to denote connectors. Although box-and-arrow notations
along with natural language are pervasive in the software community, they rely on
common intuitions and past experience to make sense. Formal models and architecture
definition languages [28] are intended to provide precise unambiguous descriptions as
well as analytical techniques for sound design decisions. Although the benefits from
such tools are unquestionable, their use, in practice, is still limited.

2.2 Factors

McCall has defined the foundational factors for software engineering [19].
Modifiability is one pervasive factor for the software design of user interfaces. In this
section, we discuss two other prevalent factors: portability and reusability. We analyze
how they are addressed by current tools and techniques and how they relate to user
interface requirements.
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Portability at the code level is claimed to be supported with general purpose abstract
machines such as Java [2]. Actually, portability of user interfaces is more than
platform-independent code execution. Typically, screen definition and processing
power vary across workstations. As a result, the rendering and responsiveness of a
Java applet may be satisfactory on the developer’s workstation, while not usable for a
remote Internet user. The developer must have access to some model of the
characteristics of the unknown target site. Such information should not be hidden by
layers of abstract machines. It should be clearly advertised to programmers.

Reusability is supported in various and complementary ways. It includes the
subclassing mechanism as advocated by object-oriented languages, and the
compositional approach. Reusability supported by object-oriented application
frameworks and toolkits requires a thorough understanding of the environment in order
to elicit what can be reused. If successful at discovering the right pieces, the next stage
is to decide how to perform specializations and extensions while preserving the
philosophy of the underlying conceptual architecture. Because this architecture is not
self-explanatory, because it is not exoskeletal [18], reusability by specialization
requires a time-consuming reverse engineering process.

The compositional approach to software is intended to make possible the creation of
functionally powerful applications from existing systems. In general, system
integration is hard to achieve due to conflicting architectural assumptions. As reported
in [14], mismatches may occur both at the component and the connector levels:

• the control models used in the components may be incompatible (e.g., several of
them may expect to own the main event loop),

• conflicts may arise between data models (e.g., one component is expecting a
hierarchical representation while another one relies on a stream-like model),

• protocols implemented in the connectors may be inconsistent (e.g., connectors use
different communication primitives or different kinds of data).

Techniques, such as Ole, for alleviating architectural mismatch are emerging.
However, their conceptual applicability or their technical availability is of limited
scope. For example, one general solution to the “event-loop problem” is to run the
conflicting components as distinct processes and use event gateways to accommodate
different control regimes. If, on the other hand, some design decision constrains the
components to operate in the same process, then brute force modifications of the
source code must be performed. CGI gateways are attractive solutions to the
composition problem but they apply to Internet components only [15].

Actually, there is more to the compositional approach than technical conflicts: user
interface inconsistencies may arise from components that implement their own user
interface. Then, either conflicts occur at the lexical level and can be repaired by editing
resource files, or the source of inconsistencies is deeper in the interaction model, and,
again, brute force modification is unavoidable. Performing these modifications in a
safe way requires reverse engineering the source code. This may be a tremendous task
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when the conceptual architecture of the user interface such as those presented next, is
missing.

3 Evolution of software architecture models for interactive
systems

Seminal Seeheim [25] and its revisited version, the Arch model [1], set the
foundations for functional partitioning. Modifiability, motivated by the iterative
design of user interfaces, was the driving principle. At that time, the slogan was
“separate the functional core from the user interface”. With the proliferation of
toolkits, portability of the user interface at the widget level became a new concern: the
Arch “Presentation Component” made explicit the notion of logical interaction object.
By doing so, it defined a natural integration for virtual toolboxes such as XVT [29].

Direct manipulation introduced new functional requirements on software architectures
including the notion of multi-threaded interaction and the concept of immediate
semantic feedback. The PAC model (Presentation, Abstraction, Control), based on the
notion of agent, was explicitly designed to support these new features while
preserving the Seeheim principle [5]:

• an agent is intended to convey a thread of interaction,

• the three-fold functional partitioning of an agent makes provision for hosting
domain-specific semantic in the Abstraction facet of the agent while immediate
feedback is supported through its Presentation facet; the third facet, the Control,
centralizes the expression of dependencies between the Abstraction and the
Presentation as well as inter-agent communication.

Multimodal interaction, which supports multiple forms of interaction techniques such
as speech and gesture, added yet another set of requirements. In particular, the CARE
properties (Complementarity, Assignation, Redundancy, Equivalence) that characterize
relationships between multiple modalities [6], made prevalent temporal constraints and
style heterogeneity:

• the interpretation of deictic expressions such as “put that there”, uses the notion of
temporal window to combine partial information into meaningful expressions:
gesture and speech expressions produced in the same temporal window can be
considered for fusion. Alternatively, if they are not part of the same temporal
window, then redundancy or parallel input of multiple independent commands may
be planned;

• style heterogeneity comes from the integration of multiple sources of reusable code
that each implements a modality interpreter. Typically, a speech recognition
system that may adhere to a blackboard style, must be combined with an object-
event-based style graphical toolkit such as Motif.

PAC-Amodeus has been devised to support the new requirements imposed by
multimodality [20, 21]. It uses the Arch model as the foundation for the functional
partitioning and populates the Dialogue Component of the arch with PAC agents. The
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two adapters of the Arch, the “Presentation Component” and the “Domain Adapter”,
are used to accommodate style mismatch. The PAC agents, which support
concurrency, are augmented with processing capabilities, such as a fusion engine [22],
to support the temporal aspects of the CARE properties.

So far, we have limited our historical analysis to single user systems. With the advent
of groupware and Internet-based multimedia systems, complex functional requirements
are emerging. Portability, reusability, interoperability, and efficiency are becoming
crucial. In Section 2, we have discussed the limits of the current technical solutions.
We now present PAC*, our conceptual architecture for groupware.

4 The PAC* conceptual model

PAC* is a combination of existing architectural models: 1) it instantiates Dewan’s
zipper model [9] with the five level functional decomposition of Arch, 2) like PAC-
Amodeus, it populates Dialogue Control components with agents [20, 21], and 3)
PAC agents are refined along the three functional dimensions of the Clover model [4].

This combination of Dewan’s, Arch, and PAC models is motivated in the following
way: the Arch functional decomposition is an appropriate framework for
accommodating style heterogeneity and for anticipating changes and portability of the
user interface portion of the system. Dewan’s model provides the basis for reasoning
about replication, coupling, and parallelism at the layers level. PAC-Amodeus
explicitly models parallelism at a finer grain within Dialogue Control components of
the architecture. It also brings in patterns and operational heuristics to devise agents in
conformance to the external specifications of the user interface. The Clover model
helps reasoning about the functional coverage of individual agents and provides the
basis for additional refinements. The description of these models are briefly
summarized in the following sections.

4.1 PAC* and Dewan’s model

The “generic multi-user architecture” model proposed by Dewan [9] structures a
groupware system into a variable number of levels of abstraction ranging from the
domain specific level to the hardware level. Layers shared between users form the base
of the system (e.g., layers S to L+1 in Figure 1a). At some point, the base gives rise
to branches which are replicated for every user (see layers L to 0 in Figure 1a).
Information flow between layers occurs vertically between adjacent layers along the
input and output axis as well as horizontally for synchronizing states between peer and
non peer replicated layers. Interestingly, Dewan makes a distinction between single-
user events which are private to a personal workstation, and multi-user events which
result in propagations to remote workstations.

The functional role and the number of layers in Dewan’s model depend on the case at
hand. A layer can be viewed as a level of abstraction or as a service that overlaps with
other services as in SLICE[17]. Figure 1b) shows an instantiation of Dewan's model
using the functional layers of Arch. ALV [16] is a three layer instantiation where the
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semantic level is mapped to the shared abstraction A and where branches are comprised
of links L and views V.

Dewan’s model offers a good basis for implementing various forms of coupling as
well as for allocating functions to processes (e.g., reasoning about the granularity of
parallelism, replication and distribution). For example, one can choose to execute the
base and each branch within distinct processes. Similarly, without any automatic
support from the underlying platform, the model helps reasoning about allocating
processes to processors.

         Layer  1

     Layer  L

        Layer  L+1

  Layer  S (Semantic)
 Outputs Inputs

     Layer  L

    Layer  1

 Layer 0 (Hard.)  Layer  0 (Hard.)

a) b)

    FC

   DA    DA

   IC    IC

   PC    PC

   DC    DC

Fig. 1.  a) Dewan’s generic architecture for multi-user systems. Arrows denote information
flow. b) An instantiation of Dewan's model using the functional layers of Arch. Here, the
functional Core FC is shared while each branch is composed of a Domain Adapter DA, a
Dialogue control Component DC, a logical Presentation Component PC, and a physical

Interaction Component IC.

PAC* is a zipper-based architecture where the layers are instantiated using the five
functional partitioning advocated by Arch: the Functional Core, the Domain Adapter,
the Dialogue Component, the Presentation and Interaction Components. Although
specified informally, the roles of these components are now well-understood by
practitioners to cope with architectural mismatches, to reason about portability and to
integrate multiple interaction techniques:

• Typically, the Domain Adapter is used as a wrapper for solving data models
mismatch between the Functional Core and its user interface. For example,
requests formulated from a Java user interface applet are transformed by the
Domain Adapter into the SQL format expected by information retrieval engines
[30].

• For interactionally rich user interfaces, such as MATIS [22] and CoMedi [7], the
Presentation and Interaction Components correspond to the set of modality
interpreters used in the user interface: speech recognition, computer vision-based
gesture interpretation, and graphical abstract machines such as AWT [2] and Tk
[23]. As shown in Figure 2, these machines sit side by side without any
intercommunication and cover two levels of abstraction: the Interaction layer
which provides the Presentation layer with device independence, and the
Presentation layer which provides the Dialogue Component with interaction
language independence. In addition, all of the interpreters of the Presentation layer
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can be encapsulated in a uniform way. For example, in CoMedi, two speech
recognition systems, computer-vision trackers, and the continuous media provider
are all encapsulated in Tcl for use from the Dialogue Component.

• The Dialogue Component is in charge of task level sequencing. In PAC*, we
reuse the design rationale developed for PAC-Amodeus: whereas the Functional
Core, the Presentation and the Interaction Components have their own architecture
driven by domain (or subdomain) specific criteria, we recommend to structure the
Dialogue Component using the PAC style in order to support multi-threading,
modularity, and task conformance.
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Fig. 2. Interaction Interpreters in the Presentation and Interaction Components.

4.2 PAC* and PAC

In the PAC style, the components are three facet agents interacting through event-
based connectors. The facets (Presentation, Abstraction, Control) are used to express
different but complementary and strongly coupled computational perspectives of the
same functionality. As shown in Figure 3, no agent Abstraction is authorized to
communicate directly with its corresponding Presentation and vice versa. Dependencies
of any sort are conveyed via Controls. Controls serve as the glue mechanism to
express coordination as well as data model transformations between the abstract and
concrete perspectives. In addition, the flow of information between agents transits
through Controls in a hierarchical way.

In PAC*, we reuse the heuristic rules developed for PAC-Amodeus to populate the
Dialogue Component with PAC agents. Each of these rules proposes a configuration
of agents, or pattern, that fits a particular situation. The complete set of PAC-
Amodeus rules can be found in [20, 21]. Basically, these rules are driven by the
external specifications of the user interface. Every interaction space such as a window,
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a drawing area, a menubar, etc., is modelled as an agent. Views opened in cascade are
related by a hierarchical link. Consistency between multiple views of the same
concept is maintained through a common parent agent. Distributed user’s actions over
multiple agents, such as a palette and a drawing area, are synthesized into a
meaningful command using a cement agent.

A P
C

A P
C

A P
C

A P
C

A P
C

Fig. 3.  In the PAC style, PAC components are configured hierarchically using event-based
connectors. Arrows illustrate the information flow (vertical flow between agents,

horizontal flow between the facets of an agent).

Agents, such as menus and buttons, that are implemented by the Presentation or
Interaction levels are pruned from the hierarchical systematic decomposition: from first
class agents, they become Presentation-level reusable code referenced in the
Presentation facet of the parent agent from where they are pruned.

A P
C

A P
C

A P
C

A P
C

A P
C

Domain Adapter
Presentation 
Component

Remote agentsRemote agents

Fig. 4.  A Dialogue Component in PAC* and its connectors. Dark arrows denote connectors
within the Dialogue Component. Dimmed arrows represent connectors with other

components.

In PAC*, just like for PAC-Amodeus, a Presentation facet maintains a data model for
rendering the information maintained in its related Abstraction facet. This data model
is used to feed into and receive information from the local Presentation Component.
An Abstraction facet maintains a data model of domain-specific information exchanged
with the Functional Core through the Domain Adapter.

Single-user events whose effects are private to a particular user are processed locally
within the Interaction-Presentation-Dialogue components. Within the Dialogue
Component, they are processed by local agents that may not have corresponding peers
on remote workstations. Multi-user events, such as a user entering or leaving a
conference,  must be notified to remote sites. Dewans’ model defines different forms of
coupling between the layers. Within the Dialogue Component layer, coupling in
PAC* is performed at the agent level. Figure 4 summarizes the possible connections
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within the Dialogue Component and with outside the Dialogue Component. CoMedi
is used next to illustrate the architectural possibilities.

As shown in Figures 5 and 6, CoMedi uses a fisheye porthole to support
communication and awareness in a mediaspace. A slot in the porthole corresponds
either to a remote user or to a group of users. An individual slot displays personal
information about the corresponding remote user (e.g., level of availability,
absence/presence, video image published through a filter [8]). When opening a
collective slot, the current porthole is replaced with the porthole of the corresponding
group. In a dedicated area of the control panel (see bottom left of Figures 5 and 6),
users can check the image they export about themselves (cf. the reflexivity principle
[27]). When an audio/video connection is established with a remote user, a dedicated
video image is opened dynamically.

Fig. 5.  Screen dump of CoMedi in neutral position: all of the slots of the porthole are of
equal size.
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Fig. 6.  Screen dump of CoMedi when focus is located on a particular slot

Figure 7 shows the refinement of the Dialogue Component of CoMedi. The Top-
Level agent is in charge of the overall control of the dialogue. In particular, its
Abstraction facet is in relation with the data base of users. (This data base is an active
data structure implemented as a GroupKit environment [26].) Its Presentation
corresponds to the overall menubar of the mediaspace.

The Porthole agent handles the local interaction with the porthole. Its Abstraction
maintains the identity of the group in the current focus of attention of the local user.
Its Presentation is a geometry manager that performs fisheye deformations of the
porthole and maps the bitmap images provided by its siblings onto quadrilateral slots
of varying sizes (the fisheye follows the mouse location as the user moves the mouse
in the porthole).  

Every remote user (or group of users) who belongs to the current porthole is
represented by a Slot agent. Its Abstraction models the personal data of the remote
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user/group to be rendered in the slot while its Presentation produces a bitmap based on
the knowledge of the surface available for rendering.

The Vphone agent models the dedicated open audio/video window for Vphone
connections.

continuous media connection
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PortHole Vphone Media
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Fig. 7.  The Dialogue Component of CoMedi.

The Media agent is in charge of acquiring and filtering the audio and video image of
the local user. This filtered image is rendered locally in the Presentation facet of the
Media agent; it is sent to every remote Slot agent that represents the local user
currently rendered on remote sites; and finally, it is transmitted to the distant Vphone
agent when the local user is Vphoning that distant user. For doing so, the remote slot
agents and the remote Vphone agent express their interest to their local hierarchy in
opening/closing an audio/video stream with that particular user (1). The remote
TopLevel sends the request to the appropriate distant peer TopLevel agent (2) which,
in turn, triggers the Media agent of the particular user (3). Direct audio/video
connections are then established/suppressed between the Media agent and the remote
subscribers (4).

4.3 PAC* and the Clover model

The Clover model, based on Ellis’model [11], provides a generic overview of the
functional coverage of groupware. As shown in Figure 8, a groupware system covers
three domain specific functions: production, coordination and communication [4]:

• The production space denotes the set of domain objects that model the multi-user
elaboration of common artefacts such as documents, or that motivate a common
undertaking such as flying an airplane between two places. Typically, shared
editors support the production space.
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• The coordination space covers activities dependencies including temporal
relationships between the multi-user activities. Workflow systems are primarily
concerned with coordination.

• The communication space supports person-to-person communication. Email and
mediaspaces are examples of systems designed for supporting computer-mediated
communication either asynchronously or synchronously.

Space
Production

Space

Communication
Space

Coordination

Fig. 8.  The functional decomposition of groupware: the clover model.

PAC* uses the Clover model as a conceptual tool for refining the functional coverage
of agents. In PAC*, agents can be functionally decomposed along two orthogonal
axis: on one hand, the P, A, C functional breakdown and the clover decomposition of
groupware on the other hand. In other words, the services that an agent supports for
Production, Coordination, and Communication have their own Presentation,
Abstraction and Control. This refinement of an agent functionality is shown in Figure
9 as a “Neapolitan PAC”.

comm

coord

prod

PA

C

Fig. 9.  A PAC* agent as a bundled “Neapolitan PAC”. Arrows show horizontal
communication between the A, P, C as well as vertical communication between the

Production, Coordination, and Communication views.

In turn, a Neapolitan PAC* agent can be decomposed as a cluster of three PAC
agents, each agent being dedicated to one class of the functional clover. One can refer
to [4] for a detailed description of this refinement illustrated with an extended version
of the SASSE multi-user editor [3].

.5 Conclusion

In this article we have demonstrated the motivation for PAC-ing the user interface of
an interactive system ranging from single to multi-user systems. The PAC family
conceptual models provide a sound basis for devising the right components of an
interactive system with specific focus on Dialogue Components.

Although connectors within Dialogue Components are event-based, the nature of the
connectors to be used between other components is underspecified. Experience shows
that designing the connectors right is more difficult than getting the right
components. We plan future work in this direction.
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Another weakness of the PAC family models is the absence of formalization such as
[10, 24]. Another missing element is a cookbook that would help practitioners to
translate a PAC-based conceptual architecture into a motivated implemented
architecture. This reflection is on our research agenda as well.
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