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NOTATION

The following notation is used in this dissertation.

m the multiset of the form 1k1 · · ·mkm

∪ the union of sets
∩ the intersection of sets
] the union (merge) of multisets
|A| the cardinality of set A
P< the partially ordered set with relation <∑

the sum∏
the product(

n
k

)
the binomial coefficient,

(
n
k

)
= n!

k!(n−k)!(
n

k1,...,kp

)
the multinomial coefficient,

(
n

k1,...,kp

)
= n!

k1!···kp!
Z the set of integer numbers
Q the set of rational numbers
R the set of real numbers
ζ(s) the Riemann zeta function, ζ(s) =

∑∞
n=1

1
ns

Bk the k-th Bernoulli number
∇f the difference operator,∇f(x) = f(x)− f(x− 1)
a ≡ b (mod p) the congruence, a− b is divisible by p
gcd the greatest common divisor
Hn the n-th Harmonic number, Hn =

∑n
i=1

1
i

c(n, k) the Stirling number of the first kind
S(n, k) the Stirling number of the second kind
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INTRODUCTION

Problems in computer science, algorithms analysis and many effective compu-
tational techniques operate with discrete combinatorial structures. For example, sets,
graphs, finite sequences, generating functions and many others. Combinatorial anal-
ysis studies properties of these objects which is a wide and active area of research. Its
applications arise in computer science, chemistry, biology, physics and other fields
of science.

Many well-known properties of discrete objects that based on sets can naturally
be generalized to multisets. Definition of sets referred to multi means that we allow
repetitions of its elements.

This thesis presents an exploration of several computational, combinatorial, al-
gebraic and number-theoretic properties which emerge in problems with multiset
basis. All the results are of computational spirit and applicable from the aspect of
computer science (e.g., in the analysis of algorithms, as discussed below).

Motivation of research
Let us consider one classical example of enumerative combinatorics. The num-

ber of ways to choose k objects from a set of n elements is equal to(
n

k

)
=

n!

k!(n− k)!
.

The same problem which allows repetitions of elements gives the answer(
n+ k − 1

k

)
= (−1)k

(
−n
k

)
.

We see that changes to multisets derive an interesting result (very deep, in fact),
known as combinatorial reciprocity [47, 48].

If we consider Worpitzky’s identity [25, 50] (or, equivalently, the corresponding
generating function) as the central object, observation gives that:

(1) The classical case [25, 50]:

nm =
∑
i

am,i

(
n+ i

m

)
relates the power function nm with some integers am,i . The numbers am,i are called
Eulerian and they count the number of permutations (p1, . . . , pm) of (1, . . . ,m)
having i descent (’falling’) positions pk > pk+1 (1 ≤ k < m) or k = m .

(2) The generalized case for all permutations on multisets [14]:(
n+ k1 − 1

k1

)
· · ·
(
n+ km − 1

km

)
=
∑
i

am,i

(
n+ k1 + · · ·+ km − i

k1 + · · ·+ km

)
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relates the product of binomial coefficients with generalized Eulerian numbers am,i .
Notice that multiset m = {1k1, . . . ,mkm} leads to a changes in the basis of alge-
braic statement. Namely, the power function is changed by the product of binomial
coefficients:

nm →
(
n

k1

)
· · ·
(
n

km

)
.

As the sum of powers of consecutive integers has many well-known properties,
this case naturally moves us to study the power sum of binomial coefficients:

N∑
n=1

nm →
N∑
n=1

(
n

k1

)
· · ·
(
n

km

)
→

N∑
n=1

(
n

k

)m
.

For instance, we generalize a classical result of Faulhaber’s theorem [21, 35].
We also introduce Stirling numbers on multisets which related to the product of

binomial coefficients by the following polynomial identity:(
n

k1

)
· · ·
(
n

km

)
=

k1+···+km∑
i=0

S(m, i)

(
n

i

)
.

(3) The case of special multipermutations, called Stirling permutations [22], is
defined on the multiset {12, . . . ,m2} and yields the following identity:

S(n+m,m) =
∑
i

Am,i

(
n+ 2m− 1− i

2m

)
.

It relates Stirling numbers of the second kind S(n,m) with Eulerian numbers Am,i

on Stirling permutations. We consider the generalization of Stirling permutations on
any multiset {1k1, . . . ,mkm} , which is the last part of thesis.

Related work
The usual finite power sum of consecutive integers

∑N
i=1 i

n studied in many
works. Classical results are due to Jacob Bernoulli (1654–1705), Johann Faulhaber
(1580–1635) [21, 35], Carl G. J. Jacobi (1804–1851) [30], Leonhard Euler (1707-
1783). Nevertherless, the research is still full of different approaches and attempts to
find new properties, e.g., the survey of Knuth [35] on Faulhaber’s results, overview
and proofs with matrices by Edwards [18], Beardon [1] studied polynomial relations
between power sums, Chen et al. [9] considered Faulhaber’s theorem for arithmetic
progressions, Guo and Zeng [26] presented a q -analog of Faulhaber’s formula and
its combinatorial interpretations (Guo et al., [27]), applications in the work of Gessel
and Viennot [23] contain combinatorial properties for Bernoulli numbers and Faul-
haber’s coefficients, the Faulhaber’s coefficients also arise in KdV equations [20].
Sums of powers of binomial coefficients whose types different to ours were consid-
ered, e.g., in [7, 12]. On the other hand, by viewing reciprocal case, the studies are
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related to important problems with the Riemann zeta function and its arithmetic prop-
erties. A special choice of functions and series with reflectivity property introduced
in [35] to prove Faulhaber’s theorem, also used in proofs by Rivoal [43] and Zudilin
[52] on irrationality of zeta functions. Note that general question about irrationality
of any of ζ(5), ζ(7), . . . is still open and challenging.

Broder [6] introduced Stirling numbers with special restrictions of elements in
a set, called the r -Stirling numbers. In chapter 2, these numbers generalized in
the notion of multiset covers and restricted partitions or permutations of sets. Such
generalized Stirling numbers of the second kind occur (with another combinatorial
interpretation) in the problem of boson normal ordering [38], which has the origin
related to the composition of differential operators (or annihilation and creation in
bosons terminology).

Stirling permutations were originally introduced by Gessel and Stanley in [22].
They obtain relations between special permutations on multisets with Stirling num-
bers. Further research on the subject was done by Park [39, 40] who studied the
multiset {1r, . . . ,mr} , in the same case Klingsberg and Schmalzried [33] gave com-
binatorial interpretations for barred permutations in terms of posets, Bóna [2] proved
that corresponding Eulerian polynomial has only real zeros, Haglund and Visontai
[28] consider Eulerian multivariate polynomial and discuss corresponding stability
property, Janson (et al.) [32, 31] showed the connection with plane recursive trees
and urn model, Egge [19] obtained similar theory of Legendre–Stirling permutations.

Application perspective
The results and methods of research presented in this thesis can be applied:
(1) In the analysis of algorithms and data structures. It is the case when solution

of problem (e.g., NP-complete) is based on exhaustive search and requires a genera-
tion or enumeration of permutations, subsets, partitions, etc. Or the case that needs
a probabilistic and asymptotic analysis. For example, the analysis of skip lists data
structure is based on the binomial transform of sequences [36, 41]; in the analysis
of optimum caching [34] we may observe the study of special Stirling numbers and
permutations; the usual Stirling numbers arise in many applications (hash functions,
bloom filters, see, e.g., [4, 29]); multisets are the input source for hash functions
with application to memory integrity checking [10]. A complete and efficient way
for computation of certain problems on partitions, decompositions, permutations,
posets and other objects is therefore valuable.

(2) In other areas, such as combinatorial physics. For instance, generalized
Stirling numbers which we study in chapter 2 occur in the problem of boson normal
ordering [38].

Many interesting applications of multisets can be found in [8]. Modern research
on subject of permutations which includes different approaches, statistics and appli-
cations can be found in the book of Bóna [3].
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Main results and structure of thesis
The first and the most extensive part in chapter 1 studies the power sum of

binomial coefficients. We establish algebraic, combinatorial and number-theoretic
properties. They particularly include the generalization of Faulhaber’s theorem, spe-
cialization on coefficients and power sums of triangular numbers with coming reci-
procity, the problem of Wolstenholme’s theorem in a class of binomial coefficients,
reciprocal power sums of binomial coefficients and connections with the Riemann
zeta function.

In chapter 2, Stirling numbers on multisets are introduced and studied. In fact,
we show that these numbers are almost the same (but differ in order and distinguished
elements) as those which defined on restricted partitions of sets or cycle decomposi-
tions of permutations.

Chapter 3 is the part concerning generalized Stirling permutations. It contains
new combinatorial meanings for the B numbers. These interpretations are related
to the barred permutations, weighted lattice paths, bipartite multigraphs, theory of
P -partitions, systems of partitions of sets. The presented construction allows us
to specify the B numbers and their combinatorial meanings for particular cases as,
e.g., the sums of powers of consecutive integers, the binomial coefficient, the Stirling
numbers, the central factorial numbers [42] and their generalizations.

Acknowledgements
I am grateful to my thesis advisor A. S. Dzhumadil’daev for his continuous

support, encouragement and inspiration.
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1 POWER SUM OF BINOMIAL COEFFICIENTS

While the sum of powers of consecutive nonnegative integers was studied by
many mathematicians from ancient times, two names should be especially men-
tioned: Jacob Bernoulli (1654-1705) and Johann Faulhaber (1580-1635). It is well
known that

n∑
i=1

i =
n2

2
+
n

2
=
n(n+ 1)

2
,

n∑
i=1

i2 =
n3

3
+
n2

2
+
n

6
=
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n4

4
+
n3

2
+
n2

4
=

(
n(n+ 1)

2

)2

.

In general,
N−1∑
i=1

im =
1

m+ 1

m∑
i=0

(
m+ 1

i

)
BiN

m+1−i,

where Bi are Bernoulli numbers.
Faulhaber [21, 35] noticed that odd power sums can be represented as a poly-

nomial in t = n(n+ 1)/2. For example,

n∑
i=1

i3 = t2,

n∑
i=1

i5 =
4t3 − t2

3
,

n∑
i=1

i7 =
12t4 − 8t3 + 2t2

6
.

He computed these sums up to degree 17. The first proof of Faulhaber’s theorem
was given by Jacobi [30]. The general formula for odd power sums can be written as

n∑
i=1

i2p+1 =
1

22p+2(2p+ 2)

p∑
i=0

(
2p+ 2

2i

)
(2− 22i)B2i((8t+ 1)p+1−i − 1).

Faulhaber knew that odd power sums are divisible by t2 and even power sums can
be expressed in terms of odd power sums. If

n∑
i=1

i2p+1 = c1t
2 + c2t

3 + · · ·+ cpt
p+1,
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then
n∑
i=1

i2p =
2n+ 1

2(2p+ 1)
(2c1t+ 3c2t

2 + · · ·+ (p+ 1)cpt
p).

In this chapter we consider power sum of binomial coefficients

fk,m(N) =
N−1∑
i=0

(
i+ k − 1

k

)m
,

and for k = 1 we obtain the usual power sum

f1,m(N) =
N−1∑
i=1

im.

We establish an analog of Faulhaber’s theorem for any positive integer k. Namely,
we show that:

• fk,m(N) is a polynomial in N and it can therefore be considered as a polyno-
mial fk,m(x) in any variable x ;

• fk,m(x) is divisible by
(
x+k−1
k+1

)2
if m, k are odd and m > 1 ;

• fk,m(x) is divisible by
(
x+k−1
k+1

)
(2x+ k − 2) if k is odd and m is even;

• fk,m(x) is divisible by
(
x+k−1
k+1

)
, otherwise;

• and in all cases the quotients are polynomials in (2x + k − 2)2 with rational
coefficients.

For example,

f3,3(N) =
N−1∑
i=0

(
i+ 2

3

)3

=

(
N + 2

4

)2
(2N + 1)2 − 10

15
,

f3,2(N) =
N−1∑
i=0

(
i+ 2

3

)2

=

(
N + 2

4

)
(2N + 1)

5(2N + 1)2 − 41

420
,

f2,2(N) =
N−1∑
i=0

(
i+ 1

2

)2

=

(
N + 1

3

)
3N 2 − 2

10
.

By Faulhaber’s theorem, any odd power sum can be expressed as a combination
of powers of triangular numbers

N∑
i=0

i2m−1 =
1

2m

m−1∑
i=0

A
(m)
i (N(N + 1))m−i,
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and any even power sum can be expressed as

N−1∑
i=0

i2m = (N − 1

2
)

m∑
i=0

Ã
(m)
i (N(N − 1))m−i,

where Ã(m)
i = m+1−i

(2m+1)(m+1)A
(m+1)
i . 1

Knuth [35] showed that the coefficients A(m)
i have many interesting properties.

Our generalization of Faulhaber’s theorem tends to consider the inverse problem:
expressing the power sum of triangular numbers f2,m(N) in terms of powers of N .
We show that this expression can be presented as a combination of odd powers of
N,

f2,m(N) =
N−1∑
i=1

(
i(i+ 1)

2

)m
=

1

2m

m∑
i=0

B
(m)
i N 2m−2i+1.

We find the following duality relations between coefficients B(m)
i and A

(m)
i , Ã

(m)
i :

B
(m+i)
i = (−1)i−1

m+ i

m(2m+ 1)
A

(−m)
i ,

B
(m+i−1)
i = (−1)iÃ

(−m)
i .

Properties of B(m)
i which similar to the properties of A(m)

i are also established.
We study integer divisibility properties of fk,m(N) for integer N. We consider

an analog of the Riemann zeta function

ζ(s) =
∞∑
i=1

1

is

for binomial coefficients. Let

ζk(m) =
∞∑
i=1

(
i+ k − 1

k

)−m
.

We prove that (for positive integers k,m and l = dm/2e )

ζk(m) ∈

{
Q + Qζ(2) + · · ·+ Qζ(2l), if km is even;
Q + Qζ(3) + · · ·+ Qζ(2l − 1), if km is odd and km > 1.

In case of k = 2 we obtain the formula for ζ2(m) ,

ζ2(m)

2m
= (−1)m−1

(
2m− 1

m

)
+ (−1)m2

bm/2c∑
i=1

(
2m− 2i− 1

m− 1

)
ζ(2i).

1 A
(m)
i is referred to the sequences A093556, A093557 and Ã

(m)
i is referred to the sequences A093558,

A093559 in [45].
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The structure of this chapter is as follows. In section 1.1, we consider the sum of
products of binomial coefficients, which has combinatorial origin and is used in es-
tablishing polynomial properties of fk,m(x). In section 1.2, an analog of Faulhaber’s
theorem for the powers of binomial coefficients is proved. In section 1.3, we study
integer properties for fk,m(x) and for fk,−1 . In section 1.4, we consider the property
of Wolstenholme’s theorem in a class of binomial coefficients [15]. In section 1.5,
the properties of infinite sum ζk(m) are derived. In section 1.6, we focus on the
partial case k = 2 and express the power sum of triangular numbers f2,m(N) as a
sum of powers of N .

1.1 Sum of products of binomial coefficients
1.1.1 Generalized Worpitzky’s identity
Let

fk1,...,km(N) =
N−1∑
i=0

(
i+ k1 − 1

k1

)
· · ·
(
i+ km − 1

km

)
, (1.1)

where k1 ≤ · · · ≤ km .
To study fk1,...,km, we need a generalization of Worpitzky’s identity for multi-

sets. To formulate this identity let us introduce Eulerian numbers for multisets.
Let m = 1k1 · · ·mkm be a multiset where l repeats kl times, l = 1, . . . ,m.

Let Sm be the set of permutations of m and set K = k1 + · · ·+ km.
For a permutation σ = σ(1) . . . σ(K) ∈ Sm, let i be a descent index if i = K

or σ(i) > σ(i+ 1), i < K. A descent number des(σ) is defined as a number of de-
scent indices of σ and Eulerian number am,p is defined as a number of permutations
with p descents,

am,p = |{σ ∈ Sm|des(σ) = p}|.
For m = 1121 · · ·m1, we obtain the usual Eulerian numbers am,p (A008292 in [45])
and the well-known Worpitzky identity

xm =
∑
p>0

(
x+m− p

m

)
am,p.

Example 1.1.1. Let m = 1222. Then

S1222 = {1122, 1212, 2112, 2121, 2211, 1221},

and
des(1122) = 1, des(1212) = 2, des(2112) = 2, des(2121) = 3,

des(2211) = 2, des(1221) = 2.

Therefore,

a1222,1 = 1, a1222,2 = 4, a1222,3 = 1, and a1222,i = 0, if i 6= 1, 2, 3 .

11



Theorem 1.1.2. [14] For any nonnegative integers k1, . . . , km,

m∏
i=1

(
x+ ki − 1

ki

)
=
∑
p>0

(
x+K − p

K

)
am,p,

where am,p are Eulerian numbers of permutations of the multiset m = 1k1 · · ·mkm.

Example 1.1.3. If m = 1222, then(
x+ 1

2

)2

=

(
x+ 3

4

)
+ 4

(
x+ 2

4

)
+

(
x+ 1

4

)
.

For a more detailed overview and other properties of Eulerian numbers on mul-
tisets and generalized Worpitzky’s identity, see [14].

1.1.2 Sum of products of binomial coefficients as a polynomial
Theorem 1.1.4. Let 0 ≤ k1 ≤ · · · ≤ km. Then the sum (1.1) induces a polynomial
fk1,...,km(x) of degree K+1 with rational coefficients. As a polynomial with rational
coefficients, the polynomial fk1,...,km(x) is divisible by

(
x+km−1
km+1

)
.

Proof. By Theorem 1.1.2,

fk1,...,km(N) =
∑
p>0

N−1∑
i=0

(
i+K − p

K

)
am,p =

∑
p>0

(
N +K − p
K + 1

)
am,p,

for any positive integer N. Therefore, we can substitute any variable x in N and
see that

fk1,...,km(x) ∈ Q[x], deg fk1,...,km(x) = K + 1.

If km = 0, then k1 = · · · = km = 0, and

f0,...,0(N) = N − 1.

Therefore, f0,...,0(x) = x−1. So, in this case divisibility of fk1,...,km(x) by
(
x+km−1
km+1

)
is evident.

Suppose now that km > 0. Let us consider a difference polynomial

∆f(x) = fk1,...,km(x+ 1)− fk1,...,km(x).

By (1.1),

∆f(x) =

(
x+ k1 − 1

k1

)
· · ·
(
x+ km − 1

km

)
.
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Therefore, ∆f(x) has km zeros: 0,−1, . . . ,−(km − 1) . Hence,

fk1,...,km(1)− fk1,...,km(0) = ∆f(0) = 0,

fk1,...,km(0)− fk1,...,km(−1) = ∆f(−1) = 0,

. . .

fk1,...,km(−(km − 2))− fk1,...,km(−(km − 1)) = ∆f(−(km − 1)) = 0.

If km > 0, then
(
i+km−1
km

)
= 0 for i = −km + 1. Therefore,

fk1,...,km(−km + 1) = 0.

We thus obtain a polynomial fk1,...,km(x) with km + 1 zeros

1, 0,−1, . . . ,−(km − 1).

This means that fk1,...,km(x) is divisible by
(
x+km−1
km+1

)
.

Set fk,m(x) = fk,k,...,k(x). In other words, fk,m(x) is a polynomial defined by
the following relations

fk,m(N) =
N−1∑
i=0

(
i+ k − 1

k

)m
. (1.2)

Corollary 1.1.5. The polynomial fk,m(x) has the following properties

• fk,m(x) ∈ Q[x] ,

• deg fk,m(x) = km+ 1,

• fk,m(x) is divisible by
(
x+k−1
k+1

)
.

A more detailed version of this result is given in the next section.

1.2 Faulhaber’s theorem for powers of binomial coefficients
1.2.1 Formulation of the main result
We know that f1,m(N) =

∑N−1
i=1 im is a polynomial in N of degree m+1 . By

Faulhaber’s theorem [21, 35], the polynomial f1,m(x) is divisible by the polynomial
f1,1(x) = x(x − 1)/2 . For odd m, the polynomial f1,m(x) is divisible by f1,1(x)2

and the quotient is a polynomial in f1,1(x). For even m, the polynomial f1,m(x)
can be presented as product of f1,1(x)(2x− 1) and a polynomial in f1,1(x) .

The following theorem is an analog of Faulhaber’s theorem for the sum of pow-
ers of binomial coefficients.

13



Theorem 1.2.1. There exist polynomials Qk,m(x) ∈ Q[x], such that

fk,m(x) =



(
x+k−1
k+1

)2
Qk,m((2x+ k − 2)2), if m, k are odd, m > 1;

(
x+k−1
k+1

)
(2x+ k − 2)Qk,m((2x+ k − 2)2), if k is odd, m is even;

(
x+k−1
k+1

)
Qk,m((2x+ k − 2)2), otherwise.

Note that fk,1(x) =
(
x+k−1
k+1

)
and our theorem states that the polynomial fk,m(x)

is divisible by fk,1(x) . Moreover, if m and k are odd (m > 1), then fk,m(x) is
divisible by fk,1(x)2 .

Let us show Theorem 1.2.1 for some small values of k.
If k = 1, then there exist polynomials Q1,m(x) ∈ Q[x], such that the polyno-

mial f1,m(N) =
∑N−1

i=1 im can be expressed as:

f1,m(x) =


(
x
2

)2
Q1,m((2x− 1)2), if m is odd and m > 1;

(
x
2

)
(2x− 1)Q1,m((2x− 1)2), if m is even.

Note that the polynomial Q1,m((2x − 1)2) = Q1,m(8x(x−1)2 + 1) can be written as
a polynomial in

(
x
2

)
= x(x−1)

2 . Hence, Faulhaber’s theorem is a particular case of
Theorem 1.2.1.

If k = 2, then for any m > 0 , there exists a polynomial Q2,m(x) ∈ Q[x], such
that

f2,m(x) =

(
x+ 1

3

)
Q2,m(x2).

Since (
x+ 1

3

)
=
x(x2 − 1)

6
,

this implies that f2,m(x) is an odd polynomial.
If k = 3, then f3,3(x) =

(
x+2
4

)2
Q3,3(x) , where

Q3,3(x) =
1

15
(4x2 + 4x− 9).

Then for each positive integer m, (m > 1), there exists a polynomial Q3,m(x) ∈
Q[x], such that

f3,m(x) =

(
x+ 2

4

)2

Q3,m(Q3,3(x)), if m is odd, and

f3,m(x) =

(
x+ 2

4

)
(2x+ 1)Q3,m(Q3,3(x)), if m is even.
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1.2.2 Reflective functions
The proof of Theorem 1.2.1 is based on the notion of reflective functions in-

troduced by Knuth [35]. The function f(x) is called r -reflective if for all x, we
have

f(x) = f(−x− r);
and f(x) is called anti- r -reflective if for all x, we have

f(x) = −f(−x− r).

In other words, reflective functions are even or odd functions shifted by r/2 .
Note that the

• sum of two (anti)- r -reflective functions is (anti)- r -reflective;

• product of two r -reflective functions is r -reflective;

• product of anti- r -reflective and r -reflective is anti- r -reflective function and

• product of two anti- r -reflective functions is r -reflective.

Lemma 1.2.2. Let ∇f(x) = f(x) − f(x − 1) . Suppose that f(0) = f(−r) = 0
and the function f is defined on the set of integers. Then the following is true:

• if the function ∇f is (r − 1) -reflective, then f is anti- r -reflective and

• if the function ∇f is anti- (r − 1) -reflective, then f is r -reflective.

Proof. Suppose that ∇f is (r − 1) -reflective. Then we have

f(N)− f(0) =
N∑
i=1

∇f(i) =
N∑
i=1

∇f(−i− r + 1) = f(−r)− f(−N − r),

which gives f(N) = −f(−N − r) and this implies that f is anti- r -reflective.
Now if ∇f is anti- (r − 1) -reflective, then

f(N)− f(0) =
N∑
i=1

∇f(i) = −
N∑
i=1

∇f(−i− r + 1) = −f(−r) + f(−N − r).

So, f(N) = f(−N − r) and f is r -reflective.

Lemma 1.2.3 ([35], Lemma 4). A polynomial f(x) is r -reflective if and only if it
can be presented as a polynomial in x(x+ r) (or (2x+ r)2 ); it is anti- r -reflective
if and only if it can be presented as 2x + r times a polynomial in x(x + r) (or
(2x+ r)2 ).
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Lemma 1.2.4. The polynomial
(
x+k−1

k

)
is (k − 1) -reflective if k is even and anti-

(k − 1) -reflective if k is odd.

Proof. The proof follows from the identity
(
x+k−1

k

)
= (−1)k

(−x
k

)
.

By Theorem 1.1.4, there exist polynomials gk,m(x) ∈ Q[x], such that

fk,m(x) =

(
x+ k − 1

k + 1

)
gk,m(x).

Lemma 1.2.5. Reflective properties of functions fk,m and gk,m are

• fk,m(x) is (k − 2) -reflective if km+ 1 is even and anti- (k − 2) -reflective if
km+ 1 is odd.

• gk,m(x) is (k − 2) -reflective if (m− 1)k is even and anti- (k − 2) -reflective
if (m− 1)k is odd.

Proof. Let ∇f = f(x) − f(x − 1) . Since ∇fk,m(x) =
(
x+k−2

k

)m
, we see that

∇fk,m(x) is (k− 3) -reflective if km is even and anti- (k− 3) -reflective, otherwise.
By Theorem 1.1.4, f(0) = f(−(k − 2)) = 0 . Thus, by Lemma 1.2.2, fk,m(x) is
anti- (k − 2) -reflective if km is even and (k − 2) -reflective, otherwise.

Note that gk,m = fk,m/
(
x+k−1
k+1

)
. Therefore by Lemma 1.2.4, gk,m(x) is (k−2) -

reflective if km− k is even and anti- (k − 2) -reflective, otherwise.

Lemma 1.2.6. Let k be an odd number. Then fk,m(x) is divisible by
(
x+k−1
k+1

)
(2x+

k − 2) if m is even and is divisible by
(
x+k−1
k+1

)2
if m is odd and m > 1 .

Proof. Suppose that m is even. By Lemma 1.2.5, the function gk,m is anti- (k− 2) -
reflective. The anti- (k − 2) -reflectivity condition for x = 2−k

2 gives us

gk,m(−2− k
2
− k + 2) = gk,m(

2− k
2

) = −gk,m(
2− k

2
).

Hence, gk,m(2−k2 ) = 0 and g(x) is divisible by (2x+ k − 2) .
Now consider the case m is odd (m > 1) . By Lemma 1.2.5, the function gk,m

is (k − 2) -reflective. We have

fk,m(x+ 1)− fk,m(x) =

(
x+ k

k + 1

)
gk,m(x+ 1)−

(
x+ k − 1

k + 1

)
gk,m(x)

=

(
x+ k − 1

k

)m
.

Hence,

(x+ k)gk,m(x+ 1)− (x− 1)gk,m(x) = (k + 1)

(
x+ k − 1

k

)m−1
.
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Therefore, for i = 0,−1, . . . ,−(k − 1), we obtain

(k + i)gk,m(i+ 1)− (i− 1)gk,m(i) = 0.

In other words,

kgk,m(1) = −gk,m(0),

(k − 1)gk,m(0) = −2gk,m(−1),

(k − 2)gk,m(−1) = −3gk,m(−2),

. . .

gk,m(−(k − 2)) = −kgk,m(−(k − 1)).

Hence,
gk,m(1) = (−1)kgk,m(−(k − 1)) = −gk,m(−(k − 1)).

Since gk,m(x) is (k − 2) -reflective, the reflectivity condition for x = 1 gives us

gk,m(1) = gk,m(−(k − 1)).

So, gk,m(1) = 0 and

gk,m(−(k − 1)) = · · · = gk,m(−1) = gk,m(0) = gk,m(1) = 0.

Thus, gk,m(x) is divisible by
(
x+k−1
k+1

)
and fk,m(x) is divisible by

(
x+k−1
k+1

)2
.

1.2.3 Proof of Theorem 1.2.1.
Let m and k be two odd positive integers and m > 1 . By Lemma 1.2.6,

there exist polynomials Rk,m(x) such that gk,m(x) =
(
x+k−1
k+1

)
Rk,m(x) . The function

gk,m(x) is (k−2) -reflective and therefore, Rk,m(x) (according to parity of k ) is also
(k − 2) -reflective. So, by Lemma 1.2.3, there exist polynomials Qk,m(x) ∈ Q[x]
such that Rk,m(x) = Qk,m((2x+ k − 2)2) . In this case

fk,m(x) =

(
x+ k − 1

k + 1

)2

Qk,m((2x+ k − 2)2).

Now assume that k is odd and m is even. Then the function gk,m is anti-
(k − 2) -reflective. By Lemma 1.2.3, there exist polynomials Qk,m(x) ∈ Q[x], such
that gk,m(x) = (2x+ k − 2)Qk,m((2x+ k − 2)2) . Therefore,

fk,m(x) =

(
x+ k − 1

k + 1

)
(2x+ k − 2)Qk,m((2x+ k − 2)2).

In all other cases gk,m is (k−2) -reflective. By Lemma 1.2.3, there exist polynomials
Qk,m(x) ∈ Q[x] such that gk,m(x) = Qk,m((2x+ k − 2)2) . We have

fk,m(x) =

(
x+ k − 1

k + 1

)
Qk,m((2x+ k − 2)2).

�
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1.3 Integer divisibility for fk,m(x)

1.3.1 Formulation of the main result
By Theorem 1.2.1, the polynomial fk,m(x) is divisible by

(
x+k−1
k+1

)2
if m and

k are odd (m > 1) . In particular, fk,m(x) is divisible by x2 . By Theorem 1.2.1,
fk,m(x) is divisible by x for any k,m . Here divisibility refers to the divisibility
of polynomials with rational coefficients. Now in this section, we study divisibility
properties of fk,m(x) for integer x.

The divisibility properties of Theorem 1.2.1 do not hold for integers. Let us
give counter-examples for all three cases:

f3,5(7)

72
=

1

72

6∑
i=1

(
i+ 2

3

)5

=
86650668

7
6∈ Z,

f3,2(5)

5
=

1

5

4∑
i=1

(
i+ 2

3

)2

=
517

5
6∈ Z,

f4,4(11)

11
=

1

11

10∑
i=1

(
i+ 3

4

)4

=
335469880502

11
6∈ Z.

Since fk,m(x) ∈ Q[x], for any given k and m , there is a sufficiently large prime
p, such that fk,m(p) is divisible by p and by p2 if m, k are odd and m > 1 . The
following theorem is a more detailed version of these statements.

Theorem 1.3.1. Let N, k,m be positive integers. Let M be an odd positive integer
such that gcd(M,k!) = 1 and M − k + 1 ≤ N ≤M + 1 . Then

fk,m(N) =
N−1∑
i=0

(
i+ k − 1

k

)m
≡ 0 (mod M)

in the following cases

• m, k are odd numbers, or

• gcd(M, (km+ 1)!) = 1 (k,m may be even or odd).

If m, k are odd numbers and m > 1 , then

fk,m(N) =
N−1∑
i=0

(
i+ k − 1

k

)m
≡ 0 (mod M 2)

in the following cases

• m is divisible by M ;

• gcd(M, (km+ 1)!) = 1 .
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1.3.2 Proof
To prove Theorem 1.3.1 we need some preliminary facts.

Lemma 1.3.2. Let M be an odd positive integer number such that gcd(M,k!) = 1 .
Then for odd numbers k,m and for all integers i such that 1 ≤ i ≤ M − k, the
following relation holds(

M − i+ k − 1

k

)m
≡ −

(
i+ k − 1

k

)m
+Mm

(
i+ k − 1

k

)m k−1∑
j=0

1

i+ j
(mod M 2).

Proof. Let us consider an expression
(
M−i+k−1

k

)
as a polynomial in M,

(
M − i+ k − 1

k

)
=

(M − i+ k − 1) · · · (M − i)
k!

= akM
k + · · ·+ a1M + a0

=
Mk

k!
+ · · ·+M(−1)k−1

(
i+ k − 1

k

) k−1∑
j=0

1

i+ j

+ (−1)k
(
i+ k − 1

k

)
.

Note that for 0 ≤ j ≤ k − 1, all numbers i + j are relatively prime with M .
Therefore,(

M − i+ k − 1

k

)
≡ (−1)k

(
i+ k − 1

k

)
+ (−1)k−1M

(
i+ k − 1

k

) k−1∑
j=0

1

i+ j
(mod M 2).

Hence,(
M − i+ k − 1

k

)m
≡

(
−
(
i+ k − 1

k

)
+M

(
i+ k − 1

k

) k−1∑
j=0

1

i+ j

)m

(mod M 2)

On expanding the right side of this congruence, we obtain the result.

Lemma 1.3.3. (km+ 1)!fk,m(x) ∈ Z[x] .
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Proof. By Theorem 1.1.2, there are some integers aj for which we can present
fk,m(x) in the form

∑
j>0 aj

(
x+km−j
km+1

)
. Note that (km+ 1)!

(
x+km−j
km+1

)
∈ Z[x].

Proof of Theorem 1.3.1. For 0 ≤ i ≤M − k with odd k, by Lemma 1.3.2,(
M − i+ k − 1

k

)m
+

(
i+ k − 1

k

)m
≡ 0 (mod M).

Therefore,

N−1∑
i=0

(
i+ k − 1

k

)m
≡

M−k∑
i=1

(
i+ k − 1

k

)m
=

1

2

M−k∑
i=1

((
M − i+ k − 1

k

)m
+

(
i+ k − 1

k

)m)
≡ 0 (mod M).

Now suppose that m is divisible by N . Hence, by Lemma 1.3.2, we have(
M − i+ k − 1

k

)m
≡ −

(
i+ k − 1

k

)m
+Mm

(
i+ k − 1

k

)m k−1∑
j=0

1

i+ j

≡ −
(
i+ k − 1

k

)m
(mod M 2).

Therefore,

N−1∑
i=0

(
i+ k − 1

k

)m
≡

M−k∑
i=1

(
i+ k − 1

k

)m
=

1

2

M−k∑
i=1

((
M − i+ k − 1

k

)m
+

(
i+ k − 1

k

)m)
≡ 0 (mod M 2).

Since gcd(M, (km + 1)!) = 1, by Lemma 1.3.3 and Theorem 1.2.1, (km +
1)!fk,m(x) ∈ Z[x] is divisible by x(x+1) · · · (x+k−1) and by (x(x+1) · · · (x+k−
1))2 if m, k are odd numbers and m > 1 . Here divisibility refers to the divisibility
of polynomials with integer coefficients.

Remark 1.3.4. In Theorem 1.3.1 we can change M to a power of some prime number
p . The property gcd(M, (km + 1)!) = 1 can be changed by an inequality p >
km+ 1 .
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1.3.3 Integer divisibility in case k = 2

Theorem 1.3.5. Assume that p is an odd prime number and 1 ≤ m ≤ p− 1 . Then

f2,m(p) =

p−1∑
i=1

(
i+ 1

2

)m
≡

{
−2 (mod p), if m = p− 1;
− 1

2m

(
m

p−1−m
)

(mod p), otherwise.

Proof. The following fact is known:

p−1∑
i=1

it ≡

{
0 (mod p), if t is not divisible by p− 1;
−1 (mod p), otherwise.

Therefore,

f2,m(p) =

p−1∑
i=1

(
i+ 1

2

)m
=

1

2m

p−1∑
i=1

m∑
j=0

(
m

j

)
im+j

=
1

2m

m∑
j=0

(
m

j

) p−1∑
i=1

im+j

If m = p−1, then m+ j is divisible by p−1 only in two cases: j = 0,m. Hence,

f2,p−1(p) ≡ −
1

2p−1

((
p− 1

0

)
+

(
p− 1

p− 1

))
≡ −2 (mod p).

If 1 ≤ m < p− 1, there is only one integer j ∈ [0,m] such that m+ j is divisible
by p− 1. Namely, j = p− 1−m . In this case,

f2,m(p) ≡ − 1

2m

(
m

p− 1−m

)
(mod p).

By Theorem 1.3.5, if p− 1−m > m, then f2,m(p) ≡ 0 (mod p). This fact is
compatible with Theorem 1.3.1, because p > 2m+ 1 .

1.3.4 The case fk,−1(N)

Theorem 1.3.6. Let N, k be positive integer numbers and M be a positive integer
such that gcd(M,k!) = 1 . Then, the rational number q defined as

q = f(k,−1)(N) =
N−1∑
i=1

1(
i+k−1
k

) ,
is divisible by M (its denominator is relatively prime with M ) in the following
cases:

(i) N ≡ 1 (mod M) ;
(ii) N ≡ 1− k (mod M) and k is odd.
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To prove this result we need one

Lemma 1.3.7. Suppose that k > 1 . Then

fk,−1(N) =
N−1∑
i=1

1(
i+k−1
k

) =
k

k − 1

(
1− 1(

N+k−2
k−1

)) .
Proof. Let φ(x) = 1

(x+k−1
k−1 )

. Then it is easy to verify that

1(
i+k−1
k

) =
k

k − 1

(
1(

i+k−2
k−1

) − 1(
i+k−1
k−1

)) = − k

k − 1
∇φ(i).

Therefore,

f(k,−1)(N) =
N−1∑
i=1

1(
i+k−1
k

) = − k

k − 1

N−1∑
i=1

∇φ(i)

=
k

k − 1
(φ(0)− φ(N − 1)) =

k

k − 1

(
1− 1(

N+k−2
k−1

)) .

Proof of Theorem 1.3.6. By Lemma 1.3.7,

fk,−1(N) =
k!

k − 1

(
1

(k − 1)!
− 1

(N + k − 2) · · ·N

)
.

Notice that for both cases (i) and (ii), the numbers N, . . . , N + k − 2 are relatively
prime with M . So, if N ≡ 1 (mod M), then

(N + k − 2) · · ·N ≡ (k − 1)! (mod M).

If N ≡ 1− k (mod M) and k is odd, then

(N + k − 2) · · ·N ≡ (−1)k−1(k − 1)! ≡ (k − 1)! (mod M).

1.4 Wolstenholme’s theorem for binomial coefficients
We prove that the numerator of

∑p−1
i=k

(
i
k

)−1
is divisible by p2 for infinitely

many primes p if and only if k = 1.

For rational numbers α = a/b and β = c/d write α ≡ β (mod n), if ad− bc
is divisible by n and denominators b, d are relatively prime with n.
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The following result was proved by Wolstenholme in [49]. For any prime num-
ber p > 3,

p−1∑
i=1

1

i
≡ 0 (mod p2).

In this section we consider the extension of Wolstenholme theorem to the class of
binomial coefficients. Does there exist a number k , k > 1 such that

p−1∑
i=k

1(
i
k

) ≡ 0 (mod p2)

for any p > k ? We show that it is impossible.

Theorem 1.4.1. For a given k ≥ 1 the congruence

p−1∑
i=k

1(
i
k

) ≡ 0 (mod p2), 1 ≤ k < p,

takes place for infinitely many primes p if and only if k = 1.

Before the proof of our main result let us introduce some notations

Fk(n) =
n∑
i=k

1(
i
k

) ,
Ha,b =

∑
1≤i1<···<ib≤a

1

i1 · · · ib
, b > 0,

Ha,0 = 1.

We establish the following slightly more general result.

Lemma 1.4.2. For any integer p (not necessary prime) and 1 < k < p,

Fk(p− 1) =
(1 + (−1)k)k

k − 1
+

k

(k − 1)
(
p−1
k−1
) k−1∑
i=1

(−p)iHk−1,i. (1.3)

Proof. Let ∇ be a difference operator

∇f(x) = f(x)− f(x− 1).

Then for φ(x) = 1

( x
k−1)

we have

1(
i
k

) =
k

k − 1

(
1(
i−1
k−1
) − 1(

i
k−1
)) = − k

k − 1
∇φ(i).
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Since

Fk(p−1) = − k

k − 1

p−1∑
i=k

∇φ(i) =
k

k − 1
(φ(k−1)−φ(p−1)) =

k

k − 1

(
1− 1(

p−1
k−1
)) ,

we obtain

Fk(p− 1) =
k

(k − 1)
(
p−1
k−1
) ((p− 1

k − 1

)
− 1

)
. (1.4)

Let c(n, i) be Stirling numbers of the first kind. The following relations are
well-known

x(x− 1) · · · (x− k + 1) =
k∑
i=1

c(k, i)xi, (1.5)

c(n, i) = (−1)n+i(n− 1)!Hn−1,i−1. (1.6)

By (1.5) and (1.6)(
p− 1

k − 1

)
=

∑k
i=1 sk,ip

i−1

(k − 1)!
=

k∑
i=1

(−1)k+iHk−1,i−1p
i−1.

Hence, (
p− 1

k − 1

)
= (−1)k+1 −

k−1∑
i=1

(−1)k+iHk−1,ip
i. (1.7)

Thus, we obtain

Fk(p− 1) = − k

(k − 1)
(
p−1
k−1
){((−1)k + 1) +

k−1∑
i=1

(−1)k+ipiHk−1,i} (1.8)

It is not difficult to see that (1.8) is equivalent to (1.3). If k is odd, it is obvious. If
k is even, it follows from (1.7).

Lemma 1.4.3. Let p be a prime number. If 1 < k < p then

p−1∑
i=k

1(
i
k

) ≡ (1 + (−1)k)k

k − 1
(mod p), (1.9)

p−1∑
i=k

1(
i
k

) ≡ (1 + (−1)k)k

k − 1
+

(−1)kpk

k − 1

k−1∑
i=1

1

i
(mod p2). (1.10)

Proof. The equalities (1.9) and (1.10) are easy consequences of Lemma 1.4.2.
In case of (1.10) we use the congruence

(
p−1
k−1
)
≡ (−1)k−1 (mod p) .
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Lemma 1.4.4. Let p be a prime number and 1 < k < p. Then the following condi-
tions are equivalent

p−1∑
i=k

1(
i
k

) ≡ 0 (mod p2), (1.11)

k is odd and
k−1∑
i=1

1

i
≡ 0 (mod p). (1.12)

Proof. Suppose that (1.11) is true, Fk(p−1) ≡ 0 (mod p2). Then Fk(p−1) ≡
0 (mod p). Therefore, by (1.9) k is odd. Hence by Lemma 1.4.3, relation (1.10),
we have Hk−1,1 ≡ 0 (mod p). So, (1.11) implies (1.12).

Conversely, if (1.12) is given then by (1.10) we have Fk(p− 1) ≡ 0 (mod p2).
From Lemma 1.4.3 we get the sufficient part of the lemma.

Proof of Theorem 1.4.1. For given k > 1 the numerator of the sum
∑k−1

i=1
1
i has

a finite number of prime divisors. Therefore, the congruence

k−1∑
i=1

1

i
≡ 0 (mod p)

holds only for a finite number of primes p ≥ k. So, if k > 1, then by Lemma 1.4.4
the congruence

p−1∑
i=k

1(
i
k

) ≡ 0 (mod p2)

might be true only for a finite number of primes p > k.
If k = 1, by Wolstenholme’s theorem our statement is true

p−1∑
i=k

1(
i
k

) ≡ 0 (mod p2)

for any p > 3. Theorem 1.4.1 is proved.

1.5 Power sum of reciprocals of binomial coefficients
1.5.1 Formulation of the main result
In this section, we consider the case of power sums of binomial coefficients

with negative powers,

ζk(m) =
∞∑
i=1

(
i+ k − 1

k

)−m
.

For k = 1 we have

ζ1(m) = ζ(m) =
∞∑
i=1

1

im
,
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where ζ(m) is a Riemann zeta function.
In particular, for m = 1, by Lemma 1.3.7, one can obtain the exact value

ζk(1) =
∞∑
i=1

(
i+ k − 1

k

)−1
=

k

k − 1
.

It is known that for any positive integer m,

ζ(2m) = (−1)m+1 (2π)2m

2(2m)!
B2m, (1.13)

where B2m is a Bernoulli number.
We prove similar results for binomial coefficients. Some examples that follow

from our results:

ζ2(2) =
∞∑
i=1

(
i+ 1

2

)−2
=

4

3
π2 − 12,

ζ2(3) =
∞∑
i=1

(
i+ 1

2

)−3
= −8π2 + 80,

ζ3(2) =
∞∑
i=1

(
i+ 2

3

)−2
= 9π2 − 351

4
.

Similarly,

ζ3(3) =
∞∑
i=1

(
i+ 2

3

)−3
=

783

4
− 162ζ(3),

ζ5(3) =
∞∑
i=1

(
i+ 4

5

)−3
= −1298125

96
+ 11250ζ(3),

ζ3(5) =
∞∑
i=1

(
i+ 2

3

)−5
=

576639

16
− 47385

2
ζ(3)− 7290ζ(5).

Below we show that these relations are based on reflectivity properties of bino-
mial coefficients, and that ζk(m) can be expressed as a linear combination of certain
values of the Riemann zeta function.

Theorem 1.5.1. For any positive integers k and m , there exist rational numbers
λ0, λ1, . . . , λdm/2e, such that

ζk(m) =


λ0 +

dm/2e∑
i=1

λiζ(2i), if km is even;

λ0 +

dm/2e∑
i=1

λiζ(2i− 1), if km is odd.
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1.5.2 Proof of Theorem 1.5.1
Let F (x) =

(
x+k−1

k

)−m
. Then ζk(m) =

∑∞
i=1 F (i) . Since the polynomial

F (x) has k zeros x = 0, 1, . . . , k − 1,

F (x) =
1(

x+k−1
k

)m =
k−1∑
j=0

m∑
i=1

ai,j
(x+ j)i

(1.14)

=
1

2

k−1∑
j=0

m∑
i=1

(
ai,j

(x+ j)i
+

ai,k−1−j
(x+ k − 1− j)i

)
for some rational numbers ai,j ( 1 ≤ i ≤ m, 0 ≤ j ≤ k − 1 ).

By Lemma 1.2.4, 1/F (x) is (k − 1) -reflective if km is even, and 1/F (x) is
anti- (k − 1) -reflective, if km is odd. In other words, F (x) = eF (−x − k + 1)
for almost all x (except zeros of denominator), where e = ±1. Thus, by (1.14) and
based on the reflectivity property mentioned above,

k−1∑
j=0

m∑
i=1

(
ai,j

(x+ j)i
+

ai,k−1−j
(x+ k − 1− j)i

)

= e

k−1∑
j=0

m∑
i=1

(
ai,j

(−x− k + 1 + j)i
+

ai,k−1−j
(−x− j)i

)
or

k−1∑
j=0

m∑
i=1

(
ai,j − e(−1)iai,k−1−j

(x+ j)i
+
ai,k−1−j − e(−1)iai,j

(x+ k − 1− j)i

)
= 0.

Therefore,
ai,j − e(−1)iai,k−1−j = 0

for all i, j ( 1 ≤ i ≤ m, 0 ≤ j ≤ k − 1 ). Hence, equation (1.14) can be rewritten as

F (x) =
1(

x+k−1
k

)m =
1

2

k−1∑
j=0

m∑
i=1

(
ai,j

(x+ j)i
+ e(−1)i

ai,j
(x+ k − 1− j)i

)
.
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Finally,

ζk(m) =
∞∑
x=1

F (x)

=
∞∑
x=1

1

2

k−1∑
j=0

m∑
i=1

(
ai,j

(x+ j)i
+ e(−1)i

ai,j
(x+ k − 1− j)i

)

=
1

2

k−1∑
j=0

m∑
i=1

ai,j

(
ζ(i)−

j∑
l=1

1

li
+ e(−1)iζ(i)− e(−1)i

k−1−j∑
l=1

1

li

)

= c0 +
m∑
i=1

ci(ζ(i) + e(−1)iζ(i)),

for some rational constants ci ( 0 ≤ i ≤ m ). Note that value (ζ(i) + e(−1)iζ(i))
vanishes if e = 1 and i is odd, or if e = −1 and i is even. �

Presentations of infinite series as a linear combination of odd (even) values of
zeta functions play an important role in studying the irrationality problems of zeta
functions. See, for example, the proof of Rivoal [43] that the sequence ζ(3), ζ(5), . . .
contains infinitely many irrational values, or result of Zudilin [52] that at least one
of four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

1.5.3 Sums of reciprocals of powers of triangular numbers
Recall that

ζ2(m) =
∞∑
x=1

2m

(x(x+ 1))m
.

In this subsection we give exact presentation of ζ2(m) as a combination of binomial
coefficients and Bernoulli numbers. Namely, we prove the following result.

Theorem 1.5.2.
∞∑
x=1

1

(x(x+ 1))m
= (−1)m−1

(
2m− 1

m

)

+ (−1)m
bm/2c∑
i=1

(
2m− 2i− 1

m− 1

)
(−1)i+1 (2π)2i

(2i)!
B2i.

To prove this theorem we need the following

Lemma 1.5.3.

1(
x+1
2

)m = 2m
m−1∑
i=0

(
m+ i− 1

i

)(
(−1)i

1

xm−i
+ (−1)m

1

(x+ 1)m−i

)
.
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Proof. We use induction on m . For m = 1 we have

1(
x+1
2

) = 2

(
1

x
− 1

x+ 1

)
.

Assume that our statement holds for m and let us prove it for m + 1 . In our proof
we need the following formulas ( j is a positive integer):

1

xj(x+ 1)
=

1

xj
− 1

xj−1
+ · · ·+ (−1)j

1

x+ 1
and

1

x(x+ 1)j
=

1

x
− 1

x+ 1
− · · · − 1

(x+ 1)j
,

which follow from:

1− (−x)j = (1 + x)(1 + (−x) + · · ·+ (−x)j−1) and

1− (x+ 1)j = −x(1 + (x+ 1) + · · ·+ (x+ 1)j−1).

We have

1

(x(x+ 1))m+1
=

1

(x(x+ 1))m

(
1

x
− 1

x+ 1

)
=

m−1∑
i=0

(
m+ i− 1

i

)(
(−1)i

xm−i
+

(−1)m

(x+ 1)m−i

)(
1

x
− 1

x+ 1

)
=

m∑
i=0

(
m+ i

i

)(
(−1)i

xm−i+1
+

(−1)m+1

(x+ 1)m−i+1

)

(since
∑i

j=0

(
m+j−1

j

)
=
(
m+i
i

)
).

Proof of Theorem 1.5.2. By Lemma 1.5.3,

∞∑
x=1

1

(x(x+ 1))m
=

∞∑
x=1

m−1∑
i=0

(
m+ i− 1

i

)(
(−1)i

xm−i
+

(−1)m

(x+ 1)m−i

)

=
m−1∑
i=0

(
m+ i− 1

i

)( ∞∑
x=1

(−1)i

xm−i
+
∞∑
x=1

(−1)m

(x+ 1)m−i

)
.
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Thus, the last expression can be written as

m−1∑
i=0

(
m+ i− 1

i

)(
(−1)iζ(m− i) + (−1)m(ζ(m− i)− 1)

)
= (−1)m−1

m−1∑
i=0

(
m+ i− 1

i

)

+
m−1∑

i=0,(m−i) even

(
m+ i− 1

i

)
(−1)i2ζ(m− i)

= (−1)m−1
(

2m− 1

m

)
+ (−1)m2

bm/2c∑
i=1

(
2m− 2i− 1

m− 1

)
ζ(2i)

= (−1)m−1
(

2m− 1

m

)
+ (−1)m

bm/2c∑
i=1

(
2m− 2i− 1

m− 1

)
(−1)i+1 (2π)2i

(2i)!
B2i.

1.6 Faulhaber coefficients and the coefficients of the polynomial f2,m(x)

1.6.1 Duality between A - and B -Faulhaber coefficients
Recall that any number in the form

(
n
2

)
= n(n−1)

2 is called triangular (A000217
in [45]). In this section we study analogs of Faulhaber coefficients for power sums
of triangular numbers. To stress similarities between Faulhaber coefficients A

(m)
i

and B
(m)
i (see definitions below), we use special notations for formulas like (A1),

(B1), (A2), (B2), etc.
We define Faulhaber coefficients [23, 35] as numbers A(m)

i , such that

N∑
i=0

i2m−1 =
1

2m

m−1∑
i=0

A
(m)
i (N(N + 1))m−i. (A1)

These coefficients can be extended for all real numbers x by A
(x)
i . In fact, A(x)

i is a
polynomial in x . In Sloane’s OEIS [45], A(m)

i is referred to the sequences A093556,
A093557 and

Ã
(m)
i =

m+ 1− i
(2m+ 1)(m+ 1)

A
(m+1)
i (1.15)

is referred to the sequences A093558, A093559.
Knuth [35] has established the following properties of these coefficients,

A
(x)
0 = 1;

k∑
j=0

(
x− j

2k + 1− 2j

)
A

(x)
j = 0, k > 0. (A2)
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A
(x)
k = x(x− 1) · · · (x− k + 1)× qk(x), (A3)

where qk(x) is

• a polynomial of degree k

• with leading coefficient equal to (2− 22k)B2k/(2k)! ;

• and qk(k + 1) = 0 if k > 0 .

Below we show that all zeros of this polynomial are real and distinct.
A recurrence formula due to Jacobi yields:

(2x− 2k)(2x− 2k+ 1)A
(x)
k + (x− k+ 1)(x− k)A

(x)
k−1 = 2x(2x− 1)A

(x−1)
k . (A4)

Gessel and Viennot [23] obtained the following explicit formula:

A
(m)
k = (−1)m−k

∑
j

(
2m

m− k − j

)(
m− k + j

j

)
m− k − j
m− k + j

Bm+k+j, (A5)

for 0 ≤ k < m.
In terms of determinants, this formula can be written as

A
(m)
k = (−1)(m−k)

1

(m− 1) · · · (m− k)
det

∣∣∣∣( m− k + i

2i− 2j + 3

)∣∣∣∣
i,j=1,...,k

. (A6)

The last determinant has a combinatorial interpretation.

Theorem 1.6.1 (Gessel, Viennot, Theorem 14, [23]). The number of sequences of
positive integer numbers a1, . . . , a3k satisfying inequalities a3i−2 < a3i−1 < a3i ,
a3i+1 ≤ a3i−1 , a3i+2 ≤ a3i and a3i ≤ m− k + i, for all i, is equal to

det

∣∣∣∣( m− k + i

2i− 2j + 3

)∣∣∣∣
i,j=1,...,k

.

According to Theorem 1.2.1, the polynomial f2,m(x) is odd. Therefore we can
consider the coefficients B(m)

i defined by

f2,m(N)2m =
N−1∑
i=0

(i(i+ 1))m =
m∑
i=0

B
(m)
i N 2m−2i+1. (B1)

The following relations are B(m)
i analogs of relations (A2)− (A6) ,

B
(m)
0 =

1

2m+ 1
;

k∑
j=0

(
m+ 2k − j
2k + 1− 2j

)
(−1)jB

(m+j)
j = 0. (B2)
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B
(m)
i =

m(m− 1) · · · (m− i)
2m− 2i+ 1

× hi(m), (B3)

where hi(m) is

• a polynomial of degree i

• with leading coefficient (−1)i−1(2− 22i)B2i/(2i)! ;

• and hi(−1) = 0 if i > 0 .

Proof of these properties will be presented in Theorem 1.6.6 below. In fact, Theorem
1.6.2 tells us that hi(m) = qi(i−m) .

A recurrence formula for B(m)
i is given by

2(m− i)(2m− 2i+ 1)B
(m)
i = 2m(2m− 1)B

(m−1)
i +m(m− 1)B

(m−2)
i−1 . (B4)

Coefficients B(m)
i are closely related to A

(m)
k .

Theorem 1.6.2.
B

(m+i)
i = (−1)i−1

m+ i

m(2m+ 1)
A

(−m)
i (1.16)

Another formulation of Theorem 1.6.2 is given by

B
(m)
i = (−1)i−1

m

(m− i)(2m− 2i+ 1)
A

(i−m)
i .

Proof. From relations (A4) and (B4), we can see that the sequences B(m+i)
i and

A
(−m)
i satisfy the same recurrence relations and they have equal initial values A(x)

0 =

B
(x)
0 = 1.

Knuth [35] proved that

N−1∑
i=0

i2m = (N − 1

2
)

m∑
i=0

Ã
(m)
i (N(N − 1))m−i,

with relation (1.15) between the coefficients Ã(m)
i and A

(m)
i .

Corollary 1.6.3.
Bm+i−1,i = (−1)iÃ

(−m)
i . (1.17)
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The following is a general formula for B(m)
i

B
(m)
i =

1

(2m− 2i+ 1)

2i∑
k=0

(
m

2i− k

)(
2m− 2i+ k

k

)
Bk. (B5)

Let us rewrite this formula in terms of determinants

B
(m)
k =

(−1)(k−m+1)(k − 1)!

(2m− 2k + 1)(m− 1)!
det

∣∣∣∣(m+ i− 2j + 2

2i− 2j + 3

)∣∣∣∣
i,j=1,...,k

, (B6)

which follows from (A6) and Theorem 1.6.2.
By Theorem 16 of [23], we obtain one more combinatorial interpretation for the

last determinant.

Theorem 1.6.4. The number of sequences of positive integers a1, . . . , a3k such that
a3i−2 ≥ a3i−1 ≥ a3i , a3i+1 ≥ a3i−1 , a3i+2 ≥ a3i and a3i−2 ≤ m − i, for all i, is
equal to

det

∣∣∣∣(m+ i− 2j + 2

2i− 2j + 3

)∣∣∣∣
i,j=1,...,k

.

Proof. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µk) be two non-increasing se-
quences of nonnegative integers. Plane partition of shape λ − µ is a filling of the
corresponding diagram with integers which are weakly decreased in every row and
column. Such a diagram can be obtained from Ferrer diagram for λ by removing
the diagram for µ (for details, see [23]) .

By Theorem 16 of [23], the number of plane partitions of shape λ − µ whose
parts in row i are at most Ai and at least Bi , where Ai ≥ Ai+1 − 1 and Bi ≥
Bi+1 − 1, is equal to

det

∣∣∣∣(Aj −Bi + λi − µj
λi − µj + j − i

)∣∣∣∣
i,j=1,...,k

.

Taking λi = k + 3 − i , µj = k − j , Aj = m − j and Bi = 1, we obtain the
result.

1.6.2 The polynomial f2,m(x)

Set λm,i = B
(m)
i /2m.

Theorem 1.6.5. The polynomial f2,m(x) =
∑m

i=0 λm,ix
2m−2i+1 has the following

properties.
(I) It satisfies the equation

f ′′2,m(x) = m(2m− 1)f2,m−1(x) +
m(m− 1)

4
f2,m−2(x), m ≥ 2, (1.18)
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f0,2(x) = x, f2,1(x) =

(
x+ 1

3

)
.

(II) The following recurrence relation holds for coefficients λm,i,

λm,i =
m(2m− 1)

2(m− i)(2m− 2i+ 1)
λm−1,i +

m(m− 1)

8(m− i)(2m− 2i+ 1)
λm−2,i−1, (1.19)

where 0 < i < m.
(III) The following general formula holds

λm,i =
1

2m(2m− 2i+ 1)

2i∑
k=0

(
m

2i− k

)(
2m− 2i+ k

k

)
Bk. (1.20)

Proof. (I) Since ∆f2,m(x) =
(
x+1
2

)m
, we have

∆f ′′2,m(x) = m(2m− 1)

(
x+ 1

2

)m−1
+
m(m− 1)

4

(
x+ 1

2

)m−2
,

and
f ′′2,m(0) = 0.

Therefore, (1.18) is true.
(II) (1.19) is a consequence of (1.18).
(III) We have

2mf2,m(N) =
N−1∑
i=0

(i(i+ 1))m =
N−1∑
i=0

m∑
j=0

(
m

j

)
im+j =

m∑
j=0

(
m

j

)N−1∑
i=0

im+j

=
m∑
j=0

1

m+ j + 1

(
m

j

)m+j∑
k=0

(
m+ j + 1

k

)
BkN

m+j+1−k

=
2m+1∑
k=1

Nk

(
m∑
j=0

1

m+ j + 1

(
m

j

)(
m+ j + 1

k

)
Bm+j+1−k

)
.

Therefore,

λm,i =
1

2m

m∑
j≥m−2i

1

m+ j + 1

(
m

j

)(
m+ j + 1

2m− 2i+ 1

)
Bj+2i−m

=
1

2m

2i∑
k=0

1

2m− 2i+ k + 1

(
m

m+ k − 2i

)(
2m− 2i+ k + 1

k

)
Bk

=
1

2m(2m− 2i+ 1)

2i∑
k=0

(
m

2i− k

)(
2m− 2i+ k

k

)
Bk.
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1.6.3 The polynomial part of B(m)
i

Let us consider the function h̃i(m) defined as

h̃i(m) = (−1)i(i+ 1)(2m− 2i+ 1)
B

(m)
i(
m
i

)
= (−1)i(i+ 1)

2i∑
k=0

(
m

2i−k
)(

2m−2i+k
k

)(
m
i

) Bk.

In fact, h̃i(m) = hi(m)/(i+ 1)! , where hi(m) is defined in relation (B3).
For example,

h̃0(m) = 1,

h̃1(m) =
m+ 1

3
,

h̃2(m) =
1

60
(7m− 6)(m+ 1),

h̃3(m) =
(m+ 1)(31m2 − 97m+ 60)

630
,

h̃4(m) =
(m+ 1)(127m3 − 833m2 + 1606m− 840)

5040
.

Analogous to Knuth’s relation (A3), polynomial parts of B(m)
i are interesting

by themselves. Below we study properties of h̃i(x).

Theorem 1.6.6. Let i ≥ 0.
(I) The function h̃i(x) is a polynomial of degree i .
(II) The following formula holds for h̃i(m)

h̃i(m) (1.21)

= (−1)i(i+ 1)

(
i∑

k=0

(
m−i
i−k
)(

2m−2i+k
k

)(
2i−k
i

) Bk +
2i∑

k=i+1

(
i

k−i
)(

2m−2i+k
k

)(
m−2i+k
k−i

) Bk

)

= (−1)i
(i+ 1)!

(2i)!

(
i∑

k=0

pk(m)

(
2i

k

)
Bk +

2i∑
k=i+1

qk(m)

(
2i

k

)
Bk

)
.

Here, pk(m), qk(m) are polynomials given by

pk(m) = (m− i) · · · (m− 2i+ k + 1)(2m− 2i+ k) · · · (2m− 2i+ 1)

and

qk(m) =
(2m− 2i+ k) · · · (2m− 2i+ 1)

(m− 2i+ k) · · · (m− i+ 1)

= 2k−i(2m− 2i+ 1)(2m− 2i+ 3) · · ·
× (2m− 4i+ 2k + 1) . . . (2m− 2i+ k).
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(If k = 2i, the last term (2m− 2i+ k) in the product of qk(m) is cancelled).
(III) The following recurrence relation holds for h̃i(x)

(2i+ 1− 2x)h̃i(x) =
1

2
(i+ 1)h̃i−1(x− 2)− (2x− 1)h̃i(x− 1). (1.22)

(IV) The initial value for h̃i(x) is given by:

h̃i(0) = (−1)i(i+ 1)B2i. (1.23)

(V) If x approaches ∞, then

h̃i(x) ∼ (−1)i
(i+ 1)!

(2i)!
(2− 22i)B2ix

i. (1.24)

(VI) If i > 0, then all zeros of the polynomial h̃i(x) are real. Moreover, it has
one negative zero x0 = −1 and if i > 1, the other i − 1 zeros x1, . . . , xi−1 are
positive, distinct and satisfy the following inequalities

0 < x1 < 1, 2 < x2 < 3, 3 < x3 < 4, . . . , i− 1 < xi−1 < i.

Proof. (I) Note that the terms
(

m
2i−k
)

and
(
2m−2i+k

k

)
are polynomials in m of degree

2i − k and k respectively. Hence,
(

m
2i−k
)(

2m−2i+k
k

)
is a polynomial of degree 2i

and it vanishes at m = 0, 1, . . . , i − 1 (if i > 0 ). This means that it is divisible by

m(m−1) · · · (m− i+1) or
(
m
i

)
. So, ( m

2i−k)(
2m−2i+k

k )
(m

i )
is a polynomial in m of degree

i . Therefore, h̃i(m) is a polynomial in m of degree i .
(II) To prove (1.21), we have

h̃i(m) = (−1)i(i+ 1)
2i∑
k=0

(
m

2i−k
)(

2m−2i+k
k

)(
m
i

) Bk

= (−1)i(i+ 1)
2i∑
k=0

i!(m− i)!
(2i− k)!(m− 2i+ k)!

(
2m− 2i+ k

k

)
Bk

= (−1)i(i+ 1)

(
i∑

k=0

(
m−i
i−k
)(

2m−2i+k
k

)(
2i−k
i

) Bk +
2i∑

k=i+1

(
i

k−i
)(

2m−2i+k
k

)(
m−2i+k
k−i

) Bk

)
= (−1)i(i+ 1)×
i∑

k=0

(m− i) · · · (m− 2i+ k + 1)(2m− 2i+ k) · · · (2m− 2i+ 1)i!

k!(2i− k)!
Bk

+ (−1)i(i+ 1)
2i∑

k=i+1

i!(2m− 2i+ k) · · · (2m− 2i+ 1)

k!(2i− k)!(m− 2i+ k) · · · (m− i+ 1)
Bk

= (−1)i
(i+ 1)!

(2i)!

(
i∑

k=0

pk(m)

(
2i

k

)
Bk +

2i∑
k=i+1

qk(m)

(
2i

k

)
Bk

)
.
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(III) We use (1.19) for x = m > i , where m is a positive integer. We obtain
(1.22) for positive integers x = m > i. Since h̃i(x) is a polynomial, recurrence
relation (1.22) must hold for all real numbers x .

(IV) A substitution m = 0 in (1.21) gives us

h̃i(0) = (−1)i(i+ 1)

(
i∑

k=0

( −i
i−k
)(−2i+k

k

)(
2i−k
i

) Bk +
2i∑

k=i+1

(
i

k−i
)(−2i+k

k

)(−2i+k
k−i

) Bk

)

= (−1)i(i+ 1)
2i∑
k=0

1

2

(
2i

k

)
Bk = (−1)i(i+ 1)B2i.

Thus, (1.23) is proved.
(V) Let us calculate the leading coefficient A of h̃i(m) . By (1.21), we have

A = (−1)i
(i+ 1)!

(2i)!

2i∑
k=0

2k
(

2i

k

)
Bk.

Let Bn(x) be the Bernoulli polynomial,

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k.

It is well known that Bn(1/2) = (21−n − 1)Bn . Therefore,

A = (−1)i
(i+ 1)!

(2i)!
22i

2i∑
k=0

(1/2)2i−k
(

2i

k

)
Bk

= (−1)i
(i+ 1)!

(2i)!
22iB2i(1/2)

= (−1)i
(i+ 1)!

(2i)!
22i(21−2i − 1)B2i = (−1)i

(i+ 1)!

(2i)!
(2− 22i)B2i,

which yields (1.24).
(VI) We have

h̃i(−1) = (−1)i
(i+ 1)(−1

i

) 2i∑
k=0

(
−1

2i− k

)(
−2− 2i+ k

k

)
Bk

= (i+ 1)
2i∑
k=0

(
2i+ 1

k

)
Bk = 0.

The part of the statement (VI) that relates to positive roots is evident for i = 2 .
Suppose that i ≥ 3 .
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Let sgn(x) = −1, if x < 0; sgn(x) = 0, if x = 0; and sgn(x) = 1, if x > 0.
Putting m = 1 in (1.22), we have

(2i− 1)h̃i(1) = −h̃i(0).

Equation (1.23) gives us

h̃i(0) = (−1)i(i+ 1)B2i, (1.25)

h̃i(1) = (−1)i+1 i+ 1

2i− 1
B2i. (1.26)

Therefore,
sgn(h̃(0)) = −sgn(h̃(1)).

Hence, there exists a real zero x1 ∈ (0, 1) of h̃i(x) .
Putting m = 2 in (1.22), by (1.25) and (1.26), we have

h̃i(2) =
1

2i− 3

(
1

2
(−1)i−1iB2i−2 + 3(−1)i

i+ 1

2i− 1
B2i

)
.

By (1.13), for any positive integer i,

sgn(B2i) = (−1)i+1.

So,
sgn(h̃i(2)) = sgn(h̃i(1)).

Therefore, relation (1.22) for m = 3 gives

h̃i(3) =
1

2i− 5

(
(−1)i

11

2

i

2i− 3
B2i−2 + 3(−1)i+1 i+ 1

2i− 1
B2i

)
.

Hence,
sgn(h̃(3)) = −sgn(h̃(2)).

Induction on i and on k shows that for any k ∈ [2, i]

sgn(h̃i(k)) = (−1)i+ksgn(B2i).

As we discussed above, this relation is also true for k = 2, 3 .
By inductive hypothesis,

sgn(h̃i(k − 1)) = −sgn(h̃i−1(k − 2)).

Recurrence relation (1.22) yields

sgn(h̃i(k)) = sgn
(

1

2i− 5

(
1

2
h̃i−1(k − 2)− (2k − 1)h̃i(k − 1)

))
= sgn(h̃i−1(k − 2)− h̃i(k − 1))

= sgn((−1)i+k−3B2i−2 − (−1)i+k−1B2i)

= (−1)i+ksgn(B2i).
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It remains to note that

sgn(h̃(2)) = −sgn(h̃(3)) = · · · = (−1)i−1sgn(h̃(i− 1)) = (−1)isgn(h̃(i)).
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2 STIRLING NUMBERS ON MULTISETS

Stirling numbers are well-known and have many remarkable properties. By
combinatorial definition:

Stirling numbers of the first kind c(n,m) count the number of permutations of
(1, . . . , n) having m cycles. They can be computed, e.g., by the following recur-
rence relation

c(n,m) = (n− 1)c(n− 1,m) + c(n− 1,m− 1)

or by a polynomial identity

x(x+ 1) · · · (x+ n− 1) =
n∑
i=0

c(n, i)xi.

Stirling numbers of the second kind S(n,m) count the number of partitions
of {1, . . . , n} into m blocks. They can also be computed, e.g., by the recurrence
relation

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1)

or by a polynomial identity

xn =
n∑
i=0

S(n, i)x(x− 1) · · · (x− i+ 1).

Moreover, these numbers are dual, they connected by orthogonal identity∑
k≥0

(−1)n−kc(n, k)S(k,m) = δn,m,

where δn,m = 1 if n = m and δn,m = 0, otherwise.
Many other properties can be found in [11, 25].
In this chapter we introduce Stirling numbers defined for multisets. As an ana-

log of partitions we consider the compositions (ordered partitions, covers) of multi-
sets by the usual sets or cycles and introduce the corresponding generalizations of
Stirling numbers. In the further part we show that the similar argument can be ap-
plied for restricted partitions and permutations of sets. For instance, we change the
repeated elements ik of multiset by distinguished elements i1, . . . , ik and make the
restriction that i1, . . . , ik cannot be in one set in a partition; or in one cycle in a
permutation.

The compositions (ordered partitions) of multisets into multiset blocks were
first studied by MacMahon [37] and after in the works of Riordan [42], Simion [44].
Broder [6] introduced generalization of Stirling numbers with special restrictions of
elements in a set, called the r -Stirling numbers. Our case generalizes these num-
bers in the notion of restricted partitions [51] or permutations on sets. This type of

40



Stirling numbers of the second kind we can also meet (with another combinatorial
interpretation) in the problem of boson normal ordering [38], which has the origin
related to the composition of differential operators (or annihilation and creation in
bosons terminology).

2.1 Definition
Let m = 1k1 · · ·mkm be a multiset, where any element i repeats ki times, for

any i = 1, . . . ,m .
We define the union (merge) of two multisets by the rule:

1k1 · · ·mkm ] 1l1 · · ·mlm = 1k1+l1 · · ·mkm+lm

and difference by:

1k1 · · ·mkm \ 1l1 · · ·mlm = 1max(k1−l1,0) · · ·mmax(km−lm,0).

Definition 2.1.1 (Striling number of the second kind). For a multiset n , let S(n, k)
be the number of ordered k -tuples (S1, . . . , Sk) of nonempty sets (not necessarily
disjoint) having the property that

S1 ] · · · ] Sk = n.

So, S(n, k) expresses the number of ways to cover multiset n by an ordered
k -tuple of sets.

Note that if n = {1, . . . , n} , then we obtain the usual ordered Stirling numbers
of the second, because S1]· · ·]Sk = {1, . . . , n} implies that sets S1, . . . , Sk form
the ordered partition of {1, . . . , n} .

Example 2.1.2. Suppose that n = 1322.
Then all possible 3 -tuples of sets which cover n are:

({1}, {1, 2}, {1, 2});

({1, 2}, {1}, {1, 2});
({1, 2}, {1, 2}, {1});

which gives S(1322, 3) = 3 .
All possible 4 -tuples of sets which cover n are:

({1, 2}, {1}, {1}, {2}); ({1}, {1, 2}, {1}, {2}); ({1}, {1}, {1, 2}, {2});

({1, 2}, {1}, {2}, {1}); ({1}, {1, 2}, {2}, {1}); ({1}, {1}, {2}, {1, 2});
({1, 2}, {2}, {1}, {1}); ({1}, {2}, {1, 2}, {1}); ({1}, {2}, {1}, {1, 2});
({2}, {1, 2}, {1}, {1}); ({2}, {1}, {1, 2}, {1}); ({2}, {1}, {1}, {1, 2});

which gives S(1322, 4) = 12.
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2.2 Properties
2.2.1 Recurrence relations

Theorem 2.2.1.
S(n, k) =

∑
S⊆{1,...,n}

S(n \ S, k − 1).

Proof. We may form the last set Sk in (S1, . . . , Sk) by any subset S of {1, . . . , n}.
The number of corresponding (k−1) -tuples (S1, . . . , Sk−1) is equal to S(n \ S, k−
1) , which gives the needed sum.

Corollary 2.2.2.

S(n, k) =
1

k

n∑
i=1

(
n

i

)
S(n− i, k − 1).

Theorem 2.2.3. For n = 1l1 · · ·nln the following recurrence relation holds

S(n ] (n+ 1)ln+1, k) =

ln+1∑
j=0

(
k

j

)(
k − j
ln+1 − j

)
S(n, k − j), (2.1)

where S(1k, k) = 1 and S(1k, i) = 0 if i 6= k .

Proof. If exactly j (0 ≤ j ≤ lp+1) sets of (S1, . . . , Sk) are equal to {n + 1} ,
then it provides

(
k
j

)
ways to choose these j sets,

(
k−j

ln+1−j
)

ways to put remained
(ln+1 − j) elements n + 1 into the other (k − j) sets, and the number of such
(k− j) -tuples is equal to S(n, k− j) . Thus, for any j (0 ≤ j ≤ ln+1) we have the
number of

(
k
j

)(
k−j

ln+1−j
)
S(n, k− j) ways to form the k -tuple which yields the needed

recurrence.

2.2.2 General formula for S(n, k)

Theorem 2.2.4. For n = 1l1 · · ·nln the following general formula holds

S(n, k) =
k∑
i=0

(−1)k−i
(
k

i

)(
i

l1

)
· · ·
(
i

ln

)
. (2.2)

Proof. Let At be the set of k -tuples of sets (S1, . . . , Sk) such that St is empty
(other sets can be empty or not); and all Si (1 ≤ i ≤ k) are subsets of {1, . . . , n}.
Note that

|At1 ∩ · · · ∩ Ati| =
(
k − i
l1

)
· · ·
(
k − i
ln

)
,
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because for remained k− i sets we can arbitrarily choose l1 sets for 1l1 , l2 sets for
2l2 , etc. Then, according to the inclusion-exclusion principle we get

|A1 ∪ · · · ∪ Ak| =
∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|

+
∑
i<j<l

|Ai ∩ Aj ∩ Al| − · · · − (−1)k|A1 ∩ · · · ∩ Ak|

=
k∑
i=1

(−1)i−1
(
k

i

)(
k − i
l1

)
· · ·
(
k − i
ln

)
Note that

S(n, k) =

(
k

l1

)
· · ·
(
k

ln

)
− |A1 ∪ · · · ∪ Ak|,

which gives the formula.

Corollary 2.2.5. For l1 = · · · = ln = 1 we obtain the known formula for ordered
Stirling numbers of the second kind:

k!S(n, k) =
k∑
i=0

(−1)k−i
(
k

i

)
in.

2.2.3 Polynomial identity
Theorem 2.2.6. For n = 1l1 · · ·nln the following polynomial identity holds

n∏
i=1

(
x

li

)
=

l1+···+ln∑
i=0

S(n, i)

(
x

i

)
. (2.3)

Proof. From the formula (2.2), the sequences ai =
(
i
l1

)
· · ·
(
i
lp

)
and bk = S(n, k)

are related by the binomial transform [36], i.e.,

bk =
k∑
i=0

(−1)k−i
(
k

i

)
ai.

Thus, the inverse transform yields

ak =
k∑
i=0

(
k

i

)
bi,

or (
k

l1

)
· · ·
(
k

ln

)
=

k∑
i=0

(
k

i

)
S(n, i).

The last identity can be considered as polynomial identity and positive integer k can
be changed to any x .
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Combinatorial proof. If we prove that polynomial identity (2.3) is true for any posi-
tive integer x = m , then as a result it holds for any (complex) x .

Let us consider the set

S = {(S1, . . . , Sm)|Si ⊆ {1, . . . , n}, 1 ≤ i ≤ m,S1 ] · · · ] Sm = n}.

Then, firstly,

|S| =
(
m

l1

)
· · ·
(
m

ln

)
,

because for any 1 ≤ i ≤ n we can arbitrarily put li repetitions of element i in any
i of m sets S1, . . . , Sm in

(
m
li

)
ways.

On the other hand,

|S| =
l1+···+ln∑
i=0

S(n, i)

(
m

i

)
,

because for any 0 ≤ i ≤ l1+ · · ·+ ln if m− i sets of S1, . . . , Sm are empty, then the
number of ways to form (cover) n by other i sets is equal (by definition) to S(n, i) ;
and the number of ways to choose m− i empty sets is equal to

(
m
m−i
)

=
(
m
i

)
.

2.2.4 Composition of differential operators
For positive integer k let us consider the differential operator

Dk =
xk

k!
· d

k

dxk
.

If k = 1, then D = D1 = x d
dx has good properties. For instance, it is well

known (see, e.g., [11]) that

Dn =
n∑
k=1

S(n, k)xk
dk

dxk
=

n∑
k=1

S(n, k)k!Dk. (2.4)

Note that operator Dk is commutative and associative:

DaDb = DbDa,

Da(DbDc) = (DaDb)Dc.

It implies from the following

Lemma 2.2.7.

DaDb =

min(a,b)∑
i=0

(
a+ b− i
a− i, b− i

)
Da+b−i,

where
(
a+b−i
a−i,b−i

)
= (a+b−i)!

(a−i)!(b−i)!i! is a multinomial coefficient.
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Proof. Using the Leibniz formula for the n -th derivative

dn(uv) =
n∑
i=0

(
n

i

)
di(u)dn−i(v),

where d(u) = du
dx , we have

DaDb =
xa

a!
da
(
xb

b!
db
)

=
xa

a!

a∑
i=0

(
a

i

)
di(xb)da−i(db)

=
1

a!b!

min(a,b)∑
i=0

(
a

i

)
b · · · (b− i+ 1)xa+b−1da+b−1

=

min(a,b)∑
i=0

(
a+ b− i
a− i, b− i

)
Da+b−i.

In the next theorem we show that property similar to (2.4) holds for Stirling
numbers on multisets.

Theorem 2.2.8. For n = 1l1 · · ·nln the following identity holds.

Dl1Dl2 · · ·Dln =

l1+···+ln∑
i=0

S(n, i)
xi

i!

di

dxi
=

l1+···+ln∑
i=0

S(n, i)Di. (2.5)

Proof. By induction on n . For n = 1 we have S(1l1, i) = 1 if i = l1 and
S(1l1, i) = 0, otherwise. Then

Dl1 =

l1∑
i=0

S(1l1, i)Di = S(1l1, l1)Dl1.

If (2.5) is true for n , then for n+ 1 using Lemma 2.2.7 and recurrence relation
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(2.1) we have

Dl1Dl2 · · ·Dln+1
= Dln+1

Dl1 · · ·Dln = Dln+1

l1+···+ln∑
i=0

S(n, i)Di

=

l1+···+ln∑
i=0

S(n, i)Dln+1
Di

=

l1+···+ln∑
i=0

S(n, i)
∑
j≥0

(
ln+1 + i− j
ln+1 − j, i− j

)
Dln+1+i−j

=

l1+···+ln+1∑
m=0

Dm

ln+1∑
j=0

(
m

j,m− ln+1

)
S(n,m− j)

=

l1+···+ln+1∑
m=0

DmS(n,m).

2.3 Generalization of Stirling numbers of the first kind
Definition 2.3.1 (Stirling numbers of the first kind). For a multiset n , let c(n, k)
be the number of ordered k -tuples (C1, . . . , Ck) of nonempty cycles of distinct ele-
ments having the property that

C1 ] · · · ] Ck = n.

Example 2.3.2. Suppose that n = 122231.
Then possible 2 -tuples of cycles which cover n are:

((123), (12));

((12), (123));

((132), (12));

((12), (122));

which gives c(122231, 2) = 4 .

Theorem 2.3.3.

c(n, k) =
∑

S⊆{1,...,n}

(|S| − 1)!c(n \ S, k − 1).

Proof. We may form the last cycle Ck in (C1, . . . , Ck) by any subset S of {1, . . . , n}
in (|S| − 1)! ways. The number of corresponding (k− 1) -tuples (C1, . . . , Ck−1) is
equal to c(n \ S, k − 1) , which gives the needed sum.
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2.4 Restricted partitions of sets
Notice that covers of multisets can be viewed as partitions of sets with some

restrictions. In this section we introduce the connections and definitions for objects
of that kind.

Suppose that k1, . . . , kn be positive integers and K = k1 + · · ·+ kn .
Let

{
(k1,...,kn)

m

}
be the number of partitions of the set {1, 2, . . . , K} into m

blocks such that

• first k1 elements ( 1, . . . , k1 ) are in distinct blocks;

• next k2 elements (k1 + 1, . . . , k2 ) are in distinct blocks

• and so on;

• last kn elements (k1 + · · ·+kn−1 +1, . . . , k1 + · · ·+kn ) are in distinct blocks.

In fact, it is easy to state that{
(k1, . . . , kn)

m

}
= S(1k1 · · ·nkn,m)

k1! · · · kn!
m!

Example 2.4.1.
{

(2,2,1)
2

}
= 4 ; the pairs of lements 1, 2 and 3, 4 cannot be in one

block and corresponding partitions are:

{1, 3}, {2, 4, 5};

{1, 3, 5}, {2, 4};
{1, 4}, {2, 3, 5};
{1, 4, 5}, {2, 3}.

The number
{

(k1,...,kn)
m

}
can be considered as a generalization of Stirling num-

ber of the second kind because
{

(1,...,1)
m

}
= S(n,m) , where S(n,m) is Stirling

number of the second kind. The case
{

(r,1,...,1)
m

}
is a generalization of r -Stirling

number of the second kind introduced by Broder [6].
Note that the value

{
(k1,...,kn)

m

}
will remain the same if we arbitrarily permute

the numbers (k1, . . . , kn) .
Let a(j) = a(a− 1) . . . (a− j + 1) be a falling factorial.
The recurrence relations are shown in

Theorem 2.4.2. The following properties are true:

• if n = 1 then
{

(k)
k

}
= 1 (and

{
(k)
i

}
= 0 if i 6= k );
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• and the recurrence relations{
(k1, . . . , kn)

m

}
=

{
(k1, . . . , kn − 1)

m− 1

}
+ (m− kn + 1)

{
(k1, . . . , kn − 1)

m

}
;

(2.6)
or{

(k1, . . . , kn, kn+1)

m

}
=

kn+1∑
j=0

(
kn+1

j

)
(m+ j − kn+1)(j)

{
(k1, . . . , kn)

m+ j − kn+1

}
.

(2.7)

Proof. Equation (2.6). Consider the last element K . It can form one separate block
and this provides

{
(k1,...,kn−1)

m−1

}
ways; or the last element is contained in some block

with other elements and this gives (m−kn+1)
{

(k1,...,kn−1)
m

}
because there are only

(m − kn + 1) proper blocks which do not contain elements {k1 + · · · + kn−1 +
1, . . . , k1 + · · ·+ kn − 1} .

Equation (2.7). Consider the group of last kn+1 elements. Note that for each
j = 0, . . . , kn+1 exactly j elements can share common blocks with other elements
and thus, other (kn+1 − j) elements form (kn+1 − j) separate blocks. Therefore, it
clearly gives that{

(k1, . . . , kn, kn+1)

m

}
=

kn+1∑
j=0

(
kn+1

j

)
(m+ j − kn+1)(j)

{
(k1, . . . , kn)

m+ j − kn+1

}
.

The general formula is present in the next

Theorem 2.4.3.{
(k1, . . . , kn)

m

}
=

1

m!

m∑
i=0

(−1)m−i
(
m

i

)
i(k1) . . . i(kn).

Proof. Similar to Theorem 2.2.4.

For establishing the properties with composition of differential operators let us
redefine now the operator Dk as

Dk = xkDk = xk
dk

dxk
.

Theorem 2.4.4.

Dk1Dk2 . . . Dkn =
K∑
i=0

{
(k1, . . . , kn)

i

}
xiDi =

K∑
i=0

{
(k1, . . . , kn)

i

}
Di, (2.8)
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Proof. By induction on n and using the recurrence relation (2.7), similar to the proof
of Theorem 2.2.8.

Note that numbers
{

(k1,...,kn)
i

}
were established with another combinatorial in-

terpretation in the problem of boson normal ordering [38].

2.4.1 The case for Stirling numbers of the first kind
Similarly, let

[
(k1,...,kn)

m

]
be the number of permutations of (1, 2, . . . , K) with

m cycles such that

• first k1 elements ( 1, . . . , k1 ) are in distinct cycles;

• next k2 elements (k1 + 1, . . . , k2 ) are in distinct cycles

• and so on;

• last kn elements (k1 + · · ·+kn−1 +1, . . . , k1 + · · ·+kn ) are in distinct cycles.

Then we pose the following problem concerning generalized Stirling numbers
of the first kind.

Problem. The following polynomial identity holds

(x+K − 1)(K) =
K∑
i=0

[
(k1, . . . , kn)

i

]
(x+ k1 − 1)(k1) · · · (x+ kj − 1)(kj) (2.9)

×(x+ (i− k1 − · · · − kj)− 1)((i−k1−···−kj)),

where j is an index for which k1 + · · ·+ kj+1 ≥ i > k1 + · · ·+ kj.
Then the following orthogonality relation is a consequence of (2.9)∑
i≥0

(−1)K−i
[

(k1, . . . , kn)

i

]{
(k1, . . . , kj, i− k1 − · · · − kj))

m

}
= δn,m,

where δn,m = 1 if n = m and δn,m = 0, otherwise.
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3 STIRLING PERMUTATIONS

Well-known identity

∞∑
m=0

mnxm =

∑n
i=1An,ix

i

(1− x)n+1

relates the function mn with Eulerian numbers An,i (e.g., [25]). Combinatorial
meaning of An,i known as the number of permutations (a1, . . . , an) of (1, . . . , n)
having exactly i−1 descents, i.e., indices j (1 ≤ j ≤ n−1) for which aj > aj+1 .

In a similar way, Stirling permutations were introduced by Gessel and Stanley
[22], concerning multipermutations of (1, 1, 2, 2, . . . , n, n), which have the property
that only greater elements can be placed between any two equal elements in a per-
mutation. Their result shows an interesting connection between Eulerian numbers
defined on these permutations and Stirling numbers:

If now An,i denotes the number of Stirling permutations (a1, . . . , a2n) of
(1, 1, 2, 2, . . . , n, n) that have exactly i− 1 descents, then

∞∑
k=0

S(n+ k, k)xk =

∑n
i=1An,ix

i

(1− x)2n+1
,

where S(n + k, k) is a Stirling number of the second, which counts the number of
partitions of {1, . . . , n+ k} into k nonempty blocks.

In the present chapter we explore combinatorial properties in a general case, by
considering Stirling permutations of the multiset {1k1, . . . , nkn} .

Let us fix the numbers k1, . . . , kn , set K = k1 + · · ·+ kn and similarly define
(i) Eulerian numbers An,i as the number of Stirling permutations (a1, . . . , aK)

of {1k1, . . . , nkn} that have exactly i− 1 descents;
(ii) and numbers BK,m obtained from the generating function:

∞∑
m=0

BK,mx
m =

∑n
i=1An,ix

i

(1− x)K+1
.

The main object of our study are the numbers BK,m .
We obtain (Theorem 3.4.4) that BK,m have a compact recurrence relation:

BK,m =

{
BK,m−1 +BK−1,m, if kn > 1;
mBK−1,m, if kn = 1.

We establish several combinatorial properties of BK,m with relations to the
barred permutations (as they were originally considered by Gessel and Stanley [22]),
weighted lattice paths, bipartite multigraphs, P -partitions.
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Next, we show that generating function
∑

mBK,mx
m corresponds to the trian-

gular generating function
∑

m S(k1,...,kn)(n+m,m)xm or that BK,m = S(k1,...,kn)(n+
m,m) . In a general case, the class S(k1,...,kp−q)(p, q) depends on a sequence
(k1, . . . , kp−q) and enumerates some (l+1) -tuple (π0, . . . , πl) , where π1, . . . , πl are
partitions of set {1, . . . , p} into q blocks, π0 is a special family of multisets under
some additional constraints and properties given for π0, . . . , πl (Definition 3.5.10).

As we derive it further, in particular cases for k1, . . . , kn , the general construc-
tion of S(k1,...,kp−q)(p, q) can be refined with nice combinatorial interpretations. The
numbers BK,m can be specified, e.g., as the function mK , the sum of powers of
consecutive integers

∑m
i=1 i

n , the binomial coefficient
(
K+m−1

K

)
, the Stirling num-

ber S(n + m,m) , the central factorial number T (2n + 2m, 2m) (defined by Ri-
ordan [42]). We also introduce Stirling numbers of odd type (for (k1, . . . , kn) =
(1, 2, . . . , 2) ) and a natural generalization of the central factorial numbers
(for (k1, . . . , kn) = (1, . . . , 1, 2, . . . , 1, . . . , 1, 2) ).

Background
The case k1 = · · · = kn = k was studied by Klingsberg and Schmalzried

[33], Park [39, 40] has explored and denoted such permutations of {1r, . . . , nr} by
r -multipermutations. Particularly, they obtained properties and combinatorial in-
terpretation for Bkn,m in the theory of P -partitions of a poset. In this chapter we
generalize that construction for any multiset.

Bóna [2] has considered the Eulerian polynomial
∑

iAn,ix
i over Stirling per-

mutations of {12, . . . , n2} and proved that it has only real zeros. Brenti [5] proved
this fact in a general case {1k1, . . . , nkn}. Haglund and Visontai [28] have considered
Eulerian multivariate polynomial and proved its stability property, which implies the
result on real zeros.

Janson (et al.) [31, 32] have shown the connection of generalized Stirling per-
mutations with the plane recursive trees and an urn model.

Egge [19] has presented a similar theory of the Legendre–Stirling permutations.
Gessel et al. [24] have applied the theory of P -partitions for the Jacobi-Stirling
numbers.

3.1 Definitions, notation
For fixed positive integers k1, . . . , kn, (throughout the chapter we suppose that

these numbers are fixed) consider a multiset {1k1, 2k2, . . . , nkn} , where every ele-
ment i (1 ≤ i ≤ n) has ki repetitions and K = k1 + · · ·+ kn .

Definition 3.1.1. A permutation σ = σ(1) . . . σ(K) of {1k1, 2k2, . . . , nkn} is called
Stirling permutation 1 if for all indices i, t, j (1 ≤ i < t < j ≤ K) with σ(i) =
σ(j), we have σ(t) ≥ σ(i) .

1Or, a generalized Stirling permutation
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Example 3.1.2. 1122332 is a Stirling permutation and 1212233 is not.

Example 3.1.3. All Stirling permutations of {11, 22, 33} are

122333, 123332, 133322, 333122,

221333, 223331, 233321, 333221.

Proposition 3.1.4. Let GSn be the set of Stirling permutations of {1k1, 2k2, . . . , nkn} .
Then

|GSn| = (kn−1 + . . .+ k1 + 1)(kn−2 + . . .+ k1 + 1) · · · (k1 + 1). (3.1)

Proof. By induction on n . There is only one Stirling permutation of 1k . For the
induction step notice that by definition, the elements nkn cannot be separated. Thus,
we can put the entire block nkn into any (kn−1 + · · · + k1 + 1) spaces of a Stirling
permutation of GSn−1. This gives that

|GSn| = (kn−1 + · · ·+ k1 + 1)|GSn−1|
= (kn−1 + . . .+ k1 + 1)(kn−2 + . . .+ k1 + 1) · · · (k1 + 1).

Definition 3.1.5 (Eulerian numbers). For a permutation σ = σ(1) · · ·σ(K) ∈ GSn,
i is a descent index if i = K or σ(i) > σ(i + 1) for i < K and a descent number
des(σ) is a number of descent indices of σ . Eulerian number An,i expresses the
number of Stirling permutations having exactly i descents, i.e.,

An,i = |{σ ∈ GSn|des(σ) = i}|.

Definition 3.1.6 (The B numbers). The generating function Gn(x) and the numbers
BK,m are defined by

Gn(x) =

∑n
i=1An,ix

i

(1− x)K+1
=

∞∑
m=0

BK,mx
m. (3.2)

3.2 Inversion codes for Stirling Permutations
Definition 3.2.1. For a Stirling permutation σ ∈ GSn , let

cinv(σ) = (cinv1, . . . , cinvn)

be the inversion code, such that for all i (1 ≤ i ≤ n) , cinvi is equal to the number
of elements of σ which are less than i , and placed to the right of i in a permutation.
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Example 3.2.2.
cinv(233211) = (0, 2, 3),

cinv(1123444321) = (0, 2, 2, 3).

Proposition 3.2.3. There is a bijection between the set of all sequences
(cinv1, . . . , cinvn) which satisfy the properties:

cinv1 = 0, 0 ≤ cinv2 ≤ k1, . . . , 0 ≤ cinvn ≤ k1 + · · ·+ kn−1,

and the set GSn of (k1 + 1) · · · (k1 + · · ·+ kn−1 + 1) Stirling permutations.

Proof. The bijection is very natural. First, it is easy to see that for any σ ∈ GSn ,
cinv(σ) forms the sequence satisfying all the above inequalities.

For the inverse, we may construct a permutation with the given sequence
(cinv1, . . . , cinvn) :

At each step i (1 ≤ i ≤ n) put the block iki before exactly cinvi elements of
a current permutation. It is always possible, because at the beginning of any step i ,
the current permutation has exactly k1 + · · ·+ ki−1 elements (and 0 elements at the
first step).

Corollary 3.2.4.∑
σ∈GSn

qcinv10 · · · qcinvnn−1 = (1 + q1 + · · ·+ qk11 ) · · · (1 + qn−1 + · · ·+ q
k1+···+kn−1

n−1 ).

3.3 Some properties of Eulerian numbers An,i

Proposition 3.3.1. The numbers An,i satisfy the following recurrence relation

An,i = i · An−1,i + (k1 + . . .+ kn−1 + 1− (i− 1)) · An−1,i−1 (3.3)

with initial value A1,1 = 1.

Proof. The block nkn can be inserted:
(i) in any of i descents of An−1,i permutations without producing a new de-

scent, or
(ii) create a new descent at any of (k1 + . . . + kn−1 + 1 − (i − 1)) positions

(with no descent) of An−1,i−1 permutations.

Theorem 3.3.2 ([5, 28]). Eulerian polynomial
∑n

i=1An,ix
i over Stirling permuta-

tions has only real zeros.

This theorem can also be proved using the same argument as in [2] for case
k1 = · · · = kn = 2 and using the recurrence (3.3).
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3.4 Properties of the B numbers
Proposition 3.4.1. The numbers BK,m and An,i are related by:

BK,m =
∑
i≥1

(
m− i+K

K

)
An,i.

Proof. We have

Gn(x) =
∞∑
m=0

BK,mx
m =

∑n
i=1An,ix

i

(1− x)K+1
=

(
n∑
i=1

An,ix
i

) ∞∑
j=0

(
K + j

K

)
xj

=
∞∑
m=0

xm
∑
i≥1

An,i

(
K +m− i

K

)
.

Proposition 3.4.2. The function Gn(x) satisfies the following differential equation:

Gn(x) =
x

(1− x)kn−1
d(Gn−1(x))

dx
. (3.4)

Proof. By recurrence relation (3.3), we have

Gn(x) =

∑n
i=1An,ix

i

(1− x)K+1

=
x

(1− x)kn−1

∑n
i=1(iAn−1,ix

i−1 + (k1 + · · ·+ kn−1 + 2− i)An−1,i−1x
i−1)

(1− x)k1+···+kn−1+2

=
x

(1− x)kn−1
d

( ∑n−1
i=1 An−1,ix

i

(1− x)k1+···+kn−1+1

)
/dx

=
x

(1− x)kn−1
d(Gn−1(x))

dx
.

Theorem 3.4.3. The following recurrence relations hold for numbers BK,m if kn >
1 :

BK,m =
m∑
i=0

iBK−kn,i

(
kn +m− i− 2

m− i

)
, (3.5)

BK−kn,m =
1

m

kn−1∑
j=0

BK,j(−1)m−j
(
kn − 1

m− j

)
. (3.6)
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Proof. From equation (3.4), we have

∞∑
m=0

BK,mx
m =

1

(1− x)kn−1

∞∑
j=0

jBk−kn,jx
j.

So, equation (3.5) implies on expansion 1
(1−x)kn−1 =

∑∞
i=0

(
kn+i−2

i

)
xi and equation

(3.6) from (1− x)kn−1 =
∑kn−1

i=0 (−1)i
(
kn−1
i

)
xi.

Theorem 3.4.4. For any positive integer m , we have
B0,m = 1, Bi,0 = 0 ; and

BK,m =

{
BK,m−1 +BK−1,m, if kn > 1;
mBK−1,m, if kn = 1.

(3.7)

(Here we suppose that if kn > 1 , then BK−1,m = Bk1+...+(kn−1),m is applied for the
sequence (k1, . . . , kn−1, kn − 1) and if kn = 1 , then BK−1,m = Bk1+...+kn−1,m for
the sequence (k1, . . . , kn−1) )

Proof. In relation (3.5) setting m→ m+ 1 gives the following:

BK,m+1 =
∑
i

iBK−kn,i

(
kn +m− i− 1

m+ 1− i

)
.

We have

BK,m+1 −BK,m =
∑
i

iBK−kn,i

((
kn +m− i− 1

m+ 1− i

)
−
(
kn +m− i− 2

m− i

))
=
∑
i

iBK−kn,i

(
(kn − 1) + (m+ 1)− i− 2

(m+ 1)− i

)
= BK−1,m+1

and thus the following recurrence relation:

BK,m+1 = BK,m +BK−1,m+1.

The last formula works for kn > 1 . If kn = 1 then we get the second case of
formula (3.7).

3.4.1 Barred permutations
Generating function (3.2) provides a direct combinatorial meaning for BK,j. It

is known as the number of Stirling permutations with j bars, so that any descent
position of a permutation receives at least one bar.

So, we consider Stirling permutations where some positions contain a special
sign ′/′ , called bar. We specialize only on permutations whose descent indices must
contain a bar.
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Example 3.4.5. 1//22/1344/33/ has 5 bars and /2/33//2//15/1// has 9 bars.

Proposition 3.4.6. BK,m is equal to the number of barred permutations σ ∈ GSn
having m bars so that any descent index of σ receives at least one bar.

Proof. Let PK,m be the number of barred permutations having the described prop-
erty. Every such permutation can be obtained by putting one bar in each descent
position and any number of bars in any of K + 1 positions between elements in a
permutation.

Therefore,

∑
m≥0

PK,mx
m =

( ∑
σ∈GSn

xdes(σ)

)
(1 + x+ x2 + · · · )K+1

=

∑n
i=1Aix

i

(1− x)K+1
=

∞∑
m=0

BK,mx
m.

So, PK,m = BK,m .

3.4.2 Weighted lattice paths
Consider paths in a lattice grid LK,m from (0, 0) to (K,m) , such that
(i) moves that allowed are
up: (x, y)→ (x, y + 1) or right: (x, y)→ (x+ 1, y)
(ii) and weight w of any such move is equal to 1 , except the values of type:

w((k1 + . . .+ ki−1, j)→ (k1 + . . .+ ki−1 + 1, j)) = j,

w((k1 + . . .+ ki−1 + 1, j)→ (k1 + . . .+ ki−1 + 1, j + 1)) = 0,

for all 1 ≤ i ≤ n , 0 ≤ j ≤ m (if i = 1 , then w((0, j)→ (1, j) = j) ).

Example 3.4.7. A grid and a path:

b

b

b

(0, 0)

b
(K,m)

b
j1 b

j1(0, j1)
b b

b b b

b
j2(0, j2)

b b

b b

b

(k1, 0)
b

(k1 + · · ·+ kn−1, 0)

Figure 1 – A path from (0, 0) to (K,m) . Labeled moves have weights j1, j2 with
respect to their y -coordinate. Dotted vertical lines (if x dashed, then (x+ 1)

dotted) have weight 0 . Other weights are equal to 1
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Definition 3.4.8. For any path π in LK,m from (0, 0) to (K,m) , which consists of
steps π1, . . . , πK+m, the weight of that path w(π) is defined by

w(π) = w(π1) · · ·w(πK+m).

Example 3.4.9. Suppose that k1 = 1, k2 = 4, k3 = 3. The weight of path given
below is equal to 2 · 2 · 3 = 12.

b

(0, 0)

b

b

b
(8, 4)

2 b 2(0, 2)
b b

b 3(0, 3)
b b

b b

b

(1, 0)
b

(5, 0)

Figure 2 – A grid L8,4 with k1 = 1, k2 = 4, k3 = 3

Theorem 3.4.10. The following formula holds

BK,m =
∑

π((0,0)→(K,m))∈LK,m

w(π).

Proof. By induction on K + m . We can reach point (K,m) in two ways: from
(K − 1,m) or (K,m − 1) . Thus, if kn 6= 1, then by inductive hypothesis we
have BK−1,m + BK,m−1 ways; and if kn = 1, then we can reach (K,m) only from
(K − 1,m) with weight m .

3.4.3 Bipartite multigraphs
Definition 3.4.11. Consider the set Gn,m of bipartite multigraphs (whose edges may
duplicate) which satisfy the following properties:

1. The first part contains n vertices labeled as 1, . . . , n
2. The second part contains m vertices labeled as 1, . . . ,m
3. The degree of i -th vertex (1 ≤ i ≤ n) of the first part is equal to ki

Definition 3.4.12. We say that edge (l, x) of the multigraph Gn,m ∈ Gn,m is bad if
there exists an edge (k, y) of the same multigraph such that

k < n and x < y.

(And (k, y) is not necessarily bad)
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b
k

byb

n

b
x

b
1

b

2
b

2

b
1

b
1

b

2
b

2

b
1

(n, x) is bad (2, 1) is bad no bad edges

Figure 3 – Examples of bad edges

Definition 3.4.13. We say that the graph Gn,m ∈ Gn,m is almost-ordered if each
vertex of the first part has at most one bad edge.

Theorem 3.4.14. BK,m if equal to the number of almost-ordered graphs of Gn,m .

Proof. Let ΩK,m be the number of almost-ordered elements of Gn,m . We will prove
that ΩK,m satisfies the same recurrence (3.7) and initial values.

Let us consider a certain element Gn,m ∈ Gn,m .
If kn = 1 then it is obvious that ΩK,m = mΩK−1,m .
Now, assume that kn > 1 . Then two cases are possible.
Case 1. There is an edge (n,m) . Then the number of such graphs is to be equal

ΩK−1,m , because this edge is not bad.
Case 2. There is no any edge (n,m) . Now, we should understand that it means

that there is no any other edge of the type (i,m) 1 ≤ i ≤ n . It is true, because
otherwise at least two edges of the vertex n (kn > 1 ) are bad (will ”intersect” by
the edges (i,m) ). And the needed number is equal to ΩK,m−1 .

Therefore, Ω0,m = 1 ; and

ΩK,m =

{
ΩK,m−1 + ΩK−1,m, if kn > 1

mΩK−1,m, if kn = 1.

So, ΩK,m ≡ BK,m .

Example 3.4.15. Consider G{1,22,32},2 . We construct 11 almost-ordered graphs.
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Figure 4 – Examples of almost-ordered graphs

3.4.4 The order polynomial
We show that combinatorial meaning of B numbers can be expressed using the

theory of P -partitions of Stanley [47].

Definition 3.4.16. Consider a finite (labeled) partially ordered set P with partial
order <p . We define the order polynomial Ω(P,m) [47] as the number of order-
preserving maps

σ : P→ {1, . . . ,m},
i.e., if x <p y then σ(x) ≤ σ(y) .

The goal of this section is to construct some poset whose order polynomial
values coincide with B numbers.

For instance, the poset which induces Stirling numbers B2n,m = S(n + m,m)
(of the multiset {12, . . . , n2} ), .i.e., Ω(P,m) = B2n,m , is the following [39, 33]:
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b
σ(2)

b
σ(4)

b

σ(1)

b

σ(3)

b

σ(2n)

b
σ(2n− 1)

b
b

b

Figure 5 – a poset with Ω(P,m) = S(n+m,m)

It gives
Ω(P,m) =

∑
1≤σ(2)≤···≤σ(2n)≤m

σ(2) · · ·σ(2n).

In case {1, 22, . . . , n2} , the poset for which Ω(P,m) = B2n−1,m slightly dif-
fers

b

σ(1)

b
σ(3)

b
σ(5)

b

σ(2)

b

σ(4)

b

σ(2n− 1)

b
σ(2n− 2)

b
b

b

Figure 6 – a poset for the case {1, 22, . . . , n2}

which gives

Ω(P,m) =
∑

1≤σ(3)≤σ(5)≤···≤σ(2n−1)≤m

σ(3)2σ(5) · · ·σ(2n− 1).

The case {1k, . . . , nk} was introduced in [33] with the poset below, so that
Ω(P,m) = Bnk,m :

b
σ(2)

b
σ(nk)

b
σ(3)

b
σ(k)

b
σ(k + 2)

b b b b b b

b
σ(1)

b
σ(k + 1)

bb
σ(k(n− 1) + 2)

b
σ(k(n− 1) + 1)

b b

Figure 7 – a poset for the case {1k, . . . , nk}

Next we describe the structure of poset which induces the numbers BK,m for
any given k1, . . . , kn .

Particularly, if all ki > 1 (1 ≤ i ≤ n), then the poset PK looks as:

b
σ(2)

b
σ(k1 + · · ·+ kn)

b
σ(3)

b
σ(k1)

b
σ(k1 + 2)

b b b b b b

b
σ(1)

b
σ(k1 + 1)

bb
σ(k1 + · · ·+ kn−1 + 2)

b
σ(k1 + · · ·+ kn−1 + 1)

b b

Figure 8 – poset in the general case
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If for some i , ki = 1, then diagram slightly differs. Suppose that

(k1, . . . , kn) = (1, . . . , 1︸ ︷︷ ︸
a1−1 ones

, t1, . . . , 1, . . . , 1︸ ︷︷ ︸
ar−1 ones

, tr),

where t1 > 1, . . . , tr > 1 . Then we present the following poset PK :

b

σ(a1)
b

σ(a1 + t1 + a2 − 1)

b b bb
σ(a1 + 1)

b
σ(
∑

r

1
(ai + ti))

b b b
σ(a1 + t1 + a2)

b b b b b b

b

σ(1)

· · · · · · · · ·b

σ(a1 + t1)

bb
σ(
∑

r−1

1
(ai + ti) + ar + 1)

b

σ(
∑

r−1

1
(ai + ti))

b

σ(
∑

r−1

1
(ai + ti) + ar)

b b

Figure 9 – a diagram of the poset Pk

In the general case we construct the poset PK (according to the numbers
k1, . . . , kn ) by the following algorithm:

1. Initially add to P one temporary node with label 0 .

2. For all 1 ≤ i ≤ n do

• Let im be the maximal value of label in the current poset

• Join im with 0

• If ki = 1 then add new label im + 1

• Else if ki > 1 then

– replace the label 0 to im + 2 .
– add new label im + 1 and join with im + 2 .
– if (ki > 2) then create new nodes labeled by im + 3, . . . , im + ki
– add the chain im → im + 2→ im + 3→ · · · → im + ki

• If i < n then add one temporary node with label 0 (if there is no such
element)

Example 3.4.17. Consider {12, 23, 31, 42} . Then PK is constructed as follows:

b 0 b 1 b 2 b 0

Initially Step 1
b 1 b 2 b 4 b 5 b 0

b
3

b 1 b 2 b 4 b 5 b 0

b
3

b
6

Step 2 Step 3
b 1 b 2 b 4 b 5 b 8

b
3

b
6

b
7

b
σ(1)

b
σ(2)

b
σ(4)

b
σ(5)

b
σ(8)

b
σ(3)

b
σ(6)

b
σ(7)

Step 4 Finally, poset P8 of {12, 23, 31, 42}
Figure 10 – steps of obtaining the poset PK in case {12, 23, 31, 42}
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Theorem 3.4.18. BK,m = Ω(PK ,m).

Proof. Let l be the last label added to the poset PK in described algorithm.
Case 1. If kn = 1 , then l has no relation to other elements and σ(l) can

therefore take any of m values. Thus, Ω(PK ,m) = mΩ(PK−1,m) in this case.
Case 2. If kn > 1 , then σ(l) is the maximal value in the map and two cases are

possible:
Case 2a. if σ(l) ≤ m− 1, then the number of maps is equal to Ω(PK ,m− 1) ;
Case 2b. if σ(l) = m, then if we remove l it gives us Ω(PK−1,m) ways to

map remained elements.
Hence, in case 2 we have

Ω(PK ,m) = Ω(PK−1,m) + Ω(PK ,m− 1).

So, Ω(PK ,m) satisfies the same recurrence relation as BK,m (3.7) and it easy to
check that initial values are also equal.

3.5 BK,m as the number of set partitions
Denote [n] = {1, . . . , n} .

Definition 3.5.1. For a family F = {B1, . . . , Bm} of m sets (or multisets) let

• min(Bi) be the minimal element of Bi (1 ≤ i ≤ m) ;

• min(F) = {min(B1), . . . ,min(Bm)} .

Example 3.5.2. For a parition π = {1, 4}{2, 3, 7}{5, 6} we have min(π) = {1, 2, 5}.

Definition 3.5.3. We say that a family F = {B1, . . . , Bm} of m sets (or multisets)
is non-intersecting if any two of its representatives Bi, Bj (where 1 ≤ i 6= j ≤ m )
are

(i) non-crossing, i.e., if a < b are in Bi and c < d are in Bj , then the
inequality a < c < b < d does not hold;

(ii) non-nested, i.e., if a < b are in Bi and c < d are in Bj , then the inequality
a < c < d < b does not hold.

Example 3.5.4. Partition {1, 2}{3, 4, 6, 7}{5}{8, 9} is non-intersecting.

Definition 3.5.5. Let S3(n,m) be the number of ordered pairs (π1, π2) which satisfy
the following properties:

(i) π1 is a partition of [n] into m blocks and π2 is a non-intersecting partition
of [n+ 1] into m blocks;

(ii) min(π1) = min(π2) ;
(iii) if x is the least element of [n] \ min(π1) , then x and 1 are in the same

block of π2 .
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Example 3.5.6. If n = 4,m = 2, then there are S3(4, 2) = 10 possible ordered
pairs (π1, π2) which satisfy the properties above:

({1}, {2, 3, 4}), ({1, 3, 4, 5}, {2});

({1, 3}, {2, 4}), ({1, 3, 4, 5}, {2});
({1, 4}, {2, 3}), ({1, 3, 4, 5}, {2});
({1, 3, 4}, {2}), ({1, 3, 4, 5}, {2});
({1, 2}, {3, 4}), ({1, 2, 4, 5}, {3});
({1, 2}, {3, 4}), ({1, 2}, {3, 4, 5});
({1, 2, 4}, {3}), ({1, 2, 4, 5}, {3});
({1, 2, 4}, {3}), ({1, 2}, {3, 4, 5});
({1, 2, 3}, {4}), ({1, 2, 3, 5}, {4});
({1, 2, 3}, {4}), ({1, 2, 3}, {4, 5});

Theorem 3.5.7. For k1 = · · · = kn = 3 we have B3n,m = S3(n+m,m) .

Proof. It is proved further in the general case.

Definition 3.5.8. For a positive integer k > 2 , let Sk(n,m) be the number of or-
dered pairs (π1, π2) which satisfy the following properties:

(i) π1 is a partition of [n] into m blocks;
(ii) π2 is a non-intersecting partition of a multiset {1k−2, . . . , (n+ 1)k−2} into

m (multiset) blocks so that any block contains all (k − 2) copies of its minimal
element;

(iii) min(π1) = min(π2) ;
(iv) if x is the least element of [n] \ min(π1) , then x(k−2) belongs to the first

block of π2 .

Theorem 3.5.9. For k1 = · · · = kn = k > 2, we have Bkn,m = Sk(n+m,m).

Proof. It is proved further in the general case.

For given positive integers n,m (with n ≥ m ) let us consider the sequence t
of the form

t = (1, . . . , 1︸ ︷︷ ︸
a1−1 ones

, t1, . . . , 1, . . . , 1︸ ︷︷ ︸
an−m−1 ones

, tn−m),

where a1, . . . , an−m, t1, . . . , tn−m are positive integers and t1, . . . , tn−m > 1 . Set
M = max(a1, . . . , an−m) .
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Definition 3.5.10. Let St(n,m) be the number of ordered (M + 1) -tuples
(π0, π1, . . . , πM) which satisfy the following properties:

(i) π1, . . . , πM are partitions of [n] into m blocks;
(ii) π0 is a non-intersecting family of m multisets whose elements are from

[n+ 1] and minimal elements in each multiset have multiplicity 1 ;
(iii) min(π0) = min(π1) = · · · = min(πM) ;
(iv) if {x1, . . . , xn−m} = [n] \min(π1), so that x1 < · · · < xn−m , then for any

i (1 ≤ i ≤ n−m) , xi and 1 are in the same block in all πj for which j > ai ;
(v) x1, 1 are in the same multiset in π0 and in a family π0 the elements

(x2, . . . , xn−m, n+1) have multiplicities equal to (t1−2, . . . , tn−m−2) , respectively.

Theorem 3.5.11. Suppose that sequence (k1, . . . , kn) has the form

t = (k1, . . . , kn) = (1, . . . , 1︸ ︷︷ ︸
a1−1 ones

, t1, . . . , 1, . . . , 1︸ ︷︷ ︸
ar−1 ones

, tr),

where t1 > 1, . . . , tr > 1 . Then St(r +m,m) = BK,m .

Proof. Set M = max(a1, . . . , ar) . Let us fix m minimal elements from [r + m],
which common for (π0, . . . , πM) and consider the elements {x1, . . . , xr} = [r +
m] \min(π1) , so that x1 < . . . < xr . For any j (1 ≤ j ≤ r) denote

ij = |{x < xj | x ∈ min(π1)}|.

Then, according to the property (iv) from the definition above, the element xj can
be placed in ij blocks in any of partitions (π1, . . . , πaj) , for any 1 ≤ j ≤ m . This
provides iajj ways to place xj and totally ia11 . . . i

ar
r ways to place all the elements

x1, . . . , xr if minimal elements are fixed.
Now consider the number of ways to form π0 . The element x1 is already

placed with minimal element 1 . Let xr+1 = r + m + 1 and p1 = 1, then for
any j (2 ≤ j ≤ r + 1) , according to the non-crossing and non-nested property,
the element xj can be placed only to multisets whose minimal elements pj are
greater than xj−1 or to the same multiset as xj−1 . Because inequalities of types
pj−1 < pj < xj−1 < xj and pj < pj−1 < xj−1 < xj cannot hold. So, for any j
(2 ≤ j ≤ r + 1) there are ij − ij−1 + 1 vacant positions to put tj−1 − 2 copies of
element xj , which gives

(
tj−1−2+ij−ij−1

ij−ij−1

)
ways.

Thus, for any fixed arrangement of minimal elements, we have

ia11 . . . i
ar
r

(
t1 + i2 − i1 − 2

i2 − i1

)
. . .

(
tr +m− ir − 2

m− ir

)
.

ways to form (M + 1) -tuple (π0, . . . , πM) . Note that it holds for the arbitrary
sequence satisfying 1 ≤ i1 ≤ · · · ≤ ir ≤ m . Therefore,

St(r +m,m) =
∑

1≤i1≤···≤ir≤m
ia11 . . . i

ar
r

(
t1 + i2 − i1 − 2

i2 − i1

)
. . .

(
tr +m− ir − 2

m− ir

)
.
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Iterative use of equation (3.5) gives the same formula for BK,m :

BK,m =
∑

1≤i1≤···≤ir≤m
ia11 . . . i

ar
r

(
t1 + i2 − i1 − 2

i2 − i1

)
. . .

(
tr +m− ir − 2

m− ir

)
.

3.6 Special cases if ki = 1, 2

3.6.1 The power function mn

If k1 = · · · = kn = 1, then Bn,m = mn . This refers to the classical result
about the usual Eulerian numbers:

∞∑
m=0

mnxm =

∑n
i=1An,ix

i

(1− x)n+1
.

3.6.2 Sums of powers of consecutive integers
If k1 = · · · = kn−1 = 1 and kn = 2, then Bn+1,m =

∑m
i=1 i

n.

3.6.3 The binomial coefficient
(
K+m−1

K

)
If n = 1 and k1 = K , then BK,m =

(
K+m−1

K

)
. Gn(x) becomes

∞∑
m=0

(
K +m− 1

K

)
xm =

x

(1− x)K+1
.

3.6.4 The usual Stirling numbers
If k1 = · · · = kn = 2 then B2n,m = S(n+m,m) .

3.6.5 Stirling numbers of odd type
If k1 = 1 and k2 = · · · = kn = 2, then B2n−1,m = Sodd(n+m,m) .
The recurrence relation which derived from the Theorem 3.7 is given by

Sodd(n, k) = Sodd(n− 1, k − 1) + kSodd(n− 1, k),

if n > k and Sodd(n, n) = n (which differs it from the usual Stirling number).
Interpretation with P -partitions provides the formula

Sodd(n+m,m) =
∑

1≤i2≤···≤in≤m
i22i3 · · · in.

In fact, one can prove that Sodd(n, k) are related with the r -Stirling numbers intro-
duced by Broder [6]. Namely,

Sodd(n, k) =
{n
k

}
1

+
{n
k

}
2

+ · · ·+
{n
k

}
k
,
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where
{
n
k

}
r

is r -Stirling number of the second kind, which counts the number of
partitions of {1, . . . , n} into k blocks such that the numbers 1, . . . , r are in distinct
blocks.

The following theorem can be obtained from the Definition 3.5.10.

Theorem 3.6.1. Sodd(n, k) is equal to the number of partitions of [n] into k blocks
such that the least element x , which is not a block minimum has two distinguished
copies x1, x2 .

Note that these numbers Sodd(n, k) were discussed by Knuth [34] as half-
integer Stirling numbers.

3.6.6 Generalization of central factorial numbers
If we consider the multiset {1k1, . . . , (nt)knt} with the sequence (k1, . . . , knt)

of special type

(

t numbers︷ ︸︸ ︷
1, 1, . . . , 1, 2,

t numbers︷ ︸︸ ︷
1, 1, . . . , 1, 2, . . . ,

t numbers︷ ︸︸ ︷
1, 1, . . . , 1, 2︸ ︷︷ ︸

n blocks

),

then the numbers St(n+m,m) = B(t+1)n,m have good properties.
The recurrence relation becomes

St(n,m) = St(n− 1,m− 1) +mtSt(n− 1,m),

which is a generalization of the central factorial numbers defined by Riordan [42] as
T (2n, 2m) in case if t = 2 .

Now we introduce the generalizations of central factorial numbers of the first
and second kinds {ct(n, k)}, {St(n, k)}, which can be defined by the recurrence
relations:

ct(n, k) = ct(n− 1, k − 1) + (n− 1)tct(n− 1, k),

St(n, k) = St(n− 1, k − 1) + ktSt(n− 1, k).

These numbers have natural combinatorial interpretations. For t = 2 it reduces to
the interpretation of Dumont [13] of the central factorial numbers.

Theorem 3.6.2. ct(n, k) is equal to the number of ordered t -tuples (σ1, . . . , σt) of
permutations of (1, . . . , n) such that all permutations σi (1 ≤ i ≤ t) have exactly
k cycles and the same set of cycle minima.

Proof. Consider element n . If it forms a separate cycle (n), then as n occur as a
minimal element, this cycle should appear in every permutation σ1, . . . , σt , so the
number of ways ct(n − 1, k − 1) . Otherwise, if n is present in cycles with other
elements, then for any permutation σi (1 ≤ i ≤ t) , there are n − 1 ways to put n
in k cycles of σi , and (n− 1)tct(n− 1, k) corresponding ways.
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Theorem 3.6.3. St(n, k) is equal to the number of ordered t -tuples (π1, . . . , πt)
of partitions of {1, . . . , n} such that all partitions πi (1 ≤ i ≤ t) have exactly k
blocks and the same set of block minima.

Proof. Consider element n . If it forms a separate block {n}, then as n occur as
a minimal element, this block should appear in every partition π1, . . . , πt , so the
number of ways St(n − 1, k − 1) . Otherwise, if n is present in blocks with other
elements, then for any partition πi (1 ≤ i ≤ t) , there are k ways to put n in k
blocks of πi , and ktSt(n− 1, k) corresponding ways.
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CONCLUSION

Throughout the work we have presented several generalizations and extensions
of known results.

For instance, the detailed investigation of properties for the sums of powers of
binomial coefficients

∑
i

(
i
k

)m
, led us to the analog of Faulhaber’s theorem. Sepa-

rately, we have focused on the triangular case k = 2 of the Faulhaber coefficients
and introduced the B coefficients, which in fact inverse to the A existing coeffi-
cients studied by Knuth [35].

For the problem of partitions of multisets by the usual sets we have obtained a
natural generalization of the Stirling number of the second kind. We also show that
this approach is very close to the restricted partitions or permutation of sets, where
some given blocks of elements cannot be in one subset or cycle. In that direction
definition of the Stirling numbers of the first kind provides and interesting problem
about orthogonality, polynomial identity.

We have studied the problem of obtaining the combinatorial interpretations for
the B numbers that based on Stirling permutations. For Stirling permutations of any
multiset we have presented the general construction Sk(p, q) which enumerates the
tuples of partitions of sets under some properties. For the special cases of multisets
this definition induce, e.g., the generalization of the central factorial numbers.

In the same time, this work covers just some partial variety of problems in
combinatorics of multisets. When we change the basis from nm to the product of
binomial coefficients, many interesting problems can be posed for future research.
For example, there is a connection of Bernoulli and Stirling numbers by the formula

Bn =
n∑
i=0

(−1)i
i!S(n, i)

i+ 1
.

Then our approach tends to consider the following generalization of Bernoulli num-
bers for multiset n :

Bn =
n∑
i=0

(−1)i
S(n, i)

i+ 1
,

with consequent questions about properties of these numbers, such as connections to
sums of powers, generating functions, etc.

We can also meet Stirling numbers on multisets in the probabilistic analysis
towards possible application in data structures (such as bloom filters). For example,
the following problem:

There is an array B of m bits (all initially set to 0 ). For any i (1 ≤ i ≤ n)
at step i we choose ki distinct bits of B and set them to 1 . What is the probability
of event that finally all bits of B are equal to 1 ? The answer is

S({1k1 · · ·nkn},m)(
m
k1

)
· · ·
(
m
kn

) .
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Other directions of research may deal with relations between generalized Stir-
ling numbers presented in chapter 2 and B numbers for Stirling permutations.
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Faulhaber and q -Salié coefficients // Journal of Combinatorial Theory, Series A.
–2006. –Vol. 113.7. –P. 1501–1515.

28 Haglund J., and Visontai M. Stable multivariate Eulerian polynomials and
generalized Stirling permutations // European Journal of Combinatorics. –2012. –
Vol. 33.4. –P. 477–487.

29 He B., Govindaraju N. K., Luo Q., Smith B. Efficient gather scatter opera-
tions on graphics processors // Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. –2007. Article No. 46. –12 p.

30 Jacobi C. G. J. De usu legitimo formulae summatoriae Maclaurinianae //
Journal für die reine und angewandte Mathematik. –1834. –Vol. 12. –P. 263–272.

31 Janson S. Plane recursive trees, Stirling permutations and an urn model //
arXiv preprint arXiv:0803.1129. –2008. –8 p.

32 Janson S., Kuba M., and Panholzer A. Generalized Stirling permutations,
families of increasing trees and urn models // Journal of Combinatorial Theory, Se-
ries A. –2011. –Vol. 118.1. –P. 94–114.

33 Klingsberg P., Schmalzried C. Barred Permutations // Congressus Numer-
antum. –1993. –Vol. 95. –P. 153–161.

34 Knuth D. E. An analysis of optimum caching // Journal of Algorithms. –
1985. –Vol. 6(2). –P. 181–199.

71



35 Knuth D. E. Johann Faulhaber and sums of powers // Mathematics of Com-
putation. –1993. –Vol. 61. –P. 277–294.

36 Knuth D. E. The Art of Computer Programming. –MA: Addison-Wesley,
1973. –Vol. 3. –723 p.

37 MacMahon P. A. Combinatory Analysis. Cambridge University Press, 1915.
–Vol. 1.

38 Méndez M. A., Blasiak P., Penson K. A. Combinatorial approach to gen-
eralized Bell and Stirling numbers and boson normal ordering problem // J. Math.
Phys. –2005. –Vol. 46. 083511. –P. 1–8.

39 Park S. The r -Multipermutations // J. Comb. Theory, Ser. A. –1994. –Vol.
67. –P. 44–71.

40 Park S. P -Partitions and q -Stirling Numbers // J. Comb. Theory, Ser. A.
–1994. –Vol. 68. –P. 33–52.

41 Poblete P. V., Munro J. Ian, Papadakis Th. The binomial transform and the
analysis of skip lists // Theoretical Computer Science. –2006. –Vol. 352.1 –P. 136–
158.

42 Riordan J. Introduction to combinatorial analysis. –New York: Courier
Dover Publications, 2002. –256 p.
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