
Compass: A scalable simulator for
an architecture for Cognitive Computing

Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner,
Raghavendra Singh, Steven K. Esser, William P. Risk, Horst D. Simon†, and Dharmendra S. Modha

IBM Research - Almaden, San Jose CA 95120
† Lawrence Berkeley National Lab, Berkeley, CA 94720

Contact e-mail: dmodha@us.ibm.com

Abstract—Inspired by the function, power, and volume of the
organic brain, we are developing TrueNorth, a novel modu-
lar, non-von Neumann, ultra-low power, compact architecture.
TrueNorth consists of a scalable network of neurosynaptic cores,
with each core containing neurons, dendrites, synapses, and
axons. To set sail for TrueNorth, we developed Compass, a
multi-threaded, massively parallel functional simulator and a
parallel compiler that maps a network of long-distance pathways
in the macaque monkey brain to TrueNorth. We demonstrate
near-perfect weak scaling on a 16 rack IBM® Blue Gene®/Q
(262144 CPUs, 256 TB memory), achieving an unprecedented
scale of 256 million neurosynaptic cores containing 65 billion
neurons and 16 trillion synapses running only 388× slower than
real time with an average spiking rate of 8.1 Hz. By using
emerging PGAS communication primitives, we also demonstrate
2× better real-time performance over MPI primitives on a 4 rack
Blue Gene/P (16384 CPUs, 16 TB memory).

I. INTRODUCTION

The brain and modern computers have radically different
architectures [1] suited for complementary applications. Mod-
ern computing posits a stored program model, traditionally
implemented in digital, synchronous, serial, centralized, fast,
hardwired, general-purpose, brittle circuits, with explicit mem-
ory addressing imposing a dichotomy between computation
and data. In stark contrast, the brain uses replicated computa-
tional units of neurons and synapses implemented in mixed-
mode analog-digital, asynchronous, parallel, distributed, slow,
reconfigurable, specialized, and fault-tolerant biological sub-
strates, with implicit memory addressing blurring the boundary
between computation and data [2]. It is therefore no surprise
that one cannot emulate the function, power, volume, and real-
time performance of the brain within the modern computer
architecture. This task requires a radically novel architecture.

Today, one must still build novel architectures in CMOS
technology, which has evolved over the past half-century
to serve modern computers and which is not optimized for
delivering brain-like functionality in a compact, ultra-low-
power package. For example, biophysical richness of neurons
and 3D physical wiring are out of the question at the very
outset. We need to shift attention from neuroscientific richness
that is sufficient to mathematical primitives that are necessary.
A question of profound relevance to science, technology,
business, government, and society is how closely can one
approximate the function, power, volume, and real-time per-
formance of the brain within the limits of modern technology.

To this end, under the auspices of DARPA SyNAPSE, we
are developing a novel, ultra-low power, compact, modular ar-
chitecture called TrueNorth that consists of an interconnected
and communicating network of extremely large numbers of
neurosynaptic cores [3], [4], [5], [6]. Each core integrates
computation (neurons), memory (synapses), and intra-core
communication (axons), breaking the von Neumann bottle-
neck [7]. Each core is event-driven (as opposed to clock-
driven), reconfigurable, and consumes ultra-low power. Cores
operate in parallel and send unidirectional messages to one
another; that is, neurons on a source core send spikes to
axons on a target core. One can think of cores as gray matter
canonical cortical microcircuits [8], and inter-core connectivity
as long-distance white matter [9]. Like the cerebral cortex,
TrueNorth is highly scalable in terms of number of cores.
TrueNorth is therefore a novel non-von Neumann architecture
that captures the essence of neuroscience within the limits of
current CMOS technology.

As our main contribution, we describe an architectural
simulator called Compass for TrueNorth, and demonstrate its
near-perfect weak and strong scaling performance when taking
advantage of native multi-threading on IBM® Blue Gene®/Q
compute nodes. Compass has one-to-one equivalence to the
functionality of TrueNorth.

Compass is multi-threaded, massively parallel and highly
scalable, and incorporates several innovations in communi-
cation, computation, and memory. On a 16-rack IBM Blue
Gene/Q supercomputer with 262144 processors and 256 TB
of main memory, Compass simulated an unprecedented 256M
(106) TrueNorth cores containing 65B (109) neurons and 16T
(1012) synapses. These results are 3× the number of estimated
neurons [10] in the human cortex, comparable to the number
of synapses in the monkey cortex, and 0.08× the number of
synapses in the human cortex1. At an average neuron spiking
rate of 8.1 Hz the simulation is only 388× slower than real
time.

Additionally, we determine how many TrueNorth cores
Compass can simulate under a soft real-time constraint. We
compare approaches using both PGAS and MPI communica-
tion primitives to find the most efficient in terms of latency and

1The disparity between neuron and synapse scales arises because the ratio
of neurons to synapses is 1 : 256 in TrueNorth, but is 1 : 10000 in the brain.

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 ©2012 IEEE

DARPA: Approved for public release; distribution is unlimited

bandwidth. We note that one-sided inter-core communication
from a neuron on one core to an axon on another core residing
on a different compute node maps naturally to the PGAS
model.

Compass enables large-scale simulations that provide brain-
like function as a precursor to demonstrating the same func-
tionality on TrueNorth hardware. Our goal is not to use
Compass to model the brain, but to approximate brain-like
function that integrates multiple sensory-motor modalities. We
believe that function follows form. The form that we have
chosen to concentrate on in this paper leverages the largest
known long-distance wiring diagram in the macaque brain that
spans cortex, thalamus, and basal ganglia [9]. Concretely, we
use the macaque wiring diagram to instantiate an inter-core
wiring pattern. The richness of the wiring diagram challenges
the communication and computational capabilities of Compass
in a manner consistent with supporting brain-like networks. To
this end, we have built a novel parallel compiler that takes a
high-level network description of the macaque wiring diagram
and converts it to the parameters needed to configure a network
of TrueNorth cores. Our compiler is sufficiently general to
support other application-driven networks.

Compass is indispensable for (a) verifying TrueNorth cor-
rectness via regression testing, (b) studying TrueNorth dy-
namics, (c) benchmarking inter-core communication topolo-
gies, (d) demonstrating applications in vision, audition, real-
time motor control, and sensor integration, (e) estimating
power consumption, and (f) hypotheses testing, verification,
and iteration regarding neural codes and function. We have
used Compass to demonstrate numerous applications of the
TrueNorth architecture, such as optic flow, attention mech-
anisms, image and audio classification, multi-modal image-
audio classification, character recognition, robotic navigation,
and spatio-temporal feature extraction.

Compass differs completely from our previous simulator,
C2 [11], [12]. First, the fundamental data structure is a neu-
rosynaptic core instead of a synapse; the synapse is simplified
to a bit, resulting in 32× less storage required for the synapse
data structure as compared to C2. Second, the local and long-
distance anatomical connectivity in Compass that emulate,
respectively, intra-core and inter-core constraints in TrueNorth
have no counterpart in C2. Third, the neuron dynamics
equations in Compass are amenable to efficient hardware
implementation, whereas C2 focused on single-compartment
phenomenological dynamic neuron models [13]. Fourth, Com-
pass uses a fully multi-threaded programming model whereas
C2 used a flat MPI programming model, rendering it incapable
of exploiting the full potential of Blue Gene/Q. Last, Compass
incorporates an in situ compiler for generating a complete
TrueNorth model from a compact CoreObject description
file, which reduces simulation set-up times by three orders
of magnitude. As a result of these innovations, Compass
demonstrates unprecedented weak scaling beyond the cat brain
scale achieved by C2. The architecture of Compass stands
in contrast to other computational neuroscientific simulators
[14], [15], [16], [17], [18], [19], [20]. For reference, we point

readers at reviews of large-scale brain simulations [21], [22].
Compass is a harbinger of an emerging use of today’s

modern supercomputers for midwifing the next generation
of application-specific processors that are increasingly pro-
liferating to satisfy a world that is hungering for increased
performance and lower power while facing the projected end
of CMOS scaling and increasing obstacles in pushing clock
rates ever higher.

II. THE TRUENORTH ARCHITECTURE

TrueNorth is a scalable neurosynaptic computer architecture
developed at IBM under the DARPA SyNAPSE program. In-
spired by the organization and function of the brain, TrueNorth
employs a similar vocabulary, describing CMOS circuit ele-
ments as neurons, axons, dendrites, and synapses.

Core

Synaptic crossbar

Axons

N
eu

ro
ns

a0 Buffer

a1 Buffer

... Buffer

an-1 Buffer

n0 n1 ... nn-1

Network

PRNG

Clock

Fig. 1. Conceptual architecture of a neurosynaptic core incorporating a
synaptic crossbar that contains axons (horizontal lines), dendrites (vertical
lines), synapses (intersection of horizontal axons and vertical dendrites), and
neurons attached to dendrites. A buffer for incoming spikes precedes each
axon to account for axonal delays.

The key building block of TrueNorth is a neurosynaptic
core [3], [4] as shown in figure 1, connected through a com-
munication network to other TrueNorth cores in the system.
The specific instance of a neurosynaptic core that we simulate
has 256 axons, 256 dendrites feeding to 256 neurons, and a
256×256 binary crossbar synaptic array. Neurons are digital
integrate-leak-and-fire circuits, characterized by configurable
parameters sufficient to produce a rich repertoire of dynamic
and functional behavior. A neuron on any TrueNorth core can
connect to an axon on any TrueNorth core in the network;
when the neuron fires it sends a spike message to the axon.

Each TrueNorth core operates in a parallel, distributed, and
semi-synchronous fashion. Each TrueNorth core receives a
slow clock tick at 1000 Hz to discretize neuron dynamics in 1-
millisecond time steps. Otherwise, neuronal spike events drive
all operations in the system. When a TrueNorth core receives

a tick from the slow clock, it cycles through each of its axons.
For each axon, if the axon has a spike ready for delivery at
the current time step in its buffer, each synaptic value on the
horizontal synaptic line connected to the axon is delivered
to its corresponding post-synaptic neuron in the TrueNorth
core. If the synapse value for a particular axon-neuron pair is
non-zero, then the neuron increments its membrane potential
by a (possibly stochastic) weight corresponding to the axon
type. After all axons are processed, each neuron applies a
configurable, possibly stochastic leak, and a neuron whose
membrane potential exceeds its threshold fires a spike. Each
spike is then delivered via the communication network to
its corresponding target axon. An axon that receives a spike
schedules the spike for delivery at a future time step in its
buffer. The entire cycle repeats when the TrueNorth core
receives the next tick from the slow clock.

Neurons represent computation, synapses represent memory,
and neuron-axon connections represent communication. Each
TrueNorth core brings computation and memory into extreme
proximity, breaking the von Neumann bottleneck. Note that
synaptic or neuronal state never leaves a TrueNorth core and
only spikes ever leave or enter any TrueNorth core. The
communication network is driven solely by spike events, and
requires no clocks. The neuron parameters, synaptic crossbar,
and target axon for each neuron are reconfigurable throughout
the system.

To ensure one-to-one equivalence between TrueNorth and
Compass, we have taken judicious care in the design of
both systems. For example, we have bypassed the complexity
of analog neurons traditionally associated with neuromorphic
systems. Also, we have adopted pseudo-random number gen-
erators with configurable seeds. As a result, Compass has
become the key contract between our hardware architects and
software algorithm/application designers.

III. THE COMPASS NEUROSYNAPTIC CHIP SIMULATOR

Compass is an architectural simulator for large-scale net-
work models of TrueNorth cores, and is implemented using
a combination of MPI library calls and OpenMP threading
primitives. Compass partitions the TrueNorth cores in a model
across several processes, and distributes TrueNorth cores resid-
ing in the same shared memory space within a process among
multiple threads. Threads within a process independently sim-
ulate the synaptic crossbar and neuron behavior of one or more
TrueNorth cores in the model. A master thread then sends any
spikes destined for TrueNorth cores on remote processes in an
aggregated fashion; upon reception, all threads deliver spikes
to TrueNorth cores on the local process.

Compass executes its main simulation loop in a semi-
synchronous manner. Listing 1 shows pseudo-code for the
main simulation phases that each process in Compass executes.
Each pass through the phases simulates a single tick of the
global clock in a system of TrueNorth cores. In the Synapse
phase, each process propagates input spikes from axons to
neurons through the crossbar. Next, in the Neuron phase, each
process executes the integrate, leak, and fire model for each

1#pragma omp s h a r e d (l o c a l B u f , remoteBuf)
#pragma omp s h a r e d (TrueNor thCores , remoteBufAgg)

3#pragma omp p a r a l l e l
{

5f o r c o r e i n TrueNor thCores [t h r e a d I d] {
/ / Synapse phase

7f o r axon i n c o r e . axons {
axon . p r o p a g a t e S p i k e () ;

9}
/ / Neuron phase

11f o r neuron i n c o r e . n e u r o n s {
s p i k e S := neuron . i n t e g r a t e L e a k F i r e () ;

13i f (S . d e s t == l o c a l)
l o c a l B u f [t h r e a d I D] . push (S) ;

15e l s e
remoteBuf [t h r e a d I D] [S . d e s t] . push (S) ;

17}
}

19#pragma omp b a r r i e r
t h r e a d A g g r e g a t e (remoteBuf , remoteBufAgg)

21i f (t h r e a d I D == 0) {
f o r d e s t i n r e m o t e D e s t s {

23i f (remoteBufAgg [d e s t] . s i z e () != 0) {
MPI Isend (remoteBufAgg [d e s t]) ;

25sendCoun t s [d e s t] + + ;
}

27}
}

29
/ / Network phase

31i f (t h r e a d I D == 0) {
MPI Reduce Sca t t e r (sendCounts , r ecvCoun t) ;

33}
e l s e {

35t h r e a d B u f := p a r t i t i o n (l o c a l B u f , t h r e a d) ;
d e l i v e r (s p i k e s i n t h r e a d B u f) ;

37}
#pragma omp b a r r i e r

39
#pragma omp f o r

41f o r message i n recvCoun t messages {
#pragma c r i t i c a l

43{
MPI Iprobe (s t a t u s) ;

45MPI Get count (s t a t u s , r e c v L e n g t h) ;
MPI Recv (recvBuf , r e c v L e n g t h) ;

47} / / end c r i t i c a l
d e l i v e r (s p i k e s i n recvBuf) ;

49} / / end omp f o r
} / / end omp p a r a l l e l

Listing 1. Pseudo-code of the main simulation loop in Compass.

neuron. Last, in the Network phase, processes communicate
to send spikes from firing neurons and deliver spikes to
destination axons.

To minimize communication overhead, Compass aggregates
spikes between pairs of processes into a single MPI message.
At startup, each process in Compass gets all destination
TrueNorth core / axon pairs from the neurons within its
hosted TrueNorth cores, uses an implicit TrueNorth core to
process map to identify all destinations on remote processes,
and preallocates per-process send buffers. During a tick, the
process aggregates all spikes for TrueNorth cores at remote
processes into the corresponding buffer, and uses a single
MPI send call to transmit each buffer once all neurons have
integrated, leaked, and fired.

In detail, each Compass process forks multiple OpenMP
threads, which execute the main Compass phases in parallel
as follows:

• Synapse phase: For each axon within a set of TrueNorth
cores dedicated to a specific thread, the thread checks
if a spike is ready for delivery. If a spike is ready,
Compass propagates the spike along the row in the
synaptic crossbar connected to the axon. For each set
connection in the row, Compass buffers the spike for
integration at the neuron connected to the set connection.
For example, if the ith axon in a TrueNorth core has a
spike ready for delivery, and the i jth connection is set in
the crossbar, then Compass propagates the spike to the
jth neuron.

• Neuron phase: For each neuron within a TrueNorth core,
threads integrate all propagated spikes, leak potential,
and generate spikes as appropriate. Threads then ag-
gregate spikes destined for TrueNorth cores at remote
processes into per-process remote destination buffers
(remoteBu f Agg) so that spikes are consecutively laid out
in memory for MPI message transfers. The master thread
within each process lastly uses a single MPI message to
send each remote destination buffer to the corresponding
remote process.

• Network phase: The master thread uses an MPI Reduce-
Scatter operation to determine how many incoming mes-
sages to expect. In parallel, Compass divides the lo-
cal destination buffer uniformly among all non-master
threads, each of which then delivers spikes from its
portion to the destination TrueNorth cores (in detail, to
the corresponding axon buffer at a specific destination
axon) immediately. Performance is improved since the
processing of local spikes by non-master threads over-
laps with the Reduce-Scatter operation performed by the
master thread.
After the master thread completes the Reduce-Scatter
operation, and after all non-master threads deliver spikes
from the local buffer, all threads take turns to receive
an MPI message and deliver each spike contained in
the message to its destination TrueNorth core residing
in the shared memory space of the Compass process.
Each thread receives MPI messages in a critical section
due to thread-safety issues in the MPI library [23], but
delivers the spikes within the messages outside of the
critical section.

IV. PARALLEL COMPASS COMPILER

Compass is capable of simulating networks of tens of mil-
lions of TrueNorth cores. To build applications for such large-
scale TrueNorth networks, we envisage first implementing
libraries of functional primitives that run on one or more
interconnected TrueNorth cores. We can then build richer ap-
plications by instantiating and connecting regions of functional
primitives. Configuring such rich applications in Compass (or,
for that matter, on TrueNorth hardware) can potentially require
setting trillions of parameters. To make the configuration more

tractable, we require tools to create lower-level core parameter
specifications from higher-level, more compact descriptions of
the functional regions.

We have designed and implemented a parallel processing
tool called the Parallel Compass Compiler (PCC) that trans-
lates a compact definition of functional regions of TrueNorth
cores into the explicit neuron parameter, synaptic connection
parameter, and neuron-to-axon connectivity declarations re-
quired by Compass. PCC works to minimize MPI message
counts within the Compass main simulation loop by assigning
TrueNorth cores in the same functional region to as few
Compass processes as necessary. This minimization enables
Compass to use faster shared memory communication to han-
dle most intra-region spiking, reserving more expensive MPI
communication for mostly inter-region spiking. Overall, the
number of Compass processes required to simulate a particular
region corresponds to the computation (neuron count) and
memory (synaptic connection count) required for the region,
which in turn is related to the functional complexity of the
region.

We show an illustrative example of three inter- and intra-
connected functional regions in Figure 2. In our example,
three processes manage each of the functional regions A
and C, and two processes manage functional region B. For
illustration clarity we present only connections of process 0
(in region A) and of process 3 (in region B) to region C. The
thickness of the edges between processes reflects the strength
of the connection; thicker connections represents more neuron
connections.

PCC constructs the connectivity graph between functional
regions using a distributed algorithm, in which each parallel
PCC process compiles TrueNorth core parameters for at most
one functional region. To create neuron-to-axon connections
between regions, the PCC process managing the target region
uses MPI message operations to send the global core ID and
axon ID of an available axon to the PCC process managing the
source region. To create neuron-to-axon connections within a
region (for example, as with process P0 in Figure 2), a PCC
process connects cores locally; we use OpenMP threading
primitives to exploit thread-level parallelism.

This exchange of information happens in an aggregated per
process pair fashion. As illustrated in Figure 2, if K neurons on
P0 connect to P5, P5 needs to send the TrueNorth core IDs and
the K axon IDs to P0 using MPI_Isend. The axon types and
the synaptic crossbar on the corresponding TrueNorth cores on
P5 are setup simultaneously. On P0 the received TrueNorth core
IDs and axon IDs are used to connect the source TrueNorth
cores on P0 with the target TrueNorth cores on P5. We require
a realizability mechanism for connections to guarantee that
each target process has enough TrueNorth cores to satisfy
incoming connection requests. One way to accomplish this is
to normalize the network to have consistent neuron and axon
requirements. This is equivalent to normalizing the connection
matrix to have identical pre-specified column sum and row
sums [24], [25], [26] - a generalization of doubly stochastic
matrices. This procedure is known as iterative proportional

Fig. 2. Illustration of a neurosynaptic core network built using the Parallel
Compass Compiler across multiple processes showing connectivity within and
across functional regions.

fitting procedure (IPFP) in statistics, and as matrix balancing
in linear algebra.

The high-level network description describing the network
connectivity is expressed in a relatively small and compact
CoreObject file. For large scale simulation of millions of
TrueNorth cores, the network model specification for Compass
can be on the order of several terabytes. Offline generation
and copying such large files is impractical. Parallel model
generation using the compiler requires only few minutes as
compared to several hours to read or write it to disk. Once
the compiler completes the wiring of the neurosynaptic cores
across all regions, the TrueNorth cores from each processor
are instantiated within Compass and the TrueNorth cores in the
compiler are deallocated to free up space. Finally, Compass
simulates the network model that was created.

V. COCOMAC MACAQUE BRAIN MODEL NETWORK

Higher cognition in the brain is thought to emerge from the
thalamocortical system, which can be divided into function-
ally specialized thalamic or cortical regions. Each region is
composed of millions or billions of neurons, cells specialized
to receive, integrate and send messages. Long range white
matter connections provide communication between neurons
in different regions, while short range gray matter connections
provide for communication between neurons within the same
region. Tremendous efforts towards mapping the brain and
its connectivity have been made over decades of research,
a tiny fraction of which will be drawn from here to con-
struct a simple network that nevertheless captures several key
characteristics desirable for TrueNorth simulations. In building
our test network, we establish natural parallels between brain
regions, white matter connectivity, gray matter connectivity,
and the underlying simulator hardware. We simulate each brain
region using non-overlapping sets of 1 or more processes, such
that white matter communication becomes equivalent to inter-

process communication, and we then establish gray matter
connectivity as within process communication.

A. Structure

It is hypothesized that distinct functions are supported
by signature subnetworks throughout the brain that facilitate
information flow, integration, and cooperation across function-
ally differentiated, distributed centers. We sought to capture
the richness found in these networks by specifying our test
networks, modules, and the connectivity between them using
a very large scale database of brain regions and connectivity
in the macaque monkey called CoCoMac [27], [28]. Decades
of white matter anatomical tracing studies in the macaque
brain have been painstakingly assembled in the CoCoMac
database. In previous efforts, we have integrated the contribu-
tions made to CoCoMac by many disparate labs to produce a
cohesive, conflict-free network of brain regions in the macaque
monkey that is three times larger than the largest previous
such network [9]. Here, we reduced this network to 77 brain
regions based on white matter connectivity metrics, described
below, to make it more amenable to simulation. We derived
volumetric information for each region from the Paxinos brain
atlas [29] and accompanying software [30], which in turn was
used to set relative neuron counts for each region. Volume
information was not available for 5 cortical and 8 thalamic
regions and so was approximated using the median size of the
other cortical or thalamic regions, respectively.

B. Long range connectivity

In the CoCoMac network each brain region is represented
as a vertex, and the presence of a white matter connection
between two brain regions is represented as an edge between
corresponding vertices. The derived network consists of 383
hierarchically organized regions spanning cortex, thalamus,
and basal ganglia, and has 6,602 directed edges that cap-
ture well-known cortico-cortical, cortico-subcortical, and intra-
subcortical white matter pathways [9]. In the many studies
reported to CoCoMac, there are often cases where one lab
reports connections for a brain region, while another lab
subdivides that brain region and reports connections for one of
the child subregions. For simplicity, we reduced the network
by merging a child subregion into a parent region where both
child and parent regions report connections. We do this by
ORing the connections of the child region with that of the
parent region. The smaller lower resolution network consists
of 102 regions, 77 of which report connections. In the brain,
the topography of connections between regions has in some
cases been shown to be highly structured and focused [31]
and in other cases very diffuse [32]. For a given vertex
in our reduced CoCoMac graph, such focused connections
correspond to a source process targeting a single process in
the target region, while diffuse connections correspond to
a source process targeting multiple processes in the target
region (if more than one such process exists). We choose to
use long range connections that are as diffuse as possible in
our test network, because this places the largest burden on

Fig. 3. Macaque brain map consisting of the 77 brain regions used for the test network. The relative number of TrueNorth cores for each area indicated by
the Paxinos atlas is depicted in green, and the actual number of TrueNorth cores allocated to each region following our normalization step is depicted in red,
both plotted in log space. Outgoing connections and neurons allocated in a 4096 TrueNorth cores model are shown for a typical region, LGN, which is the
first stage in the thalamocortical visual processing stream.

the communication infrastructure of our simulator. As region
sizes are increased through scaling, requiring more process
per region, the number inter-process connections required for
a given process will increase. At the same time, the number
of neuron-axon connections per such link will decrease.

C. Local connectivity

Extensive studies have revealed that while each neuron can
form gray matter connections to a large array of possible
targets, targets are invariably within a 2-3 mm radius from the
source [33]. The number of cortical neurons under a square
millimeter of cortex in a the macaque brain is estimated in the
tens of thousands [34], which sets an upper limit on possible
neuron targets from gray matter connectivity as the nearest
3 million or so neurons, which fits within the number of
neurons we are able to use per process for the simulations
performed here. Therefore we choose to restrict our modeling
of gray matter connectivity such that the source neuron and
target neuron of gray matter connections are located on the
same process. It has also been found that while each neuron

often connects to the same target gray matter patches as its
neighbors, this is not always the case [33]. Therefore, to
provide the highest possible challenge to cache performance,
we chose to ensure that all locally connecting neurons on the
same TrueNorth core distribute their connections as broadly
as possible across the set of possible target TrueNorth cores.

We establish our ratio of long range to local connectivity
in approximately a 60/40 ratio for cortical regions, and in
an 80/20 ratio for non-cortical regions. From CoCoMac we
obtained a binary connection matrix. This matrix is converted
to a stochastic matrix with the above gray matter percentages
on the diagonals and white matter connections set to be
proportional to the volume percentage of the outgoing region.
Then the connection matrix was balanced as described in
section IV to make the row and column sums equal to the
volume of that region. The end result guarantees a realizable
model in that all axon and neuron requests can be fulfilled
in all regions. The brain regions used, a sample of their
interconnectivity, and the results of this normalization process
can be seen in figure 3.

VI. EXPERIMENTAL EVALUATION

We completed an experimental evaluation of Compass that
shows near-perfect weak and strong scaling behavior when
simulating a CoCoMac macaque network model on an IBM
Blue Gene/Q system of 16384 to 262144 compute CPUs.
We attribute this behavior to several important design and
operational features of Compass that make efficient use of
the communication subsystem. The Compass implementation
overlaps the single collective MPI Reduce-Scatter operation in
a process with the delivery of spikes from neurons destined
for local cores, and minimizes the MPI communicator size by
spawning multiple threads within an MPI process on multi-
core CPUs in place of spawning multiple MPI processes. In
operation, we observe that the MPI point-to-point messaging
rate scales sub-linearly with increasing size of simulated
system, due to weaker links (in terms of neuron-to-axon
connections) between processes of connected brain regions.
Moreover, the overall message data volume per simulated tick
sent by Compass for even the largest simulated system of
TrueNorth cores is well below the interconnect bandwidth of
the communication subsystem.

A. Hardware platforms

We ran Compass simulations of our CoCoMac macaque
network model on the IBM Blue Gene/Q, which is the third
generation in the Blue Gene line of massively parallel super-
computers. Our Blue Gene/Q at IBM Rochester comprised
16 racks, with each rack in turn comprising 1024 compute
nodes. Each compute node is composed of 17 processor cores
on a single multi-core CPU paired with 16 GB of dedicated
physical memory [35], and is connected to other nodes in a
five-dimensional torus through 10 bidirectional 2 GB/second
links [36]. HPC applications run on 16 of the processor
cores, and can spawn up to 4 hardware threads on each core;
per-node system software runs on the remaining core. The
maximum available Blue Gene/Q size was therefore 16384
nodes, equivalent to 262144 application processor cores.

For all experiments on the Blue Gene/Q, we compiled with
the IBM XL C/C++ compiler version 12.0 (MPICH2 MPI
library version 1.4.1).

B. Weak scaling behavior

Compass exhibits nearly perfect weak scaling behavior
when simulating the CoCoMac macaque network model on
the IBM Blue Gene/Q. Figure 4 shows the results of experi-
ments in which we increased the CoCoMac model size when
increasing the available Blue Gene/Q CPU count, while at
the same time fixing the count of simulated TrueNorth cores
per node at 16384. We ran with 1 MPI process per node and
32 OpenMP threads per MPI process2 to minimize the MPI
communication overhead and maximize the available memory
per MPI process. Because each Compass process distributes

2We are investigating unexpected system errors that occurred when running
with the theoretical maximum of 64 OpenMP threads per MPI process.

simulated cores uniformly across the available threads (sec-
tion III), the number of simulated cores per OpenMP thread
was 512 cores.

With a fixed count of 16384 TrueNorth cores per compute
node, Compass runs with near-constant total wall-clock time
over an increasing number of compute nodes. Figure 4(a)
shows the total wall-clock time taken to simulate the CoCo-
Mac model for 500 simulated ticks (“Total Compass”), and
the wall-clock times taken per Compass execution phase in
the main simulation loop (Synapse, Neuron, and Network in
listing 1), as functions of available Blue Gene/Q CPU count.
The total wall-clock time remains near-constant for CoCoMac
models ranging from 16M TrueNorth cores on 16384 CPUs
(1024 compute nodes) through to 256M cores on 262144
CPUs (16384 nodes); note that 256M cores is equal to 65B
neurons, which is of human scale in the number of neurons.
Simulating 256M cores on 262144 CPUs for 500 simulated
ticks required 194 seconds3, or 388× slower than real time.

We observe that the increase in total run time with increas-
ing Blue Gene/Q CPU count is related primarily to an increase
in communication costs during the Network phase in the main
simulation loop. We attribute most of the increase to the time
taken by the MPI Reduce-Scatter operation, which increases
with increasing MPI communicator size. We also attribute
some of the increase to computation and communication
imbalances in the functional regions of the CoCoMac model.

We see that some of the increase in total run time arises
from an increase in the MPI message traffic during the Neuron
phase. Figure 4(b) shows the MPI message count and total
spike count (equivalent to the sum of white matter spikes
from all MPI processes) per simulated tick as functions of
the available Blue Gene/Q CPU count. As we increase the
CoCoMac model size in the number of TrueNorth cores,
more MPI processes represent the 77 macaque brain regions
to which spikes can be sent, which leads to an increase
in the message count and volume. We note, however, that
the increase in message count is sub-linear, given that the
white matter connections become thinner and therefore less
frequented with increasing model size, as discussed in sec-
tion V-B. For a system of 256M cores on 262144 CPUs,
Compass generates and sends approximately 22M spikes per
simulated tick, which at 20 bytes per spike equals 0.44 GB per
tick, and is well below the 5D torus link bandwidth of 2 GB/s.

C. Strong scaling behavior

As with weak scaling, Compass exhibits excellent strong
scaling behavior when simulating the CoCoMac macaque
network model on the IBM Blue Gene/Q. Figure 5 shows the
results of experiments in which we fixed the CoCoMac model
size at 32M TrueNorth cores (8.2B neurons) while increasing
the available Blue Gene/Q CPU count. As with the weak
scaling results in figure 4(a), we show the total wall-clock time

3We exclude the CoCoMac compilation times from the total time. For
reference, compilation of the 256M core model using the PCC (section IV)
required 107 wall-clock seconds, mostly due to the communication costs in
the white matter wiring phase.

(a) Compass total runtime and breakdown into major components (b) Compass messaging and data transfer analysis, per simulation step

Fig. 4. Compass weak scaling performance when simulating the CoCoMac macaque network model on an IBM Blue Gene/Q, with a fixed count of 16384
TrueNorth cores per Blue Gene/Q compute node. Each Blue Gene/Q rack had 16384 compute CPUs (1024 compute nodes). We ran with one MPI process
per node and 32 OpenMP threads per MPI process.

Fig. 5. Compass strong scaling performance when simulating a fixed
CoCoMac macaque network model of 32M TrueNorth cores on an IBM Blue
Gene/Q. Each Blue Gene/Q rack had 16384 compute CPUs (1024 compute
nodes). We ran with one MPI process per node and 32 OpenMP threads per
MPI process.

taken to simulate the CoCoMac model for 500 simulated ticks
and the wall-clock times taken per Compass execution phase
in the main simulation loop. Simulating 32M cores takes 324
seconds on 16384 Blue Gene/Q CPUs (1 rack; the baseline),
47 seconds on 131073 CPUs (8 racks; a speed-up of 6.9× over
the baseline with 8× more computation and memory capacity),
and 37 seconds on 262144 CPUs (16 racks; a speed-up of 8.8×
over the baseline with 16× more computation and memory
capacity). We observe that perfect scaling is inhibited by the
communication-intense main loop phases when scaling from
131072 CPUs (8 racks) up to 262144 CPUs (16 racks).

D. Thread scaling behavior

Compass obtains excellent multi-threaded scaling behavior
when executing on the IBM Blue Gene/Q. Figure 6 shows the
results of experiments in which we increase the number of
OpenMP threads per MPI process, while at the same time
fixing the CoCoMac macaque network model size at 64M
TrueNorth cores. We show the speed-up over the baseline
in the total wall-clock time taken to simulate the CoCoMac
model for 500 simulated ticks and the speed-up in the wall-
clock times taken per Compass execution phase in the main
simulation loop, where the baseline is the time taken when
each MPI process spawns only one OpenMP thread. We do
not quite achieve perfect scaling in the number of OpenMP
threads due to a critical section in the Network phase that

Fig. 6. OpenMP multi-threaded scaling tests when simulating a fixed
CoCoMac macaque network model of 64M TrueNorth cores on a 65536 CPU
(four rack) IBM Blue Gene/Q with one MPI process per compute node. We
show the speed-up obtained with increasing numbers of threads over a baseline
of one MPI process per node with one OpenMP thread (and therefore with
15 of 16 CPU cores idled per node).

creates a serial bottleneck at all thread counts.
In other multi-threaded experiments, we found that trading

off between the number of MPI processes per compute node
and the number of OpenMP threads per MPI processes yielded
little change in performance. For example, simulation runs of
Compass with one MPI process per compute node and 32
OpenMP threads per process achieved nearly similar perfor-
mance to runs with 16 MPI processes per compute node and 2
OpenMP threads per process. Using fewer MPI processes and
more OpenMP processes per thread reduces the size of the
MPI communicator for the MPI Reduce-Scatter operation in
the Network phase, which reduces the time taken by the phase.
We observe, however, that this performance improvement is
offset by false sharing penalties in the CPU caches due to
increased size of the shared memory region for the threads in
each MPI process.

VII. COMPARISON OF THE PGAS AND MPI
COMMUNICATION MODELS FOR REAL-TIME SIMULATION

In addition to evaluating an implementation of Compass
using the MPI message passing library (section III), we evalu-
ated a second implementation based on the Partitioned Global
Address Space (PGAS) model to explore the benefits of one-
sided communications. We achieved clear real-time simulation
performance improvements with the PGAS-based implementa-
tion over the MPI-based implementation. For this comparison,

we ran both PGAS and MPI versions of Compass on a system
of four 1024-node IBM Blue Gene/P racks installed at IBM
Watson, as no C/C++ PGAS compiler yet exists for the Blue
Gene/Q. Each compute node in the Blue Gene/P comprises 4
CPUs with 4 GB of dedicated physical memory. We compiled
with the IBM XL C/C++ compiler version 9.0 (MPICH2 MPI
library version 1.0.7). For PGAS support, we reimplemented
the Compass messaging subroutines using Unified Parallel C
(UPC), and compiled with the Berkeley UPC compiler version
2.14.0 [37], [38]; the Berkeley UPC runtime uses the GASNet
library [39] for one-sided communication. Both GASNet and
the MPI library implementation on Blue Gene/P build upon
the Deep Computing Messaging Framework (DCMF) [40] to
achieve the best available communication performance.

A. Tuning for real-time simulation

Real-time simulation—1 millisecond of wall-clock time per
1 millisecond of simulated time—is important for designing
applications on the TrueNorth architecture. Real-time simula-
tions enable us to implement and test applications targeted for
TrueNorth cores in advance of obtaining the actual hardware,
and to debug and cross-check the TrueNorth hardware designs.
Such simulations, however, already require that we reduce the
size of the simulated system of TrueNorth cores in order to
reduce the total per-tick latency of the Synapse and Neuron
phases. We looked for further performance improvements in
the Network phase to maximize the size of the simulated
system, given that the Network phase incurs the bulk of the
latency in the main simulation loop.

The PGAS model of one-sided messaging is better suited
to the behavior of simulated TrueNorth cores in Compass
than the MPI model is. The source and ordering of spikes
arriving at an axon during the Network phase in a simulated
tick do not affect the computations during the Synapse and
Neuron phases of the next tick. Therefore, each Compass
process can use one-sided message primitives to insert spikes
in a globally-addressable buffer residing at remote processes,
without incurring either the overhead of buffering those spikes
for sending, or the overhead of tag matching when using
two-sided MPI messaging primitives. Further, using one-sided
message primitives enables the use of a single global barrier
with very low latency to synchronize writing into the globally-
addressable buffers with reading from the buffers, instead
of needing a collective Reduce-Scatter operation that scales
linearly with communicator size. We did not attempt to use
MPI-2 one-sided messaging primitives, as Hoefler et al. have
demonstrated that such an approach is not promising from a
performance standpoint [41].

We experimented with writing our own custom synchro-
nization primitives to provide a local barrier for subgroups
of processes. In this way, each process only synchronizes
with other processes with which it sends or receives spikes,
as opposed to each process synchronizing with all other
processes. In practice, though, we found that the Berkeley
UPC synchronization primitives, which are built upon the fast
DCMF native barriers, outperformed our custom primitives.

Fig. 7. Results comparing the PGAS and MPI communication models
for real-time simulations in Compass over a Blue Gene/P system of four
racks (16384 CPUs). We simulated 81K TrueNorth cores for 1000 ticks, with
neurons firing on average at 10 Hz. For each size of Blue Gene/P, we report the
result for each implementation using the best-performing thread configuration.

B. Real-time simulation results

To compare the real-time simulation performance of the
PGAS implementation of Compass to the MPI implemen-
tation, we ran a set of strong scaling experiments using a
synthetic system of TrueNorth cores simulated over four 1024-
node Blue Gene/P racks comprising 16384 CPUs. We began
by finding the largest size of system we could simulate in
real time on all four racks, and then measured the time taken
to simulate the same system for 1000 ticks on progressively
fewer racks. For the synthetic system4, 75% of the neurons
in each TrueNorth core connect to TrueNorth cores on the
same Blue Gene/P node, while the remaining 25% connect to
TrueNorth cores on other nodes. All neurons fire on average
at 10 Hz.

Our results show that the PGAS implementation of Compass
is able to simulate the synthetic system with faster run times
than the MPI implementation. Figure 7 shows the strong
scaling experimental results. The PGAS implementation is
able to simulate 81K TrueNorth cores in real time (1000 ticks
in one second) on four racks, while the MPI implementation
takes 2.1× as long (1000 ticks in 2.1 seconds). The benefits
of PGAS arise from the latency advantages of PGAS over
MPI on the Blue Gene/P [38] and the elimination of the MPI
Reduce-Scatter operation.

For each experiment, we only report the result for each
implementation using the best-performing thread configura-
tion. Thus, over four racks (16384 CPUs) of Blue Gene/P, we
show the result for the MPI implementation with one MPI
process (each having four threads) per node, while on one
rack (4096 CPUs) of Blue Gene/P we show the result for the
MPI implementation with two MPI processes (each having two
threads) per node. For all configuration, we show the result
for the PGAS implementation with four UPC instances (each
having one thread) per node.

4We do not use the CoCoMac model for real-time simulations because the
size of simulated system has insufficient TrueNorth cores to populate each
CoCoMac region.

VIII. CONCLUSIONS

Cognitive Computing [2] is the quest for approximating
the mind-like function, low power, small volume, and real-
time performance of the human brain. To this end, we have
pursued neuroscience [42], [43], [9], nanotechnology [3], [4],
[44], [5], [6], and supercomputing [11], [12]. Building on these
insights, we are marching ahead to develop and demonstrate a
novel, ultra-low power, compact, modular, non-von Neumann,
cognitive computing architecture, namely, TrueNorth. To set
sail for TrueNorth, in this paper, we reported a multi-threaded,
massively parallel simulator, Compass, that is functionally
equivalent to TrueNorth. As a result of a number of innova-
tions in communication, computation, and memory, Compass
demonstrates unprecedented scale with its number of neurons
comparable to the human cortex and number of synapses
comparable to the monkey cortex while achieving unprece-
dented time-to-solution. Compass is a Swiss-army knife for
our ambitious project supporting all aspects from architecture,
algorithms, to applications.

TrueNorth and Compass represent a massively parallel
and distributed architecture for computation that complement
the modern von Neumann architecture. To fully exploit this
architecture, we need to go beyond the “intellectual bottle-
neck” [7] of long, sequential programming to short, parallel
programming. To this end, our next step is to develop a new
parallel programming language with compositional semantics
that can provide application and algorithm designers with the
tools to effectively and efficiently unleash the full power of
the emerging new era of computing. Finally, TrueNorth is de-
signed to best approximate the brain within the constraints of
modern CMOS technology, but, now, informed by TrueNorth
and Compass, we ask: how might we explore an entirely new
technology that takes us beyond Moore’s law, and beyond
the ever-increasing memory-processor latency, beyond need
for ever-increasing clock rates to a new era of computing?
Exciting!

ACKNOWLEDGMENTS

This research was sponsored by DARPA under contract
No. HR0011-09-C-0002. The views and conclusions contained
herein are those of the authors and should not be interpreted as
representing the official policies, either expressly or implied,
of DARPA or the U.S. Government.

We thank Filipp Akopyan, John Arthur, Andrew Cassidy,
Bryan Jackson, Rajit Manohar, Paul Merolla, Rodrigo Alvarez-
Icaza, and Jun Sawada for their collaboration on the TrueNorth
architecture, and our university partners Stefano Fusi, Rajit
Manohar, Ashutosh Saxena, and Giulio Tononi as well as
their research teams for their feedback on the Compass sim-
ulator. We are indebted to Fred Mintzer for access to IBM
Blue Gene/P and Blue Gene/Q at the IBM T.J. Watson Re-
search Center and to George Fax, Kerry Kaliszewski, Andrew
Schram, Faith W. Sell, Steven M. Westerbeck for access to
IBM Rochester Blue Gene/Q, without which this paper would
have been impossible. Finally, we would like to thank David
Peyton for his expert assistance revising this manuscript.

REFERENCES

[1] J. von Neumann, The Computer and The Brain. Yale University Press,
1958.

[2] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J.
Sherbondy, and R. Singh, “Cognitive computing,” Communications of
the ACM, vol. 54, no. 8, pp. 62–71, 2011.

[3] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. Modha,
“A digital neurosynaptic core using embedded crossbar memory with
45pj per spike in 45nm,” in Custom Integrated Circuits Conference
(CICC), 2011 IEEE, sept. 2011, pp. 1 –4.

[4] J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajendran,
J. Tierno, L. Chang, D. Modha, and D. Friedman, “A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks
of spiking neurons,” in Custom Integrated Circuits Conference (CICC),
2011 IEEE, sept. 2011, pp. 1 –4.

[5] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using event-driven qdi circuits,” in
ASYNC 2012: IEEE International Symposium on Asynchronous Circuits
and Systems, 2012.

[6] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez-Icaza, A. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. Rubin, R. Manohar, and
D. S. Modha, “Building block of a programmable neuromorphic sub-
strate: A digital neurosynaptic core,” in International Joint Conference
on Neural Networks, 2012.

[7] J. W. Backus, “Can programming be liberated from the von neumann
style? a functional style and its algebra of programs.” Communications
of the ACM, vol. 21, no. 8, pp. 613–641, 1878.

[8] V. B. Mountcastle, Perceptual Neuroscience: The Cerebral Cortex.
Harvard University Press, 1998.

[9] D. S. Modha and R. Singh, “Network architecture of the long distance
pathways in the macaque brain,” Proceedings of the National Academy
of the Sciences USA, vol. 107, no. 30, pp. 13 485–13 490, 2010.
[Online]. Available: http://www.pnas.org/content/107/30/13485.abstract

[10] C. Koch, Biophysics of Computation: Information Processing in Single
Neurons. Oxford University Press, New York, New York, 1999.

[11] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical simu-
lator,” in Supercomputing 07, 2007.

[12] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: cortical simulations with 109 neurons, 1013

synapses,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New
York, NY, USA: ACM, 2009, pp. 63:1–63:12. [Online]. Available:
http://doi.acm.org/10.1145/1654059.1654124

[13] E. M. Izhikevich, “Which model to use for cortical spiking neurons,”
IEEE Transactions on Neural Networks, vol. 15, pp. 1063–1070, 2004.
[Online]. Available: http://www.nsi.edu/users/izhikevich/publications/
whichmod.pdf

[14] H. Markram, “The Blue Brain Project,” Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153–160, Feb. 2006. [Online]. Available:
http://dx.doi.org/10.1038/nrn1848

[15] H. Markram, “The Human Brain Project,” Scientific American, vol. 306,
no. 6, pp. 50–55, Jun. 2012.

[16] R. Brette and D. F. M. Goodman, “Vectorized algorithms for
spiking neural network simulation,” Neural Comput., vol. 23, no. 6,
pp. 1503–1535, 2011. [Online]. Available: http://dx.doi.org/10.1162/
NECO a 00123

[17] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg,
and A. Lansner, “Brain-scale simulation of the neocortex on the ibm
blue gene/l supercomputer,” IBM J. Res. Dev., vol. 52, no. 1/2, pp.
31–41, Jan. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1375990.1375994

[18] E. M. Izhikevich and G. M. Edelman, “Large-scale model of
mammalian thalamocortical systems,” Proceedings of the National
Academy of Sciences, vol. 105, no. 9, pp. 3593–3598, Mar. 2008.
[Online]. Available: http://dx.doi.org/10.1073/pnas.0712231105

[19] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and
A. Veidenbaum, “Efficient simulation of large-scale spiking neural
networks using cuda graphics processors,” in Proceedings of the 2009
international joint conference on Neural Networks, ser. IJCNN’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 3201–3208. [Online].
Available: http://dl.acm.org/citation.cfm?id=1704555.1704736

http://www.pnas.org/content/107/30/13485.abstract
http://doi.acm.org/10.1145/1654059.1654124
http://www.nsi.edu/users/izhikevich/publications/whichmod.pdf
http://www.nsi.edu/users/izhikevich/publications/whichmod.pdf
http://dx.doi.org/10.1038/nrn1848
http://dx.doi.org/10.1162/NECO_a_00123
http://dx.doi.org/10.1162/NECO_a_00123
http://dl.acm.org/citation.cfm?id=1375990.1375994
http://dl.acm.org/citation.cfm?id=1375990.1375994
http://dx.doi.org/10.1073/pnas.0712231105
http://dl.acm.org/citation.cfm?id=1704555.1704736

[20] M. M. Waldrop, “Computer modelling: Brain in a box,” Nature, vol.
482, pp. 456–458, 2012. [Online]. Available: http://dx.doi.org/10.1038/
482456a

[21] H. de Garis, C. Shuo, B. Goertzel, and L. Ruiting, “A world survey
of artificial brain projects, part i: Large-scale brain simulations,”
Neurocomput., vol. 74, no. 1-3, pp. 3–29, Dec. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.neucom.2010.08.004

[22] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.
Bower, M. Diesmann, A. Morrison, P. H. Goodman, A. P. Davison,
S. E. Boustani, and A. Destexhe, “Simulation of networks of spiking
neurons: A review of tools and strategies,” Journal of Computational
Neuroscience, vol. 2007, pp. 349–398, 2007.

[23] D. Gregor, T. Hoefler, B. Barrett, and A. Lumsdaine, “Fixing Probe for
Multi-Threaded MPI Applications,” Indiana University, Tech. Rep. 674,
Jan. 2009.

[24] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and
doubly stochastic matrices.” Pacific Journal of Mathematics, vol. 21,
no. 2, pp. 343–348, 1967.

[25] A. Marshall and I. Olkin, “Scaling of matrices to achieve specified
row and column sums,” Numerische Mathematik, vol. 12, pp. 83–90,
1968, 10.1007/BF02170999. [Online]. Available: http://dx.doi.org/10.
1007/BF02170999

[26] P. Knight, “The sinkhorn-knopp algorithm: convergence and applica-
tions,” SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1,
pp. 261–275, 2008.

[27] R. Kötter, “Online retrieval, processing, and visualization of primate con-
nectivity data from the CoCoMac database,” Neuroinformatics, vol. 2,
pp. 127–144, 2004.

[28] “Cocomac (collations of connectivity data on the macaque brain),” www.
cocomac.org.

[29] G. Paxinos, X. Huang, and M. Petrides, The Rhesus Monkey Brain in
Stereotaxic Coordinates. Academic Press, 2008. [Online]. Available:
http://books.google.co.in/books?id=7HW6HgAACAAJ

[30] B. G. Kötter R., Reid A.T., “An introduction to the cocomac-paxinos-
3d viewer,” in The Rhesus Monkey Brain in Stereotaxic Coordinates,
G. Paxinos, X.-F. Huang, M. Petrides, and A. Toga, Eds. Elsevier, San
Diego., 2008, ch. 4.

[31] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” J. Physiol., vol.
160, no. 1, pp. 106–154, 1962.

[32] A. Peters and E. G. Jones, Cerebral Cortex. Vol 4. Association and
auditory cortices. Springer, 1985.

[33] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain,
vol. 120, no. 4, pp. 701–22, 1997.

[34] C. E. Collins, D. C. Airey, N. A. Young, D. B. Leitch, and J. H. Kaas,
“Neuron densities vary across and within cortical areas in primates,”

Proceedings of the National Academy of Sciences, vol. 107, no. 36, pp.
15 927–15 932, 2010.

[35] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Sat-
terfield, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich,
R. W. Wisniewski, A. Gara, G. L.-T. Chiu, P. A. Boyle, N. H. Chist, and
C. Kim, “The IBM Blue Gene/Q Compute Chip,” IEEE Micro, vol. 32,
pp. 48–60, 2012.

[36] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The IBM Blue Gene/Q interconnection network and
message unit,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp. 26:1–26:10. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063419

[37] “The Berkeley UPC Compiler,” 2002, http://upc.lbl.gov.
[38] R. Nishtala, P. H. Hargrove, D. O. Bonachea, and K. A. Yelick,

“Scaling communication-intensive applications on BlueGene/P using
one-sided communication and overlap,” in Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing,
ser. IPDPS ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 1–12. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.
2009.5161076

[39] D. Bonachea, “GASNet Specification, v1.1,” University of California at
Berkeley, Berkeley, CA, USA, Tech. Rep., 2002.

[40] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E.
Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman,
B. Smith, and C. J. Archer, “The Deep Computing Messaging
Framework: Generalized Scalable Message Passing on the Blue Gene/P

Supercomputer,” in Proceedings of the 22nd annual international
conference on Supercomputing, ser. ICS ’08. New York, NY, USA:
ACM, 2008, pp. 94–103. [Online]. Available: http://doi.acm.org/10.
1145/1375527.1375544

[41] T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable Communication
Protocols for Dynamic Sparse Data Exchange,” in Proceedings of the
2010 ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’10). ACM, Jan. 2010, pp. 159–168.

[42] D. S. Modha, “A conceptual cortical surface atlas,” PLoS ONE, vol. 4,
no. 6, p. e5693, 2009.

[43] A. J. Sherbondy, R. Ananthanrayanan, R. F. Dougherty, D. S. Modha,
and B. A. Wandell, “Think global, act local; projectome estimation
with bluematter,” in Proceedings of MICCAI 2009. Lecture Notes in
Computer Science, 2009.

[44] B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr,
R. Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner, A. G. Schrott,
R. S. Shenoy, B. N. Kurdi, C. H. Lam, and D. S. Modha, “Nano-
scale electronic synapses using phase change devices,” ACM Journal
on Emerging Technologies in Computing Systems, forthcoming, 2012.

http://dx.doi.org/10.1038/482456a
http://dx.doi.org/10.1038/482456a
http://dx.doi.org/10.1016/j.neucom.2010.08.004
http://dx.doi.org/10.1007/BF02170999
http://dx.doi.org/10.1007/BF02170999
www.cocomac.org
www.cocomac.org
http://books.google.co.in/books?id=7HW6HgAACAAJ
http://doi.acm.org/10.1145/2063384.2063419
 http://upc. lbl.gov
http://dx.doi.org/10.1109/IPDPS.2009.5161076
http://dx.doi.org/10.1109/IPDPS.2009.5161076
http://doi.acm.org/10.1145/1375527.1375544
http://doi.acm.org/10.1145/1375527.1375544

	Introduction
	The TrueNorth architecture
	The Compass neurosynaptic chip simulator
	Parallel Compass Compiler
	CoCoMac macaque brain model network
	Structure
	Long range connectivity
	Local connectivity

	Experimental evaluation
	Hardware platforms
	Weak scaling behavior
	Strong scaling behavior
	Thread scaling behavior

	Comparison of the PGAS and MPI communication models for real-time simulation
	Tuning for real-time simulation
	Real-time simulation results

	Conclusions
	References

