This is a pre-copy-editing, author-produced PDF. The definitive publisher-authenticated version is available online, DOI: 10.1007/s10849-010-9126-5.
Copyright 2011 Springer

An Event-based Fragment of First-order Logic over Intervals

Savas Konur

The University of Liverpool
Department of Computer Science
Liverpool, L69 3BX, UK
konur@liverpool.ac.uk

Abstract. We consider a new fragment of first-order logic with two variables. This logic
is defined over interval structures. It constitutes unary predicates, a binary predicate and a
function symbol. Considering such a fragment of first-order logic is motivated by defining
a general framework for event-based interval temporal logics. In this paper, we present a
sound, complete and terminating decision procedure for this logic. We show that the logic is
decidable, and provide a NEXPTIME complexity bound for satisfiability. This result shows
that even a simple decidable fragment of first-order logic has NEXPTIME complexity.

Keywords Two Variable Fragments of First-order Logic, Interval Temporal Logics, Decidability,
Tableau Methods

1 Introduction

Propositional interval logics are very expressive temporal logics, with simple, syntax and semantics,
which allow one to naturally express statements that refer to time intervals. They provide a natural
framework for temporal representation and reasoning. However, many of these logics usually exhibit
a bad computational behaviour, and they are undecidable in most of the cases. The main species
of studied propositional interval temporal logics include Moszkowski’s Propositional Interval Logic
(PITL) (Moszkowski (1983)), Halpern and Shoham’s modal logic of time intervals (HS) (Halpern
and Shoham, 1991), Venema’s CDT logic (Venema (1991)) (extended to branching-time frames with
linear intervals by Goranko et. al., 2006), and Montanari, Goranko and Sciavicco’s Propositional
Neighborhood Logics (PNL) (Goranko et. al., 2003).

In some cases, the full expressive power of interval logics might not be needed. In such situations,
decidability can be obtained through some restrictions. For example, there are some contexts where
interpretations in which infinitely many statements (events) hold (occur) in a finite space of time
are of no interest. Examples can be found in computational linguistics. Pratt-Hartmann (2005) and
Konur (2008) developed decidable interval logics of temporal prepositions which are interpreted
over finite models. These logics are convenient for expressing the semantics of natural language
constructions, and for specifying event-based real-time system requirements. One important aspects
of these logics is that they are genuinely interval-based, and they do not impose semantic restrictions,
such as locality.

Since the logics defined in (Pratt-Hartmann, 2005; Konur, 2008) are modal logics, a first-order
logic can defined for these logics (and similar types of logics) as a general framework. In this paper,
we define such a framework by studying a new two-variable fragment of first-order logic where
unary predicates represent event types, the only binary predicate represents an interval relation,

Savas
This is a pre-copy-editing, author-produced PDF. The definitive publisher-authenticated version is available online, DOI: 10.1007/s10849-010-9126-5.
Copyright 2011 Springer

and the only function symbol represents the ‘duration’ operation. We call this new logic EF, which
is defined over interval structures. Although it is a simple logic, its genuinely new syntax makes this
logic worth to be explored. Although well-known propositional interval logics, like HS, CDT, PNL
and PITL are very expressive, it can be easily shown that EF cannot be reduced to these logics (A
theoretical analysis of comparing EF to these logics is outside the scope of this paper).

By studying the logic EF, we are able to investigate a new decidable fragment of first-order
logic (FOL). In the literature, there are various decidable fragments of FOL. Mortimer (1975)
showed that the two-variable fragment of first-order logic (FO?) has the finite model property, and
hence decidable for satisfiability. One of the reasons for the significance of this result is that many
propositional modal logics can be embedded into FO? (Gridel and Otto, 1999). Recently, the bound
on model size has been improved to locate the complexity of the satisfiability problem for FO? in
NEXPTIME-complete (Gridel et. al., 1997).

In Otto (2001) the satisfiability problem for FO? is investigated over finite and infinite linearly
ordered and well-ordered domains, as well as over finite and infinite domains in which one or several
designated binary predicates are interpreted as arbitrary well-founded relations. It has been shown
that FO? over ordered and well-ordered domains or in the presence of one well-founded relation,
is decidable for satisfiability and for finite satisfiability. Actually, the complexity of these decision
problems is NEXPTIME. In contrast, FO? becomes undecidable for satisfiability and for finite
satisfiability, if a sufficiently large number of predicates is required to be interpreted as orderings,
well-orderings, or as arbitrary well-founded relations. This undecidability result also entails the
undecidability of the natural common extension of FO?.

Andreka et. al., 1996 defined the guarded fragment of first-order logic (GF). The authors dropped
the restriction to use only two variables and only monadic and binary predicates, but insisted that
all quantifiers must be relativized (or ‘guarded’) by atomic formulas. GF is interesting because
it extends many propositional modal logics, because it has useful model-theoretic properties and
especially because it is a decidable class that avoids the usual syntactic restrictions (on the arity
of relation symbols, the quantifier pattern or the number of variables) of almost all other known
decidable fragments of first-order logic. GF also has the finite model property, i.e. every satisfiable
formula in the guarded fragment also has a finite model.

In van Benthem (1997) the guarded fragment is generalized to the loosely guarded fragment
(LGF) where quantifiers are guarded by conjunctions of atomic formulae of certain forms. The
loosely guarded fragment has very similar properties of the guarded fragment.

In Grédel (1999), the computational complexity of both guarded and loosely guarded fragments
is investigated. It is proved that the satisfiability problems for the guarded fragment (GF) and the
loosely guarded fragment (LGF) of first-order logic are complete for deterministic double expo-
nential time. For the subfragments that have only a bounded number of variables or only relation
symbols of bounded arity, satisfiability is EXPTIME-complete. Gradel (1999) further establishes a
tree model property for both the guarded fragment and the loosely guarded fragment, and gives
a proof of the finite model property of the guarded fragment. It is also shown that some natural,
modest extensions of the guarded fragments are undecidable.

Although the fragments of FOL mentioned above are considered quite expressive logics and the
syntax of the logic EF is relatively simple, the expressive power of EF is not comparable with the
expressive power of these logics. Indeed, EF formulas cannot be reduced to these fragments, which
makes EF original, and worth exploring.

An important point is that EF is interpreted over interval structures endowed with subinterval
relations. Actually, logics of subinterval relations have been studied very little yet. The study of

subinterval structures and logics turns out to be important because they occupy a region on the
very borderline between decidability and undecidability, and since decidability results in that area
are preciously scarce, complete and terminating tableau systems like those constructed in the paper
are of particular interest.

In this paper, we propose a terminating tableau system for EF, thus showing that its satisfiability
problem is decidable. We, indeed, provide a complexity bound for satisfiability, showing that this
problem can be solved in NEXPTIME. This results shows that even a simple decidable fragment
of first-order logic has NEXPTIME complexity.

The rest of the paper is organized as follows: In Section 2 we define syntax and semantics of
the logic EF. In Section 3 we show how we construct models, and determine a limit on the size of
satisfying models. In Section 4 we propose a terminating tableau system for the logic EF, and show
that its satisfiability problem is decidable. We conclude in Section 5 we with some future research
directions.

2 The Logic EF

Since the logic EF is a two-variable logic, its formulas contain only two variable symbols, which
range over intervals. In the rest of this paper we take an interval to be a closed, bounded and
non-empty subset of the real line. More formally we say that an interval is a pair [t1, t2] such that
t1,t2 € R and t; < to. We denote the set of all intervals {[t1,t2] : t1 < ta Aty,ta € R} by Z, and we
use letters I, J, ..., as intervals. It can be simply observed that intervals may be punctual. Note that
due to underlying temporal structure, time in EF is continuous, linear and complete.

Another feature of EF is that it is interpreted over a linear time flow with only finitely many
events able to occur over a bounded-time interval. EF formulas are evaluated relative to time-
intervals. Event-types are represented by predicate symbols with arity one (unary predicate sym-
bols). Having event-types in the syntax of the language allows us to formalize event-based sentences
of a natural language and event-based system specifications of a real-time system. EF also incor-
porates the notion of duration (of an event).

It is also important to mention that we impose some restrictions on the syntax of EF formulas.
One restriction is that we only allow unary predicate symbols, and there is only one binary predicate
symbol, which is S. We do not allow any predicate symbol whose arity is greater than two. In
addition, there is only one unary function symbol, which is . We do not allow any function symbol
with arity greater than one. Having these restrictions, formulas of the logic EF are constructed from
the following set of symbols:

— a finite set of temporal variables

— a finite set of predicate symbols

— a function symbol

— a finite set of operators: =, \,V, —,«—, L, T, A V,= <, >,<, >.
— a finite set of auziliary symbols: parentheses, comma.

— a countable sets of constant symbols.

Before giving the syntax of the logic EF, we will discuss the following remarks: First, tem-
poral variables, denoted z, ¥, z,..., range over intervals. Second, unary predicate symbols, denoted
e1, €2, €3, ..., represent event-types. We interpret any unary predicate e so that it is satisfied by all
and only those time intervals over which e occurs. From now on, we will treat a unary predicate

e as an event atom. We will think of e(J) as the occurrence of e over J (where J is an interval).
Third, the binary predicate symbol S denotes the (non-strict) subinterval relation, which is defined
as follows: [t1,ts] is a non-strict subinterval of [t3,¢4] iff t; C t5 and ¢ C t4. Finally, the unary
function symbol ¢ denotes the length function which returns the length of an interval.

In the sequel, let £ be a finite set. We refer to elements of £ as event atoms.

Definition 1. Let e € £ be an event atom, S be a predicate symbol, £ be a function symbol, x,y be
temporal variables, k be a constant, ¥ be an EF formula, and T € {<,<,=,>,>}. The logic EF is
defined by induction as follows:

— T and L belong to EF;

— The following formulas belong to EF:
Jz (e(x) A S(z,y) A(z)Tk A(x))
Vo (e(z) A S(z,y) A l(x)Tk — (x));

— FEF is closed under Boolean connectives =, A\, V,— and <.

We assume that a function S € 72 — {T, L} is associated with the predicate symbol S, and a
function £ € T — R is associated with the function symbol £.

As for the semantics, assume J is a witness for the temporal variable in Definition 1, and the
free variable y is assigned to I. e(J) means that (J, e) is an entry in an EF model M (see Definition
2). In other words, e(J) returns true if (J,e) € M, and false otherwise. S(J,) returns true if J is
a (non-strict) subinterval of I (i.e. J C I), and returns false otherwise. Finally, £(I)7k returns true
if |[I| Tk, and false otherwise (where |I| denotes the length of the interval I).

One important characteristic of EF formulas is the ‘quasi-guarded’ nature of the quantification
they feature. Thus, for example, the formula 3z (e(2)AS(z, y)Al(x) > 0) existentially quantifies over
intervals satisfying the predicate e (Similarly for universal formulas). So it does not quantify over all
subintervals of the current interval of evaluation without restriction. However, many modal logics,
such as HS and CDT, lack the ‘quasi-guarded’ character of the quantification that EF formulas
feature. This feature is very important to have a computationally manageable logic.

Before ending this section, we give an example of representing the meaning of a sentence in
EF. Consider the sentence “An alarm was sounded”, which asserts that within the given temporal
context, there is an interval over which an alarm was sounded. Interpreting unary predicate alarm
so that it is satisfied by all and only those time intervals over which an alarm was sounded, we may
thus represent the meaning of this sentence by the formula Jz(alarm(x) A S(z,y) A(x) > 0). Note
that the temporal context to which the quantification in the sentence above is limited is represented
by the free variable y (which is mapped to an interval).

When we introduce an EF formula using the notation ¢(x), we mean that x occurs free in ¢.
Similarly, we use the notation ¢(y). When a formula has been introduced as ¢(x), and we later on
write ©(y), then this formula stands for the formulas which is obtained from ¢ by exchanging x
and y. Symmetrically, when a formula has been introduced as ¢(y) and we later on write p(z), we
mean the formula which is obtained from ¢ by exchanging x and y.

3 Building Models

In this section we show that the depth of an EF model can be polynomially bounded by the length
of a given formula ¢ whose satisfiability is checked. We prove this by finding a reduced satisfying

model, whose depth is bounded by |go|2. This result is important in determining a limit on the size
of a satisfying model.

Definition 2. Let Z be the set of all bounded, closed and non-empty intervals of real numbers, and
E be a finite set of event atoms. An EF model M is a finite subset of T x €. For any J € T and
e€ &, M(J) and M (e) are defined as follows:

M(e)={JeT|(Je e M}
M) ={ec&| (Je) € M}

As can be seen from the construction an EF model, intervals are primitive objects of the model.
Given that ¢ is an EF formula with one free variable, M is an EF model, and I is an interval,
we write M = ¢[I] if ¢ holds in M with respect to the variable assignment that maps the free
variable to I. Given two EF formulas ¢(x) and ¢'(x), we say that ¢(x) entails ¢ (x) if for all M
and I, M = ¢[I] implies M = ¢'[I]. p(z) and ¢'(z) are logically equivalent if p(z) entails ¢'(x)
and ¢ (x) entails p(z). Given a set of formulas @, we write M = @[I] if M = p[I] for all ¢ € . P
is satisfiable if for some M and I, M | P[I].

We remark that the condition in the above Definition 2 that models are finite subsets of Z x £
is significant. Because there might be some EF formulas which cannot be satisfied in a finite model.
Consider, for example, the following formula:

Jz(e(x) A S(x,y) Ab(x) > 0)A
Vo (e(x) A S(z,y) AN(z) >0 — Fz/(e(z') AS(z',z) Al(2') > 0)).

This formula is not satisfiable in a finite model; because it implies that every occurrence of e
over an interval J requires another e to occur over a subinterval of J. Therefore, the formula is
unsatisfiable in a finite model.

After saying that EF formulas can only be satisfied in a finite model, we now turn to determining
a limit on the size of such a model. In fact, in the next section we will establish an exponential bound
on the size of satisfying models. Below we will prove that a satisfying model has a polynomial depth
bound on the size of the formula; but before that, we will show how to normalize an EF formula to
the desired form.

Lemma 1. Every EF formula is logically equivalent to one in which — appears only in subformula
of the form L (=—T).

Proof. The proof is trivial for L . In an EF formula — can be moved inwards as follows:

—Jz(e(x) A S(x,y) NM(z)Thk Ap(x)) = Va(e(z) A S(x,y) ANM(z)Th — —)(x))
—Va(e(z) A S(x,y) ANM(z)Thk — () = Fx(e(z) A S(z,y) A l(x)Th A —)p(x))

where 7 € {<,<,=,>,>} and 7’ is the corresponding inverted operator of 7.
By means of Lemma we can normalize the forms of EF formulas.

Definition 3. Given an EF formula ¢ and a non-empty model M, the depth of M is the greatest
m for which there exist J; C ... C Jp, such that for alli, 1 < i < m and for somee € &, (J;,e) € M.
The depth of an empty model is defined to be 0.

! For example, < is the corresponding inverted operator of >.

Now we will show that the depth of models can be polynomially bounded by the length of the
formula. The proof relies on finding a reduced satisfying model M* C M, whose depth is bounded
by |¢|?, such that M = ¢[I] implies M* |= @[I] for a given interval I. Before starting the formal
proof, we will give some definitions.

Definition 4. Let ¢ be an EF formula which has the form guaranteed by Lemma 1, e be an event

atom, and J € T be an interval. Assume that M contains only event atoms involved in p. We define
L. (J)as follows:

L(J) ={¢(x) | ¥(x)is a subformula of ¢ with one free variable s.t. M = ¢[J]}
Le(J) = L(N)\U{L(K) | K € J, (K,e) € M}

L (J) records the subformulas of ¢ which are true at an interval J. If we look at the definition,
we can see that L. (J) records the subformulas of ¢ which are true at an interval J, except the
subformulas which are true at some subinterval K of J with (K,e) € M. We say that a pair
(J,e) € M is redundant if L (J) = 0.

Lemma 2. Let the number of symbols in a given EF formula ¢ be denoted by |p|. For a given
model M, and interval I, if M | ¢[I], then there exists a model M* C M, with depth at most

0 (|<p|2), such that M* = p[I].

Proof. Assume that ¢ has the form guaranteed by Lemma 1. Now we will reduce the model M to
M* by removing redundant pairs:

M* = M\ {{J,e) | (J,e) is redundant}

Let m be the number of event atoms occurring in ¢, and n be the number of subformulas of .
If J C J' such that (J,e) € M and (J',e) € M, then L. (J) and L. (J') are disjoint. That is, the
length of a chain of the intervals at which e occurs is bounded by the number of the subformulas of
¢ in which e is mentioned. Therefore, M* is bounded by m (n + 2). Since we know that m < |p|and
n < |g|, it easily follows that the depth of M* is bounded by |¢|*.

Now by using structural induction on the complexity of ¢ we will show that for every interval
I and every subformula £ of ¢, M |= £[I] implies M* = £[I].

Base Case :
Suppose M = &[]
& =T or £ = L: Trivial

Inductive Case:

Suppose M = ¢[I]

& = Tx(e(x) AS(x,y) ANl(x)Tk A (x)) : Let J be a witness for the existential quantifier in &,
where y takes the value I. By the semantics, (J,e) € M such that J C I, ¢(J)7k and M [¥[J].
We choose such a J which is minimal under the order C, so that (J,e) € M*. By the inductive
hypothesis, M* = ¢[J]. We now have (J,e) € M*, J C I, {(J)Tk and M* = ¢[J]. Thus, M* =
Jz(e(x) A S(z,y) AN(x)TE Ap(x)).

& =Vax(e(x)AS(x,y) N(z)Tk — ¥ (x)) : Let y be mapped to the interval I. By the semantics, for
every witness J of z (J,e) € M, J C I and £(J)7k imply M [+(J). By construction, M* C M.
Since € is satisfied by M, it has to be satisfied by its subset M*. By the inductive hypothesis,
M* = (J) for every witness J. Thus, M* = Va(e(z) A S(x,y) N(x)Thk — ¥(x)).

Lemma 2 shows that, in determining satisfiability of EF formulas, we need never consider very
deep interpretations. We now illustrate the basic idea with an example. Assume I, I, I3 are intervals
with I3 C I, C I, and M is the model {(I1,¢e) (I2,e), (Is,e)}, as shown in Part (i) of Figure 1. Let
¢ = Jx(e(z) A S(z,y) AN(z) > 0 A (T (e(2’) A S(@',z) Ad(z") > 0)). Obviously, for any I D I3,
M = ¢ [I]. However, it is clear that we can remove the occurrence of e at I3 (alternatively, I; or
I) without compromising this fact. Thus, if M* is the model {(I1, e) (I2,e)} depicted in Part (ii)
of Figure 1, we still have, for any I D I, M* &= ¢[I].

e e
1, I,

e

e

I, h
4
13
(i) (it)

Fig. 1. Two models making ¢ true at any I O I;.

We have shown that the depth of a satisfying model is bounded by |<p|2. In the next section we
will show that the size of this model is bounded by 2PU#D) for some fixed polynomial p. We will
actually derive the model from the tableau generated by a tableau procedure.

4 A Tableau Based Decision Procedure for EF

In this section we propose a terminating tableau system for the logic EF, thus showing that its
satisfiability problem is decidable. Indeed, the satisfiability problem for EF is in NEXPTIME. This
is proved by building models whose sizes are exponentially bounded.

In the following, we define a tableau-based decision procedure for EF, and analyze its com-
putational complexity. Then, we prove its soundness and completeness. The procedure is based
on an expansion strategy. The expansion strategy involves three rules: the interval relation rule,
which nondeterministically guesses the interval relation among nodes in the graph, the existential
node expansion rule, which expands existential subformulas in a node and the universal node ez-
pansion rule, which expands universal subformulas in a node. A blocking condition guarantees the
termination of the method.

4.1 Preliminary notions

In the following we introduce some preliminary notions which will be used throughout the rest of
the paper.

Definition 5. A successor of a node v is a node w such that there is an edge from v to w. A path
is a sequence of nodes v1, ...,vx such that for all 1 <1i < k, v;11 s a successor of v;. The depth of
a node v is the maximum number of edges of a path from the root node to v.

Definition 6. A decorated graph G is a graph in which every node has a decoration. For a node
v € G, a decoration \(v) is a 5-tuple ([by, ey], p(v), K(v),L(v), L (v)), where b, (e,) is a constraint
variable denoting the beginning (ending) of the interval represented by the node v, p(v) denotes the
label of the node v (where p(v) € £), K(v) denotes a formula associated with the node v, and L(v)
and L'(v) denote a set of subformulas associated with the node v.

Definition 7. A temporal constraint is a relation involving constraint variables which denote
interval endpoints.

For example, the temporal constraint b, > b, e, < e, shows an interval relation between [b,, €]
and [by, €q)-

Definition 8. A tableau for a given formula ¢ is a tuple (G,C), where G denotes a decorated
graph, and C denotes the set of temporal constraints in the graph G.

4.2 Tableau Method

Let ¢ be a formula to be checked for satisfiability over an interval Iy. The initial tableau for ¢ is
the tuple (vg, Co), where vy is the initial graph with the decoration A(vg) = ([buys €u, -0 (v0), K(v0),
L(vg), L (vg)) such that p(vg) = root, K(vg) = ¢, L(vg) =B, L'(vg) = 0, and Cy is the initial set of
temporal constraints such that Cy = {by, = start(ly), ey, = end(ly)}. Assume @ denotes the queue
of nodes in G awaiting processing. Then, the initial value of @ is {vg}.

A tableau for ¢ is a tuple (G, C), where C is obtained by expanding the initial constraint set Cg
with temporal constraints in the existing nodes, and the decorated graph G is obtained by expanding
the initial node vy through successive applications of the expansion strategy to existing nodes until
no node remains to process. In other words, the expansion strategy is applied to every node in @
until @ = (). When a node is selected, it is removed from Q.

During the application of the expansion strategy to a node, we need to solve the temporal
constraints in C. Remember that each node of the graph represents an interval. For our pur-
poses, we model intervals as pairs of endpoints, which are distinct numbers on the real line. Let
T = {by,, -, by, , €05 -, €0, } e a set of constraint variables. The constraints of a tableau can be
represented as a Simple Temporal Problem (Dechter et. al., 1991). If n is the number of variables,
then a solution to a STP (if there is any) can be found in O(n?) time and O(n?) space. If the set
of temporal constraints in C is inconsistent, then a solution will not be found, and we say C is not
satisfiable.

In order to avoid infinite paths, and therefore to have a finite satisfying model we need to
guarantee the termination of the proposed tableau method below. In the following we give a suitable
stoping condition for the tableau procedure:

Definition 9. A tableau (G,C) is closed if one of the following conditions hold:

— 1L € L(v) for some node v in G,

— C is not satisfiable,

— The depth of the shortest path vg — ... — v is more than |gp|2 for some node v in G (where vy
is the root node.)

Definition 10. A tableau is open if it is not closed.

Once the tableau procedure terminates, we check whether the tableau generated is open. For
a given formula ¢ if there is an open tableau, then ¢ is satisfiable, and the satisfying model M
is derived from the tableau. We do this by picking some solution o, which assigns real values to
constraint variables in C. Let J, = [0(by), 0(ey)] be the interval represented by a node v of G. We
construct a model M as follows: M ={(J,, p(v)) |for any v € G s.t. p(v) ¢ {root}}. If the tableau
is closed, then ¢ is unsatisfiable.

Expansion Strategy. Let (G,C) be a tableau, v be a node in G with A(v) = ([by, eu], p(v), K(v),
L(v), L' (v)), and Q be the queue of nodes awaiting processing. We say the expansion strategy
for a node v is defined as follows:

If the tableau is open, apply the following rules:
Rule 1. Set Q := Q\ {v}. If L(v) is empty, then apply the interval relation rule to the node v.
Rule 2. Let the Disjunctive Normal Form (DNF) of K(v) be ¥1 V...V, where ¢; = ;1 A ... Ay,
(n > 1,1 <i < nandn; > 1). Select some 4, and set L' (v) = {Yi1,...,%in; } and L (v) :=
L)UL (v).?
Rule 3. Apply the universal node expansion rule to the node v.
Rule 4. Apply the existential node expansion rule to the node v.

In Rule 1 we check whether £(v) is empty. If £(v) is empty, then we know that the node v has
been newly created, and the interval relation rule has not been applied yet. By applying this rule
we guess the interval relation between v and any other node in G. If £(v) is not empty, then we
can conclude that the interval relation rule has been applied before. So we do not need to guess the
interval relations again.

In Rule 2 we take the normal form of K(v) as disjunctions of subformulas (Each disjunct is
composed of conjunctions of subformulas). According to this rule we nondeterministically select
one of the disjuncts and assign it to £’ (v), and add it to £ (v). As can be seen, £’ (v) only contains
the selected disjunct. When the node is re-visited, we do not need to remember the previous value
of £ (v). On the other hand, £ (v) contains all subformulas assigned during the execution of the
tableau procedure. Therefore, when the node is re-visited, we extend it with the new material in
order to remember its previous value. It is also worth to mention that all of the elements of £ (v)
are expanded during the tableau construction.

Interval Relation Rule. The interval relation rule guesses the interval relation between the given
node and all other nodes in the graph. Please note that we take Allen’s interval relations as reference
when considering an interval relation. Allen defines thirteen binary relations between intervals on
a linear ordering, which are ‘before’, ‘after’, ‘meets’, ‘starts’, ‘during’, ‘finishes’, ‘equals’, ‘overlaps’,
‘met-by’, ‘started-by’, ‘finished-by’, ‘overlapped-by’ and ‘includes’.

Allen’s approach to reasoning about time is based on the notion of time intervals and binary
relations on them. Given two time intervals, their relative positions can be described by exactly one
of the elements of the set R of thirteen basic interval relations, where each basic relation can be
defined in terms of its endpoint relations. For example, giving that J and J’ denote the intervals
[bs,es] and [by, e], ‘before’ is defined as ey < by, ‘overlaps’ is defined as by < by < ey < ey,
etc.

2 For simplicity we have not shown free variables in the formulas.

Let (G,C) be a tableau, and v be a node in G with A(v) = ([by, e],p(v), K(v), L(v), L (v)).
Assume 7’ is the corresponding inverted operator of 7 (where 7 € {<,<,=,>,>}). The interval
relation rule for a node v is defined as follows:

For any node u (except v) in G
Nondeterministically guess the interval relation between u and v:

— v before u : Set C :=C U {e, < by}.

— v meets u : Set C :=CU {e, = by}.

— v non-strict-during u : Set C := C U {b, > by, e, < ey}, and add an edge from u to v (u — v)
if p(v) = e and Vz(e(z) A S(z,y) A l(x)Tk — (x)) € L(u), then set either i) C := C
{(ey = by)T'k}; or i7) C:=CU{(ey — by)7Tk} and K(v) := K(v) A (z).

— v overlaps u : Set C :=CU{b, < b, < e, < ey}, and add an edge from u to v (u — v).

U

v non-strict-during u is true if either v “equals” u, v “during” u, v “starts” u or v “finishes”
u is true (Since we consider the case “non-strict-during”, we do not need to consider these cases
separately.) The cases where v “after” u, v “met-by” u, v “includes” u, v “started-by” u, v “finished-
by” u and v “overlapped-by” u can be dealt with similarly.

We remark that once we have guessed the interval relation, we expand C with the corresponding
endpoint relation. For example, if we have guessed v “before” u, then we expand C with {e, < b,}.
When we say, for example v “before” u, we actually mean that this interval relation holds between
the intervals J, and J, represented by the nodes v and u, respectively. For simplicity, we will use
this adaption.

In the interval relation rule, we consider the possibility that £(u) of an existing node u includes
a universal subformula which might update the decoration of the node v. Consider, for example,
the above case where v non-strict-during w. In this case S(x,y) is true (z any y are instantiated
by J, and J,, respectively). If p(v) = e, than we can easily see that e(z) is true. Furthermore, if
Ve(e(z) ANS(z,y) AN(x)Thk — ¢¥(x)) € L(u), then we may update (v) depending on whether ¢(x)7k
is true. Here, we have two choices: either £(x)7k is false, or £(x)7k is true. If we choose the latter,
then K(v) must be updated with ¢ (z) due to the implication by the universal formula.

Universal Node Expansion Rule. The universal node expansion rule expands all universal sub-
formulas in £'(v). Let (G, C) be a tableau, and v be a node in G with A(v) = ([by, €4],p(v), K(v),L(v), L (v)).
Assume 7’ is the corresponding inverted operator of 7 (where 7 € {<,<,=,>,>}). The universal
node expansion rule for a node v is defined as follows:

For every &€ L'(v)

— if £ = Va(e(z) A S(z,y) A(z)Tk — (x)), then for every node w in G with p(w) = e and
w non-strict-during v, set either i) C := C U {(ew — bw)7'k}; or i) C := C U {(eyw — by)Tk},
K(w) :=¢(z) and Q := Q U {w}.
where w “non-strict-during” v is true if b, > b,, e, < e, € C. Note that above instead of ¥ (z) we
have assigned KC(w) Ay (z) to K(w). Because , we re-visit the node w, and therefore we do not want
to use the previous material in K(w). For this reason, we have assigned ¢(z) to K(w) in order to
process only ¥(z).

As result of applying the universal node expansion rule, some of the existing nodes might be
re-visited, which means we re-execute the expansion strategy for these nodes. In this case, interval
relations will not be guessed again; but their decoration might get updated.

Existential Node Expansion Rule. The existential node expansion rule expands all existential
subformulas in £'(v). Let (G, C) be a tableau, and v be a node in G with A(v) = ([by, €4],p(v), KL(v),L(v),
L'(v)). Assume 7' is the corresponding inverted operator of 7 (where 7 € {<, <,=,>,>}). The ez-
istential node expansion rule for a node v is defined as follows:

For every é€ L' (v)

— if £ = Jz(e(z) A S(z,y) A l(x)Tk A p(x)), then add an immediate successor w with A(w) =
([bw, €w],p(w), K(w), L(w), L'(w)), where p(w) = e, K(w) = ¢(z), L(w) = 0, L' (w) = 0, set
C :=CU{by > by, ey < €y,(€0—by)Tk}, add an edge from v to w (v — w), and set Q := QU{w}.

The existential node expansion rule creates a new node, and £(w) and £'(w) are initially set to
(). In the next run, we apply the expansion strategy to this node, and £(w) and £L'(w) get updated
according to Rule 2.

4.3 Tableau Method at Work

In this section we apply the proposed decision procedure to a satisfiable formula. The decision
procedure constructs a tableau (G,C) through successive applications of the expansion strategy to
existing nodes until no node remains to process.

Below we will not show free variables in the formulas to preserve the simplicity. Assume,

P = Jx(e’(x) A S(z,y) A(z) > 0)
P = 3w(e"(z) AS(z,y) A(z) = 0)
Y1 = 3a(e(z) A S(z,y) AN(x) 20— ' (z))
Yo = Va(e(x) A S(z,y) AMl(x) = 0 — 9" (x)).

Let ¢ = 11 A2 be a formula to be checked for satisfiability over an interval Iy. The initial tableau
for ¢ is the tuple (vg, Co), where vy is the initial graph with the decoration A(vg) = ([by,, €,],700t, @,
0,0), and Co = {by, = start(lp), e,, = end(lp)}. Also, the initial value of @ is {vo}. Now, we will
show how the expansion strategy is applied to existing nodes:

1 Apply Rule 1 to vg

Rule 1 sets Q := Q \ {vo}, and applies the interval relation rule to vg. Since vy is the only node

in the graph, the interval rule does not do anything.

| Apply Rule 2 to vy
Rule 2 sets L' (vg) = L(vo) = {w1,¥2}.

1 Apply Rule 3 to vg

The universal node expansion rule does not do anything.

1 Apply Rule 4 to vg

The existential node expansion rule expands ¢ by adding a new node v; (see Figure 2) with
A1) = ([boy, €0,],6,7", 0,0), and sets C := Co U {by, > bug, €0, < €yo, (€4, — by,) > 0} and
Q = QU {vo}.

Fig. 2. The graph after the existential node expansion rule expands ;.

1 Apply Rule 1 to vy

Rule 1 sets @ := @Q \ {v1}, and applies the interval relation rule to v;. The interval relation
rule nondeterministically guesses the interval relation between the nodes v; and vg. Assume the
nondeterministic choice is v1 “non-strict-during” vy (If the choice was either “before” , “meets” or
“overlaps”, then C would become inconsistent, and therefore the tableau would become closed.) In
this case, C is set to C := CU{by, > by, €y, < €4, }- Moreover, since p(v1) = e and Vz(e(x) AS(z,y) A
Uzx) >0 — 9"(x)) € L(vy), the interval rule sets K(v1) to K(v1) AY” (ie. K(v1) :=¢'AY"), and C
to CU (ey;, — by,) > 0 (If the other choice was chosen, then C would be set to C U {(e,, — by,) < 0}.
In this case, C would become inconsistent, and therefore the tableau would become closed.)

| Apply Rule 2 to vy
Rule 2 sets £/'(v1) = L(v1) = {0, 9" }.

| Apply Rule 3 to vq
Since there is no universal formula in £(v;), the universal node expansion rule does not do
anything.
1 Apply Rule 4 to vq

The existential node expansion rule expands ¢’ and v¢” by adding two new nodes vy with
Av2) = ([buy, €0s],€5 T, 0,0) and vy with A(vs) = ([bys, €vs],e”, T, 0,0) (see Figure 3), and sets
C = C U {bvg 2 b’U17 e’Uz S e’L)17 b’U3 Z bU17 61)3 S 61}17 (e’Uz - b’Uz) Z 07 (e’Ug - bvg) 2 0} a'nd

Q = Q U {’1}2,’1)3}.

| Apply Rule 1 to vy

Rule 1 sets @ := @\ {v2}, and applies the interval relation rule to vo. Assume that the interval
rule has chosen vy “non-strict-during” vg and ve “non-strict-during” wv;. In this case, C is set to
C = C U {bvg 2 bU07eU2 S 61)07 bvg Z bU17eU2 S e’Ul}'

1 Apply Rule 2 to vy

Rule 2 sets £ (ve) = L(v2) ={T}.

(2)

Fig. 3. The graph after the existential node expansion rule expands v’ and)" .

The universal and existential node expansions rules do not do anything.

| Apply Rule 1 to v3

Rule 1 sets @ := @\ {vs}, and applies the interval relation rule to vs. Assume that the interval
rule has chosen vs “non-strict-during” vy, vs “non-strict-during” v; and ve “before” vs. In this case,
Cisset to C:=CU {byy > byg, €us < Cugy Dug = byy s €ry < €0y €y < bug b

| Apply Rule 2 to v3
Rule 2 sets £'(v3) = L(v3) ={T} and Q := Q \ {vs}.
Similarly, the universal and existential node expansions rules do not change anything.
As can be seen, the tableau generated is open. Therefore, a satisfying model M can be derived
from the tableau (Suppose we pick some solution for constraint variables in C.) A model for the
satisfiable formula ¢ will look like Figure 4.

Iy

Fig.4. A model for .

4.4 Soundness and Completeness

The soundness and completeness of the proposed tableau method is proved below. But we first
prove the termination of the method.

Theorem 1. The tableau method for EF terminates.

Proof. Let (G,C) be a tableau constructed by the tableau procedure for a given a formula ¢. By the
stoping condition in the tableau procedure every branch of the tableau is of finite length. We also
know that every node of G has a finite outgoing degree. Therefore, the tableau method terminates.

Theorem 2. Let ¢ be an EF formula which has the form guaranteed by Lemma 1. ¢ is satisfiable
iff there is an open tableau for ¢.

Proof. Soundness (<) :

Suppose (G,C) is an open tableau for ¢. We pick some solution o : V — R, which assigns real
values to constraint variables in C. Let J, = [0(by), 0(ey)] be the interval represented by the node
v of G. We construct a model M as follows: M ={(J,, p(v)) |for any v € G s.t. p(v) ¢ {root}}.

Now we show that M = ¢[Iy] (where Iy is the initial interval). We claim that for every v in G,
M = L(v)[Jy]. We show, by structural induction, that ¢ € £ (v) implies M = ¢[J,]. Note that, by
construction of the tableau, £(v) comprises formulas of the forms T, L, Jz(e(x) A S(z, y) ANl(x)Tk A
P(x)) and Va(e(z) A S(z,y) A l(x)Thk — ().

Base Case:
¢ =T : Trivial
¢ = 1 : Since (G,C) is an open tableau, by definition 9 and 10, L ¢ L (v).

Inductive Case:

¢ = Jx(e(x)AS(x,y) Ne(x)TkAY(z)) : By the existential node expansion rule, there exists a node
w with p(w) = e and K(w) = ¢ (z). In addition, C contains by, > b, e, < e, and (e, — by,)7k. Let ¢
be 1 V...Vib, where ¥; = iy A.c. Ay, (n > 1,1 <i<mnandn; > 1). By Rule 2, ¢;1, .., ¥, € L(w)
for some ¢ (1 <4 <n). By the inductive hypothesis, M = ¥;1[Ju] A ... AM = in, [Jw]. Therefore,
M = ¢[Jy]. By construction, we have (Jy,,e) € M with |J,,| 7k and S(Jw, Jy). Thus, M = ¢[J,].

¢ =Vx(e(x)NS(x,y) N(z)Tk — (z)) : By the construction of M, for any J € T if (J,e) € M,
then there exists a node u in G such that J, = J. According to the universal node expansion rule
(or the interval relation rule) if S(Jy,J,), then we do either: i) set C := C U {(ey — by)7'k} (7 is
the corresponding inverted operator of 7); or i) set C := C U {(e, — b,)7k} and K(u) := ¢(x) (We
set IC(u) := K(u) A ¢(x) when the interval relation rule applied.)

Assume £(J,)7k is false. Whatever the choice is, it is trivial to see that M = e(J,) AS(Jy, Jp) A
0(J) Tk — ¥(Jy,). Assume £(J,,)7k is true. In this case, option ¢ mentioned above cannot have been
selected. Otherwise, C would contain {(e, — b,)7'k}, and it would result in an inconsistency. So
option 4i has been taken. In this case, we set C := C U {(e, — b,)7k} and K(u) := ¢(x) (K(u) :=
K(u) Ap(z) in the case of the interval relation rule). Let ¢ be ¢1 V... Vb, where ©; = ¥ A... Aip,
(n > 1,1 <i<nandn; >1). By Rule 2, ¥;1,..,%in, € L(u) for some i (1 < i < n). By the
inductive hypothesis, M = ¢(J,). By construction, we have (J,,e) € M. We also know that
S(Ju, Jv) and £(J,)Tk. Therefore, for any witness J,,, M = e(J,) A S(Ju, Jo) AN (Ju)TE — ().
Thus, M = ¢[J,].

We have proved that for every v in G, M = L(v)[J,]. In particular, M = L(v)[lo]. We know
that KC(vg) = . Now assume ¢ = 1 V ... V ¢, where ¢; = ©i1 A .. A in, (n > 1,1 <i<n and
n; > 1). According to Rule 2 L(vg) = {®i1, ..., Yin, } for some value of i. Therefore, we can easily
conclude that M = ¢[ly].

Completeness (=) :

Suppose M = ¢[Iy]. By Lemma 2 there exists a model M* C M, with depth at most of order
lg|?, such that M* = o[Io]. We will show that there is an open tableau (G,C) for .

The initial tableau for ¢ is the tuple (vo,Co), where vy is the initial graph such that K(vg) = ¢
and L(vg) = 0, and Cy is the initial set of temporal constraints such that Co = {b,, = start(lp), ey, =
end(Ip)}. A tableau (G,C) for ¢ is obtained by expanding the initial node vy through successive
applications of the expansion strategy to existing nodes until no node remains to process, and by
expanding the initial constraint set Cy with temporal constraints in the existing nodes.

According to the expansion strategy we apply the interval relation rule to the node vy as L(vg)
is empty. But since there is only one node, K(vg) does not get updated. Let the disjunctive normal
form of K(vg) = ¢ be 1 V...V ¢y, where ©; = @1 A ... Ain;, (n >1,1<i<nandn; >1). Since
M* = L], M* = pi[lo] for at least one value of i. So in Rule 2 we pick this value of 7, so that
L(vo) = {pi1; -, Pin, }-

Now, we claim that for each node v in G, there exists an interval .J, such that M* = L(v)[J,]
(Once we pick a witness J,,, it remains assigned to the node v until the tableau procedure termi-
nates.) We prove the claim by induction on the stage in tableau construction at which the node v
was created.

Base case:
Above we have shown that M* |= ¢;[Iy] for some value of i, and L(vo) = {@i1,...; Pin; }- S0, it
is trivial to see M* = L(vo)[lo]-

Inductive case:

Let w be a node in G such that p(w) = e. Then w must have been created by the existential
node expansion rule applied to a node v of which w is a successor node. After the node w has been
created, we apply the expansion strategy to the node w. So we first apply the interval relation rule.
Let us consider two cases:

i) Application of the interval relation rule adds no material to L(w) 3: Assume L(w) = {1}
where g = o1 A ... A¥on, (no > 1). In this case, L£(v) must contain £ = Jzx(e(x) AS(x,y) Al(x)Thk A
¥(x)), where 1 has the form 1o V...V, (I > 0). By the inductive hypothesis a witness J,, is defined
such that M* | L(v)[J,]. Let J,, be a witness for z. Thus, M* = ¢[Jy].

When the existential rule was applied to v, we set K(w) := ¢(z) and C := C U {by > by, ey <
€yv,(€w — by)Tk}. According to Rule 2 we select some of the disjunct of 1, and extend L(w) with
this disjunct. It is clear that g is the subformula which was selected. So, M* |= vo[J]. Hence,
M* = L(w)[Jw)-

i1) Application of the interval relation rule adds some material to L(w): Assume L(w) =
{0, ¥1, ..., Ym} where ¥; = i1 A oo A i, (0 < 4 < m and m; > 1), 1 has been added to
L(w) by applying the existential rule in v, and 1, ..., ¥, have been added to £(w) by applying the
interval relation rule to the node w. Above we have shown that M* |= tg[Jy].

According to the interval relation rule we guess the interval relation between w and any node in
G. Assume for any 1 < j < m 1; has been added to £(w) as a result of guessing the interval relation

3 Normally, if some material is added to K(w) as a result of applying the interval rule or the universal node
expansion rule, £(w) does get updated in Rule 2 of the expansion strategy. Rule 2 selects some disjunct
of this material, and updates £(w) with this disjunct. Here for our convenience we will say “a formula
1 is added to L(w) by applying the interval or universal rule” simply to express the following process:
“K(w) is updated as a result of applying the interval or universal rule. In Rule 2 1 is selected from the
material added to K(w). L(w) is updated with .”

between w and a node u;. Since K(w), and therefore £(w), has been updated, this relation must have
been “non-strict-during”. In this case, £(u;) must contain £ = V(e(z) A S(z,y) AN(x)Tk — P(x)),
where ¢ has the form ¢; V... V4;4; (I > 0). By the inductive hypothesis we have picked a witness
Ju,; such that M* |= L(u;)[Jy,]; thus M* |= £[Jy,]. We know that S(.J,, Ju,) because in the interval
rule we have guessed the relation between J,, and J,,as “non-strict-during” (As we can see in the
interval rule, C has been updated according to the corresponding non-deterministic choice of the
relation.) We also know that £(.J,,)Tk because we have selected the option 4i in the interval relation
rule, and set C := C U {(ew — by)7k} (Otherwise, (w) could not have been updated). Therefore,
M =[]

When the interval rule was applied to w, we set K(w) := K(w) A ¢(x). It is clear that 1, was
selected when the Rule 2 the expansion strategy was applied. Thus, for any 1 < j < m M* = ¢;[J,,].
Hence, M* = L(w)[Jw].

So, we have shown that once a node w is created, and the expansion strategy is applied, it is
true that M* = L(w)[J]. However, when new nodes are added to G, £(w) might get updated
through the application of the universal node expansion rule in these nodes. So, we must show that
whenever new material is added to L(w), M* = L(w)[J,] remains true.

Now, assume L(w) = {0, ---; Um, Um+t1, - Ompn } Where ¥; = i Ao A, (0 < i < m+nand
n; > 1), and ¥p41, ..., Wim4n have been added to L(w) by applying the universal node expansion
rule to some nodes in G. Above we have shown that M* = {¢o,..., ¥ }[Jw]. Assume for any
m+1 <k <m+mn, Y has been added to L(w) by applying the universal node expansion rule to
a node ug in G. In this case, L(uy) must contain & = Va(e(z) A S(z,y) A £(x)Tk — (z)), where
1 has the form ¢ V ... V¢4 (I > 0). By the inductive hypothesis we have picked a witness J,,
such that M* | L(ug)[Jy,]; thus M* = £[J,,]. We know that S(Jy, Jy,). We also know that
0(Jy)Tk because we have selected the option i of the universal rule, and set C := CU{(ey — by)7k}
(Otherwise, K(w) could not have been updated.) Therefore, M* = [J,,].

When the universal rule was applied to ug, we set K(w) := ¢(z). It is clear that ¢y was selected
when Rule 2 of the expansion strategy was applied. So, for any m +1 < k <m +n M* E ¢i[Jy].
Hence, M* = L(w)[Jy].

Therefore, we have proved that for each node v in G, there exists an interval J, such that
M* = L(0)[Ty]-

Meanwhile, we know the depth of the model M™* is at most of order |<,0|2 by the assumption.
Since for any node v in G M* = L(v)[J,], L cannot be contained in £(v). As we have a witness J,
for each node v, we must have a solution for C. Therefore, C must be satisfiable. Because none of
the conditions in Definition 9 holds, it follows that (G,C) is an open tableau.

4.5 Computational Complexity
Theorem 3. The satisfiability problem for EF is in NEXPTIME.

Proof. In Theorem 1 we show that the proposed method terminates. Now, we analyse its compu-
tational complexity. We now give a bound on the size of any tableau for ¢.

In any node v of G we convert K(v) into DNF, and in some cases conversion to DNF can
lead to an exponential explosion of the formula. However, in the node expansion strategy we non-
deterministically choose only one disjunct. Therefore, the out degree of any node is bounded by |¢|.
We also know that the depth of the longest path in the tableau is bounded by |<,0|2 by Lemma 2.

Thus, the size of the tableau is bounded by |<p|‘“p‘2 = 2l¢llog2lel So the tableau procedure builds a

tableau of size 2°(¢) for some fixed polynomial p. We can say that if an EF formula ¢ is satisfiable,
then the tableau procedure construct a graph, from which a satisfying model M is extracted, of
size bounded by 2P(#D for some fixed polynomial p.

5 Conclusion and Future Work

In this paper we studied a new decidable fragment of first-order logic which is defined over interval
structures. We called this new logic EF. EF is interpreted over a linear time flow with only finitely
many events able to occur over a bounded-time interval. We showed that the depth of an EF model
is polynomially bounded on the length of a given formula. We proved this by finding a reduced
satisfying model, which has a polynomial depth bound on the size of the formula. This result
played a key role in determining a limit on the size of a satisfying model.

We also proposed a terminating tableau system for EF, thus showing that its satisfiability
problem is decidable. We, indeed, provided a complexity bound for satisfiability, showing that this
problem can be solved in NEXPTIME. This is actually a common result for two variable fragments
of first-order logic. This result shows that even a simple decidable fragment of first-order logic has
NEXPTIME complexity.

We already know that fragments of first-order logic are closely related to modal logics; namely
they extend modal logics. As a FOL fragment which was defined for specific purpose, the logic EF
can be a general framework for event-based propositional interval logics, such as the ones defined
in (Pratt-Hartmann, 2005; Konur, 2008). Such logics are decidable, and have a potential to be used
in expressing the semantics of natural language constructions and specifying some properties of
event-based real-time systems.

The results of this paper can be further developed in several directions. Some of the open
problems are: finding a lower bound for the complexity, proving whether the satisfiability problem
is NEXPTIME-complete, finding a finite axiomatisation for the logic EF, comparing expressive
power of EF with other interval logics, extending EF with state types, notions of duration and
accumulation and implementing the tableau method to have an automatic decision procedure.

Acknowledgement This work is partially funded by EPSRC under the Verifying Interoper-
ability Requirements in Pervasive Systems (EP/F033567) project. The author would like to thank
anonymous reviewers for their very helpful comments.

References

Andreka, H., van Benthem, J. & Nemeti, I. (1996). Modal languges and Bounded Fragments of Predicate
Logic. Research Report ML-96-03, TILC.

Dechter, R., Meiri, I. & Pearl, J. (1991). Temporal Constraint Networks. Artificial Intelligence, 49, 61-95.

Goranko, V., Montanari, A. & Sciavicco, G. (2003). Propositional Interval Neighborhood Temporal Logics.
Journal of Universal Computer Science, 9(9):1137-1167.

Goranko, V., Montanari, A., Sciavicco, G. & Sala, P. (2006). A General Tableau Method for Propositional
Interval Temporal Logics: Theory and Implementation. Journal of Applied Logic, 4(3):305-330.

Gréadel, E. (1999). On the Restraining Power of Guards. Journal of Symbolic Logic, 64:1719-1742.

Gréadel, E., Kolaitis, P. & Vardi, M. (1997). On the Decision Problem for Two-variable First-order logic.
Bulletin of Symbolic Logic 3, pp. 53-69.

Gréadel, E. & Otto, M. (1999). On Logics with Two Variables. Theoretical Computer Science, vol. 224, pp.
73-113.

Halpern, J. Y. & Shoham, Y. (1991). A Propositional Modal Logic of Time Intervals. Journal of the ACM,
vol. 38, num. 4, pp. 935-962.

Konur, S. (2008). An Interval Logic for Natural Language Semantics. Advances in Modal Logic, pp. 177-191.

Mortimer, M. (1975). On Languages with Two Variables. Zeitschr. f. math. Logik u. Grundlagen d. Math.
21, pp. 135-140.

Moszkowski, B. (1983). Reasoning about Digital Circuits. PhD Thesis, Department of Computer Science,
Stanford University.

Otto, M. (2001). Two Variable First-Order Logic over Ordered Domains. Journal of Symbolic Logic.

Pratt-Hartmann, I. (2005). Temporal Prepositions and Their Logic. Artificial Intelligence, 166(1-2), pp.
1-36.

van Benthem, J. (1997). Dynamic Bits and Pieces. Research Report, ILLC.

Venema, Y. (1991). A Modal Logic for Choppping Intervals. Journal of Logic and Computation, vol. 1, pp.
453-476.

