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? Journal of the American Statistical Association 
June 1971, Volume 66, Number 334 

Theory and Methods Section 

A Simple Method for Approximating the Variance 
of a Complicated Estimate 

RALPH S. WOODRUFF* 

A method often used for computing the variance of a complicated sample esti- 
mate is to first apply the Taylor approximation to reduce non-linear forms of the 
variables to linear form. This article shows the useful results which can be ob- 
tained by merely reversing the order between selection units and component 
variables in this linear expression. The method is completely general (assuming 
that the samples are large enough to justify using the Taylor approximation) 
involving no restrictions on (a) the form of the estimate, (b) the number of random 
variables involved in the estimate, (c) the type, complexity or number of the 
sample designs involved in the estimate. 

1. THE PROBLEM 

The complicated estimate for which a variance is de- 
sired will be called F. F is a function of M estimated totals 
(Xl I X2., . * Xi., * * XM.) which are derived from 
a sample survey (or surveys). 

The usual so-called large samnple approximation to the 
variance of F is 

axi. 
where the partial derivatives (aF/aXi.) are evaluated at 
expected values. The estimate in the brackets is the first- 
order Taylor approximation of the deviation of F from 
its expected value.' It is assumed that we are dealing 
with sample sizes large enough that the remaining terms 
of the Taylor approximation can be neglected.2 

The usual method of evaluatinig the variance approxi- 
mation inl (1.1) is to expand the squared sum into M 
squares (variances) anid M (M -1) cross-products (covar- 
iances). This paper will show that the evaluation of the 
variance can be greatly simplified by reordering the com- 
ponents of this sum before taking squares aind cross- 
products. 

To explain the method, it is necessary to introduce 
notation which provides for identifying both the type of 
variate and the random draw (selection unit). 
Let 

xq (referred to as the uniweighted draw-variate) in- 
dicate the (unweighted) value of the ith type of 
variate for the jth random draw,3 

* Ralph S. Woodruff is assistant chief for research and methodology, Business 
Divisioin, Bureau of the Census, Washingtotn, D.C. 

I Equation (1.1) is a well-known and widely-used result in the samplinig thleory. 
For example, see [9, p. 5851. 

2 Hsu [51 proves the validity of these approxirnationis when the samples becosuie 
indefinitely large. There remains the question as to how "large' a sample must be 
in practice to justify the use of these approximations. For a discussion of this point 
as applied to ratio and regression estimates, see [2, pp. 159-60, 196-8]. 

5 In practice, the random draws may be the results of a complicated operation 

P1 inidicate the probability of selection for the jth 
random draw,4 

Xij in-dicate the value of the weighted random-diaw- 
variate (xjj/Pj), 

Xi., i. indicate estimated totals anid meains iespectively 
(for the ith type of variate) derived from sample 
obseirvationis. 

When taking expected values, we will need to refer to 
members of the population (i.e., selection units of the 
same form as the random draws) and means and totals 
derived from the populatioi. For this purpose, the symbol 
Y will be used. Thus Yij inidicates the value of the ith 
type of variate tot the jth selectioin uInit in the popula- 
tion. 

Ani example is provided to illustrate the procedur e for 
appioximating the varianee of a complicated estimate. 
The example used inlvolves a stratified sample of business 
establishmenits (a simple ralidom sample of nh out of Nh 

establishments is drawn without replaceinent from each 
R strata). Note that the inumber of ranidom draws (n in 
the geneial niotation) becomes R 1 nh in this example, 
and that the genieralized symbol j for a given random 
draw is defitned by the combiniatioiu of the syimbols h and 
kc (for draw withini stratum). 

The probability of each ranidomi draw (Pj in the gen- 
eral niotationi) becomes nh/Nh in this exaimiple. Each busi- 
niess establishmenit drawni inito the sample is canivassed 
for its sales (x1) aind its inventory (X2) where the subscripts 
I and 2 represent the subscript i of the genieral niotation 
which denotes the type of variate. The complicated esti- 
mate F for which the variance is to be approximated is 
the sales-iinvenitory ratio computed over all strata so that: 

R nh Nh 
Eh=l Ek~:_l Xlhlk 

R. I nh {Nh \ 
Eh=4 k=1 - X2hk) 

nhl 

where parentheses are used to identify the weighted draw- 
variates. 

involving several sets of inotation. For example, a given ranidom draw might be the 
result of the Ith area sample segment draw from the kth primary sampling unit in 
the hth stratum of the gth sample design. However, for the purpose of simple presen- 
tation we will assume that all the random draws involved in F are reordered into a 
single numbering system (1, 2, * * *, j, * * *, n). 

4 This probability should be computed through all stages of sampling. 

411 
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2. PROCEDURE FOR APPROXIMATING THE VARIANCE 
OF THE COMPLICATED ESTIMATE 

The suggested procedure is a generalization of the prin- 
ciple used by Keyfitz [6] to obtain variances for specific 
types of estimates derived from specific sample designs.5 
It is explained as a series of steps. 

Step 1. Express the estimate F in terms of the weighted 
draw-variates.6 

In the generalized notation: 

Express F as a function of Xlu, , , XMn. 

In the example: 
>R 1 n h X 

F h= k= Xlhk F -=Z~=1 n X 
Eh=l k=l 2hk 

where 

Nh 
Xlhk = - Xlhk. 

nh 

Step 2. Take the partial derivative of F with respect to 
each weighted draw-variate. Evaluate this partial deriva- 
tive at expected values and then multiply by the weighted 
draw-variate. Sum over all weighted draw-variates. Call 
the result of this operation F'. 

In the generalized notation compute: 

F' = Ei= = aXij (2.1) 

where aF/aXij is evaluated at expected values. 
In the example: 

F = EhZ k-1 Xlhk 
Y2 ~~~~(2. 1E) 

ER 1Enh, Yi. 
- h k=l y 2hk. 

Step 3. Reverse the order of summation in (2.1) so that 
subtotals for each draw are obtained. 
In the generalized notation rearrange F' so that 

F'= J 1 Uj where Uj is the weighted draw subtotal, 
i.e., 

Uj t=ZAI- _ X_. (2.2) 

In the example: 

F = k=1 Ek= Uhk (2.2E) 

where 

U Nh lXlhk Y1 . 
Uhk = -ty - y2 X2hkJ 

nhY2. 
Y2 ) 

6 These principles were also used by Kish in [81 to find variances of indexes from 
complicated samples. 

6 In some complicated estimates the procedure would apply without weighting 
the draw-variates. H4owever, since the weights are not always uniform and in some 
sample designs inay be even random variables, they are included in the generalized 
procemlure. 

Step 4. Find the variance of F' as expressed in (2.2). 
In the example, it was specified that the sample design 

consisted of a simple random sample of nh business es- 
tablishments drawn without replacement from a popula- 
tion of Nh in each of R strata. The variance of the sum 

F = Zh= k=1 Uhk 

with such a sampling system is 

E(F' -EF')2 
Nh ) 

R /Nh- fnh Ekk=1 (Vhk - Vh)2 (2.3E) 
\Nh / Nh - 1 

(The symbol V is used to denote population values cor- 
responding to the random variates U.) 

Step 5. Substitute for the V values in the variance de- 
veloped in Step 4. 

In the example: 

2 2 1 R (Nh- nh) Nh2 
Y2 2E (Nh) nh 

Ek=1 Ylhk - - Y2hk - Y1h + Y2h) 

Nh-1 

3. PROOF THAT THE SUGGESTED PROCEDURE IS IDENTICAL 
WITH USUAL LARGE SAMPLE APPROXIMATION 

TO VARIANCE OF NON-LINEAR ESTIMATES 
If we express the variance approximation from Section 

2 as 

E(F' -EF)2 

/ X-M n aF M aF 
-E V Lj==' d X - E j=1 Zj=1 , x ii) 

and then sum over j within the bracketing we obtain (1.1) 
because aF/aXjj has the same value for all j and is equal 
to aF/aXi. 

4. ESTIMATION OF THE VARIANCE OF A COMPLICATED 
ESTIMATE FROM THE SAMPLE ITSELF 

If the sampling system involves two or more draws per 
stratum, the variance of a complicated estimate can be 
easily estimated from the sample by using the values of 
Uhk and Uh in the usual estimating formulas. (See (4. 1E) 
below for application of this principle to the example). 
If there is only one draw per stratum made, then the 
variance is approximated from the sample by collapsing 
strata (see [4, p. 400]). If multi-stage sampling is used, 
variance among weighted values at the first stage will 
produce the correct variance (but not allocated to stages) 
except for first-stage finite multipliers.7 

A special problem arises in the estimationi of the var- 
iance of a complicated estimate from the sample itself 

7 If this approximation is used, the Ur values (draw subtotals) used in 5ection 2 
should be summarized at the first stage. There is no theoretical or practical diffi- 
cu1lty in obtaining values of U at the first stage since they are simple sums of the 
Uj values at the later stages. 
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because the formula calls for evaluating the partial deriva- 
tives at the expected values of the variables. Since these 
expected values are ordinarily not available, estimates of 
the variables available from the sample are substituted 
in the formulas for the expected values. 

In the example given, the variance (S2F') would be 
estimated from the sample in the following way: 

S2 R Nh -nh k_1 ( Uhk - Uh)2 
S2F' = (h=V Nh nh nh 

or substituting for Uhk and Uh and using values derived 
from the sample to evaluate the partial derivatives, we 
obtain as an estimate from the sample of the variance 
shown in (2.4E): 

1 X? (Nh- nh) Nh2 
S2F'Z= 

S2FS (X2) 2 E ^=l(Nh) nh 

Ek=1 (l hk - X-2hk Xlh + X-X2h) 

nh -1 

5. RELATIONSHIP OF THE PROPOSED SYSTEM OF VARIANCE 
COMPUTATION TO THE REPLICATION OR RANDOM- 

PART METHOD OF VARIANCE COMPUTATION 

In the random-part or replication method of variance 
computation, the sampling process, regardless of how com- 
plicated, is simply repeated (usually without replace- 
ment) a certain number of times. The applicable variance 
then is that of simple random sampling without replace- 
ment (see [3]). 

Let Xi be the weighted estimated total for the jth repli- 
cation, n be the number of replications and f be the 
sampling fraction (no i subscript is used since we are 
referring to a single type of variate). 

Then X (the estimated total) = Ej=, Xj. 
The variance of X can be estimated from the sample 

from 

(1-f) -L 1 (xj-X)2 (5.1) 
n-l 

where X is the average value per replication as estimated 
from the sample. 

There is no doubt that this scheme reduces the com- 
plexity of variance computation (sometimes, however, 
with a loss of efficiency over more complicated designs) 
and for some designs (for example, systematic sampling) 
it is the only way to obtain an unbiased estimate of the 
variance. 

The proposed system of variance computation for 
complicated estimates is not a competitor with the repli- 
cation system of variance computation but rather it is 
supplementary to the replication method. 

Let F stand for a complicated estimate derived fronm a 
replicated sampling system. The variance form 

(1Z-~F, -1 (F) 2 

(n- 1) 

is often used as an approximation to the variance of F. 
However, this form is applicable only if 

F = n 

where Fj is an estimate for the jth replication of the same 
form as F. To illustrate this point with a simple example 
consider the ratio estimate between two variables X1. and 
X2. both of which are derived from the same replicated 
sampling system. 

If the estimate T were derived from 

j= 1 Tj 

n 

where Tj is the simple ratio 

xlj 

X2j 

from a single random group, then the variance form 

1 ~~(n) n 

-(1-f) 1 (T -T)2 

would be applicable. It is unlikely, however, that this 
estimate would be used because of the additional bias 
hazard involved,8 and the probable form of estimate 
would be 

X1. _ }~=1 X1J Tr n v 

XI). Fj=1x2j 

In this case the approximation 

Ui = (- -m 

should be substituted for Xj in the variance formula (5.1). 
The variance of a complicated estimate derived from a 

replicated sampling system can be estimated from 

S2F (1 -f) - 2 

where 

MO~F 
= i= Xij, 

where the factor aF/aXi; is approximated (where neces- 
sary) by usin-g estimates derived from all random groups. 
This combination of replicated sampling with the pro- 
posed method for approximating variances for compli- 
cated estimates provides the maximum simplicity in var- 
iance computation. 
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