
A Quantum Diffie-Hellman Protocol

Pranav Subramaniam
University of Nebraska, Omaha, NE

Email: submarine3.14159@gmail.com

Abhishek Parakh
Nebraska University Center for Information Assurance

University of Nebraska, Omaha, NE
Email: aparakh@unomaha.edu

Abstract—In this paper, a quantum version of Diffie-Hellman
key agreement protocol is developed using the commutative
rotation transformations.

I. INTRODUCTION

Cryptographic protocols play an important role in the
secure sharing of information over a network. Protocols such
as Diffie-Hellman (DH) key agreement, ElGamal, and the RSA
encryption schemes [1], [2], [3] routinely provide methods
for secure key agreement or exchanges for many applications
over the Internet. The security provided by these protocols
is based on mathematical assumptions such as difficulty of
factoring large numbers or determining the discrete logarithm
[4]. However, as shown by Peter Shor in [5], these can be
easily solved by using quantum algorithms. Hence the security
provided by these protocols may be short-lived with the advent
of quantum computers.

In this paper, we develop a quantum version of the Diffie-
Hellman (DH) protocol (QDH(t)), where t is the number of
computational bases used in the protocol. Analogous to the
original protocol, QDH(t) is also a key agreement protocol
where neither of the parties determines the encryption key in
advance and both parties have equal amounts of input into the
final encryption key. In each protocol step, a computational
basis is randomly and independently chosen by the two parties
from the available t bases. The current qubit of the sequence is
rotated according to the chosen basis by each and exchanged
over a quantum channel. The received qubits are further
manipulated by rotating them and measured to retrieve the
key bit.

Modular exponentiations performed in the Diffie-Hellman
protocol are mapped to the commutative rotation operations
over qubits. This also enables the proposed protocol to detect
eavesdropping and provide additional security in comparison
to the DH protocol. The probability of detecting Eve using
a given number of exchanges and the number of exchanges
needed to detect Eve with a given probability are determined
to analyze the performance of the QDH(t) protocol. We also
analyze the effect of the number of available bases, t, on the
probability of detecting Eve for a given number of exchanges
and the number of exchanges needed to detect Eve with a given
probability. The performance of the protocol is compared with
that of the BB84 protocol and it is shown that the QDH(t)
protocol has a higher probability of detecting Eve for a given
number of exchanges and bases t.

The proposed protocol enables Alice and Bob to input
equal amounts of randomness into the final encryption key.
Further, Diffie-Hellman type of key exchange provides oppor-

tunity to develop perfect forward secrecy [6] using quantum
cryptography.

II. THE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL

Diffie and Hellman in their seminal work [7] developed a
key agreement scheme between parties Alice and Bob over an
insecure channel. Before the actual key exchange begins, both
parties agree on a prime number p and its primitive root g.
These are public knowledge.

1) Alice chooses a secret random number a from Zp,
computes ga mod p, and sends the result to Bob,

2) Bob picks secret random number b from Zp, com-
putes gb mod p, and sends the result to Alice,

3) On receipt of the transmission, Alice obtain the key,
K = (gb)a = gba mod p by using her number a
and Bob obtains the exact same key K = (ga)b =
gab mod p computed by Bob using his number b on
receiving data from Alice.

The security of the Diffie-Hellman protocol is based on
how difficult it is for an eavesdropper, Eve, to construct the
key using the public information exchanged between Alice
and Bob. Eve has to find Alice’s secret number a and/or
Bob’s secret number b using the prime number p, g, ga mod
p, and gb mod p that she can obtain by intercepting their
communications. This is also known as the discrete logarithm
problem. However, discrete logarithm is a hard problem and
is considered infeasible to solve using current computing
technology when the prime p has more than 300 decimal digits
and a and b have more than 100 decimal digits.

III. THE PROPOSED QUANTUM DIFFIE-HELLMAN
PROTOCOL

The QDH(t) is a key agreement protocol wherein Alice
and Bob derive a shared secret key based on the information
obtained from each other. In QDH(t), Alice and Bob each
maintain a sequence of qubits, which are manipulated using
the rotation quantum operators and exchanged over a quantum
channel. Each qubit upon reception at each end is further
manipulated, measured, and their values are noted. In the
protocol, QDH(t), the input t is the number of bases available
to Alice and Bob to measure qubits in each step.

Public agreement: Alice and Bob agree on the set of t bases,
B1, B2, . . . , Bt, t > 1, to use and the number of qubits to be
exchanged, m. The value of m is dependent on the desired
key length and the number of qubits that will be discarded
during detection of Eve’s presence. Further, they agree on
initial state of qubit |ψ〉 = |0〉 that will be manipulated and



exchanged.

Phase 1:

• Alice independently and randomly chooses m bases
Ba

1 , B
a
2 , . . . , B

a
m such that Ba

i ∈ {B1, B2, . . . , Bt}.
• She also generates a random and uniform bit sequence

of length m: a1, a2, . . . , am.

• Similarly, Bob independently and randomly
chooses m bases Bb

1, B
b
2, . . . , B

b
m such that

Bb
i ∈ {B1, B2, . . . , Bt}.

• Bob also generates a random and uniform bit sequence
of length m: b1, b2, . . . , bm.

From above, for every basis Bi, there are two possi-
ble rotation transformations R(θ0) and R(θ1) corresponding
to bit 0 and bit 1, respectively. Therefore we have θ1 =
θ0 + 90◦. For example, possible choices for bases include
{0◦, 90◦}, {30◦, 120◦}, {41◦, 151◦} and so on.

Therefore, to encode bit 0 in basis {30, 120} one could
apply transformation R(30◦) to |ψ〉 = |0〉. Similarly, in
order to encode bit 1 in the same basis one could apply
transformation R(120◦) to |ψ〉 = |0〉.

Transmission of qubits:

1) Alice encodes ai in base Ba
i by applying Ua

i to |0〉,
where Ua

i = R(θai) and sends the qubit to Bob.
2) Similarly Bob encodes bi in base Bb

i by applying U b
i

to |0〉, where U b
i = R(θbi) and sends the qubit to

Alice.

Measurements:

Upon receiving the qubit from the other party, Alice and
Bob perform the following operations:

1) Alice upon receiving the qubit from Bob, applies two
rotation transformations: first she applies her Ua

i to
the qubit and then she applies Uslack(Ba

i
) to the qubit.

2) Alice measures the received qubit in basis Ba
i and

records the resulting bit as ki.
3) Similarly, Bob upon receiving the qubit from Alice,

applies two rotation transformations: first he applies
his U b

i to the qubit and then he applies Uslack(Bb
i
) to

the qubit.
4) Bob measures the received qubit in basis Bb

i and
records the resulting bit as k′i.

Where Uslack(Bj
i
) is defined as R(90− θ0) for that basis.

For example, for basis {30, 120} the slack rotation is R(90−
30) = R(60).

a) Phase 2:: Let K = {k1, k2, . . . , km} and K ′ =
{k′1, k′2, . . . , k′m} be the sequence of random bits obtained by
Alice and Bob, respectively. The following steps are performed
to derive common shared key.

1) Alice and Bob announce their respective sequence
of bases Ba

i s and Bb
i s to each other over the public

channel.

2) For each exchange i, where Ba
i 6= Bb

i , discard the
values ki and k′i from K and K ′.

3) Alice and Bob randomly choose k bits from the
remaining set of bits and compare their values. If
Eve has interfered with their transmissions, they will
find error and can discard the key.

The size of the subset k and the number of bits that must
match vary depending on the efficiency and the security of the
protocol.

IV. CONCLUSIONS

A new quantum Diffie-Hellman protocol is presented.
The protocol takes the number of computational bases as a
parameter and exchanges a pair of sequences of qubits between
two parties over a quantum channel. Commutative quantum
rotation operators are used by both parties to derive shared
secret key. In our future work, we will study the security
provided by the protocol by comparing it to the well-known
BB84 protocol and implement perfect forward secrecy using
the proposed protocol.
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