Volume - Shell Method

If $f(x) \geq 0$, then the volume of the object generated by revolving the area between $f(x)$ and $g(x)$ about the line $x=k$ from $x=$ a to $x=b$ is given by

$$
V=2 \pi \int_{a}^{b}(x-k) h(x) d x \text { when } k \leq a<b \quad(\text { Use }(\mathrm{k}-\mathrm{x}) \text { if } a<b \leq k)
$$

Where $h(x)$ is the distance between $f(x)$ and $g(x)$ at location x.

$$
h(x)=f(x)-g(x) \text { if } f(x)>g(x) \quad \text { or } \quad h(x)=g(x)-f(x) \text { if } f(x)<g(x)
$$

Similarly, If $g(y) \geq 0$ then the volume of the object generated by revolving the area between $f(y)$ and $g(y)$ about the line $y=k$ from $y=a$ to $y=b$ is given by

$$
\left.V=2 \pi \int_{a}^{b}(y-k) h(y) d y \text { when } k \leq a<b \quad \text { (Use }(\mathrm{k}-\mathrm{y}) \text { if } a<b \leq k\right)
$$

Where $h(y)$ is the distance between $f(y)$ and $g(y)$ at location y.

Examples

1) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x-4, y=0$, and $x=3$ about the X axis.
2) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x-4, y=0$, and $x=3$ about the Y axis.
3) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x-4, y=0$, and $x=3$ about the line $x=4$.
4) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x-4, y=0$, and $x=3$ about the line $y=-3$.
5) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x^{2}-3, y=-3$, and $x=2$ about the line $x=-1$.
6) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x^{2}-3, y=-3$, and $x=2$ about the line $y=7$.
7) Use the Disk/ Washer method to find the volume of the solid created by rotating the region bounded by $y=2 x, y=-4$, $x=1$, and $x=3$ about the Y axis.
8) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=2 x, y=-4$, $x=1$, and $x=3$ about the Y axis.
9) Use the Shell method to find the volume of the solid created by rotating the region bounded by $y=x^{2}+3$ and $y=7$ about the line $x=4$.

Solutions

1) $2 \pi \int_{0}^{2} y\left(3-\frac{y+4}{2}\right) d y=\frac{4 \pi}{3}$
2) $2 \pi \int_{2}^{3} x(2 x-4) d x=\frac{16 \pi}{3}$
3) $2 \pi \int_{2}^{3}(4-x)(2 x-4) d x=\frac{8 \pi}{3}$
4) $2 \pi \int_{0}^{2}(y+3)\left(3-\frac{y+4}{2}\right) d y=\frac{22 \pi}{3}$
5) $2 \pi \int_{0}^{2}(x+1)\left[\left(2 x^{2}-3\right)+3\right] d x=\frac{80 \pi}{3}$
6) $2 \pi \int_{-3}^{5}\left[(7-y)\left(2-\sqrt{\frac{y+3}{2}}\right)\right] d y=\frac{1216 \pi}{15}$
7) $\pi \int_{-4}^{2}\left(3^{2}-1^{2}\right) d y+\pi \int_{2}^{6}\left[3^{2}-\left(\frac{y}{2}\right)^{2}\right] d y=\frac{200 \pi}{3}$
8) $2 \pi \int_{0}^{2} x(2 x+4) d x=\frac{200 \pi}{3}$
9) $2 \pi \int_{-2}^{2}(4-x)\left(7-\left(x^{2}+3\right)\right) d x=\frac{256 \pi}{3}$
