
Actes, Congrès intern. Math., 1970. Tome 2, p. 73 à 77. 

DIFFERENTIABLE ACTIONS 

OF COMPACT CONNECTED LIE GROUP ON R" 

by Wu-Chung HSIANG (1> 

I. Introduction. 

In this lecture, I shall summarize some joint work on differentiable actions 
(unpublished yet) with my brother Wu-yi Hsiang. Let ^ : G x Rn -* Rn be a 
differentiable action of a compact connected Lie group G on Rn. ^ defines a 
representation of G into Diff (Rn) which we also denote by ^ : G -> Diff (Rn). 
For a fixed inner product structure on Rn

9 we have an inclusion SO(n) C Diff (Rn\ 
We say that ^ is linear if, up to conjugacy in Diff (Rn), if factors through SO(n). 
Even though most actions are non-linear, we may still find many features of an 
action resembling a linear one. Therefore, we shall follow the following guiding 
principle in our study : Compare the behaviour of general differentiable actions 
with that of linear ones. At the end, I shall also discuss actions on homotopy 
spheres. Although the result summarized here are extensions of [2*>H], the 
proofs are actually independent of the previous works. We make use of the weight 
system of [9] and the group generated by differentiable reflections [6] as our new 
ingredients. 

II. Geometric weight system and a fundamental fixed point theorem : 

Let * be a differentiable action of a compact connected Lie group G on a 
Q-acyclic manifold X. Let T be a fixed maximal torus of G and it follows from 
P.A. Smith theory [1] that the fixed point set of T, F(T,X)=M is also 
Q-acyclic and consequently, connected. Hence, the local representation(2), (ty\T)x9 

is independent of the choice of x. It is an invariant of >£, and shall denote it by 
Q,(ty). We may split the representation of T as a sum of 2-dim representations 
and some trivial representations. As usual, we write a non-trivail 2-dim repre
sentation..of T as exp (± 2iair) and identify the corresponding weights in fì(^) 
by ± a. We shall identify the trivial representations with the zero weights in fì(^) 
and denote the subset of non-zero weight in SlÇif) by &l'(W). fì(^) is symmetric 
with respect to W(G) = N(T)/T the Weyl group of G. The weights in ß ' ( ^ ) 
appear in pairs ± a. fì(^) was first introduced in [9] for studying effective ac
tions of Spin (m) on acyclic manifolds, and was used to determine the identity 

(1) Partially supported by NSF Grant GP-9452. 

(2) After we give an invariant metric on X, the local representation (SP\X)X is just the 
induced action of T on the tangent space at x. 
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component of the principal isotropy subgroup(l) of a classical group acting on 
acyclic manifolds [ 2 ^ ] . Sl^) is not a complete invariant of ^ , but it is a rather 
good book-keeping device. Our first problem is to find possible patterns of fì(^), 
and then determine whether it resembles the weight of some linear representation 
of Rn. If G itself has a fixed point, fì(^) coïncides with the character of the lo
cal representation <£ of G at the fixed point. But unfortunately, G does not 
always have a fixed point [21], [9]. So we would like to find a large maximal 
rank subgroup K such that ^ 1 ^ has fixed points. For this purpose, let us intro
duce the following subsets of the root system A(G) of G relative to fl(G) : Sy(^ ) 
is the subset of a in A(G) such that the integral multiples of a in ß'OP) form 
exactly a /'-string, i.e., ± a, ± 2 a , . . . , ± / a , Note that most of Hf(^) are empty, 
2 0 W = a G A(G), a G n ' ( ^ ) and Z ^ ) is the subset of a in A OF) such 
that n ' ( ^ ) contains only one pair of integral multiples of a, ± a. 

THEOREM 1. — Let X be a Z2-acyclic manifold (2) and & be a differentiable 
action of a compact connected Lie group G on X. Then, there is a maximal 
rank subgroup K of G such that F(K, X) is also Z2-acyclic and 

Theorem 1 seems technical, but it is rather strong. As we shall see in the next 
section, it gives a strong hold of the principal isotropy subgroup of the action. 
The following results are also consequences of Theorem 1. (A) If ^ has at most 3 
types of orbits(3), then G has a fixed point. One may eventually classify actions 
on Rn with up to 3 types of orbits. (B) If the dimension of the orbit space of 
^ is less then or equal to 6, then G has a fixed point(4). Therefore, we shall 
call Theorem 1 the fundamental fixed point theorem. It was proved by a combi
nation of weight system, the fixed point theorem of differentiable reflections 
and an analysis of SO(3) actions on Z2-acyclic manifolds. ~~ 

III. Determination of principal isotropy subgroups and a reduction theorem. 

For a differentiable action ^ of G on a manifold M, there is an absolute mi
nimum among the conjugate classes of isotropy subgroups under the partial or
dering by inclusion. Denite it by (H^). For H^E ( i /^), G/H^ is called the principal 
orbit of \£. The Montgomery-Samelson-Yang theorem [13] [14] asserts that the 
union of all principal orbits in M is an everywhere dense open submanifold. 
From [2^] [3], we see that (H9) has a strong influence on other isotropy subgroup 
classes and it is desirable to determine (H^). We say that (H^) is non-trivial if 

(1) For the definition of principal isotropy subgroups, see § III. 
(2) Z2-acyclicity implies Q-acyclicity. 

(3) I. e., there are at most three conjugate classes of isotropy subgroups. For results on 
actions with up to 2 types of orbits, see [I, Ch. XIV]. 

(4) Montgomery-Samelson-Yang had results for actions with the orbit space of the dim 
less or equal to 2 [15]. 
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Hy is not equal to the kernel of the representation ^ : G -* Diff (M). For deter
mining (Hy) of a differentiable action M* of G on an acyclic manifold, it would 
be desirable, of course, if G had a fixed point whenever (H^ ) was non-trivial. 
Then the classification of (H^) would be reduced to the linear actions. Unfor
tunately, there are actions of F4 on euclidean spaces with (Spin (5)) and (Spin (2)) 
as the principal isotropy subgroups without a fixed point. So, we can only expect 
the next best thing. 

THEOREM 2. - Let ^ be a differentiable action of a simple compact connected 
Lie group G on Rn. Suppose that (H^) is non-trivial. Then, we have either 

(1) F(G,Rn) is l2-acyclic, or 

(2) G = F 4 , ( # * ) = (Spin (5)) onrf 

n ' (¥ ) = 2 . j ^ 0 1 ± e 2 ± e 3 ± 0 4 ) , ± d 1 9 ± e 2 9 ± e 3 9 ± e A \ i or 

(3) G = F,9(H^) = (Spin (2)) and 

1 
ft ' ( * ) = 3- j - ( ± 0 , 1 * 2 * 63 ± * 4 ) , ± * l f ± 0a, ± ö3 , ± 04 J 

In fact, the cases (2), (3) do occur. 
We can extend the result of Theorem 2 to semi-simple connected compact 

Lie groups, but the statement becomes a little technical due to the possible 
normal factors of F4-type. However, we can still show that for a differentiable 
action ^ of a compact connected Lie group G on Rn, if (H^) is not-trivial, then 
there is a linear representation <ï> such that (H$) = (H^). If G is simple, it is a 
consequence of Theorem 2 that we may choose 3> such that (H# ) = (H^ ) and 
£2'(4>) = ß'(^). In any case, we complete the determination of principal isotropy 
subgroups of actions on Rn. (Cf. [2^] [7] [12]). The basic reason why we can 
do this is because of the fundamental fixed point theorem (Theorem 1). 

Of course, we recover all the regularity theorems of [2*>H] for euclidean 
spaces as we did in [2^]. In fact, we have the following reduction theorem mo
tivated by [21], [10], [11]. 

THEOREM 3. — Let ^ be a differentiable action of a compact connected Lie 
group G on Rn. Let H^ be a fixed principal isotropy subgroup, i.e., a fixed 
element in (H^). Set W(V) = Af (#*)/#*. Then V induces a differentiable action 
0> of W(&) on M = F(H^9 R

n) and $ determines V. 

For example, if H^ is a maximal torus of G, then M is Z-acyclic and WQif) = W(G) 
acts on M as a group generated by differentiable reflections. Using [6], we have a 
complete understanding of this case. In fact, if G is a classical group, then it follows 
from Theorem 2 that either ^ is a regular action in the sense of [2^], [11] or 
the induced action 4> is generated by reflections. For this case, we also have a 
fairly good understanding by [2*> H] [6]. 
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IV. Concluding Remarks. 

When we started our work [21], we made use of the dimension restriction of 
the total space relative to the group and the property of 'vanishing first Pontrjagin 
class' to nail down the identity components of the isotropy subgroups. We then 
applied P.A. Smith theory and a formula of Borei [I, pp. 175-179] to get the 
structure of isotropy subgroups. Under this approach, euclidean space and ho
motopy spheres are completely parallel. But now, we use weight system and the 
group generated by reflections as our tools. They depend on the fact that the 
fixed point set of the restriction of the action to a maximal torus is acyclic. The 
situation becomes somewhat different for these two cases. However, it seems to 
us that we still have all the parallel results if we use Borei's formula quoted above 
carefully and systematically. The interest in working out the homotopy sphere 
case is because of the existence of various differentiable structure on spheres. 
One expects to have more refined and interesting results on the 'degree of 
symmetry of spheres' [4] [5] [8] when the corresponding results for spheres are 
obtained. 

Finally, let us pose two rather important problems from the present point 
of view : 

PROBLEM 1. - For a given differentiable action M* of G on Rn, is there a linear 
representation $ such that ft'($) = fl'(^) ? 

PROBLEM 2. — Classify all the differentiable actions of SO(3)9 Sp(l) on Rn 

and write down their weight system. 
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