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Abstract. The IEEE 802.11b standard employs a data security mecha-
nism known as Wired Equivalent Privacy (WEP). WEP uses RC4 stream
cipher for its data encryption and CRC-32 to check its message integrity.
Recent research shows that WEP is not secure as it does not use RC4
and CRC-32 correctly. The latest IEEE 802.11i draft uses a new keyed
hash function, called Michael, as the message integrity code. This pa-
per describes some properties and weaknesses of Michael. We provide a
necessary and sufficient condition for finding collisions of Michael. Our
observation reveals that the collision status of Michael only depends on
the second last block message and the output of the block function in the
third last round. We show that Michael is not collision-free by providing
a method to find collisions of this keyed hash function. Moreover, we
develop a simple method to find fixed points of Michael, and our results
demonstrate that the percentage of the existence of the fixed points is
extremely high based on our randomly chosen samples. If the output of
the block function in any round is equal to any of these fixed points, a
packet forgery attack could be mounted against Michael.

1 Introduction

Wireless networks and mobile devices provide ubiquitous computing en-
vironments to users. Based on specific transmissions mediums, wireless
networks play an important role in cyber world. Along with its popular-
ity, wireless connectivity brings new problems as security issues need to
be considered.

Wireless devices based on IEEE 802.11b standard [3] are widely in use
nowadays. The IEEE 802.11b defines an encryption scheme called Wired
Equivalent Privacy (WEP). It is well known that WEP has several serious
security flaws. Fluhrer, Mantin, and Shamir [7] (FMS) proposed an attack
on the WEP encryption protocol. By exploiting weaknesses of the RC4
[9] key scheduling algorithm, the FMS attack demonstrated that the RC4
encryption key can be easily derived by an eavesdropper who can intercept
several million encrypted WEP packets whose first byte of plaintext is
known. Stubblefield, Ioannidis, and Rubin [10] practically implemented
the FMS attack, and showed that the real systems could be defeated.
Borisov, Goldberg, and Wagner [5] showed that the WEP data integrity
could be compromised as encrypted messages could be modified freely by



an attacker without being detected. Moreover, Arbaugh, Shankar, and
Wan [4] showed that the WEP authentication mechanism is vulnerable
to attack.

To address the WEP vulnerabilities, the IEEE 802.11 Task Group
i (TGi) provides a short-term solution and a long-term solution. The
short-term solution has adopted the Temporal Key Integrity Protocol
(TKIP). TKIP is a group of algorithms that wraps the WEP protocol to
address the known weaknesses. TKIP includes three components: a mes-
sage integrity code called Michael, a packet sequencing discipline, and a
per-packet key mixing function. Figure 1 illustrates the TKIP encryption
procedure. TKIP is considered as a temporary solution, and it is de-
signed for legacy hardware. For the long-term solution, the IEEE 802.11
TGi recommends two modes of operation: WRAP (Wireless Robust Au-
thenticated Protocol) and CCMP (Counter-Mode-CBC-MAC Protocol).
Both WARP and CCMP are based on AES cipher [2], and they require
new hardware.
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Our Contributions

In this paper, we investigate the security issues of Michael. First, we
present a necessary and sufficient condition for finding collisions of Michael,
showing that the collision status of Michael only depends on the second
last block message and the output of the block function in the third last
round. Second, by employing the necessary and sufficient condition, we
provide a method to find collisions of Michael and show that Michael is
not collision-free. Furthermore, we develop a method to find fixed points
of Michael, and a packet forgery attack could be mounted against Michael
if the output of the block function in any round is equal to any of these
fixed points.

Notations

A 64-bit Michael key K is converted to two 32-bit subkeys, k0 and k1,
written as K = (k0, k1). An n-block message M is written as M = (m0,
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used in the (i+1)-th round of Michael(K, M) procedure. For an n-round
Michael(K, M) procedure, we represent the (i + 1)-th (0 ≤ i ≤ n − 1)
round output of the Michael block function as (Li
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for the left half of the output and Ri

4 stands for the right half of the
output. Some other notations used in this paper are listed as follows:

Symbol Description

MAC Medium access control
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|| Concatenation
=⇒ imply

Organization

The rest of this paper is organized as follows. Section 2 provides the
overview of the Michael keyed hash function. Section 3 describes one pre-
vious work on Michael, which shows that Michael is invertible. We provide
a necessary and sufficient condition for finding collisions of Michael in Sec-
tion 4. In Section 5, we propose a method to find collisions of Michael,
and based on our method, we show that Michael is not collision-free. In
Section 6, we introduce a simple method to find fixed points of Michael
and propose a packet forgery attack against Michael. Finally, we conclude
this paper in Section 7.

2 The Michael Keyed Hash Function

Michael is the message integrity code (MIC) of TKIP in the IEEE 802.11i
draft [1], and it was designed by Ferguson [6]. Michael is a keyed hash
function, whose inputs are a 64-bit Michael key and an arbitrarily long
message, and output is a 64-bit Michael value. The 64-bit key is con-
verted to two key 32-bit words, and the message is partitioned into 32-
bit blocks. The message is padded at the end with a single byte with
the hexadecimal value 0x5a and then followed by between 4 and 7 zero
bytes. The number of zero bytes is chosen so that the overall length of
the message plus the padding is a multiple of 4. The padding method
is illustrated in Figure 2. We note that the last block of the padded
message is zero, and the second last block of the padded message is



not zero. The details of Michael are described in Algorithm 2.1 and 2.2.

Algorithm 2.1: Michael((k0, k1), (m0, ..., mn−1))

Input : Key(k0 , k1 )
Input : Padded message (m0 , ...,mn−1 )
Output : MIC value (L,R)
(L, R)← (k0, k1)
for i← 0 to n− 1

do

{

L← L⊕mi

(L, R)← B(L, R)(Algorithm2.2)
return (L, R)

Algorithm 2.2: B(L, R)

Input : (L,R)
Output : (L,R)
R← R⊕ (L <<< 17)
L← (L + R) mod 232

R← R⊕XSWAP (L)
L← (L + R) mod 232

R← R⊕ (L <<< 3)
L← (L + R) mod 232

R← R⊕ (L >>> 2)
L← (L + R) mod 232

return (L, R)

m n−3 m n−2 m n−1 0x5a 0 0 0 0

0x5am n−1m n−2 0 0 0 0 0

m n−1 0x5a 0 0 0 0 0 0

0x5a 0 0 0 0 0 0 0

3 = n mod 4

2 = n mod 4

1 = n mod 4

0 = n mod 4

Second Last Block Last Block

Fig. 2. The Padding Method of Michael

Michael employs several operations, including exclusive-or, left rota-
tion, right rotation, addition modulo 232 and swapping (XSWAP ). Func-
tion XSWAP swaps the position of the two least significant bytes and the
position of the two most significant bytes in a word, i.e., XSWAP (ABCD) =
BADC where A, B, C, D are bytes. The block function given in Algorithm
2.2 is an unkeyed 4-round Feistel-type construction.

The TKIP frame appends the MIC value as a tag after the message
body. The message body together with the MIC value are encrypted by
RC4 at the transmitter and then sent to the receiver. The receiver re-
computes the MIC value and compares the computed result with the tag
coming with the message. If these two MIC values match, the receiver
accepts the message; if not, the receiver rejects the message.

3 Related Work

3.1 Michael is Not One-Way

Wool found one weakness of Michael: it is not one-way, in fact, it is invert-
ible [11]. There exists a simple function, InvMichael, which can recover the
secret Michael key K, given a known message M and its corresponding
Michael value MIC = Michael(K, M). The details of Function InvMichael
are shown in Appendix A. We note that the block function is unkeyed, and
every step in Michael is invertible, therefore the whole Michael algorithm
is invertible.



3.2 A Related-Message Attack

The security of Michael relies on the fact that a message and its hash are
encrypted by RC4, and thus the hash value is unknown to the attacker.
Wool proposed a related-message attack on Michael [11].

Remark: Michael is invertible is known by the inventor of Michael, and
this security flaw is mentioned implicitly on Page 14 in [6]:

“A known-plaintext attack will reveal the key stream for that IV, and
if the second packet encrypted with the same IV is shorter than the first
one, the MIC value is revealed, which can then be used to derive the
authentication key.”

4 Finding Collisions of Michael

We explore the collision-resistance of Michael in this section. By providing
Theorem 1, we prove that the collision status of Michael only depends on
the second last block message and the output of the block function in the
third last round. We would like to point out that Condition 1 and 2 in
Theorem 1 are a necessary and sufficient condition for finding collisions
of Michael.

Theorem 1. Given two pairs of keys and messages, (Key1, M1) and
(Key2, M2), Michael(Key1, M1) = Michael(Key2, M2) if and only if the
following two conditions hold:

1. Rx−3
4 = R

′y−3
4

2. Lx−3
5 ⊕ L

′y−3
5 = mx−2 ⊕ m′

y−2

where M1 has x 32-bit blocks, M2 has y 32-bit blocks, and both x and y

are ≥ 3.

Proof. The last three rounds of Michael are illustrated in Figure 3. We
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provide the last round and the second last round of Michael(Key1, M1)
in Algorithm 4.1 and Algorithm 4.2 respectively.

Algorithm 4.1: Last Round (Key1, M1)
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Algorithm 4.2: 2rd Last (Key1, M1)
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Similarly, the last round and the second last round of Michael(Key2, M2)
are shown in Algorithm 4.3 and Algorithm 4.4 respectively.

Algorithm 4.3: Last Round (Key2, M2)
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Algorithm 4.4: 2rd Last (Key2, M2)
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Necessary Condition: If Michael(Key1, M1) = Michael(Key2, M2),
namely the collision occurs, we then backtrack from Step 11 and 10 in
Algorithm 4.1 and 4.3.
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Similarly, we use the same method in the second last rounds of Michael(Key1,
M1) and Michael(Key2, M2).
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Finally, we bring the above results from the second last rounds to the last
rounds. According to the padding method, we note that mx−1 = 0 and
m′
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Therefore, Rx−3
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5 Michael is Not Collision-Free

In this section, we show that Michael is not collision-free by providing
a simple method to find collisions of Michael. Intuitively, for a given
arbitrarily length message M and a key K, a 96-bit block message M ′

and a key K ′ can be computed such that Michael(K, M) = Michael(K ′,
M ′).

Theorem 2. Given an arbitrarily length message M and a specific key
K, a 96-bit block message M ′ distinct from M and a key K ′ can always
be computed such that Michael(K, M) = Michael(K ′, M ′), where M has
n 32-bit blocks and n is any integer ≥ 3.
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third last round of Michael(K ′, M ′) are represented as (L′2

5 , R′2
4 ), (L′1

5 ,
R′1

4 ) and (L′0
5 , R′0

4 ) respectively. K ′ is written as (k′

0, k′

1). K ′, m′

0, m′

1 and
m′

2 are constructed as follows.

1. Choose m′

2 = 0 (as mn−1 = 0 according to the padding method).

2. Choose m′

1 = mn−2.

3. Choose m′

0 arbitrarily, but m′

0 6= mn−3 if n = 3.

4. Choose k′

0 = Ln−4
5 ⊕mn−3 ⊕m′

0 and k′

1 = Rn−4
4 . K ′ is constructed as

K ′ = (k′

0, k′

1) = (Ln−4
5 ⊕ mn−3 ⊕ m′

0, Rn−4
4 ).

The construction is illustrated in Figure 4. The soundness of this con-
struction is shown as follows.

k′

0 = Ln−4
5 ⊕ mn−3 ⊕ m′

0 =⇒ k′

0 ⊕ m′

0 = Ln−4
5 ⊕ mn−3,

k′

0 ⊕ m′

0 = Ln−4
5 ⊕ mn−3 and k′

1 = Rn−4
4 =⇒ Rn−3

4 = R′0
4 and Ln−3

5 =
L′0

5 ,
Ln−3

5 = L′0
5 and mn−2 = m′

1 =⇒ Ln−3
5 ⊕ L′0

5 = mn−2 ⊕ m′

1.

Therefore, Michael(K, M) = Michael(K ′, M ′) holds because Rn−3
4 = R′0

4

satisfies Condition 1 in Theorem 1 and Ln−3
5 ⊕L′0

5 = mn−2 ⊕m′

1 satisfies
Condition 2 in Theorem 1.

Theorem 3. Michael is not collision-free.

Proof. Can be deduced from Theorem 2.
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Fig. 4. The Construction of (K ′, M ′)

6 Finding Fixed Points of Michael

In this section, we present a method to find fixed points of Michael. A
fixed point of Michael is a triple (Li, Ri, mi) such that Michael((Li,
Ri), mi) = (Li, Ri). The procedure is described in Section 6.1. A packet
forgery attack could be mounted against Michael if the output of the
Michael block function is equal to any of the fixed points. The packet
forgery attack is shown in Section 6.2.

6.1 The Fixed-Point Finding Procedure

To find fixed points of Michael, we only need to focus on one round of
Michael. Figure 5 illustrates one round of Michael. In Figure 5, we note

+<<<17
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XSWAP +

+
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+

>>>2 +

+

L i+1 Ri+1

+m

L i iR

i

Fig. 5. One Round of Michael

that Michael((Li, Ri), mi) = (Li+1, Ri+1). In the finding procedure, our
goal is to find a triple (Li, Ri, mi) such that Michael((Li, Ri), mi) =



(Li+1, Ri+1) = (Li, Ri). The procedure is described as follows.

1. Let Xi = Li ⊕ mi, and choose a value for Ri. Define a counter c and
set it to zero.

2. FOR (Xi = 0; Xi ≤ 232; Xi++)

(a) Call block function B(Xi, Ri)
(b) IF Ri = Ri+1 THEN

i. There exists an Xi such that Ri = Ri+1. For a found Xi, there
exists a corresponding Li+1 because the mapping from (Xi,
Ri) to (Li+1, Ri+1) is bijective. The reason why the mapping
from (Xi, Ri) to (Li+1, Ri+1) is bijective is that Michael is
invertible. Choose Li = Li+1.

ii. Choose mi = Xi ⊕ Li.
iii. Increase counter c by one.

3. IF counter c = 0 THEN no fixed point found for this Ri.
4. ELSE There are c fixed points for this Ri.

The key point of this procedure is in Step 2 (b). Given an Xi, if Ri = Ri+1

holds, there exists a fixed point (mi, Li, Ri) such that Michael((Li, Ri),
mi) = (Li, Ri). For a specific value of Ri, the time complexity of deciding
whether there exists a fixed point of Michael is O(232). To search the
complete space of Ri for all fixed points, the time complexity is O(264)
since Ri is 32-bit.

We have implemented the fixed-point finding procedure on a personal
computer whose processor is an Intel Pentium 4 2.8 GHz, and the pro-
gram only takes 2-3 minutes to decide whether there exists a fixed point
for a given Ri. We provide the first 32 fixed points found by using our
method in Table 1 (Numbers are hexadecimal and listed in increasing or-
der according to Ri). A more complete table is provided in the Appendix
D.

Xi mi Li Ri Xi mi Li Ri

0 0 0 0 b207d8fd ac29ffed 1e2e2710 8

6c06529a f886b395 9480e10f 0 6e66938 d44d5dd2 d2ab34ea 9

4e91dea2 7161872 4987c6d0 1 8381416d 5fcc4b0d dc4d0a60 9

54efbc34 69bd6b8e 3d52d7ba 1 f209915c ba9f2472 4896b52e 9

84c99b9d bbac8b1a 3f651087 2 8fbdb557 8ebe3dff 10388a8 c

5c8fc604 a02eb006 fca17602 3 9989f930 44951984 dd1ce0b4 c

5c9f83fa 16443902 4adbbaf8 3 35848ac 4bfe1c3b 48a65497 d

a93ee58c 1c398e95 b5076b19 3 5557549c 649f92b1 31c8c62d d

b5db2ba7 d4a38f0 b8911357 3 7c0332e2 153f6792 693c5570 d

a8d11268 c778177c 6fa90514 4 39183e91 9ea7035d a7bf3dcc e

5781003c 960dcfde c18ccfe2 5 6eecb6a1 bd5114c5 d3bda264 e

6ac32ecf 60884be2 a4b652d 5 a9a9eedf d7e79f0 a4d7972f e

b2dc2a5d d6ac3e02 6470145f 5 bc4f846a 2abd84ca 96f200a0 e

fc231200 d07d4eb9 2c5e5cb9 5 fadcef66 9d7687c1 67aa68a7 f

c5cddd7a 673b6fc6 a2f6b2bc 6 afb1715f 74cca5e1 db7dd4be 10

e5b473b1 83ea90fc 665ee34d 7 d8689e66 f2d6168a 2abe88ec 10
Table 1. First 32 Fixed Points of Michael



For a given Ri, there are three possible cases for the corresponding
Xi:

1. Xi does not exist. Accordingly, there does not exist any fixed point
for this Ri (e.g., Ri = a not in Table 1).

2. Xi has only one value. Accordingly, there exists only one fixed point
for this Ri (e.g., Ri = 4 in Table 1).

3. Xi has more than one values. Accordingly, there exist more than one
fixed points for this Ri (e.g., Ri = e in Table 1).

Remark: A complete search of the very beginning ([0, 210]) and very
end ([232-210, 232]) of the possible space for Ri shows that 96.48% (see
Appendix B) of the calculations yielded fixed points. In addition, unless
the distribution of fixed points in [210, 232-210] is grossly nonuniform, there
is a 95% likelihood that the percentage of fixed points there lies between
95.02% and 97.36% (see Appendix C). In other words, there exist about
232 * p (95.02% < p < 97.36%) fixed points for Michael. We note that
the tables in the Appendix D can be precomputed and any further fixed
points discovered later can be included in the tables. We consider the
potential high percentage of the existence of the fixed points within the
whole space of Ri as a weakness of Michael.
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6.2 A Packet Forgery Attack

A packet forgery attack could be mounted against Michael if the output
of the block function in any round is equal to any of the fixed points.

Theorem 4. Given a message M1 and an arbitrary key K, an attacker
can always construct a message M2 distinct from M1 such that Michael(K,
M1) = Michael(K, M2) if the following condition holds.



1. The output of the block function of Michael(K, M1) in any round is
equal to any of the fixed points.

Proof. Suppose M1 has n blocks, and is written as (m0, m1, ..., mn−1).
Suppose the output of block function in any round, say in the (i + 1)-
th round (the corresponding message is mi), is equal to any of the fixed
points (assume this point is (Li, Ri)). Given a fixed point (Li, Ri), we
can find a corresponding m′

i from the fixed-point table. A multiple of four
blocks of message m′

i can be appended to the (i + 1)-th round without
changing the Michael value. The reason why the number of the inserted
blocks of m′

i is a multiple of four is due to the padding method of Michael.
In other words, we need to guarantee length(M1) mod 4 = length(M2)
mod 4. Thus, M2 can be constructed as (m0, m1, ..., mi, < m′

i, m′

i, ...,
m′

i, >, mi+1, ..., mn−1), where the number of the inserted blocks of m′

i

is a multiple of four. According to the property of fixed points, we have
Michael(K, M1) = Michael(K, M2).

Remark:

1. If Condition 1 in Theorem 4 holds, an attacker can forge a message
M2 to replace the original message M1 without modifying the Michael
value, and this packet forgery attack can apply to any key K.

2. Although 95.02%-97.36% of Ri may give fixed points, it does not mean
that the packet forgery attack would have a successful rate of 95.02%-
97.36% since the attack requires both Li and Ri to be matched with
any fixed point, not just Ri.

3. We note that the packet forgery attack is still in theory as the message
and the hash value are encrypted by RC4. Hence an attacker needs to
know the decryption before mounting such a forgery attack against
Michael.

7 Conclusions

Michael was designed as the message integrity code for the IEEE 802.11i.
In this paper, by providing a necessary and sufficient condition for finding
collisions of Michael, we showed that the collision status of Michael only
depends on the second last block message and the output of its third last
round. Therefore, to find collisions of Michael, we only need to focus on its
two rounds: the third last round and the second last round. In addition,
we demonstrated that Michael is not collision-free. Moreover, we proposed
a simple method to find fixed points of Michael and built a fixed-point
table based on our results. The high percentage of the existence of fixed
points should be considered as a weakness of Michael. If the output of the
block function in any round is in the fixed-point table, a packet forgery
attack could be mounted against Michael.
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Appendix

A Function InvMichael [11]

Algorithm A.1: InvMichael((v0, v1), (m0, ..., mn−1))

Input : Michael value (v0 , v1 )
Input : Padded message (m0 , ...,mn−1 )
Output : Key (k0 , k1 )
(L, R)← (v0, v1)
for i← n− 1 downto 0

do

{

(L, R)← B−1(L, R)(AlgorithmA.2)
L← L⊕mi

return (L, R)

Algorithm A.2: B−1(L, R)

Input : (L,R)
Output : (L,R)
L← (L−R) mod 232

R← R⊕ (L >>> 2)
L← (L−R) mod 232

R← R⊕ (L <<< 3)
L← (L−R) mod 232

R← R⊕XSWAP (L)
L← (L−R) mod 232

R← R⊕ (L <<< 17)
return (L, R)

B Fixed Points in [0, 210] and [232
− 210, 232]

We found 984 fixed points for Ri in [0, 210], and found 992 fixed points
for Ri in [232-210, 232]. Therefore, the percentage of having fixed points
for Ri in [0, 210] and [232-210, 232] is 984+992

1024∗2 ∗ 100% = 96.48%.



C Soundness of Remark in Section 6.1

By employing the fixed-point finding procedure, we found 985 fixed points
for 210 randomly chosen Ri (in [210, 232-210]). Let p denote the probability
of having a fixed point at a particular value of Ri. To find out the large
sample confidence interval for p, we use a formula described on Page 287
in [8]:

x

n
− zα/2

√

x
n(1 − x

n)

n
< p <

x

n
+ zα/2

√

x
n(1 − x

n)

n

where n is the number of trials, x stands for number of fixed points
within n trials, α is called confidence coefficient and (1-α)100% is the
degree of confidence. In our case, x = 985 and n = 1024. To construct a
95% confidence interval for p, set α = 0.05, and the corresponding zα/2

= z0.025 =1.96. Thus

985

1024
− 1.96

√

985
1024(1 − 985

1024)

1024
< p <

985

1024
+ 1.96

√

985
1024(1 − 985

1024)

1024

Therefore, 95.02% < p < 97.36%. This means that we can be (1-0.05)100%
= 95% certain that p lies in the range.

D The Fixed-Point Tables

Due to the limited space, we only provide the last 42 fixed points in Table
2 and some other fixed points in Table 3. All numbers are hexadecimal
and listed in increasing order according to Ri.



Xi mi Li Ri Xi mi Li Ri

98eaaa61 42f31305 da19b964 ffffffd5 93a5505f 19b153d9 8a140386 ffffffee

83dca2c7 12954f62 9149eda5 ffffffd7 dd64fd01 42fec977 9f9a3476 fffffff0

b2a06b85 a1701b04 13d07081 ffffffd7 33b0f7ed 927a33bb a1cac456 fffffff1

94f3a93a eccb5821 7838f11b ffffffd9 4206e469 21a681e0 63a06589 fffffff1

9acdc5b9 6486c494 fe4b012d ffffffd9 5a597e04 d43809cd 8e6177c9 fffffff1

88b0d779 166c5707 9edc807e ffffffda 1f768e50 3380ef32 2cf66162 fffffff6

e89c0366 fc1d4464 14814702 ffffffda 7e23ad2f af25a2cb d1060fe4 fffffff6

f220391c d0c65937 22e6602b ffffffdc f6aa7bf1 87fe7776 71540c87 fffffff6

396899ce 140c733 38285efd ffffffde b6564d6 d1586214 da3d06c2 fffffff7

53e460ac 80e56446 d30104ea ffffffe1 765bb666 24617a70 523acc16 fffffff7

5b34996a a0b67cb6 fb82e5dc ffffffe2 e47aaa65 a02e5e9d 4454f4f8 fffffff7

acbea3fc e238a558 4e8606a4 ffffffe2 eb1060bd 3611b2f6 dd01d24b fffffff8

9aafb621 24caf35c be65457d ffffffe4 b6e8f390 ee45aa4e 58ad59de fffffff9

7192db3d dc4dce8d addf15b0 ffffffe7 d4aeab65 7f81fe5 d356b480 fffffff9

96896acb 389c7bdc ae151117 ffffffe8 362975f 6df65365 6e94c43a fffffffb

ca8549b9 5a21cd0d 90a484b4 ffffffe8 1baa6340 a2776ccd b9dd0f8d fffffffb

2efef308 1d5586f9 33ab75f1 ffffffe9 377c5a93 83f1d505 b48d8f96 fffffffb

b3623a87 cb850c8e 78e73609 ffffffeb 9efcc309 1919c896 87e50b9f fffffffb

c2845c57 d5dc4ece 17581299 ffffffeb 10515aba e5099741 f558cdfb fffffffc

c5882938 37fe781f f2765127 ffffffeb e072bac4 37455903 d737e3c7 fffffffc

3462948b 65dc31d2 51bea559 ffffffec fa88653f 44a52455 be2d416a fffffffc
Table 2. Last 42 Fixed Points of Michael

Xi mi Li Ri Xi mi Li Ri

bab59d13 7039495e ca8cd44d 56d0f24a 156105e2 60ae19fd 75cf1c1f b363e95c
785d0d44 9139ef44 e964e200 5876a915 508d2ea1 c2db8cc 5ca0966d b46efd97
36b28048 5c606a1e 6ad2ea56 6ea8c9b0 454df193 745e0b81 3113fa12 b9bdf654
b7a9eda2 1757f39d a0fe1e3f 6ea8c9b0 c665050d 94e81acf 528d1fc2 bd38d8a9
2ee2a357 f7e73708 d905945f 7065a177 e566754 d552699 30341cd c12f786f
bb7f114d 13a126ad a8de37e0 7122d92d 476c45bd 7fcbe95c 38a7ace1 c12f786f
73eba05e d1da8dd0 a2312d8e 767a020c f461e180 d04b8d83 242a6c03 c12f786f
9c34285c c50a5358 593e7b04 767a020c dfadad82 40633eb8 9fce933a d2189dbf
96252cff a6f5b76a 30d09b95 7b9d2c01 5e758dac da68fe6a 841d73c6 d6c1f8f1
2267bbe6 fec622da dca1993c 7f95fe04 6d1a5bae 14c8c243 79d299ed d6c1f8f1
8aa3ff7a 4df2b026 c7514f5c 8baaa4a7 9023af12 bfb4e8f5 2f9747e7 d6f626af
5eecac7e dc6fe8cd 828344b3 8c6b4530 31ee2570 9c9d012d ad73245d e029a075
a798df6f 85011375 2299cc1a 944952f2 3a3e18a4 e2534cda d86d547e e029a075
21a9a736 a59e7078 8437d74e 9e9da80e 181faf42 ab27a090 b3380fd2 e3b08beb
8d7679cd 783b397c f54d40b1 9e9da80e 68565963 73e8805f 1bbed93c f32888da
76532cab 7a676eb9 c344212 a2a7052c 3851550 13e85141 106d4411 f7f3a43a
7c3a551d 46568811 3a6cdd0c ad38a213 633fc021 86e63d32 e5d9fd13 f7f3a43a
4778464d 92c8159d d5b053d0 b1785966 73a02eda 92ba55b 7a8b8b81 f7f3a43a
7b91187d 5463753a 2ff26d47 b1785966 1e8dabb4 b593607f ab1ecbcb f9bb6d58
97af78ca 775e5f93 e0f12759 b1785966 462fd533 c8d38102 8efc5431 f9bb6d58
f38ddf1f 32abe5f7 c1263ae8 b1785966 c84c4c2e e3bd8f2f 2bf1c301 f9bb6d58

Table 3. Some Other Fixed Points for Ri in [210, 232
− 210]


