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Abstract

Functional meta-programs on declarative target programs are proposed as a means to support
reuse. We approach to this goal in the following two steps:

1. A general framework for meta-programming is developed. It combines

e an applicative calculus containing suitable basic data types for declarative programs
and fragments obeying well-typedness and other important properties and

e properties of target programs and meta-programs for formal reasoning, e.g. certain
preservation properties of transformations.

We assume modes and types at the target level. They are useful to improve safety of meta-
programming and to control program transformation. The framework can be instantiated
for example for natural semantics, attribute grammars, logic programming and construc-
tive algebraic specification. Specific features of an instance can often be modelled in the
general framework by a kind of normalization. Higher-order functions are useful to achieve
genericity in meta-programs.

2. An operator suite for meta-programming is derived, where its operators model schemata of
program transformation, synthesis and composition at a high level of abstraction:

Transformation: Certain operators facilitate adaptation of programs, e.g. the interpolation
of computations or the establishment of new sum domains.

Synthesis: Aspects of computational behaviour can be represented as meta-programs de-
rived from schemata supported by the operator suite, e.g. propagation schemata.
Composition: Target programs can be composed for example by means of concatenation
and superimposition. Target programs can be derived from target program fragments
and program transformations modelling aspects of computational behaviour by means

of lifting.

Meta-programming occasionally surpasses other approaches to reusability based on decomposi-
tion and parameterization in the common sense. The reuse of a module, for example, depends on
a suitable instantiation. In contrast, our transformational approach does not rely on such param-
eterization, although formal reasoning is necessary to prove correctness of reuse. We demonstrate
the meta-programming approach in the context of formal language definition based on natural
semantics and attribute grammars. The framework and the operator suite are compared with par-
ticular approaches to reusability in the declarative paradigm, e.g. extensible semantics definitions
and paradigm shifts in attribute grammars.
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Zusammenfassung
Funktionale Meta-Programme tiiber deklarativen Objektprogrammen werden zur Unterstiitzung
von Wiederverwendbarkeit vorgeschlagen. Dieses Ziel wird in zwei Schritten angegangen:

1. Ein allgemeines Rahmenwerk zur Meta-Programmierung wird entwickelt. Es kombiniert
die folgenden Bestandteile:

e cinen applikativen Kalkul mit Datentypen fir deklarative Programme und Frag-
mente, welche die Einhaltung von Wohlgetyptheit und anderen wichtigen Eigen-
schaften sicherstellen, und

e Eigenschaften von Objekt- und Meta-Programmen zur formalen Behandlung dieser,
z.B. bestimmte Erhaltungseigenschaften von Transformationen.

Wir setzen Modi und Typen auf Objektebene voraus. Sie sind hilfreich zur Erhohung
der Sicherheit in der Meta-Programmierung und zur Steuerung von Programmtransfor-
mationen. Das Rahmenwerk kann z.B. fiir natiirliche Semantik, attributierte Grammatiken,
logische Programmierung und algebraische Spezifikation instanziiert werden. Spezielle Mit-
tel von Instanzen konnen oft auch in dem allgemeinen Rahmenwerk mit Hilfe einer Normal-
isierung modelliert werden. Funktionen hoherer Ordnung sind nutzbringend, um Gener-
izitat in Meta-Programmen zu erreichen.

2. Eine Sammlung von Operationen zur Modellierung von Schemata fiir die Programmtransfor-
mation, -synthese und -komposition auf einer hohen Abstraktionsstufe wird abgeleitet:

Transformation: Bestimmte Operationen unterstiitzen die Anpassung von Programmen,
z.B. das Einschieben von Berechnungselementen oder die Herstellung von neuen Sum-
menbereichen.

Synthese: Berechnungsaspekte konnen durch Meta-Programme, welche von grundlegen-
deren Schemata (z.B. Propagierungsschemata) abgeleitet wurden, reprisentiert wer-
den.

Komposition: Objektprogramme kénnen z.B. im Sinne einer Verkettung oder Superim-
position kombiniert werden. Objektprogramme konnen von Objektprogrammfrag-
menten und Programmtransformationen, welche Berechnungsaspekte modellieren, mit-
tels Liften abgeleitet werden.

Meta-Programmierung tibertrifft in Einzelfallen andere Ansatze zur Wiederverwendbarkeit, welche
auf Dekomposition und Parameterisierung im iiblichen Sinne basieren. Wiederverwendung eines
Modules z.B. ist nur moglich, wenn eine brauchbare Instanziierung moéglich ist. Unser transfor-
mationaler Zugang hangt nicht von einer Parameterisierung in diesem Sinne ab. Die Korrektheit
der Wiederverwendung bleibt aber Beweisgegenstand. Wir fithren unseren Ansatz zur Meta-
Programmierung im Kontext der formalen Sprachbeschreibung auf der Basis natiirlicher Seman-
tik und attributierter Grammatiken vor. Das Rahmenwerk und die Operationen werden mit
Ansitzen zur Wiederverwendbarkeit im deklarativen Paradigma, z.B. erweiterbare Semantikbe-
schreibungen und Erweiterungen des Formalismus fiir attributierte Grammatiken, verglichen.
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Chapter 1

Introduction

In Section 1.1 we explain the topic of the thesis, that is to say “Funtional meta-programs
towards reusability in the declarative paradigm” including a very short indication of results
and related work. Afterwards, in Section 1.2 a number of examples demonstrating our
approach to meta-programming facilitating reuse is demonstrated. The examples concern
the adaptation of dynamic semantics definitions for simple imperative languages in the
style of natural semantics. Finally, in Section 1.3 we comment on the main results of our
work which are accordingly reflected by the structure of the thesis.

1.1 The topic

According to [CI84] a meta-program is a program about programs. To facilitate meta-
programming for programs in the language L, we need a framework M (i.e. a kind of
calculus, a (meta-) programming language, or an environment), the basic data objects
of which include the programs and suitable fragments of L, sometimes denoted as the
target language or the object language of M. Meta-programs take as input programs
and fragments in the target language L, perform various operations on them and possibly
generate modified target language programs as outputs.

The applications of meta-programming include source-to-source translation and appli-
cation generation in software development, program transformation (optimization, special-
ization, deforestation, partial evaluation/deduction, etc.; refer e.g. to [BD77, Wil90, PP94,
APR97]), program synthesis (refer e.g. to [DL94, Kan91, BAM97]) and program com-
position (refer e.g. to [Wir74, BMPT94, Bro93, FFG91, AP91]) in formal programming
methodology. In this thesis, we use meta-programs to facilitate reuse of target programs.
Reusability is a property of a programming development method where modifications and
extensions in the design of a programming problem can be easily realized at the imple-
mentation level. It is also common to use the terms extensibility and adaptability for
this purpose. We propose meta-programs to compose, to extend and to adapt (target)
programs. We are also interested in modelling certain parts of the software as rather
meta-programs than ordinary target programs. Thereby, we can obtain a more generic
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description of the computational behaviour.

[D&sign Patternsj [ Frameworks j [ Schemata j [ Enhancement }

level
[Meta—Programs} [Transformation} [ Synthese } [ Compos'tion] [ Refinement ] Mealer
[ Polymorphism} [ Inheritance } [ Encapsulation ] Extensions
[ Macros }[ Subprograms][ Modularity }[ Genericity }
[ Imperative...j [ Logic... } L anguage core

[Algebraic Spec.] [Attr. Grammarsj [ Functiona ... }

Figure 1.1: Reasoning at the meta-level

We consider meta-programming as one possible concept to improve reusability and to
avoide errors and thereby to increase productivity in programming. Many other concepts
are common for programming languages and specification frameworks. Some of them are
possibly integrated with the underlying language, i.e. these concepts can be regarded as
a kind of extension of the underlying language kernel, e.g. subprograms, modules, object-
oriented concepts, genericity etc. in Figure 1.1. There are other concepts which are located
rather at a separate level in the sense of a meta-level; refer again to Figure 1.1. These
are concepts like refinement (e.g. in the sense of Dijkstra’s method [Dij76]), design pat-
terns [Coa95, Lar97], frameworks and program synthesis [DL94]. Meta-programming is
obviously located at the meta-level as well. Note that for some concepts it depends on
the point of view if they should be regarded as a language extension or as a meta-level
concept. The style of adapative programming [Lie95], for example, suggests a way in which
(propagation) patterns can be become an integral part of programming. Another example
concerns modularity, which is not necessarily integrated with a language, but it can be
the subject of meta-level reasoning like for many other approaches to program composi-
tion. Let us point out what our kind of meta-programs are meant to do. Our style of
meta-programming allows to construct, deconstruct and observe target programs and type
information about them. Meta-programs can represent program schemata (patterns) and
program transformation schemata. Moreover, meta-programs are used to perform program
compositions. We propose certain properties for formal reasoning in order to support a
controlled way of composition, synthesis and transformation. Another important property
of our approach is that meta-programs are executable, whereas several other meta-level
concepts are rather useful for reasoning.

This thesis addresses the declarative paradigm as far as it concerns target languages. We
think that meta-programming is a viable approach to reuse in the declarative paradigm
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because it is particularly suited for the review and the reconstruction of several other
attempts in different specification frameworks and problem domains. In our style of meta-
programming, we crucially rely on notions like many-sorted types, modes, terms, place
holders, rules or equations and others as present in the declarative paradigm. To simplify
the terminology, we use the term declarative (target) language for both, for programming
languages like Prolog, Godel and SML, and for specification formalisms like attribute gram-
mars, natural semantics, algebraic specifications and definite clause programs. We want to
achieve general results applicable for several representatives of the declarative paradigm.
Thus, we try to consider an abstract form of declarative programs. Indeed, the approach
can be instantiated for several existing languages or formalisms. Since declarative lan-
guages are the target languages in our meta-programming approach, our target programs
are declarative programs. Note that other terms than program are often used in the liter-
ature for certain representatives of the declarative paradigm, e.g. the term specification is
used for example in the context of attribute grammars and natural semantics.

The first important subject of the thesis is a framework for meta-programming con-
sisting of a functional (i.e. A-) calculus for meta-programming with built-in data types for
declarative programs and fragments and some formal support to guide formal program
development based on our instance of meta-programming. The data types modelling pro-
grams and fragments are defined in a way that only “correct” values can be obtained.
Correctness is meant here in the sense of well-typedness and other properties. We have
chosen functional meta-programs because higher-order functional programming provides
us with a way to write generic meta-programs. Formal program development is supported
by suitable properties of target programs and meta-programs, e.g. preservation properties.

The second important subject of the thesis is a high-level operator suite for meta-
programming which is derived from the basic operators supported by the general frame-
work. The operator suite provides us with generic schemata for composition, synthesis and
transformation. The presentation of the operator suite culminates with a sophisticated
composition technique called [ifting.

Although the achievements of our work and the relationship to other approaches are
explained in much more detail later on (see Section 1.3 and Section 5.1), we first pro-
vide a rough overview. Important properties of our approach to meta-programming are
generality. The general framework can be instantiated for quite different representatives
of the declarative paradigm. Moreover, the general framework permits us to investigate
specification techniques and features as well as paradigm shifts introduced in different com-
munities in a uniform way. We can simulate, for example, stepwise enhancement in logic
programming [Lak89, SS94, JS94], symbol computations in attribute grammars [KW94]
and remote access in attribute grammars [Kas76, Lor77, JF85, KW94, Boy96b, Boy98|.
We can unbundle roles intermingled in other approaches, for example certain programming
techniques in stepwise refinement can be regarded as the composition of some more elemen-
tary transformations. Our meta-programming approach crucially relies on types and modes
at the target level. Thereby, safety of meta-programming is improved. Moreover, types and
modes are shown to be useful to control meta-programs. The operator suite provides a solid
basis for meta-programming at a high level of abstraction. Many approaches to reusability
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rely on certain forms of modularity in the sense of parameterization and decomposition,
e.g. modular logic programming [HL94, Bro93, BMPT94], modules in AGs [Paa91, Bau98|,
specification-building operators in algebraic specification [Wir86, ST88, SST92, Wir94], or
higher-order functional programs / denotational semantics parameterized by monads (or
monad transformers) [Wad92, Mog89, Esp95]. We want to comment on the benefits and
some limitations of reusability based on such modularity. Meta-programming-like trans-
formations allow us to perform adaptations and extensions without depending too much
on a sensible modular structure. Finally, our new composition technique [lifting should
be regarded as a major result of the thesis. At a superficial level, lifting can be com-
pared with the monadic style in semantics [Mog89, Esp95] and functional programming
[Wad92]. However, we deal with program transformation based on first-order target lan-
guages instead of monads and monad transformation in a higher-order functional setting.
Our meta-programming approach is shown to be useful, for example, in the context of
modular language definition based on natural semantics and attribute grammars.

1.2 Motivating examples

The purpose of this section is to present a number of examples taken from the field of
formal semantics in order to demonstrate our meta-programming approach to reusability.
We use specifications in the style of natural semantics as target programs. Thereby, we also
provide a demonstration how our general meta-programming framework is instantiated for
an actual target language (here: natural semantics). We have chosen some scenarios where
given specifications must be adapted or extended. It is shown how meta-programming-like
transformations can serve for that purpose. Other common approaches fail to solve such
problems as below. The objective of this section is to show that the expressive power of
our high-level transformation schemata and the formal degree of program manipulation
provide a viable approach to reuse. A proper comparison with related work is presented
in Chapter 4.

1.2.1 Preliminaries

Natural semantics [Kah87] is a popular specification formalism for static and dynamic
semantics, for translations between representations and static analyses. In this thesis, nat-
ural semantics is used as one primary target language. Fragments of dynamic semantics
for imperative languages in the style of natural semantics are used in numereous exam-
ples. A notational form of natural semantics similar to RML [Pet95, Pet94] and Typol
[Des88, BCD*88, JRGI2] is used. In particular, alphanumeric identifiers are used to name
propositions and a distinction between inputs and outputs in propositions is assumed.

The profiles for the relations modelling the semantics of statements and expressions for
a very simple imperative language, for example, are the following:

execute : STM x MEM — MEM
evaluate : EXP x MEM — VAL
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The execution of a statement (STM) is specified by saying how the memory (MEM) is
transformed, whereas the evaluation of an expression (EXP) is specified by saying how
the memory is observed and what value (VAL) is returned. Refer to Figure 1.2 for some
rules for these relations. Let us explain the piece of abstract syntax whose semantics is
covered by the figure: The empty statement sequence is denoted by the constant (term)
skip, whereas the compound statement sequence is represented by a term of the form!
concat(STMy,STMz). An assignment statement with ID on the LHS and EXP on the RHS
is represented by the term assign(ID, EXP). Finally, a variable ID as a form of expression
is represented by the term var(ID).

execute(skip, MEM) — (MEM) [skip]

ezecute(STMy, MEMy) — (MEM,)
A ezecute(STMy, MEM;) — (MEMy)

[concat]
execute(concat(STMy, STMz), MEMy) — (MEMy)
evaluate(EXP, MEMg) — (VAL)
A update(MEMy, ID, VAL) — (MEM;) [assign]
execute(assign(ID, EXP), MEMg) — (MEM;)
apply (MEM, ID) — (VAL) [var]

evaluate(var(ID), MEM) — (VAL)

Figure 1.2: An interpreter fragment for a simple imperative language

Consequently, the inference rule [skip] specifies the semantics of an empty statement
sequence, the rule [concat] specifies the semantics of a statement sequence and the rule
[assign] specifies the execution of an assignment. Finally, the rule [var] concerns the evalu-
ation of a variable.

1.2.2 Adapting the propagation of a data structure

As we deal with a rather simple language, it is natural that the relation evaluate defining
the semantics of expressions only observes the memory, but it cannot modify it. Thereby,
we express that side-effects do not occur during expression evaluation. It is now assumed
that the language must be extended by a construct such that the evaluation of expressions
may cause side-effects. The evaluation of an application of a Pascal-like function, for
example, may cause side-effects due to the statement part of the function body. To reuse
the interpreter program in Figure 1.2, the propagation of memories has to be adjusted. As

! Note the following convention for variables in target languages in this thesis: The identifier of a domain,
e.g. STM, is used as the stem of variable identifiers, possibly indexed or quoted, e.g. STM;.
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far as it concerns the profiles of the relations used and defined in Figure 1.2, it is obvious
that the profile of the relation evaluate must be extended as follows:

evaluate : EXP x MEM — VAL x

We adjust the propagation of memories in Figure 1.2 in two steps. First, a new output
position of sort MEM is inserted in any proposition with the name evaluate. This adaptation
is performed by the following transformation:

Figure 1.3 = Add (Output, evaluate, MEM) On? Figure 1.2

execute(skip, MEM) — (MEM) [skip]
execute(STM1, MEMy) — (MEM;)
A ezecute(STMy, MEM;) — (MEMy) [concat]
execute(concat(STMy, STMz), MEMy) — (MEMy)
evaluate(EXP, MEMg) — (VAL,[ MEM’ )
A update(MEMy, ID, VAL) — (MEM;) [assign]
execute(assign(ID, EXP), MEMy) — (MEM;)
apply(MEM, ID) — (VAL) [var]

evaluate(var(ID), MEM) — (VAL,| MEM’ )

Figure 1.3: Intermediate step from Figure 1.2 to Figure 1.4

Refer to Figure 1.3 for the intermediate result. The inserted fresh variables are boxed
in Figure 1.3. Note that the rule [var| is not well-defined with regard to the data flow
because of the single occurrence of MEM' on an output position of the conclusion. We do
not insist on a well-defined data-flow for intermediate results. However, even intermediate
results have to satisfy a number of properties including well-typedness in the sense of a
many-sorted type system. In contrast to intermediate results, final results must have a
well-defined data flow. This issue is implemented by making a distinction between two
different types in the meta-programming type system, that is to say Rules for incomplete
programs and Program for programs to be regarded as final results.

To adjust the propagation of the memory, a second step remains to be performed: The
new variables must be incorporated correctly into the data flow in such a way that the
result in Figure 1.4 is obtained. We do not simply speak of inserting “copy rules” to use
the attribute grammar jargon, but the data flow has really to be modified and not only

2_On _is used for function application, i.e. f On z = f(z).
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extended. Consider, for example, the rule [assign] in Figure 1.4: The memory computed
by the premise with the name evaluate is used in the proposition with the name update.
In contrast to that, the memory “flows” directly from the conclusion to the proposition
with the name update in the original specification in Figure 1.2. For such problems of
propagation the operator Left To Right is suggested to be used. It is a transformation,
which, when applied to a sort o, establishes a data flow from left to right by an identification
of defining and applied occurrences® of sort ¢ in the suitable way after having refreshed
all these occurrences. Thus, the propagation of memories can be adjusted by the following
transformation:

execute (skip, MEM) — (MEM) [skip]

exzecute(STMy, MEMy) — (MEM;)
A ezecute(STMy, MEM;) — (MEMy)

[concat]
execute(concat(STMy, STMz), MEMy) — (MEMy)
evaluate(EXP, MEMy) — (VAL, MEM;)
A update(MEMy, ID, VAL) — (MEM,) (assign]
execute(assign(ID, EXP), MEMj) — (MEM3)
apply(MEM;, ID) — (VAL) [var]

evaluate(var(ID), MEM) — (VAL, MEM)

Figure 1.4: An interpreter coping with side effects in expression evaluation

Figure 1.4 = Left To Right MEM On Figure 1.3

The operator Left To Right has a number of comfortable properties which make it useful
for well-founded program transformation, e.g. it is total, the type of the underlying program
is not changed and the skeleton of the program and well-definedness (in the sense of a
correct data-flow) is preserved.

In our approach, such operators are defined in an applicative calculus supporting frag-
ment types as basic data types. To prove the properties as mentioned above, equational
reasoning (starting from the A-expression defining an operation) can be used.

The way how transformations are formalized in the functional calculus is illustrated in
Figure 1.5 which presents the calculus expression defining the operator Left To Right.
First, the auxiliary functions use und def are declared, which are useful to replace and to
refresh parameters of the given sort. The constructs®

3The input positions of the conclusion and the output positions of the premises are regarded as defining
positions, whereas the complementary set corresponds to the applied positions. The variables on the
corresponding positions are called occurrences.

4We are using mixfix notation in our functional calculus.
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e Map f:7— 7 List [ : 7* and
e Fold Left . ® _ : 7 x 7 — 7' Neutral e : 7’ List 7*

are recursion/iteration schemata common in higher-order functional programming. The
transformation Left To Right adapts each single rule by essentially refreshing and iden-
tifying variables of the given sort from left to right. There is an impure construct New
Variable ... to generate fresh variables. A number of operators for the deconstruction of
program fragments is used:

e Tag Of _ : Rule — Tag,
e Conclusion Of _ : Rule — Conclusion,

e Premises Of _ : Rule — Premise*,
e Symbol Of _ : 7 — Symbol,
e Parameters - Of _ :lo x 7 — Parameter”,

where lo = {Input, Output}, 7 = Conclusion or 7 = Premise. Similarly, several construc-
tor operators are exploited:

e Rule From _ _ < _: Tag x Conclusion x Premise* — Rule,
e Conclusion From _ _ — _: Symbol x Parameter* x Parameter* — Conclusion,
e Premise From _ _ — _: Symbol x Parameter* x Parameter* — Premise.

This introductory example dealing with the adaptation of Figure 1.2 will be finished
with some concluding remarks. The final result of the above adaptation as shown in Fig-
ure 1.4 copes with side-effects during expression evaluation. The benefit of this adaptation
is that we can perform a composition of Figure 1.4 and any fragment which adheres to the
same semantic model, e.g. an interpreter fragment for the evaluation of a Pascal-like func-
tion call. To “concatenate” two sets of rules is called merging in our work. It is facilitated
by a corresponding binary operator Merge.

It should be pointed out that it is a big advantage to be able to specify the semantics
of constructs at a level which is sufficient for the actual constructs, e.g. the evaluation of
variables in Figure 1.2 does not involve side-effects. Thus, we can use the simple profile
for the relation evaluate in Figure 1.2. The following remark should be stressed:

To be able to ignore semantic aspects is not only a matter of saving lines of code or
to have a conceptionally well-structured specification, but as we cannot foresee all aspects
of a specification in general—although, for interpreters of simple imperative languages we
can—, it makes reuse possible per se.

1.2.3 Adding computational behaviour

Let us carry on with a slightly more complex extension. We want to add a statement of
the form write(EXP) to perform an output and an expression of the form read to retrieve
an input. In the semantics definition, we model the concept of outputs by accumulating
output values in a corresponding sequence, whereas the remaining input is propagated
to the relation evaluate by corresponding parameter positions. Since both, inputs and
outputs, are sequences, we want to declare some straightforward polymorphic relations for
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As: Sort .

% replace parameters of sort s by v
Let use = X ps : Parameter* . \ v : Variable .
Map A p : Parameter . Sort Of p = s — v, p List ps
In

% refresh parameters of sort s; propagate fresh variable
Let def = X\ ps : Parameter* . \ v : Variable .
Fold Left

A (ps, v) : Parameter
Sort Of p =5 —
Let new = New Variable Of Sort s In (ps ++ (new), new),
(ps ++ (p), v)

Neutral (( ), v) List ps

In

* X Variable . A p : Parameter .

% transform each single rule
Ars: Rules . Map Ar: Rule.
Let concl = Conclusion Of r In
Let fresh = New Variable Of Sort s In
Let {(concll, v1) = def On Parameters Input Of concl On fresh In
Let (prems, v2) =

% iterate the premises
Fold Left
A {pres, vnext) : Premise* x Variable . A pre : Premise .
Let prel = use On Parameters Input Of pre On vnext In
Let (preO, vnew) = def On Parameters Output Of pre On vnext In
(pres ++ (Premise From Symbol Of pre prel — preO), vnew)
Neutral (( ), vl) List Premises Of r
In
Let conclO = use On Parameters Output Of concl On v2 In
Rule From Tag Of r Conclusion From Symbol Of concl concll — conclO < prems
List rs.

*

Figure 1.5: Left To Right _ : Sort — (Rules — Rules)

list processing required below in some fragments:

empty : — List(7) % to denote the empty list
singleton : T — List(T) % to transform an element into a list
append : List(T) x List(t) — List(t) % ordinary concatenation of lists
head : List(t) = T % to obtain the head of a list
tail : List(t) — List(T) % to obtain the tail of a list
affic : T x List(T) — List(7) % to extend a list

To achieve a kind of modular semantics, where the semantics of particular constructs is
specified without too much assumptions about other design decisions which are not so
relevant for the constructs, we try to specify the semantics of the new constructs in some
economical way; refer to Figure 1.6 and Figure 1.7.

The reason why we call the semantics fragments “minimal” is that we abstract from
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evaluate(EXP) — (VAL)
A singleton(VAL) — (OUT)

: [write]
execute(write(EXP)) — (OUT)

Figure 1.6: A “minimal” semantics of a write-statement

head(INg) — (VAL)
A tail(INg) — (INy) [read]
evaluate(read, INg) — (VAL,IN;)

Figure 1.7: A “minimal” semantics of a read-expression

certain details like the propagation of memories. Aiming at reusable fragments it is mean-
ingful to abstract from the propagation of memories because there are several options for
memory propagation as we have seen above in Subsection 1.2.2. It can also be the case that
a two-level model consisting of an envrionment and a store must be used instead of “flat”
memories. Such assumptions should not be fixed in fragments which do not rely on one or
another decision. The semantics of the write-statement and the read-expression is minimal
also in the sense that we ignore inputs in the rule [write] and we also ignore outputs in
the rule [read]. Finally, the rule [write] resembles the basic case that statements produce
outputs, but expressions do not. That is in contrast to the scenario, where expression
evaluation can cause all kinds of side effects.

To reuse the given semantics fragments from Figure 1.6 and Figure 1.7 in the context of
our interpreter in Figure 1.4, the corresponding rules must be qualified accordingly; refer
to Figure 1.8 for the result.

evaluate(EXP,| MEMy |,| INg ) — (VAL,

A |affiz VAL, | OUT, ) — (OUTy)
ezecute (write(EXP),| MEMg || INg ) — (MEM;

MEM;

INy

J[IN; ][ OUT, )

[write]

, ,|IN7|,OUTy)

head (INg) — (VAL)
A tall(”\lo) — (|N1)
A ‘ empty — OUT‘
evaluate (read,| MEM], INg) — (VAL,[MEM], IN;,JOUT))

[read]

Figure 1.8: Adapted semantics of write and read

The adaptation can be described in terms of some transformations:

e Positions of sort MEM are added and the data flow for memories is established; refer
to the inserted positions of sort MEM. The operators Add and Left To Right,
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which we have introduced in Subsection 1.2.2, are sufficient for that purpose.

e In the same way the rule [write] is transformed to contribute to the propagation of
the remaining input; refer to the inserted positions of sort IN.

e Since we assume that the evaluation of expressions may cause side-effects, the relation
evaluate also must return an output; refer to the inserted positions of sort OUT.

e For the rule [write], we must make sure that the output from the premise with the
name evaluate is incorporated into the output produced by the statement. Thus, we
perform the following transformations:

1. Rename Symbol singleton To affiz
2. Add (Input, affiz, OUT)
3. Copy (Output, evaluate, OUT) To (Input, affiz, OUT)

The operator Rename is a straightforward operator: It serves for renaming names
of propositions. The actual application from above is semantics-preserving. The
operator Copy ... To ... unifies the parameters on two positions. In attribute
grammars jargon, we would say that a semantic copy rule is inserted.

e Finally, it must be specified that the evaluation of a read-expression produces no
output. Therefore, the position of sort OUT, which we have inserted into the rule
[read], is associated with a new proposition serving as a kind of initialization. The
following transformation performs the necessary adapation:

Default For OUT By empty

In general, the operator Default adds for every variable of a given sort (i.e. OUT
in the example) without an associated defining occurences a new premise with the
given name (i.e. empty in the example) and the variable as the only output position.

To conclude on the above transformations we should point out that transformations al-
low us to instantiate a specification for certain uses. The transformations we have shown so
far concern the addition of parameter positions, the adaptation of the data flow, renaming
and the insertion of premises.

Before we can merge our interpreter and the new (instantiated) constructs, the inter-
preter from Figure 1.4 must be adapted to cope with the accumulation of output and the
propagation of the remaining input; refer to Figure 1.9 for the corresponding variant of the
interpreter which is “compatible” to Figure 1.8 with the I/O constructs. Essentially, we add
parameterization and computational behaviour in a way that the input is propagated by
positions of sort IN in the sense of a bucket brigade [DC90, Ada91] or accumulator, whereas
the output is “purely synthesized” based on positions of sort OUT. Let us comment on
the transformations modelling the necessary adaptation:

e Positions of sort IN and OUT are inserted as visualized in Figure 1.9. The operator
Add serves for that purpose as before. The proper data flow for the positions of sort
IN is achieved by another application of Left To Right. The positions of sort OUT
require more effort as discussed below.
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‘ empty — OUT‘ iskip]
execute(skip, MEM,) — (MEM,, ouUT))
BJIBCutB(STMl, MEM[), |N0 ) — (MEMl, |N1 s OUT1 )
A execute(STMg, MEMl, |N1 ) — (MEMQ, |N2 s OUT2 )
A | append(OUT,0UTs) — (OUT) [ X
conca
BJIBCutB(COhCQt(STMl,STMQ), MEM[), |N0 ) — (MEMQ, |N2 y OUT )
evaluate(EXP, MEMy,[INg ) — (VAL, MEMy,[IN; |[OUT))
A update(MEMy, 1D, VAL) — (MEM,) [assign]
execute(assign(ID, EXP), MEMy,|INg |) — (MEMy,|INy ;| OUT |)
apply(MEM, ID) — (VAL)
A ‘ empty — OUT‘ fvar]
evaluate (var(ID), MEM, [ IN]) — (VAL, MEM, [IN],[OUT))

Figure 1.9: An interpreter coping with inputs and outputs

e In general, their can be several premises returning some output; refer e.g. to the rule

[concat]. In such cases all the positions must be “composed” to a single output. Let
us insert premises of the form append(OUT;,0UT,) — (OUT) to perform such a
composition. There is another operator facilitating this kind of pairwise combination
which is used in the following instance:

Reduce OUT By append

The variables on the inserted applied positions of sort OUT are not defined yet. If
there is a defining position of sort OUT (note that there is at most one due to the
previous step) it can be copied. Otherwise the empty output should be returned.
Copying is achieved by a weaker variant of the operator Left To Right, that is to
say From The Left. If there is an undefined occurrence of a variable of sort OUT,
it will be unified with a defined occurrence from the left—if there is any. From The
Left is weaker in the sense that occurrences of the corresponding sort should not
be refreshed as in the case of the operator Left To Right. To return the empty
output a corresponding premise has to be inserted based on the operator Default in
similarity to the rule [read] in Figure 1.8.

The actual composition of the adopted interpreter fragment for basic language con-

structs and the I/O constructs is expressed as follows in our calculus:

Merge Figure 1.9 And Figure 1.8
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The result is simply the concatenation of the rules from the referred figures. The com-
position can be described in some more detail by making explicit how the above operands
were achieved. t; is assumed to denote the adaptations which were necessary for the in-
terpreter in Figure 1.4 to cope with I/O, similarly, for ¢, and t3 with respect to the I/O
constructs from Figure 1.6 and Figure 1.7. These transformations have been described
above. Thus, the above composition has the following more detailed description:

Merge (t; On Figure 1.4) And (Merge (¢, On Figure 1.6) And (t3 On Figure 1.7))

This example demonstrates how we can combine fragments of specifications at different
layers (or levels) of the computational model (or the semantic model). Transformations
like the ¢; above are used to relate the levels or—to put it differently—to qualify fragments
at one level for another level.

1.2.4 Further scenarios

Adapting and extending semantics specifications, there are a lot more applications for
transformations. Often there are only small adaptations necessary for successful reuse,
the extension of the memory propagation in Subsection 1.2.2 for example is such a rather
simple adaptation. Nevertheless, without meta-programming reuse is not feasible even for
such simple scenarios. Let us sketch some further scenarios:

Adding control-flow constructs When adding constructs like jumps the style of the
semantics needs to be adjusted. We can use a rather transitional semantics in that
case. One can define a transformation schema to adopt certain parts of a big step
semantics for use in small step semantics (and vice versa).

From non-recursive abstractions to recursive abstractions It issimple to write and
to understand the semantics for abstractions like procedures or functions as long as
we do not cope with recursion. The variants supporting recursion are slightly more
complex. Again, we can use a transformation to adapt the semantics of non-recursive
abstractions to cope with recursion. It can be based on a coding technique which
is common in functional programming and formal semantics, that is to say finite
unfolding.

More general forms of LHSs in assignments A very simple language like the one in
Figure 1.2 regards variable identifiers as the only form of LHSs for assignments. If we
add arrays, records, pointers, or functions, assignments become more involved. There
is a clean way to perform the corresponding generalization in the static semantics
specification by means of transformations. Essentially, we fold the rule modelling
the simple semantics of assignment in a way that the premises corresponding to the
LHS moves to a new relation modelling the semantics of LHSs. Further forms are
supported by adding rules for the new relation.
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1.3 Results and structure

The results of the thesis accordingly represented by the structure of the thesis are con-
cluded in the following subsections. Note that many technical details and some background
material is contained in the Appendix chapters.

1.3.1 A general framework for meta-programming

We propose a general framework for modular and functional meta-programs on declarative
target programs. It is important to notice that target programs, fragments and type in-
formation can be manipulated in meta-programs because suitable data types (Figure 1.10)
are embedded into the meta-language. Let us describe and justify the actual data types
and the entire framework in some detail.

® Program

Interface

Sigma m Composition

Transformation
Rule

- N
LA

Profile

Variable

Figure 1.10: Data types modelling target programs

The data types for meta-programmming are meant to capture basic language constructs
of several declarative programming languages and specification frameworks such as natural
semantics (e.g. RML), attribute grammars (e.g. GSFs) and constructive algebraic specifi-
cation. Thus, there are data types for fragments like rules, conclusions, premises etc. The
data types should also take into consideration properties which are important for declara-
tive programs, e.g. well-typedness. Actually, we can regard the data types of our general
framework as an abstraction from concrete languages. Analysing concrete examples { F; }cr
(languages, specification frameworks) we do not only get a kind of abstract language ker-
nel L; (constructs + properties), but we are also interested in a characterization of M;
denoting the manipulations (paradigm shifts, features, extensions and meta-level concepts
in the sense of Figure 1.1) supported by the frameworks F;. Such an abstraction can be
visualized as in Figure 1.11.
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abstraction
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Figure 1.11: Analysing concrete specification frameworks

Certain representatives of the declarative paradigm are not captured by our actual
data types for meta-programming, e.g. denotational semantics, higher-order functional
programming, “non-constructive” algebraic specification are beyond our scope. However,
some reuse concepts offered by the representatives might be relevant in our discussion. In an
abstract sense, our data types represent an idealized language L derived from some selection
{L;}jescr- Meta-programs on the data types for L provide the lowest level of manipulations
M we propose for L in our general framework. We assume that L can be instantiated for
the L;. Technically, meta-programming is implemented by embedding the data types
for meta-programming into a calculus for modular applicative programs. What we are
finally looking for are obviously manipulations M’ at a higher level of abstraction. The
manipulations M; of our examples F; (e.g. modularity, remote access, schemata) are mostly
at a higher level. We will try to represent such manipulations as meta-programs. Formal
reasoning about target programs and meta-programs is supported by suitable properties
in our general framework. Preservation properties, totality, fragment selection properties,
for example, provide important ingredients for reasoning about meta-programming.

The general framework for meta-programming (i.e. the data types from Figure 1.10,
the resulting calculus and properties for formal reasoning) is presented in full detail in
Chapter 2. There is also shown how the language L of the general framework can be
instantiated for several concrete languages L; such as natural semantics, attribute gram-
mars, logic programming and algebraic specification; refer to Section 2.4. Note that such
an instantiation does not explain yet how to reconstruct the manipulations M; associated
with the specification frameworks Fj, e.g. modularity, remote access and schemata.

1.3.2 The operator suite for meta-programming

The general framework supports the development of modular functional meta-programs
and formal reasoning about them. In our meta-programs, target programs can be con-
structed and deconstructed and the type information of a target program can be observed.
These are the basic manipulations M in our general framework based on our idealized lan-
guage L. Preservation properties and others mentioned above permits us formal reasoning
about meta-programs. To approach to a higher level of abstraction in meta-programming,
we develop an operator suite in the sense of a library of meta-programs. The concepts M’
embodied by the operators of the suite will serve for the review and the reconstruction of
existing concepts M;.

Figure 1.12 presents the structure of the operator suite. We start from some set of
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Embedded data types for meta-programming
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Figure 1.12: Layers of the operator suite

auxiliary operators. Then basic schemata capturing basic concepts of the synthesis, the
adaptation and the composition of declarative target programs are defined, e.g. to add posi-
tions or simple computational elements. In the next layer, several more elaborate schemata
are proposed, e.g. complex schemata to add computational behaviour or to propagate data
structures. All these schemata are meant to support program composition, synthesis and
transformation. The operator suite is based on a slight refinement of the idealized language
L of the general framework. The actual refinement permit us to apply the suite for natu-
ral semantics and GSFs (Grammars of Syntactical Functions: parameterized context-free
grammars with relational formulae on the parameters associated with the rules; a kind of
attribute grammars closely related to logic programming). The suite is developed in full
detail in Chapter 3. We will present several schemata which are not described elsewhere
in the literature in the context of stepwise enhancement [Lak89, SS94, JS94], rule models
[Hed92, KLMMO93|, modular attribute grammars [DC90], paradigm shifts in Lido [KW94],
etc.

L M’
instantiation

I M!
j J
Figure 1.13: Mapping the general framework to concrete specification frameworks
Based on a meta-programming-like point of view and on the actual operator suite we can

reconstruct existing concepts, which have been proposed in the declarative paradigm to sup-
port reuse. Remote access, for examples, can be “compiled” by propagation schemata. In
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an abstract sense, we try to understand existing frameworks as instantiations { (L%, M)} ;e
of our enriched general meta-programming framework (L, M'}; refer to Figure 1.13. We do
not say that exactly (L, M;) is reconstructed because the language and the manipulations
need possibly to be extended, restricted or adapted. We only make a few reconstructions
explicit in Chapter 4 describing related work, but it is often commented on the concepts
modelled by one or another operator.

1.3.3 Composition by lifting

We propose a new composition technique lifting based on meta-programming; refer to
Section 3.5. The starting point is to subdivide a programming problem into computational
aspects. Program fragments can be located at some “level” of the complete computational
model. Transformations called transformers can be used to add computational aspects.
Lifting means to derive a complete program with the complete computational behaviour
from a program skeleton (a context-free grammar or a signature), fragments at certain
levels and transformers; refer to Figure 1.14.

Skeleton

Computational
aspects \
o Complete
Lifting Process program
Rules /

at levels

Transformers
Figure 1.14: Program composition by lifting

In some sense, our notion of lifting is similar to lifting (or stratification) in modular de-
notational semantics based on monads and monad transformers and to the monadic style
of functional programming; refer e.g. to [Esp95]. Monads are dedicated to higher-order
functional specification frameworks such as higher-order functional programming and de-
notational semantics. In our approach, we can achieve a similar degree of extensibility by
meta-programs serving as transformers, even for first-order target languages. The monadic
style depends on a suitable parameterization. We indicate that our transformational ap-
proach does not require such preconditions or those inherent to other forms of modularity in
Chapter 4 describing related work. It is also interesting to notice that our transformational
approach to composition is similar in intent to aspect-oriented programming [KLM*97] in
the sense that we also try to specify aspects of computational behaviour separatly to avoid
“tangled” code.

1.3.4 Modular language definition

As the motivating examples have made clear, we concentrate on applications of the meta-
programming approach in formal language definition. Therefore, attribute grammars and
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operational semantics (e.g. natural semantics) are used as target languages in all examples.
It is demonstrated that meta-programming facilitates the specification in the following
problem domains:

e semantic aspects of programming languages,

e adaptations for common syntactical and semantic variants of the described constructs
and concepts and

e composition of language fragments.

We claim that the fine granularity of computational aspects we can deal with, the possi-
bilities for composition and adaptation cannot be achieved by other prominent techniques
promising reusability, particularly in AG design.

A language construction set which crucially relies on the meta-programming approach
will be presented in a separate paper [LRBS]. Attribute grammars and operational se-
mantics are used as the underlying formalisms. The construction set covers imperative
languages and simple modular and object-oriented languages.



Chapter 2

The general framework

In this Chapter, we propose functional meta-programs on declarative target programs. To
be applicable to a certain range of representatives of the declarative paradigm, the data
types for meta-programming and the corresponding notions such as well-typedness are de-
fined in a general way. Section 2.1 provides an overview of the data types, the resulting
applicative calculus and the properties of target programs and meta-programs. In Sec-
tion 2.2 the data types concerning programs and fragments of them are considered in more
detail. Afterwards, crucial notions for dealing with declarative programs are introduced
in Section 2.3, e.g. well-typedness and selection criteria for fragments. In Section 2.4, we
refine the data types for meta-programming and the notions for declarative programs to
cope with actual target languages. The data types for meta-programming are embedded
into an applicative calculus in Section 2.5. Section 2.6 defines a number of properties of
meta-programs, e.g. preservation properties.

2.1 Overview

Data type | Explanation WF/WT Structure

Program complete programs Vv Rules ® Interface

Rules compatible sequences of rules Vv Rule*

Rule rules Vv Tag ® Conclusion ® Premise*
Conclusion | conclusions for rules Vv Element

Premise premises for rules Vv Element ® - - -

Element parameterized symbols Vv Name ® Parameter* ® Parameter*
Parameter parameters Vv (Variable ® - - -) ® Sort
Variable countable set of variables

Name symbols for elements Id

Interface import / export / optional axiom N P(Name) ® P(Name) ® Name?
Symbol universe of symbols Name & - - -

Tag tags of rules Id

Id countable set of identifiers

Figure 2.1: Data types for meta-programming (part 1/2)

19
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The starting point for our approach to meta-programming is a collection of suitable
data types for meta-programming. There are data types for programs and fragments of
them; refer to Figure 2.1 for an overview. Moreover, there are auxiliary data types dealing
with type information (in the sense of the target language), fragment selection, substitution
and unification; refer to Figure 2.2 for an overview.

Data type | Explanation WF/WT Structure

Sort sorts of positions etc.

Profile profiles of symbols Symbol & Sort* & Sort*
Sigma signatures Vv P(Profile)
Substitution | substitutions N P(Variable @ Parameter)
Association | associations of symbols and sorts Symbol ® Sort

lo selector fragments {Input, Output}
Position addresses of parameter positions lo ® Symbol ® Sort

Figure 2.2: Data types for meta-programming (part 2/2)

Consequently, basic operations for constructing and deconstructing fragments need
to be defined. A particular property of our approach to meta-programming is that the
data types for programs and fragments are restricted to elements obeying well-formedness
and well-typedness; refer to the column WF/WT in Figure 2.1 and Figure 2.2. Well-
formedness captures simple context-sensitive properties of programs and fragments, such
as that the tags of the rules are pairwise distinct. Well-typedness is meant in the sense of a
many-sorted type system, like for many-sorted algebraic specifications or programming
languages like Godel. For complete programs we additionally require well-definedness
capturing properties particularly important for complete programs such as a well-defined
data flow (e.g. L-attribution or strong non-circularity for AGs, or call correction or i/o-
correctness for logic programs) and a kind of reducedness property (e.g. in the context-free
sense). Thereby, it is guaranteed that only proper fragments and specifications are derived
in any step of a meta-program, but this also means that some applications of construction
operators are not defined.

The central data types are Rule and Rules, i.e. single rules and compatible sequences
of them. Transformations in the narrow sense are functions on Rules, i.e. they are of the
following type:

Trafo = Rules — Rules

The above data types are embedded into an applicative calculus in order to support
functional meta-programs; refer to Figure 2.3 for the functional programming-like con-
structs we assume. We prefer functional meta-programs instead of other possible options,
because:

e the meta-programs should be declarative (versus imperative) to allow us simple formal
reasoning about meta-programs and

e higher-order functions (versus first-order specification formalisms) are quite useful as
meta-programs, since they provide, for example, a straightforward means to model
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generic transformations.

Form Explanation

_On _ functional application

Let z =eIn¢ non-recursive Let

Letrec x = ¢ In ¢ recursive Let

_o._ composition fog On z = f On (g On z)
= equality (on non-functional domains)

e conditional

T an error value being an element of any type
_o— _ partial conditional; b o— e means b — e, T
(...) construction of sequences / tuples

Head Of _, Tail Of _, Nil? _ | deconstruction of sequences

e concatenation of sequences

Fold /Map recursion schemata

7 the “maybe” type constructor; D? = D & {7},

Figure 2.3: A-calculus-like constructs

Program transformations are very expressive. This is a statement we will comment on
all through the thesis. In particular, we can perform adaptations which are not supported
by common forms of modularity. On the other hand, we have to aspire to a discipline
of meta-programming supporting a kind of controlled reuse. It is obvious that one can
describe almost every adaptation by sufficiently powerful transformations, but controlled
reuse means that the application of meta-programming operators is driven by their prop-
erties and by the semantics of the target programs serving as operands and results. Con-
sequently, we discuss properties of meta-programs in some depth in Section 2.6, e.g. the
well-known general semantics preservation. If we go on to define high-level operators for
program transformation, synthesis and composition in the next chapter, this analysis will
be helpful in characterizing particular operators. The notions for target programs from
Section 2.3 such as well-typedness are crucial for our approach to safe meta-programming
as well.

2.2 Fragments

The domains Rule, Rules, Program, Conclusion, Premise, Element, Parameter and some other
auxiliary data types, e.g. Tag and Name, are defined below. For some domains we will
distinguish a structural definition and the actual domain obtained as a restriction of the
structural definition. The name of the domain corresponding to the structural definition
is the overlined name of the actual domain, e.g. Rule denotes the name of the domain of
the structural definition for Rule. If no restriction is necessary, the overlined domain and
the actual domain are not distinguished, e.g. for Tag. The restricted domains are usually
defined by inference rules in similarity to type systems.
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2.2.1 Rule

The data type Rule is an abstraction from constructs being relevant in many specification
frameworks, e.g. rules in natural semantics, or definite clauses in logic programming. A rule
consists of a tag, a conclusion and some premises. Tags are useful to refer to a particular
rule within sequences of rules. The following structural definition is suggested:

Rule = Tag® Conclusion ® Premise”
Conclusion = Element
Premise = Element®---

Elements are parameterized symbols (names) in correspondence to propositions in natural
semantics, literals in logic programs and grammar symbols with associated attributes in
attribute grammars. Elements are considered in more detail in Subsection 2.2.4. The
symbol of the conclusion is said to be defined by the rule. The symbols of the premises
are said to be used by the rule. At this point, we ignore that there can be other forms of
premises than elements. The domain Premise can be extended later on to cope with other
forms, e.g.:

e semantic rules of an attribute grammar,
e matching constructs (.= _) in a logic program and
e negative equations of an algebraic specification.

We should comment on the actual decision to consider a sequence of premises rather
than an (unordered) set of premises. If the body of a definite clause is read simply as a
conjunction, there will be no necessity for maintaining the order among the literals in the
conjunction. For many instances, however, the actual order of the premises is significant
or at least pragmatically useful:

e The order is significant for the RHS of a context-free grammar rule. Consequently,
sequences of elements need to be considered for attribute grammars.

e Several specification formalisms or well-modedness conditions require certain data
flow properties, e.g. RML [Pet95, Pet94], ASF(+SDF) [K1i93], call-correctness and
i/o-correctness in logic programming [Boy96a], which depend on an actual order of
premises.

e The order of the premises is often understood as a description of control flow and data
flow, Sterling’s et al. notion of a skeleton in [KMS96], for example, captures (logic)
programs with a well-understood computational behaviour (including control-flow).
Indeed, we will assume that the relative order of the premises possibly contributes
to control-flow and/or data-flow.

e Finally, premises can be addressed by their position in the sequence.

Note also that the order of premises is possibly relevant for certain evaluation strategies or
for incremental evaluation; refer e.g. to [AC90, ACG92] in the context of natural semantics.
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Proper values of Rule are characterized as follows:

7 € Rule is a triple of the form (t,€, (€1,...,€,)),n >0

A €; € Element for i =0,...,n

AN WFrue(T)

A X WTRu|e(Z,F) [Rule]
7 € Rule

Well-formedness (WZF) is discussed in Subsection 2.3.1, whereas well-typedness WVT)
of target programs and fragments is the subject of Subsection 2.3.2. Signatures Y are
expected to associate names (symbols) with many-sorted directional types (or profiles).

The construction of a rule r from a tag ¢, a conclusion e and a sequence of premises e*
is expressed in the following mixfix notation:

Rule Fromte <« €*

It should be pointed out that operations for the construction of fragments are usually

partial.
It is simple to define basic operations for the deconstruction of rules:

Tag Of _ : Rule — Tag
Conclusion Of _ : Rule — Conclusion
Premises Of _ : Rule — Premise®
Tag Of Rule From te < e* — ¢ [Tag Of]
Conclusion Of Rule From te < e — e [Conclusion Of]
Premises Of Rule From t ¢ < ¢* — ¢* [Premises Of]

2.2.2 Rules

The data type Rules models certain restricted sequences of rules. Thus, obviously the
following structural definition can be assumed:

Rules = Rule*

Elements of Rules are restricted in the sense that they have to satisfy well-formedness
and the types of the single rules must be compatible to each other. Consequently, proper
values of Rules are characterized as follows:

75 € Rules is a sequence of the form (71,79,...,7,),n > 0
AN T;€ERulefori=1,...,n
A Wj:RuIes(ﬁ)
A FE: WTRue(2,7;) fori=1,...,n) [Rules]

75 € Rules
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The construction of an element rs € Rules is expressed in the following way:

Rules From _ : Rule* — Rules

Concatenation on Rules is denoted by _ 1 _ : Rules x Rules — Rules.

751 ++ 759 € Rules
Rules From 75; <t Rules From 759 — 751 ++ 739

[- b _ for Rules]

Here _ ++ _ denotes ordinary concatenation of sequences.

It is straightforward to define basic operations Nil?, Head Of and Tail Of for the
deconstruction of elements of Rules in similarity to the iteration on sequences; refer to
Section B.1.

2.2.3 Program

A program p € Program is an even more restricted sequence of rules as constrained in the
data type Rules together with a kind of interface. The structural definition of programs is
the following:

Program = Rules ® Interface
Interface = P(Name) ® P(Name) ® Name?

An interface for some rules defines the imported symbols, the exported symbols and
an optional axiom in the context-free sense. The imported symbols should be a subset of
the required symbols which correspond to all symbols used but not defined in the rules.
The exported symbols should be a subset of the defined symbols. Finally, if an axiom is
given it has to be an exported symbol.

$Simport € P finite(Name), ssezport € Prinite(Name), a € Name?
N SSimport 1 $Sexport = 0
N a #7= a€ $Segport

[Interface]
(8Simport » SS export» @) € Interface

Well-formedness and well-typedness of programs are assumed to result from the proper-
ties of the data type Rules. Any proper program p has to satisfy well-definedness. Indeed,
well-definedness is the distinguishing property of Program and Rules. To check that the
rules “implement” the interface is part of the well-definedness property; refer to Subsec-
tion 2.3.3.

75 € Rules
A 1 € Interface
A W_DProgram(ﬁai)
(75,1) € Program

[Program]
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To construct an interface and to lift some rules rs € Rules (w.r.t. an interface) onto
Program, the following operations can be used:

Interface From | _1 _ : P(Name)® P(Name) — Interface
Interface From | _1 _ Axiom Is = : P(Name) ® P(Name) ® Name — Interface
Program From _ With Interface - : Rules x Interface — Program

These operations are partial like many other operations for constructing fragments. The
rule [Program| models that a sequence of rules can only be considered as a proper program,
if well-definedness holds.

2.2.4 Element

Again, the data type Element is an abstraction from constructs being relevant in many
specification frameworks, e.g. conclusions or premises in natural semantics, atoms or liter-
als in logic programming, conclusions and conditions (with free variables on one side) in
algebraic specification.

An element consists of a name (or a symbol), some inputs and some outputs. Conse-
quently, the following structural definition can be given:

Element = Name ® Parameter * ® Parameter *

Proper values of Element are characterized as follows:

€ € Element is of the form (n, (Py,...,Dn)s Bmit>---sDk))»m >0,k >m
A p; € Parameter for i =1,...,k
A W]:Element(é)

A 3T, S WTement (T, 2, €) [Element]

¢ € Element

Contexts I" associate variables (parameters) with sorts. For a given rule, it must be possible
to associate each variable with a single sort.
The construction of an element e is expressed in the following mixfix notation:

Element From n p| — p}

The basic operations for the deconstruction of elements are as follows:

Name Of _ : Element — Name

Parameters - Of _ : lo x Element — Parameter*
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Here the domain lo is defined as follows: lo = {Input, Output}.

Name Of Element From n p| — pf —n [Name Of]
Parameters Input Of Element From n pi — p$ — pi [Parameters.1]
Parameters Output Of Element From n pi — p’{ — p’{ [Parameters.2]

Some minor remarks concerning the domain Name are necessary. We assume that
both, tags and names for elements, are based on the same underlying set of identifiers.
This property can be facilitated to turn tags into symbols and vice versa. That possibility
can be used, for example, in order to add computations to rules based on tags of the rules,
or to switch from a signature to a program skeleton. Consequently, we assume coercions
for both directions:

Tag From : Name — Tag
Name From : Tag — Name

Finally, the generation of fresh names should be supported, for example, in order to be
able to specify the compilation-oriented semantics of the operators for modularity in [Bro93,
BMPT94]. We assume an operation NEWpame : P(Name) — Name. NEWname(N) — n
means: n is a name not mentioned in N. There is the pragmatic problem of the proper
accumulation and propagation of the set of names /N being in use in a meta-program. This
problem is addressed in Subsection 2.5.3.

2.2.5 Parameter

The data type Parameter is an abstraction for entities like terms (in natural semantics, logic
programming, and algebraic specification), attributes (in attribute grammars) etc. We will
have at least variables as a form of parameters. Thus, the initial structural definition is
the following:

Parameter = (Variable ® ---) ® Sort,

where Variable is a countable set of variables. As shown in the equation defining Parameter,
a parameter is always expected to be associated with a sort, i.e. the type of the parameter.

Parameters are required to satisty the properties of well-formedness and well-typedness.
Consequently, proper values of Parameter are characterized as follows:

1/\;-7:'Parameter(p)
= F7 DI TyPEParameter(Fa Z,ﬁ) = 7TSort(p)

p € Parameter [Parameter]

The partial function 7 YPEparameter : Context x Sigma x Parameter — Sort associates a
potential parameter with its sort; refer to Subsection 2.3.2 for details. Since we should
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be able to generate variables, there is a need for an operation N'EWvariable : P(Variable) x
Sort — Variable, where NEWvaiabie(V,0) — v means: v is a variable not mentioned in
V. The sort position of NEWvariabie supports the concept of meta-variables, i.e. each
variable has an associated sort, that is to say o for the above v. Similar to the generation
of names, there is the pragmatic problem with generating fresh variables concerning the
proper accumulation and propagation of the set of variables V' being in use in a meta-
program. We will return to this issue in Subsection 2.5.3 when the data types are embedded
into an applicative calculus.

The construction of a parameter of a certain sort o from a variable v is expressed as
follows:

Variable From v Of Sort o

However, if we assume meta-variables, the application of the construction operator can be
omitted in the sense of an implicit coercion.
To deconstruct parameters, the following operations are useful.

Sort Of _ : Parameter — Sort
Variable? . : Parameter — Boolean
Variable Of _ : Parameter — Variable
Tsort(p) = @ [Sort Of ]
Sort Of p —» o
Isvariable (1 (p)) — b [Variable?]
Variable? p — b
Variable Of Variable From v Of Sort 0 — v [Variable Of]

Finally, we declare an operation selecting all variables contained within a given sequence
of parameters. It is frequently needed for computing closures of variables. Its specification
is straightforward; refer to Section B.2.

Variables In _ : Parameter* — P(Variable)

2.3 Notions for target programs

2.3.1 Well-formedness

The data types above have been defined in such a way that a necessary precondition for
the well-formedness of a compound fragment is the well-formedness of its components. To
satisfy well-formedness a particular requirement for a program is the uniqueness of tags.
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WZFrue(Fi) fori=1,...,n
A WTag(Fz’) 75 WTag(Fj) fori,7=1,...,n,1 7éj [WfRules]
W]:Rules(<F17---aFn>)

Instances of the framework can add other requirements such as:

e normal form properties of rules (as common for AGs),
e only one defining occurrence of a variable (linearity),
e pattern criteria for functional equations (e.g. non-overlapping patterns).

2.3.2 Well-typedness

Any fragment such as a rule, an element and a parameter can be associated with the type
information relevant for the symbols occurring in the fragment. Let Sort be the data type
of sorts. At this point, there are only symbols in the sense of Name contributing to the
definition of Element. In several instances other kinds of symbols are necessary, e.g. term
constructors (data type constructors) in natural semantics or function symbols (functors)
in logic programming. Thus, a corresponding sum domain is established:

Symbol = Name®:--

Every s € Symbol shall be associated with a directional type based on a many-sorted type
system in similarity to [Boy96a]. The notation

S10p X X Oy = Opg1 X -+ X Opy,
where s € Symbol, o; € Sort, © = 1,...,m, is used for profiles modelled by the domain
Profile. 1,...,n are regarded as the input positions of s, whereas n+1, ..., m are regarded

as the output positions of s. Note the following special cases:

e s has no input positions at all, i.e. n =0, or
e s has no output positions at all, i.e. m =n, or
e s has no positions at all, i.e. m =0 = n.

The construction of the above profile is expressed as follows:

Profile From s (o1,...,00) = (Opt+1,---,0m)

The data types Profile of profiles and Sigma of signatures are defined as follows:

Profile = Symbol ® Sort* ® Sort*
Sigma = SIGMA(P(Profile) ®--)

SIGMA restricts elements of (P(Profile) ® ---) to proper signatures ¥ € Sigma. Some
common restrictions can be indicated as follows:
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1. uniqueness of the profiles for any symbol, i.e. the following definition of Sigma is
assumed:

Sigma = Symbol — (Sort* ® Sort*),

2. function symbols have exactly one output position, as for example in logic pro-
gramming.

It is assumed in the sequel that STGM A satisfies at least the first condition, that is to say,
symbols are not overloaded. The actual structure of Sigma possibly has to be adapted or
extended in some instances, e.g. if sorts are defined by domain equations, this information
will have to be maintained within a signature.

The following operations on Sigma are required:

_ U _ : Sigma x Sigma — Sigma % least upper bound (LUB)
< _ : Sigma x Sigma — {True, False} % subtype relationship

¢1 -+ - ¢ denotes a proper signature if {¢1} U -+ U {¢} is defined.

Example 2.3.1

For the names defined and used in our introductory interpreter example in Figure 1.2 the
following profiles (directional many-sorted types) are appropriate:

ezecute : STM x MEM — MEM
evaluate : EXP x MEM — VAL
update : MEM x ID x VAL - MEM
apply : MEM x ID — VAL

Note that we also use the following term constructors in the referred specification:

skip : — STM
concat : STM x STM — STM
assign : ID x EXP — STM
var : ID — EXP

We will see later on that another kind of symbols needs to be added to the definition
of the domain Symbol because of terms. Any way, in some or another way we must qualify
profiles by the corresponding kind of symbol. Above, we use different typesets for names
and constructors.

¢

Here are the basic operations for the deconstruction of profiles:

Symbol Of _ : Profile — Symbol
Sorts _ Of _ : lo x Profile — Sort*
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Symbol Of Profile From s 07 — of — s [Symbol Of]
Sorts Input Of Profile From s o] — o} — 07 [Sorts Input]
Sorts Output Of Profile From s o] — of — o} [Sorts Output]

[teration on signatures' is based on operators similar to the operations for deconstruct-
ing sequences:

Head Of _ : Sigma — Profile
Tail Of _ : Sigma — Sigma
Nil?_ : Sigma — Boolean

Remember that the data types Program, Rules, Rule, Element and Parameter contain
well-typed elements only. The general framework assumes type checking / inference rela-
tions for these data types. The following rules are the basis:

Isvariable(m1(P)) — True
A Outvariable(m1(p)) — v
A 71'Sort(p) — 0
A (v:o)el
TyPEParameter(Fa Z,ﬁ) — 0

[type of a variable]

§:101 X X Oy —>Omy1 X " X0 €EX
/\ Typgparameter (F, E,]_)Z) — a; for ’L = ].7 - ,k [WTEIement]
WTEIement(Fu 27 <n7 <Z_)17 s 71_)m>7 (pm+17 s 71_)k;>>)

= (WTEIement (Fa Zaéi) for i = 0,... 7n) [WTRule]
WTRuIe(Za <taé07 <éla v aén»)

We should also define the type of a program. For every rs € Rules its type ¥ is denoted by
Sigma Of rs.

WTRuIe(Zari) for 1 = 1, -
A Y is minimal,
ie. VXY # X : WTrye(X,r;) fori=1,...,n= |X| < |¥] [Sigma Of |
Sigma Of Rules From (ry,...,r,) = X

Note that a minimal ¥ is assumed because the type of a fragment should not contain
useless profiles. It is assumed that the operator Sigma Of is overloaded to be applicable
to other fragment types as well.

!'We assume a suitable representation for Sigma based on sequences, e.g. (Symbol ® Sort* ® Sort*)*.
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Example 2.3.2

The profiles shown in Example 2.3.1 represent exactly Sigma Of Figure 1.2. For all
the variants of the interpreter from Section 1.2, W7 holds because we cannot compute
programs or fragements which are not well-typed. &

2.3.3 Well-definedness

A program is said to be well-defined if it satisfies certain criteria particularly important
for complete programs. Here are some examples:

1. variables are bound from left to right and they are not used before they are bound
(refer e.g. to RML [Pet95, Pet94]—a variant of natural semantics),

reducedness of the underlying context-free grammar of an AG,

non-circularity of an attribute grammar,

absence of free A-variables in functional equations,

call- or i/o-correctness in logic programs with directional types [Boy96a].

Gl W

To approach to an initial form of well-definedness in our framework we need some further
notions. Parameter positions in a rule are divided into defining and applied positions.

Definition 2.3.1

Let be r € Rule. The input positions of the conclusion of r and the output positions of
the premises of r are called defining positions of r. A position in r which is not a defining
position, is called an applied position of r. &

The idea behind these terms is that the variables with occurrences on applied posi-
tions are expected to be “computed” in terms of variables with occurrences on the defining
positions. These terms are used in much the same way in extended attribute grammars
[WMT77]. There are other terms used for this purpose, e.g. imported and exported posi-
tions in directional typing [Boy96a]. In attribute grammars, notions like used and defined
attribute occurrences are defined. The latter terms are tuned towards named attributes
rather than a position-oriented framework as in our case.

Now it is straightforward to define the sets Ao In r and Do In r for a given rule
r which represent the applied and the defining (variable) occurrences of r, i.e. all the
variables occurring on applied or defining positions respectively. Refer to Section B.3 for
the inference rules defining the corresponding relations.

The following definition of well-definedness is assumed. A requirement for rules in the
context of directional types of symbols is that every applied occurrence of a variable is
justified by a defining occurrence of the same variable. This data flow criterion is modelled
by the rule DF.1 below. Moreover, a kind of conformance should be satisfied between the
rules and the interface of a program; refer to the rule ZMPLEMENTS.

DF (s, i)
A IM'P‘CEMSNT:S’(W, ;) [WDProgram]
WDProgram(<ﬁ7 7'>)
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AoIn7; CDolIn7jforj=1,...,n [DF.1]
DF((F1y... Tn)yt)

55 export are defined symbols in 75
A $8import are not defined symbols in 75
A 75 is reduced in the context-free sense w.r.t. ssimports 5 ezport, @ [TMPLEMENTS]
IMPLEMENTS(TS, ($Simport > SS export, @)

We can speak about reducedness in the context-free sense, if we regard the imported names
of the interface as “terminals”, whereas the exported names are regarded as “nonterminals”.
If the interface specifies an axiom, reducedness can be checked in its full extent. Otherwise,
we can only check that all required names (i.e. names which are used but not defined) are
listed as imported names.

A very simple and common data flow criterion is obtained by restricting the depen-
dencies of variables in the elements of a rule from left to right; refer to Section B.4 for
details.

Well-definedness is only required for complete programs, because transformations can
often be defined in a more convenient way, if intermediate results do not have to satisfy the
properties modelled by well-definedness. The process of establishing a propagation pattern
along certain symbols of a set of rules, for example, can be divided into two phases. The
first phase adds new parameter positions, whereas the second phase establishes a certain
data flow based on the new positions. The intermediate result will not be well-defined.

Example 2.3.3

Recall our introductory interpreter example of Subsection 1.2.2. The orginal interpreter in
Figure 1.2 and the final adaptation in Figure 1.4 coping with side effects during expression
evaluation are well-defined, i.e. WD holds, whereas the intermediate result in Figure 1.3
with the new output position of sort MEM is not well-defined because of the variable MEM’
which only occurs on an applied position of the rule [var|, but not on a defining position,
i.e. WD does not hold due to [DF.1]. &

The final result of a meta-program must be well-defined. The following definition defines
the term of undefined variables in a rule. We might also say that these variables are not
defined. These variables are exactly those variables which violate well-definedness and
thus meta-programs have to focus on them. Dually, we can also speak of unused variables
corresponding to useless variable occurrences in a target program. Unused variables are
not regarded as a violation of well-definedness but still they are useful to control meta-
programs.

Definition 2.3.2
Let be r € Rule. Ao In r\ Do In r denotes the set of all undefined variables in r. Dually,
Do In r \ Ao In r denotes the set of all unused variables in r. &

Note that there can be several applied occurrences of an undefined variable in a rule.
There are two basic ways in which an occurrence of an undefined variable v can be elimi-
nated in a rule r.
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e The variable v is replaced in the corresponding occurrence by another variable, more
generally by a parameter not referring to v.

e A defining occurrence of v can be created, most likely by the insertion of a new
premise with v on an output position.

Both approaches model somehow the addition of a semantic rule in the AG jargon, where
the first approach corresponds to the addition of semantic copy rules. Unused variables can
obviously be eliminated in a dual manner. Let us declare some useful terms. If a premise
p is inserted in order to eliminate an undefined variable v, then p is also called definition
(of v). Dually, if a premise p is inserted in order to eliminate an unused variable v, then
p is also called use (of v). Definitions are basically constant computations, i.e. premises
with zero input positions and one output position. Uses are basically unary conditions, i.e.
premises with one input position and zero output positions. Finally, if a parameter on an
applied position is replaced by a variable with a defining occurrence, more generally by a
parameter without undefined variables, the resulting parameter is called a copy.

2.3.4 Substitution and unification

The notions substitution and unification are well-established in the declarative paradigm.
Usually they are used to describe the meaning of programs or to explain the syntactical
proof derivation. In the context of meta-programming, we need these concepts at the
meta-level to perform “symbolic” substitution and unification in meta-programs. Note
that additional requirements for our kind of substitution and unification arise from our
well-typedness constraints.

In a formal sense, a substitution is a mapping from variables to parameters. As it
is common practice, we use a rather syntactic definition based on pairs of variables and
parameters:

Substitution = P(Variable ® Parameter)

(v, p)? means that v has to be substituted by p in parameters, elements and others. Proper
substitutions, i.e. elements of Substitution, are such sets {{vi,p1),..., (s, pp)}, where n >
0, vi # p; for i = 1,...,n and v; # v; for i # j. For several instances, e.g. natural
semantics, compound parameters in the sense of terms need to be considered. Then the
sort of any nested occurrence of a variable v; in the parameters p; must not be in conflict
with the sort of p;, and the LUB of the type information associated with the p; has to
exist in order to retain well-typedness. Consequently, the concatenation of substitutions
is restricted. Let f and o be substitutions. # <t 0 =6 U o provided # U o denotes a
proper substitution.

Substitutions can be applied to parameters. The application of substitutions can
straightforwardly be generalized for other syntactical domains, such as elements and rules.

2The notation v/p is used quite often in the literature instead of (v, p).
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Substitute _ In Parameter _ : Substitution x Parameter — Parameter
Substitute _ In Element _ : Substitution x Element — Element
Substitute _ In Rule _ : Substitution X Rule — Rule

We give only the inference rules for the application of substitutions to parameters.
Remember that there are only variables as parameters in the general framework.

Variable? p — True
A Variable Of p = v
A Sort Of p = Sort Of p’ [SUBST.1]
Substitute {...,(v,p),...} In Parameter p — p’

Variable? p — True
A Variable Of p #v; fori=1,...,n [SUBST 2]
Substitute {(vi,p1),...,(vn,pp)} In Parameter p — p

The application of a substitution has to be restricted to retain well-typedness as ex-
pressed by the above inference rules. For notational convenience we may write e [v/p] for
the application of a substitution {(v,p)} to a syntactical entity e.

Another important operation on substitutions is composition coinciding with function
composition. Given two substitutions 0 = {(vy,p1), ..., (vs,pn)} and 0 = {{vps1, Pri1),

<+, {Um, pm)}, their composition is denoted by o o 6, and it is obtained from the set
{{v1,p1 0)y. s (Un, Pn O)y (U1, Pnt1)y -+ s (Umy D)} by removing all (v;, p; o) with v; =
p; o for i = 1,...,n and by removing those (v;,p;) for which v; € {vy,...,v,} for j =
n+1l,...,m.

The concept of substitution permits us to introduce another concept, that is unification
of parameters, similarly to logic programming; refer e.g. to [NM95]. The computation of the
most general unifier of equations {(t1,t'1),..., (ts,t's)} is based on deriving an equivalent
set of equations in solved form according to Robinson’s algorithm. As usual, a set of
equations is in solved form if the LHS of every equation is a variable, and the variables
do not occur in the parameters on the RHSs. Two sets of equations are equivalent if
they have the same sets of unifiers. Thus, we need an auxiliary domain Equations =
P(Parameter ® Parameter). Proper sets of equations have to be restricted to retain well-
typedness similarly to Substitution.

As far as unification is concerned, the following relations are needed:

Unify Parameters - And - : Parameter x Parameter — Substitution
SOLVE(.) : Equations — Substitution
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SOLYVE({(p,p)}) — 6 [MGU.1]
Unify Parameters p And p’ — 6

There should be possibly also a relation to test if a unifier exists at all. Refer to Section B.5
for details of the relation SOLYVE, which computes the solved form of some equations. Uni-
fication is easily generalized for elements. Unfication of elements (with the same underlying
profile) corresponds to the unification of their parameters in the same positions. Thus the
following definition is appropriate:

Unify Element - And _ : Element x Element — Substitution

SOLVEL(p1, 1), Phs i), (P10 s (Dl P DY) — 0

Unify Elements Element From n (pf, D) — (pI, - ,pb [MGU.2]
And Element From n (p’{, . ,p’#%) — (p’I, . ,p’l)

— 0

Subsitution is useful in meta-programs, for example, for establishing a certain data flow
by the unification of variables in a suitable way. Unification is useful in meta-programs,
for example, for unfolding, i.e. a certain premise is unfolded according to a rule defining
the premise’s symbol.

2.3.5 Addressing fragments
Meta-programs frequently need to address (select) certain fragments in programs, namely:

e a rule in a sequence of rules,
e a premise in a sequence of premises,

e a (parameter) position of a conclusion / a premise,

a defining or an applied position.

The purpose of this subsection is to comment on such fragment selections in more detail.
Values intended to address fragments are called selectors in the sequel. Usually a selector
is expected to select uniquely a fragment. However, in some cases it is acceptable that a
selector matches with several fragments or even with no fragment at all.

Rules can easily be selected based on tags. For certain instances of the framework a
selection based on parameter patterns (for the input positions of the conclusions) makes
sense as well, e.g. for recursive function definitions and constructive algebraic specifications.

Premises of rules can be addressed, in general, by indices. There are the following
objections for using this addressing method:

1. It is not readable.
2. It depends on the order of the premises and on the absence or presence respectively
of premises possibly not relevant for the actual selection.
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3. For certain forms of premises, e.g. semantic rules in an AG, there is no natural order
because the order is semantically meaningless.

Consequently, names of premises should be used for selection. If a name is actually used
to select a certain premise, we must ensure that the name can be used as a unique selector.

Definition 2.3.3
Let be s € Name, r € Rule. We say, s is a unique selector for a premise of r if
|{i | Name Of ¢; = s with i = 1,...,n}| =1, where Premises Of r = ¢4, ..., e,. &

Definition 2.3.3 can be easily generalized to cope with other forms of premises.

Example 2.3.4

Let us consider again the introductory interpreter example in Figure 1.2. All the names
execute, evaluate, update and apply can be used as unique selectors for premises, except
for ezecute in the rule [concat] because there are two matching premises. &

A rule violating the property of premise selection can be folded in a way that new
auxiliary symbols are used instead of the non-unique symbol. Thereby, unique selection is
achieved. Another possibility is the augmentation of premises with selectors as in several
specification languages.

Now addressing positions in premises and conclusions is regarded. Since we use a
position-oriented framework, symbols have many-sorted profiles. That is suitable for logic
programming, logical grammars, GSF's, algebraic specifications and natural semantics.
In contrast to such frameworks, attribute grammars in the Knuthian style are based on
attributes instead of (sorts associated with) positions. The attributes have pairwise disjoint
names for a given grammar symbol. Thus, the names allow attributes to be addressed
uniquely. In a position-oriented framework, (indices of) positions must be applied, in
general, as unique selectors. There are two points to be criticised with regard to this
method based on indices:

1. It is not readable.
2. It crucially depends on the order of the positions.

The latter point is critical because transformations using this poor addressing method
cannot be applied to programs with a different order in the profiles. We will even not
necessarily realize that the wrong positions are addressed. Consequently, we look for an
addressing method based on sorts rather than indices.?

The following definition captures the necessary and sufficient condition for a symbol so
that its positions can be uniquely addressed based on sorts.

Definition 2.3.4

Let be s € Symbol, rs € Rules. s is uniquely sorted in rs, if 0; # o for i,j =1,...,n and
fori,7=n+1, ..., m, where i # jand s: 0y X -++ X 0, = 0p41 X +++ X 0y, is the profile
of s according to the type of rs. &

3Instead of using sorts, we also could adopt the structural definitions of profiles and/or elements to
cope with key parameters.
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Example 2.3.5

In the interpreter in Figure 1.2 all symbols are uniquely sorted. Refer to Example 2.3.1
for the profiles of the symbols. In contrast to that, the symbol append, for example, is not
uniquely sorted in the interpreter in Figure 1.9 coping with I/0O. &

If a symbol is not used in some rules at all it is not uniquely sorted by definition. Note
that it is usually sufficient to consider the uniqueness of a particular sort ¢ w.r.t. a symbol
s when o is used as a selector among the input or output position of sort o of s. The
following definition explains how positions are selected.

Definition 2.3.5
Let be i0 € lo, s € Symbol, o € Sort, rs € Rules. We say, the triple (io, s, o) € Position is
a unique selector for a position in rs, if

e [{ilo;=0 withi=1,...,n}| =1, for io = Input,
e |{ilo;=0 withi=n+1,...,m}| =1, for io = Output,

where the profile of s in rsis s: 0y X -++ X 0y = Opy1 X === X O &

Example 2.3.6
We continue Example 2.3.5. The symbol append is not uniquely sorted in Figure 1.9,
because (Input, append, OUT) is not a unique selector for a position. &

As far as meta-programs are concerned, it must be ensured that the result of a trans-
formation is not defined if improper selectors are involved, i.e. strictness of meta-programs
with regard to failures arising from selections is to be preferred.

If a meta-program has to incorporate computational elements, e.g. definitions for ap-
plied positions or uses for defining positions if it has to copy parameters from defining to
applied positions, the unique selection of defining and applied positions is crucial.

Definition 2.3.6
Let be 0 € lo, s € Symbol, o € Sort, r € Rule.
We say, the triple (io, s,0) is a unique selector for a defining position in r, if (io, s, o) is a
unique selector for a position in r and
e for ;0 = Input: Name Of Conclusion Of r = s,
e for 10 = Output: s is a unique selector for a premise of r.

Dually, we say, the triple (io,s,o) is a unique selector for an applied position in r, if
(i0, s, 0) is a unique selector for a position in r and

e for 10 = Input: s is a unique selector for a premise of r,
e for 70 = Output: Name Of Conclusion Of r = s.
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Example 2.3.7

We comment again on the interpreter from Figure 1.2. (Input, execute, STM) is a unique
selector of a defining position in the rule [concat], whereas it is not a unique selector for
an applied position because there are two matching premises. &

The property of unique selectors for applied and defining positions is important if several
positions have to be selected simultaneously, e.g. if a condition of arity > 1 is added to a
rule: Consider selectors py, ..., p, for the positions of the condition. If some selector turns
out to be an improper selector in the sense that no matching position can be determined,
the whole condition cannot be assembled. However, even uniqueness is needed because
which of the matching positions should be selected otherwise.

On the other hand, there is no need to insist on unique selectors for defining and applied
positions in general, e.g. if it should be ensured that single positions are used by unary
conditions or they are defined by constant computations. If the selection is not unique, the
corresponding number of computational elements can be added. The case of no matching
position can be accepted in such a way that no computational element is added. Indeed,
the operator suite offers operators adhering to that style; refer e.g. to the operators Define
and Use presented in Subsection 3.3.2

Finally, we want to mention another opportunity for selecting rules, premises and pa-
rameters, that is to say a selection based on pattern matching. In [DC90, Ada91] it is
argued that pattern matching is useful for the simultaneous selection of entities, e.g. for
the association of semantic rules with syntactical rules, where the underlying rule pattern
of the semantic rules must be matched with an actual syntactical rule. In contrast to that,
we are interested here in more atomic selections.

2.4 Instances

We instantiate the general framework for certain target languages, e.g. natural seman-
tics, attribute grammars, logic programming and algebraic specification. New forms of
constructs, e.g compound parameters or refinements of the notions well-definedness, well-
typedness etc. need to be taken into consideration. A selection of the features discussed in
this Section will be used in the next Chapter as the underlying instance for establishing
an operator suite for meta-programming. It should be clear that certain extensions, e.g.
function symbols and thus terms for logic programs, permit us to consider specific meta-
operations. Nevertheless, we try to understand the instances below as “conservative” ex-
tensions of the general framework, that is to say we want to indicate how specific features,
e.g. terms, can be simulated in the general framework. We take advantage of research
concerning the relation between different representatives of the declarative paradigm; refer
e.g. to [CFZ82a, CFZ82b, PW80, DM85, DM93, AFZ88, Att89, AC90, AP94]. Some ar-
guments also arise from common programming practice, e.g. the simulation of products as
targets for profiles in algebraic specification by means of dedicated tupling constructors.
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2.4.1 Natural Semantics

The data type Rule obviously coincides with rules in the sense of natural semantics. The
data type Parameter has to be extended to cope with compound parameters, i.e. terms.
Terms (compound parameters) are needed for the representation of abstract syntax trees,
semantic objects, environments, contexts, and other data. In RML [Pet95, Pet94|, for
example, SML-like algebraic data types are used for that purpose. Well-formedness possibly
concerns the proper distinction between names of relations and data type constructors.
Our type system as outlined in the general framework is very much the same like in RML,
although we had to put extra effort to achieve polymorphism. Thus, the refinement of W7T
is straightforward. Concerning well-definedness, we adopt the philosophy of RML, where
it is defined exactly when variables are bound. Since, RML executes premises from left to
right, it also binds variables in that order. If we assume, that the inputs of a premise must
be known before it is executed, we will obtain a data-flow criterion similar to L-attribution
in AGs.* First, we present the refinement of the structural definition of the data types:

Parameter = (Variable ® Term) ® Sort
Term = Constructor ® Parameter *
Constructor = Id
Symbol = Name @ Constructor

SZGMA has to restrict the targets of data type constructors to single sorts (in contrast
to arbitrary finite sequences). The definition of operations for the construction and decon-
struction of compound parameters is straightforward. A compound parameter consisting
of a constructor f and parameters p* is constructed as follows:

Term From f p* Of Sort o

Here o denotes the sort of the resulting term, i.e. f is supposed to be a constructor with
a profile f : 09 X ---0, — o0, where the o; are supposed to match with the types of the
parameters p*. Deconstruction of terms and tests for different kinds of symbols is facilitated
by the following operations:

Term? _ : Parameter — Boolean
Constructor Of : Parameter — Constructor
Subterms Of : Parameter — Parameter”
Name? = : Symbol — Boolean
Constructor? - : Symbol — Boolean

4If unknowns, which play an important role in some applications of natural semantics, are taken into
consideration, a more general approach must be followed to.



40 CHAPTER 2. THE GENERAL FRAMEWORK

Refer to Section B.6 for the straightforward inference rules. Moreover, coercions should be
assumed to coerce constructors into tags and names (Tag From, Name From) and vice
versa (Constructor From).

Types of compound parameters are determined as follows:

ISm(ﬂ'l (Pp)) — True

Outm(ﬂ-l (1_))) - <f7 <Z_)17 s Jpn»

7TSort(p) — 0

fioy X+ Xo, >0€XN

TYPErarameter (L, X,7;) o fori=1,...,n
TyPEParameter(Fa Z,p) — 0

> > > >

[type of a compound parameter]

Section B.6 also generalizes the application of substitutions to parameters for compound
parameters. Unification has to be generalized by implementing Robinson’s unification
algorithm by the relation SOLVE taking into consideration additional constraints due to
well-typedness; refer also to Subsection 2.3.4 and Section B.5.

outskip(STM) kil
ezecute(STM | MEM) — (MEM)
‘ OUtconcat(STM) — (STMl, STMQ) ‘
A ezecute(STMy, MEMy) — (MEM;)
A ezecute(STMy, MEM;) — (MEM3) [concat]
ezecute(|STM |, MEMy) — (MEM3)
0Utassign(STM) — (ID, EXP)
A evaluate(EXP, MEMy) — (VAL)
A update(MEMy, ID,VAL) — (MEM,) assig
exzecute(|STM |, MEMy) — (MEM;)
| outyar(EXP) — (ID)|
A apply(MEM, ID) — (VAL) fvar]
evaluate (| EXP | MEM) — (VAL)

Figure 2.4: Figure 1.2 in the pure framework

We should make clear that this instance is a modest extension of the general frame-
work. We can represent any target program of this instance in the general framework in the
following way. Applications of data type constructors can be regarded as special premises
modelling term construction (for applied positions) or deconstruction (for defining posi-
tions); refer for example to Figure 2.4 showing the “pure” variant of the natural semantics
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from Figure 1.2. It should be pointed out that the transformation from natural semantics
to the pure framework (and vice versa) can be specified in the instance of natural semantics
itself. All transformations which are applicable for the general framework are applicable
to natural semantics without further adaptation. It is also very comfortable that we can
deal with data type constructors in much the same way as with premises. There is no need
for additional tools.

Let us conclude this subsection with remarks on certain features of particular variants
of natural semantics. In Typol [Des88, BCD'88, JRG92] subjects and predicates are re-
garded as different forms of premises. Actually, predicates are called rather computations
than premises. It is a convention which does not add expressive power. Nevertheless, an
adaptation of the calculus with two different forms of premises will be demonstrated for
the instance of Grammars of Syntactical Functions; refer to Subsection 2.4.5 because there
is more convincing argument for such a distinction. Finally, if unknowns are to be used,
there are two options: Unknowns are declared as in RML or there is no explicit declaration
as in Typol. To declare an unknown can be considered as a simple form of a premise.
Well-definedness has to be adjusted accordingly if unknowns are used.

2.4.2 Logic Programming

It is obvious that logic programming with sorts and modes can be regarded as an instance
of the general framework. The most important extension, i.e. terms, can be performed
in the same way as for the instance of natural semantics. By the way, the similarity of
inference rules and definite clauses is the basis for the translation of natural semantics into
Prolog rules providing an option for executing the executable specification formalism Typol
for natural semantics as integrated in the Centaur system [Des88, BCD*88, JRG92].

The data type Rule obviously coincides with definite clauses. The data type Parameter
has to be extended to cope with terms. Well-formedness possibly concerns the proper
distinction between predicate and function symbols. Our type system as outlined in the
general framework can be regarded as a many-sorted type system of a Gddel-like [HL94]
logic programming language. Thus, the refinement of WT is straightforward. In logic pro-
gramming, there are notions like “well-modedness”, which are appropriate as an instance
of WD, refer e.g. to call- or i/o-correctness in [Boy96a).

To consider elements and not other forms of premises corresponds to pure logical
programs. Several forms of premises can be handled like Element, e.g. negative literals,
matching constructs and computations according to predefined (impure) predicates (e.g.
for dealing with numbers or atoms). Computations will be considered in more detail for
the instance of Grammars of Syntactical Functions; refer to Subsection 2.4.5.

2.4.3 Algebraic Specification

The general framework can easily be instantiated for algebraic specification [HL89, LEW96,
LNC91, Mos97]. As a matter of fact, we are mainly concerned with constructive speci-
fications (refer e.g. to [HL89]), i.e. the LHS of a term equation (or rewrite rule) must
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have a non-constructor function symbol as an outermost symbol applied to terms without
non-constructor function symbols. The corresponding distinction between non-constructor
operations and constructors and the restricted structure of term equations fit with the gen-
eral framework; refer to Figure 2.5 for constructive term equations describing the dynamic
semantics in much the same way as the interpreter in the style of natural semantics in
Figure 1.2 does.

ezecute(skip, MEM) = MEM [skip]

execute(concat(STMy,STMy), MEM) = execute( STMa,
execute(STM, MEM) [concat]

)

execute(assign(ID, EXP), MEM) = wupdate( MEM,ID,
evaluate(EXP, MEM) [assign]
)

evaluate(var(ID), MEM) = apply(MEM,ID) [var]

Figure 2.5: An algebraic specification for the interpreter from Figure 1.2

We first have to look for the counterpart for rules in algebraic specification. Obviously,
term equations and the data type Rule have to be related to each other. There is no direct
correspondence because the RHS of a constructive term equation is simply a term and
it is not some sequence of premises as in the general framework. To adopt the general
framework for algebraic specifications, we can use a normalization procedure as follows:
RHSs are flattened by taking the sequence of applications of non-constructor operations in
the order of nesting adhering to the call-by-value evaluation strategy.

Consequently, LHSs of constructive term equations and conclusions of the data type
Rule coincide. RHSs of term equations are simplified to obtain a sequence of premises
corresponding to applications with at most one non-constructor operation. Terms are not
a problem at all, since we can deal with them in the same way as for instance of natural
semantics; refer to Subsection 2.4.1. Indeed, by flattening the algebraic specification in
Figure 2.5 we obtain a variant literally equivalent to the interpreter in Figure 1.2 in the
style of natural semantics.

A minor problem with algebraic specifications with respect to the data types of the
general framework is that an operation has exactly a single sort as its target in algebraic
specification, whereas the general framework promotes any arity (including 0). This flexi-
bility concerning output positions is crucial for our approach. There are two solutions to
this problem:

e Extending the result of a non-constructor operation is considered as the extension
of a dedicated constructor profile where this constructor is used as a kind of tu-
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pling constructor for the result of the operation. This approach corresponds to the
programming practice in algebraic specification where auxiliary sorts for compound
function results are introduced.

e We allow non-constructor operations to have Cartesian products as their targets.
Finally, such a specification can be transformed into a usual algebraic specification
by associating non-constructor operations with proper products as targets with ded-
icated constructors in the sense of the first solution. For notational convenience, we
can assume that (), (1), (1, -), ... denote these (overloaded) tupling constructors.

The normalization of term equations induces an order of premises and thereby an order
of introduced variables from left to right. Thereby, well-definedness is straightforward to
define.

evaluate(EXP, MEM) = true
execute (if(EXP,STMy,STMzy), MEM) = ezecute(STM;, MEM)

evaluate(EXP, MEM) = false [if.false]
execute (if(EXP,STMy,STMzy), MEM) = ezecute(STMy, MEM)

[if.true]

Figure 2.6: Conditional equations defining the dynamic semantics of the if-construct

Conditional rewrite rules as for example in ASF(+SDF') [K1i93] can also be reduced to
rules in the sense of the general framework. For a proper conditional rewrite rule it must be
satisfied that non-constructor operation symbols must not occur on a variable-introducing
side because such a side cannot be reduced anyway. To represent conditional rewrite rules
in the general framework, not only the RHSs of the conclusions need to be flattened as for
an ordinary algebraic specification, but the conditions must be flattened as well.

Consider Figure 2.6 for the conditional rewrite rules describing the interpretation of an
if-statement. The flattened variant is shown in Figure 2.7.

evaluate(EXP, MEMg) — (true)
A ezecute(STMy, MEMgy) — (MEM;)
execute (if(EXP,STMy,STMsy), MEMy) — (MEM;)

evaluate(EXP, MEM) — (false)
A execute(STMo, MEMy) — (MEM;) [if.false]
execute (if(EXP,STMy,STMsy), MEMy) — (MEM;)

[if.true]

Figure 2.7: “Pure” variant of Figure 2.6

An extension for negative equations as in ASF(+SDF) is straightforward. The basic
form of premise corresponds to positive equations, whereas another form of premise is
needed for negative equations.
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Premise = Positive @ Negative
Positive = Element
Negative = Element

Construction and deconstruction of negative conditions are quite similar to the case of
positive conditions.

2.4.4 Functional programs

Obviously, first-order functions can be regarded as an instance in much the same way
as algebraic specifications, but it should be pointed out that the normalization can be
regarded as a semantics-preserving transformation of first-order functions, whereas the
normalization of algebraic specifications requires them to be mapped to the data types for
meta-programming. Considering Figure 2.5 as a functional program, the corresponding
normalized functional program is shown in Figure 2.8.

ezecute(skip, MEM) = MEM [skip]

ezecute(concat(STM;, STM;), MEMg) =

Let MEM; = ezecute(STM;, MEMp) In
Let MEM; = ezecute(STMy, MEM;) In
MEM,

execute(assign(ID, EXP), MEMy) =

Let VAL = evaluate(EXP,MEM;) In
Let MEM; = update(MEMy, ID,VAL) In
MEM;

[concat]

[assign]

evaluate(var(ID, MEM) =
Let VAL = apply(MEM, ID) In [var]
VAL

Figure 2.8: Normalized functional program obtained from Figure 2.5

Higher-order functional programming requires a substantial adaptation of the frame-
work which is a subject of our current work.

2.4.5 Grammars of Syntactical Functions

Here we comment on an instance for Grammars of Syntactical Functions (GSFs) [Rie91,
RMDS83, Rie72, Rie79] which are a kind of attribute grammars closely related to logic
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programs; refer to Section A.3 for a short presentation of GSFs. GSFs are also similar to
the more recent formalism RAG [CD84, DM85, DM93]. Ordinary Knuthian AGs [Alb9]]
must be treated differently; refer to Subsection 2.4.6.

A GSF consists of

e a GSF schema corresponding to a set of so-called GSF rules, which can be regarded
as parameterized context-free rules with relational formulae on the parameters and

e a GSF interpretation corresponding to carriers for the parameters and relations for
the interpretation of the relational symbols.

We are rather interested in GSF rules than GSF interpretations. AGs (including GSF
schemata) are usually open in the sense that specifications use semantic function sym-
bols (corresponding to relational symbols in GSF rules). The actual interpretation of the
symbols is beyond the scope of the AG formalism.

Figure 2.9 shows a typical application of AGs, that is, a frontend specification for an
imperative language. The specification is intended to model type checking and the con-
struction of an abstract syntactical representation. Actually, the language® is the same as
in the interpreter examples, e.g. in Figure 1.2. The parameters of sort ST model the symbol
table to be propagated for type checking. The parameters of sort T are bound to types
of variables and expressions. The parameters of sort EXP and STM should be regarded
as placeholders for abstract syntactical representations for expressions and statements re-
spectively. The relational formulae with the prefix &,; model construction of abstract
syntactical representations, whereas the relational formulae with the prefix &gq. concern
type checking. Note that the actual interpretation of the relational symbols is beyond the
scope of this specification.

Let us consider GSFs as an instance of the general framework. The type Rule coincides
with GSF rules and the type Premise has to be extended to cope with relational formulae.
There are no special problems with well-formedness and well-typedness. Well-definedness
can be regarded as non-circularity + reducedness. As far as structural definitions are
concerned the following refinement of the data types is assumed:

Premise = Element ® Computation
Computation = Operation ® Parameter * ® Parameter *
Operation = Prefix® Id
Symbol = Name @ Operation

The data type Computation models relational formulae, whereas Operation models symbols
used in relational formulae (for short: relational symbols) in similarity to names of elements.
In earlier presentations of the GSF formalism [Rie91, RMD83, Rie72, Rie79] two classes of

®Note that the underlying context-free grammar reflects a rather abstract syntax. Refer, for example,
to Figure 3.31 for the concrete syntax of the if-construct obtained by a certain refinement of the rule [if].
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program — (PRO) 1 &sgpqric init — (STo), [prog]
declarations(STo) — (ST1),
statements(ST1) — (STM),
& 45t prog(STM) — (PRO).

declarations(STo) — (ST2) . declaration(STy) — (STy), [decs]
declarations(ST1) — (STa2).

declarations(ST) — (ST). [nodecs]

declaration(STo) — (ST1) . identifier — (ID), [dec]
type — (T),

&static add(STO: |D,T) - (STI)

statements(ST) — (STM) [ statement(ST) — (STMy), [concat]
statements(ST) — (STM,),
& st concat(STMy,STMy) — (STM).

statements(ST) = (STM) &5t skip — (STM). [skip]

statement(ST) — (STM) . identifier — (ID), [assign]
&static lOOkUp(ST, |D) — (TLHS);
expression(ST) — (T gus, EXP),
&static assignable(T Lus, Trus),
& st assign(ID, EXP) — STM.

statement(ST) = (STM) . expression(ST) — (T, EXP), [if]
&static 1sBool(T),
statements(ST) — (STMy),
statements(ST) — (STMy),
&asr if (EXP,STM;,STMs) — STM.

expression(ST) = (T,EXP) © identifier — (ID), [var]
& static ZOOkup(STa ID) - (T)a
& 45t var(ID) — EXP.

Figure 2.9: A frontend for a simple imperative language

relational symbols were distinguished for pragmatic reasons. Here it is assumed that there
can be an arbitrary number of classes of relational symbols like in AAA [HLR97, LRH96,
RL93, Rie92|, where relational symbols are prefixed by a kind of module qualifier. Here
Prefix is some countable set of prefixes. To avoid confusion with other kinds of identifiers,
we will use “&” followed by ordinary identifiers to denote prefixes. “&” denotes the empty
prefix which is used in examples if there is no need for different prefixes. Since the kind
of symbol is the only difference between Element and Computation, a single constructor for
both kinds of premises can be used:

Premise From _ _ — _ : Symbol x Parameter* x Parameter* — Premise
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To retain a simple notation we assume implicit coercions between Element and Premise.
Concerning the deconstruction of premises, some relations in similarity to the deconstruc-
tion of elements are needed. Moreover relations to test for different kinds of premises and
symbols are needed:

Element? - : Premise — Boolean
Computation? _ : Premise — Boolean
Symbol Of _ : Premise — Symbol
Parameters - Of _ : lo x Premise — Parameter®
Name? _ : Symbol — Boolean
Operation? = : Symbol — Boolean

Refer to Section B.7 for the corresponding inference rules. For completeness, an oper-
ation for constructing relational symbols from tags (similar to Name From) is assumed.
Moreover, a generalized variant of the operation Tag From to coerce a name into a tag
coping with symbols instead of names is assumed. Finally, an operation for generating
fresh relational symbols is introduced.

Operation From _ _ : Prefix x Tag — Operation
Tag From _ : Symbol — Tag
NEWoperation @ P(Operation) — Operation

It follows from the above declarations that we consider sequences of parameterized
grammar symbols and relational symbols as proper RHSs of GSF rules. In contrast, tak-
ing the purely declarative point of view, GSF rules are parameterized context-free rules
with computations associated with the parameters. The order of the relational formulae
among each other and also relative to the parameterized grammar symbols is declaratively
meaningless. However, the actual order can be used to control meta-programs. Refer also
to Subsection 2.2.1 for the reasons why we prefer sequences of premises instead of sets of
premises.

It is interesting to notice that a distinction between grammar symbols and relational
symbols and the notion of the underlying context-free grammar of a GSF schema leads us
directly to a corresponding notion of composition. GSF schemata with the same underlying
context-free grammar can be composed rule-wise by superimposing grammar symbols,
concatenating parameters of superimposed grammar symbols and taking over relational
formulae. This technique which we call superimposition is presented more in detail in
§3.3.3.1; refer also to [LA&m97] where we have suggested a variant of this technique in the
context of logic programming.

2.4.6 Knuthian Attribute Grammars

We continue the discussion on instantiating the general framework for attribute grammars
by commenting on the Knuthian style of attribute grammars. (Knuthian) AGs require
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some encoding, that is, semantic rules have to be modelled by another form of premises.
We describe the instance for Knuthian AGs by defining a transformation from Knuthian
AGs to GSF schemata. The transformation is performed for every syntactical rule of the
AG as follows:

e Inherited (synthesized) attributes correspond to the input (output) positions of gram-
mar symbols. For every attribute of every symbol in a syntactical rule, we introduce
a corresponding variable and use it as a parameter on the corresponding parameter
position.

e Semantic copy rules can be compiled by identifying parameters accordingly.

e A semantic equation e of the form a.p = fe(@ey, .-, Gen.) is transformed into a
corresponding relational formula & fe(ve1,...,Ven,) — Veo, Where the v.; are the
variables associated with the attributes a ;.

e The parameterized grammar symbols and the derived relational formulae representing
the semantic equations are combined in a rule according to the data type Rule.

Refer to Section A.3 for an example of a Knuthian AG and the associated GSF schema.

2.5 Completion to an applicative calculus

The complete calculus is obtained by augmenting a typed A-calculus with the data types for
meta-programming. Specification features for dealing with compound domains and with
error specification are added. Reusability of meta-programs is supported by modularity
particularly at the meta-level. Altogether, we obtain an applicative calculus for typed,
modular and strict functional meta-programs.

2.5.1 Simple A-calculus-like constructs

Typed A-abstraction is denoted as usual by Az : 7 . e. Functional application is denoted
by f On p, whereas f o ¢ denotes functional composition, where

f ogOnz=/fOn(gOnux).

The conditional is denoted by b — ey, e, where the compound expression evaluates to
the value of e; (resp. es) if the condition b can be evaluated to True (resp. False). The
conditional is the only construct which is not strict w.r.t. L (i.e. divergence).

Let x = e In €' binds = to e during the evaluation of ¢/. Free occurrences of z in
e are not bound to e. Letrec f : 7 = e In €' binds f being of type 7 to e during the
evaluation of €’. Free occurrences of f in e refer to e as well. The Letrec-construct is the
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only possibility to express general recursion. However, the iteration constructs introduced
below are strongly recommended because termination definitely holds for them.

Divergence, i.e. non-terminating evaluations are denoted by L. We say that exp is
defined if the value of exp is not equal to L. Whenever variables are quantified, L is not
considered as a proper value, i.e. Vrs € Rules does actually mean Vrs € (Rules\ {L}). Note
that both of these directives need to be updated in Subsection 2.5.2.

2.5.2 Error specification

Simple features for error specification are required for two reasons. First, if we embed the
data types for meta-programming into the applicative calculus, we need a standard way for
representing the undefined value, since several basic operations are partial. Second, meta-
programs (transformations, analyses, etc.) are quite often partial, since the parameters
have to satisfy certain preconditions. Thus, a specification feature is needed to propagate
an error. Errors should be handled strictly, i.e. once an error occurred during the evaluation
of some part of an expression, the entire evaluation must fail.

Consequently, a special error element T (pronounced as top®) is assumed to be an
element of any type. Instead of including T as a construct, the partial conditional is
added:

bo—e

The above expression is evaluated as follows. The value of the expression is the value of
e, if the value of b is True. Otherwise, the value of the expression is T. Thus, the exact
meaning of b o— e can be understood as b — e, T. Note that the conditional is also not
strict w.r.t. T.

The notion of definedness needs to be updated as follows: exp is defined if its value is
neither T nor L. Whenever variables are quantified, T is not considered as a proper value
either, i.e. Vrs € Rules does actually mean Vrs € (Rules \ {1, T}).

Note that the above approach to error specification in meta-programs is quite minimal.
We can say a transformation fails if it returns T. Unfortunately, it can mean almost
anything, if an expression is evaluated to T. It can mean, for example, that

the construction of a fragment failed or

well-definedness of the final target program does not hold or
e some selection made in the meta-program was not correct or

e at some stage well-typedness was not satisfied.

Errors are notified by the partial conditional. A more realistic calculus should probably
support a more sensible error notification, e.g. meaningful error messages. It is important
that our simple approach to error specification ensures strictness, that is to say failures
cannot be “overlooked”.

Sin the sense of a top element in a complete lattice; refer e.g. to [Sto77, page 81]
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2.5.3 Embedding data types for meta-programming

All the basic data types for meta-programming become proper types of the calculus. Thus,
the names of these types Program, Rules, etc. can be regarded as basic type expressions,
whereas the operations on the data types can be regarded as predefined functions in the
calculus. Instead of considering partial functions in the calculus, the value of the application
of f(vy,...,v,) is assumed to be T, if the application of the basic operation f is not defined.

The operations N'EWvariable NEWname and NEWoperation for the generation of fresh
variables and names are incorporated in the resulting calculus in another way. We assume
impure variants (similarly to reference allocation in SML [MTH90]):

New Variable Of Sort - : Sort — Variable
New Name : — Name
New Operation : — Operation
Ordinary sequences on Rule are not permitted. We declare that (ry,...,r,) is an abbre-
viation of Rules From (r1,...,r,). Thereby, coercions from Rule* to Rules can be omitted.

The type Rules is coerced to Program at the top level of a meta-program. Without further
declarations it is assumed that all required symbols are imported, all defined symbols are
exported and no axiom is defined. There are clauses to override these defaults, e.g. an
Axiom Is clause to define an axiom.

2.5.4 Domain constructors

Domain constructors for products, domains of sequences, power sets and domains with
optional values are added.

2.5.4.1 Tuples

Let 7, ..., 7, be proper type expressions. 77 ® - - - ® 7, denotes the type of all tupels with
the i-th projection of type 7; for i = 1,...,n. The expression (ezp,, ..., exp,) denotes
the common construction of tuples from expressions ezp, ..., exp,. The Let-construct is
generalized to cope with tuples, i.e. Let (x1,...,2z,) = e In € binds the projections of e
to the x; in /. Typed M-abstraction is generalized as well, i.e. the projections of a tuple
can be bound to several A-variables in the following way: A(z1,...,2,) : 1 ® -+ - ® T,.€.

2.5.4.2 Sequences

Let 7 be a proper type expression. 7* denotes the type of all sequences of elements of
type 7. The expression (exp,, ..., exp,) denotes the common construction of sequences
from expressions exp, : 7, ..., exp, : 7. The empty sequence is denoted by (). Figure 2.10
enumerates all the basic operations on sequences, whereas Figure 2.11 establishes some
recursion / iteration schemata well-known in higher-order functional programming. It is
assummed that these schemata are applicable to Rules, Sigma and Substitution as well.
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Profile Explanation
Head Of _ " =T head of a sequence
Tail Of _ T = T* tail of a sequence
Nil? _ 7* — Boolean | test for the empty sequence
o T X 77 — 7" | concatenation of sequences
# ™ = N length of the sequence
Reverse _ T = 1 to reverse a sequence

Figure 2.10: Operations on sequences

Map f List (x1,22,...,2, 1, Tp)

I
<f(.'171), f(:r2); )

f(@n1), fzn))

Fold Left ©® Neutral e List (z1,z9,..., 2,1, Ty)
|
(((6@371)@52?2)@@37"71)@3?"

Fold Right ® Neutral e List (z1,z9,...,2Z,_1,Tp)

|
O@, 10 (x,®€)) )

ZE1®(ZE2®

Figure 2.11: Iteration on sequences

2.5.4.3 Sets

Let 7 be a type expression. Then P(7) denotes the type of subsets of 7. Here 7 must be
a non-functional type because we need equality on 7 for obvious technical reasons. The
empty set is denoted by 0. Let be exp, : 7, ..., exp, : 7. The expression {exp,,...,exp,}
denotes the set of values of the expressions exp, for i =1,... n.

Each set of type P(7) is a sequence of type 7*, i.e. all operations on sequences directly
apply to sets as well. In particular, for iteration on sets, it is important to know that the
order in {exp,,..., exp,} is transferred into the resulting set. Figure 2.12 enumerates all
the additional basic operations on sets.

Each sequence (vy,...,v,) of type 7* is automatically coerced to the corresponding set
{v1}U---U{v,} of type P(7) if it serves as an actual parameter for a formal parameter of

type P(7).
Profile Explanation
U P(r) x P(r) = P(7) union of sets
N P(r) x P(r) = P(1) intersection of sets
-\ - P(T) X P(1) = P(7) difference of sets
_C . 7) X P(7) — Boolean | test of proper subset
€ . 7 X P(7) — Boolean membership test

Figure 2.12: Operations on sets
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Another iteration construct is frequently needed:

Map Union [ List (z1,z9,..., %41, Tp)
|
fla) U flz2) U U f@n-1) U flzn)

Note also that all the iteration constructs are written as Map _ Set _, Fold Left _
Neutral _ Set _, Fold Right - Neutral _ Set _ and Map Union _ Set _ when it should
be pointed out that iteration is performed on a set instead of a list.

2.5.4.4 The Maybe type constructor

For every type 7, there is also the maybe type 77. Every element of 7 is an element of 77.
Additionally, a special element ? is added to 77.
Maybe types are useful in meta-programming for:

e optional arguments, where functions can observe 7 providing an indication of a miss-
ing argument,

e return values, where 7 is returned as an indication of a missing meaningful result. To
return T instead of 7 is not appropriate, since we cannot test for T due to strictness.

Example 2.5.1
Consider the following expression:

As:Symbol. At : Sigma .

Fold Left

A p0 : Profile? . A p : Profile . Name Of p = s — p, p0
Neutral ? List t.

It defines the operator Profile Of _In _ : Symbol x Sigma — Profile? looking up the
profile of a symbol s in a given signature ¢. There are scenarios in meta-programs where
a symbol does not need to have a type at all in a given signature. The lookup should not
fail, since the whole surrounding application would fail because of strictness. Thus, the
neutral element 7 will be returned if no profile for s is contained in . &

2.5.5 Modules

To facilitate meta-programming a certain module concept should be supported. Here a
module is regarded simply as a separate specification unit with its own semantics, i.e. in a
technical sense a kind of module allowing for separate compilation. Although information
hiding is a central notion in many module systems, it is almost ignored as far as it concerns
this work.

There are two kinds of modules:

e modules at the target-level and
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e modules at the meta-level.

Modularity at the target-level is useful for obvious reasons, even without considering
meta-programming at all. For meta-programming, target-level modules provide the central
operands on which transformations and compositions are performed. The execution of a
meta-program results in a new target-level program. Modules at the meta-level are useful
in order to implement reusable program transformations and to represent central parts of
a problem rather at the meta-level (in a more abstract manner) than at the target-level.

Target

Figure 2.13: Modular meta-programming

Figure 2.13 shows the scenario of modular meta-programming. There is a central
meta-program MP which is applied to target-level modules I serving as inputs for a
program transformation / composition. The execution of MP produces the target-level
module O1%%¢ a5 output. The meta-level modules A;-”et“ are assumed to provide reusable
program transformations, generic fragments etc.

To support this kind of modularity, module identifiers are permitted as a form of expres-
sion in meta-programs. If the module identifier refers to a target program, the expression
is of type Program. If the module identifier refers to a meta-program, the type of the
meta-program is the type of the underlying expression. It is also useful to support a kind
of abstraction in meta-program modules so that all the abstractions can be “imported” in
another program. Without such a facility, a meta-program module only “exports” a single

expression.

Example 2.5.2
Recall our attempt to modular semantics description as outlined in the introduction; refer
to Section 1.2. There we have seen that target program and meta-program modules are
very useful during the composition of semantics descriptions fragments. Here we want
to comment on a more complex problem. Consider, for example, a simple imperative
language with simple statement forms for assignment, selection (if), iteration (while), and
compound statements (statement sequence), I/O, basic data types.

We can isolate target program modules (specifying the semantics of some constructs)
like the following:
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e variables as expressions and in assignments,

e if-statements,

e while-statements,

e statement sequences,

e 1/O constructs,

e the overall structure of a program and the declaration part and

e constants, basic operations, simple type expressions.

We assume that the above modules abstract from any semantic issue which is not relevant
for the actual construct, i.e. they are “minimal” in the sense of Section 1.2. Most modules,
for example, abstract from I/O. Many modules abstract from the actual memory model, i.e.
whether a flat model or a two-level model is used and whether side-effects might possibly
be involved in expression evaluation etc.

We need transformations to adapt the above fragments accordingly. The actual memory
model can be manifested by a corresponding transformation, for example. More in detail,
the following meta-program modules are involved:

e the transformation to establish memory propagation,
e the transformation to propagate the remaining input,
e the transformation to accumulate the output.

The composition of the semantics description can be represented by a meta-program apply-
ing the above transformations to the corresponding target program modules and merging
the intermediate results. We will comment in more detail on such a composition in Sec-
tion 3.5 on lifting. Refer also to Section D.1 for the complete source code concerning the
composition of a frontend specification and an interpreter definition (dynamic semantics)
for a language like the one above. &

2.6 Properties of meta-programs

By characterizing transformations, we are looking for classes of transformations satisfying
certain useful or important properties. We can be interested, for example, in the question
whether a transformation is total or we can ask whether a transformation preserves certain
properties of the input program such as the type or the “skeleton” obtained from rules by
abstracting from parameterization.

2.6.1 Skeletons and their preservation

An important property of many meta-programs is skeleton preservation, where the notion
of a skeleton wants to grasp the overall structure of some rules rs € Rules abstracting from
computational behaviour, similar to the underlying CFG of an AG. The purpose of this
subsection is to formalize skeletons and to define skeleton preservation.
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Two further data types are needed, that is to say Skeleton for an abstraction from Rules
and Shape for an abstraction from Rule, with the following structural definitions:

Skeleton = Shape*
Shape = Tag ® Name ® Name*

There are no constraints on Shape concerning WF, WT and WD. The only constraint
for Skeleton concerns WF, namely tags have to be unique. The skeleton of some rules
rs € Rules is obtained by discarding the parameterization and all premises which are not
elements in rs; refer to Definition 2.6.1.

Definition 2.6.1
Consider the following definition of a function Skeleton Of _ : Rules — Skeleton:

Ars : Rules .
Map
Ar:Rule.
(Tag Of r, Name Of Conclusion Of r,
Fold Left
A rhs : Name* . ) e : Element . rhs ++ ( Element? e — (Name Of e), ( ))
Neutral ( ) List Premises Of r

)

List rs.

Let be rs € Rules, sk is the skeleton of rs, if sk = Skeleton Of rs. &

As Definition 2.6.1 points out, other premises than elements (data type Element) are not
included into the skeleton. To point out this role of elements as form of premises, we some-
times use the term skeleton elements. Recall that there are other forms of premises with
the same structure as Element, e.g. computations (relational formulae) in GSF schemata.
The notion of a skeleton becomes a more vital abstraction device if there are other forms
of premises than (skeleton) elements.

Example 2.6.1

Consider Figure 2.14 showing the skeleton of the GSF schema from Figure 2.9 serving as
a frontend specification for a simple imperative language. The skeleton can be regarded as
the underlying context-free grammar of the GSF schema. &

Definition 2.6.2
A transformation ¢ € Trafo is skeleton-preserving if Vrs € Rules :

rs' is defined = Skeleton Of rs = Skeleton Of rs’,

where rs' = ¢ On rs. &

Consider the following Proposition 2.6.1 as a sort of an example.
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program . declarations, statements. [prog]
declarations . declaration, declarations. [decs]
declarations . . [nodecs]
declaration . identifier, type. [dec]
statements . statement, statements. [concat]
statements . . [skip]
statement . identifier, expression. [assign]
statement . expression, statements, statements. [if]
expression . identifier. [var]

Figure 2.14: Skeleton of the frontend specification from Figure 2.9

Proposition 2.6.1
Vo € Sort the transformation Left To Right o (refer to Figure 1.5) is skeleton-preserving.

&

Proofs of such statements can be based on a simple equational reasoning in our frame-
work. Proposition 2.6.1 can be proved by showing that the structure of the definition of a
skeleton in Definition 2.6.1 (i.e. the recursion schema) is contained in the definition of the
operation Left To Right (refer to Figure 1.5) and that the differences are invariant for
the resulting skeleton what can be derived from simple properties of element construction
and deconstruction.

2.6.2 Totality

Transformations are potentially partial because of the possibility that an application of a
basic operation or a partial conditional fails. However, we can show that some transfor-
mations are total according to the following definition.

Definition 2.6.3
A transformation ¢ € Trafo is:

1. total if t On rs is defined Vrs € Rules,
2. a-total if t On rs is defined Vrs € a, where a C Rules.

¢

Certain properties often do not hold for all rs € Rules, but only for a restricted subset a.
In Definition 2.6.3, for example, a-total transformations were introduced, i.e. transforma-
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tions whose result is defined at least for all rs € «. In the sequel, we sometimes consider
a-properties. If the « is omitted, it means that the property holds for all s € Rules.
Obviously, a property which holds for all rs € Rules is more comfortable to use. For an a-
property, we always have to make sure that a given rs belongs to « to derive the property.
This makes indeed sense for a-totality, for example because the a simply specifies where
the transformation is defined (i.e. applicable).

2.6.3 Preservation and recovery of well-definedness

Definition 2.6.4
A transformation ¢ € Trafo is a-WD-preserving if Vrs € o C Rules :

WDProgram(TS) A s’ is defined = WDProgram(TSI),

where rs' = ¢ On rs. &

Note that there is no sense in defining a-WF-preserving or a-W7T -preserving transfor-
mations, because results of transformations are well-formed and well-typed by definition.
Thus, these preservation properties are somehow captured by a-totality.

a-WD-preservation for o C Rules is not very instructive in many cases because often we
are not interested in the o whose elements can be transformed such that YWD is preserved,
but we rather look for a suitable description how WD can be restored. Adding an input
position for a symbol s, for example, input positions in premises with s as symbol will
not be defined, but the violation of WD is restricted to these positions and it could be
eliminated in a straightforward manner. The idea of recovery of WD is captured by the
following definition; refer to Proposition 3.3.1 for an application of this concept.

Definition 2.6.5
A transformation ¢ € Trafo is a-WD-recoverable by another transformation ¢’ € Trafo if
Vrs € a C Rules :

WDProgram(’f’S) Ars' is defined = WDProgram(’f’S’)a

where rs' = (t' o t) On rs. &

2.6.4 Type preservation

Definition 2.6.6
A transformation ¢ € Trafo is:

a-type-preserving if Sigma Of rs L Sigma Of rs’ is defined;
a-type-monoton increasing if Sigma Of rs < Sigma Of rs';
a-type-monoton decreasing if Sigma Of rs > Sigma Of rs’;
a-strongly type-preserving if it is a-type-monoton increasing and decreasing

W o=

=

Vrs € a C Rules such that rs’ is defined, where rs' =t On rs. &
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Proposition 2.6.2
Vo € Sort the transformation Left To Right o (refer to Figure 1.5) is strongly type-
preserving.

&

2.6.5 Type extension

By taking a transformational approach to program synthesis, many transformations are
likely to change the type of the input program, i.e. none of the criteria in Definition 2.6.6
applies, but we are still looking for useful restrictions for the behaviour of transformations.
A type-extending transformation is a modest generalization of type-preserving transforma-
tion.

Definition 2.6.7
Let be t € Trafo. Vrs € a C Rules such that rs’ is defined, where rs' = ¢ On rs. tis a
type-extending transformation if the following property holds:
Vp' € Sigma Of rs’ : dp € Sigma Of rs :
p is a projection of p', i.e.

ifp’zsafx---XU#—)UIX---U&,
then Jiny, ..., ing, outy,. .., out,:

the in; are pairwise distinct,

the out; are pairwise distinct,

each in; € {1,...,n}, each out; € {1,...,m} and
1

— 4 t t
p—SO.inlx"'XO.inq_)O.OUtlX"'Xo'outr

O
The property of type-extension is particularly useful in combination with uniquely

sorted symbols. Moreover, by adding skeleton preservation, a quite disciplined transfor-
mational style is achieved.

2.6.6 Projections

A projection rs’ of rules rs is obtained by deleting some premises and projecting the
parameterization of the conclusions and the remaining premises so that the result is equal
to rs’.

Definition 2.6.8
Given s, rs’ € Rules, rs' is a projection of rs if

1. Vp € Sigma Of rs:
Jp' € Sigma Of rs' : Symbol Of p = Symbol Of p' =
p' is a projection of p (refer to Definition 2.6.7).

2. Every rule [t] ey < e€y,...,€, in rs can be transformed into a corresponding rule
[t] HConcIusnon(eo) = HPremnse(eu“),‘”,HPrem|se(ewu)7 where 1 S wy < -0 < Wy S n
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and IJCenclusion . Conclusion — Conclusion and IIP®™s¢ : Premise — Premise are the
functions projecting parameters of conclusions and premises according to (1.), so that
the resulting rules are equal to rs'.

¢

If rs' and rs have the same skeleton in common, then rs can be regarded as an exten-
sion of rs' preserving not only the computational behaviour of rs’ but also its skeleton.
Note that premises, which are not skeleton elements, can still be deleted by such a pro-
jection. Transformations the input program of which is always a projection of the output
program (or vice versa), are very attractive transformations. They are more disciplined
transformations than type-extending transformations.

program . &gtaric init — (STy), [prog]
declarations(STo) — (ST1),
statements(STy).
statements(ST) . statement(ST), [concat]
statements(ST).
statements(ST) . . [skip]
statement(ST) . identifier — (ID), [assign]

&static 10okup(ST,ID) = (T Lus),
expression(ST) = (Tgrus),
&static assignable(T Lus, Trus).

statement(ST) . expression(ST) — (T), [if]
& static 15Bool(T),
statements(ST),
statements(ST).

expression(ST) = (T) . identifier — (ID), [var]

& static lookup(ST,ID) — (T).

Figure 2.15: A projection (static semantics) of the specification from Figure 2.9

Example 2.6.2

Figure 2.15 and Figure 2.16 show two different projections of the frontend specification
from Figure 2.9. The first projection contains all the parameterization and computational
elements which are relevant for the specification of static semantics, whereas the second
projection is only concerned with AST construction. Note that the parameterizations of
both projections are not “disjoint” because identifier’s terminal attribute of sort ID is
needed for both, static semantics and AST construction. &

The following example should demonstrate how projections are useful to characterize
transformations.
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program — (PRO) © declarations,
statements — (STM),
& st prog(STM) — (PRO).

statements — (STM)

statements — (STM)
statement — (STM)

statement — (STM)

expression — (EXP)

statement — (STMy), [concat]
statements — (STMy),
& st concat(STMy,STM2) — (STM).

&ast skip — (STM). [skip]

identifier — (ID), [assign]
expression(ST) — (EXP),
& o5t assign(ID, EXP) — (STM).

expression — (EXP), [if]
statements(STMy),

statements(STMy),

& o5t if (EXP,STM1,STM3) — (STM).

identifier — (ID), [var]
& 45t var(ID) — (EXP).

Figure 2.16: Another projection (AST construction) of the specification from Figure 2.9

Example 2.6.3
For the operator Left To Right (refer to Figure 1.5), projections support the character-
ization of the following instructive property. Let be rs € Rules, o € Sort. rs/, denotes
the projection of rs, where all but the parameter positions of sort ¢ have been removed,
whereas rs/z denotes the complementary projection, where all the parameter positions of
sort o have been removed. Given o € Sort, rs € Rules, rs’ = Left To Right ¢ On rs, the
following properties can be stated:

L rs/5 =r1s);

2. 7“3’/0 represents the propagation of a data structure from left to right.

Definition 2.6.9

Given a transformation ¢ € Trafo, ¢ is

1. a-extending, if rs is a projection of rs’;
2. «a-contracting, if rs' is a projection of rs

Vrs € a C Rules such that rs’ is defined, where rs’ =t On rs.

Proposition 2.6.3
Vo € Sort the transformation Left To Right o is not extending.
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2.6.7 Identity

a-totality corresponds to the property where a transformation can only be applied to
certain rules. There is a somewhat related property of a-identity concerning the question
for which rules a transformation behaves like the identity function.

Definition 2.6.10
A transformation ¢ € Trafo is an a-identity if Vrs € a C Rules : rs =¢ On rs. &

a-total transformations makes sense because we can have transformations which are
only defined if certain preconditions hold. Dually, a-identity makes sense because we can
consider the fact that a transformation ¢ behaves like the identity function on rs € « as an
indication for the property that rs already captures the intended effect of £. We can think of
applications, where transformations are actually written in this style, i.e. they should test
if their “intended effect” is not manifest yet. If it is manifest, they should silently behave
like the identity function. A rather weak characterization of transformations written in
this style is given by idempotence.

Definition 2.6.11
A transformation ¢t € Trafo is a-idempotent if Vrs € « C Rules: t On rs =tot On rs.

Proposition 2.6.4
Vo € Sort the transformation Left To Right o (refer to Figure 1.5) is idempotent. &

It is a weak characterization because two subsequent applications of ¢ are not likely
to occur. We rather would prefer that transformations behave like the identity function
after a single application, even if transformations from a certain class were applied to the
intermediate result. The property of being an a-identity can be generalized in the same
way.

Definition 2.6.12

Let be g C Trafo.

t is an a-identity closed under B, if Vt' € f,rs € a« C Rules : ¢ On rs =tot' On rs.

t is a-idempotent closed under 3, if Vt' € B,rs € « C Rules: t'ot On rs =tot' ot On rs.

&

Proposition 2.6.5

Let be o € Sort. The transformation Left To Right o (refer to Figure 1.5) is idempotent
closed under all extending transformations (refer to Definition 2.6.9) which do not establish
new positions of sort o. &
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2.6.8 Structure of transformations

The way a transformation is defined, that is, the structure of the expression, can give some
hints of other properties of transformation or it can be instructive for proving properties.
Let us consider one example of a structural restriction for transformations. A local trans-
formation transforms a sequence of rules rule-wise without “observing” the other rules.

Definition 2.6.13
A transformation ¢ € Trafo is local if the following property holds:

3t" € (Rule — Rule) : Vrs € Rules: ¢ On rs = (¢’ On rq,...,t' On 1),

where rs = (rq,...,r,). t' is called the rule transformation of t. &

Proposition 2.6.6
For a transformation ¢ € Trafo to be local it is a sufficient condition if ¢ is defined by a
A-expression of the following form:

Ars : Rules. Map t' List rs,

where rs is not a free variable in t'. Moreover, then t' is the rule transformation of t.

2.6.9 Discussion

Transformations are mostly expected to preserve the computational behaviour of a speci-
fication. To deal with this requirement in detail, we had to define what the semantics of a
specification (at the target-level) is, or how we expect the computational behaviour is to
be manifested. We will not consider this topic here in detail, since it is rather difficult to
define these notions in the general framework.

Kirschbaum, Sterling et al. have shown in [KSJ93] that program maps—a tool similar to
our extending transformations—preserve the computational behaviour of a logic program,
if we assume that behaviour is manifested by the SLD computations of the program.
Obviously, not all interesting transformations are extending, refer e.g. to Proposition 2.6.3
concerning the operator Left To Right.

A common requirement for transformations is general semantics preservation. We try
to indicate how this requirement can be stated in the general framework. Given rules
rs € Rules, carriers D; for the sorts o; in Sigma Of rs, the semantics of rs is defined by
a function with the following profile:

[-] : Rules — (Name — U)

Here U denotes some suitable universal domain; refer e.g. to [SHLG94|. The details of
the definition of [-] depend on the actual framework. More in detail, a name n with profile

N:01 X+ X Oy —=0Opy1 X X Ok
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is associated with a semantics from the following domain:

E((Dy, x -+ x Dy, ), (D X -+ %X Dy,))

Om+1

Here £(D, D’') denotes some domain construction on D and D'. For an instance of the
framework with deterministic semantics, £ will probably correspond to - — _, for example.
More modular approaches are possible, e.g. [Bro93, BMPT94| where the semantics of logic
programs is based on the intermediate consequence operator. That is particularly useful
since we consider potentially incomplete programs.

In the narrow sense, the application of a transformation ¢ to rs € Rules is semantics-
preserving if rs’ = ¢ On rs is defined and [rs] = [rs'].

We can speak of an a-semantics-preserving transformation if the above condition holds
for all rs € a C Rules. Usually, we do not insist on the property that the result of the
transformation is defined. In the broader, but still agreeable sense, semantics preservation
can be defined modulo some adaptation of [rs] and/or [rs’]. Recall for example projec-
tions introduced in Subsection 2.6.6. It is also possible to consider a kind of projection on
U, i.e. a semantic variant of an contracting transformation which has to be regarded as a
syntactical device. In general terms, operations on U/ can be used to express the semantics
of the output of a transformation as a refinement of the semantics of the input. We have
not investigated yet that issue more in depth, although there are several approaches in
the context of refinement and correctness which should provide a good starting point, e.g.
[BR94, BS98, TWWS81, Heh93]. Another problem is that there are several transformations,
which are inherently not semantics-preserving in any obvious sense or only due to very spe-
cific arguments, e.g. Left To Right. The question how to cope with such transformations
should be studied in future. Since we do not only deal with synthesis and composition but
also adaptation, semantics preservation does not seem to be appropriate in all cases.






Chapter 3

The operator suite

In this Chapter, we present an operator suite for meta-programming on declarative pro-
grams. Besides the general framework which has to be regarded as a basis for this Chapter,
the suite is a further major result of the thesis. Different layers of the suite are presented
in Section 3.2 - Section 3.4. The presentation culminates with Section 3.5 describing the
sophisticated composition technique lifting.

3.1 Overview

The operator suite models schemata for program composition, synthesis and transforma-
tion. The corresponding operators are specified in an instance of the general framework
supporting both, natural semantics (refer to Subsection 2.4.1) and GSF schemata (see
Subsection 2.4.5). Thereby, our instance supports terms as a kind of compound param-
eters and there is a distinction between skeleton elements and computational elements
(computations for short).

The GSF schema from Figure 2.9 specifying the frontend of a language processor for a
simple imperative language will serve as a running example. It will be shown how certain
aspects of type checking, AST construction can be synthesized and combined and how
intermediate variants can be reused in some cases.

Refer to Figure 1.12 for an illustrative presentation of the structure of the operator suite.
We start with Section 3.2 presenting a set of auziliary operators allowing more advanced
operators to be specified in a more comprehensive way. Section 3.3 continues with schemata,
modelling basic concepts of synthesis, adaptation and composition. Afterwards, Section 3.4
introduces several more elaborate schemata on top of the basic concepts. This chapter
culminates with Section 3.5 describing [lifting which is a new and powerful composition
technique. Lifting facilitates the derivation of complete programs from transformations
and program fragments. Lifting substantially simplifies the problem of finding a proper
structure during nested program composition, synthesis and transformation.

The actual definition of several operators of the suite is included in the text flow if the
definition is regarded as instructive or the formal details are required for a discussion of

65



66 CHAPTER 3. THE OPERATOR SUITE

the properties of the operators. The remaining specifications are presented in Appendix C.
Note also that some showcases are collected in Appendix D. The actual set of operators
including their actual definition is far from being optimal, complete and orthogonal. The
operator suite is regarded as a subject of further research. The suite ran through some
iterations, where early versions have been covered by [LR96, LR97] and a more recent
version has been thoroughly evaluated in [Sta97].

3.2 Auxiliary operators

There is a number of auxiliary operators which can be reused frequently during program
transformation and for the definition of basic and elaborate schemata as described later
in this Chapter. Regarding the layers of the operator suite as presented in Figure 1.12,
the auxiliary operators correspond to the layer on top of the applicative calculus with the
embedded basic data types for meta-programming.

First, simple selections, projections, injections and closures over target program frag-
ments are presented in Subsection 3.2.1. Second, a group of renaming operators is con-
sidered in Subsection 3.2.2. Third, in Subsection 3.2.3 the simple problem to arrange a
sequence of rules according to a given sequence of tags regarded as a reference is addressed.
Finally, certain combinators on transformations are discussed in Figure 3.2.4.

3.2.1 Selections, projections, injections and closures

Figure 3.1 enumerates operators for the selection of rules. Select Tags ts On rs selects
all rules in rs with tags in ts. Select Symbols ss On rs selects all rules in rs defining the
symbols in ss, i.e. the rules with a symbol in ss in the conclusion. Forget Tags ts On rs
selects the complementary set of Select Tags ts On rs. Forget Symbols ss On rs selects
the complementary set of Select Symbols ss On rs.

Select Tags P(Tag) — Trafo
Select Symbols - : P(Symbol) — Trafo
Forget Tags _ P(Tag) — Trafo
Forget Symbols = : P(Symbol) — Trafo

Figure 3.1: Selection of rules

Figure 3.2 enumerates operators for the selection of symbols, that is, for the defined and
used symbols in a given set of rules, for the symbols either prefixed or unprefixed (possibly
restricted to a certain prefix) in a given set of symbols and for the symbols associated in
a given sequence of associations.

Figure 3.3 enumerates operators for the selection of either all tags or the tags of rules
defining certain symbols.

Figure 3.4 enumerates operators for the selection of parameters and variables of a
certain sort.
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Symbols In _ : Rules — P(Symbol)
Symbols Defined In _ : Rules — P(Symbol)
Symbols Used In - : Rules — P(Symbol)
Unprefixed In _ : P(Symbol) — P(Symbol)
Prefixed In - : P(Symbol) — P(Symbol)
Prefixed By _In _ : Prefix x P(Symbol) — P(Symbol)
Symbols Associated In - : Association® — P(Symbol)

Figure 3.2: Selection of symbols

Tags In _  : Rules — P(Tag)
Tags For _In _ : P(Symbol) x Rules — P(Tag)

Figure 3.3: Selection of tags

Parameters Of Sort _In _ : Sort x P(Parameter) — P(Parameter)
Variables Of Sort _In _ : Sort x P(Variable) — P(Variable)

Figure 3.4: Selection of parameters / variables

There is an auxiliary operator

Positions _ For _ Of Sort - : lo x P(Symbol) x Sort — Position*

for the construction of a sequence of selectors (for positions) addressing either input or
output positions (first parameter) of certain symbols (second parameter) of a certain sort
(third parameter).

For selecting symbols to participate in a propagation, often closures in the sense of
reachability similar to context-free grammars have to be computed; refer to Figure 3.5
for the auxiliary operators supporting the computation of such closures. Refer also to
Figure 3.6 for some examples for the corresponding closures. The closures facilitate, for
example, the definition of propagation schemata; refer to Subsection 3.4.2.

3.2.2 Renaming

Renaming all kinds of entities should be possible in a meta-program. The corresponding
group of operators for renaming tags (Rename Tag), symbols (Rename Symbol), pre-
fixes (Rename Prefix) and sorts (Rename Sort) is listed in Figure 3.7. The scope for
renaming symbols can be restricted to conclusions (Rename Conclusion) and premises
(Rename Premise). Renaming a sort can be restricted to some parameter positions
(Rename Positions). The specifications of all these renaming operators correspond to
traversals. It should be pointed out that the term renaming is meant here in very broad
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Derivable From _In _ : 7P(Symbol) x Skeleton — P(Symbol)
Derivable To _In _ : P(Symbol) x Skeleton — P(Symbol)
From - To _In _ : P(Symbol) x P(Symbol) x Skeleton — P(Symbol)

Figure 3.5: Computation of closures concerning reachability

program

| declaration | | declarations | statement statements
7N , VAN
: : / A . . - / \
identifier type 2 \ |1dent1ﬁer| | = | expression PARRERE \

| identifier | | “+7 | identifier

statements is derivable to (Derivable To ...) statement, identifier, expression and to statements
itself. identifier is derivable from (Derivable From ...) program, declarations, declaration,
statements, statement and expression. The symbols statements and statement occur on paths
between program and ezpression (From ... To ...).

Figure 3.6: Examples for reachability

sense. It is possible, for example, to identify two entities (e.g. two symbols or two sorts)
by the above operators. Identification is usually not permitted when renaming is regarded
as restricted form of substitution, but in the case of meta-programming it is desirable, e.g.
for the instantation of open programs.

Rename Symbol - To - : Symbol x Symbol — Trafo
Rename Conclusion - To _ : Name x Name — Trafo
Rename Premise - To - : Symbol x Symbol — Trafo
Rename Tag - To - : Tag x Tag — Trafo
Rename Prefix - To _ : Prefix x Prefix — Trafo
Rename Sort - To _ : Sort x Sort — Trafo
Rename  Positions - To - : 7P(Position) x Sort — Trafo

Figure 3.7: Forms of renaming

Let us comment us slightly more in detail on the traversals implementing the rename
operators. To rename a symbol, e.g. a name used in elements, is straightforward. To
rename a sort o to another sort o', a traversal of the rules down to the parameters must
be performed. Any parameter of sort ¢ is annotated during reconstruction with the sort
o'. Since the sort of a (meta-) variable v cannot be changed, a fresh variable v of the new
sort once for v in a rule need to be generated. v is then replaced by v’ allover the rule.
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Finally, the operator Rename Positions renaming sorts in certain parameter positions
is discussed. The operator is useful to perform certain kinds of data refinements in target
programs, where the sorts of parameter positions need to be unified or distinguished, the
latter, for example, when new sum domains need to be established. Renaming positions is
performed as follows. Variables of matching positions are replaced by variables of the new
sort. Since the variables occurring on a certain matching position will in general occur on
some other positions, too, all these positions should be renamed as well. Indeed, to force a
consistent renaming, we must list all positions which have to be renamed simultaneously,
i.e. if a variable occurs on a matching position, it must not occur on a position which is
not explicitly listed for renaming. Renaming positions preserves semantics in the following
sense.

Proposition 3.2.1

Let be dy,...,d, € lo, s1,...,s, € Symbol, 0,0’ € Sort. Concerning the interpretation
used for the semantics definition (refer to Subsection 2.6.9) we assume that the carriers of
o and ¢’ are unified. Then the transformation

Rename Positions {(dy, s1,0),...,(d,, sp,0)} To o

is semantics-preserving. &

In §3.4.3.5 on interpolating precomputations and others we will give an example where
renaming positions is useful in establishing a new sum domain in a given specification;
refer to Example 3.4.6.

3.2.3 Sorting

In this subsection a trivial operator Order By _ : P(Tag) — Trafo for arranging sequences
of rules in a certain way is presented. Such a transformation is useful, for example, to
preserve the order of the rules, which serve as an input for a transformation, in the output
of the transformation. There are possibly other operators doing some kind of sorting
or “pretty printing” which could be useful in an operator suite for meta-programming.
We will not go into detail, but we want to mention a further simple example. Results of
transformations which are presented to the user should contain meaningful variable names.
Auxiliary operators could be useful to preserve variable identifiers provided by the user
and to renumber variable indices if appropriate.

A by : P(Tag) . A rs : Rules .

( Fold Left
Arest : Rules . At : Tag . rest < (Select Tags {t} On rs)
Neutral ( ) Set by

)

i (Forget Tags by On rs).

Figure 3.8: Order By _ : P(Tag) — Trafo
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Order By ts On rs arranges all rules in 7s so that the relative order of the tags in ts
is preserved, and all rules with tags not covered by ts are appended to the end preserving
the original order in rs. The order of the rules can be relevant in some instances, e.g. it is
operationally relevant for logic programs with the depth-first proof search rule. Moreover,
the preservation of the order usually contributes to readability.

Operations should be specified in such a way that the order of rules is preserved. For
rule-wise transformations based on the Fold or Map recursion schemata this property is
often achieved without further effort. However, for some operators it is necessary or more
convenient to rearrange the result by an application of Order By.

3.2.4 Combinators

We present certain combinators on transformations. The corresponding operators compute
from a given transformation another transformation. First, the operator Replace is sug-
gested (§3.2.4.1). It supports so-called element substitution. For short, the operator takes
some description of how conclusions and premises have to be transformed and derives a
complete transformation performing all the smaller transformations in a systematic way
at once. Afterwards, we introduce operators to support selective transformation (§3.2.4.2)
and incremental construction of premises (§3.2.4.3).

3.2.4.1 Element substitution

We introduce a general schema for so-called element substitution. The search for such
higher-order schemata is an interesting problem because these schemata allow more con-
crete schemata to be defined at a higher level of abstraction. In particular, some properties
of schemata can be analysed at a more general level.

We need two auxiliary types:

LhsSubstitution = Conclusion — (Conclusion ® Premise* ® Premise* ® Substitution)
RhsSubstitution = Premise — (Premise* ® Substitution)

These types are intended to specify how conclusions and premises can be replaced. The
combinator Replace can be used to define several transformation schemata which adapt
elements in a systematic way as we will see below. Replace ¢, £, applied to a rule

[t] eg <= €1,...,€p
returns the following rule:
[t] 0, 0---00,(ey) < €},0,0---00y00(€}),...,0, 10---00,00(e),ep,
where #;(eo) — (ed’, €5, €f', o) and t,(eq) — (e}, 0,) for g =1,...,n.

The identity for replacements on LHSs, denoted by [hsldentity, is defined by the ex-
pression Ae : Element.( ¢, (), (), () ). The identity for replacements of premises, denoted by



3.2. AUXILIARY OPERATORS 71

rhsIdentity, is defined by the expression \e : Element.( (e), () ). As defined above, all the
single substitutions are just composed. Another probably more general approach would
be to accumulate a set of equations and then to use the substitution corresponding to its
solved form.

In some applications of Replace, e.g. to add a parameter position for a certain symbol,
substitution is not involved. However, for other applications, substitution is necessary,
for example, for the contraction of parameter positions, the substitution has to unify
contracted positions. In many applications, a specific LHS / RHS substitution will behave
for many elements like the identity function.

3.2.4.2 Selective transformation

Functions on Rules must often be restricted. If a computation is inserted into a certain
rule r, for example, the corresponding transformation has to be restricted to r. A group
of operators Selecting / Forgetting are offered for that purpose; refer to Figure 3.9.

Symbol) x Trafo — Trafo
Tag) x Trafo — Trafo
Symbol) x Trafo — Trafo
P(Tag) x Trafo — Trafo

Selecting Symbols _Do - : P
Selecting Tags _Do - : P
Forgetting Symbols _Do _ : P

(
(
(
Forgetting Tags _ Do _ P(

Figure 3.9: Selective transformation

Selecting Tags (ty,...,t,) Do trafo On rs transforms rs in the following steps:

1. The rules with tags t,...,t, are selected in rs.
2. trafo is applied to the result of (1.).
3. The result of (2.) and all rules which were not selected in (1.) are concatenated.

A ts : P(Tag) . A trafo : Trafo . A rs : Rules .
Order By Tags In rs
On ((trafo On (Select Tags ts On rs)) < (Forget Tags ts On rs)).

Figure 3.10: Selecting Tags - Do _ : P(Tag) x Trafo — Trafo

The transformation trafo has to be type-preserving and it must not return rules with
tags overlapping with the complementary set of rules selected in (1.), if the definedness
of the whole transformation, in general, is required to follow from the definedness of (2.).
The simple definition of Selecting Tags is shown in Figure 3.10. Other forms of restricted
transformations can be expressed based on Selecting Tags, in the same manner as Select
Tags is sufficient to express Select Symbols, Forget Tags and Select Symbols:

e Selecting Symbols: restriction to rules defining certain symbols,
e Forgetting Tags: restriction to the complementary set of Selecting Tags,
e Forgetting Symbols: restriction to the complementary set of Selecting Symbols
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3.2.4.3 Temporary invisibility of symbols

Finally, the operator Hiding is proposed. Hiding s Do ¢ On rs makes the symbol
s invisible in rs during the performance of the transformation ¢ applied to rs; refer to
Figure 3.11 for the formal definition. Hiding is based here on renaming the symbol s
to a fresh symbol which is definitely not in use. An extra service added to the actual
operator Hiding is that the profile of the hidden symbol is possibly permuted (refer to
Subsection 3.3.1 for the permutation of positions) to coincide with the profile according to
the existing use before the renaming is undone.

A sym : Symbol . At : Trafo . A rs : Rules .
Let profOld = Profile Of sym In Sigma Of rs In
Let fresh = Name? sym — New Name, New Operation In
Rename Symbol fresh To sym
o (Ars: Rules .

% if the hidden symbol is not present, no permutation will be necessary
profOld = 7 —
TS,
Let profNew = Profile Of sym In Sigma Of rs In
profNew = 7 —
rs,
% if the profiles are equal, no permutation is necessary
(Sorts Input Of profOld = Sorts Input Of profNew) And
(Sorts Output Of profOld = Sorts Output Of profNew) —
rs,
% try to permute the new computational elememts according to the original profile
Permute profOld On rs
)

ot
o Rename Symbol sym To fresh
On rs.

Figure 3.11: Hiding - Do _ : Symbol x Trafo — Trafo

Hiding turned out to be necessary, for example, for the incremental construction of
premises. Essentially, the operator Hiding enables us to insert and parameterize premises
(and conclusions) in several steps without conflicting with existing uses of the underlying
symbol in the given program. Note that without further effort, stepwise parameterization is
not possible due to the type system because a symbol must have a consistent type all over a
target program at any time. On the other hand, stepwise parameterization is necessary with
regard to orthogonality of operators and granularity of adaptation. Besides type conflicts,
there is another problem with “naive” stepwise construction of computational elements:
While constructing computational elements in n steps, it is not straightforward how to
avoid that existing elements with the same underlying symbol are not effected in steps 2,
..., n — 1. Here step 1 is assumed to perform the initial construction of the computation.
Sometimes, such interferences can be avoided by “forgetting” (refer ro §3.2.4.2) some rules
during the transformation, but not in general.
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The permutation of the parameterization is useful for stepwise construction of compu-
tational elements because there are usually dependencies on the order of the steps which
influence the order of the parameterization. Thereby, the order of parameters might differ
between the new elements and existing uses.

3.3 Basic schemata

According to Figure 1.12 we want to describe a number of schemata modelling basic con-
cepts during program synthesis, adaptation and composition. If we think for example of the
“incremental” development of an attribute grammar or its adaptation by means of meta-
programming, certain basic concepts are evident. More elaborate schemata in the sense of
strategies are explored in the subsequent section. We suggest the following classification
for basic schemata:

e schemata dealing primary with positions (or parameterization), e.g. the operator
Add to add a parameter position; refer to Subsection 3.3.1;

e schemata concerning copies, definitions and uses, e.g. the operator Define to define
a parameter position by a constant computation; refer to Subsection 3.3.2;

e schemata acting primary at the rules level, e.g. operators facilitating program trans-
formation in the sense of folding and unfolding.

3.3.1 Positions

Semantic aspects of an AG specification or a natural semantics description are roughly
represented by the profiles of the underlying symbols. The traversal, the propagation and
the synthesis of data structures can be associated with corresponding parameter positions
of certain symbols. The specification of type checking, for example, requires an output
position for the grammar symbol for expressions, since a type position has to be synthesized.
Consequently, the suite should offer corresponding operators. There are basic operators
for adding (Add), removing (Sub), contracting (Contract) and permuting (Permute)
parameter positions; refer to Figure 3.12 for the profiles of the operators.

Add _ : Position — Trafo

Sub _ : Position — Trafo
Contract _ : Position — Trafo
Permute _ : Profile — Trafo

Figure 3.12: Basic schemata for positions

The operator Sub for the removal of parameter positions can be regarded as the op-
posite of Add. Contraction of parameterization as facilitated by the operator Contract
needs to be performed during program composition if two operands have some part of the
parameterization in common. More precisely, the operator Contract is suitable to unify



74 CHAPTER 3. THE OPERATOR SUITE

all (input or output) parameters of a symbol s which are of the same sort o. It is not so
obvious if contraction is a basic concept like the addition of positions. Possibly, we could
argue that contraction can be regarded as a combination of unification and removal of
parameter positions. Contraction will be demonstrated in §3.3.3.1, where the composition
of specifications with the same underlying skeleton is discussed. Permutation of parame-
ters is a very simple operation. It is obviously needed in a position-oriented framework.
The operator Permute is based rather on a profile than indices of positions. Describing
the permutation of a symbol’s parameterization by means of the intended profile is more
readable, but we must insist on uniquely sorted symbols. Subsection 3.4.1 will show some
elaborate schemata dealing with positions. Recall that there is also a form of renaming
which can be used to change the sorts of some parameter positions (Rename Positions);
refer to Subsection 3.2.2 on renaming for this issue.

The above schemata can be expressed in terms of the parameterized transformation
schema for element substitution introduced in §3.2.4.1 because the schemata can be re-
garded as homogeneous transformations of parameter lists of elements; refer to Section C.2.

Let us consider the operator Add in more detail. Add (io, s, o) adds an input position
(io = Input) or an output position (70 = Output) respectively to any element with the
symbol s by inserting fresh variables of the sort o.

Example 3.3.1
The operator Add is used to add several parameter positions suitable to eventually prop-
agate a symbol table. We start from the following grammar fragment:

program . declarations, statements. [prog]

The following transformation is applied to the above fragment:

Add (Input, declarations,ST)
o Add (Output, declarations,ST)
o Add (Input, statements,ST)

The result of the transformation is as follows:

program . declarations(STy) — (ST1), [prog]
statements(STa).

3.3.2 Copies & Definitions & Uses

To incrementally develop the computational behaviour of a specification, there is a need
for unifying parameters and adding computational elements including conditions. To adapt
a specification we have to be able to perform the oppositional transformation, i.e. to liqui-
date unification of parameter positions or to remove computational elements. During the
synthesis of an attribute grammar, for example, attributes (in our framework: parameter
positions) are added in a first step. This is modelled by the operator Add. In a next step
usually the new attributes (positions) are “defined” in the sense of definitions and copies
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corresponding to the insertion of semantic rules including semantic copy rules. During
adaptation, semantic rules possibly have to removed or replaced. The corresponding set of
basic operators is shown in Figure 3.13.

Copy - To - : Position x Position — Trafo

Define _ By _ : Position x Symbol — Trafo

Use - By - : Position x Symbol — Trafo
Undefined! = : Position — Trafo
Unused! - : Position — Trafo
Purge - : Symbol — Trafo

Figure 3.13: Basic computation schemata

Several more elaborate schemata for adding computational behaviour are discussed in
Section 3.4.3.

3.3.2.1 Copies

The simplest way to eliminate an undefined variable occurrence at a position pos, is to
copy a parameter from a defining position pos, to the position pos,, what is expressed by
Copy pos; To pos,. Applying the transformation to a rule r, pos, has to be a unique
selector of a defining position in r, whereas pos, has to be a unique selector for an applied
position in r.

To restrict the data flow to copying from defining to applied positions has been adopted
from attribute grammars, where semantic rules always define synthesized attributes of the
LHS and inherited attributes of the RHS (i.e. applied positions in our terminology) and
the normal form property of attribute grammars says that only inherited attributes of the
LHS and synthesized attributes of the RHS can be used in the semantic rules (i.e. defining
positions in our terminology). The same assumption will be used whenever computational
elements (e.g. definitions and uses) are inserted, i.e. the input (resp. output) positions have
to be unified with defining (resp. applied) positions.

Example 3.3.2

We continue Example 3.3.1 by adding a copy rule in order to inherit the symbol table
synthesized in the declaration part to the statement part. Applying the following trans-
formation to Example 3.3.1

Copy (Output, declarations,ST) To (Input, statements,ST)

we obtain the following output:

program . declarations(STy) — (ST1), [prog]
statements(STy).
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3.3.2.2 Adding definitions

The operator Define can be used to insert definitions. Consider the transformation
Define pos By s applied to the rule r. For every undefined parameter p matching
with pos a new premise of the form s — p is inserted into r. This constant computation is
intended to compute the corresponding parameter p.

Example 3.3.3
We continue Example 3.3.1 and Example 3.3.2. The initialization of the symbol table is
modelled by the following transformation:

Define (Input, declarations,ST) By &siatic init

The corresponding output is as follows:

program . &gaiic nit — (STo), [prog]
declarations(STy) — (ST1),
statements(STy).

&

The operator Define is also applicable if the given selector is not a unique selector for
an undefined position because it usually makes sense to insert the corresponding constant
computation for a/l matching positions. Note that by adding input positions to the symbol
used for the constant computation and providing definitions to these new positions, the
constant computations can be extended to computations of any arity.

Proposition 3.3.1
Vd € lo Vs, s € Symbol, Vo € Sort, the transformation Add (d, s, o) is WD-recoverable by
the transformation Define (d, s,0) By ' O

3.3.2.3 Adding uses

Uses of defining positions can be forced by the operator Use. Consider the transformation
Use pos By s applied to the rule r. For every parameter p on a defining parameter position
matching with pos a new premise of the form s(p) (i.e. a unary condition) is inserted into
r. For pragmatic reasons the opertor Use is not completely dual to the operator Define
in the sense that the focus is on all relevant defining positions and not only on unused
variables (on defining positions). It is not very common to consider multiple definitions for
a variable, whereas multiple uses are very common. Actually, there should be operators
dual to Define and Use, but they have not been required so far.

3.3.2.4 Establishing undefined and unused variables

The operators for inserting copy rules (Copy) or computational elements serving as defi-
nitions (Define) or uses (Use) of positions are central to program synthesis. However, to
adapt a program, the effect of such operators has possibly to be nullified.
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For an application of the Undefined! operator, every matching applied position is
refreshed, i.e. a fresh variable of the appropriate sort is inserted. This behaviour is obviously
sufficient to discard the effect of a copy rule. Suppose that a computation served as
definition of the matching position. Then the computation will possibly be useless.

The operator Unused! causes every matching defining position to be refreshed. Sup-
pose that a (unary) condition served as use of the matching position. Then the condition
will possibly be useless.

3.3.2.5 Removing computations

The operator Purge supports the removal of computations. To retain orthogonality
w.r.t. Undefined! and Unused! a computation with the symbol s is removed in rs by
Purge s On rs if all of its input parameters are undefined and all of its output parameters
are unused. Obviously, the effect of Define (resp. Use) can be nullified by Undefined!
(resp. Unused!) and a subsequent application of Purge.

3.3.3 Rules

Here we define some basic operators acting at the rules level. The profiles of the cor-
responding operator are shown in Figure 3.14. First, the concept of superimposition
(Superimpose) is introduced. Afterwards, program transformations supporting folding
and unfolding are added to the operator suite (Fold and Unfold).

Superimpose - And _ : Rules x Rules — Rules
Fold - By _Into _ : Tag x Name?* x Tag — Trafo
Unfold - By _Into - : Tag x Tag?* x Tag? — Trafo

Figure 3.14: Basic schemata for rules

3.3.3.1 Superimposition

The operator - >1 _ provides the most obvious form of composition for two sequences of
rules, that is to say the concatenation of the rules. Another form of composition will be
discussed in the sequel. This form models superimposition of rules synchronized by skele-
tons. Thereby, the parameterization and the computational behaviour of two sequences of
rules can be combined in one specification in the sense of tupling.

More in detail, Superimpose rs; And rs, superimposes the skeletons of the operands,
concatenates the parameters of superimposed symbols and takes over computational ele-
ments.

Example 3.3.4
We compose the complete frontend specification from Figure 2.9 by means of superimpo-
sition. Figure 2.15 and Figure 2.16 contain two projections which can be superimposed to
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obtain the complete specification. The first projection models static semantics, whereas
the second projection specifies AST construction.

Figure 2.9 = Contract (Output, identifier,|D) On
Superimpose Figure 2.15 And Figure 2.16

An application of Contract is involved in the above composition, because the parameter-
ization of the symbol identifier, which both operands have in common, has to be unified.

¢

Superimposition is defined iff the operands are based on the same skeleton. Refer to
Section C.5 for the formal definition. Example 3.3.4 demonstrates how to handle the case
of a common part of parameterization which has to be unified, although it is a trivial
example, where the common part corresponds to “terminal” attribution. However, the
approach of using Contract (refer to Section 3.3.1 for its presentation) also works for
more complex parameterizations. Thereby, we support a kind of modularity similar to
Watt’s Partitioned AGs [Wat75]. Moreover, a reconstruction of composition in the sense
of stepwise enhancement [Lak89, SS94, JS94] is achieved.

3.3.3.2 Folding

Folding and unfolding is well-known in semantics-preserving program transformation; refer
e.g. to [PP94]. We suggest two operators Fold and Unfold which are particularly suitable
for structural transformations in meta-programs; refer to Figure 3.14 for the profiles and
refer to Section C.6 for the formal definitions.

Fold ¢t By (s7q,...,s?,) Into t' with 3k such that s?y = 7,... 871 = 7, s7p # 7,
sTkr1=7,...,57, =7, folds the rule with the tag ¢ in the following manner:

e The s7; are matched with the skeleton symbols of the premises of ¢, where 7 matches
with any single element and s?7; matches with any non-empty sequence of elements.

e The elements e* covered by s7; are replaced by an element e with symbol s7; and
the undefined variables in e* as inputs and the defining occurrences in from e* with
applied occurrences outside of e* as outputs.

e Moreover, the rule [t'] e <= e* is added.

3.3.3.3 Unfolding

Unfold offers the operation reverse to Fold, i.e. some skeleton elements ey, ..., e, among
the premises of a rule ¢ are replaced by the premises of some rules ¢, ..., t,, with the
same symbols in the conclusion as the e;. If a premise (note that only skeleton element are
counted) of ¢t matches with 7, the corresponding premise will be taken over unchanged, i.e.
it will not be unfolded.
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statement(ST) = (STM) . expression(ST) — (T, EXP), [if]
& static 1sBool(T),
statements(ST) — (STMy),
| else(ST) = (STM) |,
Las i (EXP,STM;,S5TM,) — STM.

| else(ST) = (STM)| I statements(ST) — (STM). lelse]

| else(ST) = (STM)| T [&aee skip — (STM) | [noelse]

Figure 3.15: An optional if-construct obtained by fold /unfold

Example 3.3.5

Let us adapt the frontend specification from Figure 2.9 in such a way that an optional
else-path is supported. Figure 3.15 shows how the changed GSF rules have to look like.
The actual transformation can be described as follows:

Figure 3.15 = Unfold [else] By ([skip]) Into [noelse]
o Fold [if] By (7,7,else) Into [else]
On Figure 2.9

3.4 Elaborate schemata

It was the intention of the previous section to present schemata corresponding to basic con-
cepts in program synthesis, adaptation and composition. In contrast to that, the schemata
of this Section are rather thought as strategies. Some of the schemata presented below are
thought directly as elaborations of some basic schema. Other schemata are obtained by a
more involved derivation combining several basic aspects.

First, some schemata extending our tool set for dealing with positions (or parameteri-
zation) are discussed in Subsection 3.4.1. Second, propagation schemata are investigated in
Subsection 3.4.2. We carry on with certain strategies to establish computational behaviour
in Subsection 3.4.3. Finally, composition schemata are discussed in Subsection 3.4.4.

3.4.1 Positions

The elaborations of schemata for positions introduced in Subsection 3.3.1 are straight-
forward. The operators Add, Sub and Contract are generalized to cope with several
positions at once. The operator Ensure facilitates the conditional addition of a position
depending on the fact if a position of the corresponding sort has not yet been added be-
fore. Ensure ((io,s,0)) On rs adds the position if and only if s has not an io-position
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of sort o in rs. Several elaborate schemata defined below use the operator Ensure to
ensure the existence of a certain parameterization as a kind of precondition. The operator
Project combines permutation (Permute) and removal (Sub) of parameter positions.
For projection we assume uniquely sorted symbols.

Add _ : Position* — Trafo

Sub _ : Position* — Trafo

Contract _ : Position* — Trafo

Ensure _ : Position* — Trafo
Project - : Profile — Trafo

Figure 3.16: More elaborate schemata for positions

3.4.2 Propagation

Many aspects of a declarative program concern the propagation of data. Thus, it is obvious
that the operator suite should provide corresponding support; refer to Figure 3.17 for an
enumeration of corresponding operators.

From The Left = : Sort — Trafo
Left To Right = : Sort — Trafo
Inherit - From _To _ : Sort x P(Symbol) x P(Symbol) — (Skeleton — Trafo)
Accumulate - From _To - : Sort x P(Symbol) x P(Symbol) — (Skeleton — Trafo)
Remote - From _ : Sort x P(Symbol) — Trafo

Figure 3.17: Schemata for propagation

3.4.2.1 Left-to-right dependencies

The operator From The Left - : Sort — Trafo. facilitates propagation by copying
systematically defining occurrences of a certain sort to undefined variables from left to right.
As long as we consider variables as the only form of parameters, every single copy rule could
be expressed by means of the operator Copy, but From The Left is independent from
parameter positions and a single application of the operator corresponds to a potentially
unlimited number of copy rules. The schema is sufficient to establish a computational
behaviour suitable to encode pervasive inheritance or a bucket brigade [Ada91] or any
mixture of them provided the necessary positions have been added in advance. All of the
propagation schemata considered below make use of the operator From The Left.

Example 3.4.1
The propagation of a symbol table can be specified by an application of From The Left
as follows:
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Figure 3.18 = From The Left ST
o Add ((Input, declarations,ST), (Input, declaration,ST),
(Output, declarations,ST), (Output, declaration,ST),
(Input, statements, ST), (Input, statement,ST),
(Input, expression,ST))
On Figure 2.14

¢
program . declarations(STy) — (STy), [prog]
statements(STy).
declarations(STo) — (ST2) . declaration(STy) — (ST1), [decs]
declarations(ST1) — (STa2).
declarations(ST) — (ST) . . [nodecs]
statements(ST) . statement(ST), [concat]
statements(ST).
statements(ST) . . [skip]

Figure 3.18: Symbol table propagation

We suggest the operator Left To Right o as a slight elaboration of From The Left.
Copying is performed based on fresh positions rather than the original positions. Thereby,
additional symbols and positions can be incorporated in an existing propagation path. It
seems to be impossible to express such an adaptation within other common frameworks,
particularly [KW94], [Kos91] and [KLMM93] (rule models). Refer to the motivating ex-
ample in Subsection 1.2.2.

All the following propagation schemata have in common, that Left To Right (which in
turn is conceptionally based on From The Left!) or From The Left are used in order to
establish the proper data flow. The schemata differ in the way how symbols participating
in the propagation are selected and how the mode of propagation for every symbol, i.e.
inheritance or accumulation, is defined.

3.4.2.2 Inheritance

The operator Inherit propagates a data structure according to pervasive inheritance
[Ada91]. Two sets of symbols from and to are required. The parameter from enumer-
ates the symbols where the propagation should start. Often this is a singleton set. The

!The definition of Left To Right shown in Figure 1.5 does not refer to From The Left, but we are
working on a reformulation of the propagation schemata to express this relationship.
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parameter to corresponds to the symbols which require reading access to the propagated
data structure of a certain sort. The data structure is copied along input positions of all
symbols in the closure (concerning reachability) between from and to including to. Refer
to Figure 3.19 for the definition of the operator.

A s: Sort . A from : P(Symbol) . A to : P(Symbol) .
A sk : Skeleton . A rs : Rules .
Let closure = (From from To to In sk) U to In
Left To Right s
o Ensure Positions Input For closure Of Sort s
On rs.

Figure 3.19: Inherit - From _ To _ : Sort x P(Symbol) x P(Symbol) — (Skeleton — Trafo)

3.4.2.3 Accumulation

The operator Accumulate is quite similar to the previous one, but the symbols in to
require reading and writing access to the data structure. Thus, for all relevant symbols
an input and an output position is added. The data flow achieved by the subsequent
application of the Left To Right ensures that an accumulator is simulated. Refer to
Figure 3.20 for the definition of the operator. The corresponding propagation pattern is
also called bucket brigade [Ada91].

A s: Sort . A from : P(Symbol) . A to : P(Symbol) .
A sk : Skeleton . A rs : Rules .
Let closure = (From from To to In sk) U to In
Left To Right s
o Ensure (Positions Output For closure Of Sort s)
o Ensure (Positions Input For closure Of Sort s)
On rs.

Figure 3.20: Accumulate - From _ To _ : Sort X P(Symbol) x P(Symbol) — (Skeleton — Trafo)

3.4.2.4 Remote access

A set of symbols read of defined symbols in rules with undefined occurrences of a given sort
is derived assuming that these symbols need reading access to the data structure. Dually,
a set of symbols write of defined symbols in rules with unused occurrences of the given sort
is derived assuming that these symbols update or synthesize the data structure. Input and
output positions are added to symbols accordingly based on closures between a parameter
from as above and the derived sets read and write; refer to Figure 3.21.

The operator Remote promotes a style of specification similar to remote access [KW94,
JF85, Boy96b, Boy98.



3.4. ELABORATE SCHEMATA 83

As:Sort . A from : P(Name) . A rs: Rules .
Let undefined =
Map Union A r: Rule .
Variables Of Sort sIn (AoInr\ DoInr) =0 —
w:
{Name Of Conclusion Of r}
List rs
In
Let unused =
Map Union A r: Rule .
Variables Of Sort s In (DoInr \ AoInr) =0 —
w:
{Name Of Conclusion Of r}
List rs
In
Let sk = Skeleton Of rs In
Let read = (From from To undefined In sk) U undefined In
Let write = (From from To unused In sk) U unused In
From The Left s
o Add (Positions Input For read Of Sort s)
o Add (Positions Output For write Of Sort s)
On rs.

Figure 3.21: Remote _ From _ : Sort x P(Symbol) — Trafo

Example 3.4.2

Consider the rules in Figure 3.22 as variants of the corresponding rules in the frontend
specification in Figure 2.9. The symbol table is used in computations, but the actual
propagation is not specified. The resulting attribute grammar has to be considered as
non-well-defined because of the uses undefined ST-positions. Moreover, there are unused
ST-positions, e.g. in [dec|]. However, the propagation of the symbol table can be established
by the following application of the operator Remote:

Figure 2.9 = Remote ST From {program} On Figure 3.22

3.4.3 Computations

In Subsection 3.3.2 basic operators concerning the addition of “copy rules”, constant com-
putations serving as definitions and unary conditions serving as uses were introduced. In
this subsection, elaborations for these schemata, i.e. to insert arbitrary computational el-
ements (Compute and Condition), are presented. Afterwards, the operator Default,
which is more flexible in some cases than the operator Define, is introduced. Then, three
advanced schemata for establishing computational behaviour (Relate, Reduce and Pre-
compute) are presented. Finally, the relationship between computational elements and
term construction (Construction etc.) is investigated.
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program — (PRO) 1 &gpapic init — (), [prog]

declarations
statements — (PRO),
& 45t prog(STM) — PRO.

declaration . identifier — (ID), [dec]
type — (T),
&static add(ST]ID, T) = (ST’).

statement — (STM) . identifier — (ID), [assign]

&static lookup(, ID) - (TLHS)7
expression — (Trus, EXP),

&static assignable(Tins, Trus),

& st assign(ID, EXP) — STM.

Figure 3.22: A frontend specification before making the remote access explicit

Compute _ - — _ : Symbol x Position* — Position* — Trafo
Condition _ _ : Symbol x Position* — Trafo
Default For - By _ : Sort x Symbol — Trafo
Relate _ _ _ : lo x Association* x Prefix — Trafo
Reduce - By _ : Sort x Symbol — Trafo
Precompute _ By _ : Association X Symbol — Trafo
Construction _ : Prefix — Trafo
Deconstruction - : Prefix — Trafo
Construction™! __ : P(Sort) x Prefix — Trafo
Deconstruction™! _ _ : P(Sort) x Prefix — Trafo

Figure 3.23: Elaborate computation schemata

3.4.3.1 Nontrivial computations

The basic operators Define and Use are limited to constant computations for providing
definitions and unary conditions for providing uses. We generalize them so that we can
cope with computations with any number of arguments and results.

Consider the transformation

Compute s (pos,,...,pos,) = (pos, 1,...,p0s,,)
applied to the rule r. pos;, ..., pos, must be unique selectors for defining positions in
r, whereas pos,_,, ..., pos,, must be unique selectors for applied positions in r. Then a

computational element
3(p17 s 7pn) — (pn+17 s 7pm)
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is inserted into r, where the p; are the parameters corresponding to the selected parameter
positions in r.

Although the Compute operator generalizes Define and Use in the sense that several
positions can be used and defined simultaneously in a single computational element, only
computations based on unique selectors can be modelled.

3.4.3.2 Defaults for providing definitions

A slight generalization of the operator Define is offered by the operator Default. Variable
occurrences to be defined are not found by matching a position, but variables are rather
found by the property to be of a certain sort o. As for the operator Define, computations
are only inserted for undefined variables. Default For o By s applied to the rule r inserts
a constant computation of the form s — v into r for each undefined variable v of sort o.

Example 3.4.3
Another specification of the transformation required in Example 3.3.3 based on the operator
Default instead of the operator Define is provided:

Default For ST By &gatic init

The result is the same as in Example 3.3.3. However, the approach based on the operator
Default is slightly more abstract because it is assumed that any “undefined” variable
occurrence of sort ST should be associated with a defining occurrence. There is not a
dependency on particular positions of grammar symbols any longer. &

As a condition is a computational element without output positions, we can define the
operator Condition as follows:

Condition s (posy, ..., pos,) = Compute s (pos,,...,pos,) — ()

3.4.3.3 Compositional computations

Now the operator Relate to be regarded as a high-level schema for adding computational
behaviour will be discussed. Many specification problems are of a compositional nature,
e.g. semantics definition, AST traversal, traversal of data structures, code generation,
translations, i.e. for all rules, an output position of the defined symbol is computed from
certain output positions of the premises (Relate Output) or input positions of premises
are computed from an input position of the conclusion (Relate Input) respectively.

Relate io ((s1,01),...,{(Sm,0m)) pfE

can be characterized as follows: Let us consider a rule r of the form as usual [t] ey <=
€1, .., en. Let be pos* = (i0,s1,01), ..., (i0, Sy, 0m). Let lhsy, ..., lhs, be the parameters



86 CHAPTER 3. THE OPERATOR SUITE

on positions of the conclusion matching the positions pos* respecting the order of the
parameters in the conclusion (usually & = 1). Let rhsy, ..., rhs, be the parameters on
positions of the premises matching the positions pos* respecting the order of the premises
and the parameters in each single premise. If £ > 0 and/or ¢ > 0, then a new computational
element e is inserted into r. The result of the transformation is denoted by 7’ below:

e ;0o = Input: ¢ = Premise From s (lhsy,...,lhsy) = (rhsy,...,rhsy), r' = [t] eg <
€,€1,...,6En,

e ;0o = Output: ¢ = Premise From s (7hsy, ..., rhs,) = (lhsy,..., lhsg), r' = [t] eg <
€1,.-.,€n, 6

where s = Operation From pfr t (refer to Subsection 2.4.5). s should be a prefixed
symbol because computational behaviour should be added and the skeleton should be
retained. The position, where the new computational element e is inserted into the original
sequence premises is indicated in order to point out the parameter dependencies; refer to
Subsection C.3.5 for the actual definition of the operator.

Example 3.4.4

The following transformation shows that the operator Relate is useful to add computa-
tional behaviour modelling the (inherently compositional) AST construction in a frontend
specification. We start from the skeleton (i.e. the underlying context-free grammar) of a
simple imperative language; refer to Figure 2.14. Note that the result of the below trans-
formation is equivalent to the projection in Figure 2.16 which models exactly the aspect
of AST construction contained in the complete frontend specification originally introduced
in Figure 2.9.

Figure 2.16 = Relate Output
( (program,PROY), (statements, STM), (statement, STM),
(expression, EXPY), (identifier, D)
)
&ast
On Figure 2.14

3.4.3.4 Combining unused parameters

Similarly to the operator From The Left, which inserts copy rules to identify defining
and applied occurrences of a certain sort o from the left to the right, the operator Reduce
is used to pair unused variables of a certain sort ¢ in a dyadic computation deriving a new
defining position of sort o. The purpose of these computations is to reduce any number > 1
of unused variables of sort o to 1. Consider the transformation Reduce o By s applied
to the rule r. Let be vy, ..., v, all the unused variables of sort o in r (in the order of their
defining occurrence in r). The following computations are inserted into r:

S(Ula U?) — Un+1, S(Un—l—la U3) — Un42;5 -, S(Un—l—n—Q; Un) — Un+n—1,



3.4. ELABORATE SCHEMATA 87

where the variables v, 1, ..., v,1,—1 are fresh variables of sort o. Thus, v, ,_1 will be the
only unused variable of sort ¢ in the result of the transformation.

Example 3.4.5

Assume that all identifiers used in the statement part should be accumulated in order to
detect superfluous variables. Attributes with sets of identifiers as associated type (sort IDS
below) have to be synthesized for that purpose and for compound syntactical constructs,
the accumulation can be performed by taking the union of the sets of identifiers (relational
symbol &;4s union) accumulated for the subconstructs.

Default For IDS By &;4s empty
) From The Left IDS
o Reduce IDS By &;4s union
o Add ((Output, statements, IDS), (Output, statement, IDS), (Output, expression, IDS))
On

statements . statement, statements. [concat]

statements . . [skip]

statement . expression, statements, statements. [if]
~>

statements — (IDS3) . statement — (IDSy), [concat]

statements — (IDSy),
&;qs union(IDSy,IDSe) — (IDS3).

statements — (IDS) . &;qs empty — (IDS). [skip]

statement — (IDS5) . expression — (IDSy), [if]
statements — (IDS,),
statements — (IDS3),
&ids um’on(lDSl, |D52) — (|DS4),
&iqs union(IDSy,IDS3) — (IDSs5).

3.4.3.5 Interpolating computational elements

There are several forms of inserting computational elements into rules in order to adapt
parameters of certain sorts or certain parameter positions. We use the term interpolation
for that purpose to point out that premises are not only inserted but the data flow of the
given rule is adapted as well.

There are several possibilities for interpolation. The operator Precompute, for exam-
ple, models the insertion of precomputations for input positions of premises. Consider a
premise of the following form:



88 CHAPTER 3. THE OPERATOR SUITE

A (sym, sort) : Association . A by : Symbol .
Replace
lhsIdentity
( rhsForSymbol
On sym
On ) e : Premise .

% accumulate precomputations and modified input parameters
Let {precomputations, psl) =
Fold Left
A (es, ps) : Premise* x Parameter*. A p : Parameter .
Sort Of p = sort —
Let fresh = New Variable Of Sort sort In
(es ++ (Premise From by (p) — (fresh)), ps ++ (fresh)),
(es, ps ++ (p))
Neutral (( ), ( )) List Parameters Input Of e
In

% construct result of RHS substitution
(precomputations ++ (Premise From sym psl — Parameters Output Of e),
()
)

).

Figure 3.24: Precompute _ By _ : Association x Symbol — Trafo

where p is of sort . To insert a unary precomputation with the symbol by intended to
adapt p, means to substitute the above premise by the following two premises

by (p) = (v),s (-..,v,...) = (...),

where v is a fresh variable of sort . The corresponding transformation is forced by the
following application of the operator Precompute; refer to Figure 3.24 for the formal
definition:

Precompute (s,0) By by.

Such an adaptation is useful whenever the parameter p cannot directly be used by
s. The inserted computation is expected to adapt the parameter accordingly. Another
approach would be to adjust the definition of s—provided it is accessible—by an operator
dual to Precompute.

Example 3.4.6

In our running example there are only simple variable declarations so far; refer to the
frontend specification in Figure 2.9. If we want to cope with constants, procedures, type
definitions etc., the symbol table access becomes slightly more involved. We cannot simply
associate identifiers with types any longer. We need more information classifying the actual
symbol table entry. That is a typical situation, where injections and projections for a sum
domain coming into being need to be inserted. Refer to Figure 3.25 for the new variants
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of rules dealing with symbol table entries. The following transformation can be applied
to derive the new variant for [dec] Figure 3.25 from the original frontend specification in
Figure 2.9.

Rename Positions {(Output, &4 varlentry, T), (Input, &40 add, T)} To ENTRY
o Precompute (Input, &gaic add, T) By &giqiic varlentry

The application of the operator Precompute inserts a computation
& static var2entry(T) — (T'),

whereas the new sort ENTRY is established by renaming some parameter positions subse-

quently. The new variant of the rule [var| can be derived in a dual manner. &
declaration(ST) — (ST') . identifier — (ID), [dec]
type — (T),

‘&stmc var2entry(T) — (ENTRY) ‘,
&static add(ST,ID,ENTRY) — (ST).
expression(ST) — (T,EXP) . identifier — (ID), ]
& static ZOOkup(ST: ID) — (ENTRY),
‘&static entry2var (ENTRY) — (T)
&4t var(ID) — EXP.

)

Figure 3.25: Symbol table access coping with more than one kind of entries

The operator Precompute obeys some comfortable properties concluded in Proposi-
tion 3.4.1. They can be easily shown based on the definition of Precompute via Replace.

Proposition 3.4.1
Vs € Name, by € Operation, o € Sort : Precompute (s,0) By by is:

e WD-preserving,
e type-monoton increasing (increasing because by is possibly added),
e skeleton-preserving,

e compatible, -total for compatible,, C Rules such that
Vrs € compatible,, : Sigma Of rs U (by : 0 — o) is defined.

&

Similarly to the insertion of precomputations for premises, postcomputations can be
supposed. The insertion of computations for conclusions makes sense as well. The corre-
sponding details are omitted.

We also want to comment on the relation of the operator Precompute to semantics
preservation. The operator is not extending (refer to Definition 2.6.9). Thus, our simple
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syntactical criterion for disciplined transformations is not applicable. However, the opera-
tor is semantics-preserving by a specific but simple argument: If we substitute the premises
inserted by Precompute by identity, we obtain the original rules. Thus, if the inserted
premises behave like an identity for all previous applications, semantics preservation holds.

Finally, we want to comment on the orthogonality of the operator suite from a specific
point of view. The usability of the operator Hiding for the incremental construction of
premises is discussed in the following example.

Example 3.4.7

Let us assume, we want to insert a precomputation s(p,q) — (p') for a certain position
pos. q should be regarded as an auxiliary parameter. The corresponding transformation
consists of the following steps:

1. The basic precomputation s(p) — (p') is inserted with the operator Precompute.
2. The parameter position for ¢ is added using the operator Add.
3. The auxiliary parameter has to be defined, e.g. with the operator Define.

A problem arises in step (1.), if there are already uses of s. Such existing uses are proba-
bly binary computations in contrast to the inserted unary computation. The intermediate
result would not be defined because well-typedness would not hold.

We could try to invent a kind of precomputation operator, which simultaneously adds
auxiliary positions to the precomputation. However, there are many other possible sce-
narios of stepwise construction of premises. Thus, it is impractical to support all such
scenarios by special operators of the operator suite. We prefer to be able to unbundle
roles. The operator Hiding provides our our generic solution for the problem of the in-
cremental construction of premises. In the above example we simply have to hide s during
the performance of the three steps. &

3.4.3.6 Terms versus computational elements

In Subsection 2.4.1 we have shown how terms in the sense of a form of compound param-
eters can be understood as a rather modest extension of the general framework, where
we consider variables as the only form of parameters. Applications of term constructors
can be turned into premises and vice versa. The advantage of such a relationship is that
operations which are applicable to premises are thereby immediately useful for terms, too.

The operators Construction, Deconstruction _ : Prefix — Trafo turn computa-
tional elements into terms. More precisely, the operator Construction (resp. Decon-
struction) transforms the given rules by interpreting all computational elements with a

given prefix as term constructors (resp. deconstructors). The operators Construction !,

Deconstruction™ _ _ : P(Sort) x Prefix — Trafo work in the opposite direction, i.e.
terms are turned into computational elements. The operator Construction™' (resp.
Deconstruction™") replaces terms on applied (resp. defining) positions of the given sorts
by auxiliary variables and inserts computational elements with the same shape using the

term constructor together with a given prefix as relational symbol.
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program — (prog(STM)) . declarations, [prog]
statements — (STM).

statements — (concat(STM{,STMz)) . statement — (STMy), [concat]
statements — (STMy).
statements — (skip) . . [skip]
statement — (assign(ID, EXP)) . identifier — (ID), [assign]
expression(ST) — (EXP).
statement — (if (EXP,STMy,STMs)) ©  expression — (EXP), [if]
statements(STMy),
statements(STMs).
expression — (var(ID)) . identifier — (ID). [var]

Figure 3.26: Figure 2.16 with term construction made explicit

Example 3.4.8

Consider the result from Example 3.4.4. The actual result was shown in Figure 2.16. There
are several relational formulae prefixed by &,;. They model AST construction. Let us
“unfold” this interpretation by making the term construction explicit:

Figure 3.26 = Construction &,; On Figure 2.16

Refer to Figure 3.26 for the result. Obviously, the corresponding computational ele-
ments are discarded, but terms are substituted for the variables on their output positions.

¢

The operator Replace, i.e. the schema for element substitution, can naturally be in-
strumented for both directions, that is, for turning terms into computational elements and
vice versa. We only consider the direction of turning computational elements into terms.
The other direction can be implemented in a dual manner. Computational elements which
are intended to model term construction must have the following form:

S(P1,...,pn) =P

Making term construction explicit means to discard the element and to substitute the pa-
rameter p by the term s(py, ..., pn). There is a further precondition: The parameter on the
output position must be a variable. Otherwise the basic concept of substitution (mapping
variables to parameters) is not applicable. Figure 3.27 presents a function mapping a sym-
bol s to an element of RhsSubstitution specifying how elements based on s are rewritten as
term constructors. Now it is straigthforward to define the operator Construction from
above; similarly for the other operators.
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A e : Premise .
Let in = Parameters Input Of e In
Let (out) = Parameters Output Of e In
(( ), ((Variable Of out, Term From Constructor From Operation Of e in Of Sort Sort
Of out))).

Figure 3.27: Replacing computations by term construction

3.4.4 Composition

We have seen already some forms of composition, namely concatenation of rules (- <
_) and superimposition (Superimpose). In this Subsection, we present some elaborate
composition schemata; refer to Figure 3.28 for the profiles of the corresponding operators.
First, a more flexible form of rule concatenation is presented (Merge). Second, a kind of
composition facilitating the replacement of rules by other variants with the same tag is
discussed (Override). The corresponding operator combines concatenation and selection.
Afterwards, the rather simple problem of inserting keywords into rules (Concretize),
which can be regarded as another kind of superimposition, is considered. Finally, an
operator facilitating the derivation of chain rules in the sense of attribute grammars is
suggested (Chain). Lifting (Lift) is the subject of a separate section; refer to Section 3.5.

Merge - And _ : Rules x Rules — Rules
Override - By _ : Rules x Rules — Rules
Concretize By _ : (Tag x String?)* — Trafo
Chain Rule .~ < _ : Tag x Symbol x Symbol — Trafo
Lift = : ((Skeleton — Trafo)* ® Rules)* — Rules

Figure 3.28: Elaborate schemata for composition

3.4.4.1 A relaxed form of rule concatenation

For a concatenation rs; > rsy to be defined means that for all symbols which have rs; and
rso in common, the corresponding profiles are equal (i.e. the LUB exists). For uniquely
sorted symbols the requirement for equal profiles could be weakened by saying that there
must exist a unique permutation to make the profiles equal. Thereby, rs, can be made
compatible to rs; by permuting the parameterization of elements in rsy accordingly. The
actual combination now can be performed with _ > _. This additional service is provided
by the operator Merge. Note that the property of unique sortedness is only required for
symbols with different profiles in the operands. Figure 3.29 presents the specification of
the operator Merge.

Example 3.4.9
The following two rules cannot be combined by _ i _, because the profiles of expression in
the two rules are not equal.



3.4. ELABORATE SCHEMATA 93

expression(ST) — | (T,EXP) | : identifier — (ID), [var]
&static lookup (ST, ID) — (T),
& 45t var(ID) — EXP.

statement(ST) — (STM) © identifier — (ID), [assign]
&static lOOkup(ST, |D) — (TLHS)7

expression(ST) — | (EXP, Trps) |,

& static assignable(Trus, Trus),
& g5t assign (1D, EXP) — STM.

However, since there is a unique permutation to make the profiles equal, concatenation
based on the operator Merge is possible. The profile of ezpression is taken over from the
first rule. %

Arsl : Rules . A\ rs2 : Rules .

rsl <
Let t2 = Sigma Of rs2 In
Fold Left

A 1rsO : Rules . A pl : Profile .
Let p2 = Profile Of Symbol Of pl In t2 In
P2=7) -
rs0,
(Sorts Input Of pl = Sorts Input Of p2) And
(Sorts Output Of pl = Sorts Output Of p2) —
rs0,
Permute pl On rs0
Neutral rs2 List Sigma Of rsl.

Figure 3.29: Merge - And _ : Rules x Rules — Rules

There is an important advantage of using Merge instead of _ > _. The parameterization
has often a different order for two operands to be composed because the corresponding
aspects of computational behaviour have been possibly established in different orders. The
operands cannot be concatenated, but they can be merged.

Example 3.4.10

Consider two sets of rules rs; and rs, and two parts of computational behaviour a and b.
There are transformations ¢, and ¢, intended to add the computational behaviour of a and
b, respectively. Now assume, that rs; only reflects a, whereas rs, only reflects b.

(t, On rs1) < (t, On rsy)
will not be defined in general, but

Merge (t, On rs;) And (¢, On rss).
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3.4.4.2 Overriding rules

A crucial problem concerning reuse is the possibility to override parts of a program. We
have mentioned the operators Undefined!, Unused! and Purge which can be used in
order to override copies and computations. Another kind of overriding, which can be
regarded as a combination of two sets of rules, is discussed in the sequel.

It is assumed that some rules in a given set of rules rs; should be replaced by other
variants contained in another set of rules rs,. A pair of matching rules can be found by
different strategies, e.g.:

1. equality of the tags,
2. equality of the skeletons,
3. existence of an unifier for the input positions of the conclusions, especially a renaming.

We only consider the first approach because it is applicable to the general framework
and not only to some suitable instances as the third approach. The second approach is
also generally applicable, but it has not been proved to be useful so far.

Override rs; By rsy, replaces rules in rs; with tags also occurring in rss by the
corresponding variants in rsp. Moreover, all the rules in rs; and rs, with tags which do not
occur in both operands, are taken over to the result; refer to Figure 3.30. A more orthogonal
definition w.r.t. _ > _ would ensure that rs; does not contain rules without a counterpart in
rs1. However, this requirement is not comfortable because then the concatenating aspect
and the overriding aspect had always to be separated during composition. There is another
possible option for overriding: It has to be decided if the skeleton of the rs, should respect
the skeleton of corresponding rules in rs; or not. In any case, the relative order of the
rules in rs; should be preserved; refer to Subsection 3.2.3 for sorting rules. Note that the
existence of the LUB of the types of rs; and rsy is a sufficient but not necessary condition
for the existence of the result of overriding.

Arsl: Rules . A rs2 : Rules .
Order By Tags In rs1l On Merge (Forget Tags (Tags In rs2) On rsl1) And rs2.

Figure 3.30: Override - By _ : Rules x Rules — Rules

As long as there is a proper transformational relationship between two stages of a
specification, overriding should not be applied because it is a rather drastic operation.

3.4.4.3 Inserting keywords

We comment on a rather trivial, but nevertheless necessary composition, that is to say
the insertion of keywords. This composition can be regarded as a kind of superimposition.
Keywords are assumed as a kind of premises. The corresponding operator for insertion of
keywords has the following profile:

Concretize By _ : (Tag x String?)* — Trafo
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The parameter can be regarded as a sequence of patterns of rules. It is assumed that
a question mark is superimposed with a skeleton element, whereas a proper string denotes
a keyword to be inserted.

statement(ST) — (STM) ©  “If”?, expression(ST) — (T, EXP), [if]
&static 1sBool(T),
“Then”, statements(ST) — (STMy),
else(ST) = (STMy),

“End-If”,

&ast if (EXP,STM;,STMs) — STM.
else(ST) — (STM) = “Else”, statements(ST) — (STM). [else]
else(ST) = (STM) | &gt skip — (STM). [noelse]

Figure 3.31: An optional if-construct (concrete syntax)

Example 3.4.11

Let us transform the rules concerning the if-statement with the optional else-path from
Figure 3.15 to reflect a rather concrete syntax by inserting keywords. The result is shown
in Figure 3.31.

Figure 3.31 = Concretize By ( ([if],(“If",?, “Then”,?,?, “End-If")),
([else], (“Else”, 7))

)
On Figure 3.15

3.4.4.4 Chain rules

Context-free grammars (or skeletons) in practice contain chain rules to improve readabil-
ity. In AGs, chain rules are often necessary to distinguish entities of the same structure.
Introducing chain rules frequently is required during structural adaptations. The operator
Chain Rule adds a chain rule to a given program.

Chain Rule t [hs < rhs On rs has the following effect. A new rule is added to rs,
where ¢ is taken as the tag, i.e. rs must not contain a rule tagged by ¢ and the name [hs is
used to build the conclusion, whereas the name rhs is used to build the only premise. The
conclusion and the premise are parameterized with the same fresh variables based on the
profiles of lhs and rhs in rs. At least one of the symbols must have a profile in rs. If both
have a profile, the profiles must be equal.

Example 3.4.12
Assume that a structural adaptation shall be applied to the frontend specification Figure 2.9
in order to distinguish basic expressions and compound expressions, because we want to
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deal with priorities by layers of expressions as common in top-down parsing. Then a chain
rule modelling “Every expression enclosed in brackets is a basic expression as well.” is
useful:

basic_expression(ST) — (T,EXP) I “(¥, [brackets]
expression(ST) — (T, EXP),
“) “‘

We can establish the above chain rule by the following transformation:

Concretize By (([brackets|, (“(“, 7, “)")))
o Chain Rule [brackets] basic_ezpression < expression

Note that the above adaptation can be performed for any profile of expression. In
contrast, if the above rule was specified directly, a certain profile would be assumed.

3.5 Composition by lifting

Lifting is a kind of composition of program fragments (more precisely rules) and program
transformations modelling computational behaviour. There can be several “packets” of
rules to be lifted. Each of them covers certain computational aspects, where the remaining
aspects are expected to be established by the corresponding transformations. Concatena-
tion, superimposition and overriding are involved in the complete process of lifting as more
basic schemata of composition.

In Subsection 3.5.1 a detailed but informal and abstract view on lifting is outlined,
before a certain variant of lifting is formalized as the operator Lift in Subsection 3.5.2.
The whole section is partially based on our previous work presented in [LA&m97, LR97]. As
there are several options for instantiating the notion of lifting and there are some ideas
how to go beyond the variant incorporated into the operator suite, we close the section
with a discussion in Subsection 3.5.3.

3.5.1 Notions

We need a number of basic notions which are suitable to derive finally the notion of lifting.

Complete program In program composition (or in general in program development) we
are interested in complete programs, that is a program is required to solve a certain
task or to perform certain computations. According to our examples and the used
formalisms, complete programs are type checkers, program simplifiers, interpreters,
etc.

Computational aspect Programs are assumed to be semantically structured according
to computational aspects. To manage the complexity of a program, it is crucial to
identify these aspects.
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Example 3.5.1
For the frontend specification in Figure 2.9 we can think, for example, of the following
atomar aspects:

Terminal attribution for identifiers

Representation of type expressions

Accumulation of the symbol table entries in the declaration part
Initialization of the symbol table

Propagation of the symbol table in the statements part
Representation of operator symbols

Type synthesis for expressions

Context conditions for statements

Compositional computations for AST construction

LN W=

&

The idea is to represent computational aspects by program transformations what
will be clarified below when the notion transformer is introduced. Note that in
semantics, particularly in (modular) denotational semantics, a computational aspect
is often referred to as a semantic aspect.

Level of the computational model Considering all possible sets of computational as-
pects we obtain a space of levels, a lattice-like structure. Among these compositions
there are probably some which are conceptionally particular important because they
correspond to subproblems of the complete program. The space of levels corresponds
to the first dimension of a complete program in our approach.

Example 3.5.2
For the frontend with the aspects given in Example 3.5.1, the following meaningful
levels can be identified:

e The static semantics corresponds to the level composed from the aspects (1.), .. .,
(8.). Note that (7.) and (8.) can be regarded as the primary aspects, whereas
the remaining aspects are needed to specify type checking of expressions and
context conditions of statements for some forms.

e The actual AST construction is located at the level consisting of the compu-
tational aspects (1.), (6.) and (9.). Note that the aspects (1.) and (6.) are
secondary in the sense that they supply some parameter positions contributing
to the ASTs. The actual compositional AST construction is modelled by (9.).

&

Note that in semantics, particularly in (modular) denotational semantics, a level is
often referred to as a level (layer) of the semantic model. We use the term computa-
tional model to denote the computational level of the complete program.
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Skeleton Recall that the space of computational levels corresponds to the first (a more
semantical) dimension for complete programs. The second (a more structural) di-
mension is provided by the power set of skeleton rules of the complete program.
Remember that a skeleton is simply a set of non-parameterized rules; refer to Fig-
ure 2.14 for the skeleton of our running example. One can think of a context-free
grammar, a signature, or a data type description as well. The connection between
skeletons and computational aspects / levels is the assumption, that the complete
program is based on a certain skeleton which is constant for intermediate stages of
composing and synthesizing the computational behaviour of the complete program.

Rules at levels One can speak of rules at certain levels according to the computational
aspects covered by them as manifested by the computational behaviour of the rules.
Note that skeleton rules are at the empty level of computational aspects, whereas
the complete program is at the level of the computational model.

declaration(STo) — (ST1) . identifier — (ID), [dec]
type — (T),
&static add(STO: |D,T) - (STI)

statement(ST) . identifier — (ID), [assign]
&static lookup(ST, |D) — (TLHS);
expression(ST) = (Trus),
&static assignable(Trus, Trus).

statement . expression — (T), [if]
&static iSBOOZ(T)a
statements,
statements.

expression(ST) — (T) . identifier — (ID), [var]

&static lookup(ST,ID) — (T).

Figure 3.32: Some rules at certain levels of the computational model

Example 3.5.3

Consider, for example, the rules in Figure 3.32. We explain the level of the rule
[if] with regard to the aspects in Example 3.5.1. Aspect (8.), i.e. context conditions
of statements, has to be instantiated for if-statements as follows: The expression
serving as a condition of the if-statement must be of the Boolean type. Therefore,
[if] is at the level composed from (8.) and (7.) because we need the synthesized
attribute for the type of an expression in order to specify the context condition. ¢

Irrelevance and contribution The advantage of using rules at certain levels is that we
can go along our two dimensions addressing parts of the complete problem with
the focus on certain skeleton rules. Usually we can abstract from details. The
corresponding aspects are called irrelevant (w.r.t. the part of the complete problem
and some skeleton rules).
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Example 3.5.4

Aspects (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the context condition
of an if-statement. Note that there are statements whose context conditions possibly
require other aspects. To specify the usual context condition for assignment, for
example, the aspects (1.) and (5.) are needed as well. &

An aspect is said to contribute to the computational behaviour of a certain skeleton
rule, if the corresponding rule of the complete program has some computational
behaviour which can be associated with the aspect. Note that irrelevance w.r.t. the
complete computational model can be regarded as the opposite of contribution.

Example 3.5.5

Although aspects (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the context
condition of an if-statement, some of these aspects contribute to the computational
behaviour of [if], namely (5.) and (9.) because the rule contributes to the propagation
of the symbol table and AST construction needs also to be performed; refer to the
rule [if] in Figure 2.9. %

Superimposition and contraction Given two rules based on the same skeleton rule
which are intended to describe different parts of the computational behaviour for the
skeleton rule, they can be composed by superimposition in the sense of the corre-
sponding operator Superimpose; refer to §3.3.3.1. A contraction of the parameteri-
zation can be necessary, if the rules have some assumption about the parameterization
in common; refer to the operator Contract in Subsection 3.3.1.

Completeness and consistency Let us consider the completeness and consistency of a
collection C' of sets of rules at certain levels with regard to some skeleton and some
computational model in the following way: For each skeleton rule, the corresponding
rules in C' cover exactly all aspects contributing to the computational model for this
skeleton rule. Note that this characterization does not take program transformations
into consideration yet.

Transformer relating levels Rules at certain levels are one possible way to represent
computational behaviour. We suggest program transformations adding parameter-
ization, computational elements and adapting computational behaviour as another
form. A transformer is a program transformation ¢ intended to model an aspect
a. Given a rule r at a certain level (i.e. a skeleton rule in the trivial case) we can
add the aspect a to r by applying ¢ on r. For some skeleton rules, ¢ will not be
required because there is possibly a corresponding rule at a certain level covering a.
Transformers should be skeleton-preserving and semantics-preserving. Completeness
can be relaxed by saying for each skeleton rule a contributing aspect must be either
covered by a rule in C or there must be a suitable transformer. Note also that a
transformer sometimes needs to be restricted as far as it concerns the level of rules
which the transformer is applicable to.
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Example 3.5.6
Some aspects from Example 3.5.1 can be modelled by transformers as follows:

Accumulate ST From {program} To {declaration }
Default For ST By &atic init
Inherit ST From {program} To {ezpression}

Relate Output ((program, PRO), (statements, STM), (statement, STM),
expression, EXP), (identifier, ID), ...) &qs

O Ot =W

J):
)
)
J):

NN SN N/

Note (4.) should not be applied to a rule at a level which does not contain (3.), where
(3.) is an aspect contributing to the rule. %

Lifting is the process of deriving a complete program from:

a skeleton,

a computational model,

a collection of sets of rules at certain levels,
a set of transformers.

==

Possibly, the skeleton and the computational model can be regarded as implicitly
described by the other two ingredients.

Example 3.5.7

The frontend specification in Figure 2.9 is obtained by lifting the rules at certain
levels from Figure 3.32 using the transformers in Example 3.5.6. Note that we need
less rules at levels than final GSF rules. Note also that the rules at the levels are not
so complex, since they abstract from irrelevant aspects. &

This abstract characterization of lifting can be put in concrete form in different ways
including the possibility to enrich the process by features helpful for program composition
or adaptation.

3.5.2 A concrete form

Now we want to present a concrete form of lifting which proved to be useful in our work
concerning the composition of language processors from reusable fragments [LRBS]|. The
operator suite supports that form by the operator Lift; refer to Figure 3.33 for the defini-
tion.

The input of the operator Lift is a sequence (p, ..., p,) of so-called parts, whereas the
output is a set of rules. Each part has the following structure:

(Skeleton — Trafo)” ®  Rules

rules
at a level

transformers
to be applied to the rules
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A parts : ((Skeleton — Trafo)* x Rules)* .

% compute skeleton and override
Let (sk, overridden) =
Fold Right
A (ts, rs) : (Skeleton — Trafo)* x Rules .
A (skSofar, partsSofar) : Skeleton x ((Skeleton — Trafo)* x Rules)* .
Let tags = Map A (t, |, r) : Shape . t List skSofar In
Let rest = Forget Tags tags On rs In
((Skeleton Of rest) < skSofar, ((ts, rest)) ++ partsSofar)
Neutral (( ), ( )) List parts
In

% iterate the overridden parts
Fold Left
A sofar : Rules . A (ts, rs) : (Skeleton — Trafo)* x Rules .
Order By Tags In sofar On
Merge sofar
And

% apply transformers to rules of this part
Fold Left
A rsSofar : Rules . A t : Skeleton — Trafo .
t On sk On rsSofar
Neutral rs List ts

Neutral () List overridden.

Figure 3.33: Lift _ : ((Skeleton — Trafo)* ® Rules)* — Rules

The second projection can be regarded as a set of rules at a certain level, whereas
the first projection enumerates the transformers, each of the type Skeleton — Trafo to be
applied to the rules in order to establish the complete computational model for these rules.
The type of transformers reflects that a transformer is assumed to observe the skeleton
of the complete program, what is important, for example, for any kind of propagation.
Besides the skeleton parameter, a transformer is simply a function on Rules.

The actual lifting is performed with regard to the skeleton of the rules of all parts. The
computational model is implicitly defined by the parts. Note that there can be aspects
without a corresponding transformer if the rules of all parts are at levels already containing
this aspect. This case is even very common because there are often aspects which are so
central that all fragments cover these aspects, e.g. type synthesis for expressions in a
frontend definition or evaluation of expressions in an interpreter definition.

Besides the formal definition of the operator Lift in Figure 3.33, an informal explanation
is provided here as well. Consider an application of Lift of the following form:

Lift (p1,...,pn)-

Each part p; consists of transformers (¢; 1,..., % ,,,) and of some rules rs;. From all the rs;
a skeleton can be obtained. The basic strategy is the concatenation of the skeletons of the
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parts. The operator Lift follows a more general approach in the sense that overriding is
integrated in lifting, i.e. a set of rules rs; can override rules of any rs; with j < ¢ based on
tags as usual. Thus, the skeleton is accumulated from backwards (Fold Right ...) and
only those rules of the skeleton of rs; are incorporated which have a tag not occurring in
the skeleton accumulated so far. Simultaneously, the parts are minimized to fade out of
those rules which are to be overridden. Now the composition of the complete programs is
performed as an iteration on minimized parts, where the rules of the actual part are lifted
by the associated transformers observing the accumulated skeleton.

Example 3.5.8

We explain the lifting process for the frontend specification in Figure 2.9. We use (3.), (4.),
(5.) and (9.) to denote the transformers from Example 3.5.6 associated with computational
aspects from Example 3.5.1.

Lift (
( ((3.),(4.),(5.),(9.)), Figure 2.14 )
(), Figure 3.32.[dec] )
( ((9.)), Figure 3.32.[assign| ),
( ((5.),(9.), Figure 3.32.]if] )
( ((9.)), Figure 3.32.]var] Yy

)

Note that Figure 2.14 refers to the complete skeleton of the frontend specification. It would
be slightly more precise to fade out rules with tags occurring in subsequent parts, but that
is not necessary because the operator Lift performs such a minimization anyway. &

As pointed out above, transformers need to be skeleton-preserving. If structural adap-
tations have to be performed on the operands of lifting, they must already be manifest in
rules in the parts. Thus, lifting will be based on the modified structure.

3.5.3 Discussion

The operator Lift does not consider parts with overlapping skeleton rules. For more com-
plex computational models, the approach outlined in the abstract view might be preferred,
i.e. there can be any number of rules with the same underlying skeleton. These rules, which
usually are concerned with different computational aspects, must first be combined by su-
perimposition. Contraction may be necessary to identify parameterization due to common
assumptions about the computational aspects. Afterwards, the remaining aspects can be
added by transformers. In contrast to the operator Lift, each set of rules has to be associ-
ated with the aspects rather covered by the rules in the sense of a static type information
than to be applied to the rules. Moreover overriding has to be realized explicitly, e.g. by
applying the operator Forget to the rules before giving them as arguments to the lifting
process.

Let us formalize the approach of having several rules at levels per skeleton rule. The
input has the following structure:
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tra,nsfgrmers ngts
p n , ~
(Skeleton — Trafo)* ® ( P(WN) & Rules )
to index rules
transformers at a level

Aspects with an associated transformer are enumerated by the first projection. The
second projection somehow corresponds to the parts from above, but here rules are asso-
ciated with indices indexing the transformers from first projection saying which of those
aspects are already covered by the rules of the parts. That is in contrast to the form of the
parts assumed for the operator Lift, where each part enumerates the aspects to be applied.

Example 3.5.9
We associate the rules in Figure 3.32 with the corresponding aspects:

[dec] : (1.), (2), (3.)
lassign] : (1.), (5.), (7.), (8.)
[if] : (7.), (8)

[var] = (1.), (5.), (7.)

%
Let ((t1,...,tn),(p1,--.,Pm)) be an input for the lifting process with the skeleton sk,
each p; has the following structure: ({n;1,...,nix,},rs;). To consider an input as valid

means the following:

1.1<n; <nfori=1,....m,5=1,...,k
2. Ai,j:1<i,j<m,i#jA
Tags In rs; N Tags In rs; Z O A {ni1, ..., g} O {nj, g # 0

The first condition ensures that indices in the parts are valid indices in the list of
aspects (transformers). Note that due to the structure of the parts, no aspect is referred to
more than once in a part anyway. The second condition concerns the problem when rules
of parts with an overlapping skeleton have aspects in common. Such an ambiguity must
possibly be regarded as inconsistency because there are possibly multiple (contradictory)
definitions for some parameter positions. However, there is a solution to this problem
explained below.

Lifting in the more general form starts from a skeleton sk and it is performed for each
single skeleton rule as follows:

1. For every single skeleton rule we first lookup all corresponding rules in the parts.
These rules are denoted by ry, ..., .
2. 1, ..., rq are superimposed:

Superimpose 7; And (Superimpose r, And (--- And r,)---)
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3. The result of the superimposition is transformed by:
(tq, On sk)o---o (tg On sk),

where the dy, ..., d,, are the indices of aspects not covered by ry, ..., 7.
4. The separately lifted rules are merged.

There is another option in steps (2.) and (3.): The composed transformation mentioned
in (3.) could also be applied to the corresponding skeleton rule and the result will be
superimposed with the superimposition from the previous step. However, this option
ignores that transformers are likely to adapt rules at certain levels, i.e. that some aspects
must be present before a certain transformer can be applied. Consequently we should even
assume an order of applying transformers in step (3.). For simplicity, the following strategy
is assumed:

e Transformers are applied as late as possible, i.e. first the rules are superimposed and
the transformers are applied to that intermediate result. This issue is reflected in
(2.) and (3.)

e The order of the transformers in the first projection of the input is regarded as a
reference and step (3.) can easily be adjusted to preserve that order by adding the
requirement dy < dy < ... < dy.

The second condition for an input to be valid can be relaxed. Suppose two parts
with an overlapping skeleton have aspects in common. A rule from the intersection of the
skeletons can still be superimposed as described in the second step of lifting above, but
the parameterization according to the common aspects must be unified. That is easy to
perform by contraction in the superimposed intermediate result. There are a number of
problems with this approach.

e When defining positions are contracted, variables with multiple defining occurrences
are obtained. That is not always acceptable, although it makes sense for some target
languages.

e [t is not obvious how to determine the parameter positions to be contracted. In
general, declarations about the parameterization associated with aspects would be
needed. It also must be assumed that every part enumerates erhaustively the aspects
covered by the rules. On the other hand there is a pragmatic strategy if unique
sortedness for skeleton elements is assumed. After each superimposition a contraction
can be performed so that unique sortedness is recovered.

The discussion of lifting is concluded by pointing out some remaining problems making
clear that this topic is worth to be considered further:

Well-definedness A rule is regarded as well-defined if all applied occurrences can be
associated with at least one or exactly one defining occurrence. It is not clear if
well-definedness of the rules in the parts should be required? If the adaptation and
the initialization of a data structure, for example, are regarded as separate aspects,
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non-well-defined rules make sense because the fragment dealing with adaptation can
rely on a separate initialization. Mostly, well-definedness is useful.

Type checking It is easy to observe that lifting (especially the operator Lift) as described
above is partial, even if the transformers are total. During superimposition and
concatenation type conflicts can occur. It is not so obvious how to approach to a
kind of type checking for the input of lifting. One approach is to enumerate all aspects
exhaustively and to describe the contribution of each aspect to the parameterization
(e.g. in terms of parameter positions) and to the computational behaviour (e.g. in
terms of profiles of relational symbols). It could be checked then if rules from the
parts are well-typed. It would remain to prove that the transformers actually adhere
to the declared contribution.

Rules versus transformers The operator Lift supports only one rule at some level per
skeleton rule. The remaining computational behaviour must be added by transform-
ers. In principle, this is always possible due to the expressive power of the calculus
for transformations. One extreme for the style of a transformer is that it adds com-
putational behaviour following a completely uniform schema. Another extreme is
that it modifies only a certain rule or it describes a case distinction on the rules,
where rules at levels are possibly more appropriate. At this point it is not clear how
to decompose complex programs in terms of rules at levels and transformers.

Overriding The operator Lift incorporates smoothly overriding of rules into the process
of lifting. It is not obvious how to perform such an amalgamation for other approaches
to lifting. Besides overriding rules, overriding computational behaviour is possibly
useful, too.






Chapter 4

Related work

We want to understand how reuse is facilitated in other specification frameworks and
particular problem domains (e.g. formal semantics specification). For some of the manip-
ulations provided in other frameworks and domains we want to attempt a reconstruction
based on our meta-programming-like point of view. The benefit of such a reconstruction
is that the underlying concepts are made available for other instances of our framework.
For some approaches we are able to identify particular weaknesses and limitations.

First, the scope of related work covered by this chapter is explained in Section 4.1.
Second, paradigm shifts in attribute grammars are compared with our meta-programming
approach in Section 4.2. Some of the paradigm shifts can be simulated in our framework.
Third, sophisticated approaches to reusability in semantics are discussed in Section 4.3.
The most promising attempts in semantics are not directly applicable to the target lan-
guages in our work. Nevertheless, we will try to identify the limitations of the correspond-
ing attempts and to make some use of the corresponding concepts in our context. Finally,
several approaches belonging to the field of formal program development are outlined in
Section 4.4.

4.1 Scope

When I started my research presented in the thesis in early 1995, I was interested in com-
piler compilers, particularly based on attribute grammars and formal semantics, particu-
larly, denotational semantics. The very rough goal I had in mind was to provide support for
reuse based on operations on (attribute grammar and/or semantics) specifications. Reuse
is too often based on “text editing”. My operations should facilitate a formal way of reuse.
Moreover, reuse should be executable in contrast to several other meta-level approaches,
e.g. refinement. Consequently, I have dedicated two sections on improvements of the basic
attribute grammars paradigm (with the emphasis on any kind of modularity) (Section 4.2)
and on extensibility in semantics (Section 4.3).

Even at the beginning of my research I was aware of modularity concepts in pro-
gramming languages, including declarative programming languages. Modularity in the

107
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common sense essentially supports programming in the large by decomposition and para-
metricity. This overall approach emphasizes design for reuse in advance. In principle, [
agree to the suitability of that premise, but I wanted to look beyond the border of this
restriction to reuse. What kind of reusability can be achieved by adaptations based on a
transformational point of view?

As far as I can see, there are two major problems with modularity in the common sense:

e An insufficient decomposition and parameterization makes reuse impossible. Thus,
the decisions about the actual decomposition and the parameters including the as-
sumptions about the parameters are very critical. On the contrary, transformations
can adapt, in principle, “any” given program. In particular, a transformation may
even install a parameterization in a given input program. Thus, the long term goal
of my study is to show that transformations may improve reusability.

e Another problem concerns the overhead for establishing a sufficient decomposition
and parameterization and for realizing proper instantiations. I want to consider
several powerful techniques, e.g. monads [Wad92] or object-orientation in functional
programming [SA97], as “coding techniques”. Again, transformations might be more
appropriate in some cases, since the properties for their applicability and their effect
are easier to understand.

Because of these limitations, common approaches to modularity will be commented on
in this chapter only to a limited extent. As my project proceeded, I became more familiar
with methods of formal program development, such as program transformation, program
synthesis, program refinement, mainly in the context of logic programming. Section 4.4
reports on related work in this area.

The scope of the related work chapter covers compiler construction, extensibility in
semantics, program transformation and refinement, operations on specifications and some
more almost unrelated fields. It was my intention to cover such a wide spectrum, although
my results could possibly be stated for one or another particular community. With that
commitment to such a wide spectrum, some related work will not be commented on in
depth, including the following approaches:

e Meta-programming uses the meta-level to define classes of target programs. In higher-
order functional programming certain operators like map / foldl | foldr are used
in conjunction with polymorphism to describe classes of algorithms. Shapes and
polytypism [JC94, JJ96, JJ97, Jeu95] lead us even a step further in the degree of
abstraction. The idea of map, for example, can be applied to any algebraic type such
as trees and matrices. Thereby, we obtain a generic map when applied to a data
structure of a certain shape returns a data structure of the same shape.

e Representing a whole class of computations on a particular data structure by means of
suitable higher-order predicates has been suggested for example by L. Naish [Nai96].
Essentially, Naish argues for a higher order approach to programming in Prolog based
on similar techniques widely used in functional programming. That approach depends
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on impure features of Prolog. A similar but more abstract and formal approach to
higher-order predicates is taken by J.F. Nilsson and A. Hamfelt [HN95, HN96, NH95].
We should mention another paper [NS97| by Naish and Sterling, where they apply
higher-order logic programming in Prolog for a kind of higher-order reconstruction
of stepwise enhancement which is described in some detail in Subsection 4.4.2.

The Demeter Research Group (Karl J. Lieberherr et al.) has developed an extension
of object-oriented programming, that is to say adaptive object-oriented programming
[Lie95, PPSLI6]. The Demeter method proposes class dictionaries for defining the
structure of objects and propagation patterns for implementing the behaviour of the
objects. Our approach is similar to that of Demeter in that transformations are
independent from the actual skeleton and how computational behaviour (including
propagation based on the notion of reachability) can be established in concrete target
programs.

Aspect-oriented programming [KLM*97] is a very recent programming technique
which claims to support the separation and composition of aspects (design decisions
and others). Thereby, it can be avoided that “tangled” code arises from the fact that
certain design decisions cross-cut the system’s basic functionality. The technique is
based on a very general view on procedural programming (including object-oriented
programming), where special language support is added for the development of aspect
code. [KLM™197] introduces the central notions component and aspect as follows:
With respect to a system and its implementation using a general procedure-based
language, a property that must be implemented is:

e a component if it can be cleanly encapsulated in a procedure, a method, an
object, or an API; components tend to be units of the system’s functional de-
composition,

e an aspect, if it cannot be cleanly encapsulated in such a way; aspects tend to
be properties that effect the performance or semantics of the components in
systemic ways.

Although aspect-oriented programming so far has been formulated in the impera-
tive paradigm, a distinction between components and aspects is similar in intent to
our notions of skeleton rules and computational aspects as proposed in Section 3.5
on lifting. The actual choice of an aspect language, i.e. the language used for the
description of aspects, depends on the nature of the aspects. One example given
in [KLM™97] brings us very closely to meta-programming: An aspect dealing with
optimization is expected to operate on the data flow graph of a component program.
Furthermore, the component programs and the aspect code are compiled into a com-
plete program based on a technique called weaving which again—at a superficial
level—corresponds to our lifting. The main difference between the two approaches
is, that we are concerned with declarative programs and that we have a very detailed
methodology for meta-programming and lifting instead of a rather abstract proposal



110 CHAPTER 4. RELATED WORK

for aspects and weaving.

e There are various further language extensions whose expressive power should be com-
pared with our meta-programming approach, e.g. multi-stage programming suitable
for expressing staged computations explicitly [NN92, TS97], and mixins in object-
oriented programming [DS96, Bra92, BL92].

4.2 Extension of the AG formalism

There are several surveys on (extensions of) the attribute grammar formalism, e.g. [Bau98,
Adad1l, KW94, Boy96b, Paa95]. We also want to refer to Parigot’s complete bibliography
on attribute grammars' and Attribute Grammar Page?. For reasons of economy, we will
comment here only on some specific paradigm shifts, namely:

e object-orientation (Subsection 4.2.1),

e remote access (Subsection 4.2.2),

e symbol computations (Subsection 4.2.3),

e coupling (Subsection 4.2.4),

e patterns (Subsection 4.2.5),

e actual features of AG systems using FNC-2 as an example (Subsection 4.2.6).

We regard several other approaches as beyond our scope, in particular the style of
object-orientation in Koskimies’ et al. system Tools [Kos91], the non-declarative features of
Hedin’s Door AGs [Hed91, Hed92], the “unification” of syntax and semantics in Swierstra’s
and Vogt’s Higher-Order AGs [SV91]. For a survey on approaches with the emphasis on
modularity we recommend Baum’s thesis [Bau98]. Simpler forms of modularity are for
example provided by different instances of hierarchical /functional decomposition of AGs.
Watt’s partitioned AGs [Wat75] and Ganzinger’s signature morphisms [Gan83] can be
regarded as sophisticated approaches to modularity.

4.2.1 Object-orientation
4.2.1.1 Motivation

There are different approaches to incorporate object-oriented notions into attribute gram-
mars. [Kos91] provides a survey on this subject. Refer also to [Paa95]. Besides the
pragmatic aims to shorten the notation and to improve readability, there are essentially
the following motivations for such extensions:

1. A benefit of object orientation is that it supports reusing existing code. Computa-
tional behaviour can be specified somewhere in the class hierarchy. The behaviour

Yhttp://www-rocq.inria.fr/oscar/www/fnc2/AGabstract.html
2http:/ /www-rocq.inria.fr /oscar /www /fnc2 /attribute-grammar-people.html
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is then inherited to descendant classes, where it can possibly be adapted. This mo-
tivation arises from the view in Smalltalk, for example.

2. Inheritance can also be used to structure domain-specific frameworks. Thereby,
application-oriented software is supported. This motivation arises from the view
in Simula, for example.

3. The AG formalism is an open formalism and not a complete specification language.
It is common to look for specification language features in order to improve the
pragmatic properties of AG specification.

4. Object-oriented notions like state of an object and message passing can be used to
extend the AG formalism with explicit dynamic capabilities.

We will ignore the forth point completely in the following consideration, because the
kind of dynamic capabilities goes beyond our purely declarative framework. There are other
approaches to the extension by dynamic capabilities, e.g. Dynamic Attribute Grammars
[PRJD96a, PRJD96b|, which are more appropriate in our context.

The remainder of this subsection will deal with object-orientation based on object-
oriented context-free grammars. Note that Section 4.2.3 reports on paradigm shifts in
Lido based on another kind of inheritance which is almost independent from the underlying
CFG.

4.2.1.2 Object-oriented context-free grammars

An object-oriented view of attribute grammars can be based on an object-oriented view of
the underlying concept, i.e. CFGs; refer to Figure 4.1. Thus, chain productions A — B can
be regarded as the definition of a class system (refer to Section A.4 for technical details),
whereas a production A — B;...B, can be regarded as structural description, i.e. an
object of class A has attributes of static classes By, ..., B,. To be sensible from the
object-oriented point of view, all alternatives for a given nonterminal A are either chain
productions or there is only one production giving a structural specification.

(010 CFG

class nonterminal

object a (sub)word derived from a nonterminal
structural specification of an object production

superclass/subclass relation chain productions

Figure 4.1: Object-oriented notions for CFGs

From a syntactic point of view reduced CFGs are common. However, from the point of
view of object-oriented AGs, it is useful to allow nonterminals n; which are not reachable
from the axiom of the CFG. These n; model semantic base classes. Behaviour can thus be
inherited to a nonterminal (class) n by a chain production n; — n. Consequently, the class
system of an object-oriented AG is mainly obtained by chain productions of the underlying
syntax description possibly extended by chain productions with non-reachable symbols on
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the LHS corresponding to semantic classes. Note that CFGs with multiple inheritance
cannot effectively be used for object-oriented AGs as explained in more detail below.
Refer to Section A.5 for a formal definition of object-oriented CFGs including examples.

4.2.1.3 Attribute inheritance and default values

An ordinary AG associates a set of synthesized and inherited attributes with each sym-
bol. Each syntactic rule must be associated with semantic rules defining the synthesized
attributes of the symbol on the LHS and the inherited attributes of the symbols on the
RHS. In order to avoid confusion concerning the meaning of the term inherited attribute,
we adhere to the Mjolner/Orm terminology to use the term ancestral attribute instead. In
the following inheritance is only used in the sense of object-orientation.

Essentially, object-orientation for AGs is an extension of the basic AG paradigm by
inheritance of attributes and semantic rules, where the underlying CFG must obey single
inheritance. Inheritance of attributes is not very effective, especially if we take into consid-
eration that the existence of the corresponding chain productions including the auxiliary
nonterminals (to have exactly one structural specification per nonterminal) is almost a
consequence of the required form of object-oriented CFGs. Without any further exten-
sions (such as rule models discussed below) inheritance of semantic rules does not give not
much expressive power. The RHSs of semantic rules associated with a nonterminal n to be
regarded as a superclass can only depend on ancestral attributes of n itself. The following
example taken from [KLMMO3] shall illustrate the concept of inheritance of semantic rules.

Example 4.2.1

There are sometimes proper defaults for synthesized attributes in the sense that only a
few subclasses have to define a different value, i.e. the inheritance of the default value is
useful. Consider, for example, the following extension of the class Exp modelling any kind
of expressions. Checking contextual constraints, we need to detect expressions which are
proper forms for LHSs of assignments. Thus, a synthesized attribute hasLeftValue is suitable
for that purpose. For several forms of expressions, e.g. constants, monadic and dyadic
arithmetic expression, the following default formalized in the notation of Mjglner/Orm is
correct:

addto Ezp

{
syn hasLeftValue : Boolean;
hasLeftValue = false;

}

By the way, using addto construct of Mjglner/Orm, attributes and corresponding
semantic rules can be added. Thereby, the semantics decomposition of a specification
similar to phases in OLGA of FNC-2 [JP91, JP90, Par88, JPJ*90] is supported. However,
note that this feature should not be regarded as an object-oriented feature because the
extension is not coupled with inheritance. &
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Refer to Section A.6 for some more samples of object-oriented AGs.

4.2.1.4 Models of semantic rules

Without adding further concepts like, for example, rule models, I claim that object-
orientation in AGs does not improve modularity significantly. A collective equation [Hed92,
p. 82], [KLMMO93, p. 472], or a rule model

for all sons(z) in class
son(z).a; := f(ag,...,a,)
defines the value of an inherited attribute a; for all son nodes of a given class. The concept
of collective equations provides one possibility for defining general behaviour at suitable
levels of generalization with regard to the class hierarchy. A rule model is not dedicated to
a certain syntactical rule. This flexibility is possible because a rule model does not depend
on the exact number and the types of sons.

Example 4.2.2

Let us consider a part of the static semantics of a block-structured language. We are
actually concerned with the symbol table propagation. The symbol table information has
to be spread practically throughout the whole AST in order to reach all identifier references.
In the basic paradigm of AGs, corresponding attributes have to be declared for all relevant
symbols and copy rules have to be inserted in order to code the actual propagation. The
following specification (a variant adopted from [Kos91]) uses a rule model as default for
the normal propagation.

<Node> ::= Abstract

<Root> : <Node> ::= Abstract

Loc rootST : SymbolTable;

stROOT := init;

for all sons(z) in Descendant son(z).st := stROOT;
<Descendant> : <Node> ::= Abstract

Anc st : SymbolTable;

for all sons(z) in Descendant son(z).st := st;

<Program> : <Root> ::= {<mainBlock : BeginBlock>}

<BeginBlock> : <Descendant> ::= {<declPart : DeclList> & <stmtPart : StmtList>}
Loc stLOCAL : SymbolTable;
stLOCAL := declPart.stASSEMBLED;
stmtPart.st := stLOCAL,;

The class Node models general (abstract) nodes in the whole AST. We assume that
grammar symbols either inherit from Root or Descendant, both being subclasses of Node.
Program is the start symbol of a concrete grammar. BeginBlock models nested blocks
consisting of declarations and statements. For that production, the propogation has to be
overridden. Note that the actual accumulation of symbol table entries in the declarations
part is not modelled yet by the above specification. &



114 CHAPTER 4. RELATED WORK

4.2.1.5 Discussion

There are some problems with object-oriented AGs (based on object-oriented CFGs) be-
sides the need for adhering to a certain style of CFGs:

Insufficient support for propagation Example 4.2.2 demonstrates how the propaga-
tion downwards in an AST can be specified. The concept of rule models defining
ancestral attributes is crucial for that purpose. However, this concept is not sufficient
to describe the accumulation of a data structure, i.e. the symbol table in a declara-
tion part, for example. To define such computational behaviour in a compact way,
we had to be able to define how attributes are copied on the RHS (not only from the
LHS to the RHS), and how synthesized attributes of the LHS are computed. Since
rule models are not applicable in this case, we can only use concrete semantic rules.
Consequently, the computational behaviour cannot be described in a way abstract-
ing from the underlying CFG. This shortcoming is overcome in our transformational
approach because the propagation and computation schemata provide more expres-
sive power than rule models; refer also to Section D.3 for an example generalizing
Example 4.2.2. Note that certain paradigm shifts of Lido provide a means for that
problem, too.

Missing concepts for adaptation There is a notion of overriding semantic rules. More
in detail, semantic rules and rule models (in Mjglner/Orm) can be overridden by
semantic rules, but we cannot override given semantic rules by a rule model. This is
a minor technical point. There is another problem due to lack of expressive power:
For several adaptations of the computational behaviour we have in mind, there is
no way to express them, e.g. the insertion of pre-/post- computations for certain
semantic rules, the extension of a propagation.

Another serious lack of adaptability concerns structural specifications. They cannot
be overridden. Once a nonterminal has been specified by a structural description, it is
subject to inheritance no longer. This anomaly is not much improved by case-classes
in Mjglner/Orm, because the inherited syntactical structure can be insufficient and
the applicability of the concept crucially relies on the proper introduction of case-
classes during the initial design process.

Consequently, object-oriented AGs facilitate design of AGs, but adaptation is only
addressed to a lower extent.

Relationship to object-oriented programming languages The outlined approach to
add object-oriented concepts to the AG formalism omits several notions typical for
object-oriented programming languages. Attributes do not describe a modifiable
state of an object. There are extensions of that view, e.g. in the system Tools
[Kos91], but then the declarative nature is not preserved. Thus, we consider that
property rather as an advantage. Nevertheless, this problem indicates crucial differ-
ences between object-oriented (imperative) programming languages and declarative
formalisms.
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Semantic rules correspond to methods in an acceptable manner: Due to the locality
principle of AGs, all the attributes of a syntactic rule to be defined are known.
For each of them there must be a semantic rule (a "method for definition”). It is
sometimes suggested to regard the method selection in object-oriented AGs as late
binding, e.g. in [Hed89]. That point of view seems to be artifical because even in the
basic AG paradigm each production locally defines how synthesized attributes of the
LHS and ancestral attributes of the RHS are computed.

It would be interesting to see if the constructs super and self present in object-
oriented programming languages were useful in the context of AGs.

To sum up, the primary notion added to AGs, when speaking of object-oriented AGs,
is inheritance. To obtain some expressive power, rule models or other concepts must
be added. Although rule models rely on inheritance, they provide rather yet another
concept than some inherently object-oriented concept.

Restrictions to retain well-formedness Dealing with attribute inheritance, some ex-
tra effort is necessary to retain well-formedness of the underlying AG. An AG is
well-formed if each syntactical rule is associated with semantic rules defining synthe-
sized attributes of the LHS and ancestral attributes of the RHS. Moreover, each root
nonterminal, i.e. the syntactical start symbol and/or the semantic base classes, must
not have ancestral attributes, because it would not be possible to define them.

For CFGs obeying single inheritance, this property can be checked. The following
restriction permits us to check that all ancestral attributes of the RHS are defined
in a reasonable way: Descendants of the nonterminals on the RHS must not declare
new ancestral attributes. It is correct that this restriction does not introduce prac-
tical problems, as stated in [Hed89] because we can always move the declaration of
ancestral attributes upwards in the class hierarchy. However, it is a formal artifact as
well as a contradiction to the object-oriented point of view, that adaptations should
not effect existing classes.

Incompatibility of multiple inheritance and attribute inheritance Allowing CFGs
to define a class system with multiple inheritance, severe restrictions are needed on
the attribute declarations to ensure well-formedness. Thus, multiple inheritance can
not be used de facto. This a serious problem because it is by no means obvious that
one superclass per nonterminal is sufficient to factor out the common behaviour.

Following our transformational approach, the above problem does not exist because
an arbitrary number of parts of the computational behaviour can be added by subse-
quent transformations. For each of these steps a different closure of symbols can be
used. The limited form of inheritance based on grammar symbols can be simulated
by suitable reachability closures in our approach. We can take other collections of
symbols as well.
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4.2.2 Remote access

The basic formalism of attribute grammars imposes the principle of locality. Attributes
referred to in the semantic rules associated with a syntactical rule » must be attributes of
the symbols in r. If a computation depends on a non-local attribute, auxiliary attributes
for symbols on the path and suitable semantic copy rules have to be added to propagate
the attributes along the tree. To avoid this explicit propagation, constructs for remote
(attribute) access have been suggested by Kastens [Kas76] and Lorho [Lor77], for example.
A comprehensive presentation of the subject has been published by Kastens and Waite in
[KW94], where some of the examples and comments have been taken from. There, the
following three forms of remote access are distinguished:

1. A computation depends on an attribute to be found walking up the tree from the
current node.

2. A computation is a combination of certain attributes in the subtree rooted in the
current node.

3. A computation updates an invariant for some iterative computation visiting nodes
in (depth-first) left-to-right order.

Note that these concepts are “static” in spite of the above explanation, i.e. the corre-
sponding attributes are known at AG compile time. Furthermore, we want to mention,
that the second form somehow combines the aspect of remote access and the use of all the
accessed attributes in computations. We will present some examples for these patterns of
remote access and we will discuss the corresponding simulation based on our approach.

In the first example we want to compute the static nesting depth of a block. The main
program block has nesting depth 0; refer to the rule [program]. Let us assume that a block
is one form of statement, then the depth of a nested block is obtained from the increment
of the depth of its ascendant block. To access the depth of the ascendant block, it has to be
transmitted to the nonterminal statement by means of auxiliary attributes and semantic
copy rules. To avoid this coding, the Including ... construct can be used to find the first
instance of the specified attribute by walking up the tree.

[program] root = block
block.DEPTH = zero
[inner] statement = block
block.DEPTH = inc(Including block.DEPTH)

There are some possibilities to simulate this kind of remote access. Let us sketch one
scenario where we start from the following non-well-defined GSF schema:
root(...) . & zero — DEPTH, block(...,DEPTH,...). [program|
statement(...) . & inc(DEPTH) — DEPTH’, block(...,DEPTH',...). [inner]
In rule [inner] there is an undefined variable DEPTH. To derive a well-defined specifi-

cation with the proper propagation and update of nesting depths, the following transfor-
mation can be applied:
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Remote DEPTH From {root}

We only have to point out that the nesting depths are propagated starting at root. We
can even omit the initialization of the nesting depth as provided by the semantic rule for
[program] because it can be represented by the following transformation:

Default For DEPTH By & zero

To illustrate the second pattern of remote access, that is to say attributes in descendant
nodes are combined in a certain way, the problem of determining undeclared and useless
variables is addressed®. Variable identifiers are accumulated separately in the declaration
and the statement part:

[blockrule]  block = declaration_partstatement _part
block.undeclared = statement_part.1DS \ declaration_part.IDS
block.useless = declaration_part.|DS \ statement_part.1DS

[dp] declaration_part = declaration_list
declaration_part.IDS = Constituents variable.ID

With (IDS, U _, {_},0)

[sp] statement _part = statement_list
statement_part.IDS = Constituents variable.|D
With (IDS, U _, {_},0)

In general, the Constituents ... With ... construct is defined as follows. Let s be a
grammar symbol, o, o’ sorts (attribute names), union, unit and zero are semantic function
symbols with the profiles union : o' x o' — o', unit : 0 — o', zero :— o'. Let vq,...,v, be

the instances of s.o found in the descendant nodes of the current node.
Constituents s.oc With (o, union, unit, zero)

denotes the following computation:

e n=20: zero
e n > 0: union(unit(vy), union(unit(vy), union(-- -, v,)))

In the above example, the parameters are instantiated as follows:

e o': IDS denoting the sort of sets of identifiers, i.e. IDS = P(ID),
e union: _U _, i.e. the union on sets,

3We prefer to use a different example than the pedagogical (?) example presented in [KW94].
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e unit: {_}, i.e. the singleton set construction,
e zero: (), i.e. the empty set.

Obviously, two aspects are intermingled in the Constituents ... With ... construct, that
is to say the access of attributes in the subtree—which is somehow dual to the access of
attributes found by walking up the tree—and the combination of the potentially unknown
number of attribute instances. It is the unknown number that requires the higher-order
behaviour in the sense of fold recursion schemata, but the actual way of computing the
combination is not really a concept inherent to remote access. All the aspects of the
Constituents ... With ... construct can be unbundled in a corresponding definition based on
our operator suite; refer to Section D.4. We use the operator Reduce for the combination
of multiple attributes in a rule and the propagation schemata are useful to propagate the
composed value.

Let us comment on the third pattern of remote access, that is to say chains. A chain
relates computations in left-to-right depth-first order within certain subtrees. A chain may
propagate values or specify dependencies in that order. To support remote access for chains
means that we specify only computations which compute a new chain value, whereas the
actual propagation is not specified. The accumulation of symbol table entries serves as an
example:

[dp]  declaration_part ::= declaration_list
Chainstart declaration_list. ST = init
[decs] declaration_list  ::= declaration declaration_list
[dec]  declaration := wvariable “” type
declaration.ST = add(declaration.ST, variable.ID, type.T)

It is obvious that chains can be simulated using the operator suite, because all the
propagation schemata in our operator suite are based on left-to-right propagation. To
specify only the computations which compute a new value corresponds to the style proposed
for the operator Remote.

Boyland describes in [Boy96b, Boy98| collection attributes as a way to combine dis-
parate definitions of an attribute. The declaration of a collection attribute states an initial
value and a combining function. In contrast to that, the above approach describes the
“collection” (i.e. combination) as part of the actual computation in terms of the Con-
stituents-construct. In similarity to Kastens and Waite, Boyland also strongly links collec-
tion attributes and remote access, although his understanding of remote access is different.
He proposes a paradigm shift such that objects with fields may be created. References to
such objects may be transmitted as ordinary attributes. The fields can be read and writ-
ten via the reference attributes. In [Boy98] Boyland analyses the resulting direct non-local
dependencies and he shows how to render these dependencies in classical terms. Essen-
tially, the fields of an object must be scheduled in a way that classical dependencies based
on control attributes are sufficient. The Lido specification formalism [Kas91l, KW94] in
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the system Eli [GHLT92] supports side-effects in a related way where dependencies be-
tween computations can be forced by the Depends ... On ... construct. In contrast to
that, Boyland derives such dependencies by an analysis. Hedin’s door attribute grammars
[Hed92, Hed91, Hed94] leave all responsibility for scheduling to hand-written code.

4.2.3 Symbol computations

In the previous subsection we have described forms of remote access with emphasis on the
concepts as provided by Lido—the AG specification language of Eli. In this subsection we
want to comment on further paradigm shifts of Lido, that is to say symbol computations
and inheritance. Besides rule models, symbol computations are another concept to specify
semantic rules (i.e. computations) abstracting from the underlying context-free grammar.
We should point out that the form of inheritance in Lido is quite different from the inher-
itance which we have characterized in Section 4.2.1 on object-oriented AGs. It is a matter
of terminology if Lido should be called an object-oriented AG specification language.

Following our meta-programming approach, it is straightforward to define transfor-
mations which insert computations (including conditions) and copy parameters. Thus,
computational behaviour can obviously be described independently from a skeleton. By
turning the sorts and the symbols, which are used to address parameter positions etc., into
parameters of the transformation, such descriptions of computational behaviour become
reusable. Thereby, symbol computations in the sense of [KW94] can be presented as appli-
cations of operators like Define and Use. Applying such transformations to some rules,
a specific computational behaviour is inserted. More elaborate symbol computations usu-
ally have to make use of remote access. Again, the simulation in our meta-programming
approach is straightforward. The corresponding transformations simply make use of the
corresponding propagation schemata.

Consider the following fragment of an AG. It specifies how the block nesting depth is
initialized for the axiom of the AG and how it is adapted for blocks as a form of statements
and for procedure bodies, where the new depth is obtained by incrementing the current
depth in both cases.

[program]  root = block

block. DEPTH = zero
[inner] statement = block

block. DEPTH = inc(Including block.DEPTH)
[procbody]  body u=block

block. DEPTH = inc(Including block.DEPTH)

Symbol computations make it possible to associate computations rather with symbols
than with rules. Thus, a more reusable formulation of the computational behaviour asso-
ciated with the rules [inner| and [procbody] is expressed as follows:
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Symbol block : Inh.DEPTH = inc(Including block.DEPTH)

Instead of concrete grammar symbols, abstract symbols can be used. Grammar symbols
can inherit from the abstract symbols by a separate declaration.

Symbol contour : Inh.DEPTH = inc(Including contour.DEPTH)
Symbol block : Inherits contour

Multiple inheritance is possible. Furthermore, symbol computations can be overridden
by concrete computations associated with rules. The fact that symbol computations are re-
ally independent of the symbols used in a particular language definition depends very often
on the use of remote access. The above abstract symbol computation can be represented
as a transformation as follows:

Acontour : Name. Afrom : Name. Hiding & inc Do (
Remote DEPTH From {from}

o Add ((Input, & inc, DEPTH))

o Define (Input, contour, DEPTH) By & inc

o Ensure ((Input, contour, DEPTH)))

The parameter from is needed to establish the remote access. Note that it is possible
to use a more compact form for certain symbol computations by introducing auxiliary
schemata. The above symbol computation, for example, suggest the following pattern: A
unary computation is added to define an input position of a grammar symbol, where the
input of the computation is obtained by remote access.

4.2.4 Coupling

Attribute coupled grammars (ACGs) have been proposed by Ganzinger & Giegerich for
designing phase-oriented AG specifications; refer e.g. to [Gie88]. Two AGs are coupled
via the underlying CFG of the second AG, i.e. the CFG can be thought of to define
an intermediate language. A special root attribute of the former AG is synthesized by
constructing a word of the intermediate language by exploiting productions of the second
CFG as constructors.

Coupling is not a proper extension to the AG paradigm. It is rather a programming
technique. The benifit of coupling is that a problem can be specified in separate phases
which can be combined into a single specification under certain circumstances based on
descriptional composition. Thereby, the construction and the traversal of intermediate
data structures can be avoided. The relationships between descriptional composition
and deforestation have been studied by Correnson, Duris, Jourdan, Parigot and Roussel
[DPRJ96, DPRJ97, CDPR98| emphasizing the benefits and the point of view of descrip-
tional composition.
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The question is whether the degree of reusability achieved by coupling is sufficient. This
is certainly not the case because phase-like decomposition is only a very simple means of
modularity. The mapping described by a component AG of a ACG cannot be modified, but
only surrounded by further phases. Bellec, Jourdan, Parigot, Roussel extend the concept
of descriptional composition with the intent to improve modularity in AG specification
[LJPR93, RPJ94]. Particularly, they suggest to derive the coupling from simple associa-
tions between the grammar symbols of two grammars rather than to specify the coupling.
Another achievement is separate compilation (i.e. separate evaluator construction). Sep-
arate compilation is an aspect of modularity which we almost ignored in our work, since
our emphasis is on expressive power facilitating reuse.

Farrow’s et al. Composable Attribute Grammars (CAGs) [FMY92] can be understood
as a generalization of ACGs. A so-called glue AG may construct phrases of so-called com-
ponent AGs by using productions as constructors. Terminals may have input and output
attributes in order to allow bidirectional data flow between glue and components. Essen-
tially, CAGs generalize ACGs because of the output attributes for terminals. Following
[FMY92], the expressive power of output attributes can be gained alternatively by synthe-
sizing a single complexly-structured root attribute. [KW94| reports a number of problems
concerning reusability of CAGs.

4.2.5 Patterns

Dueck’s and Cormack’s MAGs (Modular Attribute Grammars) [DC90] are based on (pro-
duction) patterns and (attribution) templates. A pattern is similar to a context-free rule.
Whereas a context-free rule contains only vocabulary symbols, a MAG pattern contains
variable symbols, which match any vocabulary symbol, quoted symbols which match one
vocabulary symbol and ellipses, which match zero or more vocabulary symbols. A template
is a semantic rule on the variable or quoted symbols.

Attribution of a CFG with regard to a set of MAGs is done in terms of syntactical
matching controlled by semantic constraints, i.e. a production pattern matches a context-
free rule. The attributes defined in the corresponding semantic rules and these semantic
rules themselves are only added, if the attributes used in the semantic rules can be syn-
thesized due to other semantic rules, and if the defined attributes are used somewhere
else.

Example 4.2.3

The following two MAGs define the attribution schema for a bucket brigade. The module
env describes how the data structure is propagated down the derivation tree, whereas the
module def describes how the data structure is passed up the tree. We assume that the
start symbol in the grammar is goal.
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module env module def
1 'goal — A ... 4 A—...B...
A.env =0 B.def = B.env
2 A—-B... 5 A—...B
B.env = A.env A.def = B.def
3 A—...BC... 6 A—
C.env = B.def A.def = A.env

¢

The way in which an attribution is added to a CFG is primarily controlled by syntax.
That is not most appropriate to obtain an abstract definition of aspects of attribution.
Indeed, [KW94] reports problems in instrumenting that kind of matching for the design
process, e.g. auxiliary attributes have to be added to trigger matching in the desired way.
The Constituents-construct (see Subsection 4.2.2), for example, cannot generally be simu-
lated by MAGs. Our transformational approach is more flexible than the use of patterns
and templates. Example 4.2.3 can be simulated by propagation schemata of our operator
suite.

Adams reports in his thesis [Ada91] on an approach similar to MAGs.

4.2.6 FNC-2

There are many compiler compilers with support for attribute grammars, e.g. FNC-2
[JPI1, JP90, Par88, JPJ*90], Eli [GHL'92] and Cocktail [GE90]. Such systems use mostly
a certain instance of the attribute grammar paradigm with some particular specification
features. The most interesting concepts underlying Lido—the attribute grammar formal-
ism of Eli—have been explained in Subsection 4.2.2 and Subsection 4.2.3 (i.e. remote
access, symbol computations and inheritance). The concept of object-oriented attribute
grammars as used in the Ag specification language in Cocktail has been discussed in Sub-
section 4.2.1. Besides that, Ag supports a rather simple straightforward module concept
which need not to be considered here.* FNC-2 offers a number of descriptional tools
supporting reuse. There are features arising from the system architecture of FNC-2 and
there are other features more closely related to OLGA—the attribute grammar description
language of FNC-2.
Now let us consider FNC-2’s features relevant for reusability in more detail.

Passes A large application can be split into a sequence of passes where each pass takes as
input the intermediate representation produced by a previous one and as output and
transforms it into another intermediate representation to be fed to the next pass. The
passes are usually described by AGs or other specifications following the tree-to-tree
mapping paradigm. If a pass is described by an AG, it is either

e a side-effect AG, where the output tree is the same as the input tree except that
it carries different attributes, or

“The module concept is similar to the concept of phases mentioned below for the FNC-2 system.
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e a functional AG having zero, one or more output trees, generally different from
the input tree.

FNC-2 supports merging of side-effect AGs as well as descriptional composition of
functional AGs, i.e. coupling.

AAS The intermediate representations are called attributed abstract syntaxes (AAS)
which can be regarded as grammars extended with attribute declarations. The spec-
ification of AASs and AGs is done separately.

Declaration and definition modules Regarding OLGA as a general-purpose applica-
tive language, it supports the notion of modules, in which a set of related objects
(type, functions, constants and exceptions) can be defined. Similar to Modula-2, a
module is split into two compilation units, a declaration module declaring the objects
visible from outside and a definition module in which the actual implementation of
visible and non-visible objects is given. Objects can be opaque and modules can be
parameterized.

Phases An AG can be divided into phases to be regarded as blocks with local declarations
and import clauses. A phase is likely to contain the semantic rules for some aspect
of the complete AG. A phase is a pure decomposition construct, i.e. it is not an
extension of AGs.

Productions Productions are also regarded as blocks. This is at least useful for the
consideration of values which are local to the production. These values, which may
depend on attributes of the production, are usually referred to as local attributes.

Attribute classes The automatic generation of semantic copy rules is a rather well-known
technique to define attribute occurrences more implicitly. FNC-2 also supports the
generation of non-copy rules based on the concept of attribute classes [Le 89, Le 93].
An attribute class consists of

e sets of attribute occurrences and

e associated templates to specify the semantic rules which define these occur-
rences.

A template specifies

e the productions to which the template will be applied to and
e the actual semantic rules.

If some attribute occurrence is not defined explicitly, it will be tried to match the
corresponding production with the syntactic part of some template, and—under cer-
tain not so straightforward circumstances—the semantic rules of the template are
used to define the occurrence. The concept of attribute classes is similar to symbol
computations in Lido; refer to Subsection 4.2.3 as far as it concerns the expressive
power.
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Consequently, FNC-2 supports modular specification in a sophisticated manner, i.e.
passes can be used at the top level of a compound application. Phases support seman-
tics decomposition similar to Watt’s Partitioned Attribute Grammars [Wat75]. Attribute
classes support semantics decomposition as well, but the actual details of syntactical and
semantic constraints to find default rules are not so apparent. Last but not least, the
module concept of OLGA as a general-purpose applicative language makes it possible to
use ADTs in the design of an AG.

Even with these powerful modularity concepts, FNC-2 fails to solve some problems we
can solve with our operator suite, mostly because composition is supported rather than
adaptation. In particular, semantic rules and thereby computational behaviour cannot
be adapted. Such an adaptation would be useful, for example, to establish a different
propagation or to insert a precomputation. Syntactical rules cannot be overridden, folded
and unfolded, but that is necessary for structural adaptations. Some problems can be
handled in FNC-2 by fairly simple textual adaptions of specifications or by introducing
a different pass. The situation could be slightly improved if phases and attribute classes
could be separately checked. However, in general, a modular specification will fail to be
reusable, if the assumed structure and the supported parameterization is not sufficient for
a certain application.

Bellec, Jourdan, Parigot and Roussel have done some work on improving modularity
based on descriptional composition [LJPR93, Le 93, RPJ94, Rou94]. They suggest, for
example, to derive an attribute grammar specifying the translation from one grammar
to the other from certain associations between the non-terminals and terminals of the
grammar. Thereby, one can deal with ACGs (refer to Subsection 4.2.4) more modular.
The corresponding concepts will possibly be added to the implementation of the FNC-2
system.

4.3 Semantics

Many researchers have worked on reusability (compositionality, modularity, extensibility)
of semantics specifications, refer e.g. to [Mos83, Mos88, Mog89, Mog91, SJ94, Mos92, BL92,
Bra92, CF94, BR94, Hud96, Mos96, LH96, WH97, BS98|. In this section we comment on
some of these attempts. We also want to compare our meta-programming approach with
some attempts in the semantics community. Such a comparison must appear somehow
artifical because the most promising attempts are usually based on styles and notations
which are beyond our general framework, e.g. denotational semantics, action semantics
and abstract state machines. On the other hand, this situation makes clear that we cannot
adopt existing (partial) solutions to achieve reusability for representatives of our framework,
e.g. natural semantics, attribute grammars etc. The solutions suggested in the framework
of denotational semantics (or higher-order functional programming), for example, heavily
rely on the higher-order nature of the specifications.

This section is structured as follows. Subsection 4.3.1 recalls some well-known problems
regarding the extensibility of (denotational) semantics. Afterwards, we consider possible
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improvements of mainly extensibility, but also other pragmatic properties. First, Mosses’
and Watt’s action semantics are reviewed in Subsection 4.3.2. Second, the use of mon-
ads in semantics (and functional programming) is the subject of Subsection 4.3.3. Third,
Cartwright’s and Felleisen’s extensible denotational semantics are presented in Subsec-
tion 4.3.4. Finally, the notions of conservative extension and (successive) refinement for
abstract statement machines (evolving algebras) are regarded in Subsection 4.3.5.

4.3.1 Motivation

In denotational (and operational) semantics adding an unforeseen construct to a language
may require a reformulation of the entire description because denotational descriptions
crucially depend on the domains used in the profiles of the semantic functions which have to
be adapted for new constructs. This problem becomes a serious hindrance when developing
descriptions of larger languages. It also prevents the reuse of parts of a denotational
description when describing a related language.

We want to present examples for problems with the extensibility of denotational seman-
tics. We start with the profile of the semantic function for statements of a rather simple
language:

[-]stm : STM — MEM — MEM

The semantic meaning of a statement sequence, for example, is obtained by the normal
composition:

[S1;S2]stm = [Salstm © [Si]stm
= )\m-[[s2]]STM ([[51]]STM m)

The way A-notation is used for specifying semantic entities depends strongly on the
details of domain definitions. If errors during statement execution are taken into con-
sideration, not only the above profile will change, but any intermediate meaning must be
handled differently. The new version of the semantic function will be based on the following
profile:

[-]stm : STM — MEM — (MEM & {error} )

The above semantic equation is reformulated as follows:
[S1; S2]stm = [Si]stm then [Sz]stm,

where _ then _ : (D — (D' @ {error},)) x (D' — (D" & {error},)) — (D — (D" ®
{error})) corresponds to strict (w.r.t. error) composition and it is defined as follows:

_ | error, if Is{errory, (f @) = True
J then g w = { g (f x), ifIsp/(f z) = True

For languages with sharing, i.e. with pointers or call-by-reference parameter passing,
the flat memory model is insufficient. An environment binding identifiers to denotable
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values, e.g. locations of a store and a store associating locations with storable values must
be distinguished. Consequently, the profile of the semantic function becomes as follows:

[-]stm : STM — ENV — STORE — (STORE & {error} )

Note also that all semantic equations need to be reformulated to adhere to the new style of
variable lookup and modification and to propagate environments and stores accordingly.

An even more fundamental change is required when jumps are added because a migra-
tion from the direct style to the continuation style has to be performed. The profile of the
semantic function for statements becomes as follows:

[-Jstm : STM — ENV — CONT — CONT,

where CONT = STORE — (STORE & {error} ). The semantics of statements sequences,
for example, changes because the composition of meanings has essentially to be reversed
compared to the direct style:

[[51; S2]ISTM €C= [[51]]STM € ([[52]]STM € C)

Similar serious problems arise when we generalize to power domains when adding non-
determinism. If we anticipated all these changes, we could start with the more complex
domains, but that would be unreasonable as well as notionally burdensome. Note that
although the above examples are tuned towards denotational semantics, similar problems
arise for operational semantics descriptions, e.g. in the style of SOS, or natural semantics,
i.e. domains, profiles and data flow becomes inappropriate if a language extension must be
performed.

4.3.2 Action semantics

Action semantics [Mos92, Mos96] is a framework for the formal description of programming
languages. Its main advantage over other frameworks is the inherent extensibility and mod-
ifiability of action semantics descriptions (ASDs), ensuring that extensions and changes to
the described language require only proportionate changes to its descriptions. Another
purely pragmatic problem addressed by action semantics is the difficulty of recovering
fundamental concepts, such as order of execution or scopes for bindings, from their deno-
tational semantics description. The concepts are rather encoded in higher-order functions
on domains. In action semantics, there is support for several concepts such as transient,
scoped, stable and permanent information built into the notation.
The overall structure of an ASD is similar to a denotational semantics description:

e a context-free grammar defines the abstract syntax,

e semantic equations are used to give inductive definitions of compositional semantic
functions mapping abstract-syntax trees to semantic entities.
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In contrast to denotational semantics, the main kind of semantic entities is actions. Se-
mantic entities are specified by the so-called action notation in contrast to A-notation in
denotational semantics. Actions are essentially computational entities. The performance
of an action directly represents information processing behaviour and reflects the gradual,
step-wise nature of computation. There are subsidiary kinds of semantic entities, that is
to say data and yielders. Ttems of data are (in contrast to actions) essentially static, math-
ematical entities, representing pieces of information, e.g. particular numbers. A yielder
represents an unevaluated item of data the value of which depends on the current informa-
tion. Action semantics is intended as a framework for semantics description. To approach
this goal, the action notation supports a reasonable number of concepts for semantics
description directly.

Example 4.3.1
Let us consider a semantic equation modelling the semantics of an identifier as an expression
(in the sense of a constant or a variable) as common for imperative languages:

evaluate I = give the number bound to I or
give the number stored in the cell bound to I

_or _is an action combinator to choose between alternative actions. If one or another
operand is bound to fail—as in the example—the choice is deterministic. In the first option
I corresponds to a constant, whereas in the second option I corresponds to a variable, with
an associated cell (according to scoped information) and with a stored value in the cell
(according to stable information). The yielder the d bound to Y evaluates to the current
binding for the particular token Y, provided that it is of sort d. The yielder the d stored in
Y is a similar yielder to access stable information. The primitive action give Y completes
and gives the data yielded by evaluating the yielder Y. Thereby, transient information is
produced. &

The action notation can be specialized according to particular semantics description,
i.e. certain domains are instantiated as appropriate for the actual language, e.g. a simple
language declares values like numbers and booleans as storable values, whereas memory
cells and values are bindable values to cope with variables and constants.

A performance of an action, which may be part of an enclosing action, either completes,
escapes, fails, or diverges. An action may be nondeterministic having different possible
performances. An action performance processes information. There are different kinds of
information giving rise to so-called facets of actions. The information may be classified
according to how far it tends to be propagated, as follows:

transient: tuples of data, corresponding to intermediate results;

scoped: bindings of tokens to data, corresponding to symbol tables;

stable: data stored in cells, corresponding to values assigned to variables;

permanent: data communicated between distributed actions.

Making extensions and changes to an ASD generally affects only those parts of the
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description dealing directly with the constructs involved. This property depends on two
crucial features of action notation:

e Each combinator is defined universally on actions, in contrast with function compo-

sition in A-notation, for example, which requires exact matching of types between
the composed functions.

e There is no mention of the presence or absense of any particular kind of information

processing, except where creation or inspection of this information is required. For
instance, stored information is referred to only in semantic equations dealing with
program variables.

It is obvious that action semantics succeeds to support extensibility in semantics defini-
tion. However, this requires the use of a special notation based on quite a few action prim-
itives and combinators. It is hard to compare such a semantics framework with our meta-
programming approach which is not tuned towards semantics description. Our approach
emphasizes the synthesis, transformation and combination of (first-order) specifications.
We try to give some concluding remarks on the relationship between both approaches:

1.

Extensibility of ASDs relies on the above mentioned features of action notation, i.e.
a particular specification language is used. In contrast to that, extensibility in our
approach arises from the modifiability of specifications through meta-programs.

. Since we do not perform any specific extension of the considered (first-order) target

specification formalisms, we are not able to make semantic concepts explicit in the
manner as action semantics does. On the other hand, some schemata of the operator
suite can be related to semantic concepts built into the action notation. The propa-
gation of storable and scoped information, for example, is facilitated by propagation
schemata. The access to and the production of transient information can be modelled
by the computation schemata in various ways.

Although action notation can be extended, there are some basic assumptions which
are tuned towards semantics definition. Inheritance and accumulation of data, for
example, is supported by the declarative facet (scoped information) and the impera-
tive facet (stable information). There is no obvious way to propagate several different
data structures in different ways.

. Without programming at the meta-level certain adaptations and compositions cannot

be performed per se, precomputations, for example, cannot be interpolated. In more
general terms, semantic equations cannot be adapted at all.

Action notation satisfies several algebraic laws. However, the intended interpreta-
tion of an ASD is based on an operational semantics (SOS) for action notation. In
this respect, action semantics can be regarded as a higher level of semantics descrip-
tion compared to operational (denotational) semantics. Our operator suite rather
reflects possible manipulations on programs of certain target languages. Several of
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these manipulations can be regarded as abstractions from programming practice. In
this respect, meta-programming can be regarded as a higher level of programming
compared to the underlying target language.

4.3.3 Monads and monad transformers

Moggi proposed to use monads to structure denotational semantics [Mog89]. A monad
is essentially an (endo-) functor with an additional structure (certain natural transfor-
mations) in the categorical sense. We will stick here to the simpler view based on the
terminology of functional programming and we will use Haskell-like notation for our ex-
amples. In functional programming, a monad is a type constructor together with some
polymorphic functions characterized below. Wadler [Wad92] popularized Moggi’s ideas in
the functional programming community by showing that many frequently used type con-
structors together with common combinators are actually monads and that interpreters for
a great variety of language concepts, for example, can be designed in a modular fashion if
the equations adhere to the monadic style. Espinosa developed Semantic Lego [Esp95]—a
Scheme-based system for the composition of modular interpreters exploiting monads and
monad transformers. Some other contributions to modular interpretation based on monads
are [SJ94, LHJ95].

The basic idea of the monadic style of programming is to consider a function of type 7 —
7' rather as a function of type 7 — M 7', where M is a type constructor. Extensibility is
achieved by instantiating M as appropriate. M can, for example, add state transformation
to 7'. For a given type 7, elements of 7 are called values and elements of M 7 are called
computations, according to the terminology of Moggi. Besides the type constructor M, we
need two polymorphic functions:

unityy o T—>M T
bindyy = M7—>(r—>M7)—> M7

unity; is a generalization of the identity function. unit,, x takes x € 7 to the corresponding
representation in M 7. bind,; is a generalization of the functional application in a monad.
bindys takes a value € M 7 and a function on 7 (but not M 7). bindy, is usually written
in infix notation.

A monad is a triple (M, unity, bind,,), where the functions satisfy the following laws:

e bind,, is associative.
e bind,; has unity; as left and right identity.

Figure 4.2 lists some simple monad definitions. M is the identity monad. Mg is the
monad for state transformation. Mg is the environment monad.

We want to characterize the approach to modular interpreters and the monadic style of
higher-order functional programming using interpreter examples in a Haskell-like notation
as in [Wad92]. The domains according to the core of an interpreter for a functional language
are presented in Figure 4.3. An interpreter in the monadic style is presented in Figure 4.4.
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Monad | type M 7 = unitpy v = | ¢ bindy f =

M a v fe

Mg State — (a, State) | As.(v,s) Asgp.let (v,81) =c spin f v sy
Mg Env — a Ae.v deletv=cein fove

Figure 4.2: Some monads

type Name = String

data Exp = Var Name | Lambda Name Exp | Apply Exp Exp
| Const Int | Dyadic Exp Exp Dsym

data Dsym = Plus| ...

data Value = Wrong | Num Int | Fun (Value — M Value)

type Env = [(Name, Value)]

Figure 4.3: Signature for an interpreter of a pure functional language

Nested function applications are flattened in terms of a sequence of applications of bind,,.
Values are coerced to computations by unity,.

ie :: Exp — Env — M Value
Const n) p = unitps (Num n)
Var i) p = lookupgny p i

unity; (Fun (Az.ie e ((i,) : p)))
(ie ey p) bindys (Avy.(ie ez p) bindyr (Avy.comp vy v ds))
(ie e1 p) bindys (Avy.(ie ex p) bindyr (Ava.apply v1 v2))

Dyadic ey ey ds) p
Apply e €2) p

ie (
ie (
ie (Lambda i €) p
ie (
ie (

lookupgny :: Env — Name — M Value
lookupgny [ ] unity; Wrong

lookupgny ((4,v) : p) i = if 4 == j then unity; v else lookupgny, p i
comp :» Value — Value — Dsym — M Value
comp (Num n1) (Num ng) Plus = unitys (Num (ng + no))

comp vy vg ds = unity; Wrong

apply :» Value — Value —+ M Value

apply (Fun f) z = fux

apply f z = unityr Wrong

Figure 4.4: Interpretation in a monad (call-by-value)

Some first remarks should be made. The monadic style is burdensome because of all
the applications of the polymorphic functions unity; and bind,;. Moreover, it must be
decided which functions return values and which return computations. It can be assumed
that all functions return computations, but this is possibly an overspecification. Note
also that there can be different layers of computations. If we think of, for example, state
transformation in an interpreter, the central interpreter function will possibly transform
the state, whereas an auxiliary function will not. If we think of error handling, several
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functions will possibly produce error messages, not only the central interpreter function.
As with all parameterization techniques, such problems cannot be avoided completely.
Eventually, different monads for different parts are needed. Such an adaptation cannot
be performed. In the case of statement-oriented imperative languages, the evaluation of
expressions either involves side-effects or it does not. In the absence of side-effects the
monad used for evaluation of expressions should not represent state transformation but
rather propagation of a constant state.

The standard call-by-value interpreter can be derived from Figure 4.4 by the following
substitution. M, unity; and bind,; is substituted by the identity monad M. It is now
assumed that the interpreter should be extended with language constructs for reference

cells; refer to Figure 4.5 showing the signature part. The following new constructs have to
be established:

type Loc = Int

data Exp = ... | Ref | Set Exp Exp | Deref
data Value = ... | Loc

type State = [(Loc,Value)]

Figure 4.5: Extension for reference cells (signature part)

e Ref intended for the allocation of a cell,

e Set e; ey for the update of a cell, where e; is computed to a cell, whereas es is
computed to the value to be stored and

e Deref e for dereferencing the cell computed from e.

The monad parameters have to be substituted by the monad for state transformation. We
ommit the straighforward equations for defining the interpretation of the new constructs.

Let us comment on another extension of the intial interpreter. Instead of using the
error value Wrong, proper error messages will be returned. A distinction between successful
values and error messages can be modelled by a monad as in Figure 4.6. One advantage
of using the monadic style for the more realistic kind of error handling is that the strict
behaviour can be ensured, i.e. once an error occurred, the evaluation of the entire expression
fails.

type Partiala = Ok a | Fail String
o= : Partial a = (a — Partial b) — Partial b
Fail s ~ f = Fails
Okz—~f = fz

Figure 4.6: The error monad

The substitution of the monad parameters by the error monad is not sufficient yet
because the possibility of producing error messages is not used at all. There are still
equations returning the accidentally “successful” value Wrong. We cannot anticipate all
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such changes and the monadic style fails to provide a solution required here. What is
needed is that the equations concerning error handling are replaced®; refer to Figure 4.7
for the suitable equations.

lookupgny [] ¢ = Fail “variable not bound”
comp v; v ds = Fail “type error in basic operation”
apply f z = Fail “illegal application”

Figure 4.7: Variants of equations making use of error messages

All in all, the monadic style is an elegant parameterization technique giving support for
modular programming and specification. The style crucially relies on the possibility that
extensions can be expressed by a suitable actual parameterization of the monad parameters.
There are extensions or in other words adaptations, which cannot be expressed in this way.
The technique is well-studied for interpreters of programming languages, since the entire
space of features can be anticipated.

It is interesting to notice that meta-programming provides some oppurtunities to im-
prove the usability of the monadic style:

e [t is a rather simple transformation to establish the monadic style in a given pro-
gram. Thereby, it is not necessary any longer to code in the monadic style all the
time. More significantly, the decision which functions return values and which return
computations can be delayed. Moreover, different sets of monad parameters can be
distinguished.

e We can perform adaptations which are beyond the parametricity provided by the
monadic style, e.g. to override equations, or to insert precomputations.

ie :: Exp — Value

ie (Const n) Num n

ie (Dyadic e; ey ds) comp (ie eq) (ie e2) ds
ie (Apply eq e2) apply (ie e1) (ie e2)

comp > Value — Value — Dsym — Value
comp (Num n1) (Num nsy) Plus Num (ny + ns)

comp vy vg ds = Wrong

apply :: Value — Value — Value
apply (Fun f) z = fuz

apply f = = Wrong

Figure 4.8: Constructs at the Value-level

>[Wad92] points out such an adaptation, but there, the only option is text-editing.
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It is not always the obvious choice to hide semantic aspects in a monad. However,
to achieve modularity based on the monadic style, we must put all aspects into the
monad. Meta-programming provides other possibilities to install semantic aspects.

Consider, for example, the interpreter module in Figure 4.8 which concerns the same
functional language as in Figure 4.4, but only the constructs at the Value-level being
the most basic level of the semantic model for interpretation. The module is not
written in the monadic style. In contrast to Figure 4.4, environments are not propa-
gated. Using a suitable propagation schema (e.g. the operator Inherit) we can add
environment propagation; refer to Figure 4.9 for the result. Wadler’s examples in
[Wad92| do not consider environments as part of the composed monad, i.e. environ-
ments are propagated explicitly as in Figure 4.9. Espinosa’s Semantic Lego [Esp95]
points out a separate environment level. Both approaches are problematic (without
meta-programming). In the first approach we cannot achieve modularity because
constructs at the Value-level must be described with the irrelevant propagation of
environments, i.e. a module like Figure 4.8 could not be reused. Following the sec-
ond approach, a remarkable overspecification can be recognized because environment
propagation is restricted to only a few functions and not to all interpreter functions,
e.g. the functions apply and comp do not contribute to the environment propagation.

ie . Exp — Value

ie (Const n) @ = Numn

ie (Dyadic e; ey ds) @ = comp (ie e; @) (ie ey @) ds
ie (Apply e; e2) @ = apply (ie e; E) (ie ey E)
comp > Value — Value — Dsym — Value
apply ;. Value — Value — Value

Figure 4.9: Figure 4.8 with added environment propagation

Finally, we want to comment on the superficial correspondence of monads (or monad
transformation) and program transformation. For that purpose we explain in more detail
Espinosa’s approach to modular interpreters [Esp95] based on lifting ignoring the similar
approach based on stratification.

For a functional language as in Figure 4.4 with the extension for reference cells in
Figure 4.5 the semantic model can be characterized by the following type A:

A = Env — State — (Value x State)

Modularity is possible because most language constructs operate primarily at a single
“level” of the above type. The following levels can be distinguished:

A = Env — State — (Value x State)
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S = State — (Value x State)
V= Value

These levels are related to each other in the sense that A captures S and V', whereas S
captures V. More technically, S is related to V' by the monad Mg (Figure 4.2) and in
turn A is related to S by the monad M. Figure 4.8, for example, shows all constructs at
level V. The constructs for reference cells are at the level S. The level A is sufficient for
all constructs. Actually, we would like to have a level covering values and environments:

E = Env — Value

This level would be optimal for the semantics of A-variables (constructs Var Name and
Lambda Name Exp). However, we cannot include this level into the tower of levels because
there is no monad relating £ and A, i.e. we cannot reuse modules at the level E. Thereby,
environment constructs cannot be described in a completely modular way.

To reuse modules at some levels, lifting is performed. In our examples we can lift
through V', S and A. Lifting means here, that a monad is used to lift functions at a lower
level to an upper level. Thus, we can combine the result of lifting with a module which
is defined at the upper level anyway. This process can be repeated as often as necessary.
To lift a function f with a certain profile according to a monad (M, unit,, bindy,) can be
described by lifting operators. Consider, for example, a function f with one parameter p
which is untouched by the lifting process and another parameter ¢ to be lifted, i.e. f has
the following profile:

f: X xA—- A

The resulting function f’ has the following profile:
f':XxB—B

The monad relates A and B. We assume, that the result of functions is lifted in all cases.
The corresponding lifting operator which is suitable to lift f to f’ can be described by the
following A-expression:

AfAp.Ac.c bindy, Av.unity f(p,v)

The above problem with the level E is related to general problem that monads do not
compose. More precisely, there is no general constructive way to compose a monad from
two other monads such that the features of both monads are combined; refer to [JD93]
for a proof and some methods for composition in particular cases. Thereby, modularity
based on monads is limited. Moggi’s way out of this dilemma (and Espinosa’s reminds us
in this respect) is to use monad transformers, which is a next step of abstraction. Gen-
erally speaking, a monad transformer is a function on monads. The monad transformers
Te(M)(T) to add environment propagation or 7s(M)(T') to add state transformation to a
monad M applied to a type 1" can be defined as follows when only the effect to the type
is shown:

Te(M)(T) = Env— M(T)
Ts(M)(T) = State — M (T x State)
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Again, lifting operators can be defined. As modules are parameterized by monad transform-
ers, it is possible, for example, to define the environment constructs completely modular
and to pass the state transformation monad transformer 7g to that module as a parameter
in order to arive at A.

Let us compare the monadic style and our meta-programming approach.

e To “lift” a target program from one level to another is performed by a program trans-
formation (e.g. transformers in the sense of Section 3.5 on lifting) in our approach.
Thus, the problem of finding a suitable monad (transformer) corresponds to finding
a suitable program transformation. Regarding the running example in a first-order
setting, we should be able to deal with modules at all the levels V', S, E, A.

e An important difference is that the reuse of modules in the monadic style crucially
relies on the previous parameterization of a module by a monad (transformer). More-
over, the monadic style is per se only applicable to settings with order higher-order
functions, e.g. functional programming and denotational semantics. Following our
approach, we de not rely on an explicit parameterization and we provide a solution
for even first-order settings.

e The correspondence of monads and program transformations is obviously superficial
because monads and monad transformers are higher-order objects in the underlying
formalism, i.e. monads are a means for modularity within the language, whereas
transformations are objects from the meta-level.

e Lifting in our sense (refer to Section 3.5) corresponds to the complete process of
lifting in the monadic sense, where several modules are lifted (in the sense of monads)
through several levels.

The monadic style relies on proper design for reuse in advance. Programs have to be
parameterized. Reuse corresponds to passing monads or to explicit lifting. Program trans-
formations emphasize adaptation of programs.

4.3.4 Extensible denotational semantics

Cartwright and Felleisen present in [CF94] an approach to extensible denotational se-
mantics specifications. Actually, they introduce a new format for denotational language
specifications, the so-called eztended direct semantics (EDS), that accommodates orthog-
onal extensions of a language without changing the denotations of existing phrases. The
authors demonstrate the method by a stepwise definition of a powerful dialect of Scheme.
The method also supports the construction of interpreters for complete languages by com-
posing interpreters for language fragments. Many of the subsequent explanations and the
examples have been taken from [CF94].

The suggested schema crucially relies on a distinction between a complete program and
a nested program phrase. A complete program is thought of as an agent that interacts
with the outside world, e.g. a file system and that effects global resources, e.g. the store.
A central authority administers these resources. The meaning of a program phrase is a
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computation, which may be a wvalue or an effect. If it is an effect, it is propagated to a
central authority. The propagation process adds a function in the sense of a handle to the
effect package such that the central authority can resume the suspended calculation. An
“administrator” function modelling the central authority performs the actions specified
by effects. Actions can examine and modify resources, or may simply abort execution.
Once the action has been performed, the administrator extracts the handle portion of the
effect and invokes it, if necessary, in similarity to the continuation passing style. Casting
a language extension into the framework requires the specification of four components:

the new syntactic constructors,
e the extension of the domains for values, resources and actions,
e new clauses of the meaning function for program phrases and

e new clauses of the administrator function.

EDS are extensible because for several semantic concepts, such as error handling, con-
tinuations, stores, the profile of meaning function for program phrases and previous se-
mantic equations have not to be modified. Extensions effect only the central authority
which must adapted to perform the new actions according to the language extension. A
special composition operator for meanings ensures that all effects are always passed to the
central authority. Some more technical details about EDS and an example are concluded
in Section A.8.

The approach of EDS is very much tuned towards (dynamic) semantics description
similar to action semantics. This is in contrast to the monadic style and to our meta-
programming approach. In particular, a distinction between complete programs and nested
program phrases and the overall design of the semantic framework only applies to dynamic
semantics descriptions (of certain languages). Besides extensibility, the primary achieve-
ment is that extensions do not imply changes to the denotations of program phrases. That
does not hold for the monadic style. EDS is a small framework compared to action se-
mantics which is huge specification language. Technically, EDS is rather a programming
style or a style of denotational semantics than an extension of a specification language or
a new language per se. The style of EDS corresponds again to a kind of parameterization.
It is assumed that profiles of functions and the structure of domains do not need to be
modified and that is sufficient to extend domains in a certain way to take new actions
(effect messages) into consideration.

4.3.5 Extension and refinement of abstract state machines

Gurevich’s Abstract State Machines (ASMs), previously called Evolving Algebras [Gur95],
provide an operational semantics approach. It is a good intuition to understand an ASM
as “pseudo-code over abstract data”. For the purpose of our work we will concentrate
on the application of ASMs for modelling semantics and implementations of programming
languages, although the formalism is also applicable for modelling architectures, protocols
and control software etc. Very roughly, to specify an abstract state machine, an algebra
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to start with and rules describing function updates need to be characterized. Thus, alge-
bras correspond to states, whereas the update rules which are performed simultaneously
correspond to the transition relation in the sense of operational semantics.

It is a particular feature of the ASM approach that an ASM can be tailored to an arbi-
trary abstraction level (in contrast to Turing machines and other approaches to operational
semantics). If different abstract levels are needed, one can even have a hierarchy of ASMs.
In [BR94], for example, Egon Boérger and Dean Rosenzweig develop a hierarchy of ASMs
by means of successive refinement in order to reconstruct the WAM [War93] from a more
abstract ASM for Prolog. Another interesting example showing that the ASM approach
supports modularity and extensibility is the modular Java semantics [BS98] by Egon Borger
and Wolfram Schulte where they factor out sublanguages by isolating orthogonal language
features, namely imperative, procedural, object-oriented, exception handling and concur-
rency features. Starting from the imperative kernel language all the other features can be
added in successive steps. The resulting ASMs build up a sequence of models, where each
model is a conservative extension of its predecessor.

Let us first characterize the notion of refinement following [BR94]. Afterwards the
stronger notion of conservative extension is outlined. Finally, we comment on the kind of
extensibility and modularity provided by ASMs with regard to our approach.

In a refinement step a more “concrete” ASM B is constructed and it is related to a
more “abstract” ASM A. For a proper refinement we are seeking for a F mapping states
B of B to states F(B) of A, and rule sequences R of B to rule sequences F(R) of A, so
that the following diagram commutes:

F(R

PRGNy
F F
B~ B

Refer to [BR94] for details including notions like correctness, completeness and oper-
ational equivalence. Let us mention some kinds of adaptations to be performed during
refinement. One possibility is to place assumptions on certain members of the signature
of the more abstract ASM which are “implemented” in the more concrete ASM. Another
kind of adaptation concerns rules. They can be replaced. New rules can be added. It is
possibly also necessary to adapt the signature of the given ASM making the definition of
the above F more involved.

A conservative extension is a special kind of refinement, where each run of B, which
only depends on A’s signature, can be transformed canonically into a run of A. Egon
Borger and colleagues work on the rigorous definition of this concept and they plan to
publish proofs for the conservative extensions presented in [BS98].

Comparing ASMs with our meta-programming approach, we first should state that
ASMs are beyond the scope of our target languages. A more interesting question is how
the kind of modularity and extensibility achieved by refinement can be compared with
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our results. ASMs are executable (under certain conditions), but note that the notion of
refinement only facilitates the proof of a certain relationship between ASMs. There is no
useful effective method so far to make a more abstract ASM more concrete. Thus, in a
narrow sense the ASM approach does not facilitate modular composition or performance of
an extension. It rather provides a proof technique to realize that one ASM is a refinement
/ conservative extension of another one. In our approach we are interested in effective
methods for program composition and adaptation. We are computing target programs.

4.4 Program development

4.4.1 Stepwise refinement

Much of the work on formal methods for the development of correct programs is based
on Dijkstra’s work on the weakest precondition calculus. Back, for example, developed a
refinement calculus [BvWO98| providing a unified framework for stepwise refinement, pro-
gram transformation and program synthesis for imperative programming. There are some
works on refinement of logic programs. [KT93, Trc93] is based on partial deduction (PD)
originating from partial evaluation in functional programming. The primary field of ap-
plication for PD is program optimization and specialization, but it turned out that it is
quite suitable for stepwise refinement based on a transformational approach. Most of the
following definitions and explanations are taken from [Trc93).

Definition 4.4.1
Let S and S’ be programs. S is correctly refined by S’, denoted by S ref S’ if S’ satisfies
any specification that S does, i.e. S sat R = S’ sat R for any R in the set of specifications.

¢

Here sat denotes the satisfaction relation. It follows from the definition that ref is a
preorder, i.e. ref is reflexive and transitive. Constructs for combining programs into larger
ones must be monotonic w.r.t. ref, for subprograms for example, a subprogram 7" in a
program S[T’] can always be replaced by its refining program 7.

Let us mention several operators for refinement in logic programming; refer to Sec-
tion A.9 for details. wunfold allows an atom in the body of a clause ¢ to be replaced by
a conjunction of atoms. fold is inverse to unfold. It abbreviates a conjunction of atoms.
prune and add delete or add a clause in a program. On clause level, thin and fatten delete
or add an atom in the body of a clause. restrict selects a subprogram.

However, the operators for refinement are neither intended nor sufficient to facilitate
meta-programming:

e There are no operators on the atom level (and at the term level either). A large set
of schemata, e.g. Replace, Left To Right, cannot be specified. What is needed are
basic operations for constructing and deconstructing programs.
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e Except for the simple application of the concept of a call-graph in restrict, no global
considerations are involved as for our reachability operators building the basis for
propagation schemata.

e The form of the operators unfold, fold, thin and fatten is not suitable for meta-
programming at all because writing a meta-program we cannot regard the actual
atoms of programs as assumed.

e Based on fatten, computations can be inserted, but again one would require total
knowledge of the variables of the rule under consideration. Transformation cannot
be stated here in a way abstracting from the actual program. Moreover, the insertion
of computations cannot be combined with changing the parameters of the original
premises as necessary for the insertion of precomputations, for example.

The obvious advantage of a stepwise refinement approach during program development
is the straightforward support for correctness of derivation. The operators preserve refine-
ment equivalence if certain applicability conditions are satisfied; refer to Section A.9 for
details. The operations are suitable for reasoning about refinements of programs and about
partial deduction. The actual set of operations is not useful for general program synthe-
sis, transformation and composition. Moreover, refinement equivalence is too restrictive in
several cases during program adaptation.

In general, refinement has been studied much more exhaustively for the imperative
paradigm [BvW98, Heh93]. There is certain direction in refinement called data refinement
or (data transformation [Heh93]) which possibly could be adopted for our framework to
characterize properties of certain program transformations in a systematic manner.

4.4.2 Stepwise enhancement

Stepwise enhancement [Lak89, SS94, JS94| developed by Sterling et al. is a program devel-
opment methodology. The methodology suggests to develop Prolog programs systemati-
cally from two classes of standard components. Skeletons are simple Prolog programs with
a well-understood control flow. Techniques are standard Prolog programming practices.

Example 4.4.1
This example is taken from [NS97]. The following two programs are skeletons for traversing
binary trees with values only at the leaf nodes.

The following program does a complete traversal of the tree.

is_tree(leaf(X)).
is_tree(tree(L, R)) :- is_tree(L), is_tree(R).

In contrast to that, the following program traverses a single branch of the tree.
branch(leaf (X)) .

branch(tree(L, R)) :- branch(L).
branch(tree(L, R)) :- branch(R).
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Note that the first program can be regarded as a type definition of trees. &

Standard examples for skeletons are traversals of recursive data structures. Techniques
capture basic Prolog programming practices, such as building a data structure of perform-
ing calculations in recursive code. A technique interleaves some additional computation
around the control flow of a skeleton. More syntactically, techniques may rename predi-
cates, add arguments to predicates, add goals to clauses and/or add clauses to programs.
Unlike skeletons, techniques are not programs but can be conceived as a family of operations
that can be applied to a program to produce a program. Obviously, this characterization
brings us very close to our meta-programming methodology.

Example 4.4.2
We will give two examples of applying the so-called calculate technique to the is_tree
predicate given in Example 4.4.1 (again adopted from [NS97]). The calculate technique
computes a value. An extra argument is added to the defining predicate of the skeleton for
the computed value and an extra goal for an arithmetic calculation is added to the body
of each recursive clause.

The following program computes the product of the value of the leaves of the tree. Note
the predicate is_tree has been renamed.

prod_leaves(leaf (X), X).
prod_leaves(tree(L, R), Z)
:— prod_leaves(L, X), prod_leaves(R, Y), Z is X * Y.

Similarly, the following program computes the sum of the value of the leaves of the
tree. The only difference is the choice of names and the extra goal.

sum_leaves(leaf(X), X).
sum_leaves(tree(L, R), Z)
:— sum_leaves(L, X), sum_leaves(R, Y), Z is X + Y.

¢

A technique applied to a skeleton is said to yield an enhancement. An enhancement
which preserves the computational behaviour of the skeleton is called an extension. Two en-
hancements of the same skeleton share computational behaviour and they can be combined
into a single program by composition. Obviously, we can also consider the combination of
two techniques.

We try to present a comparison of stepwise enhancement and our methodology based
on meta-programming;:

e Stepwise enhancement is dedicated to Prolog programming. Indeed, the kind of com-
putations and syntactical manipulations considered are really tuned towards Prolog.
Recently, Kirschbaum et al. [KMS96] discussed that stepwise enhancement is equally
applicable to other logic programming languages. Our approach provides a general
framework which can be instantiated for quite different specification formalisms.
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e Stepwise enhancement does not consider modes or types. The use of directional
types is a crucial factor in our approach. Types (sorts) are needed for the selection
of parameters, for example. Moreover, programs are required to be well-typed cor-
responding to a safety feature for program construction. Modes are needed for data
flow criteria. A transformation, for example, which should provide definitions for
undefined variables must use modes.

e The emphasis in stepwise enhancement is on the identification of useful skeletons and
techniques. Another issue is correctness of program construction [SJK93, JKS94],
which means that properties of components are retained in a composed program.
Here the notions of composition and extension as well as program maps are cen-
tral [Jai95, KSJ93]. In our work, the emphasis is on the actual calculus for meta-
programming, i.e. on the machinery to define techniques in the sense of stepwise
enhancement. Nevertheless, our operator suite attempts to capture programming
practices as well.

e We unbundle several roles of useful program transformations by our schemata for
parameterization, computation, etc. Thereby, we have a kind of a basis for deriving
useful techniques. Properties of transformations are analysed in some depth including
properties beyond the scope of the settings of stepwise enhancement, e.g. totality,
idempotence.

e The concept of composition (of enhancements) is similar in intent to our operation
for superimposition. However, there are some technical differences. First, following
our approach the same skeleton (including names) is assumed for both operands of
superimposition, whereas in stepwise enhancement, renaming is considered as part
of composition. Second, in our approach skeleton elements and computations are
strictly distinguished from each other arising from the origin in attribute grammars.
A more conceptional difference arises from the possibility in our approach to contract
parameters.

e The process of producing an enhancement (an extension), i.e. the the application
of a technique to a skeleton, is quite similar to the application of an (extending)
transformation to some rules. The extension and the skeleton can be related to each
other by a symbol mapping studied, for example, in [Jai95, KSJ93]. Our projections
are similar to the concept of symbol mappings.

e A concept like lifting (refer to Section 3.5) is not considered at all in stepwise en-
hancement because lifting is rather related to program composition.

4.4.3 Generic fragments and transformations

Generic fragments (or schemata, templates, cliches etc.) are used in program synthesis,
whereas generic transformations (or transformation schemata) are used in program trans-
formation. In both fields there are other tools than such schemata which are however
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beyond the scope of this work. For a survey on program transformation in logic pro-
gramming refer to [PP94]. Program schemata (refer to [Dev90] for an early reference,
refer e.g. to [FLO9T7] for some enumeration of recent work) have been introduced in logic
programming in the context of program synthesis [DL94] with the motivation of reusability.

r(X) = (Y) © isMinimal(X), [minimal]
solve(X) — (Y).

r(X) = (Y) - isNonminimal(X), [nonminimal
decompose(X) — (Z, X1, Xa2),
r(X1) = (Y1),
r(Xz) = (Ya),
compose(Z, Y1, Ys) —» Y.

Figure 4.10: A generic fragment for the divide-and-conquer schema

Consider, for example, the rules in Figure 4.10 defining the divide-and-conquer schema
as useful for logic programming. We refer to [Smi85], where the synthesis of divide-and-
conquer algorithms is considered in the field of functional programming. As far as meta-
programming is concerned, we can regard such a generic fragment ¢ as a function f; of the
following form:

f+ : Symbol* x Symbol* x Sort* — Rules

fi(defined, required, sorts) is intended to derive a concrete specification fragment from the
generic fragment, where defined are the actual symbols to be defined by the template (r
in Figure 4.10), required are the actual symbols required in the schema (isMinimal, solve,

. in Figure 4.10) and sorts enumerates the sorts to be used in the schema (X, Y, Z in
Figure 4.10). f; can be derived from ¢ by a simple transformation; refer to Section D.2 for
the function corresponding to Figure 4.10.

Consequently, program schemata can be represented as such functions, whereas pro-
gram transformation schemata can be regarded as parameterized meta-programs. In both
cases instantiation is simply functional application. Our meta-programming framework
and the actual operator suite provide a detailed framework for reusable and executable
descriptions of program (transformation) schemata.

4.4.4 Specification-building operators

Several approaches to modularity have been formalized in terms of operators on specifi-
cations. There are for example formal operators to model import and export constructs,
e.g. the operations union, intersection and encapsulation with a compositional semantics
supporting modularity in logic programming [Bro93, BMPT94].

In this subsection, we want to consider a sophisticated approach to modularity in
algebraic specification based on so-called specification-building operators [Wir86, ST88,
SST92, Wir94]. The following characterization has been taken from [SST92] to a great
extent.
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Algebraic specification is used to model (software) systems as algebras. The simplest
possible way to give a specification of a system is to present a (very long, unstructured
and hence unmanageable) list of axioms over a given signature. Thereby, the properties
can be described which have to be satisfied by the system. Specification languages allow
specifications to be built in a structured manner using a predefined set of specification-
building operations. Consequently, X-specifications are considered instead of Y-sentences.
A Y-specification SP is expected to determine a class [SP] € P(Alg(Y)) of X-algebras,
the models of SP. SP is consistent if [SP] # .

Let us mention some typical operators; refer to Section A.10 for formal details.

e impose ® On SP to impose (further) axioms ® on a specification SP,

e derive from SP by o and translate SP by o to apply signature morphisms in
various ways,

e _ U _and _ + _to combine two specifications,
e minimal SP ... to consider minimal algebras only,

e iso — close SP to take the closure under isomorphism.

At the semantic level, specification-building operations are functions mapping classes of
algebras to classes of algebras. Such operations may also be regarded as functions mapping
specifications to specifications, the operator impose, for example, syntactically merges two
sets of axioms.

We provide a comparison of the algebraic approach and our meta-programming ap-
proach to reusability. The arguments, which are raised here, apply accordingly to several
other operator suites, e.g. those in [Bro93, BMPT94]:

e The specification building operators support programming in the large. Sets of ax-
ioms and the associated class of algebras are the main subjects under consideration.
This is in contrast to our approach, as we can operate on any fragment of a spec-
ification, not only on rules but also on parameterized symbols and on parameters.
Higher-order functional programs are used to compute specifications, signatures and
fragments of them.

e Operators like derive and translate are abstract forms of well-established concepts
for modularity, mainly parameterization (with renaming involved).

e Several operators are only meaningful as far as the associated models are concerned.
They cannot be regarded as functions from sets of axioms to sets of axioms, e.g. the
operators iso — close and minimal.

e Indeed, the algebraic approach supposes model-theoretic operators (or in other words

semantics-oriented operators in [Bro93, BMPT94]), whereas we take a rather syntac-
tical approach, although we insist on certain preservation properties.






Chapter 5

Concluding remarks

First, the main achievements of the thesis are summarized in Section 5.1. Second, the
implementation of the framework and the operator suite for meta-programming is outlined
in Section 5.2. We also comment on first experiences with this implementation. Finally,
topics for future work are indicated in Section 5.3.

5.1 Achievements

The results of the thesis have been discussed in an abstract style in Section 1.3. In this
Section, we point out some particular contributions of our work reported in the thesis.

1. There are several suggestions for frameworks for meta-programming, e.g. the ap-
proach supported in the logic programming language Godel [HL94|. An important
contribution of our work is its generality and its high level of abstraction. We can deal
with reusability in attribute grammars and logic programming etc. in much the same
abstract way. Generality is achieved by the identification of some common target
language kernel; refer to Chapter 2. Abstraction is essentially achieved by different
layers of operators for meta-programming; refer to Figure 1.12.

2. A particular emphasis of our meta-programming approach is to create a fully-typed
framework, which is in contrast to several meta-level approaches in the Prolog context
and also in contrast to the AsFix approach [K1i94]—to mention an approach in the
context of algebraic specification. To take into consideration target types in meta-
programs obviously improves safety of meta-programming. More interestingly, we
have shown how types can effectively be exploited to control meta-programs, e.g. for
addressing parameter positions in target programs.

3. Actually, we are not only concerned with types, but also with modes. Modes are as
useful for safety of meta-programs and for the control of meta-programs as types are.
The usefulness of modes has been recognized in the attribute grammar community as
we can see in several works on related paradigm shifts such as Dueck’s and Cormack’s
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modular attribute grammars [DC90] and Lido [KW94]. On the other hand, modes
have been ignored in other related attempts, e.g. stepwise enhancement [Lak89, SS94,
JS94] in logic programming. Our schemata for computations and propagation heavily
rely on modes showing the general usefulness of them for other instances such as
natural semantics, logic programming and algebraic specification.

. Semantics preservation is an important notion for reasoning about program trans-

formation. We have indicated several other (and in some contexts more useful)
preservation properties of meta programs (Section 2.6), e.g. extending transforma-
tions or recovery of well-definedness and fragment selection properties and others
for target programs (Section 2.3). In contrast to other attempts such as stepwise
refinement [BvW98, KT93, Trc93], we compiled an operator suite suitable for rather
meta-programming than formal reasoning.

Program schemata and program transformation schemata have been extensively in-
vestigated, for example, in the field of logic programming; refer e.g. to the surveys on
program synthesis [DL94] and program transformation [PP94] in logic programming
and the LOPSTR proceedings [Fuc97, Gal97, Pro96]. Our suite “unbundles” roles
which are used in program transformation aiming, for example, at optimization, pro-
gram refinement, program composition, program synthesis and programming tech-
niques used for example in stepwise enhancement.

As a consequence of generality and abstraction, we can provide a reconstruction of
existing attempts. Concepts introduced for one target language, can be adopted for
other languages. First, such a reconstruction provides an abstract rigorous definition
of the concept. Second, it may drastically improve the pragmatics of target languages,
where the extracted concept has not been considered so far. We considered, for
example, the reconstruction of remote access specific to attribute grammars, stepwise
enhancement specific to logic programming. Now these concepts can be applied in
natural semantics and algebraic specification as well.

. There are some unique schemata for transformation and composition:

e superimposition where contraction is involved; refer to Example 3.3.4;

e left-to-right propagation where a given propagation is extended in the sense
that the previous data flow is “rescheduled”; refer to the introductory example
of Subsection 1.2.2;

simultaneous renaming of sorts of parameter positions; refer to Subsection 3.2.2;
interpolation of computational elements; refer to §3.4.3.5;

hiding symbols for the incremental construction of premises; refer to §3.2.4.3;

lifting as introduced as higher-order composition on transformations and rules;
refer to Section 3.5.
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5.2 Implementation

The general framework from Chapter 2 instantiated for natural semantics and GSFs has
been implemented in AAA [HLR97, LRH96, RL93, Rie92]. A superset of the operator
suite presented in Chapter 3 has been specified in the functional calculus provided by
the implementation of the instantiated framework. Thereby, we can exploit the meta-
programming approach for formal specification—especially language definition—in the
specification framework of AAA.

Interpreter for modular meta-programs

Analyser

+ Type- Evaluator Backend
Expander checker
/

Datatypes for
meta-programming

Module system

Meta Meta Target Target
IIIIIIII IIIIIIII

Figure 5.1: Interpretation of modular meta-programs in AAA

Figure 5.1 shows the overall structure of the implementation. A meta-program MP
is interpreted as follows. First, MP is analysed to obtain an intermediate representation.
MP possibly refers to target-level modules I/ or auxiliary meta-level modules Aete,
refer to Subsection 2.5.5 for modular meta-programming. These modules are obtained
from the AAA module system and expanded in the intermediate representation. A natural
semantics is used to check static semantics of the intermediate representation. Note that
a meta-program can be considered as a functional program. Thus, there are no special
problems with type checking. If type checking is successful, the actual interpretation or
evaluation is performed which is specified by a recursive function definition in the style
of denotational semantics. Again, the evaluator is specified in a standard way as com-
mon for the semantics of a functional programming language. The evaluator makes use
of an ADT for the meta-programming data types introduced in Section 2.1. The ADT
is obtained by all the axioms and inference rules shown in Chapter 2 including them for
special features related to the instances natural semantics and GSFs. A successful evalu-
ation of MP returns the abstract representation of a target program which is passed to
a backend as common for AAA specification formalisms. The backend writes the target
program back to the module systems, keeps track of the dependencies between modules
in the module system to support make features, pretty-prints type information and target
code and generates executable Prolog code from the target program according to AAA’s
implementation strategy.
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The current implementation has some shortcomings we should comment on.

1. The meta-programming interpreter is very slow. Doing a composition like the lan-
guage composition in Section D.1 takes several minutes on a SUN Ultra 5. The main
reason for that is that the interpreter is specified in AAA’s specification framework
and AAA’s implementation strategy is useful for prototyping but not for efficient
language implementation. Since the entire operator suite is implemented in the in-
terpreted calculus, huge environments holding all the operator definitions are passed
around during interpretation. That results in an unacceptable access efficiency due
to the naive environment implementation. The efficiency of interpretation could be
improved drastically by an implementation of the functional calculus based on a state
of the art implementation of a functional programming language like SML or Haskell.

2. There are some conflicts between the actual AAA specification framework and the
ideal meta-programming framework developed in Chapter 2. There are for example
some AAA constructs not covered by the implemented meta-programming frame-
work. There are different representations used in the extended AAA system. E.g.
GSFs and types have been represented in another way in the previous system com-
pared to what is sensible for meta-programming. Altogether, the actual AAA system
should be reconstructed to support meta-programming in a clean way without re-
dundancy so that an orthogonal specification framework is achieved.

3. There is no support for finding type errors and debugging at the meta-level.

4. The current implementation of the framework is monolithic in the sense that ac-
tually the instance of the framework is specified, i.e. the basic framework and the
instantiation is not separated from each other. We would like approach to a modular
approach to instantiation.

In spite of these limitations, we can conclude some positive remarks on the actual
integration of AAA and our meta-programming approach. The expressive power of meta-
programming allows us to decompose, compose and adapt specifications in many ways
which were not possible before in AAA. We can go strictly beyond the scope of modular
specification as supported by AAA’s specification formalism PRA [HLR97, LRH96]. The
modular language definition discussed in Section D.1, for example, requires the reusable
specification of semantic aspects, the composition technique lifting and structural adap-
tations. There is no other system to the best of our knowledge which supports such a
modular definition.

5.3 Future work

Further areas should be investigated in future.

1. We have tried to outline possible notions of preservation and other properties. We
should search for further properties and we should try to develop a more complete
programming methodology. The relation between the properties and the real pro-
gramming practice should be analysed in more detail. An advantage of our approach
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to reuse is that the meta-programs are executable. A weakness is that many prop-
erties of operands and results of transformations can only be ensured by separate
proofs. We would like to cover more properties, in the meta language itself in the
sense of a kind of type checking.

2. It is current limitation of the operator suite that the computation and propagation
schemata are only applicable to instances with a well-definedness notion meeting L-
attribution. In general terms, the state of the operator suite concerning completeness,
orthogonality and simplicity can certainly be improved.

3. The meta-programming approach together with the actual operator suite requires
case studies. We would like to demonstrate that the additional expressive power
gained by meta-programming really improves reusability in a practical context. I
am working together with coauthors N.v. Bac and G. Riedewald on a language
construction set [LRBS]|, that is to say a library with specification fragments for
language design supporting the derivation of prototype interpreters.

4. To actually write meta-programs is only one possible application of our work. For
many applications, a program manipulation system can be more effective. The chal-
lenge of a work on providing such tool support arises from the fact that in exist-
ing systems like Translog [Bru95] and Spes [ABFQ92] essentially fold /unfold-based
strategies are considered. A program manipulation system should not only support
the application of transformation rules and strategies. It should also guide the user
in showing dependencies and conflicts or incomplete aspects of a target program.
We possibly can adopt some concepts from Attali’s, Pascual’s and Roudet’s environ-
ment for program transformation based on the rule-based language TrfL for program
transformations [APR97].

5. We should investigate concrete specification frameworks and systems in order to find
out if they are useful for the implementation of our meta-programming approach
and if they could take advantage from some concepts supplied by the framework
and the operator suite. We regard compiler compilers such as Cocktail [GE90] or
FNC-2 [JP91, JP90, Par88, JPJT90] and specification environments such as Centaur
[BCD*88] or ASF+SDF [Kli93] as some possible candidates.

6. The general framework is tuned towards first-order specification formalism with a
monomorphic type system. Due to the popularity of polymorphic higher-order func-
tional programming, e.g. Haskell [Has97, Tho96] and SML [MTH90], we would like
to see how a similar approach can be taken for such programming languages. Then
we need to model, for example, the following notions: anonymous functions, poly-
morphism, curried functions, type construction. Type constructors and associated
combinators tend to be vital parts of functional programs. Therefore, a correspond-
ing meta-programming approach must address type constructors which is out of the
scope of the current framework.






Appendix A

Background

A.1 Domain notation

We use the following domain constructors:

e Boolean = {True, False} |,
e _ ® _for products,

e _ @ _for coalesced sums,
e _* for sequences,

e _ — _ for function spaces,

P(-) for power sets,
e 7 for the maybe construction, i.e. D? = D & {7} .

7P denotes the i-th projection in D = D1 ® ---® D,,. For d € D = D™, 7P (d) evaluates
to the element indexed by 7 in d. IniD denotes the ¢-th injection, OutiD denotes the ¢-th
projection, Is” denotes the test for D; in D = D, @---@®D,,. The i in 7°, In”, Out?, Is”
is replaced by D; if the D; are distinguishable. The D in superscripts is omitted if it can
be derived from the context. Sometimes we also use another notation for constructing sum
domains which facilitates pattern matching. D = injection,(D;) & - - - & injection,,(D,,),
where the injection; denote user-defined names for the injections.

A.2 Inference rules

Rules of a natural semantics [Kah87] define a logic and are used as proof-theoretic tool
to prove theorems within that logic, building proof trees in a recursive top-down strategy
applying axioms and rules and involving unification. This process is non-deterministic, i.e.
there can be several proof trees for the same fact.

A prominent example of an executable specification formalism for natural semantics
is Typol [Des88] as integrated in the Centaur system [BCD*88, JRG92]. One option to
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execute Typol is provided by a translation of the inference rules into Prolog rules taking
advantage of the similarity of inference rules and definite clauses.

The style of natural semantics is very suitable for defining static semantics (or type
checking) and dynamic semantics of languages. The general idea of a semantic definition
in natural semantics is to provide axioms and rules characterizing semantic properties of
language constructs. Thus, a semantic definition coincides with a logic and reasoning about
the language means proving theorems within that logic. Proofs are done using structural
induction on abstract syntax patterns. The initial goal to prove contains a complete
abstract syntax term. The corresponding proof tree can be bigger than the given abstract
syntax term and even infinite. That is the reason for natural semantics to be suitable for
the description of dynamic semantics.

Let us consider the Typol formalism slightly more in detail. Inference rules indicate how
a conclusion Iy F T} : Sy may be deduced from certain premises I; = 1; : S; fori=1,...,n.
The I; are called inherited positions, the T} are abstract syntax patterns and the S; are
called synthesized positions. A Typol rule is of the following form:

[1|—T1:51,...,[n|—Tn:Sn
Iol_TOISO

Besides premises, the numerator can also contain predicates for auxiliary computations of
the form:

pred(cq, ..., o0 = By ..., Bm)

Inherited and synthesized positions are (tuples of) variables. The set of input positions
of a rule is composed from Iy, Sy, ..., S,, B1, ..., Bm, whereas the complementary set
corresponds to the set of output positions. Roughly, input positions are computed by the
outer context and they are used in the rule to compute the output positions which are then
transmitted to the outer context.

For specifying any kind of judgements in this thesis we use a notational variant of
inference rules similar to RML [Pet95, Pet94] suggested for natural semantics specifications.

e Alphanumeric identifiers are used to name propositions. Subscripts and superscripts
are not parameters, but they qualify the name of the proposition (for readability or
to avoid overloading).

e Arguments and results are distinguished. If there are any results, they are separated
from the arguments by —.

e Premises are read from left to right. Actually, arguments of a premise are required
to occur somewhere before on a result position of another premise or as an argument
of the conclusion.

We do not make use of unknowns.
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A.3 Grammars of Syntactical Functions

GSFs (Grammars of Syntactical Functions, [Rie91, RMDS83, Rie72, Rie79]) are a kind of
attribute grammars closely related to logic programs, and logical grammars. The GSF
formalism has been derived from two-level grammars during 1971-1972 with the aim to
obtain an executable and more readable form of two-level grammars. GSF's are also similar
to the more recent formalism RAG [CD84, DM85, DM93].

A GSF consists of

e a GSF schema, i.e. a set of GSF rules, that is to say a parameterized context-free
grammar with relational formulae associated with the rules and

e o GSF interpretation providing carriers for the parameters and interpretations for
relational symbols in the relational formulae.

Concerning formal language definition, a GSF schema defines the syntax and the rough
structure of the semantics of a language. The GSF interpretation refines the GSF schema.

Definition A.3.1

A GSF schema is a tuple GS = (B, R,V,a, PP), where B = (N,T, P,s) is a reduced
context-free grammar (N set of nonterminals, T set of terminals, P set of production rules,
s € N start symbol)—the basic grammar of the GSF—, R and V are finite sets of relational
symbols and wvariables, respectively. PP is a finite set of production rule patterns, each of
the form

Jo(Prots - Pryao)
FilPrays - Proar)s s Jn(Prats -« o Proa(in)s (A.1)
hl(Ph1,17 R Ph1,a(h1))7 R hm(th,la SR th,a(h,m))'

where fo € N, f1,...,fn € NUT, hy,...,hy € R,
Pio1y.o oy Phyathn) €V and
fo—= fi... fa€P.

N, T and R are pairwise disjoint. The arity o maps each symbol (element of NUTUR)
into Ny (number of parameters of a function). Each s(Py, ..., Py)) occurring on the left-
hand side of some production rule pattern is a start element of the GSF. &

We also use the term GSF rule instead of production rule pattern. Variables are the
only kind of parameters so far. It is possible to extend the basic formalism to cope with
constants, tupels, terms and sequences. We instrument a special notation, where the
relational symbols are marked by the symbol &. Thereby, special declarations of grammar
symbols and relational symbols are not required. GSF rules are usually labelled by a tag.

Example A.3.1
Consider the following GSF rules modelling syntax, static semantics and AST construction
for sequences of assignments as in an imperative programming language.
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statements(ST,STM) . statement(ST,STMy), [concat]
statements(ST,STMy),
& concat(STM,STMg, STM).

statements(ST,STM) . & skip(STM). [skip]

statement(ST,STM) [ identifier(ID), [assign]
& lookup(ST,ID, Trus),
expression(ST, T rus, EXP),

& assignable(T s, Trus),
& assign(ID, EXP,STM).

statements, statement, expression € N, identifier € T, concat, skip, lookup, assignable,
assign € R, ST, STM, STMy, STMs, T us, Trus, ID, EXP € V. The parameters concern
symbol table propagation (ST), types of identifiers and expressions (T .gs, Trus), termi-
nal attribution for identifiers (ID), abstract representations of expressions and statements
(STM, STM;, STM,, EXP). The relational formula & lookup(ST, ID, T1ps) models a sym-
bol table lookup to retrieve the type associated with the variable identifier. The relational
formula & assignable(T pus, Truys) models a test if types of LHS and RHS of an assignment
are compatible. All the other relational formulae are concerned with the construction of
ASTs. &

In many applications it is comfortable to distinguish different groups of relational sym-
bols. Thus, we use a form &, to prefix relational formulae. p can be regarded as a kind of
qualifier in the sense of a module name, e.g. in the above example it makes sense to con-
sider one group of relational formulae related to static semantics, whereas another group
concerns constructions of ASTs.

A GSF interpretation defines the domains of the parameter positions and assigns rela-
tions between these domains to the relational symbols.

Definition A.3.2
Let GS = (B, R,V,a, PP) be a GSF schema. A GSF interpretation for GS is a tuple
IP = (D, 0,, v, p), where

e D is a family of domains,

e J, is a function assigning to the i-th parameter position of a symbol f a domain
6p(f7 Z) S DJ

dy is a function assigning to each variable v € V' a domain 4y (v) € D,

e p is a function associating with each element f € R an «(f)-ary relation p(f) C

Op(f, 1) x oo x 0, (f, a(f)).

For all production rule patterns p € PP and all elements f(P,..., Py)) occurring in p
with Py, ..., Py € V the following conditions have to be satisfied for i = 1,..., a(f):
P eV = ov(P) =06,(f,1). ¢
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Example A.3.2

We give an interpretation for the above GSF schema. ST is the domain of symbol tables,
T is the domain of types (i.e. type expressions), Z is the domain of identifiers. &, C are
the domains of abstract representations of expressions and statements respectively. The
following tables define §, and dy:

7 o) [0 502 503 v W)
statements 2 ST C ST ST
statement 2 ST C STM C
expression 3 ST T & STM, C
identifier 1 T STM,y C
skip 1 C Trus T
concat 3 C C C TrHS T
lookup 3 ST 7z T ID 7
assignable 2 T T EXP &
assign 3 7 & C

Let us assume the following definition of the domain of symbol tables.
ST=I—-T

The relations associated with the relational symbols are defined as follows:

plskip) = {ship}
p(concat) = {(c1,c2,¢3)|ci €C, fori =1,2,3,c3 = concat(cy,c2)}
p(lookup) {(st,i,t)|st e ST,i€L,t € T,t=st(i)}
p(assignable) = {(t,t)|t € T}
p(assign) = {(i,e,c)li € Z,e € E,c €C,c = assign(i,e)}

skip, concat and assign are interpreted as term constructors in the sense of a term algebra.
Thus, the domain C is regarded as a domain of terms, where skip, concat and assign are
the corresponding term constructors. The interpretation for lookup is suitable to lookup
the type of a variable in a symbol table. The interpretation of assignable is fixed in a way
that types of the LHS and the RHS in an assignment must be equal. &

Definition A.3.3
A GSF is a pair G = (GS, IP), where GS is a GSF schema and IP is a GSF interpretation
for GS. &

To generate a word by means of context-free derivation, first the production rule pat-
terns have to be turned into context-free production rules. Each variable occurring in a
production rule pattern is consistently substituted by a value from its corresponding do-
main. This substitution process is controlled by the relations occurring in the production
rule pattern.
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Definition A.3.4
Let G = (GS, IP) be a GSF with GS = (B, R,V,«, PP) and IP = (D,ép,év,p>.

I(f) = {f(dla---vda(f)”di € 6p(f77:)7i - 17"'7a(f)}

is called the set of instances of the symbol f1.

Z(A) = |J Z(f) where ACNUTUR
feA

Fy — Fy...F, is a context-free production rule derived from p € PP of form (A.1) if

fO(dfo,lv Sy dfo,a(fo)) :
Jildp s dpa(r))s - faldpuas oo s dfa(fa))s (A.2)
hl (dhl,la ey dhl,a(hl))a ey h’m(dhm,b ey dhm,a(hm))-

e is the result of the consistent substitution of each variable v € V' occurring in p by a
value from dy (v),

° <dh¢,17 ceey dhi,a(hi)> c ,O(hz) for ¢ = 1, e, and

o [,...,F, are the instances fo(dfy1,---,dpaf0))s-- > fuldp 1, dp, a(r)) of the
symbols fo, ..., fa.

Z.s(p) is the set of context-free production rules derived from p € PP; Z.;(PP) is the set
of context-free production rules derived from the production rule patterns in PP. &

Definition A.3.5
Let G = (GS,IP) be a GSF with GS = (B,R,V,«a, PP) and IP = (D,},,dy,p). The
binary relation = on Z(N UT)* is defined as follows:

uwFw = uww <= F —vely(PP)

where uw € Z(N UT)*. The relation = is the transitive closure of =, =* is the reflexive
closure of =". Let be s the start symbol of the basic grammar of GS, t* € Z(T)*. t* is a
word generated by G, if

IF, € I(s) : Fy =" t".

L(G) denotes the language generated by the GSF G. It contains all the words generated
by G. %

Note that L(G) C L(B), i.e. the language generated by the GSF is usually some subset
of the language generated by the underlying context-free grammar.

Usually, there is an infinite number of derived production rule patterns. Thus, for
the analysis of a given string of terminal symbols it is impractical to use a context-free
parsing technique with the derived context-free production rules. There are two general

In the case of a(f) = 0 the parentheses are omitted, thus Z(f) = {f}



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 157

approaches to solve this problem. The first approach parses the program according to
the basic context-free grammar and then calculates a variable substitution satisfying all
the corresponding relations. The second approach incorporates the variable substitution
and the evaluation of the relations into the parsing process based on a directed evaluation
schema. Thereby, semantics-directed parsing (or parsing directed by attribute values) can
be modelled.

The second approach is more general because in a technical sense it permits parsing to
depend on attribute values. The approach is formalized in the sequel. We start by refining
the definition of a GSF schema by dividing parameter positions into input and output
positions and requiring a certain data flow criterion.

Definition A.3.6

Let GS = (B, R,V, a, PP) be a GSF schema, (3 is a function defining directions (also called
modes) for GS, if f(f,i) € {{,1} for fe (NUTUR),i=1,...,a(f). If 3(f,7) =, i is
an input position of f, whereas for S(f,i) =7, i is an output position. &

In the Knuthian terminology, input and output positions of terminals and nonterminals
can be called inherited and synthesized positions respectively.

Definition A.3.7
Let GS = (B, R,V,«, PP) be a GSF schema, (3 is a function defining directions for GS.
Suppose that for each f € (N UT U R), the partitioning of parameter positions by 3 is
written as follows: i(f,1), ..., i(f,iy) are the input positions of f, whereas o(f,1), ...,
o(f, o) are the output positions of f.

Each occurrence of a variable in a production rule pattern r of the form (A.1) is classified
either as applied or defining occurrence. The sets A, of applied occurrences and D, of
defining occurrences are defined as follows:

n

A = (UPritons - Proitriois) 1) YU APro0(fo1)s -+ > Plosolfoos,) }
k=1

Dr = {Pfo,i(fo,l)J Tt Pfo’i(fo’ifo)} U ( U {Pfkro(fk71)7 Tt Pfkao(fkaofk)})
k=1

&

Applied occurrences are expected to be “computed” in terms of defining positions.
These terms are used in much the same way in extended attribute grammars [WMT77]. In
attribute grammars, notions like used and defined attribute occurrences are defined. These
terms are tuned towards named attributes rather than a position-oriented framework as in
our case.

Definition A.3.8
Let GS = (B, R,V,«, PP) be a GSF schema, (3 is a function defining directions for GS.
GS is a (-directed GSF schema, if the following property holds A, C D,, i.e. each variable



158 APPENDIX A. BACKGROUND

occurring on an input position in the rule body or an output position in the rule head
occurs on an output position in the rule body or an input position in the rule head. &

The notion of a f-directed GSF schema can be used for a deterministic evaluation
strategy in the following manner. If the interpretations of relational symbols allow out-
put positions to be computed effectively from the input positions, the application of the
interpretations is delayed until all input positions have been computed.

Example A.3.3
The GSF schema from Example A.3.1 is a [-directed GSF schema with regard to the
following f3.

f B, B(f,2) B(f,3) | ilf1), | o(f,1),
Z(f,Zf) O(f,Of)

statements d T 1 2
statement 4 T 1 2
expression d T 0 1 2,3
identifier T 1
lookup + + T 1,2
assignable 4 4 1,2
skip T 1
concat + + 0 1,2 3
assign d d 0 1,2 3

&

The following definition captures what is meant by “output positions of a parameterized
relational symbol can effectively be computed from the input positions by the interpretation
of the relational symbol”.

Definition A.3.9

A GSF G = (GS,IP) is (-directed GSF, if GS is a $-GSF schema, and the following
property holds for the GSF interpretation IP: For each r € R, p(r) can be described by a
p~ (r) as follows:

Vdf € 0p(r,i(r,1)),. .., dzt € 0p(ryi(r,i,)) -
p (r){di, ..., dL) = (dl,,....dl, ), (db,...,d},,),. .. such that

(diy ... o) € p(r) with di1y = di, ..., digrs,) = df. &
3k dogry = diy, - - dofron) = d,

¢

An even more restricted variant of p should be mentioned, that is to say the output positions
of a parameterized relational symbol are uniquely defined for given input parameters. That
is similar to the interpretation of semantic function symbols in an ordinary AG by functions.
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This kind of GSF schemata has been suggested in [RL89] as functional GSFs. A slightly
more general variant of p requires a finite set of possible output substitutions. This form of
GSF's has been suggested in [Har97] (executable GSFs). The above definition copes with
an arbitrary number of output substitutions.

Instead of defining (3, a notational variant for production rule patterns is suggested.
Assuming for each f € (N UT U R) a (f) such that 5(f,1) =4, ..., B(f,v(f)) =],
B(f,v(f)+1) =1, ..., B(f,a(f)) =T, then the v(f) and thereby S can be obtained if the
production rule patterns are of the following form:

fo(Prots -+ Proatso)) = (Proatso)+1s - - > Proa(so) -
fl(Pfhla R Pflﬁ(fl)) - (Pf1,7(f1)+17 T Pfl,a(fl)), R (A.3)
Fn(Prots s Proar) = (Proatgo+ts -5 Proa);
hfl(Phl,l; R Ph1,7(h1)) — (Phl,fy(hl)_H, cey Phl,a(hl)); RN
hm(th,la cee th,"/(hm)) — (th,'y(hm)+17 cee th,a(hm))-

Thus, the — is used to separate input and output positions.

Example A.3.4
Example A.3.1 is rewritten in the arrow notation. Moreover, we also use different prefixes
to point out the different groups of relational symbols.

statements(ST) — (STM) [ statement(ST) — (STMy), [concat]
statements(ST) — (STMy),
& st concat(STMy,STMy) — (STM).

statements(ST) — (STM) I &qs skip — (STM). [skip]

statement(ST) — (STM) © identifier — (ID), [assign]
expression(ST) — (T rus, EXP),
& static lOOkUp(ST, ID) - (TLHS)a
& static assignable(TLus, Trus),
& g5t assign(ID, EXP) — (STM).
¢

There are various choices for restricting the data flow according to evaluation strategies.
A simple example are L-attributed AGs, where attibute evaluation coincides with a single
left-ro-right traversal of the syntax tree.

Definition A.3.10

Let GS = (B, R,V,«, PP) be a GSF schema, (3 is a function defining directions for GS.
GS is L-attributed, if there is some permutation gy, ..., g, ¢ =n+mof fi, ..., fn, h1,
.., hy, such that the relative order of fi, ..., f, is preserved and the following properties

hold:
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s—1
{Pgs,i(gs,l)v ) Pgs,i(gs,igs)} c U {P.q;c,O(.kaJ)7 T ng7o(gk’09k)} where s =1,...,9
k=1
U A Ppositsont)s - - > Prositforizg) }
q
{Pf070(f0:1)7 sty Pvao(anofO)} g U {ngyo(gka1)7 Tt ng”o(gk’ogk)}
k=1

U A Prhitforn)s - -+ > Prositfoisy)}

¢

Using L-attributed GSF schemata, another notation of GSF rules making L-attribution
more explicit is straightforward. Parameterized grammar symbols and relational symbols
are no longer grouped, but parameterized relational symbols are inserted in such positions
that a proper permutation in the sense of Definition A.3.10 is made explicit. Such GSF
schemata are call-correct in similarity to call-correctness of logic programs with modes
(w.r.t. the simple Prolog computation rule for example) [Boy96a]. A formal definition is
omitted. The data-flow in a call-correct rule is visualized in Figure A.1.

4 Y ) CTY
o) = () sl ) = () s ) = )y e sl ) = ()
N J

Figure A.1: Dependencies from the left to the right

Besides directions, the usability of types will be discussed below. So far typing is only
considered at the level of the GSF interpretation. Parameter positions and variables are
associated with domains. We can also refine the notion of a GSF schema to cope with
types, e.g. many-sorted types.

Definition A.3.11

A many-sorted GSF schema is a tuple GS = (B, R,V, D, 1,0, PP), where D is a set of
sorts (also called names of domains), the function 7 : (N UT U R) — D* associates a
type (also called profile) with every function name, the function o : V' — D associates
a sort (also called type) with every parameter, (B, R,V,«, PP) is a a GSF schema such
that a(f) = |7(f)| for all f € (NUT U R), for all p € PP of form (A.1), for all f €
{fos f1, -, fas b1, ..., by} the following soundness condition must be satisfied:

7(f) = (o(Prp),- -, 0(Prap)))
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GSF interpretations should be restricted for many-sorted GSF schemata in the same
way as X-algebras are certain algebras satisfying 3. We omit the corresponding definition.

Obviously, types and directions may be combined. Other concepts can be integrated
with the basic GSF formalism as well. The GS specification formalism [LRH96] of AAA,
for example, supports a combination of many-sorted types, directions, tagged rules and
optional prefixes (qualifier) for relational formulae, constants and terms as further forms of
parameters and predefined relational symbols for the support of basic data types. There are
further possible extensions concerning overloading, polymorphism or higher-order features.

From a practical point of view it is not so convenient to declare explicitly profiles of
symbols and sorts of variables (functions 7 and o). Especially, it can be decided if a suitable
o exists for a given 7. On the other hand, we can also assume a kind of naming discipline
for variables, where the stems of the variables are supposed to represent sorts. Actually,
this kind of discipline is assumed in the specification framework of AAA. Thus, neither 7
nor o need to be defined explicitly.

Example A.3.5
Let us derive the signature associated with the directed GSF schema in Example A.3.4.
We use the stems of the variables as sorts.

statements : ST — STM
statement : ST — STM
expression : ST — T x EXP
identifier : — ID
&ast skip : — STM
& a5t concat : STM x STM — STM
& static lookup : ST XxID—T
&static assignable @ T x T
&ast assign : ID x EXP — STM

&

To conclude the presentation of the GSF formalism, we want to reconstruct below a
famous example of Knuth’s paper on Attribute Grammars [Knu68]. The example concerns
the computation of the decimal value of binary numbers.

Example A.3.6

The underlying context-free grammar of the below GSF schema describes binary numbers
l1.l5, i.e. [; and [y are sequences of 0’s and 1’s. The attribution models the computation of
the (decimal) value of a binary number. Attributes of the sort VAL are computed as the
value of (a part of) a binary number. Attributes of the sort LEN accumulate the length
of the parts [; and [. Attributes of the sort SCALFE are inherited to point out the valency
of a position. There are the following GSF rules. Note that the same example is shown in
some standard notation in Example A.3.7.
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z— (VAL) . I(SCALE,) — (LENy, VALy),

“wn

Z(SCALEQ) — (LENQ, VALQ),
& add(VALy, VALy) — (VAL),
& zerogcarp — (SCALEL),

& neg(LEN 2)

z— (VAL) . I(SCALE) — (LEN, VAL),
& ZerOSCALE — (SCALE)

I(SCALE) — (LEN', VALy)

I(SCALE) — (LEN, VAL)

b(SCALE) — (VAL) . “17,

I(SCALE') — (LEN, VAL,),
b(SCALE) — (VALy),

& add(VALy, VALy) — (VAL),

& inCLEN(LEN) — (LEN’),

& incSCALE(SCALE) — (SCALE').

b(SCALE) — (VAL),
& one — (LEN).

& power(SCALE) — (VAL).

b(SCALE) — (VAL) : “0,

& zeroyap — (VAL).

The GSF interpretation can be described as follows. First, we associate the sorts with

some suitable domains:

VAL
LEN
SCALE

Second, the relational symbols are associated with suitable relations:

(s,

= Q (rational numbers)
= M (natural numbers including zero)

= Z (integer numbers)

(v1,v2,v3) € add < vz =v)+ Vo
s € zeroscarg < s=0
(I,s) eneg & s=—I
(LI €incrpy & I'=1+1
s'y €incscare & s'=s+1
l€one & [ =
(s,v) € power < v=2°
VE zeroya, & v =

BACKGROUND

[p1]

[p2]

[ps]

[p4]

[ps]

[p6]
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Example A.3.7
The below AG specification developed in the common AG notation is intended to be
equivalent to the GSF from Example A.3.6.

[pl] : Z—)ll.lQ
I.SCALE = 0
ZQSCALE = —lgLEN
[pQ] Doz
z. VAL = [1.VAL
I.SCALE := 0
[ps] = o=l b
lo. VAL = ;. VAL+b.VAL
lo.LEN = [.LEN +1
l,.SCALE := 1y.SCALE +1
b.SCALE := [y.SCALE
[p4] =D
[.VAL = b. VAL
[.LEN = 0
b.SCALE := [.SCALE
[p5] : b—1
b.VAL := 20-SCALE
[pﬁ] : b—>0
b.VAL = 0

A.4 Object-oriented class systems

We establish some basic notions for dealing with class hierarchies and inheritance. These
notions are needed for object-oriented attribute grammars. B — A reads as A is a subclass
of B or B is asuperclass of A. (C,—) denotes a class system, where C is a set of classes. —T
denotes the transitive closure of —, whereas —* denotes the reflexive, transitive closure of
—. C' =71 Areads as A is a descendant class of C' or C' is an ancestor class of A.

(C,—) is a cycle-free class system if A —T A holds for no A. Without any further re-
strictions, multiple inheritance (MI) is captured. Single inheritance (SI) puts the following
restriction on the class system: B — A = AC # B with C' — A, i.e. — corresponds to a
forest.

A.5 Object-oriented context-free grammars

We define various forms of object-oriented context-free grammars [Kos91].
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Definition A.5.1

Let G be a CFG, i.e. a quadrupel (N, T,s, P). N is the set of nonterminals, whereas T is
the set of terminals. N and 7" are finite sets such NUT = (). s € N is the start symbol of
G. P is a finite set of context-free productions.

1. A CFG is pseudo-reduced, if for all nonterminals A either s =* uAv =* w, or
A =" B and s =* uBv =* w, where u,v € (’UN)* and w € T*.

2. A pseudo-reduced, cycle-free CFG is MI-structured, if for each A € N (1) or (2)
holds:

(1) {pe P |p=(A—vforsomev}| =1and (A—v) € Pimpliesv e (TTUN)*
(2) (A—v) € Pimpliesve N

3. An MI-structured CFG is SI-structured, if (A — B) € P and (C' — B) € P implies
A=C.

4. An MI(SI)-structured CFG is strongly MI(SI)-structured if it is reduced.

Example A.5.1
The following rules are part of a CFG for the syntax of a simple imperative language.

Statement — Identifier “:=7" Expression
Statement —  Identifier “(” Ezpression“)”
Statement —  “While” Ezpression “Do” Statement

To obey the above mentioned properties for context-free grammars to be sensible from
the object-oriented point of view, the rules have to be transformed as follows:

Statement —  AssignStatement
Statement —  ProcedureCall
Statement —  WhileStatement
AssignStatement —  Identifier “:=7 FExpression
ProcedureCall —  Identifier “(” Exzpression“)”
WhileStatement —  “While” Expression “Do” Statement
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A.6 Object-oriented attribute grammars

Here we want to present some examples of object-oriented AGs. The computation of some
forms of expressions serve as a running example.

Example A.6.1
The computation of expressions is specified in the Ag notation of Cocktail.

Ezpr = [Value : INTEGER] {Value := 0}

<

Add = Lop: Ezpr “4+7 Rop : Ezpr {Value := Lop : Value + Rop : Value}.
Sub = Lop: Ezpr “—" Rop : Ezpr {Value := Lop : Value — Rop : Value}.
Const = Integer {Value := Integer : Value}.

>.
Integer : [Value : INTEGER].

The CFG is Sl-structured due to the nested notation of subclasses. Attribute dec-
larations are enclosed in square brackets (the role of either an ancestral or synthesized
attribute is derived from the context), whereas semantic rules are enclosed in braces. For
completeness, the underlying CFG is shown:

Ezpr — Add | Sub | Const

Add —  FExpr “+7 Ezpr
Sub —  Ezpr “ =7 Expr
Const — Integer

The use of attribute inheritance is obvious. The synthesized attribute Value is declared
for Ezpr, only. It is inherited to Add, Sub, Const. That is not an impressive result because
these nonterminals have been introduced to adhere to the style of object-oriented context-
free grammar. Inheritance of semantic rules is shown only in the sense of a pedagogical
example: The computed value of an expression is 0 by default. This definition has to be
overridden in all concrete subclasses. &

It is essential for object-orientation in CFGs to distinguish nonterminals defined by
chain productions and nonterminals defined by a structural specification. For completeness,
we mention the Mjglner/Orm terminology for class definitions using a finer granularity:

e Abstract classes correspond to superclass nonterminals.
e Structured classes correspond to nonterminals with a structural specification.
e (ase classes are a special feature supporting the inheritance of syntactic patterns.

Structured classes are further divided into

e construction classes specified by a sequence of components,
e [ist classes for lists of components of the same kind and

e [exeme classes for lexical items.



166

Example A.6.2
Example A.6.1 is rewritten in the style of Mjglner/Orm.

APPENDIX A. BACKGROUND

<FEzpr> ::= Abstract

Syn Value : integer;
Value := 0;

<Const> : <FExpr> ::= Lexeme

Value := ... integer value of the constant ...;

<BinOp> : <Ezpr> == {<left : Expr> & <right : Ezpr>}
<Add> : <BinOp> ::= Case

Value := left. Value + right. Value;

<Sub>: <BinOp> ::= Case

Value := left. Value — right. Value;

Using case classes we obtain a CFG which slightly differs from that in Example A.6.1.
Case classe are useful to point out the common structure of binary addition and subtraction.

Ezpr = BinOp | Const
BinOp = Add | Sub
Add = FEzpr Ezpr
Sub = FEzpr Ezpr

A.7 Action semantics

The specification of a simple imperative language SIMPL is presented below in order to
complete the discussion of action semantics in Subsection 4.3.2. The specification of SIMPL
has been taken from [Mos96].

(*)

(*)
(*)
(*)
(*)
(*)

Stmt

Stmts
Expr
Op
Num
Id

module: Abstract Syntax. grammar:

endgrammar. closed. endmodule: Abstract Syntax.

[[Id “=" Expr]]

[[“if” Expr “then” Stmts “else” Stmts]]
[[“while” Expr “do” Stmts]].

<Stmt <7 Stmt >*>.

Num | Id | [[ Expr Op Expr ]|.

“_I_” | “ :’7'

[[digit+]].

[[letter (letter|digit)*]].

Figure A.2: Abstract syntax of the SIMPL language

e Figure A.2 defines the abstract syntax of SIMPL.
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e Figure A.3 provides the equations defining the semantics of SIMPL.

e Figure A.4 specializes the action notation for the action semantics of SIMPL.
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(*)
1]

[2]

[3]

[4]
(*)
[5]
[6:]
[7]
(*)
[8]
[9]

module: Semantic Functions. needs: Abstract Syntax, Semantic Entities.
introduces: execute_, evaluate_, the result of_.
variables: I:1d; N:Num; E,E1,E2:Expr; O:Op; S:Stmt; S1, S2:Stmts.

execute_ :: Stmts —> action[completing|diverging|storing].
execute [[I “:=" E]] = evaluate E then
store the given number in the cell bound to I
execute [[“if” E “then” S1 “else” S2]] = evaluate E then (
( check the given truth-value and then execute S1) or
( check not the given truth-value and then execute S2)).
execute [[“while” E “do” S1]] = unfolding ( evaluate E then (
( check the given truth-value and then execute S1 and then unfold) or
( check not the given truth-value))).
execute <S 7 82> = execute S and then execute S2.

evaluate. :: Expr —> action[giving a value].
evaluate N = give decimal N.
evaluate I = give the number bound to I or
give the number stored in the cell bound to I.
evaluate [[E1 O E2]] = (evaluate E1 and evaluate E2)
then give the result of O.

the result of- :: Op —> yielder[of a value] [using given (value, value)].
the result of “+” = the number yielded by the sum of

(the given number#1, the given number#2).
the result of “/=" = not (the given value#1 is the given value#2).

endmodule: Semantic Functions.

Figure A.3: Action semantics of the SIMPL language

(*)
(*)
(*)
(*)
(*)

module: Semantic Entities. includes: Action Notation.
introduces: value, number.

token =  string.

bindable =  cell | number.
storable =  number.

value = number | truth-value.
number =< integer.

endmodule: Semantic Entities.

Figure A.4: Specializing action notation for SIMPL semantics
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A.8 Extensible denotational semantics

In Subsection 4.3.4 we commented on the style of extensible denotational semantics [CF94].
Some more details concerning this style of semantics are provided in this section. First let
us consider the semantic framework. The meaning functions P of a complete program and
M of a program phrase have the following profiles:
P : Prog— (V& E)®R)
M . Expr — Env — C
Thus, the interpretation of a program returns either a value (V) or an error (£) paired with

the final resources (R). In general, the domain of value V' is a sum of domains constructed
from V' and the domain of computations C'. This is indicated by the following notation:

V=5%,(V,C)

For Pure Scheme, V' contains numbers, Boolean values, functions from values to computa-
tions and L as the denotation of the diverging expression. The domain E of errors can be

assumed as follows:
E ={err},

The domain of resources R can be regarded as product of domains constructed from V', C'
and others as indicated by the following notation:

R=1,(V,C,...)

Environments are functions from variables to values. The domain of denotations for phrases
consists of two disjoint pieces: the sub-domain of value denotations V' and the sub-domain
of effect messages (effects):

effect messages
C=inV(V)®inFX(V-C) ® _A )

—— ~

handles actions

The action component A is a sum of domains built from V and C.

A= inE(E) & Sy(V,C)

Here the error action is included into A as the most basic effect. The meaning of a complete
program is specified as follows:

PIP] = admin(M[P]L,r),

where | denotes the empty environment and ry, denotes the initial resources. The basic
definition of the administrator consists of the following clauses:

admin : CxR— ((C®E)®R)
admin(L,r) = L
admin(inV(v),r) = (v,r)
admin(inFX (k, inE(err)),r) = (err,r)
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The first clause concerns converging programs. The second clause describes normal
termination, that is a value has been computed. The third clause is applied if the evaluation
fails due to an error. Adding actions for extensions, new clauses will become relevant. They
define how actions are processed accessing the resources and that the handle possibly is
invoked to continue the computation.

Semantic domains
V= inNNL) @ inB({true, false} ) @ inP((V — C))
Semantic functions

Mnllp = inV(inN(n))

M[z]lp = inV(p(z))
MlXz.elp = inV(inP(\d: V.M[e]p[z/d]))
Mleiex]p = handler(M][ei]p)
(Af : V.handler(M[es]p)
(Aa : V.case f of
[inP(g) = g(a)]
g = inAC(inE(err))])

Figure A.5: An extended direct semantics of Pure Scheme

We start with two basic constructs €2 denoting the diverging expressions and err to
signal an error. Their denotations are defined as follows:

M[Q]p = inV (L)
Mlerr]p = inAC(inE(err))

Here inAC(a) is an abbreviation for inFX (inV, a).

Sub-phrases of complex phrases are evaluated via recursive calls to the interpreter.
Since the result of such a recursive call is a computation, it is necessary to inspect the tag
of the result. If it is a plain value, the value component can be consumed locally. If it is
an effect, however, it must be propagated to the central administrator. To deal with this
situation uniformly, the function handler mapping a computation and the consumer of its
eventual value to computations is introduced:

consumer
—f

handler . C— (V—>C)—=C
handler(L)f = L
handler(inV (v))f = f(v)
handler(inFX (k,p))f = nFX(A\v: V.handler(k(v))f),p)
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Essentially, the definition makes sure that an effect message is propagated from handler
to handler until it eventually reaches the administrator.

Refer to Figure A.5 for the semantics of Pure Scheme. To add, for example, reference
cells to Pure Scheme, essentially three new actions have to be introduced:

e inRef(V'), which represents an allocation message;
e inSet(L, V), which represents an update message;
e inDer(L), which represents a dereferencing message.

Here L denotes the domain of locations. The meaning function M is straightforwardly
extended for the corresponding constructs which essentially delegate the interpretation to
the administrator (i.e. the function admin). The adminstrator also has to be extended to
perform the new actions on the resources (the state). Constructs for programming with
first-class continuation objects are added in [CF94] in the same orthogonal manner. The
equations of the meaning function M need never to be changed.

A.9 Stepwise refinement

In Subsection 4.4.1 we commented on stepwise refinement in logic programming. In this
section, some more details are provided. Most of the following definitions and explanations
are taken from [Trc93|.

The operators for stepwise refinement of logic programs are defined as follows:

unfold Let P be a program, ¢ : A < Ay, ..., A1, A, Air1, ..., A, a clause in P. Let
¢j, 1 < j < m be all the clauses in P where there exists 8; = mgu(B’, A;), ¢; : B! +
Bl,...,Bl. . .
Define ¢ : (A <= Ay,..., 41, B],..., B}, Ai1,..., Ayn)b;.

Then unfold(P, c, A;) = (P — {c}) U{c]1 < j <mj}.
fold Let P be a program, ¢ : A < By,...,B;,Ay,..., A, Bit1,...,B, and d : B <+

Al AL k> 1, be clauses in P. Let 0 = mgu((Ay, ..., Ax), (A}, ..., A%)).
Define ¢ : A« By,...,B;,B0,B;1,...,B,.

Then fold(P,c,(Ay,...,A)) = (P —{c}) U{c}.
prune Let P be a program, c¢ a clause in P.

Then prune(P,c) = P — {c}.
add Let P be a program, ¢ a clause in P.

Then add(P,c) = P U {c}.

thin Let c: A<+ Ay, ..., A, 1, A, Ay, ..., A, be a clause.
Then thin(c, A;) = A< Ay, ..., A 1, Airr, -, Ag.
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fatten Let ¢: A<+ A4,..., A, be a clause and B an atom.
Then fatten(c, B) = A < Ay,..., A, B, Ait1, ..., A,.

restrict Let P be a program. Let p € preds(P). Let @ = U def p(q) for all ¢ such that
def p(q) N P(p) = 0.
Then restrict(P,p) = (P — Q).
Here preds(P) denotes all predicate symbols in P, def (q) all clauses of P defining ¢,
i.e. the clauses with ¢ as the predicate symbol of the head. P(p) is the call-graph for
the predicate symbol p. It is the set of clauses obtained from P starting with def ,(p)

and adding recursively all clauses defining predicate symbols occurring in bodies of
the computed closure.

The operators preserve refinement equivalence if the following applicability conditions
are satisfied:

unfold A single unfolding step is always correct because all MGUs of the atom and the
heads of other clauses are considered. If a clause is added in the next step, this
refinement is not necessarily equivalent for the inverse order of steps.

fold Abbreviating a part of the body of a clause is correct, if the abbreviated clauses can
be unfolded to obtain the original clause again.

prune Pruning a clause is applicable if either the clause is redundant or if it cannot be
used to derive an answer, i.e. the body of the clause can never be proven.

add A clause can be added, if it is implied already by the program or if it cannot be used
to derive an answer.

restrict The call-graphs of the original and the restricted program are equal.

A.10 Specification-building operators

In Subsection 4.4.4 we commented on specification-building operators in algebraic specifi-
cation. In this section, some more details are provided. The following details are mostly
taken from [SST92]. We assume that the reader is familar with standard notions of alge-
braic specification, particularly:

e algebraic many-sorted signatures, usually denoted by X, ¥,
e algebraic signature morphism o : ¥ — X/,

e Y-algebra, class Alg(X) of Y-algebras,

e Y-homomorphism and Y-isomorphism,

e Y-equation, first-order »-sentence,

e satisfaction relation between X-algebras and X-sentences,
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e the reduct functor _|, : Alg(X) — Alg(X') for a signature morphism o : ¥ — X',

A Y-specification SP is expected to determine a class [SP] € P(Alg(X)) of X-algebras,
the models of SP. SP is consistent if SP # (). There are the following specification-building
operators:

e If ¥ is a signature, then X is a Y-specification with the semantics:

[X] = Alg(X)

e If SP is Y-specification and @ is a set of X-sentences, then impose ® On SP is a
Y-specification with the semantics:
[impose ® On SP] = {A € [SP]|A | @}

e If SP is a Y-specification and o : ¥’ — ¥ is a signature morphism, then derive from
SP by o is a Y'-specification with the semantics:

[derive from SP by o] = {A|,|A € [SP]}

e If SP is a Y-specification and o : ¥ — ¥’ is a signature morphism, then translate
SP by o is a Y'-specification with the semantics:

[translate SP by o] = {4’ € Alg(X')|A'|, € [SP]}

e If SP and SP' are Y-specifications, then SP U SP' is a Y-specification with the
semantics:

[SP U SP'] = [SP] N [SP']

e If SP is a Y-specification and o : ¥ — Y’ is a signature morphism, then minimal
SP w.r.t. o is a X-specification with the semantics:

[minimal SP w.r.t. o] = {A € [SP]|A is minimal in Alg(X) w.r.t. o},

where a Y-algebra is minimal w.r.t. ¢ if it has no non-trivial subalgebra with an
isomorphic o-reduct.

e [f SP is a ¥-specification, then iso — close SP is a YX-specification with the semantics:

[iso — close SP] = {A € Alg(X)|A is isomorphic to B for some B € [SP]}

o If SP is a Y-specification and ¢ : ¥ — Y is a signature morphism and @' is a
set of Y'-sentences, then abstract SP w.r.t. ® via o is a Y-specification with the
semantics:

[abstract SP w.r.t. ' via o] = {A € Alg(X)|A =% B for some B € [SP]},

where A =, B means that A is observationally equivalent to B w.r.t. &' via o.
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e If SP is a Y-specification and If SP' is a X'-specification, then SP + SP' is a (S UY)-
specification with the semantics:

[SP + SP'] = {A € Alg(X UX)|A|x € [SP] and Alsy € [SP']}
This is expressible using = U _ and translate as defined above.

e [f SP is a X-specification, S is a set of sort names, €2 is a set of ranked operation
names such that adding S and €2 to ¥ yields a well-formed signature ¥’ and ®’ is a set
of YX'-sentences, then enrich SP by sorts S opns (2 axioms @' is a Y'-specification
with the semantics:

[enrich SP by sorts S opns (2 axioms '] =
{A € Alg(X)|A|x € [SP] and A | @'}

This is expressible using translate and impose as defined above.

e [f SP is a Y-specification and S is a set of sort names, then reachable SP on S is
a Y-specification with the semantics:

[reachable SP on S] = {A € [SP]|A is generated on S},

where A is said to be generated on S if it has no proper subalgebra having the same
carriers of sorts not in S. This is expressible using minimal as defined above.






Appendix B

Technical details of the framework

B.1 Deconstruction of sequences of rules

Head Of _ : Rules — Rule
Tail Of _ : Rules — Rules
Nil? = : Rules — Boolean
Head Of Rules From (ry,...,r,) = 7] [Head Of]
Tail Of Rules From (r1,79,...,7,) = (ra,..., ) [Tail Of]
Nil? Rules From () — True [Nil?.1]
n2>1 [Nil?.2]

Nil? Rules From (ry,...,r,) — False

B.2 Selection of variables

The relations for the selection of variables in elements are defined below. In meta-programs,
we refer to VARSparameter by Variables In _.

VARSparameter(Variable From v Of Sort o) = {v} [VARS.1]

VARSParameter (P1) = V1
AN
A V.ARSParameter(pm) = Vi [VARS2]
VARSPparameter* ((D1s- -« Pm)) = ViU~ UV,

VARSpaameter (B -+ Pha)) = V* [VARS.3]
VARSE o ene (0, (BY, ., PR, (B, -, D)) = V'

175
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(B +
VARSPara_nleter ((f)ja s an]g» :>TV - [V.ARS4]
VARSEIement(( ) <p17 T 7pm>7 <p17 tee 7pk>>) =V

V‘ARSEIement( ) = V¢

A V‘ARSEIement( ) = VT [V.ARS5]
VARSEIement( ) =viygvt

B.3 Applied and defining occurrences

A
A V‘ARSEIement( ") = V” [DO]
DOIn(t,€0,<€1,.. >>:>VE)UV1UV7L

V‘ARSEIement(EO) = Vo

A
A V‘ARSEIement( ) = V [.AO]
Ao In <t7607<617 . >>:>VI)U‘/1 UVn

B.4 Left-to-right dependencies (WD)

To work out a common restriction of well-definedness (WD), left-to-right dependencies
are formalized here. Thereby, we obtain a very simple data flow criterion which can be
understood, for example, as the property of L-attribution [Alb91] for attribute grammars or
call-correctness [Boy96a| for logic programs with directional types. To force this property,
the rule DF.1 (refer to Subsection 2.3.3) has to be rejected in favour of the rule DF.2
given below.

,C2R(Fj) fory=1,...,n [Df2]
DF((F1,...,Tn), 1)

V‘ARSEIement( ) C V‘ARSEIement(EO)
V'ARSEIement( ) C V'ARSEIement(E ) U V'ARSEIement( 1)

V‘ARSJéIement( ) C V‘ARSJéIement(E ) U? 11 V‘ARSEIement( )

V‘ARSEIement( 0) € V‘ARSEIement(E ) V‘ARSEIement( €i) [EZ’R,]
L2R((t,ep, (€1,...,€ )))

> > > >
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B.5 Basic unification

177

The following definition of SOLVE only copes with variables as parameters. If instances
of the general framework with compound parameters (terms) are considered, the complete
Robinson’s unification algorithm need to be instrumented; refer e.g. to [NM95, p. 39] for
a suitable presentation.

£ is in solved form

SOLVE(E) — &

Jp € Parameter :

(pp) €&
SOLVE(E N\ {(p,p)}) = 0

> > > >

SOLVE(E) — 0

dp,p’ € Parameter : p # p’

(o) €€

Variable Of p — v

p occurs in €\ {(p,p')}

SOLve( (E\{{p,p")}) [v/p']) U{(p.P)} ) =6

SOLVE(E) — 0

B.6 Terms

Isterm(m1(p)) — b

Term? p — b

Constructor Of Term From f p* Of Sort o — f

Subterms Of Term From f p* Of Sort o — p*

ISName(S) —b

Name? s — b

Isconstructor (3) — b

Constructor? s — b

> > > > >

Term? p — True
Constructor Of p — f
Subterms Of p — (p1,...,pn)
Sort Of p —» o

Substitute # In Parameter p; — p} fori=1,...

Term From f (p},...,p),) Of Sort o — p’

Substitute 6 In Parameter p — p’

[SOLVE 1]

[SOLVE.2)

[SOLVE 3]

[Term?]

[Constructor Of]
[Subterms Of]

[Name?]

[Constructor?]

[SUBST.3)
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B.7 Computational elements

IS Eement(P¢) = b [Element?]
Element? pre — b

ISComputation (pre) = b [Computation?]
Computation? pre — b
Symbol Of Premise From s p| — p} — s [Symbol Of]
Parameters Input Of Premise From s pj — p’{ — pj [Parameters.3]
Parameters Output Of Premise From s p] — pf — p} [Parameters.4]

IsName(S) — b [Name?]

Name? s — s

IsOperation(s) —b [Operation?|
Operation? s — s




Appendix C

Remainder of the operator suite

C.1 More auxiliary operators

We need to define some other auxiliary operators used elsewhere.

C.1.1 Transformations on fragments

In this subsection, trivial transformations on fragment types are presented. Many of them
can be regarded as lifting operators to apply transformations to more complex fragment
types. The transformations are useful for the definition of several more elaborate operators,
e.g. for applications of the operator Replace.

% identity for substituting conclusions
lhsIdentity :
A e: Conclusion . (e, (), (), ())-

% identity for substituting premises
rhsIdentity :
A e : Premise . ({e), ()).

% substitute conclusions with a certain symbol, only

lhsForSymbol :

A's: Symbol . A\tLhs : LhsSubstitution . A e : Conclusion .
s = Symbol Of e — tLhs On e, lhsldentity On e.

% substitute premises with a certain symbol, only

rhsForSymbol :

A s : Symbol . AtRhs : RhsSubstitution . A e : Premise .
s = Symbol Of e — tRhs On e, rhsldentity On e.

% coerce transformation on elements to LhsSubstitution
tE2tLhs :

A tE : Element — Element . )\ e : Conclusion .

(tE One, (), (), ())-
% coerce transformation on premises to RhsSubstitution
tP2tRhs :

A tP : Premise — Premise . ) e : Premise .

((tP Omn e}, ()).

179
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% transform elements with a certain symbol, only

tEforSymbol :

As: Symbol . )\ tE : Element — Element . )\ e : Element .
Symbol Of e =s — tE On e, e.

% transform premises with a certain symbol, only

tPforSymbol :

A s : Symbol . )\ tP : Premise — Premise . )\ e : Premise .
Symbol Of e =s — tP On e, e.

% coerce Element — (Element © Substitution) to LhsSubstitution

tEandSubst2tLhs :

A tEandSubst : Element — (Element x Substitution) . A €0 : Conclusion .
Let (el, subst) = tEandSubst On €0 In (el, { ), (), subst).

% coerce Premise — (Premise x Substitution) to RhsSubstitution

tPandSubst2tRhs :

A tPandSubst : Premise — (Premise x Substitution) . A €0 : Premise .
Let (el, subst) = tPandSubst On e0 In ({(el), subst).

% coerce Parameter* — (Parameter® x Substitution) to LhsSubstitution

tPsAndSubst2tLhs :
A tPsAndSubst : Parameter* — (Parameter* x Substitution) .
Aio:Io.

A €0 : Element .

Let (ps, subst) = tPsAndSubst On Parameters io Of e0 In
io = Input —
(Conclusion From Symbol Of e0 ps — Parameters Output Of e0, ( ), ( ), subst),
(Conclusion From Symbol Of ¢0 Parameters Input Of e0 — ps, (), (), subst).

% coerce Parameter* — (Parameter® x Substitution) to RhsSubstitution

tPsAndSubst2tRhs :
A tPsAndSubst : Parameter® — (Parameter® x Substitution) .
Aio:Io.

A €0 : Premise .

Let (ps, subst) = tPsAndSubst On Parameters io Of e0 In
io = Input —
((Premise From Symbol Of €0 ps — Parameters Output Of e0), subst),
((Premise From Symbol Of e0 Parameters Input Of e0 — ps), subst).

% coerce transformation on Parameter* to Element
tPs2tE :
Aio: Io . A tPs : Parameter* — Parameter® . \ e : Element .
Let f = X select : Io .
Let ps = Parameters select Of e In
select = io — tPs On ps, ps
In
Element From (Symbol Of e) (f On Input) — (f On Output).
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% coerce transformation on Parameter* to Premise
tPs2tP :
Aio: Io. A tPs: Parameter* — Parameter* . \ ¢ : Premise .
Let f = X select : Io .
Let ps = Parameters select Of e In
select = io — tPs On ps, ps

In
Premise From (Symbol Of e) (f On Input) — (f On Output).

C.1.2 Inserting premises into rules

Given a rule and a premise, there are various possibilities how to define the target position
of the premise. One way is to specify the exact position by an index. Another one is to
leave it unspecified, what is suitable if we assume that the actual position of computa-
tional elements is meaningless. We prefer to adhere to the more restricted well-definedness
property, where an applied occurrence of a variable must not occur before a defining oc-
currence. There are two extremes, that is to say to insert the premise either as early as
possible (insertEarly) or as late as possible (insertLate). For pragmatic reasons, the first
extreme is suitable for premises that do not have an output position at all.

Insert _ Into _ : Premise x Rule — (Rule — Rule)

A e : Premise .

Nil? Parameters Output Of e —
insertEarly On e,
insertLate On e.

insertEarly :
Ae: Premise. Ar: Rule.
Let required = Variables In Parameters Input Of e In
Letrec early : Premise* — P(Variable) - Premise* =
A es : Premise* . A vs : P(Variable) .
required C vs —
(e) ++ es,
Let skip = Head Of es In
(skip) -+ (
early
On Tail Of es
On (vs U Variables In Parameters Output Of skip)
)
In
Rule From Tag Of r Conclusion Of r < (
early
On Premises Of r
On Variables In Parameters Input Of Conclusion Of r

).
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insertLate :
Ae: Premise. Ar: Rule.
Let defined = Variables In Parameters Output Of ¢ In
Letrec late : Premise* — Premise* = ) es : Premise* .
Nil? es —
(e),
Let head = Head Of es In
Variables In Parameters Input Of head N defined = §) —
(head) ++ (late On Tail Of es),
(e) ++ es
In
Rule From Tag Of r Conclusion Of r < (late On Premises Of r).

C.1.3 Skipping computations in a sequence of premises

In our instance of the calculus skeleton elements and computations are distinguished. In
several cases, iterations on the skeleton elements (excluding computations) must be per-
formed, e.g. during folding and unfolding. The following function skips the heading com-
putations in a sequence of premises. Thus, a caller of the function receives a pair (a, b},
where a are the skipped computations, whereas b is the remaining sequence of premises
starting with a skeleton element if there is any left.

skipComputations :
A es : Premise* .
Letrec skipComputationsSlave : (Premise* x Premise*) — (Premise* X Premise*) =
A sofar : Premise* x Premise* .
Let (skipped, todo) = sofar In
todo = () —
sofar,
Let spot = Head Of todo In
Computation? spot —
skipComputationsSlave On (skipped ++ (spot), Tail Of todo),
sofar
In
skipComputationsSlave On (( ), es).

C.1.4 Selection of parameters

The selection of parameters on defining and applied occurrences follows a common schema
which is presented below:

selectOccurrences :
Actrl : To . Ar: Rule . A (io, sy, so) : Position .

% select parameters of corresponding sort
Let selectPs = A\ ps : Parameter™ .
Parameters Of Sort so In ps
In

io = ctrl —
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% defining (applied) occurrences on input (output) positions are found on LHS
Symbol Of Conclusion Of r = sy — selectPs On Parameters io Of Conclusion Of r, ( ),

% defining (applied) occurrences on output (input) positions are found on RHS
Fold Left \ sofar : Parameter® . A e : Premise .
sofar ++ (Symbol Of e = sy — selectPs On Parameters io Of e, ( ))
Neutral ( ) List Premises Of r.

The selection of a defining occurrence can now be performed by applying the above
abstraction to Input, i.e.:

selectDos :
selectOccurrences On Input.

Dually, the selection of an applied occurrence can now be performed by applying the
above abstraction to Output, i.e.:

selectAos :
selectOccurrences On Output.

In some cases we need unique occurrences. Such a restriction can be easily obtained
from the above schema selectOccurrences.

selectUniqueOccurrence :
Aio:JTo. Ar:Rule. ) pos: Position .
Let {p} = selectOccurrences On io On r On pos In p.

The selection of unique defining (applied) occurrences is denoted by selectDo (selectAo).

C.2 Parameterization schemata

C.2.1 Addition, removal, contraction

We present the details of the following parameterization schemata:

Add _ : Position®* — Trafo
Ensure _ : Position* — Trafo
Sub _ : Position* — Trafo
Contract _ : Position* — Trafo

These operators can be specified following the schema of element substitution, i.e. using
the operator Replace. Actually, the essential behaviour of these operators can be stated
as a transformation of the following profile:

Parameter® — (Parameter® ® Substitution)

To lift such transformations to LHS / RHS substitutions, and to iterate on the sequences
of associations, the following more elaborate variant of Replace is assumed:
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replacePositions :
A tPs : Sort — Parameter* — (Parameter® x Substitution) .
A poss : Position* .
Ars: Rules .
Fold Left
A sofar : Rules . A (io, sy, so) : Position .
Replace
(IhsForSymbol On sy On (tPsAndSubst2tLhs On (tPs On so) On io))
(rhsForSymbol On sy On (tPsAndSubst2tRhs On (tPs On so) On io))
On sofar
Neutral rs List poss.

Now the operators Add, Sub and Contract can be directly implemented by applying
replacePositions to the following expressions:

for Add:

A sort : Sort . A ps : Parameter* .
(ps ++ (New Variable Of Sort sort), { )).

for Sub:

A sort : Sort . A ps : Parameter™ .

(Fold Left \ sofar : Parameter® . A p : Parameter .
sofar ++ ( (Sort Of p) = sort — (), (p) )
Neutral ( ) List ps,
()

).

for Contract:

A sort : Sort . A ps : Parameter™ .
(ps \ Tail Of Parameters Of Sort sort In ps,
Let keep = Head Of Parameters Of Sort sort In ps In
Fold Left
A subst : Substitution . A p : Parameter .
subst > Unify Parameters keep And p
Neutral ()
List Tail Of Parameters Of Sort sort In ps

).

C.2.2 Conditional addition

Since the operator Ensure is intended to add only those positions which do not exist yet,
it can be expressed via Add if we first reject the associations corresponding to existing
positions by a simple traversal of the type of the input rules.
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A poss : Position* . A rs : Rules .
Let possToBeAdded =
Let sigma = Sigma Of rs In
Fold Left A sofar : Position* . A (io, sy, so) : Position .
Let prof = Profile Of sy In sigma In
prof =7 —
sofar,
so € Sorts io Of prof —
sofar,
sofar ++ ((io, sy, so))
Neutral () List poss
In
Add possToBeAdded On rs.

C.2.3 Permutation

Permute _ : Profile — Trafo

% permute parameters according to sorts
Let tPs = X ps : Parameter* . X ss: Sort* .

# ps = # ss o—

Map A sort : Sort . Let (p) = Parameters Of Sort sort In ps In p List ss

In

A prof : Profile .

% permutation of a conclusion
Let tE = tEforSymbol On Symbol Of prof On
(A e : Element .
Element From Symbol Of e
(tPs On Parameters Input Of ¢ On Sorts Input Of prof)
— (tPs On Parameters Output Of ¢ On Sorts Output Of prof)

)

In

% permutation of a premise
Let tP = tPforSymbol On Symbol Of prof On
(A e : Premise .
Premise From Symbol Of e
(tPs On Parameters Input Of ¢ On Sorts Input Of prof)
— (tPs On Parameters Output Of ¢ On Sorts Output Of prof)

)

In
Replace (tE2tLhs On tE) (tP2tRhs On tP).

C.3 Computation schemata

C.3.1 Copies

Copy - To _ : Position x Position — Trafo
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A from : Position . A to : Position .
Let (fio, fsy, fso) = from In
Let (tio, tsy, tso) = to In
fso = tso o—
(Ars: Rules .
Map A r: Rule.
Let pF = selectUniqueDo On r On from In
Let pT = selectUniqueAo On r On to In
- Variables In {pT} N (AoInr\ DoInr) =) o—
Substitute Unify Parameters pF And pT In Rule r
List rs

)

o Ensure (from, to).

C.3.2 Constant computations
Define - By _ : Position x Symbol — Trafo

A pos : Position . A by : Symbol .
(A 13 : Rules .
Map A 10 : Rule .
Fold Left A r : Rule . \ p : Parameter .
Insert Premise From by ( ) — (p) Into r
Neutral r0
List (Variables In (selectAos On r0 On pos) \ Do In r0)
List rs

).

Default For - By _ : Sort x Symbol — Trafo

Aso: Sort . A by : Symbol . A rs: Rules .
Map A 10 : Rule .

Fold Left A r: Rule . A v : Variable .

Insert Premise From by ( ) — (v) Into r

Neutral r0

List Variables Of Sort so In (Ao In r0 \ Do In r0)
List rs.

C.3.3 Unary conditions
Use _ By _ : Position x Symbol — Trafo

A pos : Position . A by : Symbol .

(A rs: Rules .
Map A 10 : Rule .
Fold Left A r : Rule . \ p : Parameter .

Insert Premise From by (p) — () Into r

Neutral r0
List Variables In (selectDos On r0 On pos)
List rs
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C.3.4 Nontrivial computations

Compute _ - — _ : Symbol x Position* — Position* — Trafo

A sy : Symbol . A possl : Position* . A possO : Position* .
(A rs: Rules .
Map Ar: Rule.

% compute inputs of premise
Let psl =
Map ) pos : Position .
Let p = selectUniqueDo On r On pos In p
List possl
In

% compute outputs of premise
Let psO =
Map A pos : Position .
Let p = selectUniqueAo On r On pos In p
List possO
In

% ensure that the outputs are not yet defined
Variables In psO N Do Int = () o—

% insert premise
Insert Premise From sy psl — psO Into r
List rs
)
o Ensure possO
o Ensure possl.

C.3.5 Compositional computations
Relate _ _ _ : lo x Association™ x Prefix — Trafo

Aio:Io. A as: Association* . A pfx : Prefix .

% select parameters according to associations
Let parasToRelate = A e : Element .
Fold Right
A p : Parameter . \ ps : Parameter* .
( Fold Right
A (sym, sort) : (Symbol, Sort) . A ps : Parameter* .
(((Symbol Of e) = sym) N ((Sort Of p) = sort) — (p), () ++ ps
Neutral () List as
) ++ ps
Neutral ( ) List Parameters io Of e
In

(Ars: Rules . Map At : Rule.
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% accumulate relevant positions on LHS and RHS
Let lhs = parasToRelate On Conclusion Of r In
Let rhs =
Fold Right \ e : Premise . \ ps : Parameter® .
(Element? e — (parasToRelate On e), ()) ++ ps
Neutral ( ) List Premises Of r
In

Let s = Operation From pfx Tag Of r In
io = Output —
% outputs from RHS are used to DEFINE outputs on LHS
Let defocc = Variables In lhs In
(= defocc = @) And (defocc € (Ao Inr \ Do Inr)) —
Let e = Premise From s rhs — lhs In
Rule From Tag Of r Conclusion Of r < (Premises Of r ++ (e)),
r?
% inputs from LHS are used to DEFINE inputs on RHS
Let useocc = Variables In lhs In
Let defocc = Variables In rhs In
(= useocc = ) And (defocc C (AoInr \ DoInr)) —
Let e = Premise From s lhs — rhs In
Rule From Tag Of r Conclusion Of r < ((e) ++ Premises Of 1),
T

List rs) o Ensure Map A (sy, so) : Association . (io, sy, so) List as.

C.3.6 Combining unused parameters

Reduce - By _ : Sort x Symbol — Trafo

Aso: Sort . A by : Symbol . A rs: Rules .
Map
A 10 : Rule .
Let vs = Variables Of Sort so In (Do In 10 \ Ao In r0) In
vs =0 —
10,
Let (rl, unused) =
Fold Left A (r, vl) : Rule x Variable . A v2 : Variable .
Let new = New Variable Of Sort so In
(Insert Premise From by (vl, v2) — (new) Into r, new)
Neutral (r0, Head Of vs)
List Tail Of vs
Inrl
List rs.

C.4 Reachability

Derivable From _ In _ : P(Symbol) x Skeleton — P(Symbol)
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A from : P(Symbol) . X sk : Skeleton .
Letrec { : P(Symbol) — P(Symbol) =
A ss0 : P(Symbol) .
Let ssl =
ssO U
Fold Right
A (t, L, r) : Shape . A syms : P(Symbol) .
1 € (from U syms) — syms U r, syms
Neutral ssO List sk
In (ssO C ssl) And (ssl C ss0) — ss0, f On ssl
In f On 0.

Derivable To _In _ : P(Symbol) x Skeleton — P(Symbol)

A to : P(Symbol) . A sk : Skeleton .
Letrec { : P(Symbol) — P(Symbol) =
A ss0 : P(Symbol) .
Let ssl =
ssO U
Fold Right
A (t, 1, r) : Shape . A syms : P(Symbol) .
= ((to U syms) Nr) = P — syms U {1}, syms
Neutral ssO List sk
In (ssO C ssl) And (ssl C ss0) — ss0, f On ssl
In f On 0.

From _To _In _ : P(Symbol) x P(Symbol) x Skeleton — P(Symbol)

A from : P(Symbol) . A to : P(Symbol) . A sk : Skeleton .
Derivable From from In sk N Derivable To to In sk.

C.5 Superimposition

Superimpose - And _ : Rules x Rules — Rules

Let superimposeEs = A el : Element . A e2 : Element .
Element From Symbol Of el
(Parameters Input Of el ++ Parameters Input Of e2) —
(Parameters Output Of el ++ Parameters Output Of e2)
In
Arsl : Rules . A rs2 : Rules .
% ensure soundness of superimposition
Skeleton Of rs1 = Skeleton Of (Order By Tags In rsl On rs2) o—
% iterate the rules
Map A rl: Rule .
Let (r2) = Select Tags {Tag Of r1} On rs2 In
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% ensure disjoint variables
Let r2fresh = refreshRule On r2 In
Rule From Tag Of rl

% superimpose LHSSs
superimposeEs On Conclusion Of r1 On Conclusion Of r2fresh
=
Let (rhs, rest) =
% iterate RHSs for superimposition
Fold Left
A (sofar, r2a) : Premise* x Premise* . A e : Premise .
Computation? e —
(sofar ++ (e), r2a),
Let (skipped, r2b) = skipComputations On r2a In
(sofar ++ skipped ++ (superimposeEs On e On Head Of r2b), Tail Of r2b)
Neutral (( ), Premises Of r2fresh) List Premises Of rl
In rhs ++ rest
List rsl.

C.6 Folding & unfolding
Fold - By _ Into _ : Tag x Symbol?* x Tag — Trafo

A from : Tag . A syms : Symbol?* . X to : Tag . A rs : Rules .
Let (r) = Select Tags {from} On rs In

%
% remove heading 7?7
%
Letrec affix
: (Premise*, Premise*, Symbol?*) — (Premise*, Premise*, Symbol?*) =
A (esl, es2, ss) : (Premise*, Premise*, Symbol?*) .
Let (es3, esb) = skipComputations On es2 In
Let es4 = esl ++ es3 In
Head Of ss =7 —
affix On ( es4 ++ (Head Of es5), Tail Of es5, Tail Of ss ),
(esd4, esb, ss)
In
%

% split the rule in:
% before: premises matching heading
% after: premises matching trailing 7?7
% match: premises matching the skeleton symbol
%
Let (before, rest, tail) = affix On (( ), Premises Of r, syms) In
Let (ai, mi, ss) = affix On (( ), Reverse rest, Reverse tail) In
Let after = Reverse ai In
Let match = Reverse mi In
(= match = ()) o— Let (s) = ss In

” ?7}
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% acccumulate variables on input or output positions
Let ios = Aio: Io .
Fold Left
A vs : P(Variable) . A e : Element .
vs U Variables In Parameters io Of e
Neutral () List match
In

% construct bridge element for fold; construct rules
Let ins = ios On Input In
Let outs = ios On Output In
Let new = Element From s (ins \ outs) — (outs \ ins) In
( Forget Tags {from} On rs)
> (Rule From Tag Of r Conclusion Of r < (before ++ (new) ++ after))
> (Rule From to new < match).

Unfold - By _ Into _ : Tag x Tag?* x Tag? — Trafo

A from : Tag . A ts: Tag® . A to: Tag? . A rs: Rules .
Let (r) = Select Tags {from} On rs In
Let (lhs, rhs) =
Letrec pumpRec
: Tag* — Conclusion — Premise* — Premise* — (Conclusion, Premise*) =
A ts : Tag* . A lhs : Conclusion . A done : Premise* . \ rest : Premise* .
ts=()—
(lhs, done 4+ rest),
Let spot = Head Of rest In

% skip computations
Computation? spot —
pumpRec On ts On lhs On (done ++ (spot)) On Tail Of rest,
Head Of ts =7 —

% do not expand premise because of tag 7?7

pumpRec On Tail Of ts On lhs On (done ++ (Head Of rest)) On Tail Of rest,

% expand premise according to tag
Let (r) = Select Tags {Head Of ts} On rs In
Let fresh = (refreshRule On r) In
Let s = unifyElements On Head Of rest On Conclusion Of fresh In
pumpRec
On Tail Of ts
On (substituteInElement On s On lhs)
On (substituteInElements On s On (done ++ Premises Of fresh))
On (substituteInElements On s On Tail Of rest)

In
pumpRec On ts On Conclusion Of r On ( ) On Premises Of r
In

% modify input rule or add a copy with a new tag
to=7—
Forget Tags {from} On rs < (Rule From Tag Of r lhs < rhs),
rs < (Rule From to lhs < rhs).
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C.7 Deriving chain rules
Chain Rule - = <« _ : Tag x Symbol x Symbol — Trafo

A tag : Tag . A lhs : Symbol . A rhs : Symbol . A rs : Rules .
rs <
(
Let sorts2ps = X sorts : Sort* .
Map A sort : Sort . New Variable Of Sort sort List sorts
In
Let prof =
Let lhsProf = Profile Of lhs In Sigma Of rs In
Let rhsProf = Profile Of rhs In Sigma Of rs In
lhsProf = 7 —
= rhsProf = 7 o— rhsProf,
rhsProf =7 —
lhsProf,
(Sorts Input Of lhsProf = Sorts Input Of rhsProf) And
(Sorts Output Of lhsProf = Sorts Output Of rhsProf) o— rhsProf
In
Let psl = sorts2ps On Sorts Input Of prof In
Let psO = sorts2ps On Sorts Output Of prof In
Rule From tag
Conclusion From lhs psI — psO
< (Premise From rhs psI — psO)



Appendix D

A collection of meta-programs

The purpose of this Appendix Chapter is to provide some showcases for nontrivial meta-
programs demonstrating the expressive power of the calculus.

D.1 Composition of a simple language definition

A language definition is composed from modules specifying language constructs. More
technically, we compose an interpreter definition consisting essentially of a frontend part
and a separate dynamic semantics. We consider a very simple imperative programming
language with the fundamental imperative constructs (assignment, selection, iteration,
sequence, input, output) and only basic data types for integer and Boolean values. The
complete example has been checked with AAA [HLR97, LRH96, RL93, Rie92].

D.1.1 The structure of the interpreter definition

The PRA [LRH96] specification below makes the structure of the interpreter definition
explicit. Interpretation consists of two phases. First, the concrete input is analysed, context
conditions are checked and an abstract syntactical representation is constructed. Second,
the intermediate representation is “interpreted” according to the dynamic semantics.

lcs/examples/basic/main.pra

4 modular composition of a specification for analysing source programs
frontend : Interpret In
Refine ./analyser By 1lib/scanner/trivial
&static By (Interpret In ./static &st By lcs/adts/simpleSt)
&ast As Constructor.

# modular composition of a specification interpreting abstract programs
dynamic : Interpret In ./dynamic

&bops By lcs/adts/bops

&memory By lcs/adts/memory.
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/4 actual ezecution of the language processor
With SOURCE, IN Return 0UT Do

/# executing the frontend specification in a reading scope
Reading ./examples/SOURCE.basic Do

Run frontend — PROG

End Reading;

Z# applying the interpreter specification to the abstract representation
Run dynamic(PROG, IN) — O0UT;

End.

Below we show how the main components of the interpreter definition, that is to say the
dynamic semantics (./dynamic; refer to Subsection D.1.2), the GSF schema of the frontend
(./analyser; refer to Subsection D.1.3 and Subsection D.1.5), the auxiliary predicates fa-
cilitating type checking in the above GSF schema (./static; refer to Subsection D.1.4), are
composed from atomar specification units. Some rather auxiliary modules are presented
in Subsection D.1.6.

D.1.2 Composition of the dynamic semantics

We are seeking for a natural semantics specification for the dynamic semantics of the
sample language. The final semantics description is as follows.

lcs/examples/basic/dynamic.pp

[prog] &memory init — MEMg,
init0OUT — 0UT,,
execute (STM, MEM;, IN3, OUT,) — (MEMs, INs, OUTs)

program(prog(STM), IN3) — 0UTs
[initQUT] initOUT — []\OUT

[assign] evaluate(EXP, MEM, INjp) — (VAL, INjg),
&memory update(MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM, INjp, OUTg) — (MEM’, IN;s, OUTg)
[Sklp] execute(skip, MEM14, INQG, 0UT18) — (MEM14, INQG, 0UT18)

[concat] execute(STMl, MEM]_G, IN28, DUTQo) — (MEMlg, IN31, OUT23),
execute(STM, MEMjg, IN3;, 0UTp3) — (MEMp;, INz3, OUTs)

execute(concat (STMy, STMy), MEMjg, INgg, 0UTp9) — (MEMy;, IN33, OUTss)

[if] evaluate(EXP, MEMy7, INsg) — (VAL, INsy),
COIld(VAL, STM]_, STMQ, MEM47, IN51, DUT38) — (MEM51, IN53, DUT41)

execute(if(EXP, STM]_, STM2), MEM47, IN48, 0UT38) — (MEM51, IN53, 0UT41)

[while] concat(STM, while(EXP, STM)) = STMunfoid»
execute(if (EXP; STMunfold’ Sklp) s MEMGS; INSG, 0UT54) — (MEM'{]_, IN69, 0UT57)

execute(while (EXP, STM), MEMgg, INgs, OUTsq) — (MEM7y, INgg, OUTs7)
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[output] evaluate(EXP, MEMgs, INjos) — (VAL, INjqg),
add0UT(0UT, VAL) — 0UT’

execute(output(EXP), MEM95, INlOS’ OUT) — (MEM95, IN109, OUT’)
[var] &memory lookup(MEM, ID) — VAL

evaluate(var (ID), MEM, INi;s) — (VAL, INig)
[int] evaluate(const(intC(INT)), MEMgy, INgs) — (intV(INT), INgg)
[true] evaluate(const(boolC(true)), MEMg;, INgg) — (boolV(True\BOOL), INgg)
[false] evaluate(const(boolC(false)), MEMgy, INgy) — (boolV(False\BOOL), INgy)

[monadic] evaluate(EXP, MEMgz, INgy) — (VAL, INgs),
&bops evaluateMonadic(MOS, VAL) — VAL’

evaluate(monadic(MOS, EXP), MEMg3, INg;) — (VAL’, INgs)

[dyadic] evaluate(EXP, MEMgs, INgg) — (VAL, INgg),
evaluate(EXP’, MEMgs, INgg) — (VAL’, INjoy),
&bops evaluateDyadic(DOS, VAL, VAL’) — VAL’

evaluate(dyadic(EXP, DOS, EXP’), MEMgs, INgg) — (VAL’’, INjp;)
[input] inputType(T, VAL)

evaluate (input(T), MEMgg, [VAL|VAL*]\IN) — (VAL, VAL*\IN)
[then] execute(STM, MEME,Q, IN54, DUT42) — (MEM55, IN57, DUT45)

cond (boolV(True\BOOL), STM, STM3, MEMsy, INss, OUTsy) — (MEMss, INs7, OUTas)
[else] execute(STM, MEM56, IN53, UUT46) — (MEM59, INsl, UUT49)

cond (boolV (False\BOOL), STMy, STM, MEMss, INsg, OUTsg) — (MEMsg, INgy, OUTsg)
[add0UT] OUT ++ [VALI\OUT — OUT’

add0UT(0UT, VAL) — 0UT’
[inputInt] VAL = intV(INT,)

inputType (intT, VAL)
[inputBool] VAL = boolV(BOOLy)

inputType (boolT, VAL)
The composition is performed by means of lifting.
lcs/examples/basic/dynamic.sgc

% aspects of computational behaviour
mem : lcs/transformers/memory.

in : les/transformers/input.

out : lcs/transformers/output.

Inference Rules
Axiom Is program
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Lift
(
((mem, in, out), lcs/fragments/program/dynamic),
({in, out), lcs/fragments/variable/dynamic),
((mem, in, out), lcs/fragments/compound/natural/dynamic),
((mem, in, out), lcs/fragments/selection/if/deterministic/dynamic),
((mem, in, out), lcs/fragments/iteration/while/dynamic),
((mem, in), lcs/fragments/type/dynamic),
((mem), lcs/fragments/input/dynamic),
((mem, in), lcs/fragments/output/dynamic)

There are three semantic aspects, that is to say memory propagation including initial-
ization (mem), inputs (in) and output (out). The corresponding transformers are shown
below.

les/transformers/memory.fra

A sk : Skeleton .
Default For MEM By &memory init
o (Inherit MEM From {program} To {evaluate} On sk)
o (Accumulate MEM From {program} To {execute} On sk)

les/transformers/input.fra

A sk : Skeleton .

Let closure = (From {program} To {evaluate} In sk) U {evaluate} In
Left To Right IN

o Ensure Positions Output For closure Of Sort IN

o Ensure Positions Input For closure U {program} Of Sort IN

les/transformers/output.fra

A sk : Skeleton .
Let closure = (From {program} To {execute} In sk) U {execute} In
Default For OUT By initOUT
o Left To Right OUT
o Ensure Positions Output For closure U {program} Of Sort OUT
o Ensure Positions Input For closure Of Sort OUT

Now we present the modular semantics of the underlying language constructs. Usually,
we give a short AAA interface description for the abstract syntax (a module name ending
with as.if ) and a fragment of natural semantics (a module name ending with dynamic.ir)
to be regarded as rules at some level in the terminology of lifting.

Declarations are not regarded as relevant for the semantics definition. Thus, the fol-
lowing abstract syntax for entire programs is appropriate.

les/fragments/program/as.if
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PROG = prog(STM)

To interprete a program, means to execute the statements.

les/fragments/program/dynamic.ir

/4 abstract syntaz
Include ./as

% semantic functions
program: PROG
execute: STM

[prog]l execute(STM)

program(prog(STM))
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The concept of the imperative variable provides a building block for imperative lan-
guages. There are two important constructs, that is to say assignment and variables (as

expressions) with the following abstract syntactical representation.

les/fragments/variable/as.if

STM
EXP

assign(ID, EXP)
var (ID)

The semantics of the above constructs is easily defined. To evaluate a variable iden-
tifier, the memory is observed. To execute an assignment, the memory is updated. The
relational symbols prefixed by &mpemory are concerned with memory access. The module
les/adts/memory.ir providing the corresponding interpretations is presented in Subsec-

tion D.1.6.

lcs/fragments/variable/dynamic.ir

/4 abstract syntaz
Include ./as

/# semantic functions
execute: STM X MEM — MEM
evaluate: EXP x MEM — VAL

4 asstignment
[assign] evaluate(EXP, MEM) — VAL,
&memory update(MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM) — MEM’

/% variables as expressions
[var] &memory lookup(MEM, ID) — VAL

evaluate(var(ID), MEM) — VAL
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Statements can be composed in the sense of statement sequences. The following piece
of abstract syntax introduces the empty statement and the compound statement.

les/fragments/compound/as.if
STM = skip + concat(STM, STM)

The execution of the empty statement is modelled by a simple axiom, whereas the
execution of a compound statement means sequenced execution.

les/fragments/compound /natural /dynamic.ir

/% abstract syntaz
Include ../as

/# semantic functions
execute: STM x MEM — MEM

/% semantics of the empty statement (sequence)
[skip] execute(skip, MEM) — MEM

/% semantics of a sequence of statements
[concat] execute(STM;, MEM) — MEM’,
execute(STM,, MEM’) — MEM’’

execute(concat (STM;, STM,), MEM) — MEM’’

If-statements are well-known representatives of the class of statements serving for se-
lection. We assume the following abstract syntactical representation.

lcs/fragments/selection/if/as.if

STM = if (EXP, STM, STM)

The semantics of an if-statement is defined below in a deterministic style, i.e. first the
condition is evaluated and then an auxiliary relation cond is used to execute either the
then-part or the else-part depending on the value of the condition.

lcs/fragments/selection /if /deterministic/dynamic.ir

/% abstract syntaz
Include ../as

/4 values
VAL = boolV(BOOL)
BOOL = Boolean

/% semantic functions
execute: STM

evaluate: EXP — VAL
cond: VAL X STM x STM
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4 first evaluate condition, then branch on value
[if] evaluate(EXP) — VAL,
cond(VAL, STM;, STM,)

execute(if (EXP, STM;, STM;))

/# ezecute the Then—path of an If—statement
[then] execute(STM)

cond (boolV(True), STM, _STM)

/ execute the Else—path of an If—statement
[else] execute(STM)

cond (boolV(False), _STM, STM)

While-loops are well-known representatives of the class of statements serving for itera-
tion. We assume the following abstract syntactical representation.

les/fragments /iteration /while/as.if

STM = skip + concat(STM, STM) + if (EXP, STM, STM) + while(EXP, STM)

The semantics of a while-statement is defined below by a kind of unfolding, i.e. the
semantics is expressed in terms of an if-statement.

les/fragments /iteration /while/dynamic.ir

/4 abstract syntaz
Include ./as

/% semantic functions
execute: STM

[while] concat(STM, while(EXP, STM)) = STMunfold»
execute (if (EXP, STMynfo1a, skip))

execute(while (EXP, STM))

To cope with simple forms of expressions according to basic data types (constants,
monadic and dyadic expressions), the following piece of abstract syntax is needed.

les/fragments/type/as.if

EXP = const(C) + monadic(MOS, EXP) + dyadic(EXP, DOS, EXP)
C = intC(INT) + boolC(BC)

INT = Integer

BC = true + false

The evaluation of all the above kinds of constants, monadic and dyadic expressions is
shown below.

les/fragments/type/dynamic.ir
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/4 abstract syntaz
Include ./as

7 values

VAL intV(INT) + boolV(BOOL)
INT = Integer

BOOL = Boolean

/# semantic functions
evaluate: EXP — VAL

[int] evaluate(const(intC(INT))) — intV(INT)
[true] evaluate(const(boolC(true))) — boolV(True)
[false] evaluate(const(boolC(false))) — boolV(False)

[monadic] evaluate(EXP) — VAL,
&bops evaluateMonadic(MOS, VAL) — VAL’

evaluate(monadic(M0S, EXP)) — VAL’

[dyadic] evaluate(EXP) — VAL,
evaluate(EXP’) — VAL’,
&bops evaluateDyadic(DOS, VAL, VAL’) — VAL’

evaluate(dyadic(EXP, DOS, EXP’)) — VAL’

The application of corresponding basic operations is modelled by the premises pre-
fixed by &pops. The module les/adts/bops.ir providing the corresponding interpretations is
presented in Subsection D.1.6.

To consume an input value is regarded as a form of an expression. Thus, the following
abstract representation for an input construct is appropriate.

les/fragments/input/as.if

EXP = input(T)
T intT + boolT

To evaluate an input expression means to consume the head of the propagated input,
where the head is regarded at the same time as the value of the expression.

les/fragments/input/dynamic.ir

/4 abstract syntaz
Include ./as

/ semantic domains

VAL = intV(INT) + boolV(BOOL)
INT = Integer

BOOL = Boolean

IN = VALx*

% semantic/auziliary functions
evaluate: EXP x IN — VAL Xx IN
inputType: T x VAL
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[input] inputType(T, VAL)

evaluate(input(T), [VAL|VAL*]) — (VAL, VAL*)

[inputInt] VAL = intV(_INT) = inputType(intT, VAL)
[inputBool] VAL = boolV(BOOL) = inputType(boolT, VAL)

Producing output is regarded as a side-effect similar to an assignment. The following
abstract syntactical representation is suggested.

les/fragments/output/as.if

STM = output (EXP)

The semantic meaning of an output statement is modelled as follows. The value of the
expression to be written is appended with the propagated output.

les/fragments/output/dynamic.ir

/4 abstract syntaz
Include ./as

% semantic domain

VAL = intV(INT) + boolV(BOOL)
INT = Integer

BOOL = Boolean

0UT VAL *

/% semantic functions
evaluate: EXP — VAL
execute: STM x 0UT — 0UT

[output] evaluate(EXP) — VAL,
add0UT(0UT, VAL) — 0UT’

execute(output (EXP), 0UT) — 0UT’

% return the empty output
init0UT: — OUT
[initOUT] initOUT — []

/# extend the output consumed already by a value
add0UT: 0OUT x VAL — OUT
[add0UT] OUT ++ [VALI\OUT — OUT’

add0UT(0UT, VAL) — 0UT’
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D.1.3 Composition of the frontend

We are seeking for a GSF schema defining the syntax, static semantics and the construction
of an abstract syntactical representation for our sample language. The final GSF schema
looks as follows.

lcs/examples/basic/structure.pp

[progl] program — PROGq

&static initST — ST4,
declarations(ST4) — STyo,
statements (ST4) — STMs,
&ast prog(STMs) — PROGo.

[decs] declarations(STsy) — STag

declaration(ST4s) — STu7,

declarations(ST47) — STy.
[nodecs] declarations(STsp) — STso :
[concat] statements(STsg) — STMg

statement (STsg) — STMj,,
statements(STsg) — STMy,
&ast concat (STMyp, STM;) — STMg.

[skip] statements(STg) — STMg

&ast skip — STMg.
[vdec] declaration(ST) — ST’

id — ID,
type — T,
&static addVar (ST, ID, T) — ST’.

[if] statement(STgy) — STMj3

expression(STez) — (T, EXPs),
&static isBoolType(T),

statements (STgz) — STMyg,
statements(STez) — STMg,

&ast if (EXPG ) STMio ) STMQ) — STM13 .

[while] statement(STgs) — STMiq

expression(STes) — (T, EXP7),
&static isBoolType(T),
statements (STgg) — STMyy,

&ast while(EXP-,, STM]_]_) — STMy,.

[output] statement(ST7;) — STMis

expression(STy) — (T, EXPy),
&static isOutputType(T),
&ast output (EXPg) — STM;s.
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[assign] statement(ST) — STM;g

id — ID,

&static isVar(ST, ID) — T,
expression(ST) — (T’, EXPyy),
&static assignable(T, T’),
&ast assign(ID, EXPy;) — STMis.

[intT] type — intT :
[boolT] type — boolT :
[const] expression(STsy) — (T, EXPy)

constant — (T, Cyp),
&ast const(Cy) — EXPg.

[monadic] expression(STs3) — (T, EXP;)

mos — MOS,

expression(STs3) — (T’, EXP,),
&static profileMonadic(MOS, T’) — T,
&ast monadic(MOS, EXP,) — EXP;.

[dyadic] expression(STss) — (T, EXP3)

expression(STss) — (Ty, EXPs),

dos — DOS,

expression(STss) — (Tz, EXP4),

&static profileDyadic(D0OS, T;, Tp) — T,
&ast dyadic(EXPs, DOS, EXP,) — EXPj3.

[input] expression(STg) — (T, EXPg)

type — T,
&static isInputType(T),
&ast input(T) — EXPg.

[var] expression(ST) — (T, EXPig)

id — ID,
&static isVar(ST, ID) — T,
&ast var(ID) — EXPig.

[boolC] comstant — (boolT, Cy)

boolean — BCy,
&ast boolC(BCy) — Cy.

[intC] constant — (intT, Cj)

nat — INTp,
&ast intC(INT,) — C,.

[neg] mos — neg :
[not] mos — not :
[plus] dos — plus :

[minus] dos — minus :
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[times] dos — times :
[div] dos — div :
[eq] dos — eq :
[neq] dos — neq :
[gt] dos — gt :

[1t] dos — 1t :

[ge] dos — ge :

[le] dos — 1le :
[and] dos — and :
[or] dos — or :
[true] boolean — BC;

&ast true — BC;.
[false] boolean — BC,

&ast false — BC,.

We use two prefixes for different kinds of relational formulae. The prefix &,4 refers to
AST construction, whereas the prefix & . qualifies relational formulae modelling static
semantics. The interpretation of the first kind of relational symbols is simply term con-
struction, whereas the relational formulae dealing with static semantics are interpreted by
the relations discussed in Subsection D.1.4.

The underlying context-free grammar of the above GSF schema specifies a rather ab-
stract syntax. The more or less trivial adaptation to cope with a more concrete syntax is
the subject of Subsection D.1.5.

The composition of the above GSF schema is performed by means of lifting.

lcs/examples/basic/structure.sgc

% aspects of computational behaviour
st : les/transformers/simpleSt.
as : les/transformers/ast On ./dynamic On Output On {declarations} On &ast.

Gsf Scheme
Axiom Is program
Lift

(

((st, as), lcs/fragments/program/structure
> les/fragments/declarations/structure
> les/fragments/type/structure
> les/fragments/compound /structure
> les/fragments/selection/if/structure
> les/fragments/iteration/while/structure
> les/fragments/input/structure
> les/fragments/output /structure

((as), lcs/fragments/variable/structure)

)
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There are two computational aspects covered by transformers. The aspect st deals with
the initialization and the propagation of the symbol table, whereas the aspect as deals with
the construction of an abstract syntactical representation. Remember that ASTs need to
be synthesized, because they are interpreted in the second phase of the interpreter, i.e. by
the dynamic semantics. The definition of the transformer for the aspect st is shown below.

les/transformers/simpleSt.fra

A sk : Skeleton .
(./defaultSt On sk)

o (./inheritSt On sk)

o (./accumulateSt On sk)

To have a more modular definition of the above transformer, the following three com-
ponents were identified.

les/transformers/defaultSt.fra

A sk : Skeleton . Default For ST By &static initST

les/transformers/inheritSt.fra

A sk : Skeleton . Inherit ST From {program} To {expression} On sk

les/transformers/accumulateSt.fra

A sk : Skeleton . Accumulate ST From {program} To {declaration} On sk

The transformer for the aspect as is not presented here, because the actual definition
is not language-specific. Its definition is considered in some depth in Section D.7, because
it is interesting on its own. We only want to comment on the underlying generic approach.
The transformer as could be defined in terms of a Relate Output ... transformation, but
we also can compute such a transformation by unifying the skeleton to be lifted and the
signature of a “reference” specification, where the dynamic semantics specifiation serves
for this purpose here. Technically, term constructors and sorts in the signature are unified
with tags and symbols in the skeleton.

Now we present the rules (at some level) from which the above GSF schema has been
composed. We start with the overall structure of programs.

les/fragments/program/structure.gs

[prog] program : declarations, statements.
Sequences of declarations are defined as follows.

les/fragments/declarations/structure.gs
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[decs] declarations : declaration, declarations.

[nodecs] declarations :

The rules concerning type expressions, constants, monadic and dyadic expressions ac-
cording to basic data types are the following.

lcs/fragments /type/structure.gs

[intT] type — intT :
[boolT] type — boolT :

[const] expression — T

constant — T.

[monadic] expression — T

mos — MOS,
expression — T’,
&static profileMonadic(MOS, T’) — T.

[dyadic] expression — T

expression — T,

dos — DOS,

expression — Tsp,

&static profileDyadic(D0OS, T;, Tp) — T.

[boolC] constant — boolT : boolean.
[intC] constant — intT : nat.

[true] boolean :
[false] boolean :

[neg] mos — neg :
[not] mos — not :

[plus] dos — plus :
[minus] dos — minus :
[times] dos — times :
[div] dos — div :
[eq] dos — eq :

[neq] dos — neq :
[gt] dos — gt :

[1t] dos — 1t :

[ge] dos — ge :

[1e] dos — 1le :

[and] dos — and :
[or] dos — or :

Statement sequences are specified by the following rules.

les/fragments/compound/structure.gs
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[concat] statements

statement,
statements.

[skip] statements :

The concept of an imperative variable effects several syntactical classes. Variable dec-
larations, assignments and variables as expressions need to be specified.

les/fragments/variable/structure.gs
[vdec] declaration(ST) — (ST’)

id — ID,
type — T,
&static addVar (ST, ID, T) — ST’.

[var] expression(ST) — T

id — ID,
&static isVar (ST, ID) — T.

[assign] statement (ST)

id — ID,

&static isVar(ST, ID) — T,
expression(ST) — T’,
&static assignable(T, T’).

If- and while-statements are specified below. As far as static semantics is concerned,
we want to ensure that conditions are Boolean expressions.

les/fragments/selection /if /structure.gs
[if] statement
expression — T,
&static isBoolType(T),

statements,
statements.

les/fragments /iteration /while/structure.gs
[while] statement
expression — T,

&static isBoolType(T),
statements.
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Input expressions and output statements are specified below. Possibly, the types legal
for input or output need to be restricted.

les/fragments/input/structure.gs
[input] expression — T

type — T,
&static isInputType(T).

les/fragments/output/structure.gs
[output] statement

expression — T,
&static isOutputType(T).

D.1.4 Auxiliary relations for the static semantics

We develop the module providing interpretations for relational symbols prefixed by & q4ic
in the GSF schema above.

lcs/examples/basic/static.pp

[initST] &st init — ST

initST — ST
[addVar] &st add(ST, ID, varEntry(T)) — ST’

addVar (ST, ID, T) — ST’
[isVar] &st lookup(ST, ID) — varEntry(T)

isVar (ST, ID) — T
[assignable] equalTypes(Tins, Trns)

assignable(Tins, Trns)
[isIntType] isIntType(intT)
[isBoolTypel] isBoolType(boolT)
[profilel] profileMonadic(neg, intT) — intT
[profile2] profileMonadic(not, boolT) — boolT
[profile3] profileDyadic(plus, intT, intT) — intT
[profile4] profileDyadic(minus, intT, intT) — intT
[profileb] profileDyadic(times, intT, intT) — intT
[profile6] profileDyadic(div, intT, intT) — intT
[profile7] profileDyadic(eq, intT, intT) — boolT
[profile8] profileDyadic(neq, intT, intT) — boolT
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[profile9] profileDyadic(lt, intT, intT) — boolT
[profileA] profileDyadic(gt, intT, intT) — boolT
[profileB] profileDyadic(ge, intT, intT) — boolT
[profileC] profileDyadic(le, intT, intT) — boolT
[profileD] profileDyadic(eq, boolT, boolT) — boolT
[profileE] profileDyadic(neq, boolT, boolT) — boolT
[profileF] profileDyadic(lt, boolT, boolT) — boolT
[profileG] profileDyadic(gt, boolT, boolT) — boolT
[profileH] profileDyadic(ge, boolT, boolT) — boolT
[profilel] profileDyadic(le, boolT, boolT) — boolT
[profileJ] profileDyadic(and, boolT, boolT) — boolT
[profileK] profileDyadic(or, boolT, boolT) — boolT
[tEqT] equalTypes(T, T)

[inputInt] isIntType(T)

isInputType(T)
[inputBool] isBoolType(T)

isInputType(T)
[outputInt] isIntType(T)

isOutputType(T)
[outputBool] isBoolType(T)

isOutputType(T)
The above specification is obtained by a simple concatenation of some rules.

lcs/examples/basic/static.sgc

Inference Rules

les/fragments/program/static
> les/fragments/variable/static
> lcs/fragments/type/static
> lcs/fragments/input/static
> lcs/fragments/output /static

The rules below are related to entire programs, constructs for variables, basic data
types or I/O constructs. The following modules are used in the above composition.

lcs/fragments/program/static.ir

4 return the empty symbol table
initST: — ST
[initST] &st init — ST

initST — ST
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les/fragments/variable/static.ir

/% symbol table entries
INFO = varEntry(T)

/% add an entry for a vartable to a symbol table
addVar: ST x ID x T — ST
[addVar] &st add(ST, ID, varEntry(T)) — ST’

addVar (ST, ID, T) — ST’

/% lookup an entry for a wartable in a symbol table

[isVar] &st lookup(ST, ID) — varEntry(T)

isVar (ST, ID) — T

/4 check two types to be compatible for assignment
assignable: T X T

[assignable] equalTypes(Tins, Trns)

assignable(Tins, Tras)

lcs/fragments/type/static.ir

T = intT + boolT

MOS = neg + not

DOS = plus + minus + times + div
+ eq + neq + gt + 1t + ge + le
+ and + or

isIntType: T

isBoolType: T

profileMonadic: MOS X T — T

profileDyadic: DOS X T x T — T

/4 test for integer/boolean type
[isIntType] isIntType(intT)
[isBoolType] isBoolType(boolT)

/# compute result type for unary operators
[profilel] profileMonadic(neg, intT) — intT
[profile2] profileMonadic(not, boolT) — boolT



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION

/4 compute result type for binary operators

[profile3] profileDyadic (plus, intT, intT) — intT
[profile4] profileDyadic (minus, intT, intT) — intT
[profileb] profileDyadic (times, intT, intT) — intT
[profile6] profileDyadic (div, intT, intT) — intT
[profile7] profileDyadic (eq, intT, intT) — boolT
[profile8] profileDyadic (neq, intT, intT) — boolT
[profile9] profileDyadic (lt, intT, intT) — boolT
[profileA] profileDyadic (gt, intT, intT) — boolT
[profileB] profileDyadic (ge, intT, intT) — boolT
[profileC] profileDyadic (le, intT, intT) — boolT
[profileD] profileDyadic (eq, boolT, boolT) — boolT
[profileE] profileDyadic (neq, boolT, boolT) — boolT
[profileF] profileDyadic (1t, boolT, boolT) — boolT
[profileG] profileDyadic (gt, boolT, boolT) — boolT
[profileH] profileDyadic (ge, boolT, boolT) — boolT
[profilel] profileDyadic (le, boolT, boolT) — boolT
[profileJ] profileDyadic (and, boolT, boolT) — boolT
[profileK] profileDyadic (or, boolT, boolT) — boolT

/# equivalence of types
[tEqT] equalTypes(T, @T)
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les/fragments/input/static.ir

isInputType: T
[inputInt] isIntType(T) = isInputType(T)
[inputBool] isBoolType(T) = isInputType(T)

lcs/fragments/output/static.ir

[outputInt] isIntType(T) = isOutputType(T)
[outputBool] isBoolType(T) = isOutputType(T)

D.1.5 The frontend coping with concrete syntax

It is shown how the GSF schema from Subsection D.1.3 can be adapted to cope with a
rather concrete syntax. The transformational approach which was taken here is rather
pragmatic. We refer to [KW96| for a rather disciplined alternative. There, an approach is
presented which simplifies the design of the grammars representing concrete and abstract
syntax as well as the mapping between them.

First, the final GSF schema is shown.

lcs/examples/basic/analyser.pp
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[progl] program — PROGq

&static initST — STy,

declarations(ST4) — STso,

“Begin”,

statements(ST4) — STMs,

“End”

’

“ ) 2

&ast prog(STMs) — PROGo.
[decs] declarations(STs) — STag

declaration(STsq) — STa7,

W,
F ]

declarations(ST47) — STy.
[nodecs] declarations(STsp) — STso :
[concat] statements(STsg) — STMg

statement (STsg) — STMi,,

“,
PR

statements(STsg) — STMy7,
&ast concat (STMyp, STM;) — STMg.

[skip] statements(STg) — STMg

&ast skip — STMg.
[vdec] declaration(ST) — ST’

“yar”
id — 1D,

W,
L]

type — T,
&static addVar (ST, ID, T) — ST’.

[while] statement(STgs) — STMig

“While”,
expression(STgs) — (T, EXP;),
“Do”
’
&static isBoolType(T),
statements (STgg) — STMyq,
“E‘n’d”
gast while(EXP;, STMj;) — STMis.

[output] statement(ST7;) — STMis

“Output”,

expression(STy) — (T, EXPyg),
&static isOutputType(T),

&ast output (EXPg) — STM;s.
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[assign] statement(ST) — STM;g

id — 1D,

“o_”

&static isVar(ST, ID) — T,
expression(ST) — (T’, EXPy),
&static assignable(T, T’),
&ast assign(ID, EXP1;) — STMig.

[if] statement(STgy) — STMj3

“If77

expression(STg) — (T, EXPg),
“Then” ,

&static isBoolType(T),

statements (STgz) — STMyg,
else(STgy) — STMy,

“Endﬂ

&ast if (EXPG ) STMio N STMQ) — STM13 .

[intT] type — intT

“Integer”.

[boolT] type — boolT

“Boolean” .

[const] expression(STsy) — (T, EXPy)

constant — (T, Cp),
&ast const(Cy) — EXPy.

[monadic] expression(STs3) — (T, EXP;)

mos — MOS,

expression(STs3) — (T’, EXP,),
&static profileMonadic(MOS, T’) — T,
&ast monadic(MOS, EXP,) — EXP;.

[dyadic] expression(STss) — (T, EXP3)

[43 (77 ,

expression(STss) — (Ty, EXPg),

dos — DOS,

expression(STss) — (Tp, EXP,),

“) 7 ,

&static profileDyadic(DOS, T;, Tp) — T,
&ast dyadic(EXPs, DOS, EXP,) — EXP3.

[input] expression(STg) — (T, EXPg)

“I'n,p'u.t" ,
type — T,

&static isInputType(T),
&ast input(T) — EXPg.

213
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[var] expression(ST) — (T, EXPip)

id — ID,
&static isVar(ST, ID) — T,
&ast var(ID) — EXPyp.

[else] else(STey) — STMg

“Flse” ,
statements(STgy) — STMy.

[noelse] else(ST7y) — STMys

&ast skip — STMis.
[boolC] comstant — (boolT, Cy)

boolean — BCy,
&ast boolC(BCy) — Cj.

[intC] constant — (intT, Cj)

nat — INT,,
&ast intC(INT,) — C,.

[neg] mos — neg
w_»
[not] mos — not

“Not”-
[plus] dos — plus

“yn
[minus] dos — minus
- “,
[times] dos — times
. -
[div] dos — div
' “Div” .
[eq] dos — eq
: “=7’.

[neq] dos — neq

“#77

[gt] dos — gt

“ b2
>,
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[1t] dos — 1t

“<77.
[ge] dos — ge

) “>77-
[le] dos — 1le

“Sn-
[and] dos — and

' “Andﬂ.
[or] dos — or

“ U,,._ ”

[true] boolean — BC;

“True”,
&ast true — BC;.

[false] boolean — BCs,

“False”,
&ast false — BC,.

The above GSF schema is obtained by transforming the GSF schema from Subsec-
tion D.1.3 (./structure). Essentially, certain keywords and separators are inserted (refer to
the application of the operator Concretize By) and the rule for if-statement is adapted
to cope with an optional else-part.

lcs/examples/basic/analyser.sge

Gsf Scheme
Axiom Is program

Concretize By
( les/fragments/program/concrete
++ les/fragments/declarations/concrete
++ les/fragments/type/concrete
++ les/fragments/compound/concrete
++ les/fragments/selection/if/optional /concrete
++ les/fragments/iteration/while/concrete
++ les/fragments/variable/concrete
++ les/fragments/input/concrete
++ les/fragments/output/concrete
)
On
(les/tools/dyadicInBrackets
o (les/tools/ifOptional On [skip])
On ./structure

)
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First, all the trivial fragments used in the application of the operator Concretize By
are presented.

les/fragments/program/concrete.fra

(([prog], (7, “Begin”, 7, “End”, “.7)))

les/fragments/declarations/concrete.fra

(([decs], (7, 7, 7))

les/fragments/type/concrete.fra

(
intT], (“Integer”)),

(l

([boolT], (“Boolean”)),
([true], (“True”)),
([false], (“False”)),
([neg], (“\")),

([not], (“Not”))
([plus], (“+7)),
((minus], (*\”)),
([times], (“*7)),
([div], (“Div”)),
(lea], (“=")),
([neq], (“C)")),
([st], (")),

(1], ¢“(")),

(8 ] (“>7)),
(le], (*<™)),
([and], (“And”)),
([lor], (*Or™))

les/fragments/compound/concrete.fra

(([concat], (7, 7, 7))

lcs/fragments/selection/if /optional /concrete.fra

(
([lf], <“If”, ?7 “Then”, ?, ?, “End”)),
([else], (“Else”, 7))

)

les/fragments /iteration /while/concrete.fra
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(([while], (“While?, 2, “Do”, 7, “End”)))
lcs/fragments/variable/concrete.fra

([vded], (“Var®, 2, *, ),
<[aSSign]7 (77 “-':”7 ?>>

)

les/fragments/input/concrete.fra

(([input], (“Input”, 7)))

les/fragments/output/concrete.fra
({[output], (“Output”, ?)))

The following transformation adapts the rule for dyadic expressions to force enclosing
brackets. Thereby, priorities of operation symbols become irrelevant.

les/tools/dyadicInBrackets.fra
Concretize By (([dyadic], (“(”, 2,2, 7, “)"}))
The following transformation installs an optional else-part for if-statements.
les/tools /if Optional.fra
A skip : Tag .

Unfold [else] By (skip) Into [noelse]
o Fold [if] By (?, 7, else) Into [else]

Note that the above approach based on folding and unfolding has been described in
Example 3.3.5.

D.1.6 Auxiliary modules

For completeness, all the auxiliary modules used in the composition of the sample language
are included below. First, a suitable scanner definition is shown (lib/scanner/trivial.lg).
Second, a simple symbol table management module is presented (lcs/adts/simpleSt.ir).
Third, the application of basic operations (of the sample language) is specified in terms of
basic operations of AAA. Finally, an ADT for memories is included (lcs/adts/memory.ir).

lib/scanner/trivial.lg
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Sets
letter =4 .. 2| ‘e’ L. ‘2.
digit =0 .. 9.
but_eoln = Any — Eoln.
but_star = Any — ‘¥’
but_div_star = Any — “/*7.
Classes
spaces = (Space | Tab | Eoln)+.
id = letter (letter | digit)* : lib/conv chars2identifier.
nat = digit+ : 1lib/conv chars2integer.
end = Eof.
comment = ¢/ ‘¥’ ( but_star | ‘*’4 but.div_star )* ‘x4 ¢/’
| ¢%’ but_eolnx.
Switches
Skip spaces.
Skip comment.
les/adts/simpleSt.ir
ST = ENTRY=*

ENTRY = <ID, INFO>

# return the empty symbol table

init: — ST

init — [

/# add an entry

add: ST x ID x INFO — ST

[add] — ENTRY* = _ ++ [<@ID, _>] ++ _

add(ENTRY*, ID, INFO) — [<ID, INFO>|ENTRY*]

/# lookup an entry
lookup: ST x ID — INFO
[lookup] lookup(_ ++ [<ID, INFO>] ++ _, @ID) — INFO

les/adts/bops.ir

INT = Integer
BOOL = Boolean
VAL = intV(INT) + boolV(BOOL)

MOS = neg + not
DOS = plus + minus + times + div
+ eq + neq + gt + 1t + ge + le
+ and + or
evaluateMonadic: MOS x VAL — VAL
evaluateDyadic: DOS x VAL x VAL — VAL

APPENDIX D. A COLLECTION OF META-PROGRAMS
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[neg] —INT — INT’

evaluateMonadic(neg, intV(INT)) — intV(INT’)
[not1] evaluateMonadic(not, boolV(True)) — boolV(False)
[not2] evaluateMonadic(not, boolV(False)) — boolV(True)

[plus] INT; + INT, — INT

evaluateDyadic(plus, intV(INT;), intV(INT;)) — intV(INT)
[minus] INT;y — INT, — INT

evaluateDyadic(minus, intV(INT;), intV(INTy)) — intV(INT)
[times] INT; * INT, — INT

evaluateDyadic(times, intV(INT;), intV(INTy)) — intV(INT)
[div] INT; // INT, — INT

evaluateDyadic(div, intV(INT;), intV(INT3)) — intV(INT)
[and] 7 BOOL < BOOL; A BOOL,

evaluateDyadic(and, boolV(BOOL;), boolV(B0OOLy)) — boolV(BOOL)
[or] 7 BOOL <« BOOL; V BOOL,

evaluateDyadic(or, boolV(BOOL;), boolV(BOOLy)) — boolV(BOOL)
[eql] evaluateDyadic(eq, VAL, @VAL) — boolV(True)
[eql] VAL =/= VAL’ = evaluateDyadic(eq, VAL, VAL’) — boolV(False)

[neq] evaluateDyadic(eq, VAL;, VAL,) — VAL,
evaluateMonadic(not, VAL) — VAL’

evaluateDyadic(neq, VAL;, VAL,) — VAL’

[1t1] evaluateDyadic(lt, boolV(False), boolV(True)) — boolV(True)
[1t2] evaluateDyadic(1lt, boolV(False), boolV(False)) — boolV(False)
[1t3] evaluateDyadic(lt, boolV(True), boolV(True)) — boolV(False)

[1t4] ? BOOL <« INT; < INT,

evaluateDyadic(lt, intV(INT;), intV(INT3)) — boolV(BOOL)

[gt1l] evaluateDyadic(gt, boolV(False), boolV(True)) — boolV(False)
[gt2] evaluateDyadic(gt, boolV(False), boolV(False)) — boolV(False)
[gt3] evaluateDyadic(gt, boolV(True), boolV(True)) — boolV(True)

[gt4] 7 BOOL <« INT; > INT,

evaluateDyadic(gt, intV(INT;), intV(INT3)) — boolV(BOOL)

[ge]l evaluateDyadic(lt, VAL;, VAL,) — VAL,
evaluateMonadic(not, VAL) — VAL’

evaluateDyadic(ge, VAL;, VAL,) — VAL’
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[le] evaluateDyadic(gt, VAL;, VAL,) — VAL,
evaluateMonadic(not, VAL) — VAL’

evaluateDyadic(le, VAL;, VAL,) — VAL’

lcs/adts/memory.ir

# memories binding identifiers to values

MEM = <ID, VAL>x*

4 return the empty memory

init: — MEM

[init] init — []

/% update the memory

update: MEM x ID x VAL — MEM

[updatel] update([], ID, VAL) — [<ID, VAL>]

[update2] update([<ID, _VAL>|MEM], @ID, VAL) — [<ID, VAL>|MEM]

[update3] ID # ID’,
update(MEM, ID’, VAL’) — MEM’

update([<ID, VAL>|MEM], ID’, VAL’) — [<ID, VAL>[MEM’]

/% lookup the memory
lookup: MEM x ID — VAL
[lookup] lookup(MEM ++ [<ID, VAL>] ++ _MEM, @ID) — VAL

D.2 The divide-and-conquer schema

The program transformation below can be regarded as a representation of the divide-and-
conquer schema; refer also to Subsection 4.4.3.

A(r) : Symbol*.
A(isMinimal, solve, isNonminimal, decompose, compose) : Symbol*.
Mz, y, z) : Sort*.
Let xp = New Variable Of Sort z In
Let yo = New Variable Of Sort y In
Let 1 = New Variable Of Sort z In
Let y; = New Variable Of Sort y In
Let 2o = New Variable Of Sort z In
Let y» = New Variable Of Sort y In
Let zp = New Variable Of Sort z In (
Rule From [minimal] 7 (x) — (y) < ( isMinimal (x) — (), solve (x) — (y) ),
Rule From [nonminimal] r (x) — (y) < ( isNonminimal (x) — (),
decompose (x) — (z, 11, 12),
r(x1) = (y1),
rxa) = (ya),
compose (z,y1,y2) — (y) )
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D.3 Symbol tables in a block-structured language

The following transformation describes the accumulation of a symbol table in the declaration part,
the pervasive inheritance in the statement part and its proper initialization for a block-structured
language. Thus, it generalizes Example 4.2.2.

A sk : Skeleton .
Default For ST By &static initST
o Left To Right ST
o (Let write = From {block} To {declaration} In sk In
Let read = From {block} To {declaration, expression} In sk In
Ensure (
Positions Output For (write U {declaration}) \ {block} Of Sort ST ++
Positions Input For read U {block, declaration, expression} Of Sort ST

)
)

The transformation is based on the following assumptions: The nonterminal ezpression models
expressions, whereas declaration models declarations. Both, program blocks and any other kind
of nested blocks (e.g. as a part of a function or a procedure declaration), are modelled by the
nonterminal block. A block consists of a declaration and a statement part. All symbols on
paths between block and declaration | expression including the symbols block, declaration and
expression need at least reading access to the symbol table (Positions Input). Since, the
symbol table is accumulated in the declarations part, some more symbols need writing process as
well (Positions Output). We have to take care that block does not synthesize a symbol table
(... \ {block}) because the symbol table entries of a nested block should not be visible in the
enclosing block.

D.4 The Constituents ... With ... construct

We derive a schema useful to establish a computational behaviour simulating the Constituents
... With ... construct for remote access discussed in Subsection 3.4.2. The profile of the schema
takes the following form:

Constituents ... With ., ., . _For _In _ :
Symbol x Sort x Sort x Symbol x Symbol x Symbol x Symbol x P(Tag) — Trafo

Consider the following application of the schema:

Constituents s.c With o', union, unit, zero For for In in,

The schema can be subdivided into several transformations to be performed subsequently:

1. For any occurrence of a parameter p of sort ¢ on an output position of s a computation
unit(p) — (p'), where p’ is a fresh variable of sort ¢’, will be included.

2. All symbols on paths between for and (including) the symbols defined by rules using s get
attached an output position of sort o’.
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3. All unused occurrences of parameters pi, ..., p, of sort ¢’ have to be composed by a
sequence of computations

union(p1,p2) — P, -, union(pl,_o, Pn) — Ph_1

where p, ..., pl,_, are fresh variables of sort o’.

4. The added output positions (refer to step (2.)) are defined by taking the most recent
definition from the left.

5. The remaining undefined occurrences p of sort ¢’ are defined by inserting a computation
zero — p assuming zero as a left unit of union.

The actual specification is the following:

A rsym : Symbol .
A rsort : Sort .
A aux : Sort .
A union : Symbol .
A unit : Symbol .
A zero : Symbol .
A for : Symbol .
Ain : P(Tag) .
Ars: Rules .
Let sk = Skeleton Of rs In
Let cl = (From {for} To {rsym} In sk) U {for} In
% 5. insert constant computations
Default For aux By zero
% 4. copy accumulated value to the LHS
o From The Left aux
% 8. combine defining occurrences
o Forgetting Tags in Do
Reduce aux By union
% 2. add positions for synthesis
o Add Positions Output For cl Of Sort aux
% 1. add unary computations
o Selecting Symbols cl Do
Hiding unit Do (
Add ((Output, unit, aux))
o Use (Output, rsym, rsort) By unit

)

On rs.

To give an example, we start with a GSF schema for a part of an imperative language with
terminal attribution for identifiers. For simplicity, no other attribution is considered here.

[prog] program : declarations, statements.

[decs] declarations : declaration, declarations.
[nodec] declarations :
[dec] declaration : type, identifier — ID.
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[int]  type :

[bool] type :

[concat] statements : statement, statements.
[skip] statements :

[assign] statement : variable, expression.
[var] expression : variable.
[varid] variable : identifier — ID.

Similarly to the example in Subsection 3.4.2, all occurrences of identifiers should be accumu-
lated separately for the declaration and the statement part. This is modelled by the following
application of the operator Constituents:

Let t = A s : Symbol .

Constituents identifier.ID
With IDS, &ids union, &ids unit, &ids zero
For s

In {[prog]}
In (t On declarations) o (t On statements).

The result of the transformation is the following:
[prog] program

declarations — IDS47,
statements — IDSj.

[decs] declarations — IDSg;

declaration — IDS;ys,
declarations — IDSyg,
&ids union(IDSis, IDSi9) — IDSy;.

[nodec] declarations — IDSy,

&ids zero — IDSy.
[concat] statements — IDSio

statement — IDS;,
statements — IDSsg,
&ids union(IDS;, IDSs) — IDSi,.

[skip] statements — IDSg

&ids zero — IDSg.
[dec] declaration — IDSig

type,
identifier — ID,
&ids unit(ID) — IDSi4.

[assign] statement — IDS;3

variable — IDS7,
expression — IDSiq,
&ids union(IDS;, IDSyp) — IDSi3.
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[int] type :
[bool] type :
[varid] variable — IDS,

identifier — 1ID,
&ids unit(ID) — IDS,.

[var] expression — IDSg

variable — IDSg.

The rule [prog] could be extended to make use of the derived sets of identifiers, e.g. to check
that all declared identifiers are also used.

D.5 Elimination of tail recursion

We demonstrate a simple elimination procedure for tail recursion. It is assumed that the rules
for the dedicated symbol sym describe a traversal of a data structure of certain sort sort. Tail-
recursive calls of sym are then eliminated by returning the parameter of sort as a new output of
the conclusion.

Consider, for example, the following inference rules of a big step semantics. There are tail
calls in [while], [then] and [else].

[assign] evaluate(EXP, MEM) — VAL,
update(MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM) — MEM’
# first evaluate condition, then branch on wvalue
[if] evaluate(EXP, MEM) — VAL,
cond (VAL, STM;, STM,, MEM) — MEM’

execute(if (EXP, STM;, STM;), MEM) — MEM’
[while] concat(STM, while(EXP, STM)) = STM’,
if (EXP, STM’, skip) = STM’’,
execute(STM’’, MEM) — MEM’

execute(while (EXP, STM), MEM) — MEM’

/# ezecute the Then—path of an If—statement
[then] execute(STM, MEM) — MEM’

cond (boolV(True), STM, _STM, MEM) — MEM’

/# ezecute the Else—path of an If—statement
[else] execute(STM, MEM) — MEM’

cond (boolV (False), _STM, STM, MEM) — MEM’

The following variant is the result of the transformation eliminating the tail calls. The param-
eter skip is used for rules without tail-recursive calls. Concerning styles of semantics definition,
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we moved from a big step semantics (natural semantics) to a small step semantics (transitional
semantics).

[assign] evaluate(EXP, MEM) — VAL,
update(MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM) — (MEM’, skip)

[if] evaluate(EXP, MEM) — VAL,
cond(VAL, STM;, STM,, MEM) — (MEM’, STMs)

execute(if (EXP, STM;, STM,), MEM) — (MEM’, STMg)

[while] concat(STM, while(EXP, STM)) = STM’,
if (EXP, STM’, skip) = STM’’

execute(while (EXP, STM), MEM) — (MEM, STM’?’)
[then] cond(boolV(True\BOOL), STM, STM3, MEM) — (MEM, STM)
[else] cond(boolV(False\BOOL), STMs, STM, MEM) — (MEM, STM)

There are certain assumptions for the elimination procedure which are skipped here. The
definition of the transformation is omitted here as well because of its extent.

D.6 Establishing CPS

We demonstrate a transformation which is suitable to establish the continuation passing style
for the rules of a dedicated symbol sym. The continuations are of a certain sort sort. There
is a functor skip for the empty continuation and another functor concat for the combination of
continuations. To illustrate this transformation, we continue the example of the previous section
by transforming the transitional semantics into a semantics in the continuation passing style.

[assign] evaluate(EXP, MEM) — VAL,
update(MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM, STMg) — (MEM’, STMs)

[if] evaluate(EXP, MEM) — VAL,
cond(VAL, STM;, STM,, MEM) — (MEM’, STMs)

execute(if (EXP, STM;, STM,), MEM, STM;) — (MEM’, concat(STMg, STM7))

[while] concat(STM, while(EXP, STM)) = STM’,
if (EXP, STM’, skip) = STM’’

execute(while (EXP, STM), MEM, STMg) — (MEM, concat(STM’’, STMg))
[then] cond(boolV(True\BOOL), STM, STM3, MEM) — (MEM, STM)
[else] cond(boolV(False\BOOL), STMs, STM, MEM) — (MEM, STM)

There are certain assumptions for the applicability of the transformation which are skipped
here. The definition of the transformation is omitted here as well because of its extent.
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D.7 Coupling

Modular specifications consisting of several phases implicitly describe certain central data struc-
tures more than once. In a language processor, for example, the abstract syntax is described
twice, once by the “frontend” performing AST construction among other subtask and once by
the dynamic semantics definition performing essentially a traversal of the given AST.

In this section we want to introduce a transformation which scans a given specification for term
constructors and then tries to match the skeleton of another specification with these constructors.
The justification for such a matching process is the well-known correspondence between signatures
(term constructors) and context-free grammars (skeletons).

Let us first consider an example. The following rule defines the static semantics of assignment
statement of a simple imperative language.

[assign] statement (ST)

id — ID,

&static isVar(ST, ID) — T,
expression(ST) — T’,
&static assignable(T, T’).

The following rule defines the dynamic semantics of the assignment statements. The abstract
syntax is implicitly covered, since a semantics definition is essentially a traversal of the abstract
syntax.

execute: STM x MEM — MEM
evaluate: EXP x MEM — VAL

[assign] evaluate(EXP, MEM) — VAL,
update (MEM, ID, VAL) — MEM’

execute(assign(ID, EXP), MEM) — MEM’

To couple the two phases, the above GSF rules should construct terms according to the term
constructors in the semantics definition. We first show the result we are interested in.

[assign] statement(ST) — STM,

id — ID,

&static isVar(ST, ID) — T,
expression(ST) — (T’, EXPy),
&static assignable(T, T’),
&ast assign(ID, EXPy) — STM,.

The result can be obtained from the previous GSF rule which does not cover AST construction
by the transformation below. The meta-program takes two specifications as input. Furthermore,
a number of nonterminals which do not contribute to abstract syntax can be enumerated. The
transformation first looks for associations of skeleton symbols and sorts by matching the con-
structor profiles with skeleton rules based on conformance of constructor symbol and tag. The
accumulated associations are then used in a simple application of the operator Relate for adding
compositional parameterization to construct (as in the example) or deconstruct terms accordingly.

les/transformers/ast.fra
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% add an association preserving mapping condition
Let extendMap = X as : P(Association) . A sym : Symbol . A sort : Sort .
Let sofar =
Fold Left
A sort0 : Sort? . A (syml, sortl) : Association .
sym = syml — sortl, sortO
Neutral ? List as
In sofar = 7 — as ++ ((sym, sort)), sofar = sort o— as
In

A at : Rules . Aio: Io . Aignore : P(Symbol) . A pfx : Prefix .
A sk : Skeleton .

% accumulate oll constructors (auziliary function)
Let constructors = constructorsInRules On at In

Let associations =

% iterate signature with constructors
Fold Left
A as : P(Association) . A prof : Profile .
= Symbol Of prof € constructors —

as,
Let tag = Tag From Symbol Of prof In
Let maybe =

Fold Left A\ maybe : (Name x Name*)? . A (t, ], r) : Shape .
t = tag — (1, r), maybe
Neutral ? List sk
In
maybe = 7 —
% no matching rule found for current constructor profile
as,
Let (sym, syms) = maybe In
sym € ignore —
% LHS symbol to be ignored = ignore rule altogether
as,
Let (target) = Sorts Output Of prof In
Let (sorts, as) =
% match LHS / RHS of rule with target / source of constructor
Fold Left
A (rest, sofar) : (Sort*, P(Association)) . A sym : Name .
sym € ignore —
(rest, sofar),
(Tail Of rest, extendMap On sofar On sym On Head Of rest)
Neutral (Sorts Input Of prof, (extendMap On as On sym On target))
List syms
In sorts = () o— as
Neutral () List Sigma Of at
In

% attach compositional computational behaviour
Selecting Symbols Symbols Associated In associations
Do Relate io associations pfx






Bibliography

[ABFQ92]

[ACY0]

[ACG92]

[Ada91]

[AFZ388

[AIb91]

[AMOY1]

[APY1]

[APY4]

Francis Alexandre, Khadel Bsaies, Jean Pierre Finance, and Alain Quere. Spes:
A System for Logic Program Transformation. In A. Voronkov, editor, Logic Pro-
gramming and Automated Reasoning, LPAR’92, volume 624 of LNCS, pages 445-447.
Springer-Verlag, 1992.

Isabelle Attali and Jacques Chazarain. Functional evaluation of strongly non-circular
typol specifications. In Pierre Deransart and Martin Jourdan, editors, Attribute
Grammars and their Applications (WAGA), volume 461 of LNCS, pages 157-176.
Springer-Verlag, September 1990. Paris.

Isabelle Attali, Jacques Chazarain, and Serge Gilette. Incremental Evaluation of
Natural Semantics Specifications. In M. Bruynooghe and M.Wirsing, editors, Pro-
gramming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 87-99. Springer-Verlag, New York-Heidelberg—
Berlin, August 1992.

Stephen Robert Adams. Modular Grammars for Programming Language Prototyp-
ing. PhD thesis, University of Southampton, Faculty of Engineering, Department of
Electronics and Computer Science, March 1991.

I. Attali and P. Franchi-Zannettacci. Unification-free execution of TYPOL programs
by Semantic Attribute Evaluation. In Fifth International Conference Symposium on
Logic Programming, Seattle, pages 166—-177. Cambridge MIT Press, August 1988.

H. Alblas. Introduction to attribute grammars. In Alblas and Melichar [AM91],
pages 1-15.

Henk Alblas and Borivoj Melichar, editors. Attribute grammars, Applications and
Systems, Proceedings of the In ternational Summer School SAGA, Prague, Czechoslo-
vakia, volume 545 of LNCS. Springer-Verlag, June 1991.

Martin Abadi and Gordon D. Plotkin. A logical view of composition and refinement.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages, pages 323-332, Orlando, Florida, January 1991.

I. Attali and D. Parigot. Integrating natural semantics and attribute grammars: the
minotaur system. Research Report no. 2339, Inria, September 1994.

229



230

[APR97]

[Att89]

[Bau98]

[BCD+88]

[BD77]

[BAMY7]
[BLY2]

[BMPT94]

[Boy96a]

[Boy96b]

[Boy98]

[BR94]

[Bra92]

[Bro93]

[Bru95s]

BIBLIOGRAPHY

Isabelle Attali, Valrie Pascual, and Christophe Roudet. A language and an integrated
environment for program transformations. Rapport de recherche 3313, INRIA, De-
cember 1997.

I. Attali. Compiling TYPOL with Attribute Grammars. In Deransart et al. [DLM89],
pages 252-272.

Beate Baum. Modularisierung attributierter Grammatiken. PhD thesis, Department
of Comp. Sc., University Rostock, 1998.

P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual.
Centaur: the system. In Proceedings of SIGSOFT’88, Boston, USA, 1988.

R. M. Burstall and John Darlington. A transformation system for developing recur-
sive programs. Journal of the ACM, 24(1):44-67, January 1977.

Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

Gilad Bracha and Gary Lindstrom. Modularity Meets Inheritance. In Proceedings of
the IEEE International Conference on Computer Languages, April 1992.

A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular Logic Programming.
ACM Transactions on Programming Languages and Systems, 16(3):225-237, 1994.

Johan Boye. Directional Types in Logic Programming. PhD thesis, University of
Linkoping, 1996.

John Tang Boyland. Descriptional Composition of Compiler Components. PhD
thesis, University of California, Berkeley, September 1996. Available as technical
report UCB//CSD-96-916.

John Tang Boyland. Analyzing Direct Non-local Dependencies. In Kai Koskimies,
editor, Compiler Construction, 7th International Conference, CC’98, volume 1383 of
LNCS, pages 31-49. Springer-Verlag, April 1998.

E. Borger and D. Rosenzweig. The WAM — Definition and Compiler Correctness. In
C. Beierle and L. Pliimer, editors, Logic Programming: Formal Methods and Practical
Applications, Studies in Computer Science and Artificial Intelligence, chapter 2, pages
20-90. North-Holland, 1994.

Gilad Bracha. The Programming Language Jigsaw: Mizins, Modularity and Multiple
Inheritance. PhD thesis, The University of Utah, Department of Computer Science,
March 1992.

Antonio Brogi. Program Construction in Computational Logic. PhD thesis, Univer-
sity of Pisa, 1993.

J.J. Brunekreef. Translog, an Interactive Tool for Transformation of Logic Programs.
Technical Report P9512, University of Amsterdam, Programming Research Group,
December 1995.



BIBLIOGRAPHY 231

[BS98]

[ByW9s]

[CD84]

[CDPRYS]

[CF94]

[CFZ82a)

[CFZ82b]

[C184]

[Coa95]

[DCY0]

[Des88|

[Dev90]

[Dij76]
[DL94]

[DLMS89]

[DMS8S5]

E. Borger and W. Schulte. Programmer Friendly Modular Definition of the Semantics
of Java. In J. Alves-Foss, editor, Formal Syntazr and Semantics of Java, LNCS.
Springer-Verlag, 1998.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, April 1998.

Bruno Courcelle and Pierre Deransart. Proofs of Partial Correctness for Attribute
Grammars with Application to Recursive Procedures and Logic Programming. Tech-
nical Report RR 332, INRIA Rocquencourt, 1984.

L. Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Symbolic composi-
tion. Technical Report 3348, INRIA, January 1998.

Robert Cartwright and Matthias Felleisen. Extensible denotational language spec-
ifications. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of
Computer Software: International Symposium, volume 789, pages 244-272. Springer-
Verlag, April 1994.

Bruno Courcelle and Paul Franchi-Zannettacci. Attribute Grammars and Recursive
Program Schemes 1. Theoretical Computer Science, 17(2):163-191, February 1982.

Bruno Courcelle and Paul Franchi-Zannettacci. Attribute Grammars and Recursive
Program Schemes II. Theoretical Computer Science, 17(3):235-257, March 1982.

Robert D. Cameron and M. Robert Ito. Grammar-Based Definition of Metapro-
gramming Systems. ACM Transactions on Programming Languages and Systems,
6(1):20-54, 1984.

P. Coad. Object Models: Strategies, Patterns and Applications. Prentice Hall, 1995.

G.D. Dueck and G.V. Cormack. Modular Attribute Grammars. The Computer
Journal, 33(2):164-172, 1990.

T. Despeyroux. Typol: A formalism to implement natural semantics. Technical
report 94, INRIA, March 1988.

Y. Deville. Logic Programming: Systematic Program Development. Addison Wesley,
1990.

E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, 1976.

Yves Deville and Kung-Kiu Lau. Logic Program Synthesis. The Journal of Logic
Programming 19, pages 321-350, 1994.

P. Deransart, B. Lorho, and J. Maluszynski, editors. Programming Languages Im-
plementation and Logic Programming, Proceedings of the International Workshop
PLILP ’88, Orleans, France, number 348 in LNCS. Springer-Verlag, May 1989.

Pierre Deransart and Jan Maluszynski. Relating Logic Programs and Attribute
Grammars. Journal of Logic Programming, 2(2):119-155, 1985.



232

[DM93]

[DPRJ96]

[DPRJ97]

[DS96]

[Esp95]

[FFGI1]

[FLO97]

[FMY92]

[Fuc97]

[Gal97]

[Gan83]

[GE90]

[GHL*92]

BIBLIOGRAPHY

Pierre Deransart and Jan Maluszynski. A Grammatical View of Logic Programming.
The MIT Press, 1993.

Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Attribute gram-
mars and folds: Generic control operators. Rapport de recherche 2957, INRIA,
August 1996.

Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Structure-
directed genericity in functional programming and attribute grammars. Rapport
de Recherche 3105, INRIA, February 1997.

Dominic Duggan and Constantinos Sourelis. Mixin modules. In Proceedings of the
1996 ACM SIGPLAN International Conference on Functional Programming, pages
262-273, Philadelphia, Pennsylvania, 24-26 May 1996.

David A. Espinosa. Semantic Lego. PhD thesis, Graduate School of Arts and Sciences,
Columbia University, 1995.

Limor Fix, Nissim Francez, and Orna Grumberg. Program composition and mod-
ular verification. In Javier Leach Albert, Burkhard Monien, and Mario Rodriguez-
Artalejo, editors, Automata, Languages and Programming, 18th International Collo-
quium, volume 510 of LNCS, pages 93-114, Madrid, Spain, 8-12 July 1991. Springer-
Verlag.

P. Flener, K.-K. Lau, and M. Ornaghi. On Correct Program Schemas. In Fuchs
[Fuc97]. Report CW 253, Katholieke Universiteit Leuven, Department Of Computing
Science.

R. Farrow, T.J. Marlowe, and D.M. Yellin. Composable Attribute Grammars. In
Proceedings of 19th ACM Symposium on Principles of Programming Languages (Al-
buquerque, NM), pages 223-234, January 1992.

Norbert E. Fuchs, editor. Proceedings LOPSTR’97, Leuven, Belgium. July 1012,
1997, 1997. Report CW 253, Katholieke Universiteit Leuven, Department Of Com-
puting Science.

John (John P.) Gallagher, editor. Logic program synthesis and transformation: 6th
International Workshop, LOPSTR’96, Stockholm, Sweden, August 28-30, 1996: pro-
ceedings, volume 1207 of LNCS, New York, NY, USA, 1997. Springer-Verlag Inc.

Harald Ganzinger. Increasing Modularity and Language Independency in Automat-
ically Generated Compilers, 1983.

Josef Grosch and Helmut Emmelmann. A Tool Box for Compiler Construction. In
Proceedings of CC’90, 1990.

R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A Complete,
Flexible Compiler Construction System. Communications of the ACM 35, pages 121—
131, February 1992.



BIBLIOGRAPHY 233

[Gie88]

[Gur95]

[Har97]

[Has97]

[Hed89]

[Hed91]

[Hed92]

[Hed94]

[Heh93]

[HL8Y)]

[HL94]
[HLR97]

[HN95]

[HN96]

[Hud96]
[Jai95]

R. Giegerich. Composition and Evaluation of Attribute Coupled Grammars. Acta
Informatica 25, pages 355-423, 1988.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifica-
tion and Validation Methods, pages 9-36. Oxford University Press, 1995.

Jorg Harm. Automatic Test Program Generation from Formal Language Spe cifica-
tions. In RIB [RIB97]. 24 pages, to appear.

Haskell 1.4—A Non-strict, Purely Functional Language, April 1997. Yale University,
University of St. Andrews.

Gorel Hedin. An object-oriented notation for attribute grammars. In S. Cook, ed-
itor, Proceedings of the 3rd European Conference on Object-Oriented Programming
(ECOOP’89), BCS Workshop Series, pages 329-345. Cambridge University Press,
July 1989.

Gorel Hedin. Incremental static-semantics analysis for object-oriented languages us-
ing door attribute grammars. In Alblas and Melichar [AM91], pages 374-379.

Gorel Hedin. Incremental Semantic Analysis. Ph.D. thesis, Lund University, Lund,
Sweden, 1992. LUTEDX/(TECS-1003)/1-276/(1992).

Gorel Hedin. An Overview of Door Attribute Grammars. In P.A. Fritzson, editor,
Proceedings of Compiler Construction CC’94, 5th International Conference, CC’94,
Edinburgh, U.K., number 786 in LNCS, pages 31-51, 1994.

E.C.R. Hehner. A Practical Theory of Programming. Springer-Verlag, 1993.

Ivo Van Horebeek and Johan Lewi. Algebraic Specifications in Software Engineering.
Springer-Verlag, 1989.

P.M. Hill and J.W. Lloyd. The Godel Programming Language. MIT Press, 1994.

Jorg Harm, Ralf Lammel, and Ginter Riedewald. The Language Development Lab-
oratory (AAA). In Magne Haveraaen and Olaf Owe, editors, Selected papers from
the 8th Nordic Workshop on Programming Theory, December 4—6, Oslo, Norway,
Research Report 248, ISBN 82-7368-163-7, pages 77-86, May 1997.

A. Hamfelt and J.F. Nilsson. Towards a Logic Programming Methodology based on
Higher-order Predicates. 23 pages, 1995.

A. Hamfelt and J.F. Nilsson. Declarative Logic Programming with Primitive Recur-
sive Relations on Lists. In P. Maher, editor, Proceedings of the Joint International
Conference and Symposium on Logic Programming, MIT Press, pages 230-243, 1996.

Paul Hudak. Building Domain-Specific Embedded Languages, December 1996.

Ashish Jain. Projections of Logic Programs using Symbol Mappings. In Leon Sterling,
editor, Logic Programming, Proceedings of the Twelfth International Conference on
Logic Programming, June 13-16, 1995, Tokyo, Japan. MIT Press, June 1995.



234

[JC94]

[JD93]

[Jeu95]

[JF85]

[JJ96]

[7J97]

[TKS94]

[JPY0]

[IP91]

[JPJT90]

[JRG92]

[1594]

[Kah87]

BIBLIOGRAPHY

C.B. Jay and J.R.B. Cockett. Shapely types and shape polymorphism. In Donald
Sannella, editor, Proceedings Programming Languages and Systems-ESOP’9/, volume
788 of LNCS, pages 302-316. Springer-Verlag, 1994.

Mark P. Jones and Luc Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale University, December 1993.

J. Jeuring. Polytypic pattern matching. In Conference Record of FPCA ’95,
SIGPLAN-SIGARCH-W(G2.8 Conference on Functional Programming Languages
and Computer Architecture, pages 238-248, 1995.

Gregory F. Johnson and Charles N. Fischer. A meta-language and system for nonlocal
incremental attribute evaluation in language-based editors. In Conference Record of
the Twelfth Annual ACM Symposium on Principles of Programming Languages, pages
141-151, New Orleans, Louisiana, January 1985.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer, and
T. Sheard, editors, Advanced Functional Programming, Second International School,
volume 1129 of LNCS, pages 68—114. Springer-Verlag, 1996.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension.
In POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 470-482. ACM Press, 1997.

Ashish Jain, Marc Kirschenbaum, and Leon Sterling. Constructing provably correct
logic programs. Technical Report CES-94-04, Department of Computer Engineering
and Science, Case Western Reserve University, March 1994.

Martin Jourdan and Didier Parigot. Application Development with the FNC-2 At-
tribute Grammar System. In Dieter Hammer and Michael Albinus, editors, Compiler
Compilers ’90, volume 477 of LNCS, pages 11-25. Springer-Verlag, Schwerin, 1990.

Martin Jourdan and Didier Parigot. Internals and Externals of the FNC-2 Attribute
Grammar System. In Alblas and Melichar [AM91], pages 485-504.

Martin Jourdan, Didier Parigot, Catherine Julié, Olivier Durin, and Carole Le Bellec.
Design, implementation and evaluation of the FNC-2 attribute grammar system. In
Conf. on Programming Languages Design and Implementation, pages 209-222, White
Plains, NY, June 1990. Published as ACM SIGPLAN Notices, 25(6).

Tan Jacobs and Laurence Rideau-Gallot. A Centaur Tutorial. Rapport de recherche
2881, INRIA Sophia-Antipolis, July 1992.

Ashish Jain and Leon Sterling. A methodology for program construction by stepwise
structural enhancement. Technical Report CES-94-10, Department of Computer
Engineering and Science, Case Western Reserve University, June 1994.

Gilles Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects
of Computer Science, volume 247 of LNCS, pages 22-39, Passau, Germany, 19—
21 February 1987. Springer-Verlag.



BIBLIOGRAPHY 235

[Kan91]

[Kas76]

[Kas91]

[K1i93]

[K1i94]
[KLM™'97]

[KLMM93]

[KMS96]

[Knu68]

[Kos91]

[KSJ93]

[KT93]

[KW94]

[KW96]

Max I. Kanovich. Efficient program synthesis: Semantics, logic, complexity. In
T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume
526, pages 615-632. Springer-Verlag, September 1991.

Uwe Kastens. Ein Ubersetzer—erzeugendes System auf der Basis Attributierter Gram-
matiken. interner Bericht 10, Fakultat fiir Informatik, University Karlsruhe, Septem-
ber 1976.

Uwe Kastens. Attribute Grammars in a Compiler Construction Environment. In
Alblas and Melichar [AM91], pages 380—400.

Paul Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2), pages 176-201, 1993.

Paul Klint. Writing meta-level specifications in ASF+SDF. Draft, November 1994.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, ECOOP’97—Object-Oriented Programming,
11th European Conference, volume 1241 of LNCS, pages 220-242, Jyvaskyla, Finland,
9-13 June 1997. Springer-Verlag.

J. Lindskov Knudsen, M. Lofgren, O. Lehrmann Madsen, and B. Magnusson, editors.
Object-Oriented Environments: The Mjdiner Approach. Prentice Hall, 1993.

M. Kirschenbaum, S. Michaylov, and L.S. Sterling. Skeletons and Techniques as a
Normative Approach to Program Development in Logic-Based Languages. In Proceed-
ings ACSC’96, Australian Computer Science Communications, 18(1), pages 516-524,
1996.

D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory, 2:127-145,
1968. Corrections in 5:95-96, 1971.

Kai Koskimies. Object Orientation in Attribute Grammars. In Alblas and Melichar
[AM91], pages 297-329.

M. Kirschenbaum, L.S. Sterling, and A. Jain. Relating logic programs via program
maps. In Annals of Mathematics and Artifical Intelligence, 8(111-1V), pages 229-246,
1993.

J. Komorowski and S. Trcek. Towards Refinement of Definite Logic Programs. In
ERCIM Workshop on Development and Transformation of Logic Programs, France,
1993.

Uwe Kastens and W.M. Waite. Modularity and reusability in attribute grammars.
Acta Informatica 31, pages 601-627, 1994.

Basim M. Kadhim and William M. Waite. Maptool — Supporting Modular Syntax
Development. In Tibor Gyiméthy, editor, Compiler Construction, 6th International
Conference, CC’96, volume 1060 of LNCS, pages 268-280. Springer-Verlag, April
1996.



236

[Lak89)]

[LAm97]

[Lar97]
[Le 89]

[Le 93]

[LEW96]

[LH96]

[LHJ95]

[Lie95]

[LJPR93]

[LNC91]

[Lor77]

[LR96)

[LRY7]

BIBLIOGRAPHY

A. Lakhotia. A Workbench for Developing Logic Programs by Stepwise Enhancement.
PhD thesis, Case Western Reserve University, 1989.

Ralf Lammel. Composition based on Meta-Programming. In Antonio Brogi and
Patricia Hill, editors, Proceedings of LOCOS’97, LOGIC-BASED COMPOSITION
OF SOFTWARE, Post Conference Workshop for the International Conference on
Logic Programming, Leuven, Belgium, July 8-11th, 1997, pages 49-58, July 1997.

Craig Larman. Applying UML and Patterns. Prentice Hall, 1997.

Carole Le Bellec. Spécification de regles sémantiques manquantes. rapport de DEA,
Dépt. d’Informatique, University d’Orléans, September 1989.

/////

Carole Le Bellec. La généricité et les grammaires attribuées. PhD thesis, Dépt.
d’Informatique, University d’Orléans, 1993.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Abstract
Data Types. Wiley and Teubner, 1996.

S. Liang and P. Hudak. Modular Denotational Semantics for Compiler Construction.
In Nielson [Nie96], pages 219-234.

Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and modular
interpreters. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 333-343, San Francisco,
California, January 1995.

Karl J. Lieberherr. Adaptive Object-Oriented Software — The Demeter Method. PWS
Publishing Company, 1995.

Carole Le Bellec, Martin Jourdan, Didier Parigot, and Gilles Roussel. Specification
and Implementation of Grammar Coupling Using Attribute Grammars. In Mau-
rice Bruynooghe and Jaan Penjam, editors, Programming Language Implementation
and Logic Programming (PLILP ’93), volume 714 of LNCS, pages 123-136, Tallinn,
August 1993. Springer-Verlag.

Algebraic Methods II: Theory, Tools and Applications. In Jan A. Bergstra and
Loe M.G. Feijs, editors, Algebraic Methods I1: Theory, Tools and Applications, volume
490. Springer-Verlag, 1991.

Bernard Lorho. Semantic attributes processing in the system DELTA. In A. Ershov
and Cornelius H. A. Koster., editors, Methods of Algorithmic Language Implementa-
tion, volume 47 of LNCS, pages 21-40. Springer-Verlag, 1977.

Ralf Lammel and Gunter Riedewald. A calculus for modular and extensible language
definition. April 1996. Proceedings (Technical Report) of ALEL Workshop at CC’96,
Link6ping, Sweden, April 26, 1996.

Ralf Lammel and Gilinter Riedewald. Operations on fragments of formal language
definitions towards semantic extensibility. In RIB [RIB97]. 19 pages.



BIBLIOGRAPHY 237

[LRBS]

[LRH96]

[Mog89]

[Mog91]

[Mos83]

[Mos88]

[Mos92]

[Mos96]

[Mos97]

[MTHY0]

[Nai96]

[NH95]

[Nie96]

[NMO5]

[NN92]

Ralf Lammel, Giinter Riedewald, Nguyen Van Bac, and Susanne Stasch. A language
construction set. in preparation.

Ralf Lammel, Giinter Riedewald, and Jérg Harm. Specification formalisms in AAA.
Preprint CS-08-96, University of Rostock, Department of Computer Science, Decem-
ber 1996. 100 pages.

Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, University of Edinburgh, 1989.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, July 1991.

Peter D. Mosses. Abstract semantic algebras! In Formal Description of Programming
Concepts 11, Proc. IFIP TC2 Working Conference, Garmisch-Partenkirchen, 1982,
pages 45—71. North-Holland, 1983.

Peter D. Mosses. Action semantics. Cubus, 1(4):9-13, 1988. Published by Dansk
Datamatik Center, Lyngby, Denmark.

Peter D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

Peter D. Mosses. Theory and practice of action semantics. In MFCS 96, Proc. 21st
Int. Symp. on Mathematical Foundations of Computer Science (Cracow, Poland,
Sept. 1996), volume 1113 of LNCS, pages 37-61. Springer-Verlag, 1996.

Peter D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specifica-
tion and Development. In TAPSOFT’97, volume 1214. Springer-Verlag, 1997.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
1990.

Lee Naish. Higher Order Logic Programming in Prolog. In Proc. Workshop on
Multi- Paradigm Logic Programming, JICSLP’96, Bonn, 1996.

J.F. Nilsson and A. Hamfelt. Constructing Logic Programs with Higher Order Pred-
icates. In M. Alpuente and M. Sessa, editors, Proceedings of GULP-PRODE’95,
the Joint Conference on Declarative Programming 1995, Universita’ Degli Studi di
Salerno, Salerno, pages 307-312, 1995.

Hanne Riis Nielson, editor. 6th Furopean Symposium on Programming, Linkdping,
Sweden, April 1996, Proceedings of ESOP’96, volume 1058. Springer-Verlag, April
1996.

U. Nilsson and J. Maluszynski. Logic Programming and Prolog (2 ed). John Wiley,
1995.

F. Nielson and H. R. Nielson. Two-Level Functional Languages. Cambridge Tracts
in Theoretical Computer Science vol. 34. Cambridge University Press, 1992.



238

[NS97]

[Paa9l]

[Paa9b|

[Par88]

[Pet94]

[Pet95]

[PP94]

[PPSLY6]

[PRJD96a]

[PRIDY6b)

[Pro96]

[PWS0]

[RIB97]
[Rie72]

BIBLIOGRAPHY

Lee Naish and Leon Sterling. A Higher Order Reconstruction of Stepwise Enhance-
ment. In Fuchs [Fuc97]. Report CW 253, Katholieke Universiteit Leuven, Department
Of Computing Science.

Jukka Paakki. Paradigms for Attribute-grammar-based Language Implementation.
Ph.D. thesis, Department of Comp. Sc., University of Helsinki, February 1991.

Jukka Paakki. Attribute grammar paradigms — A high-level methodology in lan-
guage implementation. ACM Computing Surveys, 27(2):196-255, June 1995.

Didier Parigot. Transformations, Evaluation Incrmentale et Optimisations des Gram-
maires Attribus: Le Systme FNC-2. PhD thesis, Universit de Paris-Sud, Orsay, 1988.

Mikael Pettersson. RML — a new language and implementation for natural se-
mantics. In M. Hermenegildo and J. Penjam, editors, Proceedings of the 6th In-
ternational Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94, volume 844 of LNCS, pages 117-131. Springer-Verlag, 1994.

Mikael Pettersson. Compiling Natural Semantics. PhD thesis, Department of Com-
puter and Information Science, Linkoping University, December 1995.

Alberto Pettorossi and Maurizio Proietti. Transformation of Logic Programs: Foun-
dations and Techniques. The Journal of Logic Programming 19, 20, pages 261-320,
1994.

Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approach to compiling
adaptive programs. In Nielson [Nie96], pages 280-295.

Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dynamic At-
tribute Grammars. In Herbert Kuchen and S. Doaitse Swierstra, editors, Int. Symp.
on Progr. Languages, Implementations, Logics and Programs (PLILP’96), volume
1140 of LNCS, pages 122-136, Aachen, September 1996. Springer-Verlag.

Didier Parigot, Gilles Roussel, Martin Jourdan, and KEtienne Duris. Dy-
namic Attribute Grammars. Rapport de recherche 2881, INRIA, May 1996.
ftp://ftp.inria.fr/INRIA/publication/RR/RR-2881.ps.gz.

Maurizio Proietti, editor. Logic program synthesis and transformation: 5th Interna-
tional Workshop, LOPSTR’95, Utrecht, The Netherlands, September 20-22, 1995:
proceedings, volume 1048 of LNCS, New York, NY, USA, 1996. Springer-Verlag Inc.

Fernando C. N. Pereira and David H. D. Warren. Definite Clause Grammars for
Language Analysis—A Survey of the Formalism and a Comparison with Augmented
Transition Networks. Artificial Intelligence, 13(3):231-278, 1980.

Rostocker Informatik-Berichte, volume 20. Universitat Rostock, 1997.

Giinter Riedewald. Syntaktische Analyse von ALGOLG68-Programmen. Dissertation
A, Universitat Rostock, Sektion Mathematik, 1972.



BIBLIOGRAPHY 239

[Rie79]

[Rie91]

[Rie92]

[RL89)

[RL93]

[RMD83]

[Rou94]

[RPJY94]

[SA9T]

[SHLG94]

[SJ94]

[SJK93]

[Smi85]

Gunter Riedewald. Compilerkonstruktion und Grammatiken syntaktischer Funktio-
nen. Dissertation B, Rechenzentrum der Universitat Rostock, 1979.

Gunter Riedewald. Prototyping by Using an Attribute Grammar as a Logic Program.
In Alblas and Melichar [AM91], pages 401-437.

Giinter Riedewald. The LDL — Language Development Laboratory. In U. Kastens
and P. Pfahler, editors, Compiler Construction, 4th International Conference, CC’92,
Paderborn, Germany, number 641 in LNCS, pages 88-94, October 1992.

Ginter Riedewald and Uwe Lammel. Using an attribute grammar as a logic program.
In Deransart et al. [DLM89], pages 161-179.

Giinter Riedewald and Ralf Lammel. Provable correctness of prototype interpreters
in LDL. Preprint CS-09-93, University of Rostock, Department of Computer Science,
1993.

G. Riedewald, J. Maluszynski, and P. Dembinski. Formale Beschreibung von Pro-
grammiersprachen, Eine Einfihrung in die Semantik. Oldenbourg-Verlag, Miinchen,
Wien and Akademie-Verlag, Berlin, 1983.

Gilles Roussel. Algorithmes de base pour la modularit et la rutilisabilit des grammaires
attribues. PhD thesis, Département d’Informatique, Université de Paris 6, March
1994.

Gilles Roussel, Didier Parigot, and Martin Jourdan. Coupling Evaluators for At-
tribute Coupled Grammars. In Peter A. Fritzson, editor, 5th Int. Conf. on Compiler
Construction (CC’ 94), volume 786 of LNCS, pages 52-67, Edinburgh, April 1994.
Springer-Verlag.

Wolfram Schulte and Klaus Achatz. Functional Object-oriented Programming with
Object-Gofer. In Herbert Kuchen, editor, Proceedings Arbeitstagung Programmier-
sprachen, Aachen, 22.-23. September, 1997, GI-Jahrestagung’97, 12 pages, Septem-
ber 1997. 9 pages.

Viggo Stoltenberg-Hansen, Ingrid Lindstrom, and Edward R. Griffor. Mathemati-
cal Theory of Domains. Number 22 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1994.

Guy L. Steele Jr. Building interpreters by composing monads. In Conference Record
of POPL °94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 472-492, Portland, Oregon, January 1994.

Leon Sterling, Ashish Jain, and Marc Kirschenbaum. Composition based on skele-
tons and techniques. In ILPS ’93 post conference workshop on Methodologies for
Composing Logic Programs, Vancouver, October 1993.

D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelli-
gence, 27(1):43-96, 1985.



240

[SS94]

[SST92

[STSS]

[Sta97]

[Sto77]

[SV91]

[Tho96]

[Trc93]
[TS97]

[TWWS1]

[Wad92]

[War93]

[Wat75]

[WH97]

[Wil90]

BIBLIOGRAPHY

L.S. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press, 1994. 2nd edition.

Donald Sannella, Stefan Sokolowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: Parameterisation revisited. Acta
Informatica, 29(8):689-736, 1992.

Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76(2/3):165-210, February/March 1988.

Susanne Stasch. Fallstudie fiir Sprachdefinitionen aus wiederverwendbaren
Bausteinen auf der Basis des Semantic Grammar Calculus. Master’s thesis, Uni-
versity of Rostock, Department of Computer Science, 1997.

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. The MIT Press, 1977.

Doaitse Swierstra and Harald Vogt. Higher Order Attribute Grammars. In Alblas
and Melichar [AM91], pages 256-296.

Simon Thompson. Haskell, The Craft of Functional Programming. Addison-Wesley,
1996.

S. Trcek. A contribution to refinement of logic programs. Studienarbeit, 1993.

Walid Taha and Tim Sheard. Multi-Stage Programming with Explicit Annotations.
In PEPM 97, Amsterdam, June 1997, 1997.

James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. More an advice on struc-
turing compilers and proving them correct. Theoretical Computer Science, 15:223—
249, 1981.

Philip Wadler. The essence of functional programming. In Conference Record of
the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 1-14, Albequerque, New Mexico, January 1992.

D.H.D Warren. An Abstract Prolog Instruction Set. Technical report, 1993. Technical
Note 309, Artifical Intelligence Center, SRI International.

David A. Watt. Modular Description of Programming Languages. Technical Report
A-81-734, University of California, Berkeley, 1975.

Keith Wansbrough and John Hamer. A modular monadic action semantics. In
Conference on Domain-Specific Languages, pages 157-170. The USENIX Association,
1997.

Reinhard Wilhelm. Tree transformations, functional languages, and attribute gram-
mars. In Pierre Deransart and Martin Jourdan, editors, Attribute Grammars and
their Applications (WAGA), volume 461 of Lecture Notes in Computer Science, pages
116-129. Springer-Verlag, New York—Heidelberg—Berlin, September 1990. Paris.



BIBLIOGRAPHY 241

[Wir74] Niklaus Wirth. On the composition of well-structured programs. ACM Computing
Surveys, 6(4):247-259, December 1974.

[Wir86] Martin Wirsing. Structured algebraic specifications: A kernel language. Theoretical
Computer Science, 42(2):123-249, August 1986.

[Wir94] M. Wirsing. Algebraic specifiation languages: An overview. In E. Astesiano, G. Reg-
gio, and A. Tarlecki, editors, Recent Trends in Data Type Specification, 10th Work-
shop on Specification of Abstract Data Types, Joint with the 5th COMPASS Work-
shop, S. Margherita, Italy, May/June 1994, Selected Papers, volume 906 of LNCS,
pages 81-115. Springer-Verlag, 1994.

[WMT77] D.A. Watt and O.L. Madsen. Extended attribute grammars. Technical Report no.
10, University of Glasgow, July 1977.






Index

++, 24

o—, 49
1,49

>, 24, 33, 92
o, 34, 48

—, 48

T, 49

7,52

abstract state machine, 136
Accumulate ..., 82
accumulation, 82
ACG, 120
action semantics, 126
adaptability, 1
Add ..., 6,73, 80
addressing fragments, 35
AG, 47
adaptation, 73
composable, 121
incremental development, 73
modular, 121
object-orientation, 110
partitioned, 124
algebraic specification, 41
a-property, 57
ancestral attribute, 112
AoIn... 31
application, 48
applicative calculus, 48
applied position, see position
applied variable occurrence, see occurrence
arranging rules, 69
ASF+SDF, 22, 43, 149
aspect, 109
computational, 96
semantic, 97
aspect-oriented programming, 109

243

Association, 20

attribute grammar, see AG
attribute inheritance, 112
attribution class, 123
Axiom Is ..., 50

basic schema, see schema

CAG, 121

call-correctness, 22, 31

Centaur, 4, 41

Chain ..., 92, 95

chain rule, 95

cliche, 141

closure, 67

Cocktail, 122, 149

coercion, 50

combinator, 70

combining definitions, 86

complete program, 96

completeness, 99

component, 109

composition, 92, 140

compositional computation, see computation

compositionality, 124

Computation, 45

computation, 45, 83
compositional, 85
interpolating, 87

Computation? ..., 47

computational aspect, see aspect

computational behaviour, 62

computational element, see computation

computational model, see model

Compute ..., 83, 85

Conclusion, 19, 21, 22

Conclusion From ..., 8

Conclusion Of ..., 8, 23



244

Concretize ..., 92, 94
Condition ..., 83, 85
conditional, 48

partial, 49
conditional rewrite rule, 43
conformance, 31
conservative extension, 137
consistency, 99
Construction ..., 83, 90
constructive algebraic specification, see alge-

braic specification

Constructor? ..., 39
Constructor From ..., 40
Constructor Of ..., 39
context, 25

Contract ..., 73, 78, 80
contraction, 74, 99
contribution, 99

Copy ..., 11, 75, 80
copy, 33, 75

copy rule, 6, 48
coupling, 120

Deconstruction ..., 90
Default ..., 11, 83, 85
default value, 112
Define ..., 76, 83
defined symbol, see symbol
defining occurrence, see occurrence
defining position, see position
defining variable occurrence, see occurrence
definition, 33
adding, 76
Demeter, 109
denotational semantics, see semantics
Derivable ..., 67
descriptional composition, 120
design patterns, 2
directional type, 41
DoIn... 31
domain constructor, 50

elaborate schema, see schema
Element, 19, 21, 22, 25
element substitution, 70
Element? ..., 47

INDEX

Element From ..., 25
Eli, 122

embedding, 50

empty sequence, see sequence
empty set, see set
enhancment, 140
Ensure ..., 80

error, 125

error element, 49

error specification, 49
evolving algebra, 136
export, 53
extensibility, 1, 124
extension, 140

False ..., 48

first-order functions, 44
flattening RHS, 42

FNC-2, 112, 122, 149

Fold ..., 77, 78

Fold Left ..., 8, 20, 50
Fold Right ..., 20, 50
folding, 78

Forget ..., 66

Forgetting ..., 71

formal language definition, 17
fragment selection, 35
From ..., 67

From The Left ..., 80, 86
functional composition, 48
functional program, 44

GSF, 44, 153
GSF interpretation, 45
GSF schema, 45

Haskell, 149

Head Of ..., 20, 30, 50

Hiding ..., 72, 90

higher-order function, 44
higher-order logic programming, 109

i/o-correctness, 22, 31
Id, 19
idempotence, 61

closed under ..., 61
identity, 61



INDEX

closed under ..., 61
IMPLEMENTS, 31
import, 53

incremental construction of premises, 72, 90
Inherit ..., 82
inheritance, 82
injection, 66

inserting keywords, 94
instance, 38

Interface, 24

interface, 24

Interface From ..., 25
interpolation, 87

lo, 20, 26

irrelevance, 98
iteration, 50

L-attribution, 39
A-abstraction, 48

A-calculus, 48

layer, see level

AAy, 46, 147, 193
left-to-right dependencies, 80
Left To Right ..., 7, 81

Let ..., 20, 49
Letrec ..., 20, 49
level, 97

LhsSubstitution, 70
Lift ..., 92, 100
lifting, 17, 96, 100, 134

Map ..., §, 20, 50
Map Union ..., 52
maybe type, 52
Merge ..., 12, 92
merging, 8, 92
meta-programming, 1
meta-variable, 27
minimal semantics, 9
mixin, 110
Mjolner/Orm, 112
model

computational, 97

semantic, 97
modular interpreter, 129
modular meta-programming, 52
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modularity, 124

module, 52

module qualifier, 46

monad, 129

multi-stage programming, 110

Name, 19, 21, 28
Name? ..., 39, 47
Name From ..., 26, 40
Name Of ..., 25
natural semantics, 4
Negative, 44

negative equations, 44
NEWnName, 26, 50

New Name ..., 50
NgWOperation, 47, 50
New Operation ..., 50
NEWVariablea 277 50
New Variable ..., 8, 50
Nil? ..., 20, 30, 50
non-empty sequence, see sequence
non-empty set, see set
normalization, 42

occurrence
applied, 31
defining, 31
OLGA, see FNC-2
On ..., 20, 48
00 CFG, 111
OO0AG, 110
Operation, 45
Operation? ..., 47
Operation From ..., 47
operational semantics, see semantics
Order ..., 69
orthogonality, 90
overlapping skeleton rules, 102
Override ..., 92, 94

Parameter, 19, 21, 25, 26, 39
parameterization, 73, 79
Parameters ..., 8, 25, 47, 66
part, 100

partial conditional, see conditional
partial deduction, 138
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partial evaluation, 138
pass, 122
pattern, 121
Permute ..., 73
phase, 123
polytypism, 108
Position, 20, 37
position, 73, 79

applied, 31

defining, 31
Positions ..., 67
Positive, 44
positive equations, 44
postcomputation, 89
precomputation, 88
Precompute ..., 83, 87
Prefix, 45
prefix, 46
Prefixed ..., 66
Premise, 19, 21, 22
Premise From ..., 8, 46
Premises Of ..., 8, 23
preservation

semantics, 62

skeleton, see skeleton

type, see type

well-definedness, see well-definedness

product, 50
Profile, 20, 28
Profile From ..., 28
Profile Of ..., 52
Program, 19, 21, 24, 53
program map, 62
Program From ..., 25
Project ..., 80
projection, 50, 59, 66, 80
propagation, 80
propagation pattern, 109
property

of meta-program, 54

qualifier, 46

RAG, 45
reachability, 67
rearranging rules, 69

recursion schema, 50
Reduce ..., 12, 83, 86
reducedness, 32
refinement, 63, 137
stepwise, 138
Relate ..., 83, 85
relational formula, 45
relational symbol, 45
Remote ..., 82
remote access, 82
Rename ..., 11, 68
renaming, 68
Replace ..., 71

required symbol, see symbol

reusability, 1, 124
reuse, 21, 107
Reverse ..., 50
RhsSubstitution, 70
RML, 4, 22, 31, 39, 152
Rule, 19-22

rule at level, 98

Rule From ..., 8, 23
Rules, 19-21, 23, 50
Rules From ..., 24

schema, 2, 141
basic, 73
composition, 92
computation, 83
elaborate, 79

parameterization, 73, 79

position, 73, 79
Select ..., 66
selectAo, 183
selectAos, 183
selectDo, 183
selectDos, 183
Selecting ..., 71
selection, 66

INDEX

selective transformation, see transformation

selector, 35

semantic aspect, see aspect

semantic model, see model

semantic rule, 48

semantics, 124
denotational, 125
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operational, 125

semantics preservation, see preservation

separate compilation, 121
sequence, 50
empty, 50
non-empty, 50
set, 51
empty, 51
non-empty, 51
Shape, 55
shape, 108
SIGMA, 28
Sigma, 20, 27, 28, 50
Sigma Of ..., 30
signature, 23
Skeleton, 55
skeleton, 55, 98, 139
preservation, 55
SML, 50, 149
SOLYVE, 35, 40
Sort, 20, 28
Sort Of ..., 27, 30
sorting rules, 69
stepwise enhancement, 78, 139
strictness, 49
Sub ..., 73, 80
Substitute In ..., 34, 40
Substitution, 20, 33, 50
substitution, 33
Subterms Of ..., 39
Superimpose ..., 77
superimposition, 47, 77, 99
Symbol, 19, 28
symbol
defined, 22
required, 24
used, 22
Symbol Of ..., 8, 30, 47
Symbols ..., 66
syntactical rule, 48

Tag, 19, 21, 23

Tag From ..., 26, 40, 47
Tag Of ..., 8, 23

Tags ..., 66

Tail Of ..., 20, 30, 50
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technique, 139
template, 121, 123, 141
Term, 39
term construction, 41, 90
term deconstruction, see term construction
Term? ..., 39
Term From ..., 39
To ..., 67
totality, 56
Trafo, 20
transformation
contracting, 60
extending, 60, 62
local, 62
rule, 62
selective, 71
structure, 62
type-extending, 58
transformer, 99
True ..., 48
tuple, 50
type
decreasing, 58
extension, 58
increasing, 58
preservation, 58
type constructor, 129
Tyngarameteru 267 40
Typol, 4, 41

undefined variable, see variable
Undefined! ..., 77
Unfold ..., 77, 78
unfolding, 78
unification, 33
Unify Element ..., 35
Unify Parameters ..., 34
unique selector
for a defining position, 37
for a position, 37
for a premise, 36
for an applied position, 37
unique sortedness, 37
Unprefixed ..., 66
unused variable, see variable

Unused! ..., 77
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Use ..., 76

use, 33
adding, 76

used symbol, see symbol

Variable, 19, 26
variable

undefined, 32

unused, 32, 86
Variable? ... 27
Variable From ..., 27
Variable Of ..., 27
Variables ..., 66
Variables In ..., 27

WD, see well-definedness
weaving, 109
well-definedness, 6, 20, 31
preservation, 57
recovery, 57
well-formedness, 20, 27
well-typedness, 6, 20, 28
WUEF, see well-formedness
WT, see well-typedness
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