
Fun
tional meta-programs

towards reusability

in the de
larative paradigm

Dissertation

zur

Erlangung des akademis
hen Grades

Doktor{Ingenieur (Dr.{Ing.)

der Fakult�at f�ur Ingenieurwissens
haften

der Universit�at Rosto
k

vorgelegt von Dipl.{Inf. Ralf L�ammel

geb. am 15. Dezember 1968 in Karl{Marx{Stadt

Rosto
k, 6. September 1998



Referees

Prof. Dr. rer. nat. Dr.-Ing. habil. G�unter Riedewald (supervisor)

Universit�at Rosto
k

Germany

Dr. habil. Isabelle Attali (external referee)

INRIA Sophia Antipolis

Fran
e

Prof. Dr. Paul Klint (external referee)

Centrum voor Wiskunde en Informati
a (CWI) & Universiteit van Amsterdam

The Netherlands

Dates

Submission 6th September 1998

Defen
e 14th January 1999





 1998 University of Rosto
k, Ralf L�ammel



III

Abstra
t

Fun
tional meta-programs on de
larative target programs are proposed as a means to support

reuse. We approa
h to this goal in the following two steps:

1. A general framework for meta-programming is developed. It 
ombines

� an appli
ative 
al
ulus 
ontaining suitable basi
 data types for de
larative programs

and fragments obeying well-typedness and other important properties and

� properties of target programs and meta-programs for formal reasoning, e.g. 
ertain

preservation properties of transformations.

We assume modes and types at the target level. They are useful to improve safety of meta-

programming and to 
ontrol program transformation. The framework 
an be instantiated

for example for natural semanti
s, attribute grammars, logi
 programming and 
onstru
-

tive algebrai
 spe
i�
ation. Spe
i�
 features of an instan
e 
an often be modelled in the

general framework by a kind of normalization. Higher-order fun
tions are useful to a
hieve

generi
ity in meta-programs.

2. An operator suite for meta-programming is derived, where its operators model s
hemata of

program transformation, synthesis and 
omposition at a high level of abstra
tion:

Transformation: Certain operators fa
ilitate adaptation of programs, e.g. the interpolation

of 
omputations or the establishment of new sum domains.

Synthesis: Aspe
ts of 
omputational behaviour 
an be represented as meta-programs de-

rived from s
hemata supported by the operator suite, e.g. propagation s
hemata.

Composition: Target programs 
an be 
omposed for example by means of 
on
atenation

and superimposition. Target programs 
an be derived from target program fragments

and program transformations modelling aspe
ts of 
omputational behaviour by means

of lifting.

Meta-programming o

asionally surpasses other approa
hes to reusability based on de
omposi-

tion and parameterization in the 
ommon sense. The reuse of a module, for example, depends on

a suitable instantiation. In 
ontrast, our transformational approa
h does not rely on su
h param-

eterization, although formal reasoning is ne
essary to prove 
orre
tness of reuse. We demonstrate

the meta-programming approa
h in the 
ontext of formal language de�nition based on natural

semanti
s and attribute grammars. The framework and the operator suite are 
ompared with par-

ti
ular approa
hes to reusability in the de
larative paradigm, e.g. extensible semanti
s de�nitions

and paradigm shifts in attribute grammars.

Keywords

Meta-Programming, De
larative Programming, Reusability, Modularity, Extensibility, For-

mal Language De�nition, Program Transformation, Program Synthesis, Program Compo-

sition, Lifting

CR Classi�
ation: D.1.1, D.1.6, D.2.1, D.2.13, D.3.1, D.3.3, D.3.4, F.3.1, F.3.2,

F.3.3, F.4.2



IV

Zusammenfassung

Funktionale Meta-Programme �uber deklarativen Objektprogrammen werden zur Unterst�utzung

von Wiederverwendbarkeit vorges
hlagen. Dieses Ziel wird in zwei S
hritten angegangen:

1. Ein allgemeines Rahmenwerk zur Meta-Programmierung wird entwi
kelt. Es kombiniert

die folgenden Bestandteile:

� einen applikativen Kalk�ul mit Datentypen f�ur deklarative Programme und Frag-

mente, wel
he die Einhaltung von Wohlgetyptheit und anderen wi
htigen Eigen-

s
haften si
herstellen, und

� Eigens
haften von Objekt- und Meta-Programmen zur formalen Behandlung dieser,

z.B. bestimmte Erhaltungseigens
haften von Transformationen.

Wir setzen Modi und Typen auf Objektebene voraus. Sie sind hilfrei
h zur Erh�ohung

der Si
herheit in der Meta-Programmierung und zur Steuerung von Programmtransfor-

mationen. Das Rahmenwerk kann z.B. f�ur nat�urli
he Semantik, attributierte Grammatiken,

logis
he Programmierung und algebrais
he Spezi�kation instanziiert werden. Spezielle Mit-

tel von Instanzen k�onnen oft au
h in dem allgemeinen Rahmenwerk mit Hilfe einer Normal-

isierung modelliert werden. Funktionen h�oherer Ordnung sind nutzbringend, um Gener-

izit�at in Meta-Programmen zu errei
hen.

2. Eine Sammlung von Operationen zur Modellierung von S
hemata f�ur die Programmtransfor-

mation, -synthese und -komposition auf einer hohen Abstraktionsstufe wird abgeleitet:

Transformation: Bestimmte Operationen unterst�utzen die Anpassung von Programmen,

z.B. das Eins
hieben von Bere
hnungselementen oder die Herstellung von neuen Sum-

menberei
hen.

Synthese: Bere
hnungsaspekte k�onnen dur
h Meta-Programme, wel
he von grundlegen-

deren S
hemata (z.B. Propagierungss
hemata) abgeleitet wurden, repr�asentiert wer-

den.

Komposition: Objektprogramme k�onnen z.B. im Sinne einer Verkettung oder Superim-

position kombiniert werden. Objektprogramme k�onnen von Objektprogrammfrag-

menten und Programmtransformationen, wel
he Bere
hnungsaspekte modellieren, mit-

tels Liften abgeleitet werden.

Meta-Programmierung �ubertri�t in Einzelf�allen andere Ans�atze zur Wiederverwendbarkeit, wel
he

auf Dekomposition und Parameterisierung im �ubli
hen Sinne basieren. Wiederverwendung eines

Modules z.B. ist nur m�ogli
h, wenn eine brau
hbare Instanziierung m�ogli
h ist. Unser transfor-

mationaler Zugang h�angt ni
ht von einer Parameterisierung in diesem Sinne ab. Die Korrektheit

der Wiederverwendung bleibt aber Beweisgegenstand. Wir f�uhren unseren Ansatz zur Meta-

Programmierung im Kontext der formalen Spra
hbes
hreibung auf der Basis nat�urli
her Seman-

tik und attributierter Grammatiken vor. Das Rahmenwerk und die Operationen werden mit

Ans�atzen zur Wiederverwendbarkeit im deklarativen Paradigma, z.B. erweiterbare Semantikbe-

s
hreibungen und Erweiterungen des Formalismus f�ur attributierte Grammatiken, vergli
hen.



V

Abbreviations

ADT abstra
t data type

AG attribute grammar

AS abstra
t syntax

ASM abstra
t state ma
hine

AST abstra
t syntax tree

CFG 
ontext-free grammar

EDS extensible denotational semanti
s

GSF grammar of synta
ti
al fun
tions

HO higher-order ...

LHS left-hand side

LUB least upper bound

MGU most general uni�er

MI multiple inheritan
e

OO obje
t-orientation

RHS right-hand side

SI single inheritan
e

WAM Warren abstra
t ma
hine

WD well-de�nedness

WF well-formedness

w.r.t. with respe
t to

WT well-typedness

Notation

Boolean Boolean values True and False

�

i

proje
tions for tuples/sequen
es

In

D

i

inje
tions for sums

Out

D

i

proje
tions for sums

Is

D

i

test for addend


 domain 
onstru
tor for produ
ts

� domain 
onstru
tor for 
oales
ed sums

? domain 
onstru
tor for sequen
es

! fun
tion spa
es / 
onditional

Æ! \partial" 
onditional

N

0

natural numbers (with 0)

P power sets

? \maybe" 
onstru
tion, i.e. D? = D � f?g

?

Æ fun
tional 
omposition (f Æ g)x = f(g(x))

On fun
tional appli
ation in meta-programs

? bottom element in the sense of divergen
e

> error element

h� � �i for sequen
es and tuples

++ 
on
atenation of sequen
es

./ restri
ted forms of ++



VI

A
knowledgement

I would like to thank all the people who have helped me in several ways during all these

years. First of all, thanks to my advisor G�unter Riedewald for his guidan
e. He has given

me all the support one 
ould ask for. He was very patient and 
exible in spite of my style

of working: I have spent quite a while on investigating and abandoning potential topi
s.

Thanks to Jan Maluszy�nski and Ulf Nilsson for their kind hospitality when I was guesst

at IDA, University Link�oping in the LOGPRO group in 1995. Mu
h of the initial orien-

tation for my �nal topi
 was established during these days. I am also very grateful to the

Programming Resear
h Group at University of Amsterdam, CWI Amsterdam, parti
ularly

to Paul Klint and Mark van den Brand who invited me for a stay in 1996. The stay in

Amsterdam was very helpful in obtaining a 
leaner proposal for a PhD thesis. I had some

other invaluable oppurtunities for presenting my work in a preliminary state whi
h I want

to mention here. In O
tober 1996 I was a guest at University of Latvia, Fa
ulty of Physi
s

and Mathemati
s. Many thanks to Karlis Cerans, Vineta Arni
ane, Guntis Arni
ans, Janis

Bi
evskis, Guntis Barzdins for their interest and the dis
ussions. I had two helpful visits

at INRIA. Many thanks to Pierre Deransart and Martin Jourdan for making possible the

�rst stay at INRIA Ro
quen
ourt in November 1996. Many thanks to Isabelle Attali for

organizing my visit to the CROAP group at INRIA Sophia-Antipolis in September 1997.

I am also very grateful for her detailed review of a draft of the thesis.

Lots of thanks to my present and past 
olleagues here in Rosto
k for providing the en-

vironment for my PhD proje
t. Beate Baum, Anke Dittmar, J�org Harm and Uwe L�ammel

deserve my warmest gratitude, sin
e they helped me with their 
omments to improve my

manus
ript. There are also some students who 
ontributed in some way to my work. I

would like to thank Susanne Stas
h and Wolfgang Lohmann.

I had several other stimulating ex
hanges, verbal and ele
troni
. I want to thank Egon

B�orger, Jan Bos
h, Mark van den Brand, David Espinosa, Uwe Kastens, Peter Knauber,

Kung-Kiu Lau, Karl J. Lieberherr, Peter D. Mosses, Didier Parigot and Eel
o Visser.

Spe
ial thanks go to my mother, my sister Kathrin, my girlfriend Ellen, my friends

Burkhard and Mi
hael who always believed in me.

This PhD proje
t was supported, in part, by Deuts
he Fors
hungsgemeins
haft, in the proje
t

KOKS.



Contents

1 Introdu
tion 1

1.1 The topi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Adapting the propagation of a data stru
ture . . . . . . . . . . . . 5

1.2.3 Adding 
omputational behaviour . . . . . . . . . . . . . . . . . . . 8

1.2.4 Further s
enarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Results and stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 A general framework for meta-programming . . . . . . . . . . . . . 14

1.3.2 The operator suite for meta-programming . . . . . . . . . . . . . . 15

1.3.3 Composition by lifting . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 Modular language de�nition . . . . . . . . . . . . . . . . . . . . . . 17

2 The general framework 19

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Notions for target programs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Well-formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Well-typedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Well-de�nedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Substitution and uni�
ation . . . . . . . . . . . . . . . . . . . . . . 33

2.3.5 Addressing fragments . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Instan
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Natural Semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Logi
 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 Algebrai
 Spe
i�
ation . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.4 Fun
tional programs . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.5 Grammars of Synta
ti
al Fun
tions . . . . . . . . . . . . . . . . . . 44

VII



VIII CONTENTS

2.4.6 Knuthian Attribute Grammars . . . . . . . . . . . . . . . . . . . . 47

2.5 Completion to an appli
ative 
al
ulus . . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Simple �-
al
ulus-like 
onstru
ts . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Error spe
i�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.3 Embedding data types for meta-programming . . . . . . . . . . . . 50

2.5.4 Domain 
onstru
tors . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.4.1 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.4.2 Sequen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.4.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.4.4 The Maybe type 
onstru
tor . . . . . . . . . . . . . . . . . 52

2.5.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Properties of meta-programs . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.1 Skeletons and their preservation . . . . . . . . . . . . . . . . . . . . 54

2.6.2 Totality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.3 Preservation and re
overy of well-de�nedness . . . . . . . . . . . . . 57

2.6.4 Type preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.5 Type extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.6 Proje
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.7 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6.8 Stru
ture of transformations . . . . . . . . . . . . . . . . . . . . . . 62

2.6.9 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 The operator suite 65

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Auxiliary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Sele
tions, proje
tions, inje
tions and 
losures . . . . . . . . . . . . 66

3.2.2 Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4.1 Element substitution . . . . . . . . . . . . . . . . . . . . . 70

3.2.4.2 Sele
tive transformation . . . . . . . . . . . . . . . . . . . 71

3.2.4.3 Temporary invisibility of symbols . . . . . . . . . . . . . . 72

3.3 Basi
 s
hemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Copies & De�nitions & Uses . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2.1 Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2.2 Adding de�nitions . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2.3 Adding uses . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2.4 Establishing unde�ned and unused variables . . . . . . . . 76

3.3.2.5 Removing 
omputations . . . . . . . . . . . . . . . . . . . 77

3.3.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3.1 Superimposition . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3.2 Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS IX

3.3.3.3 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Elaborate s
hemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.1 Left-to-right dependen
ies . . . . . . . . . . . . . . . . . . 80

3.4.2.2 Inheritan
e . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2.3 A

umulation . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.2.4 Remote a

ess . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.3 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3.1 Nontrivial 
omputations . . . . . . . . . . . . . . . . . . . 84

3.4.3.2 Defaults for providing de�nitions . . . . . . . . . . . . . . 85

3.4.3.3 Compositional 
omputations . . . . . . . . . . . . . . . . . 85

3.4.3.4 Combining unused parameters . . . . . . . . . . . . . . . . 86

3.4.3.5 Interpolating 
omputational elements . . . . . . . . . . . . 87

3.4.3.6 Terms versus 
omputational elements . . . . . . . . . . . . 90

3.4.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.4.1 A relaxed form of rule 
on
atenation . . . . . . . . . . . . 92

3.4.4.2 Overriding rules . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.4.3 Inserting keywords . . . . . . . . . . . . . . . . . . . . . . 94

3.4.4.4 Chain rules . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Composition by lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.1 Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.2 A 
on
rete form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.3 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Related work 107

4.1 S
ope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Extension of the AG formalism . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Obje
t-orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1.2 Obje
t-oriented 
ontext-free grammars . . . . . . . . . . . 111

4.2.1.3 Attribute inheritan
e and default values . . . . . . . . . . 112

4.2.1.4 Models of semanti
 rules . . . . . . . . . . . . . . . . . . . 113

4.2.1.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.2 Remote a

ess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.3 Symbol 
omputations . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2.4 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.5 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.6 FNC-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.2 A
tion semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.3 Monads and monad transformers . . . . . . . . . . . . . . . . . . . 129



X CONTENTS

4.3.4 Extensible denotational semanti
s . . . . . . . . . . . . . . . . . . . 135

4.3.5 Extension and re�nement of abstra
t state ma
hines . . . . . . . . 136

4.4 Program development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.1 Stepwise re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.2 Stepwise enhan
ement . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.3 Generi
 fragments and transformations . . . . . . . . . . . . . . . . 141

4.4.4 Spe
i�
ation-building operators . . . . . . . . . . . . . . . . . . . . 142

5 Con
luding remarks 145

5.1 A
hievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Ba
kground 151

A.1 Domain notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Inferen
e rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 Grammars of Synta
ti
al Fun
tions . . . . . . . . . . . . . . . . . . . . . . 153

A.4 Obje
t-oriented 
lass systems . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.5 Obje
t-oriented 
ontext-free grammars . . . . . . . . . . . . . . . . . . . . 163

A.6 Obje
t-oriented attribute grammars . . . . . . . . . . . . . . . . . . . . . . 165

A.7 A
tion semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.8 Extensible denotational semanti
s . . . . . . . . . . . . . . . . . . . . . . . 168

A.9 Stepwise re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.10 Spe
i�
ation-building operators . . . . . . . . . . . . . . . . . . . . . . . . 171

B Te
hni
al details of the framework 175

B.1 De
onstru
tion of sequen
es of rules . . . . . . . . . . . . . . . . . . . . . . 175

B.2 Sele
tion of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.3 Applied and de�ning o

urren
es . . . . . . . . . . . . . . . . . . . . . . . 176

B.4 Left-to-right dependen
ies (WD) . . . . . . . . . . . . . . . . . . . . . . . 176

B.5 Basi
 uni�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.6 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.7 Computational elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C Remainder of the operator suite 179

C.1 More auxiliary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.1.1 Transformations on fragments . . . . . . . . . . . . . . . . . . . . . 179

C.1.2 Inserting premises into rules . . . . . . . . . . . . . . . . . . . . . . 181

C.1.3 Skipping 
omputations in a sequen
e of premises . . . . . . . . . . 182

C.1.4 Sele
tion of parameters . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.2 Parameterization s
hemata . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.2.1 Addition, removal, 
ontra
tion . . . . . . . . . . . . . . . . . . . . . 183

C.2.2 Conditional addition . . . . . . . . . . . . . . . . . . . . . . . . . . 184



CONTENTS XI

C.2.3 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3 Computation s
hemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3.1 Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3.2 Constant 
omputations . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.3.3 Unary 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.3.4 Nontrivial 
omputations . . . . . . . . . . . . . . . . . . . . . . . . 187

C.3.5 Compositional 
omputations . . . . . . . . . . . . . . . . . . . . . . 187

C.3.6 Combining unused parameters . . . . . . . . . . . . . . . . . . . . . 188

C.4 Rea
hability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C.5 Superimposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.6 Folding & unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.7 Deriving 
hain rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D A 
olle
tion of meta-programs 193

D.1 Composition of a simple language de�nition . . . . . . . . . . . . . . . . . 193

D.1.1 The stru
ture of the interpreter de�nition . . . . . . . . . . . . . . 193

D.1.2 Composition of the dynami
 semanti
s . . . . . . . . . . . . . . . . 194

D.1.3 Composition of the frontend . . . . . . . . . . . . . . . . . . . . . . 202

D.1.4 Auxiliary relations for the stati
 semanti
s . . . . . . . . . . . . . . 208

D.1.5 The frontend 
oping with 
on
rete syntax . . . . . . . . . . . . . . 211

D.1.6 Auxiliary modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

D.2 The divide-and-
onquer s
hema . . . . . . . . . . . . . . . . . . . . . . . . 220

D.3 Symbol tables in a blo
k-stru
tured language . . . . . . . . . . . . . . . . . 221

D.4 The Constituents : : : With : : : 
onstru
t . . . . . . . . . . . . . . . . . . . . 221

D.5 Elimination of tail re
ursion . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.6 Establishing CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

D.7 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



List of Figures

1.1 Reasoning at the meta-level . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An interpreter fragment for a simple imperative language . . . . . . . . . . 5

1.3 Intermediate step from Figure 1.2 to Figure 1.4 . . . . . . . . . . . . . . . 6

1.4 An interpreter 
oping with side e�e
ts in expression evaluation . . . . . . . 7

1.5 Left To Right : Sort! (Rules! Rules) . . . . . . . . . . . . . . . . . . . . 9

1.6 A \minimal" semanti
s of a write-statement . . . . . . . . . . . . . . . . . 10

1.7 A \minimal" semanti
s of a read-expression . . . . . . . . . . . . . . . . . 10

1.8 Adapted semanti
s of write and read . . . . . . . . . . . . . . . . . . . . . . 10

1.9 An interpreter 
oping with inputs and outputs . . . . . . . . . . . . . . . . 12

1.10 Data types modelling target programs . . . . . . . . . . . . . . . . . . . . 14

1.11 Analysing 
on
rete spe
i�
ation frameworks . . . . . . . . . . . . . . . . . 15

1.12 Layers of the operator suite . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.13 Mapping the general framework to 
on
rete spe
i�
ation frameworks . . . 16

1.14 Program 
omposition by lifting . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Data types for meta-programming (part 1/2) . . . . . . . . . . . . . . . . . 19

2.2 Data types for meta-programming (part 2/2) . . . . . . . . . . . . . . . . . 20

2.3 �-
al
ulus-like 
onstru
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Figure 1.2 in the pure framework . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 An algebrai
 spe
i�
ation for the interpreter from Figure 1.2 . . . . . . . . 42

2.6 Conditional equations de�ning the dynami
 semanti
s of the if-
onstru
t . 43

2.7 \Pure" variant of Figure 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Normalized fun
tional program obtained from Figure 2.5 . . . . . . . . . . 44

2.9 A frontend for a simple imperative language . . . . . . . . . . . . . . . . . 46

2.10 Operations on sequen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Iteration on sequen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.12 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 Modular meta-programming . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.14 Skeleton of the frontend spe
i�
ation from Figure 2.9 . . . . . . . . . . . . 56

2.15 A proje
tion (stati
 semanti
s) of the spe
i�
ation from Figure 2.9 . . . . . 59

2.16 Another proje
tion (AST 
onstru
tion) of the spe
i�
ation from Figure 2.9 60

3.1 Sele
tion of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Sele
tion of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

XII



LIST OF FIGURES XIII

3.3 Sele
tion of tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Sele
tion of parameters / variables . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Computation of 
losures 
on
erning rea
hability . . . . . . . . . . . . . . . 68

3.6 Examples for rea
hability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Forms of renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Order By : P(Tag) ! Trafo . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Sele
tive transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Sele
ting Tags Do : P(Tag)� Trafo! Trafo . . . . . . . . . . . . . . . . 71

3.11 Hiding Do : Symbol� Trafo! Trafo . . . . . . . . . . . . . . . . . . . . 72

3.12 Basi
 s
hemata for positions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.13 Basi
 
omputation s
hemata . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.14 Basi
 s
hemata for rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 An optional if-
onstru
t obtained by fold/unfold . . . . . . . . . . . . . . . 79

3.16 More elaborate s
hemata for positions . . . . . . . . . . . . . . . . . . . . 80

3.17 S
hemata for propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.18 Symbol table propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.19 Inherit From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo) . 82

3.20 A

umulate From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo) 82

3.21 Remote From : Sort�P(Symbol) ! Trafo . . . . . . . . . . . . . . . . . 83

3.22 A frontend spe
i�
ation before making the remote a

ess expli
it . . . . . . 84

3.23 Elaborate 
omputation s
hemata . . . . . . . . . . . . . . . . . . . . . . . 84

3.24 Pre
ompute By : Asso
iation� Symbol! Trafo . . . . . . . . . . . . . . 88

3.25 Symbol table a

ess 
oping with more than one kind of entries . . . . . . . 89

3.26 Figure 2.16 with term 
onstru
tion made expli
it . . . . . . . . . . . . . . 91

3.27 Repla
ing 
omputations by term 
onstru
tion . . . . . . . . . . . . . . . . . . 92

3.28 Elaborate s
hemata for 
omposition . . . . . . . . . . . . . . . . . . . . . . 92

3.29 Merge And : Rules� Rules! Rules . . . . . . . . . . . . . . . . . . . . . 93

3.30 Override By : Rules� Rules! Rules . . . . . . . . . . . . . . . . . . . . 94

3.31 An optional if-
onstru
t (
on
rete syntax) . . . . . . . . . . . . . . . . . . 95

3.32 Some rules at 
ertain levels of the 
omputational model . . . . . . . . . . . 98

3.33 Lift : ((Skeleton! Trafo)

?


 Rules)

?

! Rules . . . . . . . . . . . . . . . . . 101

4.1 Obje
t-oriented notions for CFGs . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Some monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Signature for an interpreter of a pure fun
tional language . . . . . . . . . . 130

4.4 Interpretation in a monad (
all-by-value) . . . . . . . . . . . . . . . . . . . 130

4.5 Extension for referen
e 
ells (signature part) . . . . . . . . . . . . . . . . . 131

4.6 The error monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.7 Variants of equations making use of error messages . . . . . . . . . . . . . 132

4.8 Constru
ts at the Value-level . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.9 Figure 4.8 with added environment propagation . . . . . . . . . . . . . . . 133

4.10 A generi
 fragment for the divide-and-
onquer s
hema . . . . . . . . . . . . 142



XIV LIST OF FIGURES

5.1 Interpretation of modular meta-programs in

�

�

�

. . . . . . . . . . . . . . 147

A.1 Dependen
ies from the left to the right . . . . . . . . . . . . . . . . . . . . 160

A.2 Abstra
t syntax of the SIMPL language . . . . . . . . . . . . . . . . . . . 166

A.3 A
tion semanti
s of the SIMPL language . . . . . . . . . . . . . . . . . . . 167

A.4 Spe
ializing a
tion notation for SIMPL semanti
s . . . . . . . . . . . . . . 167

A.5 An extended dire
t semanti
s of Pure S
heme . . . . . . . . . . . . . . . . 169



Chapter 1

Introdu
tion

In Se
tion 1.1 we explain the topi
 of the thesis, that is to say \Funtional meta-programs

towards reusability in the de
larative paradigm" in
luding a very short indi
ation of results

and related work. Afterwards, in Se
tion 1.2 a number of examples demonstrating our

approa
h to meta-programming fa
ilitating reuse is demonstrated. The examples 
on
ern

the adaptation of dynami
 semanti
s de�nitions for simple imperative languages in the

style of natural semanti
s. Finally, in Se
tion 1.3 we 
omment on the main results of our

work whi
h are a

ordingly re
e
ted by the stru
ture of the thesis.

1.1 The topi


A

ording to [CI84℄ a meta-program is a program about programs. To fa
ilitate meta-

programming for programs in the language L, we need a framework M (i.e. a kind of


al
ulus, a (meta-) programming language, or an environment), the basi
 data obje
ts

of whi
h in
lude the programs and suitable fragments of L, sometimes denoted as the

target language or the obje
t language of M . Meta-programs take as input programs

and fragments in the target language L, perform various operations on them and possibly

generate modi�ed target language programs as outputs.

The appli
ations of meta-programming in
lude sour
e-to-sour
e translation and appli-


ation generation in software development, program transformation (optimization, spe
ial-

ization, deforestation, partial evaluation/dedu
tion, et
.; refer e.g. to [BD77, Wil90, PP94,

APR97℄), program synthesis (refer e.g. to [DL94, Kan91, BdM97℄) and program 
om-

position (refer e.g. to [Wir74, BMPT94, Bro93, FFG91, AP91℄) in formal programming

methodology. In this thesis, we use meta-programs to fa
ilitate reuse of target programs.

Reusability is a property of a programming development method where modi�
ations and

extensions in the design of a programming problem 
an be easily realized at the imple-

mentation level. It is also 
ommon to use the terms extensibility and adaptability for

this purpose. We propose meta-programs to 
ompose, to extend and to adapt (target)

programs. We are also interested in modelling 
ertain parts of the software as rather

meta-programs than ordinary target programs. Thereby, we 
an obtain a more generi


1



2 CHAPTER 1. INTRODUCTION

des
ription of the 
omputational behaviour.

Meta-level

Extensions

Language core

Inheritance Encapsulation

Macros Subprograms Modularity Genericity

Imperative ... Logic ...

Functional ...

Meta-Programs

Design Patterns Frameworks Schemata Enhancement

RefinementCompositionSynthese

Attr. GrammarsAlgebraic Spec.

Polymorphism

Transformation

Figure 1.1: Reasoning at the meta-level

We 
onsider meta-programming as one possible 
on
ept to improve reusability and to

avoide errors and thereby to in
rease produ
tivity in programming. Many other 
on
epts

are 
ommon for programming languages and spe
i�
ation frameworks. Some of them are

possibly integrated with the underlying language, i.e. these 
on
epts 
an be regarded as

a kind of extension of the underlying language kernel, e.g. subprograms, modules, obje
t-

oriented 
on
epts, generi
ity et
. in Figure 1.1. There are other 
on
epts whi
h are lo
ated

rather at a separate level in the sense of a meta-level ; refer again to Figure 1.1. These

are 
on
epts like re�nement (e.g. in the sense of Dijkstra's method [Dij76℄), design pat-

terns [Coa95, Lar97℄, frameworks and program synthesis [DL94℄. Meta-programming is

obviously lo
ated at the meta-level as well. Note that for some 
on
epts it depends on

the point of view if they should be regarded as a language extension or as a meta-level


on
ept. The style of adapative programming [Lie95℄, for example, suggests a way in whi
h

(propagation) patterns 
an be be
ome an integral part of programming. Another example


on
erns modularity, whi
h is not ne
essarily integrated with a language, but it 
an be

the subje
t of meta-level reasoning like for many other approa
hes to program 
omposi-

tion. Let us point out what our kind of meta-programs are meant to do. Our style of

meta-programming allows to 
onstru
t, de
onstru
t and observe target programs and type

information about them. Meta-programs 
an represent program s
hemata (patterns) and

program transformation s
hemata. Moreover, meta-programs are used to perform program


ompositions. We propose 
ertain properties for formal reasoning in order to support a


ontrolled way of 
omposition, synthesis and transformation. Another important property

of our approa
h is that meta-programs are exe
utable, whereas several other meta-level


on
epts are rather useful for reasoning.

This thesis addresses the de
larative paradigm as far as it 
on
erns target languages. We

think that meta-programming is a viable approa
h to reuse in the de
larative paradigm



1.1. THE TOPIC 3

be
ause it is parti
ularly suited for the review and the re
onstru
tion of several other

attempts in di�erent spe
i�
ation frameworks and problem domains. In our style of meta-

programming, we 
ru
ially rely on notions like many-sorted types, modes, terms, pla
e

holders, rules or equations and others as present in the de
larative paradigm. To simplify

the terminology, we use the term de
larative (target) language for both, for programming

languages like Prolog, G�odel and SML, and for spe
i�
ation formalisms like attribute gram-

mars, natural semanti
s, algebrai
 spe
i�
ations and de�nite 
lause programs. We want to

a
hieve general results appli
able for several representatives of the de
larative paradigm.

Thus, we try to 
onsider an abstra
t form of de
larative programs. Indeed, the approa
h


an be instantiated for several existing languages or formalisms. Sin
e de
larative lan-

guages are the target languages in our meta-programming approa
h, our target programs

are de
larative programs. Note that other terms than program are often used in the liter-

ature for 
ertain representatives of the de
larative paradigm, e.g. the term spe
i�
ation is

used for example in the 
ontext of attribute grammars and natural semanti
s.

The �rst important subje
t of the thesis is a framework for meta-programming 
on-

sisting of a fun
tional (i.e. �-) 
al
ulus for meta-programming with built-in data types for

de
larative programs and fragments and some formal support to guide formal program

development based on our instan
e of meta-programming. The data types modelling pro-

grams and fragments are de�ned in a way that only \
orre
t" values 
an be obtained.

Corre
tness is meant here in the sense of well-typedness and other properties. We have


hosen fun
tional meta-programs be
ause higher-order fun
tional programming provides

us with a way to write generi
 meta-programs. Formal program development is supported

by suitable properties of target programs and meta-programs, e.g. preservation properties.

The se
ond important subje
t of the thesis is a high-level operator suite for meta-

programming whi
h is derived from the basi
 operators supported by the general frame-

work. The operator suite provides us with generi
 s
hemata for 
omposition, synthesis and

transformation. The presentation of the operator suite 
ulminates with a sophisti
ated


omposition te
hnique 
alled lifting.

Although the a
hievements of our work and the relationship to other approa
hes are

explained in mu
h more detail later on (see Se
tion 1.3 and Se
tion 5.1), we �rst pro-

vide a rough overview. Important properties of our approa
h to meta-programming are

generality. The general framework 
an be instantiated for quite di�erent representatives

of the de
larative paradigm. Moreover, the general framework permits us to investigate

spe
i�
ation te
hniques and features as well as paradigm shifts introdu
ed in di�erent 
om-

munities in a uniform way. We 
an simulate, for example, stepwise enhan
ement in logi


programming [Lak89, SS94, JS94℄, symbol 
omputations in attribute grammars [KW94℄

and remote a

ess in attribute grammars [Kas76, Lor77, JF85, KW94, Boy96b, Boy98℄.

We 
an unbundle roles intermingled in other approa
hes, for example 
ertain programming

te
hniques in stepwise re�nement 
an be regarded as the 
omposition of some more elemen-

tary transformations. Our meta-programming approa
h 
ru
ially relies on types and modes

at the target level. Thereby, safety of meta-programming is improved. Moreover, types and

modes are shown to be useful to 
ontrol meta-programs. The operator suite provides a solid

basis for meta-programming at a high level of abstra
tion. Many approa
hes to reusability



4 CHAPTER 1. INTRODUCTION

rely on 
ertain forms of modularity in the sense of parameterization and de
omposition,

e.g. modular logi
 programming [HL94, Bro93, BMPT94℄, modules in AGs [Paa91, Bau98℄,

spe
i�
ation-building operators in algebrai
 spe
i�
ation [Wir86, ST88, SST92, Wir94℄, or

higher-order fun
tional programs / denotational semanti
s parameterized by monads (or

monad transformers) [Wad92, Mog89, Esp95℄. We want to 
omment on the bene�ts and

some limitations of reusability based on su
h modularity. Meta-programming-like trans-

formations allow us to perform adaptations and extensions without depending too mu
h

on a sensible modular stru
ture. Finally, our new 
omposition te
hnique lifting should

be regarded as a major result of the thesis. At a super�
ial level, lifting 
an be 
om-

pared with the monadi
 style in semanti
s [Mog89, Esp95℄ and fun
tional programming

[Wad92℄. However, we deal with program transformation based on �rst-order target lan-

guages instead of monads and monad transformation in a higher-order fun
tional setting.

Our meta-programming approa
h is shown to be useful, for example, in the 
ontext of

modular language de�nition based on natural semanti
s and attribute grammars.

1.2 Motivating examples

The purpose of this se
tion is to present a number of examples taken from the �eld of

formal semanti
s in order to demonstrate our meta-programming approa
h to reusability.

We use spe
i�
ations in the style of natural semanti
s as target programs. Thereby, we also

provide a demonstration how our general meta-programming framework is instantiated for

an a
tual target language (here: natural semanti
s). We have 
hosen some s
enarios where

given spe
i�
ations must be adapted or extended. It is shown how meta-programming-like

transformations 
an serve for that purpose. Other 
ommon approa
hes fail to solve su
h

problems as below. The obje
tive of this se
tion is to show that the expressive power of

our high-level transformation s
hemata and the formal degree of program manipulation

provide a viable approa
h to reuse. A proper 
omparison with related work is presented

in Chapter 4.

1.2.1 Preliminaries

Natural semanti
s [Kah87℄ is a popular spe
i�
ation formalism for stati
 and dynami


semanti
s, for translations between representations and stati
 analyses. In this thesis, nat-

ural semanti
s is used as one primary target language. Fragments of dynami
 semanti
s

for imperative languages in the style of natural semanti
s are used in numereous exam-

ples. A notational form of natural semanti
s similar to RML [Pet95, Pet94℄ and Typol

[Des88, BCD

+

88, JRG92℄ is used. In parti
ular, alphanumeri
 identi�ers are used to name

propositions and a distin
tion between inputs and outputs in propositions is assumed.

The pro�les for the relations modelling the semanti
s of statements and expressions for

a very simple imperative language, for example, are the following:

exe
ute : STM�MEM! MEM

evaluate : EXP�MEM! VAL



1.2. MOTIVATING EXAMPLES 5

The exe
ution of a statement (STM) is spe
i�ed by saying how the memory (MEM) is

transformed, whereas the evaluation of an expression (EXP) is spe
i�ed by saying how

the memory is observed and what value (VAL) is returned. Refer to Figure 1.2 for some

rules for these relations. Let us explain the pie
e of abstra
t syntax whose semanti
s is


overed by the �gure: The empty statement sequen
e is denoted by the 
onstant (term)

skip, whereas the 
ompound statement sequen
e is represented by a term of the form

1


on
at(STM

1

; STM

2

). An assignment statement with ID on the LHS and EXP on the RHS

is represented by the term assign(ID;EXP). Finally, a variable ID as a form of expression

is represented by the term var(ID).

: : :

exe
ute(skip;MEM) ! (MEM) [skip℄

exe
ute(STM

1

;MEM

0

) ! (MEM

1

)

^ exe
ute(STM

2

;MEM

1

) ! (MEM

2

)

exe
ute(
on
at(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[
on
at℄

evaluate(EXP;MEM

0

) ! (VAL)

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exe
ute(assign(ID;EXP);MEM

0

) ! (MEM

1

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL)

[var℄

: : :

Figure 1.2: An interpreter fragment for a simple imperative language

Consequently, the inferen
e rule [skip℄ spe
i�es the semanti
s of an empty statement

sequen
e, the rule [
on
at℄ spe
i�es the semanti
s of a statement sequen
e and the rule

[assign℄ spe
i�es the exe
ution of an assignment. Finally, the rule [var℄ 
on
erns the evalu-

ation of a variable.

1.2.2 Adapting the propagation of a data stru
ture

As we deal with a rather simple language, it is natural that the relation evaluate de�ning

the semanti
s of expressions only observes the memory, but it 
annot modify it. Thereby,

we express that side-e�e
ts do not o

ur during expression evaluation. It is now assumed

that the language must be extended by a 
onstru
t su
h that the evaluation of expressions

may 
ause side-e�e
ts. The evaluation of an appli
ation of a Pas
al-like fun
tion, for

example, may 
ause side-e�e
ts due to the statement part of the fun
tion body. To reuse

the interpreter program in Figure 1.2, the propagation of memories has to be adjusted. As

1

Note the following 
onvention for variables in target languages in this thesis: The identi�er of a domain,

e.g. STM, is used as the stem of variable identi�ers, possibly indexed or quoted, e.g. STM

1

.



6 CHAPTER 1. INTRODUCTION

far as it 
on
erns the pro�les of the relations used and de�ned in Figure 1.2, it is obvious

that the pro�le of the relation evaluate must be extended as follows:

evaluate : EXP�MEM! VAL� MEM

We adjust the propagation of memories in Figure 1.2 in two steps. First, a new output

position of sortMEM is inserted in any proposition with the name evaluate. This adaptation

is performed by the following transformation:

Figure 1.3 � Add hOutput; evaluate;MEMi On

2

Figure 1.2

: : :

exe
ute(skip;MEM) ! (MEM) [skip℄

exe
ute(STM

1

;MEM

0

) ! (MEM

1

)

^ exe
ute(STM

2

;MEM

1

) ! (MEM

2

)

exe
ute(
on
at(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[
on
at℄

evaluate(EXP;MEM

0

) ! (VAL; MEM' )

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exe
ute(assign(ID;EXP);MEM

0

) ! (MEM

1

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL; MEM' )

[var℄

: : :

Figure 1.3: Intermediate step from Figure 1.2 to Figure 1.4

Refer to Figure 1.3 for the intermediate result. The inserted fresh variables are boxed

in Figure 1.3. Note that the rule [var℄ is not well-de�ned with regard to the data 
ow

be
ause of the single o

urren
e of MEM

0

on an output position of the 
on
lusion. We do

not insist on a well-de�ned data-
ow for intermediate results. However, even intermediate

results have to satisfy a number of properties in
luding well-typedness in the sense of a

many-sorted type system. In 
ontrast to intermediate results, �nal results must have a

well-de�ned data 
ow. This issue is implemented by making a distin
tion between two

di�erent types in the meta-programming type system, that is to say Rules for in
omplete

programs and Program for programs to be regarded as �nal results.

To adjust the propagation of the memory, a se
ond step remains to be performed: The

new variables must be in
orporated 
orre
tly into the data 
ow in su
h a way that the

result in Figure 1.4 is obtained. We do not simply speak of inserting \
opy rules" to use

the attribute grammar jargon, but the data 
ow has really to be modi�ed and not only

2

On is used for fun
tion appli
ation, i.e. f On x � f(x).



1.2. MOTIVATING EXAMPLES 7

extended. Consider, for example, the rule [assign℄ in Figure 1.4: The memory 
omputed

by the premise with the name evaluate is used in the proposition with the name update.

In 
ontrast to that, the memory \
ows" dire
tly from the 
on
lusion to the proposition

with the name update in the original spe
i�
ation in Figure 1.2. For su
h problems of

propagation the operator Left To Right is suggested to be used. It is a transformation,

whi
h, when applied to a sort �, establishes a data 
ow from left to right by an identi�
ation

of de�ning and applied o

urren
es

3

of sort � in the suitable way after having refreshed

all these o

urren
es. Thus, the propagation of memories 
an be adjusted by the following

transformation:

: : :

exe
ute(skip;MEM) ! (MEM) [skip℄

exe
ute(STM

1

;MEM

0

) ! (MEM

1

)

^ exe
ute(STM

2

;MEM

1

) ! (MEM

2

)

exe
ute(
on
at(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[
on
at℄

evaluate(EXP;MEM

0

) ! (VAL;MEM

1

)

^ update(MEM

1

; ID;VAL) ! (MEM

2

)

exe
ute(assign(ID;EXP);MEM

0

) ! (MEM

2

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL;MEM)

[var℄

: : :

Figure 1.4: An interpreter 
oping with side e�e
ts in expression evaluation

Figure 1.4 � Left To Right MEM On Figure 1.3

The operator Left To Right has a number of 
omfortable properties whi
h make it useful

for well-founded program transformation, e.g. it is total, the type of the underlying program

is not 
hanged and the skeleton of the program and well-de�nedness (in the sense of a


orre
t data-
ow) is preserved.

In our approa
h, su
h operators are de�ned in an appli
ative 
al
ulus supporting frag-

ment types as basi
 data types. To prove the properties as mentioned above, equational

reasoning (starting from the �-expression de�ning an operation) 
an be used.

The way how transformations are formalized in the fun
tional 
al
ulus is illustrated in

Figure 1.5 whi
h presents the 
al
ulus expression de�ning the operator Left To Right.

First, the auxiliary fun
tions use und def are de
lared, whi
h are useful to repla
e and to

refresh parameters of the given sort. The 
onstru
ts

4

3

The input positions of the 
on
lusion and the output positions of the premises are regarded as de�ning

positions, whereas the 
omplementary set 
orresponds to the applied positions. The variables on the


orresponding positions are 
alled o

urren
es.

4

We are using mix�x notation in our fun
tional 
al
ulus.



8 CHAPTER 1. INTRODUCTION

� Map f : � ! � List l : �

?

and

� Fold Left � : �

0

� � ! �

0

Neutral e : �

0

List �

?

are re
ursion/iteration s
hemata 
ommon in higher-order fun
tional programming. The

transformation Left To Right adapts ea
h single rule by essentially refreshing and iden-

tifying variables of the given sort from left to right. There is an impure 
onstru
t New

Variable : : : to generate fresh variables. A number of operators for the de
onstru
tion of

program fragments is used:

� Tag Of : Rule! Tag,

� Con
lusion Of : Rule! Con
lusion,

� Premises Of : Rule! Premise

?

,

� Symbol Of : � ! Symbol,

� Parameters Of : Io� � ! Parameter

?

,

where Io = fInput;Outputg, � = Con
lusion or � = Premise. Similarly, several 
onstru
-

tor operators are exploited:

� Rule From ( : Tag � Con
lusion� Premise

?

! Rule,

� Con
lusion From ! : Symbol� Parameter

?

� Parameter

?

! Con
lusion,

� Premise From ! : Symbol� Parameter

?

� Parameter

?

! Premise.

This introdu
tory example dealing with the adaptation of Figure 1.2 will be �nished

with some 
on
luding remarks. The �nal result of the above adaptation as shown in Fig-

ure 1.4 
opes with side-e�e
ts during expression evaluation. The bene�t of this adaptation

is that we 
an perform a 
omposition of Figure 1.4 and any fragment whi
h adheres to the

same semanti
 model, e.g. an interpreter fragment for the evaluation of a Pas
al-like fun
-

tion 
all. To \
on
atenate" two sets of rules is 
alled merging in our work. It is fa
ilitated

by a 
orresponding binary operator Merge.

It should be pointed out that it is a big advantage to be able to spe
ify the semanti
s

of 
onstru
ts at a level whi
h is suÆ
ient for the a
tual 
onstru
ts, e.g. the evaluation of

variables in Figure 1.2 does not involve side-e�e
ts. Thus, we 
an use the simple pro�le

for the relation evaluate in Figure 1.2. The following remark should be stressed:

To be able to ignore semanti
 aspe
ts is not only a matter of saving lines of 
ode or

to have a 
on
eptionally well-stru
tured spe
i�
ation, but as we 
annot foresee all aspe
ts

of a spe
i�
ation in general|although, for interpreters of simple imperative languages we


an|, it makes reuse possible per se.

1.2.3 Adding 
omputational behaviour

Let us 
arry on with a slightly more 
omplex extension. We want to add a statement of

the form write(EXP) to perform an output and an expression of the form read to retrieve

an input. In the semanti
s de�nition, we model the 
on
ept of outputs by a

umulating

output values in a 
orresponding sequen
e, whereas the remaining input is propagated

to the relation evaluate by 
orresponding parameter positions. Sin
e both, inputs and

outputs, are sequen
es, we want to de
lare some straightforward polymorphi
 relations for



1.2. MOTIVATING EXAMPLES 9

� s : Sort .

% repla
e parameters of sort s by v

Let use = � ps : Parameter* . � v : Variable .

Map � p : Parameter . Sort Of p = s ! v, p List ps

In

% refresh parameters of sort s; propagate fresh variable

Let def = � ps : Parameter* . � v : Variable .

Fold Left

� hps, vi : Parameter* � Variable . � p : Parameter .

Sort Of p = s !

Let new = New Variable Of Sort s In hps ++ hnewi, newi,

hps ++ hpi, vi

Neutral hh i, vi List ps

In

% transform ea
h single rule

� rs : Rules . Map � r : Rule .

Let 
on
l = Con
lusion Of r In

Let fresh = New Variable Of Sort s In

Let h
on
lI, v1i = def On Parameters Input Of 
on
l On fresh In

Let hprems, v2i =

% iterate the premises

Fold Left

� hpres, vnexti : Premise* � Variable . � pre : Premise .

Let preI = use On Parameters Input Of pre On vnext In

Let hpreO, vnewi = def On Parameters Output Of pre On vnext In

hpres ++ hPremise From Symbol Of pre preI ! preOi, vnewi

Neutral hh i, v1i List Premises Of r

In

Let 
on
lO = use On Parameters Output Of 
on
l On v2 In

Rule From Tag Of r Con
lusion From Symbol Of 
on
l 
on
lI ! 
on
lO ( prems

List rs.

Figure 1.5: Left To Right : Sort! (Rules! Rules)

list pro
essing required below in some fragments:

empty : ! List(�) % to denote the empty list

singleton : � ! List(�) % to transform an element into a list

append : List(�)� List(�) ! List(�) % ordinary 
on
atenation of lists

head : List(�) ! � % to obtain the head of a list

tail : List(�) ! List(�) % to obtain the tail of a list

aÆx : � � List(�) ! List(�) % to extend a list

To a
hieve a kind of modular semanti
s, where the semanti
s of parti
ular 
onstru
ts is

spe
i�ed without too mu
h assumptions about other design de
isions whi
h are not so

relevant for the 
onstru
ts, we try to spe
ify the semanti
s of the new 
onstru
ts in some

e
onomi
al way; refer to Figure 1.6 and Figure 1.7.

The reason why we 
all the semanti
s fragments \minimal" is that we abstra
t from



10 CHAPTER 1. INTRODUCTION

evaluate(EXP) ! (VAL)

^ singleton(VAL) ! (OUT)

exe
ute(write(EXP)) ! (OUT)

[write℄

Figure 1.6: A \minimal" semanti
s of a write-statement

head (IN

0

) ! (VAL)

^ tail (IN

0

) ! (IN

1

)

evaluate(read; IN

0

) ! (VAL; IN

1

)

[read℄

Figure 1.7: A \minimal" semanti
s of a read-expression


ertain details like the propagation of memories. Aiming at reusable fragments it is mean-

ingful to abstra
t from the propagation of memories be
ause there are several options for

memory propagation as we have seen above in Subse
tion 1.2.2. It 
an also be the 
ase that

a two-level model 
onsisting of an envrionment and a store must be used instead of \
at"

memories. Su
h assumptions should not be �xed in fragments whi
h do not rely on one or

another de
ision. The semanti
s of the write-statement and the read-expression is minimal

also in the sense that we ignore inputs in the rule [write℄ and we also ignore outputs in

the rule [read℄. Finally, the rule [write℄ resembles the basi
 
ase that statements produ
e

outputs, but expressions do not. That is in 
ontrast to the s
enario, where expression

evaluation 
an 
ause all kinds of side e�e
ts.

To reuse the given semanti
s fragments from Figure 1.6 and Figure 1.7 in the 
ontext of

our interpreter in Figure 1.4, the 
orresponding rules must be quali�ed a

ordingly; refer

to Figure 1.8 for the result.

evaluate(EXP; MEM

0

; IN

0

) ! (VAL; MEM

1

; IN

1

; OUT

0

)

^ aÆx (VAL; OUT

0

) ! (OUT

1

)

exe
ute(write(EXP); MEM

0

; IN

0

) ! ( MEM

1

; IN

1

;OUT

1

)

[write℄

head (IN

0

) ! (VAL)

^ tail(IN

0

) ! (IN

1

)

^ empty ! OUT

evaluate(read; MEM ; IN

0

) ! (VAL; MEM ; IN

1

; OUT )

[read℄

Figure 1.8: Adapted semanti
s of write and read

The adaptation 
an be des
ribed in terms of some transformations:

� Positions of sort MEM are added and the data 
ow for memories is established; refer

to the inserted positions of sort MEM. The operators Add and Left To Right,



1.2. MOTIVATING EXAMPLES 11

whi
h we have introdu
ed in Subse
tion 1.2.2, are suÆ
ient for that purpose.

� In the same way the rule [write℄ is transformed to 
ontribute to the propagation of

the remaining input; refer to the inserted positions of sort IN.

� Sin
e we assume that the evaluation of expressions may 
ause side-e�e
ts, the relation

evaluate also must return an output; refer to the inserted positions of sort OUT.

� For the rule [write℄, we must make sure that the output from the premise with the

name evaluate is in
orporated into the output produ
ed by the statement. Thus, we

perform the following transformations:

1. Rename Symbol singleton To aÆx

2. Add hInput; aÆx ;OUTi

3. Copy hOutput; evaluate;OUTi To hInput; aÆx ;OUTi

The operator Rename is a straightforward operator: It serves for renaming names

of propositions. The a
tual appli
ation from above is semanti
s-preserving. The

operator Copy : : : To : : : uni�es the parameters on two positions. In attribute

grammars jargon, we would say that a semanti
 
opy rule is inserted.

� Finally, it must be spe
i�ed that the evaluation of a read-expression produ
es no

output. Therefore, the position of sort OUT, whi
h we have inserted into the rule

[read℄, is asso
iated with a new proposition serving as a kind of initialization. The

following transformation performs the ne
essary adapation:

Default For OUT By empty

In general, the operator Default adds for every variable of a given sort (i.e. OUT

in the example) without an asso
iated de�ning o

uren
es a new premise with the

given name (i.e. empty in the example) and the variable as the only output position.

To 
on
lude on the above transformations we should point out that transformations al-

low us to instantiate a spe
i�
ation for 
ertain uses. The transformations we have shown so

far 
on
ern the addition of parameter positions, the adaptation of the data 
ow, renaming

and the insertion of premises.

Before we 
an merge our interpreter and the new (instantiated) 
onstru
ts, the inter-

preter from Figure 1.4 must be adapted to 
ope with the a

umulation of output and the

propagation of the remaining input; refer to Figure 1.9 for the 
orresponding variant of the

interpreter whi
h is \
ompatible" to Figure 1.8 with the I/O 
onstru
ts. Essentially, we add

parameterization and 
omputational behaviour in a way that the input is propagated by

positions of sort IN in the sense of a bu
ket brigade [DC90, Ada91℄ or a

umulator, whereas

the output is \purely synthesized" based on positions of sort OUT. Let us 
omment on

the transformations modelling the ne
essary adaptation:

� Positions of sort IN and OUT are inserted as visualized in Figure 1.9. The operator

Add serves for that purpose as before. The proper data 
ow for the positions of sort

IN is a
hieved by another appli
ation of Left To Right. The positions of sort OUT

require more e�ort as dis
ussed below.



12 CHAPTER 1. INTRODUCTION

: : :

empty ! OUT

exe
ute(skip;MEM; IN ) ! (MEM; IN ; OUT )

[skip℄

exe
ute(STM

1

;MEM

0

; IN

0

) ! (MEM

1

; IN

1

; OUT

1

)

^ exe
ute(STM

2

;MEM

1

; IN

1

) ! (MEM

2

; IN

2

; OUT

2

)

^ append (OUT

1

;OUT

2

) ! (OUT)

exe
ute(
on
at(STM

1

;STM

2

);MEM

0

; IN

0

) ! (MEM

2

; IN

2

; OUT )

[
on
at℄

evaluate(EXP;MEM

0

; IN

0

) ! (VAL;MEM

1

; IN

1

; OUT )

^ update(MEM

1

; ID;VAL) ! (MEM

2

)

exe
ute(assign(ID;EXP);MEM

0

; IN

0

) ! (MEM

2

; IN

1

; OUT )

[assign℄

: : :

apply(MEM; ID) ! (VAL)

^ empty ! OUT

evaluate(var(ID);MEM; IN ) ! (VAL;MEM; IN ; OUT )

[var℄

: : :

Figure 1.9: An interpreter 
oping with inputs and outputs

� In general, their 
an be several premises returning some output; refer e.g. to the rule

[
on
at℄. In su
h 
ases all the positions must be \
omposed" to a single output. Let

us insert premises of the form append(OUT

1

;OUT

2

) ! (OUT) to perform su
h a


omposition. There is another operator fa
ilitating this kind of pairwise 
ombination

whi
h is used in the following instan
e:

Redu
e OUT By append

� The variables on the inserted applied positions of sort OUT are not de�ned yet. If

there is a de�ning position of sort OUT (note that there is at most one due to the

previous step) it 
an be 
opied. Otherwise the empty output should be returned.

Copying is a
hieved by a weaker variant of the operator Left To Right, that is to

say From The Left. If there is an unde�ned o

urren
e of a variable of sort OUT,

it will be uni�ed with a de�ned o

urren
e from the left|if there is any. From The

Left is weaker in the sense that o

urren
es of the 
orresponding sort should not

be refreshed as in the 
ase of the operator Left To Right. To return the empty

output a 
orresponding premise has to be inserted based on the operator Default in

similarity to the rule [read℄ in Figure 1.8.

The a
tual 
omposition of the adopted interpreter fragment for basi
 language 
on-

stru
ts and the I/O 
onstru
ts is expressed as follows in our 
al
ulus:

Merge Figure 1.9 And Figure 1.8



1.2. MOTIVATING EXAMPLES 13

The result is simply the 
on
atenation of the rules from the referred �gures. The 
om-

position 
an be des
ribed in some more detail by making expli
it how the above operands

were a
hieved. t

1

is assumed to denote the adaptations whi
h were ne
essary for the in-

terpreter in Figure 1.4 to 
ope with I/O, similarly, for t

2

and t

3

with respe
t to the I/O


onstru
ts from Figure 1.6 and Figure 1.7. These transformations have been des
ribed

above. Thus, the above 
omposition has the following more detailed des
ription:

Merge (t

1

On Figure 1.4) And (Merge (t

2

On Figure 1.6) And (t

3

On Figure 1.7))

This example demonstrates how we 
an 
ombine fragments of spe
i�
ations at di�erent

layers (or levels) of the 
omputational model (or the semanti
 model). Transformations

like the t

i

above are used to relate the levels or|to put it di�erently|to qualify fragments

at one level for another level.

1.2.4 Further s
enarios

Adapting and extending semanti
s spe
i�
ations, there are a lot more appli
ations for

transformations. Often there are only small adaptations ne
essary for su

essful reuse,

the extension of the memory propagation in Subse
tion 1.2.2 for example is su
h a rather

simple adaptation. Nevertheless, without meta-programming reuse is not feasible even for

su
h simple s
enarios. Let us sket
h some further s
enarios:

Adding 
ontrol-
ow 
onstru
ts When adding 
onstru
ts like jumps the style of the

semanti
s needs to be adjusted. We 
an use a rather transitional semanti
s in that


ase. One 
an de�ne a transformation s
hema to adopt 
ertain parts of a big step

semanti
s for use in small step semanti
s (and vi
e versa).

From non-re
ursive abstra
tions to re
ursive abstra
tions It is simple to write and

to understand the semanti
s for abstra
tions like pro
edures or fun
tions as long as

we do not 
ope with re
ursion. The variants supporting re
ursion are slightly more


omplex. Again, we 
an use a transformation to adapt the semanti
s of non-re
ursive

abstra
tions to 
ope with re
ursion. It 
an be based on a 
oding te
hnique whi
h

is 
ommon in fun
tional programming and formal semanti
s, that is to say �nite

unfolding.

More general forms of LHSs in assignments A very simple language like the one in

Figure 1.2 regards variable identi�ers as the only form of LHSs for assignments. If we

add arrays, re
ords, pointers, or fun
tions, assignments be
ome more involved. There

is a 
lean way to perform the 
orresponding generalization in the stati
 semanti
s

spe
i�
ation by means of transformations. Essentially, we fold the rule modelling

the simple semanti
s of assignment in a way that the premises 
orresponding to the

LHS moves to a new relation modelling the semanti
s of LHSs. Further forms are

supported by adding rules for the new relation.



14 CHAPTER 1. INTRODUCTION

1.3 Results and stru
ture

The results of the thesis a

ordingly represented by the stru
ture of the thesis are 
on-


luded in the following subse
tions. Note that many te
hni
al details and some ba
kground

material is 
ontained in the Appendix 
hapters.

1.3.1 A general framework for meta-programming

We propose a general framework for modular and fun
tional meta-programs on de
larative

target programs. It is important to noti
e that target programs, fragments and type in-

formation 
an be manipulated in meta-programs be
ause suitable data types (Figure 1.10)

are embedded into the meta-language. Let us des
ribe and justify the a
tual data types

and the entire framework in some detail.

Rule

Rules

Program

Name

Sort Variable

Tag

Profile

Sigma

Interface

Element

Parameter

Composition

Transformation

Figure 1.10: Data types modelling target programs

The data types for meta-programmming are meant to 
apture basi
 language 
onstru
ts

of several de
larative programming languages and spe
i�
ation frameworks su
h as natural

semanti
s (e.g. RML), attribute grammars (e.g. GSFs) and 
onstru
tive algebrai
 spe
i�-


ation. Thus, there are data types for fragments like rules, 
on
lusions, premises et
. The

data types should also take into 
onsideration properties whi
h are important for de
lara-

tive programs, e.g. well-typedness. A
tually, we 
an regard the data types of our general

framework as an abstra
tion from 
on
rete languages. Analysing 
on
rete examples fF

i

g

i2I

(languages, spe
i�
ation frameworks) we do not only get a kind of abstra
t language ker-

nel L

i

(
onstru
ts + properties), but we are also interested in a 
hara
terization of M

i

denoting the manipulations (paradigm shifts, features, extensions and meta-level 
on
epts

in the sense of Figure 1.1) supported by the frameworks F

i

. Su
h an abstra
tion 
an be

visualized as in Figure 1.11.



1.3. RESULTS AND STRUCTURE 15

�

�

�

�	

�

�

�

�R

abstra
tion

F

i

L

i

M

i

Figure 1.11: Analysing 
on
rete spe
i�
ation frameworks

Certain representatives of the de
larative paradigm are not 
aptured by our a
tual

data types for meta-programming, e.g. denotational semanti
s, higher-order fun
tional

programming, \non-
onstru
tive" algebrai
 spe
i�
ation are beyond our s
ope. However,

some reuse 
on
epts o�ered by the representatives might be relevant in our dis
ussion. In an

abstra
t sense, our data types represent an idealized language L derived from some sele
tion

fL

j

g

j2J�I

. Meta-programs on the data types for L provide the lowest level of manipulations

M we propose for L in our general framework. We assume that L 
an be instantiated for

the L

j

. Te
hni
ally, meta-programming is implemented by embedding the data types

for meta-programming into a 
al
ulus for modular appli
ative programs. What we are

�nally looking for are obviously manipulations M

0

at a higher level of abstra
tion. The

manipulationsM

j

of our examples F

j

(e.g. modularity, remote a

ess, s
hemata) are mostly

at a higher level. We will try to represent su
h manipulations as meta-programs. Formal

reasoning about target programs and meta-programs is supported by suitable properties

in our general framework. Preservation properties, totality, fragment sele
tion properties,

for example, provide important ingredients for reasoning about meta-programming.

The general framework for meta-programming (i.e. the data types from Figure 1.10,

the resulting 
al
ulus and properties for formal reasoning) is presented in full detail in

Chapter 2. There is also shown how the language L of the general framework 
an be

instantiated for several 
on
rete languages L

j

su
h as natural semanti
s, attribute gram-

mars, logi
 programming and algebrai
 spe
i�
ation; refer to Se
tion 2.4. Note that su
h

an instantiation does not explain yet how to re
onstru
t the manipulations M

j

asso
iated

with the spe
i�
ation frameworks F

j

, e.g. modularity, remote a

ess and s
hemata.

1.3.2 The operator suite for meta-programming

The general framework supports the development of modular fun
tional meta-programs

and formal reasoning about them. In our meta-programs, target programs 
an be 
on-

stru
ted and de
onstru
ted and the type information of a target program 
an be observed.

These are the basi
 manipulationsM in our general framework based on our idealized lan-

guage L. Preservation properties and others mentioned above permits us formal reasoning

about meta-programs. To approa
h to a higher level of abstra
tion in meta-programming,

we develop an operator suite in the sense of a library of meta-programs. The 
on
epts M

0

embodied by the operators of the suite will serve for the review and the re
onstru
tion of

existing 
on
epts M

j

.

Figure 1.12 presents the stru
ture of the operator suite. We start from some set of



16 CHAPTER 1. INTRODUCTION

Elaborate schemata

Positions CompositionPropagation Computation

Auxiliary operators

Selections, projections,
injections, closures CombinatorsRenaming Sorting

Embedded data types for meta-programming

Typed applicative calculus

Basic schemata

Copies & Definitions & Uses RulesPositions

Figure 1.12: Layers of the operator suite

auxiliary operators. Then basi
 s
hemata 
apturing basi
 
on
epts of the synthesis, the

adaptation and the 
omposition of de
larative target programs are de�ned, e.g. to add posi-

tions or simple 
omputational elements. In the next layer, several more elaborate s
hemata

are proposed, e.g. 
omplex s
hemata to add 
omputational behaviour or to propagate data

stru
tures. All these s
hemata are meant to support program 
omposition, synthesis and

transformation. The operator suite is based on a slight re�nement of the idealized language

L of the general framework. The a
tual re�nement permit us to apply the suite for natu-

ral semanti
s and GSFs (Grammars of Synta
ti
al Fun
tions: parameterized 
ontext-free

grammars with relational formulae on the parameters asso
iated with the rules; a kind of

attribute grammars 
losely related to logi
 programming). The suite is developed in full

detail in Chapter 3. We will present several s
hemata whi
h are not des
ribed elsewhere

in the literature in the 
ontext of stepwise enhan
ement [Lak89, SS94, JS94℄, rule models

[Hed92, KLMM93℄, modular attribute grammars [DC90℄, paradigm shifts in Lido [KW94℄,

et
.

? ?

instantiation

L M

0

L

0

j

M

0

j

Figure 1.13: Mapping the general framework to 
on
rete spe
i�
ation frameworks

Based on a meta-programming-like point of view and on the a
tual operator suite we 
an

re
onstru
t existing 
on
epts, whi
h have been proposed in the de
larative paradigm to sup-

port reuse. Remote a

ess, for examples, 
an be \
ompiled" by propagation s
hemata. In



1.3. RESULTS AND STRUCTURE 17

an abstra
t sense, we try to understand existing frameworks as instantiations fhL

0

j

;M

0

j

ig

j2J

of our enri
hed general meta-programming framework hL;M

0

i; refer to Figure 1.13. We do

not say that exa
tly hL

j

;M

j

i is re
onstru
ted be
ause the language and the manipulations

need possibly to be extended, restri
ted or adapted. We only make a few re
onstru
tions

expli
it in Chapter 4 des
ribing related work, but it is often 
ommented on the 
on
epts

modelled by one or another operator.

1.3.3 Composition by lifting

We propose a new 
omposition te
hnique lifting based on meta-programming; refer to

Se
tion 3.5. The starting point is to subdivide a programming problem into 
omputational

aspe
ts. Program fragments 
an be lo
ated at some \level" of the 
omplete 
omputational

model. Transformations 
alled transformers 
an be used to add 
omputational aspe
ts.

Lifting means to derive a 
omplete program with the 
omplete 
omputational behaviour

from a program skeleton (a 
ontext-free grammar or a signature), fragments at 
ertain

levels and transformers; refer to Figure 1.14.

Lifting Process program
Complete

Rules
at levels

Computational
aspects

Skeleton

Transformers

Figure 1.14: Program 
omposition by lifting

In some sense, our notion of lifting is similar to lifting (or strati�
ation) in modular de-

notational semanti
s based on monads and monad transformers and to the monadi
 style

of fun
tional programming; refer e.g. to [Esp95℄. Monads are dedi
ated to higher-order

fun
tional spe
i�
ation frameworks su
h as higher-order fun
tional programming and de-

notational semanti
s. In our approa
h, we 
an a
hieve a similar degree of extensibility by

meta-programs serving as transformers, even for �rst-order target languages. The monadi


style depends on a suitable parameterization. We indi
ate that our transformational ap-

proa
h does not require su
h pre
onditions or those inherent to other forms of modularity in

Chapter 4 des
ribing related work. It is also interesting to noti
e that our transformational

approa
h to 
omposition is similar in intent to aspe
t-oriented programming [KLM

+

97℄ in

the sense that we also try to spe
ify aspe
ts of 
omputational behaviour separatly to avoid

\tangled" 
ode.

1.3.4 Modular language de�nition

As the motivating examples have made 
lear, we 
on
entrate on appli
ations of the meta-

programming approa
h in formal language de�nition. Therefore, attribute grammars and



18 CHAPTER 1. INTRODUCTION

operational semanti
s (e.g. natural semanti
s) are used as target languages in all examples.

It is demonstrated that meta-programming fa
ilitates the spe
i�
ation in the following

problem domains:

� semanti
 aspe
ts of programming languages,

� adaptations for 
ommon synta
ti
al and semanti
 variants of the des
ribed 
onstru
ts

and 
on
epts and

� 
omposition of language fragments.

We 
laim that the �ne granularity of 
omputational aspe
ts we 
an deal with, the possi-

bilities for 
omposition and adaptation 
annot be a
hieved by other prominent te
hniques

promising reusability, parti
ularly in AG design.

A language 
onstru
tion set whi
h 
ru
ially relies on the meta-programming approa
h

will be presented in a separate paper [LRBS℄. Attribute grammars and operational se-

manti
s are used as the underlying formalisms. The 
onstru
tion set 
overs imperative

languages and simple modular and obje
t-oriented languages.



Chapter 2

The general framework

In this Chapter, we propose fun
tional meta-programs on de
larative target programs. To

be appli
able to a 
ertain range of representatives of the de
larative paradigm, the data

types for meta-programming and the 
orresponding notions su
h as well-typedness are de-

�ned in a general way. Se
tion 2.1 provides an overview of the data types, the resulting

appli
ative 
al
ulus and the properties of target programs and meta-programs. In Se
-

tion 2.2 the data types 
on
erning programs and fragments of them are 
onsidered in more

detail. Afterwards, 
ru
ial notions for dealing with de
larative programs are introdu
ed

in Se
tion 2.3, e.g. well-typedness and sele
tion 
riteria for fragments. In Se
tion 2.4, we

re�ne the data types for meta-programming and the notions for de
larative programs to


ope with a
tual target languages. The data types for meta-programming are embedded

into an appli
ative 
al
ulus in Se
tion 2.5. Se
tion 2.6 de�nes a number of properties of

meta-programs, e.g. preservation properties.

2.1 Overview

Data type Explanation WF/WT Stru
ture

Program 
omplete programs

p

Rules
 Interfa
e

Rules 
ompatible sequen
es of rules

p

Rule

?

Rule rules

p

Tag
 Con
lusion
 Premise

?

Con
lusion 
on
lusions for rules

p

Element

Premise premises for rules

p

Element� � � �

Element parameterized symbols

p

Name
 Parameter

?


 Parameter

?

Parameter parameters

p

(Variable� � � �)
 Sort

Variable 
ountable set of variables

Name symbols for elements Id

Interfa
e import / export / optional axiom

p

P(Name)
P(Name)
 Name?

Symbol universe of symbols Name� � � �

Tag tags of rules Id

Id 
ountable set of identi�ers

Figure 2.1: Data types for meta-programming (part 1/2)

19



20 CHAPTER 2. THE GENERAL FRAMEWORK

The starting point for our approa
h to meta-programming is a 
olle
tion of suitable

data types for meta-programming. There are data types for programs and fragments of

them; refer to Figure 2.1 for an overview. Moreover, there are auxiliary data types dealing

with type information (in the sense of the target language), fragment sele
tion, substitution

and uni�
ation; refer to Figure 2.2 for an overview.

Data type Explanation WF/WT Stru
ture

Sort sorts of positions et
.

Pro�le pro�les of symbols Symbol� Sort

?

� Sort

?

Sigma signatures

p

P(Pro�le)

Substitution substitutions

p

P(Variable
 Parameter)

Asso
iation asso
iations of symbols and sorts Symbol
 Sort

Io sele
tor fragments fInput;Outputg

Position addresses of parameter positions Io
 Symbol
 Sort

Figure 2.2: Data types for meta-programming (part 2/2)

Consequently, basi
 operations for 
onstru
ting and de
onstru
ting fragments need

to be de�ned. A parti
ular property of our approa
h to meta-programming is that the

data types for programs and fragments are restri
ted to elements obeying well-formedness

and well-typedness; refer to the 
olumn WF/WT in Figure 2.1 and Figure 2.2. Well-

formedness 
aptures simple 
ontext-sensitive properties of programs and fragments, su
h

as that the tags of the rules are pairwise distin
t. Well-typedness is meant in the sense of a

many-sorted type system, like for many-sorted algebrai
 spe
i�
ations or programming

languages like G�odel. For 
omplete programs we additionally require well-de�nedness


apturing properties parti
ularly important for 
omplete programs su
h as a well-de�ned

data 
ow (e.g. L-attribution or strong non-
ir
ularity for AGs, or 
all 
orre
tion or i/o-


orre
tness for logi
 programs) and a kind of redu
edness property (e.g. in the 
ontext-free

sense). Thereby, it is guaranteed that only proper fragments and spe
i�
ations are derived

in any step of a meta-program, but this also means that some appli
ations of 
onstru
tion

operators are not de�ned.

The 
entral data types are Rule and Rules, i.e. single rules and 
ompatible sequen
es

of them. Transformations in the narrow sense are fun
tions on Rules, i.e. they are of the

following type:

Trafo = Rules! Rules

The above data types are embedded into an appli
ative 
al
ulus in order to support

fun
tional meta-programs; refer to Figure 2.3 for the fun
tional programming-like 
on-

stru
ts we assume. We prefer fun
tional meta-programs instead of other possible options,

be
ause:

� the meta-programs should be de
larative (versus imperative) to allow us simple formal

reasoning about meta-programs and

� higher-order fun
tions (versus �rst-order spe
i�
ation formalisms) are quite useful as

meta-programs, sin
e they provide, for example, a straightforward means to model



2.2. FRAGMENTS 21

generi
 transformations.

Form Explanation

On fun
tional appli
ation

Let x = e In e

0

non-re
ursive Let

Letre
 x = e In e

0

re
ursive Let

Æ 
omposition f Æ g On x = f On (g On x)

= equality (on non-fun
tional domains)

! ; 
onditional

> an error value being an element of any type

Æ! partial 
onditional; b Æ! e means b ! e;>

h: : :i 
onstru
tion of sequen
es / tuples

Head Of , Tail Of , Nil? de
onstru
tion of sequen
es

++ 
on
atenation of sequen
es

Fold =Map re
ursion s
hemata

? the \maybe" type 
onstru
tor; D? = D � f?g

?

Figure 2.3: �-
al
ulus-like 
onstru
ts

Program transformations are very expressive. This is a statement we will 
omment on

all through the thesis. In parti
ular, we 
an perform adaptations whi
h are not supported

by 
ommon forms of modularity. On the other hand, we have to aspire to a dis
ipline

of meta-programming supporting a kind of 
ontrolled reuse. It is obvious that one 
an

des
ribe almost every adaptation by suÆ
iently powerful transformations, but 
ontrolled

reuse means that the appli
ation of meta-programming operators is driven by their prop-

erties and by the semanti
s of the target programs serving as operands and results. Con-

sequently, we dis
uss properties of meta-programs in some depth in Se
tion 2.6, e.g. the

well-known general semanti
s preservation. If we go on to de�ne high-level operators for

program transformation, synthesis and 
omposition in the next 
hapter, this analysis will

be helpful in 
hara
terizing parti
ular operators. The notions for target programs from

Se
tion 2.3 su
h as well-typedness are 
ru
ial for our approa
h to safe meta-programming

as well.

2.2 Fragments

The domains Rule, Rules, Program, Con
lusion, Premise, Element, Parameter and some other

auxiliary data types, e.g. Tag and Name, are de�ned below. For some domains we will

distinguish a stru
tural de�nition and the a
tual domain obtained as a restri
tion of the

stru
tural de�nition. The name of the domain 
orresponding to the stru
tural de�nition

is the overlined name of the a
tual domain, e.g. Rule denotes the name of the domain of

the stru
tural de�nition for Rule. If no restri
tion is ne
essary, the overlined domain and

the a
tual domain are not distinguished, e.g. for Tag. The restri
ted domains are usually

de�ned by inferen
e rules in similarity to type systems.



22 CHAPTER 2. THE GENERAL FRAMEWORK

2.2.1 Rule

The data type Rule is an abstra
tion from 
onstru
ts being relevant in many spe
i�
ation

frameworks, e.g. rules in natural semanti
s, or de�nite 
lauses in logi
 programming. A rule


onsists of a tag, a 
on
lusion and some premises. Tags are useful to refer to a parti
ular

rule within sequen
es of rules. The following stru
tural de�nition is suggested:

Rule = Tag 
 Con
lusion
 Premise

?

Con
lusion = Element

Premise = Element� � � �

Elements are parameterized symbols (names) in 
orresponden
e to propositions in natural

semanti
s, literals in logi
 programs and grammar symbols with asso
iated attributes in

attribute grammars. Elements are 
onsidered in more detail in Subse
tion 2.2.4. The

symbol of the 
on
lusion is said to be de�ned by the rule. The symbols of the premises

are said to be used by the rule. At this point, we ignore that there 
an be other forms of

premises than elements. The domain Premise 
an be extended later on to 
ope with other

forms, e.g.:

� semanti
 rules of an attribute grammar,

� mat
hing 
onstru
ts ( = ) in a logi
 program and

� negative equations of an algebrai
 spe
i�
ation.

We should 
omment on the a
tual de
ision to 
onsider a sequen
e of premises rather

than an (unordered) set of premises. If the body of a de�nite 
lause is read simply as a


onjun
tion, there will be no ne
essity for maintaining the order among the literals in the


onjun
tion. For many instan
es, however, the a
tual order of the premises is signi�
ant

or at least pragmati
ally useful:

� The order is signi�
ant for the RHS of a 
ontext-free grammar rule. Consequently,

sequen
es of elements need to be 
onsidered for attribute grammars.

� Several spe
i�
ation formalisms or well-modedness 
onditions require 
ertain data


ow properties, e.g. RML [Pet95, Pet94℄, ASF (+SDF ) [Kli93℄, 
all-
orre
tness and

i/o-
orre
tness in logi
 programming [Boy96a℄, whi
h depend on an a
tual order of

premises.

� The order of the premises is often understood as a des
ription of 
ontrol 
ow and data


ow, Sterling's et al. notion of a skeleton in [KMS96℄, for example, 
aptures (logi
)

programs with a well-understood 
omputational behaviour (in
luding 
ontrol-
ow).

Indeed, we will assume that the relative order of the premises possibly 
ontributes

to 
ontrol-
ow and/or data-
ow.

� Finally, premises 
an be addressed by their position in the sequen
e.

Note also that the order of premises is possibly relevant for 
ertain evaluation strategies or

for in
remental evaluation; refer e.g. to [AC90, ACG92℄ in the 
ontext of natural semanti
s.



2.2. FRAGMENTS 23

Proper values of Rule are 
hara
terized as follows:

r 2 Rule is a triple of the form ht; e

0

; he

1

; : : : ; e

n

ii; n � 0

^ e

i

2 Element for i = 0; : : : ; n

^ WF

Rule

(r)

^ 9 � : WT

Rule

(�; r)

r 2 Rule

[Rule℄

Well-formedness (WF) is dis
ussed in Subse
tion 2.3.1, whereas well-typedness (WT )

of target programs and fragments is the subje
t of Subse
tion 2.3.2. Signatures � are

expe
ted to asso
iate names (symbols) with many-sorted dire
tional types (or pro�les).

The 
onstru
tion of a rule r from a tag t, a 
on
lusion e and a sequen
e of premises e

?

is expressed in the following mix�x notation:

Rule From t e ( e

?

It should be pointed out that operations for the 
onstru
tion of fragments are usually

partial.

It is simple to de�ne basi
 operations for the de
onstru
tion of rules:

Tag Of : Rule! Tag

Con
lusion Of : Rule! Con
lusion

Premises Of : Rule! Premise

?

Tag Of Rule From t e ( e

?

! t [Tag Of ℄

Con
lusion Of Rule From t e ( e

?

! e [Con
lusion Of ℄

Premises Of Rule From t e ( e

?

! e

?

[Premises Of ℄

2.2.2 Rules

The data type Rules models 
ertain restri
ted sequen
es of rules. Thus, obviously the

following stru
tural de�nition 
an be assumed:

Rules = Rule

?

Elements of Rules are restri
ted in the sense that they have to satisfy well-formedness

and the types of the single rules must be 
ompatible to ea
h other. Consequently, proper

values of Rules are 
hara
terized as follows:

rs 2 Rules is a sequen
e of the form hr

1

; r

2

; : : : ; r

n

i; n � 0

^ r

i

2 Rule for i = 1; : : : ; n

^ WF

Rules

(rs)

^ 9 � : (WT

Rule

(�; r

i

) for i = 1; : : : ; n)

rs 2 Rules

[Rules℄



24 CHAPTER 2. THE GENERAL FRAMEWORK

The 
onstru
tion of an element rs 2 Rules is expressed in the following way:

Rules From : Rule

?

! Rules

Con
atenation on Rules is denoted by ./ : Rules� Rules! Rules.

rs

1

++ rs

2

2 Rules

Rules From rs

1

./ Rules From rs

2

! rs

1

++ rs

2

[ ./ for Rules℄

Here ++ denotes ordinary 
on
atenation of sequen
es.

It is straightforward to de�ne basi
 operations Nil?, Head Of and Tail Of for the

de
onstru
tion of elements of Rules in similarity to the iteration on sequen
es; refer to

Se
tion B.1.

2.2.3 Program

A program p 2 Program is an even more restri
ted sequen
e of rules as 
onstrained in the

data type Rules together with a kind of interfa
e. The stru
tural de�nition of programs is

the following:

Program = Rules
 Interfa
e

Interfa
e = P(Name)
P(Name)
 Name?

An interfa
e for some rules de�nes the imported symbols, the exported symbols and

an optional axiom in the 
ontext-free sense. The imported symbols should be a subset of

the required symbols whi
h 
orrespond to all symbols used but not de�ned in the rules.

The exported symbols should be a subset of the de�ned symbols. Finally, if an axiom is

given it has to be an exported symbol.

ss

import

2 P

finite

(Name); ss

export

2 P

finite

(Name); a 2 Name?

^ ss

import

\ ss

export

= ;

^ a 6= ? ) a 2 ss

export

hss

import

; ss

export

; ai 2 Interfa
e

[Interfa
e℄

Well-formedness and well-typedness of programs are assumed to result from the proper-

ties of the data type Rules. Any proper program p has to satisfy well-de�nedness. Indeed,

well-de�nedness is the distinguishing property of Program and Rules. To 
he
k that the

rules \implement" the interfa
e is part of the well-de�nedness property; refer to Subse
-

tion 2.3.3.

rs 2 Rules

^ i 2 Interfa
e

^ WD

Program

(rs ; i)

hrs ; ii 2 Program

[Program℄



2.2. FRAGMENTS 25

To 
onstru
t an interfa
e and to lift some rules rs 2 Rules (w.r.t. an interfa
e) onto

Program, the following operations 
an be used:

Interfa
e From # " : P(Name)
P(Name) ! Interfa
e

Interfa
e From # " Axiom Is : P(Name)
P(Name)
 Name! Interfa
e

Program From With Interfa
e : Rules� Interfa
e! Program

These operations are partial like many other operations for 
onstru
ting fragments. The

rule [Program℄ models that a sequen
e of rules 
an only be 
onsidered as a proper program,

if well-de�nedness holds.

2.2.4 Element

Again, the data type Element is an abstra
tion from 
onstru
ts being relevant in many

spe
i�
ation frameworks, e.g. 
on
lusions or premises in natural semanti
s, atoms or liter-

als in logi
 programming, 
on
lusions and 
onditions (with free variables on one side) in

algebrai
 spe
i�
ation.

An element 
onsists of a name (or a symbol), some inputs and some outputs. Conse-

quently, the following stru
tural de�nition 
an be given:

Element = Name
 Parameter

?


 Parameter

?

Proper values of Element are 
hara
terized as follows:

e 2 Element is of the form hn, hp

1

; : : : ; p

m

i, hp

m+1

; : : : ; p

k

ii;m � 0; k � m

^ p

i

2 Parameter for i = 1; : : : ; k

^ WF

Element

(e)

^ 9 �;� : WT

Element

(�;�; e)

e 2 Element

[Element℄

Contexts � asso
iate variables (parameters) with sorts. For a given rule, it must be possible

to asso
iate ea
h variable with a single sort.

The 
onstru
tion of an element e is expressed in the following mix�x notation:

Element From n p

?

#

! p

?

"

The basi
 operations for the de
onstru
tion of elements are as follows:

Name Of : Element! Name

Parameters Of : Io� Element! Parameter

?



26 CHAPTER 2. THE GENERAL FRAMEWORK

Here the domain Io is de�ned as follows: Io = fInput;Outputg.

Name Of Element From n p

?

#

! p

?

"

! n

[Name Of ℄

Parameters Input Of Element From n p

?

#

! p

?

"

! p

?

#

[Parameters:1℄

Parameters Output Of Element From n p

?

#

! p

?

"

! p

?

"

[Parameters:2℄

Some minor remarks 
on
erning the domain Name are ne
essary. We assume that

both, tags and names for elements, are based on the same underlying set of identi�ers.

This property 
an be fa
ilitated to turn tags into symbols and vi
e versa. That possibility


an be used, for example, in order to add 
omputations to rules based on tags of the rules,

or to swit
h from a signature to a program skeleton. Consequently, we assume 
oer
ions

for both dire
tions:

Tag From : Name! Tag

Name From : Tag! Name

Finally, the generation of fresh names should be supported, for example, in order to be

able to spe
ify the 
ompilation-oriented semanti
s of the operators for modularity in [Bro93,

BMPT94℄. We assume an operation NEW

Name

: P(Name) ! Name. NEW

Name

(N) 7! n

means: n is a name not mentioned in N . There is the pragmati
 problem of the proper

a

umulation and propagation of the set of names N being in use in a meta-program. This

problem is addressed in Subse
tion 2.5.3.

2.2.5 Parameter

The data type Parameter is an abstra
tion for entities like terms (in natural semanti
s, logi


programming, and algebrai
 spe
i�
ation), attributes (in attribute grammars) et
. We will

have at least variables as a form of parameters. Thus, the initial stru
tural de�nition is

the following:

Parameter = (Variable� � � �)
 Sort;

where Variable is a 
ountable set of variables. As shown in the equation de�ning Parameter,

a parameter is always expe
ted to be asso
iated with a sort, i.e. the type of the parameter.

Parameters are required to satisfy the properties of well-formedness and well-typedness.

Consequently, proper values of Parameter are 
hara
terized as follows:

WF

Parameter

(p)

^ 9 �;� : T YPE

Parameter

(�;�; p) = �

Sort

(p)

p 2 Parameter

[Parameter℄

The partial fun
tion T YPE

Parameter

: Context � Sigma� Parameter ! Sort asso
iates a

potential parameter with its sort; refer to Subse
tion 2.3.2 for details. Sin
e we should



2.3. NOTIONS FOR TARGET PROGRAMS 27

be able to generate variables, there is a need for an operation NEW

Variable

: P(Variable)�

Sort ! Variable, where NEW

Variable

(V; �) 7! v means: v is a variable not mentioned in

V . The sort position of NEW

Variable

supports the 
on
ept of meta-variables, i.e. ea
h

variable has an asso
iated sort, that is to say � for the above v. Similar to the generation

of names, there is the pragmati
 problem with generating fresh variables 
on
erning the

proper a

umulation and propagation of the set of variables V being in use in a meta-

program. We will return to this issue in Subse
tion 2.5.3 when the data types are embedded

into an appli
ative 
al
ulus.

The 
onstru
tion of a parameter of a 
ertain sort � from a variable v is expressed as

follows:

Variable From v Of Sort �

However, if we assume meta-variables, the appli
ation of the 
onstru
tion operator 
an be

omitted in the sense of an impli
it 
oer
ion.

To de
onstru
t parameters, the following operations are useful.

Sort Of : Parameter ! Sort

Variable? : Parameter ! Boolean

Variable Of : Parameter ! Variable

�

Sort

(p) ! �

Sort Of p! �

[Sort Of ℄

Is

Variable

(�

1

(p)) ! b

Variable? p! b

[Variable?℄

Variable Of Variable From v Of Sort � ! v [Variable Of ℄

Finally, we de
lare an operation sele
ting all variables 
ontained within a given sequen
e

of parameters. It is frequently needed for 
omputing 
losures of variables. Its spe
i�
ation

is straightforward; refer to Se
tion B.2.

Variables In : Parameter

?

! P(Variable)

2.3 Notions for target programs

2.3.1 Well-formedness

The data types above have been de�ned in su
h a way that a ne
essary pre
ondition for

the well-formedness of a 
ompound fragment is the well-formedness of its 
omponents. To

satisfy well-formedness a parti
ular requirement for a program is the uniqueness of tags.



28 CHAPTER 2. THE GENERAL FRAMEWORK

WF

Rule

(r

i

) for i = 1; : : : ; n

^ �

Tag

(r

i

) 6= �

Tag

(r

j

) for i; j = 1; : : : ; n; i 6= j

WF

Rules

(hr

1

; : : : ; r

n

i)

[WF

Rules

℄

Instan
es of the framework 
an add other requirements su
h as:

� normal form properties of rules (as 
ommon for AGs),

� only one de�ning o

urren
e of a variable (linearity),

� pattern 
riteria for fun
tional equations (e.g. non-overlapping patterns).

2.3.2 Well-typedness

Any fragment su
h as a rule, an element and a parameter 
an be asso
iated with the type

information relevant for the symbols o

urring in the fragment. Let Sort be the data type

of sorts. At this point, there are only symbols in the sense of Name 
ontributing to the

de�nition of Element. In several instan
es other kinds of symbols are ne
essary, e.g. term


onstru
tors (data type 
onstru
tors) in natural semanti
s or fun
tion symbols (fun
tors)

in logi
 programming. Thus, a 
orresponding sum domain is established:

Symbol = Name� � � �

Every s 2 Symbol shall be asso
iated with a dire
tional type based on a many-sorted type

system in similarity to [Boy96a℄. The notation

s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

;

where s 2 Symbol, �

i

2 Sort, i = 1; : : : ; m, is used for pro�les modelled by the domain

Pro�le. 1; : : : ; n are regarded as the input positions of s, whereas n+1; : : : ; m are regarded

as the output positions of s. Note the following spe
ial 
ases:

� s has no input positions at all, i.e. n = 0, or

� s has no output positions at all, i.e. m = n, or

� s has no positions at all, i.e. m = 0 = n.

The 
onstru
tion of the above pro�le is expressed as follows:

Pro�le From s h�

1

; : : : ; �

n

i! h�

n+1

; : : : ; �

m

i

The data types Pro�le of pro�les and Sigma of signatures are de�ned as follows:

Pro�le = Symbol 
 Sort

?


 Sort

?

Sigma = SIGMA(P(Pro�le)
 � � �)

SIGMA restri
ts elements of (P(Pro�le) 
 � � �) to proper signatures � 2 Sigma. Some


ommon restri
tions 
an be indi
ated as follows:



2.3. NOTIONS FOR TARGET PROGRAMS 29

1. uniqueness of the pro�les for any symbol, i.e. the following de�nition of Sigma is

assumed:

Sigma = Symbol! (Sort

?


 Sort

?

);

2. fun
tion symbols have exa
tly one output position, as for example in logi
 pro-

gramming.

It is assumed in the sequel that SIGMA satis�es at least the �rst 
ondition, that is to say,

symbols are not overloaded. The a
tual stru
ture of Sigma possibly has to be adapted or

extended in some instan
es, e.g. if sorts are de�ned by domain equations, this information

will have to be maintained within a signature.

The following operations on Sigma are required:

t : Sigma� Sigma! Sigma % least upper bound (LUB)

� : Sigma� Sigma! fTrue;Falseg % subtype relationship

�

1

� � ��

k

denotes a proper signature if f�

1

g t � � � t f�

k

g is de�ned.

Example 2.3.1

For the names de�ned and used in our introdu
tory interpreter example in Figure 1.2 the

following pro�les (dire
tional many-sorted types) are appropriate:

exe
ute : STM�MEM! MEM

evaluate : EXP�MEM! VAL

update : MEM� ID� VAL! MEM

apply : MEM� ID! VAL

Note that we also use the following term 
onstru
tors in the referred spe
i�
ation:

skip : ! STM


on
at : STM� STM! STM

assign : ID� EXP! STM

var : ID! EXP

We will see later on that another kind of symbols needs to be added to the de�nition

of the domain Symbol be
ause of terms. Any way, in some or another way we must qualify

pro�les by the 
orresponding kind of symbol. Above, we use di�erent typesets for names

and 
onstru
tors.

}

Here are the basi
 operations for the de
onstru
tion of pro�les:

Symbol Of : Pro�le! Symbol

Sorts Of : Io� Pro�le! Sort

?



30 CHAPTER 2. THE GENERAL FRAMEWORK

Symbol Of Pro�le From s �

?

#

! �

?

"

! s

[Symbol Of ℄

Sorts Input Of Pro�le From s �

?

#

! �

?

"

! �

?

#

[Sorts Input℄

Sorts Output Of Pro�le From s �

?

#

! �

?

"

! �

?

"

[Sorts Output℄

Iteration on signatures

1

is based on operators similar to the operations for de
onstru
t-

ing sequen
es:

Head Of : Sigma! Pro�le

Tail Of : Sigma! Sigma

Nil? : Sigma! Boolean

Remember that the data types Program, Rules, Rule, Element and Parameter 
ontain

well-typed elements only. The general framework assumes type 
he
king / inferen
e rela-

tions for these data types. The following rules are the basis:

Is

Variable

(�

1

(p)) ! True

^ Out

Variable

(�

1

(p)) ! v

^ �

Sort

(p) ! �

^ (v : �) 2 �

T YPE

Parameter

(�;�; p) ! �

[type of a variable℄

s : �

1

� � � � � �

m

! �

m+1

� � � � � �

k

2 �

^ T YPE

Parameter

(�;�; p

i

) ! �

i

for i = 1; : : : ; k

WT

Element

(�;�; hn; hp

1

; : : : ; p

m

i; hp

m+1

; : : : ; p

k

ii)

[WT

Element

℄

9 � : (WT

Element

(�;�; e

i

) for i = 0; : : : ; n)

WT

Rule

(�; ht; e

0

; he

1

; : : : ; e

n

ii)

[WT

Rule

℄

We should also de�ne the type of a program. For every rs 2 Rules its type � is denoted by

Sigma Of rs.

WT

Rule

(�; r

i

) for i = 1; : : : ; n

^ � is minimal,

i.e. 8 �

0

6= � : WT

Rule

(�

0

; r

i

) for i = 1; : : : ; n) j�j � j�

0

j

Sigma Of Rules From hr

1

; : : : ; r

n

i ! �

[Sigma Of ℄

Note that a minimal � is assumed be
ause the type of a fragment should not 
ontain

useless pro�les. It is assumed that the operator Sigma Of is overloaded to be appli
able

to other fragment types as well.

1

We assume a suitable representation for Sigma based on sequen
es, e.g. (Symbol 
 Sort

?


 Sort

?

)

?

.



2.3. NOTIONS FOR TARGET PROGRAMS 31

Example 2.3.2

The pro�les shown in Example 2.3.1 represent exa
tly Sigma Of Figure 1.2. For all

the variants of the interpreter from Se
tion 1.2, WT holds be
ause we 
annot 
ompute

programs or fragements whi
h are not well-typed. }

2.3.3 Well-de�nedness

A program is said to be well-de�ned if it satis�es 
ertain 
riteria parti
ularly important

for 
omplete programs. Here are some examples:

1. variables are bound from left to right and they are not used before they are bound

(refer e.g. to RML [Pet95, Pet94℄|a variant of natural semanti
s),

2. redu
edness of the underlying 
ontext-free grammar of an AG,

3. non-
ir
ularity of an attribute grammar,

4. absen
e of free �-variables in fun
tional equations,

5. 
all- or i/o-
orre
tness in logi
 programs with dire
tional types [Boy96a℄.

To approa
h to an initial form of well-de�nedness in our framework we need some further

notions. Parameter positions in a rule are divided into de�ning and applied positions.

De�nition 2.3.1

Let be r 2 Rule. The input positions of the 
on
lusion of r and the output positions of

the premises of r are 
alled de�ning positions of r. A position in r whi
h is not a de�ning

position, is 
alled an applied position of r. }

The idea behind these terms is that the variables with o

urren
es on applied posi-

tions are expe
ted to be \
omputed" in terms of variables with o

urren
es on the de�ning

positions. These terms are used in mu
h the same way in extended attribute grammars

[WM77℄. There are other terms used for this purpose, e.g. imported and exported posi-

tions in dire
tional typing [Boy96a℄. In attribute grammars, notions like used and de�ned

attribute o

urren
es are de�ned. The latter terms are tuned towards named attributes

rather than a position-oriented framework as in our 
ase.

Now it is straightforward to de�ne the sets Ao In r and Do In r for a given rule

r whi
h represent the applied and the de�ning (variable) o

urren
es of r, i.e. all the

variables o

urring on applied or de�ning positions respe
tively. Refer to Se
tion B.3 for

the inferen
e rules de�ning the 
orresponding relations.

The following de�nition of well-de�nedness is assumed. A requirement for rules in the


ontext of dire
tional types of symbols is that every applied o

urren
e of a variable is

justi�ed by a de�ning o

urren
e of the same variable. This data 
ow 
riterion is modelled

by the rule DF :1 below. Moreover, a kind of 
onforman
e should be satis�ed between the

rules and the interfa
e of a program; refer to the rule IMPLEMENT S.

DF(rs; i)

^ IMPLEMENT S(rs ; i)

WD

Program

(hrs ; ii)

[WD

Program

℄



32 CHAPTER 2. THE GENERAL FRAMEWORK

Ao In r

j

� Do In r

j

for j = 1; : : : ; n

DF(hr

1

; : : : ; r

n

i; i)

[DF :1℄

ss

export

are de�ned symbols in rs

^ ss

import

are not de�ned symbols in rs

^ rs is redu
ed in the 
ontext-free sense w.r.t. ss

import

; ss

export

; a

IMPLEMENT S(rs ; hss

import

; ss

export

; ai)

[IMPLEMENT S℄

We 
an speak about redu
edness in the 
ontext-free sense, if we regard the imported names

of the interfa
e as \terminals", whereas the exported names are regarded as \nonterminals".

If the interfa
e spe
i�es an axiom, redu
edness 
an be 
he
ked in its full extent. Otherwise,

we 
an only 
he
k that all required names (i.e. names whi
h are used but not de�ned) are

listed as imported names.

A very simple and 
ommon data 
ow 
riterion is obtained by restri
ting the depen-

den
ies of variables in the elements of a rule from left to right; refer to Se
tion B.4 for

details.

Well-de�nedness is only required for 
omplete programs, be
ause transformations 
an

often be de�ned in a more 
onvenient way, if intermediate results do not have to satisfy the

properties modelled by well-de�nedness. The pro
ess of establishing a propagation pattern

along 
ertain symbols of a set of rules, for example, 
an be divided into two phases. The

�rst phase adds new parameter positions, whereas the se
ond phase establishes a 
ertain

data 
ow based on the new positions. The intermediate result will not be well-de�ned.

Example 2.3.3

Re
all our introdu
tory interpreter example of Subse
tion 1.2.2. The orginal interpreter in

Figure 1.2 and the �nal adaptation in Figure 1.4 
oping with side e�e
ts during expression

evaluation are well-de�ned, i.e. WD holds, whereas the intermediate result in Figure 1.3

with the new output position of sort MEM is not well-de�ned be
ause of the variableMEM

0

whi
h only o

urs on an applied position of the rule [var℄, but not on a de�ning position,

i.e. WD does not hold due to [DF :1℄. }

The �nal result of a meta-programmust be well-de�ned. The following de�nition de�nes

the term of unde�ned variables in a rule. We might also say that these variables are not

de�ned. These variables are exa
tly those variables whi
h violate well-de�nedness and

thus meta-programs have to fo
us on them. Dually, we 
an also speak of unused variables


orresponding to useless variable o

urren
es in a target program. Unused variables are

not regarded as a violation of well-de�nedness but still they are useful to 
ontrol meta-

programs.

De�nition 2.3.2

Let be r 2 Rule. Ao In r nDo In r denotes the set of all unde�ned variables in r. Dually,

Do In r nAo In r denotes the set of all unused variables in r. }

Note that there 
an be several applied o

urren
es of an unde�ned variable in a rule.

There are two basi
 ways in whi
h an o

urren
e of an unde�ned variable v 
an be elimi-

nated in a rule r.



2.3. NOTIONS FOR TARGET PROGRAMS 33

� The variable v is repla
ed in the 
orresponding o

urren
e by another variable, more

generally by a parameter not referring to v.

� A de�ning o

urren
e of v 
an be 
reated, most likely by the insertion of a new

premise with v on an output position.

Both approa
hes model somehow the addition of a semanti
 rule in the AG jargon, where

the �rst approa
h 
orresponds to the addition of semanti
 
opy rules. Unused variables 
an

obviously be eliminated in a dual manner. Let us de
lare some useful terms. If a premise

p is inserted in order to eliminate an unde�ned variable v, then p is also 
alled de�nition

(of v). Dually, if a premise p is inserted in order to eliminate an unused variable v, then

p is also 
alled use (of v). De�nitions are basi
ally 
onstant 
omputations, i.e. premises

with zero input positions and one output position. Uses are basi
ally unary 
onditions, i.e.

premises with one input position and zero output positions. Finally, if a parameter on an

applied position is repla
ed by a variable with a de�ning o

urren
e, more generally by a

parameter without unde�ned variables, the resulting parameter is 
alled a 
opy.

2.3.4 Substitution and uni�
ation

The notions substitution and uni�
ation are well-established in the de
larative paradigm.

Usually they are used to des
ribe the meaning of programs or to explain the synta
ti
al

proof derivation. In the 
ontext of meta-programming, we need these 
on
epts at the

meta-level to perform \symboli
" substitution and uni�
ation in meta-programs. Note

that additional requirements for our kind of substitution and uni�
ation arise from our

well-typedness 
onstraints.

In a formal sense, a substitution is a mapping from variables to parameters. As it

is 
ommon pra
ti
e, we use a rather synta
ti
 de�nition based on pairs of variables and

parameters:

Substitution = P(Variable
 Parameter)

hv; pi

2

means that v has to be substituted by p in parameters, elements and others. Proper

substitutions, i.e. elements of Substitution, are su
h sets fhv

1

; p

1

i; : : : ; hv

n

; p

n

ig, where n �

0, v

i

6= p

i

for i = 1; : : : ; n and v

i

6= v

j

for i 6= j. For several instan
es, e.g. natural

semanti
s, 
ompound parameters in the sense of terms need to be 
onsidered. Then the

sort of any nested o

urren
e of a variable v

i

in the parameters p

j

must not be in 
on
i
t

with the sort of p

i

, and the LUB of the type information asso
iated with the p

j

has to

exist in order to retain well-typedness. Consequently, the 
on
atenation of substitutions

is restri
ted. Let � and � be substitutions. � ./ � = � [ � provided � [ � denotes a

proper substitution.

Substitutions 
an be applied to parameters. The appli
ation of substitutions 
an

straightforwardly be generalized for other synta
ti
al domains, su
h as elements and rules.

2

The notation v=p is used quite often in the literature instead of hv; pi.



34 CHAPTER 2. THE GENERAL FRAMEWORK

Substitute In Parameter : Substitution� Parameter ! Parameter

Substitute In Element : Substitution� Element! Element

Substitute In Rule : Substitution� Rule! Rule

We give only the inferen
e rules for the appli
ation of substitutions to parameters.

Remember that there are only variables as parameters in the general framework.

Variable? p! True

^ Variable Of p = v

^ Sort Of p = Sort Of p

0

Substitute f: : : ; hv; p

0

i; : : :g In Parameter p! p

0

[SUBST :1℄

Variable? p! True

^ Variable Of p 6= v

i

for i = 1; : : : ; n

Substitute fhv

1

; p

1

i; : : : ; hv

n

; p

n

ig In Parameter p! p

[SUBST :2℄

The appli
ation of a substitution has to be restri
ted to retain well-typedness as ex-

pressed by the above inferen
e rules. For notational 
onvenien
e we may write e [v=p℄ for

the appli
ation of a substitution fhv; pig to a synta
ti
al entity e.

Another important operation on substitutions is 
omposition 
oin
iding with fun
tion


omposition. Given two substitutions � = fhv

1

; p

1

i, : : : ; hv

n

; p

n

ig and � = fhv

n+1

; p

n+1

i,

: : :, hv

m

; p

m

ig, their 
omposition is denoted by � Æ �, and it is obtained from the set

fhv

1

; p

1

�i; : : : ; hv

n

; p

n

�i; hv

n+1

; p

n+1

i; : : : ; hv

m

; p

m

ig by removing all hv

i

; p

i

�i with v

i

=

p

i

� for i = 1; : : : ; n and by removing those hv

j

; p

j

i for whi
h v

j

2 fv

1

; : : : ; v

n

g for j =

n+ 1; : : : ; m.

The 
on
ept of substitution permits us to introdu
e another 
on
ept, that is uni�
ation

of parameters, similarly to logi
 programming; refer e.g. to [NM95℄. The 
omputation of the

most general uni�er of equations fht

1

; t

0

1

i; : : : ; ht

n

; t

0

n

ig is based on deriving an equivalent

set of equations in solved form a

ording to Robinson's algorithm. As usual, a set of

equations is in solved form if the LHS of every equation is a variable, and the variables

do not o

ur in the parameters on the RHSs. Two sets of equations are equivalent if

they have the same sets of uni�ers. Thus, we need an auxiliary domain Equations =

P(Parameter 
 Parameter). Proper sets of equations have to be restri
ted to retain well-

typedness similarly to Substitution.

As far as uni�
ation is 
on
erned, the following relations are needed:

Unify Parameters And : Parameter � Parameter ! Substitution

SOLVE( ) : Equations! Substitution



2.3. NOTIONS FOR TARGET PROGRAMS 35

SOLVE(fhp; p

0

ig) ! �

Unify Parameters p And p

0

! �

[MGU :1℄

There should be possibly also a relation to test if a uni�er exists at all. Refer to Se
tion B.5

for details of the relation SOLVE , whi
h 
omputes the solved form of some equations. Uni-

�
ation is easily generalized for elements. Un�
ation of elements (with the same underlying

pro�le) 
orresponds to the uni�
ation of their parameters in the same positions. Thus the

following de�nition is appropriate:

Unify Element And : Element� Element! Substitution

SOLVE(fhp

#

1

; p

0

#

1

i; : : : ; hp

#

m

; p

0

#

m

i; hp

"

1

; p

0

"

1

i; : : : ; hp

"

k

; p

0

"

k

ig) ! �

Unify Elements Element From n hp

#

1

; : : : ; p

#

m

i ! hp

"

1

; : : : ; p

"

k

i

And Element From n hp

0

#

1

; : : : ; p

0

#

m

i ! hp

0

"

1

; : : : ; p

0

"

k

i

! �

[MGU :2℄

Subsitution is useful in meta-programs, for example, for establishing a 
ertain data 
ow

by the uni�
ation of variables in a suitable way. Uni�
ation is useful in meta-programs,

for example, for unfolding, i.e. a 
ertain premise is unfolded a

ording to a rule de�ning

the premise's symbol.

2.3.5 Addressing fragments

Meta-programs frequently need to address (sele
t) 
ertain fragments in programs, namely:

� a rule in a sequen
e of rules,

� a premise in a sequen
e of premises,

� a (parameter) position of a 
on
lusion / a premise,

� a de�ning or an applied position.

The purpose of this subse
tion is to 
omment on su
h fragment sele
tions in more detail.

Values intended to address fragments are 
alled sele
tors in the sequel. Usually a sele
tor

is expe
ted to sele
t uniquely a fragment. However, in some 
ases it is a

eptable that a

sele
tor mat
hes with several fragments or even with no fragment at all.

Rules 
an easily be sele
ted based on tags. For 
ertain instan
es of the framework a

sele
tion based on parameter patterns (for the input positions of the 
on
lusions) makes

sense as well, e.g. for re
ursive fun
tion de�nitions and 
onstru
tive algebrai
 spe
i�
ations.

Premises of rules 
an be addressed, in general, by indi
es. There are the following

obje
tions for using this addressing method:

1. It is not readable.

2. It depends on the order of the premises and on the absen
e or presen
e respe
tively

of premises possibly not relevant for the a
tual sele
tion.



36 CHAPTER 2. THE GENERAL FRAMEWORK

3. For 
ertain forms of premises, e.g. semanti
 rules in an AG, there is no natural order

be
ause the order is semanti
ally meaningless.

Consequently, names of premises should be used for sele
tion. If a name is a
tually used

to sele
t a 
ertain premise, we must ensure that the name 
an be used as a unique sele
tor.

De�nition 2.3.3

Let be s 2 Name, r 2 Rule. We say, s is a unique sele
tor for a premise of r if

jfi j Name Of e

i

= s with i = 1; : : : ; ngj = 1, where Premises Of r = e

1

, : : :, e

n

. }

De�nition 2.3.3 
an be easily generalized to 
ope with other forms of premises.

Example 2.3.4

Let us 
onsider again the introdu
tory interpreter example in Figure 1.2. All the names

exe
ute, evaluate, update and apply 
an be used as unique sele
tors for premises, ex
ept

for exe
ute in the rule [
on
at℄ be
ause there are two mat
hing premises. }

A rule violating the property of premise sele
tion 
an be folded in a way that new

auxiliary symbols are used instead of the non-unique symbol. Thereby, unique sele
tion is

a
hieved. Another possibility is the augmentation of premises with sele
tors as in several

spe
i�
ation languages.

Now addressing positions in premises and 
on
lusions is regarded. Sin
e we use a

position-oriented framework, symbols have many-sorted pro�les. That is suitable for logi


programming, logi
al grammars, GSFs, algebrai
 spe
i�
ations and natural semanti
s.

In 
ontrast to su
h frameworks, attribute grammars in the Knuthian style are based on

attributes instead of (sorts asso
iated with) positions. The attributes have pairwise disjoint

names for a given grammar symbol. Thus, the names allow attributes to be addressed

uniquely. In a position-oriented framework, (indi
es of) positions must be applied, in

general, as unique sele
tors. There are two points to be 
riti
ised with regard to this

method based on indi
es:

1. It is not readable.

2. It 
ru
ially depends on the order of the positions.

The latter point is 
riti
al be
ause transformations using this poor addressing method


annot be applied to programs with a di�erent order in the pro�les. We will even not

ne
essarily realize that the wrong positions are addressed. Consequently, we look for an

addressing method based on sorts rather than indi
es.

3

The following de�nition 
aptures the ne
essary and suÆ
ient 
ondition for a symbol so

that its positions 
an be uniquely addressed based on sorts.

De�nition 2.3.4

Let be s 2 Symbol; rs 2 Rules. s is uniquely sorted in rs , if �

i

6= �

j

for i; j = 1; : : : ; n and

for i; j = n + 1, : : :, m, where i 6= j and s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

is the pro�le

of s a

ording to the type of rs . }

3

Instead of using sorts, we also 
ould adopt the stru
tural de�nitions of pro�les and/or elements to


ope with key parameters.



2.3. NOTIONS FOR TARGET PROGRAMS 37

Example 2.3.5

In the interpreter in Figure 1.2 all symbols are uniquely sorted. Refer to Example 2.3.1

for the pro�les of the symbols. In 
ontrast to that, the symbol append , for example, is not

uniquely sorted in the interpreter in Figure 1.9 
oping with I/O. }

If a symbol is not used in some rules at all it is not uniquely sorted by de�nition. Note

that it is usually suÆ
ient to 
onsider the uniqueness of a parti
ular sort � w.r.t. a symbol

s when � is used as a sele
tor among the input or output position of sort � of s. The

following de�nition explains how positions are sele
ted.

De�nition 2.3.5

Let be io 2 Io, s 2 Symbol, � 2 Sort, rs 2 Rules. We say, the triple hio; s; �i 2 Position is

a unique sele
tor for a position in rs, if

� jfij�

i

= � with i = 1; : : : ; ngj = 1, for io = Input,

� jfij�

i

= � with i = n + 1; : : : ; mgj = 1, for io = Output,

where the pro�le of s in rs is s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

. }

Example 2.3.6

We 
ontinue Example 2.3.5. The symbol append is not uniquely sorted in Figure 1.9,

be
ause hInput; append ;OUTi is not a unique sele
tor for a position. }

As far as meta-programs are 
on
erned, it must be ensured that the result of a trans-

formation is not de�ned if improper sele
tors are involved, i.e. stri
tness of meta-programs

with regard to failures arising from sele
tions is to be preferred.

If a meta-program has to in
orporate 
omputational elements, e.g. de�nitions for ap-

plied positions or uses for de�ning positions if it has to 
opy parameters from de�ning to

applied positions, the unique sele
tion of de�ning and applied positions is 
ru
ial.

De�nition 2.3.6

Let be io 2 Io, s 2 Symbol, � 2 Sort, r 2 Rule.

We say, the triple hio; s; �i is a unique sele
tor for a de�ning position in r, if hio; s; �i is a

unique sele
tor for a position in r and

� for io = Input: Name Of Con
lusion Of r = s,

� for io = Output: s is a unique sele
tor for a premise of r.

Dually, we say, the triple hio; s; �i is a unique sele
tor for an applied position in r, if

hio; s; �i is a unique sele
tor for a position in r and

� for io = Input: s is a unique sele
tor for a premise of r,

� for io = Output: Name Of Con
lusion Of r = s.

}



38 CHAPTER 2. THE GENERAL FRAMEWORK

Example 2.3.7

We 
omment again on the interpreter from Figure 1.2. hInput; exe
ute; STMi is a unique

sele
tor of a de�ning position in the rule [
on
at℄, whereas it is not a unique sele
tor for

an applied position be
ause there are two mat
hing premises. }

The property of unique sele
tors for applied and de�ning positions is important if several

positions have to be sele
ted simultaneously, e.g. if a 
ondition of arity > 1 is added to a

rule: Consider sele
tors p

1

; : : : ; p

n

for the positions of the 
ondition. If some sele
tor turns

out to be an improper sele
tor in the sense that no mat
hing position 
an be determined,

the whole 
ondition 
annot be assembled. However, even uniqueness is needed be
ause

whi
h of the mat
hing positions should be sele
ted otherwise.

On the other hand, there is no need to insist on unique sele
tors for de�ning and applied

positions in general, e.g. if it should be ensured that single positions are used by unary


onditions or they are de�ned by 
onstant 
omputations. If the sele
tion is not unique, the


orresponding number of 
omputational elements 
an be added. The 
ase of no mat
hing

position 
an be a

epted in su
h a way that no 
omputational element is added. Indeed,

the operator suite o�ers operators adhering to that style; refer e.g. to the operators De�ne

and Use presented in Subse
tion 3.3.2

Finally, we want to mention another opportunity for sele
ting rules, premises and pa-

rameters, that is to say a sele
tion based on pattern mat
hing. In [DC90, Ada91℄ it is

argued that pattern mat
hing is useful for the simultaneous sele
tion of entities, e.g. for

the asso
iation of semanti
 rules with synta
ti
al rules, where the underlying rule pattern

of the semanti
 rules must be mat
hed with an a
tual synta
ti
al rule. In 
ontrast to that,

we are interested here in more atomi
 sele
tions.

2.4 Instan
es

We instantiate the general framework for 
ertain target languages, e.g. natural seman-

ti
s, attribute grammars, logi
 programming and algebrai
 spe
i�
ation. New forms of


onstru
ts, e.g 
ompound parameters or re�nements of the notions well-de�nedness, well-

typedness et
. need to be taken into 
onsideration. A sele
tion of the features dis
ussed in

this Se
tion will be used in the next Chapter as the underlying instan
e for establishing

an operator suite for meta-programming. It should be 
lear that 
ertain extensions, e.g.

fun
tion symbols and thus terms for logi
 programs, permit us to 
onsider spe
i�
 meta-

operations. Nevertheless, we try to understand the instan
es below as \
onservative" ex-

tensions of the general framework, that is to say we want to indi
ate how spe
i�
 features,

e.g. terms, 
an be simulated in the general framework. We take advantage of resear
h


on
erning the relation between di�erent representatives of the de
larative paradigm; refer

e.g. to [CFZ82a, CFZ82b, PW80, DM85, DM93, AFZ88, Att89, AC90, AP94℄. Some ar-

guments also arise from 
ommon programming pra
ti
e, e.g. the simulation of produ
ts as

targets for pro�les in algebrai
 spe
i�
ation by means of dedi
ated tupling 
onstru
tors.



2.4. INSTANCES 39

2.4.1 Natural Semanti
s

The data type Rule obviously 
oin
ides with rules in the sense of natural semanti
s. The

data type Parameter has to be extended to 
ope with 
ompound parameters, i.e. terms.

Terms (
ompound parameters) are needed for the representation of abstra
t syntax trees,

semanti
 obje
ts, environments, 
ontexts, and other data. In RML [Pet95, Pet94℄, for

example, SML-like algebrai
 data types are used for that purpose. Well-formedness possibly


on
erns the proper distin
tion between names of relations and data type 
onstru
tors.

Our type system as outlined in the general framework is very mu
h the same like in RML,

although we had to put extra e�ort to a
hieve polymorphism. Thus, the re�nement ofWT

is straightforward. Con
erning well-de�nedness, we adopt the philosophy of RML, where

it is de�ned exa
tly when variables are bound. Sin
e, RML exe
utes premises from left to

right, it also binds variables in that order. If we assume, that the inputs of a premise must

be known before it is exe
uted, we will obtain a data-
ow 
riterion similar to L-attribution

in AGs.

4

First, we present the re�nement of the stru
tural de�nition of the data types:

Parameter = (Variable� Term)
 Sort

Term = Constru
tor 
 Parameter

?

Constru
tor = Id

Symbol = Name� Constru
tor

SIGMA has to restri
t the targets of data type 
onstru
tors to single sorts (in 
ontrast

to arbitrary �nite sequen
es). The de�nition of operations for the 
onstru
tion and de
on-

stru
tion of 
ompound parameters is straightforward. A 
ompound parameter 
onsisting

of a 
onstru
tor f and parameters p

?

is 
onstru
ted as follows:

Term From f p

?

Of Sort �

Here � denotes the sort of the resulting term, i.e. f is supposed to be a 
onstru
tor with

a pro�le f : �

1

� � � ��

n

! �, where the �

i

are supposed to mat
h with the types of the

parameters p

?

. De
onstru
tion of terms and tests for di�erent kinds of symbols is fa
ilitated

by the following operations:

Term? : Parameter ! Boolean

Constru
tor Of : Parameter ! Constru
tor

Subterms Of : Parameter ! Parameter

?

Name? : Symbol! Boolean

Constru
tor? : Symbol! Boolean

4

If unknowns, whi
h play an important role in some appli
ations of natural semanti
s, are taken into


onsideration, a more general approa
h must be followed to.



40 CHAPTER 2. THE GENERAL FRAMEWORK

Refer to Se
tion B.6 for the straightforward inferen
e rules. Moreover, 
oer
ions should be

assumed to 
oer
e 
onstru
tors into tags and names (Tag From, Name From) and vi
e

versa (Constru
tor From).

Types of 
ompound parameters are determined as follows:

Is

Term

(�

1

(p)) ! True

^ Out

Term

(�

1

(p)) ! hf; hp

1

; : : : ; p

n

ii

^ �

Sort

(p) ! �

^ f : �

1

� � � � � �

n

! � 2 �

^ T YPE

Parameter

(�;�; p

i

) ! �

i

for i = 1; : : : ; n

T YPE

Parameter

(�;�; p) ! �

[type of a 
ompound parameter℄

Se
tion B.6 also generalizes the appli
ation of substitutions to parameters for 
ompound

parameters. Uni�
ation has to be generalized by implementing Robinson's uni�
ation

algorithm by the relation SOLVE taking into 
onsideration additional 
onstraints due to

well-typedness; refer also to Subse
tion 2.3.4 and Se
tion B.5.

: : :

out

skip

(STM)

exe
ute( STM ;MEM) ! (MEM)

[skip℄

out


on
at

(STM) ! (STM

1

;STM

2

)

^ exe
ute(STM

1

;MEM

0

) ! (MEM

1

)

^ exe
ute(STM

2

;MEM

1

) ! (MEM

2

)

exe
ute( STM ;MEM

0

) ! (MEM

2

)

[
on
at℄

out

assign

(STM) ! (ID;EXP)

^ evaluate(EXP;MEM

0

) ! (VAL)

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exe
ute( STM ;MEM

0

) ! (MEM

1

)

[assign℄

: : :

out

var

(EXP) ! (ID)

^ apply(MEM; ID) ! (VAL)

evaluate( EXP ;MEM) ! (VAL)

[var℄

: : :

Figure 2.4: Figure 1.2 in the pure framework

We should make 
lear that this instan
e is a modest extension of the general frame-

work. We 
an represent any target program of this instan
e in the general framework in the

following way. Appli
ations of data type 
onstru
tors 
an be regarded as spe
ial premises

modelling term 
onstru
tion (for applied positions) or de
onstru
tion (for de�ning posi-

tions); refer for example to Figure 2.4 showing the \pure" variant of the natural semanti
s



2.4. INSTANCES 41

from Figure 1.2. It should be pointed out that the transformation from natural semanti
s

to the pure framework (and vi
e versa) 
an be spe
i�ed in the instan
e of natural semanti
s

itself. All transformations whi
h are appli
able for the general framework are appli
able

to natural semanti
s without further adaptation. It is also very 
omfortable that we 
an

deal with data type 
onstru
tors in mu
h the same way as with premises. There is no need

for additional tools.

Let us 
on
lude this subse
tion with remarks on 
ertain features of parti
ular variants

of natural semanti
s. In Typol [Des88, BCD

+

88, JRG92℄ subje
ts and predi
ates are re-

garded as di�erent forms of premises. A
tually, predi
ates are 
alled rather 
omputations

than premises. It is a 
onvention whi
h does not add expressive power. Nevertheless, an

adaptation of the 
al
ulus with two di�erent forms of premises will be demonstrated for

the instan
e of Grammars of Synta
ti
al Fun
tions; refer to Subse
tion 2.4.5 be
ause there

is more 
onvin
ing argument for su
h a distin
tion. Finally, if unknowns are to be used,

there are two options: Unknowns are de
lared as in RML or there is no expli
it de
laration

as in Typol. To de
lare an unknown 
an be 
onsidered as a simple form of a premise.

Well-de�nedness has to be adjusted a

ordingly if unknowns are used.

2.4.2 Logi
 Programming

It is obvious that logi
 programming with sorts and modes 
an be regarded as an instan
e

of the general framework. The most important extension, i.e. terms, 
an be performed

in the same way as for the instan
e of natural semanti
s. By the way, the similarity of

inferen
e rules and de�nite 
lauses is the basis for the translation of natural semanti
s into

Prolog rules providing an option for exe
uting the exe
utable spe
i�
ation formalism Typol

for natural semanti
s as integrated in the Centaur system [Des88, BCD

+

88, JRG92℄.

The data type Rule obviously 
oin
ides with de�nite 
lauses. The data type Parameter

has to be extended to 
ope with terms. Well-formedness possibly 
on
erns the proper

distin
tion between predi
ate and fun
tion symbols. Our type system as outlined in the

general framework 
an be regarded as a many-sorted type system of a G�odel-like [HL94℄

logi
 programming language. Thus, the re�nement ofWT is straightforward. In logi
 pro-

gramming, there are notions like \well-modedness", whi
h are appropriate as an instan
e

of WD, refer e.g. to 
all- or i/o-
orre
tness in [Boy96a℄.

To 
onsider elements and not other forms of premises 
orresponds to pure logi
al

programs. Several forms of premises 
an be handled like Element, e.g. negative literals,

mat
hing 
onstru
ts and 
omputations a

ording to prede�ned (impure) predi
ates (e.g.

for dealing with numbers or atoms). Computations will be 
onsidered in more detail for

the instan
e of Grammars of Synta
ti
al Fun
tions; refer to Subse
tion 2.4.5.

2.4.3 Algebrai
 Spe
i�
ation

The general framework 
an easily be instantiated for algebrai
 spe
i�
ation [HL89, LEW96,

LNC91, Mos97℄. As a matter of fa
t, we are mainly 
on
erned with 
onstru
tive spe
i-

�
ations (refer e.g. to [HL89℄), i.e. the LHS of a term equation (or rewrite rule) must



42 CHAPTER 2. THE GENERAL FRAMEWORK

have a non-
onstru
tor fun
tion symbol as an outermost symbol applied to terms without

non-
onstru
tor fun
tion symbols. The 
orresponding distin
tion between non-
onstru
tor

operations and 
onstru
tors and the restri
ted stru
ture of term equations �t with the gen-

eral framework; refer to Figure 2.5 for 
onstru
tive term equations des
ribing the dynami


semanti
s in mu
h the same way as the interpreter in the style of natural semanti
s in

Figure 1.2 does.

: : :

exe
ute(skip;MEM) = MEM [skip℄

exe
ute(
on
at(STM

1

;STM

2

);MEM) = exe
ute( STM

2

;

exe
ute(STM

1

;MEM)

)

[
on
at℄

exe
ute(assign(ID;EXP);MEM) = update( MEM; ID;

evaluate(EXP;MEM)

)

[assign℄

: : :

evaluate(var(ID);MEM) = apply(MEM; ID) [var℄

: : :

Figure 2.5: An algebrai
 spe
i�
ation for the interpreter from Figure 1.2

We �rst have to look for the 
ounterpart for rules in algebrai
 spe
i�
ation. Obviously,

term equations and the data type Rule have to be related to ea
h other. There is no dire
t


orresponden
e be
ause the RHS of a 
onstru
tive term equation is simply a term and

it is not some sequen
e of premises as in the general framework. To adopt the general

framework for algebrai
 spe
i�
ations, we 
an use a normalization pro
edure as follows:

RHSs are 
attened by taking the sequen
e of appli
ations of non-
onstru
tor operations in

the order of nesting adhering to the 
all-by-value evaluation strategy.

Consequently, LHSs of 
onstru
tive term equations and 
on
lusions of the data type

Rule 
oin
ide. RHSs of term equations are simpli�ed to obtain a sequen
e of premises


orresponding to appli
ations with at most one non-
onstru
tor operation. Terms are not

a problem at all, sin
e we 
an deal with them in the same way as for instan
e of natural

semanti
s; refer to Subse
tion 2.4.1. Indeed, by 
attening the algebrai
 spe
i�
ation in

Figure 2.5 we obtain a variant literally equivalent to the interpreter in Figure 1.2 in the

style of natural semanti
s.

A minor problem with algebrai
 spe
i�
ations with respe
t to the data types of the

general framework is that an operation has exa
tly a single sort as its target in algebrai


spe
i�
ation, whereas the general framework promotes any arity (in
luding 0). This 
exi-

bility 
on
erning output positions is 
ru
ial for our approa
h. There are two solutions to

this problem:

� Extending the result of a non-
onstru
tor operation is 
onsidered as the extension

of a dedi
ated 
onstru
tor pro�le where this 
onstru
tor is used as a kind of tu-



2.4. INSTANCES 43

pling 
onstru
tor for the result of the operation. This approa
h 
orresponds to the

programming pra
ti
e in algebrai
 spe
i�
ation where auxiliary sorts for 
ompound

fun
tion results are introdu
ed.

� We allow non-
onstru
tor operations to have Cartesian produ
ts as their targets.

Finally, su
h a spe
i�
ation 
an be transformed into a usual algebrai
 spe
i�
ation

by asso
iating non-
onstru
tor operations with proper produ
ts as targets with ded-

i
ated 
onstru
tors in the sense of the �rst solution. For notational 
onvenien
e, we


an assume that (), ( ), ( ; ), : : : denote these (overloaded) tupling 
onstru
tors.

The normalization of term equations indu
es an order of premises and thereby an order

of introdu
ed variables from left to right. Thereby, well-de�nedness is straightforward to

de�ne.

evaluate(EXP;MEM) = true

exe
ute(if(EXP;STM

1

;STM

2

);MEM) = exe
ute(STM

1

;MEM)

[if.true℄

evaluate(EXP;MEM) = false

exe
ute(if(EXP;STM

1

;STM

2

);MEM) = exe
ute(STM

2

;MEM)

[if.false℄

Figure 2.6: Conditional equations de�ning the dynami
 semanti
s of the if-
onstru
t

Conditional rewrite rules as for example in ASF (+SDF ) [Kli93℄ 
an also be redu
ed to

rules in the sense of the general framework. For a proper 
onditional rewrite rule it must be

satis�ed that non-
onstru
tor operation symbols must not o

ur on a variable-introdu
ing

side be
ause su
h a side 
annot be redu
ed anyway. To represent 
onditional rewrite rules

in the general framework, not only the RHSs of the 
on
lusions need to be 
attened as for

an ordinary algebrai
 spe
i�
ation, but the 
onditions must be 
attened as well.

Consider Figure 2.6 for the 
onditional rewrite rules des
ribing the interpretation of an

if-statement. The 
attened variant is shown in Figure 2.7.

evaluate(EXP;MEM

0

) ! (true)

^ exe
ute(STM

1

;MEM

0

) ! (MEM

1

)

exe
ute(if(EXP;STM

1

;STM

2

);MEM

0

) ! (MEM

1

)

[if.true℄

evaluate(EXP;MEM

0

) ! (false)

^ exe
ute(STM

2

;MEM

0

) ! (MEM

1

)

exe
ute(if(EXP;STM

1

;STM

2

);MEM

0

) ! (MEM

1

)

[if.false℄

Figure 2.7: \Pure" variant of Figure 2.6

An extension for negative equations as in ASF (+SDF ) is straightforward. The basi


form of premise 
orresponds to positive equations, whereas another form of premise is

needed for negative equations.



44 CHAPTER 2. THE GENERAL FRAMEWORK

Premise = Positive� Negative

Positive = Element

Negative = Element

Constru
tion and de
onstru
tion of negative 
onditions are quite similar to the 
ase of

positive 
onditions.

2.4.4 Fun
tional programs

Obviously, �rst-order fun
tions 
an be regarded as an instan
e in mu
h the same way

as algebrai
 spe
i�
ations, but it should be pointed out that the normalization 
an be

regarded as a semanti
s-preserving transformation of �rst-order fun
tions, whereas the

normalization of algebrai
 spe
i�
ations requires them to be mapped to the data types for

meta-programming. Considering Figure 2.5 as a fun
tional program, the 
orresponding

normalized fun
tional program is shown in Figure 2.8.

: : :

exe
ute(skip;MEM) = MEM
[skip℄

exe
ute(
on
at(STM

1

; STM

2

);MEM

0

) =

Let MEM

1

= exe
ute(STM

1

;MEM

0

) In

Let MEM

2

= exe
ute(STM

2

;MEM

1

) In

MEM

2

[
on
at℄

exe
ute(assign(ID;EXP);MEM

0

) =

Let VAL = evaluate(EXP;MEM

1

) In

Let MEM

1

= update(MEM

0

; ID;VAL) In

MEM

1

[assign℄

: : :

evaluate(var(ID;MEM) =

Let VAL = apply(MEM; ID) In

VAL

[var℄

: : :

Figure 2.8: Normalized fun
tional program obtained from Figure 2.5

Higher-order fun
tional programming requires a substantial adaptation of the frame-

work whi
h is a subje
t of our 
urrent work.

2.4.5 Grammars of Synta
ti
al Fun
tions

Here we 
omment on an instan
e for Grammars of Synta
ti
al Fun
tions (GSFs) [Rie91,

RMD83, Rie72, Rie79℄ whi
h are a kind of attribute grammars 
losely related to logi




2.4. INSTANCES 45

programs; refer to Se
tion A.3 for a short presentation of GSFs. GSFs are also similar to

the more re
ent formalism RAG [CD84, DM85, DM93℄. Ordinary Knuthian AGs [Alb91℄

must be treated di�erently; refer to Subse
tion 2.4.6.

A GSF 
onsists of

� a GSF s
hema 
orresponding to a set of so-
alled GSF rules, whi
h 
an be regarded

as parameterized 
ontext-free rules with relational formulae on the parameters and

� a GSF interpretation 
orresponding to 
arriers for the parameters and relations for

the interpretation of the relational symbols.

We are rather interested in GSF rules than GSF interpretations. AGs (in
luding GSF

s
hemata) are usually open in the sense that spe
i�
ations use semanti
 fun
tion sym-

bols (
orresponding to relational symbols in GSF rules). The a
tual interpretation of the

symbols is beyond the s
ope of the AG formalism.

Figure 2.9 shows a typi
al appli
ation of AGs, that is, a frontend spe
i�
ation for an

imperative language. The spe
i�
ation is intended to model type 
he
king and the 
on-

stru
tion of an abstra
t synta
ti
al representation. A
tually, the language

5

is the same as

in the interpreter examples, e.g. in Figure 1.2. The parameters of sort STmodel the symbol

table to be propagated for type 
he
king. The parameters of sort T are bound to types

of variables and expressions. The parameters of sort EXP and STM should be regarded

as pla
eholders for abstra
t synta
ti
al representations for expressions and statements re-

spe
tively. The relational formulae with the pre�x &

ast

model 
onstru
tion of abstra
t

synta
ti
al representations, whereas the relational formulae with the pre�x &

stati



on
ern

type 
he
king. Note that the a
tual interpretation of the relational symbols is beyond the

s
ope of this spe
i�
ation.

Let us 
onsider GSFs as an instan
e of the general framework. The type Rule 
oin
ides

with GSF rules and the type Premise has to be extended to 
ope with relational formulae.

There are no spe
ial problems with well-formedness and well-typedness. Well-de�nedness


an be regarded as non-
ir
ularity + redu
edness. As far as stru
tural de�nitions are


on
erned the following re�nement of the data types is assumed:

Premise = Element� Computation

Computation = Operation
 Parameter

?


 Parameter

?

Operation = Pre�x
 Id

Symbol = Name�Operation

The data type Computation models relational formulae, whereas Operation models symbols

used in relational formulae (for short: relational symbols) in similarity to names of elements.

In earlier presentations of the GSF formalism [Rie91, RMD83, Rie72, Rie79℄ two 
lasses of

5

Note that the underlying 
ontext-free grammar re
e
ts a rather abstra
t syntax. Refer, for example,

to Figure 3.31 for the 
on
rete syntax of the if -
onstru
t obtained by a 
ertain re�nement of the rule [if℄.



46 CHAPTER 2. THE GENERAL FRAMEWORK

program ! (PRO) :
&

stati


init ! (ST

0

);

de
larations(ST

0

)! (ST

1

);

statements(ST

1

)! (STM);

&

ast

prog(STM)! (PRO):

[prog℄

de
larations(ST

0

)! (ST

2

) :
de
laration(ST

0

)! (ST

1

);

de
larations(ST

1

)! (ST

2

):

[de
s℄

de
larations(ST) ! (ST): [node
s℄

de
laration(ST

0

)! (ST

1

) :
identi�er ! (ID);

type ! (T);

&

stati


add (ST

0

; ID;T)! (ST

1

):

[de
℄

: : :

statements(ST)! (STM) :
statement(ST)! (STM

1

);

statements(ST)! (STM

2

);

&

ast


on
at(STM

1

; STM

2

)! (STM):

[
on
at℄

statements(ST)! (STM) :
&

ast

skip ! (STM): [skip℄

statement(ST)! (STM) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

;EXP);

&

stati


assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP)! STM:

[assign℄

statement(ST)! (STM) :
expression(ST)! (T;EXP);

&

stati


isBool (T);

statements(ST)! (STM

1

);

statements(ST)! (STM

2

);

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

: : :

expression(ST)! (T;EXP) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T);

&

ast

var (ID)! EXP:

[var℄

: : :

Figure 2.9: A frontend for a simple imperative language

relational symbols were distinguished for pragmati
 reasons. Here it is assumed that there


an be an arbitrary number of 
lasses of relational symbols like in

�

�

�

[HLR97, LRH96,

RL93, Rie92℄, where relational symbols are pre�xed by a kind of module quali�er. Here

Pre�x is some 
ountable set of pre�xes. To avoid 
onfusion with other kinds of identi�ers,

we will use \&" followed by ordinary identi�ers to denote pre�xes. \&" denotes the empty

pre�x whi
h is used in examples if there is no need for di�erent pre�xes. Sin
e the kind

of symbol is the only di�eren
e between Element and Computation, a single 
onstru
tor for

both kinds of premises 
an be used:

Premise From ! : Symbol� Parameter

?

� Parameter

?

! Premise



2.4. INSTANCES 47

To retain a simple notation we assume impli
it 
oer
ions between Element and Premise.

Con
erning the de
onstru
tion of premises, some relations in similarity to the de
onstru
-

tion of elements are needed. Moreover relations to test for di�erent kinds of premises and

symbols are needed:

Element? : Premise! Boolean

Computation? : Premise! Boolean

Symbol Of : Premise! Symbol

Parameters Of : Io� Premise! Parameter

?

Name? : Symbol! Boolean

Operation? : Symbol! Boolean

Refer to Se
tion B.7 for the 
orresponding inferen
e rules. For 
ompleteness, an oper-

ation for 
onstru
ting relational symbols from tags (similar to Name From) is assumed.

Moreover, a generalized variant of the operation Tag From to 
oer
e a name into a tag


oping with symbols instead of names is assumed. Finally, an operation for generating

fresh relational symbols is introdu
ed.

Operation From : Pre�x� Tag! Operation

Tag From : Symbol! Tag

NEW

Operation

: P(Operation) ! Operation

It follows from the above de
larations that we 
onsider sequen
es of parameterized

grammar symbols and relational symbols as proper RHSs of GSF rules. In 
ontrast, tak-

ing the purely de
larative point of view, GSF rules are parameterized 
ontext-free rules

with 
omputations asso
iated with the parameters. The order of the relational formulae

among ea
h other and also relative to the parameterized grammar symbols is de
laratively

meaningless. However, the a
tual order 
an be used to 
ontrol meta-programs. Refer also

to Subse
tion 2.2.1 for the reasons why we prefer sequen
es of premises instead of sets of

premises.

It is interesting to noti
e that a distin
tion between grammar symbols and relational

symbols and the notion of the underlying 
ontext-free grammar of a GSF s
hema leads us

dire
tly to a 
orresponding notion of 
omposition. GSF s
hemata with the same underlying


ontext-free grammar 
an be 
omposed rule-wise by superimposing grammar symbols,


on
atenating parameters of superimposed grammar symbols and taking over relational

formulae. This te
hnique whi
h we 
all superimposition is presented more in detail in

x3.3.3.1; refer also to [L�am97℄ where we have suggested a variant of this te
hnique in the


ontext of logi
 programming.

2.4.6 Knuthian Attribute Grammars

We 
ontinue the dis
ussion on instantiating the general framework for attribute grammars

by 
ommenting on the Knuthian style of attribute grammars. (Knuthian) AGs require



48 CHAPTER 2. THE GENERAL FRAMEWORK

some en
oding, that is, semanti
 rules have to be modelled by another form of premises.

We des
ribe the instan
e for Knuthian AGs by de�ning a transformation from Knuthian

AGs to GSF s
hemata. The transformation is performed for every synta
ti
al rule of the

AG as follows:

� Inherited (synthesized) attributes 
orrespond to the input (output) positions of gram-

mar symbols. For every attribute of every symbol in a synta
ti
al rule, we introdu
e

a 
orresponding variable and use it as a parameter on the 
orresponding parameter

position.

� Semanti
 
opy rules 
an be 
ompiled by identifying parameters a

ordingly.

� A semanti
 equation e of the form a

e;0

:= f

e

(a

e;1

; : : : ; a

e;n

e

) is transformed into a


orresponding relational formula & f

e

(v

e;1

; : : : ; v

e;n

e

) ! v

e;0

, where the v

e;i

are the

variables asso
iated with the attributes a

e;i

.

� The parameterized grammar symbols and the derived relational formulae representing

the semanti
 equations are 
ombined in a rule a

ording to the data type Rule.

Refer to Se
tion A.3 for an example of a Knuthian AG and the asso
iated GSF s
hema.

2.5 Completion to an appli
ative 
al
ulus

The 
omplete 
al
ulus is obtained by augmenting a typed �-
al
ulus with the data types for

meta-programming. Spe
i�
ation features for dealing with 
ompound domains and with

error spe
i�
ation are added. Reusability of meta-programs is supported by modularity

parti
ularly at the meta-level. Altogether, we obtain an appli
ative 
al
ulus for typed,

modular and stri
t fun
tional meta-programs.

2.5.1 Simple �-
al
ulus-like 
onstru
ts

Typed �-abstra
tion is denoted as usual by �x : � : e. Fun
tional appli
ation is denoted

by f On p, whereas f Æ g denotes fun
tional 
omposition, where

f Æ g On x = f On (g On x):

The 
onditional is denoted by b! e

1

; e

2

, where the 
ompound expression evaluates to

the value of e

1

(resp. e

2

) if the 
ondition b 
an be evaluated to True (resp. False). The


onditional is the only 
onstru
t whi
h is not stri
t w.r.t. ? (i.e. divergen
e).

Let x = e In e

0

binds x to e during the evaluation of e

0

. Free o

urren
es of x in

e are not bound to e. Letre
 f : � = e In e

0

binds f being of type � to e during the

evaluation of e

0

. Free o

urren
es of f in e refer to e as well. The Letre
-
onstru
t is the



2.5. COMPLETION TO AN APPLICATIVE CALCULUS 49

only possibility to express general re
ursion. However, the iteration 
onstru
ts introdu
ed

below are strongly re
ommended be
ause termination de�nitely holds for them.

Divergen
e, i.e. non-terminating evaluations are denoted by ?. We say that exp is

de�ned if the value of exp is not equal to ?. Whenever variables are quanti�ed, ? is not


onsidered as a proper value, i.e. 8rs 2 Rules does a
tually mean 8rs 2 (Rulesnf?g). Note

that both of these dire
tives need to be updated in Subse
tion 2.5.2.

2.5.2 Error spe
i�
ation

Simple features for error spe
i�
ation are required for two reasons. First, if we embed the

data types for meta-programming into the appli
ative 
al
ulus, we need a standard way for

representing the unde�ned value, sin
e several basi
 operations are partial. Se
ond, meta-

programs (transformations, analyses, et
.) are quite often partial, sin
e the parameters

have to satisfy 
ertain pre
onditions. Thus, a spe
i�
ation feature is needed to propagate

an error. Errors should be handled stri
tly, i.e. on
e an error o

urred during the evaluation

of some part of an expression, the entire evaluation must fail.

Consequently, a spe
ial error element > (pronoun
ed as top

6

) is assumed to be an

element of any type. Instead of in
luding > as a 
onstru
t, the partial 
onditional is

added:

b Æ! e

The above expression is evaluated as follows. The value of the expression is the value of

e, if the value of b is True. Otherwise, the value of the expression is >. Thus, the exa
t

meaning of b Æ! e 
an be understood as b ! e;>. Note that the 
onditional is also not

stri
t w.r.t. >.

The notion of de�nedness needs to be updated as follows: exp is de�ned if its value is

neither > nor ?. Whenever variables are quanti�ed, > is not 
onsidered as a proper value

either, i.e. 8rs 2 Rules does a
tually mean 8rs 2 (Rules n f?;>g).

Note that the above approa
h to error spe
i�
ation in meta-programs is quite minimal.

We 
an say a transformation fails if it returns >. Unfortunately, it 
an mean almost

anything, if an expression is evaluated to >. It 
an mean, for example, that

� the 
onstru
tion of a fragment failed or

� well-de�nedness of the �nal target program does not hold or

� some sele
tion made in the meta-program was not 
orre
t or

� at some stage well-typedness was not satis�ed.

Errors are noti�ed by the partial 
onditional. A more realisti
 
al
ulus should probably

support a more sensible error noti�
ation, e.g. meaningful error messages. It is important

that our simple approa
h to error spe
i�
ation ensures stri
tness, that is to say failures


annot be \overlooked".

6

in the sense of a top element in a 
omplete latti
e; refer e.g. to [Sto77, page 81℄



50 CHAPTER 2. THE GENERAL FRAMEWORK

2.5.3 Embedding data types for meta-programming

All the basi
 data types for meta-programming be
ome proper types of the 
al
ulus. Thus,

the names of these types Program, Rules, et
. 
an be regarded as basi
 type expressions,

whereas the operations on the data types 
an be regarded as prede�ned fun
tions in the


al
ulus. Instead of 
onsidering partial fun
tions in the 
al
ulus, the value of the appli
ation

of f(v

1

; : : : ; v

n

) is assumed to be >, if the appli
ation of the basi
 operation f is not de�ned.

The operations NEW

Variable

NEW

Name

and NEW

Operation

for the generation of fresh

variables and names are in
orporated in the resulting 
al
ulus in another way. We assume

impure variants (similarly to referen
e allo
ation in SML [MTH90℄):

New Variable Of Sort : Sort! Variable

New Name : ! Name

New Operation : ! Operation

Ordinary sequen
es on Rule are not permitted. We de
lare that hr

1

; : : : ; r

n

i is an abbre-

viation of Rules From hr

1

; : : : ; r

n

i. Thereby, 
oer
ions from Rule

?

to Rules 
an be omitted.

The type Rules is 
oer
ed to Program at the top level of a meta-program. Without further

de
larations it is assumed that all required symbols are imported, all de�ned symbols are

exported and no axiom is de�ned. There are 
lauses to override these defaults, e.g. an

Axiom Is 
lause to de�ne an axiom.

2.5.4 Domain 
onstru
tors

Domain 
onstru
tors for produ
ts, domains of sequen
es, power sets and domains with

optional values are added.

2.5.4.1 Tuples

Let �

1

, : : :, �

n

be proper type expressions. �

1


 � � � 
 �

n

denotes the type of all tupels with

the i-th proje
tion of type �

i

for i = 1; : : : ; n. The expression hexp

1

, . . . , exp

n

i denotes

the 
ommon 
onstru
tion of tuples from expressions exp

1

, . . . , exp

n

. The Let-
onstru
t is

generalized to 
ope with tuples, i.e. Let hx

1

; : : : ; x

n

i = e In e

0

binds the proje
tions of e

to the x

i

in e

0

. Typed �-abstra
tion is generalized as well, i.e. the proje
tions of a tuple


an be bound to several �-variables in the following way: �hx

1

; : : : ; x

n

i : �

1


 � � � 
 �

n

:e.

2.5.4.2 Sequen
es

Let � be a proper type expression. �

?

denotes the type of all sequen
es of elements of

type � . The expression hexp

1

, . . . , exp

n

i denotes the 
ommon 
onstru
tion of sequen
es

from expressions exp

1

: � , : : :, exp

n

: � . The empty sequen
e is denoted by hi. Figure 2.10

enumerates all the basi
 operations on sequen
es, whereas Figure 2.11 establishes some

re
ursion / iteration s
hemata well-known in higher-order fun
tional programming. It is

assummed that these s
hemata are appli
able to Rules, Sigma and Substitution as well.



2.5. COMPLETION TO AN APPLICATIVE CALCULUS 51

Pro�le Explanation

Head Of : �

?

! � head of a sequen
e

Tail Of : �

?

! �

?

tail of a sequen
e

Nil? : �

?

! Boolean test for the empty sequen
e

++ : �

?

� �

?

! �

?


on
atenation of sequen
es

# : �

?

!N

0

length of the sequen
e

Reverse : �

?

! �

?

to reverse a sequen
e

Figure 2.10: Operations on sequen
es

Map f List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

hf(x

1

); f(x

2

); : : : ; f(x

n�1

); f(x

n

)i

Fold Left � Neutral e List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

(� � � ((e� x

1

)� x

2

)� � � � � x

n�1

)� x

n

Fold Right � Neutral e List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

x

1

� (x

2

� � � � � (x

n�1

� (x

n

� e)) � � �)

Figure 2.11: Iteration on sequen
es

2.5.4.3 Sets

Let � be a type expression. Then P(�) denotes the type of subsets of � . Here � must be

a non-fun
tional type be
ause we need equality on � for obvious te
hni
al reasons. The

empty set is denoted by ;. Let be exp

1

: � , : : :, exp

n

: � . The expression fexp

1

; : : : ; exp

n

g

denotes the set of values of the expressions exp

i

for i = 1; : : : ; n.

Ea
h set of type P(�) is a sequen
e of type �

?

, i.e. all operations on sequen
es dire
tly

apply to sets as well. In parti
ular, for iteration on sets, it is important to know that the

order in fexp

1

; : : : ; exp

n

g is transferred into the resulting set. Figure 2.12 enumerates all

the additional basi
 operations on sets.

Ea
h sequen
e hv

1

; : : : ; v

n

i of type �

?

is automati
ally 
oer
ed to the 
orresponding set

fv

1

g[ � � � [ fv

n

g of type P(�) if it serves as an a
tual parameter for a formal parameter of

type P(�).

Pro�le Explanation

[ : P(�)� P(�)! P(�) union of sets

\ : P(�)� P(�)! P(�) interse
tion of sets

n : P(�)� P(�)! P(�) di�eren
e of sets

� : P(�)� P(�)! Boolean test of proper subset

2 : � � P(�)! Boolean membership test

Figure 2.12: Operations on sets



52 CHAPTER 2. THE GENERAL FRAMEWORK

Another iteration 
onstru
t is frequently needed:

Map Union f List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

f(x

1

) [ f(x

2

) [ : : : [ f(x

n�1

) [ f(x

n

)

Note also that all the iteration 
onstru
ts are written as Map Set , Fold Left

Neutral Set , Fold Right Neutral Set and Map Union Set when it should

be pointed out that iteration is performed on a set instead of a list.

2.5.4.4 The Maybe type 
onstru
tor

For every type � , there is also the maybe type �?. Every element of � is an element of �?.

Additionally, a spe
ial element ? is added to �?.

Maybe types are useful in meta-programming for:

� optional arguments, where fun
tions 
an observe ? providing an indi
ation of a miss-

ing argument,

� return values, where ? is returned as an indi
ation of a missing meaningful result. To

return > instead of ? is not appropriate, sin
e we 
annot test for > due to stri
tness.

Example 2.5.1

Consider the following expression:

� s : Symbol . � t : Sigma .

Fold Left

� p0 : Pro�le? . � p : Pro�le . Name Of p = s ! p, p0

Neutral ? List t.

It de�nes the operator Pro�le Of In : Symbol� Sigma ! Pro�le? looking up the

pro�le of a symbol s in a given signature t. There are s
enarios in meta-programs where

a symbol does not need to have a type at all in a given signature. The lookup should not

fail, sin
e the whole surrounding appli
ation would fail be
ause of stri
tness. Thus, the

neutral element ? will be returned if no pro�le for s is 
ontained in t. }

2.5.5 Modules

To fa
ilitate meta-programming a 
ertain module 
on
ept should be supported. Here a

module is regarded simply as a separate spe
i�
ation unit with its own semanti
s, i.e. in a

te
hni
al sense a kind of module allowing for separate 
ompilation. Although information

hiding is a 
entral notion in many module systems, it is almost ignored as far as it 
on
erns

this work.

There are two kinds of modules:

� modules at the target-level and



2.5. COMPLETION TO AN APPLICATIVE CALCULUS 53

� modules at the meta-level.

Modularity at the target-level is useful for obvious reasons, even without 
onsidering

meta-programming at all. For meta-programming, target-level modules provide the 
entral

operands on whi
h transformations and 
ompositions are performed. The exe
ution of a

meta-program results in a new target-level program. Modules at the meta-level are useful

in order to implement reusable program transformations and to represent 
entral parts of

a problem rather at the meta-level (in a more abstra
t manner) than at the target-level.

Meta

n

Meta

1

I

I

Target

m

1

Target

OTarget

MP

A A

Figure 2.13: Modular meta-programming

Figure 2.13 shows the s
enario of modular meta-programming. There is a 
entral

meta-program MP whi
h is applied to target-level modules I

Target

i

serving as inputs for a

program transformation / 
omposition. The exe
ution of MP produ
es the target-level

module O

Target

as output. The meta-level modules A

Meta

j

are assumed to provide reusable

program transformations, generi
 fragments et
.

To support this kind of modularity, module identi�ers are permitted as a form of expres-

sion in meta-programs. If the module identi�er refers to a target program, the expression

is of type Program. If the module identi�er refers to a meta-program, the type of the

meta-program is the type of the underlying expression. It is also useful to support a kind

of abstra
tion in meta-program modules so that all the abstra
tions 
an be \imported" in

another program. Without su
h a fa
ility, a meta-program module only \exports" a single

expression.

Example 2.5.2

Re
all our attempt to modular semanti
s des
ription as outlined in the introdu
tion; refer

to Se
tion 1.2. There we have seen that target program and meta-program modules are

very useful during the 
omposition of semanti
s des
riptions fragments. Here we want

to 
omment on a more 
omplex problem. Consider, for example, a simple imperative

language with simple statement forms for assignment, sele
tion (if ), iteration (while), and


ompound statements (statement sequen
e), I/O, basi
 data types.

We 
an isolate target program modules (spe
ifying the semanti
s of some 
onstru
ts)

like the following:



54 CHAPTER 2. THE GENERAL FRAMEWORK

� variables as expressions and in assignments,

� if -statements,

� while-statements,

� statement sequen
es,

� I/O 
onstru
ts,

� the overall stru
ture of a program and the de
laration part and

� 
onstants, basi
 operations, simple type expressions.

We assume that the above modules abstra
t from any semanti
 issue whi
h is not relevant

for the a
tual 
onstru
t, i.e. they are \minimal" in the sense of Se
tion 1.2. Most modules,

for example, abstra
t from I/O. Many modules abstra
t from the a
tual memory model, i.e.

whether a 
at model or a two-level model is used and whether side-e�e
ts might possibly

be involved in expression evaluation et
.

We need transformations to adapt the above fragments a

ordingly. The a
tual memory

model 
an be manifested by a 
orresponding transformation, for example. More in detail,

the following meta-program modules are involved:

� the transformation to establish memory propagation,

� the transformation to propagate the remaining input,

� the transformation to a

umulate the output.

The 
omposition of the semanti
s des
ription 
an be represented by a meta-program apply-

ing the above transformations to the 
orresponding target program modules and merging

the intermediate results. We will 
omment in more detail on su
h a 
omposition in Se
-

tion 3.5 on lifting. Refer also to Se
tion D.1 for the 
omplete sour
e 
ode 
on
erning the


omposition of a frontend spe
i�
ation and an interpreter de�nition (dynami
 semanti
s)

for a language like the one above. }

2.6 Properties of meta-programs

By 
hara
terizing transformations, we are looking for 
lasses of transformations satisfying


ertain useful or important properties. We 
an be interested, for example, in the question

whether a transformation is total or we 
an ask whether a transformation preserves 
ertain

properties of the input program su
h as the type or the \skeleton" obtained from rules by

abstra
ting from parameterization.

2.6.1 Skeletons and their preservation

An important property of many meta-programs is skeleton preservation, where the notion

of a skeleton wants to grasp the overall stru
ture of some rules rs 2 Rules abstra
ting from


omputational behaviour, similar to the underlying CFG of an AG. The purpose of this

subse
tion is to formalize skeletons and to de�ne skeleton preservation.



2.6. PROPERTIES OF META-PROGRAMS 55

Two further data types are needed, that is to say Skeleton for an abstra
tion from Rules

and Shape for an abstra
tion from Rule, with the following stru
tural de�nitions:

Skeleton = Shape

?

Shape = Tag 
 Name
 Name

?

There are no 
onstraints on Shape 
on
erningWF ,WT andWD. The only 
onstraint

for Skeleton 
on
erns WF , namely tags have to be unique. The skeleton of some rules

rs 2 Rules is obtained by dis
arding the parameterization and all premises whi
h are not

elements in rs; refer to De�nition 2.6.1.

De�nition 2.6.1

Consider the following de�nition of a fun
tion Skeleton Of : Rules! Skeleton:

� rs : Rules .

Map

� r : Rule .

hTag Of r, Name Of Con
lusion Of r,

Fold Left

� rhs : Name* . � e : Element . rhs ++ ( Element? e ! hName Of ei, h i)

Neutral h i List Premises Of r

i

List rs.

Let be rs 2 Rules, sk is the skeleton of rs, if sk = Skeleton Of rs . }

As De�nition 2.6.1 points out, other premises than elements (data type Element) are not

in
luded into the skeleton. To point out this role of elements as form of premises, we some-

times use the term skeleton elements. Re
all that there are other forms of premises with

the same stru
ture as Element, e.g. 
omputations (relational formulae) in GSF s
hemata.

The notion of a skeleton be
omes a more vital abstra
tion devi
e if there are other forms

of premises than (skeleton) elements.

Example 2.6.1

Consider Figure 2.14 showing the skeleton of the GSF s
hema from Figure 2.9 serving as

a frontend spe
i�
ation for a simple imperative language. The skeleton 
an be regarded as

the underlying 
ontext-free grammar of the GSF s
hema. }

De�nition 2.6.2

A transformation t 2 Trafo is skeleton-preserving if 8rs 2 Rules :

rs

0

is de�ned ) Skeleton Of rs = Skeleton Of rs

0

;

where rs

0

= t On rs. }

Consider the following Proposition 2.6.1 as a sort of an example.



56 CHAPTER 2. THE GENERAL FRAMEWORK

program :
de
larations ; statements: [prog℄

de
larations :
de
laration ; de
larations : [de
s℄

de
larations :
: [node
s℄

de
laration :
identi�er ; type : [de
℄

: : :

statements :
statement ; statements: [
on
at℄

statements :
: [skip℄

statement :
identi�er ; expression : [assign℄

statement :
expression ; statements; statements: [if℄

: : :

expression :
identi�er : [var℄

: : :

Figure 2.14: Skeleton of the frontend spe
i�
ation from Figure 2.9

Proposition 2.6.1

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is skeleton-preserving.

}

Proofs of su
h statements 
an be based on a simple equational reasoning in our frame-

work. Proposition 2.6.1 
an be proved by showing that the stru
ture of the de�nition of a

skeleton in De�nition 2.6.1 (i.e. the re
ursion s
hema) is 
ontained in the de�nition of the

operation Left To Right (refer to Figure 1.5) and that the di�eren
es are invariant for

the resulting skeleton what 
an be derived from simple properties of element 
onstru
tion

and de
onstru
tion.

2.6.2 Totality

Transformations are potentially partial be
ause of the possibility that an appli
ation of a

basi
 operation or a partial 
onditional fails. However, we 
an show that some transfor-

mations are total a

ording to the following de�nition.

De�nition 2.6.3

A transformation t 2 Trafo is:

1. total if t On rs is de�ned 8rs 2 Rules,

2. �-total if t On rs is de�ned 8rs 2 �, where � � Rules.

}

Certain properties often do not hold for all rs 2 Rules, but only for a restri
ted subset �.

In De�nition 2.6.3, for example, �-total transformations were introdu
ed, i.e. transforma-



2.6. PROPERTIES OF META-PROGRAMS 57

tions whose result is de�ned at least for all rs 2 �. In the sequel, we sometimes 
onsider

�-properties. If the � is omitted, it means that the property holds for all rs 2 Rules.

Obviously, a property whi
h holds for all rs 2 Rules is more 
omfortable to use. For an �-

property, we always have to make sure that a given rs belongs to � to derive the property.

This makes indeed sense for �-totality, for example be
ause the � simply spe
i�es where

the transformation is de�ned (i.e. appli
able).

2.6.3 Preservation and re
overy of well-de�nedness

De�nition 2.6.4

A transformation t 2 Trafo is �-WD-preserving if 8rs 2 � � Rules :

WD

Program

(rs) ^ rs

0

is de�ned)WD

Program

(rs

0

);

where rs

0

= t On rs. }

Note that there is no sense in de�ning �-WF -preserving or �-WT -preserving transfor-

mations, be
ause results of transformations are well-formed and well-typed by de�nition.

Thus, these preservation properties are somehow 
aptured by �-totality.

�-WD-preservation for � � Rules is not very instru
tive in many 
ases be
ause often we

are not interested in the � whose elements 
an be transformed su
h thatWD is preserved,

but we rather look for a suitable des
ription how WD 
an be restored. Adding an input

position for a symbol s, for example, input positions in premises with s as symbol will

not be de�ned, but the violation of WD is restri
ted to these positions and it 
ould be

eliminated in a straightforward manner. The idea of re
overy of WD is 
aptured by the

following de�nition; refer to Proposition 3.3.1 for an appli
ation of this 
on
ept.

De�nition 2.6.5

A transformation t 2 Trafo is �-WD-re
overable by another transformation t

0

2 Trafo if

8rs 2 � � Rules :

WD

Program

(rs) ^ rs

0

is de�ned)WD

Program

(rs

0

);

where rs

0

= (t

0

Æ t) On rs. }

2.6.4 Type preservation

De�nition 2.6.6

A transformation t 2 Trafo is:

1. �-type-preserving if Sigma Of rs t Sigma Of rs

0

is de�ned;

2. �-type-monoton in
reasing if Sigma Of rs � Sigma Of rs

0

;

3. �-type-monoton de
reasing if Sigma Of rs � Sigma Of rs

0

;

4. �-strongly type-preserving if it is �-type-monoton in
reasing and de
reasing

8rs 2 � � Rules su
h that rs

0

is de�ned, where rs

0

= t On rs. }



58 CHAPTER 2. THE GENERAL FRAMEWORK

Proposition 2.6.2

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is strongly type-

preserving.

}

2.6.5 Type extension

By taking a transformational approa
h to program synthesis, many transformations are

likely to 
hange the type of the input program, i.e. none of the 
riteria in De�nition 2.6.6

applies, but we are still looking for useful restri
tions for the behaviour of transformations.

A type-extending transformation is a modest generalization of type-preserving transforma-

tion.

De�nition 2.6.7

Let be t 2 Trafo. 8rs 2 � � Rules su
h that rs

0

is de�ned, where rs

0

= t On rs. t is a

type-extending transformation if the following property holds:

8p

0

2 Sigma Of rs

0

: 9p 2 Sigma Of rs :

p is a proje
tion of p

0

, i.e.

if p

0

= s �

#

1

� � � � � �

#

n

! �

"

1

� � � ��

"

m

,

then 9in

1

; : : : ; in

q

; out

1

; : : : ; out

r

:

the in

i

are pairwise distin
t,

the out

j

are pairwise distin
t,

ea
h in

i

2 f1; : : : ; ng, ea
h out

j

2 f1; : : : ; mg and

p = s �

#

in

1

� � � � � �

#

in

q

! �

"

out

1

� � � � � �

"

out

r

}

The property of type-extension is parti
ularly useful in 
ombination with uniquely

sorted symbols. Moreover, by adding skeleton preservation, a quite dis
iplined transfor-

mational style is a
hieved.

2.6.6 Proje
tions

A proje
tion rs

0

of rules rs is obtained by deleting some premises and proje
ting the

parameterization of the 
on
lusions and the remaining premises so that the result is equal

to rs

0

.

De�nition 2.6.8

Given rs ; rs

0

2 Rules, rs

0

is a proje
tion of rs if

1. 8p 2 Sigma Of rs:

9p

0

2 Sigma Of rs

0

: Symbol Of p = Symbol Of p

0

)

p

0

is a proje
tion of p (refer to De�nition 2.6.7).

2. Every rule [t℄ e

0

( e

1

; : : : ; e

n

in rs 
an be transformed into a 
orresponding rule

[t℄ �

Con
lusion

(e

0

) ( �

Premise

(e

w

1

); : : : ;�

Premise

(e

w

u

), where 1 � w

1

< � � � < w

u

� n



2.6. PROPERTIES OF META-PROGRAMS 59

and �

Con
lusion

: Con
lusion ! Con
lusion and �

Premise

: Premise ! Premise are the

fun
tions proje
ting parameters of 
on
lusions and premises a

ording to (1.), so that

the resulting rules are equal to rs

0

.

}

If rs

0

and rs have the same skeleton in 
ommon, then rs 
an be regarded as an exten-

sion of rs

0

preserving not only the 
omputational behaviour of rs

0

but also its skeleton.

Note that premises, whi
h are not skeleton elements, 
an still be deleted by su
h a pro-

je
tion. Transformations the input program of whi
h is always a proje
tion of the output

program (or vi
e versa), are very attra
tive transformations. They are more dis
iplined

transformations than type-extending transformations.

program :
&

stati


init ! (ST

0

);

de
larations(ST

0

)! (ST

1

);

statements(ST

1

):

[prog℄

: : :

statements(ST) :
statement(ST);

statements(ST):

[
on
at℄

statements(ST) :
: [skip℄

statement(ST) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

);

&

stati


assignable(T

LHS

;T

RHS

):

[assign℄

statement(ST) :
expression(ST)! (T);

&

stati


isBool (T);

statements(ST);

statements(ST):

[if℄

: : :

expression(ST)! (T) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T):

[var℄

: : :

Figure 2.15: A proje
tion (stati
 semanti
s) of the spe
i�
ation from Figure 2.9

Example 2.6.2

Figure 2.15 and Figure 2.16 show two di�erent proje
tions of the frontend spe
i�
ation

from Figure 2.9. The �rst proje
tion 
ontains all the parameterization and 
omputational

elements whi
h are relevant for the spe
i�
ation of stati
 semanti
s, whereas the se
ond

proje
tion is only 
on
erned with AST 
onstru
tion. Note that the parameterizations of

both proje
tions are not \disjoint" be
ause identi�er 's terminal attribute of sort ID is

needed for both, stati
 semanti
s and AST 
onstru
tion. }

The following example should demonstrate how proje
tions are useful to 
hara
terize

transformations.



60 CHAPTER 2. THE GENERAL FRAMEWORK

program ! (PRO) :
de
larations ;

statements ! (STM);

&

ast

prog(STM)! (PRO):

[prog℄

: : :

statements ! (STM) :
statement ! (STM

1

);

statements ! (STM

2

);

&

ast


on
at(STM

1

; STM

2

)! (STM):

[
on
at℄

statements ! (STM) :
&

ast

skip ! (STM): [skip℄

statement ! (STM) :
identi�er ! (ID);

expression(ST)! (EXP);

&

ast

assign(ID;EXP)! (STM):

[assign℄

statement ! (STM) :
expression ! (EXP);

statements(STM

1

);

statements(STM

2

);

&

ast

if (EXP; STM

1

; STM

2

)! (STM):

[if℄

: : :

expression ! (EXP) :
identi�er ! (ID);

&

ast

var(ID)! (EXP):

[var℄

: : :

Figure 2.16: Another proje
tion (AST 
onstru
tion) of the spe
i�
ation from Figure 2.9

Example 2.6.3

For the operator Left To Right (refer to Figure 1.5), proje
tions support the 
hara
ter-

ization of the following instru
tive property. Let be rs 2 Rules, � 2 Sort. rs

=�

denotes

the proje
tion of rs, where all but the parameter positions of sort � have been removed,

whereas rs

=�

denotes the 
omplementary proje
tion, where all the parameter positions of

sort � have been removed. Given � 2 Sort; rs 2 Rules; rs

0

= Left To Right � On rs, the

following properties 
an be stated:

1. rs

=�

= rs

0

=�

2. rs

0

=�

represents the propagation of a data stru
ture from left to right.

}

De�nition 2.6.9

Given a transformation t 2 Trafo, t is

1. �-extending, if rs is a proje
tion of rs

0

;

2. �-
ontra
ting, if rs

0

is a proje
tion of rs

8rs 2 � � Rules su
h that rs

0

is de�ned, where rs

0

= t On rs. }

Proposition 2.6.3

8� 2 Sort the transformation Left To Right � is not extending. }



2.6. PROPERTIES OF META-PROGRAMS 61

2.6.7 Identity

�-totality 
orresponds to the property where a transformation 
an only be applied to


ertain rules. There is a somewhat related property of �-identity 
on
erning the question

for whi
h rules a transformation behaves like the identity fun
tion.

De�nition 2.6.10

A transformation t 2 Trafo is an �-identity if 8rs 2 � � Rules : rs = t On rs. }

�-total transformations makes sense be
ause we 
an have transformations whi
h are

only de�ned if 
ertain pre
onditions hold. Dually, �-identity makes sense be
ause we 
an


onsider the fa
t that a transformation t behaves like the identity fun
tion on rs 2 � as an

indi
ation for the property that rs already 
aptures the intended e�e
t of t. We 
an think of

appli
ations, where transformations are a
tually written in this style, i.e. they should test

if their \intended e�e
t" is not manifest yet. If it is manifest, they should silently behave

like the identity fun
tion. A rather weak 
hara
terization of transformations written in

this style is given by idempoten
e.

De�nition 2.6.11

A transformation t 2 Trafo is �-idempotent if 8rs 2 � � Rules : t On rs = t Æ t On rs . }

Proposition 2.6.4

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is idempotent. }

It is a weak 
hara
terization be
ause two subsequent appli
ations of t are not likely

to o

ur. We rather would prefer that transformations behave like the identity fun
tion

after a single appli
ation, even if transformations from a 
ertain 
lass were applied to the

intermediate result. The property of being an �-identity 
an be generalized in the same

way.

De�nition 2.6.12

Let be � � Trafo.

t is an �-identity 
losed under �, if 8t

0

2 �; rs 2 � � Rules : t

0

On rs = t Æ t

0

On rs.

t is �-idempotent 
losed under �, if 8t

0

2 �; rs 2 � � Rules : t

0

Æ t On rs = t Æ t

0

Æ t On rs.

}

Proposition 2.6.5

Let be � 2 Sort. The transformation Left To Right � (refer to Figure 1.5) is idempotent


losed under all extending transformations (refer to De�nition 2.6.9) whi
h do not establish

new positions of sort �. }



62 CHAPTER 2. THE GENERAL FRAMEWORK

2.6.8 Stru
ture of transformations

The way a transformation is de�ned, that is, the stru
ture of the expression, 
an give some

hints of other properties of transformation or it 
an be instru
tive for proving properties.

Let us 
onsider one example of a stru
tural restri
tion for transformations. A lo
al trans-

formation transforms a sequen
e of rules rule-wise without \observing" the other rules.

De�nition 2.6.13

A transformation t 2 Trafo is lo
al if the following property holds:

9t

0

2 (Rule! Rule) : 8rs 2 Rules : t On rs = ht

0

On r

1

; : : : ; t

0

On r

n

i;

where rs = hr

1

; : : : ; r

n

i. t

0

is 
alled the rule transformation of t. }

Proposition 2.6.6

For a transformation t 2 Trafo to be lo
al it is a suÆ
ient 
ondition if t is de�ned by a

�-expression of the following form:

�rs : Rules: Map t

0

List rs ;

where rs is not a free variable in t

0

. Moreover, then t

0

is the rule transformation of t. }

2.6.9 Dis
ussion

Transformations are mostly expe
ted to preserve the 
omputational behaviour of a spe
i-

�
ation. To deal with this requirement in detail, we had to de�ne what the semanti
s of a

spe
i�
ation (at the target-level) is, or how we expe
t the 
omputational behaviour is to

be manifested. We will not 
onsider this topi
 here in detail, sin
e it is rather diÆ
ult to

de�ne these notions in the general framework.

Kirs
hbaum, Sterling et al. have shown in [KSJ93℄ that program maps|a tool similar to

our extending transformations|preserve the 
omputational behaviour of a logi
 program,

if we assume that behaviour is manifested by the SLD 
omputations of the program.

Obviously, not all interesting transformations are extending, refer e.g. to Proposition 2.6.3


on
erning the operator Left To Right.

A 
ommon requirement for transformations is general semanti
s preservation. We try

to indi
ate how this requirement 
an be stated in the general framework. Given rules

rs 2 Rules, 
arriers D

i

for the sorts �

i

in Sigma Of rs , the semanti
s of rs is de�ned by

a fun
tion with the following pro�le:

[[�℄℄ : Rules! (Name! U)

Here U denotes some suitable universal domain; refer e.g. to [SHLG94℄. The details of

the de�nition of [[�℄℄ depend on the a
tual framework. More in detail, a name n with pro�le

n : �

1

� � � � � �

m

! �

m+1

� � � � � �

k



2.6. PROPERTIES OF META-PROGRAMS 63

is asso
iated with a semanti
s from the following domain:

E((D

�

1

� � � � � D

�

m

); (D

�

m+1

� � � � � D

�

k

))

Here E(D;D

0

) denotes some domain 
onstru
tion on D and D

0

. For an instan
e of the

framework with deterministi
 semanti
s, E will probably 
orrespond to ! , for example.

More modular approa
hes are possible, e.g. [Bro93, BMPT94℄ where the semanti
s of logi


programs is based on the intermediate 
onsequen
e operator. That is parti
ularly useful

sin
e we 
onsider potentially in
omplete programs.

In the narrow sense, the appli
ation of a transformation t to rs 2 Rules is semanti
s-

preserving if rs

0

= t On rs is de�ned and [[rs℄℄ = [[rs

0

℄℄.

We 
an speak of an �-semanti
s-preserving transformation if the above 
ondition holds

for all rs 2 � � Rules. Usually, we do not insist on the property that the result of the

transformation is de�ned. In the broader, but still agreeable sense, semanti
s preservation


an be de�ned modulo some adaptation of [[rs℄℄ and/or [[rs

0

℄℄. Re
all for example proje
-

tions introdu
ed in Subse
tion 2.6.6. It is also possible to 
onsider a kind of proje
tion on

U , i.e. a semanti
 variant of an 
ontra
ting transformation whi
h has to be regarded as a

synta
ti
al devi
e. In general terms, operations on U 
an be used to express the semanti
s

of the output of a transformation as a re�nement of the semanti
s of the input. We have

not investigated yet that issue more in depth, although there are several approa
hes in

the 
ontext of re�nement and 
orre
tness whi
h should provide a good starting point, e.g.

[BR94, BS98, TWW81, Heh93℄. Another problem is that there are several transformations,

whi
h are inherently not semanti
s-preserving in any obvious sense or only due to very spe-


i�
 arguments, e.g. Left To Right. The question how to 
ope with su
h transformations

should be studied in future. Sin
e we do not only deal with synthesis and 
omposition but

also adaptation, semanti
s preservation does not seem to be appropriate in all 
ases.





Chapter 3

The operator suite

In this Chapter, we present an operator suite for meta-programming on de
larative pro-

grams. Besides the general framework whi
h has to be regarded as a basis for this Chapter,

the suite is a further major result of the thesis. Di�erent layers of the suite are presented

in Se
tion 3.2 - Se
tion 3.4. The presentation 
ulminates with Se
tion 3.5 des
ribing the

sophisti
ated 
omposition te
hnique lifting.

3.1 Overview

The operator suite models s
hemata for program 
omposition, synthesis and transforma-

tion. The 
orresponding operators are spe
i�ed in an instan
e of the general framework

supporting both, natural semanti
s (refer to Subse
tion 2.4.1) and GSF s
hemata (see

Subse
tion 2.4.5). Thereby, our instan
e supports terms as a kind of 
ompound param-

eters and there is a distin
tion between skeleton elements and 
omputational elements

(
omputations for short).

The GSF s
hema from Figure 2.9 spe
ifying the frontend of a language pro
essor for a

simple imperative language will serve as a running example. It will be shown how 
ertain

aspe
ts of type 
he
king, AST 
onstru
tion 
an be synthesized and 
ombined and how

intermediate variants 
an be reused in some 
ases.

Refer to Figure 1.12 for an illustrative presentation of the stru
ture of the operator suite.

We start with Se
tion 3.2 presenting a set of auxiliary operators allowing more advan
ed

operators to be spe
i�ed in a more 
omprehensive way. Se
tion 3.3 
ontinues with s
hemata

modelling basi
 
on
epts of synthesis, adaptation and 
omposition. Afterwards, Se
tion 3.4

introdu
es several more elaborate s
hemata on top of the basi
 
on
epts. This 
hapter


ulminates with Se
tion 3.5 des
ribing lifting whi
h is a new and powerful 
omposition

te
hnique. Lifting fa
ilitates the derivation of 
omplete programs from transformations

and program fragments. Lifting substantially simpli�es the problem of �nding a proper

stru
ture during nested program 
omposition, synthesis and transformation.

The a
tual de�nition of several operators of the suite is in
luded in the text 
ow if the

de�nition is regarded as instru
tive or the formal details are required for a dis
ussion of

65



66 CHAPTER 3. THE OPERATOR SUITE

the properties of the operators. The remaining spe
i�
ations are presented in Appendix C.

Note also that some show
ases are 
olle
ted in Appendix D. The a
tual set of operators

in
luding their a
tual de�nition is far from being optimal, 
omplete and orthogonal. The

operator suite is regarded as a subje
t of further resear
h. The suite ran through some

iterations, where early versions have been 
overed by [LR96, LR97℄ and a more re
ent

version has been thoroughly evaluated in [Sta97℄.

3.2 Auxiliary operators

There is a number of auxiliary operators whi
h 
an be reused frequently during program

transformation and for the de�nition of basi
 and elaborate s
hemata as des
ribed later

in this Chapter. Regarding the layers of the operator suite as presented in Figure 1.12,

the auxiliary operators 
orrespond to the layer on top of the appli
ative 
al
ulus with the

embedded basi
 data types for meta-programming.

First, simple sele
tions, proje
tions, inje
tions and 
losures over target program frag-

ments are presented in Subse
tion 3.2.1. Se
ond, a group of renaming operators is 
on-

sidered in Subse
tion 3.2.2. Third, in Subse
tion 3.2.3 the simple problem to arrange a

sequen
e of rules a

ording to a given sequen
e of tags regarded as a referen
e is addressed.

Finally, 
ertain 
ombinators on transformations are dis
ussed in Figure 3.2.4.

3.2.1 Sele
tions, proje
tions, inje
tions and 
losures

Figure 3.1 enumerates operators for the sele
tion of rules. Sele
t Tags ts On rs sele
ts

all rules in rs with tags in ts. Sele
t Symbols ss On rs sele
ts all rules in rs de�ning the

symbols in ss, i.e. the rules with a symbol in ss in the 
on
lusion. Forget Tags ts On rs

sele
ts the 
omplementary set of Sele
t Tags ts On rs. Forget Symbols ss On rs sele
ts

the 
omplementary set of Sele
t Symbols ss On rs.

Sele
t Tags : P(Tag) ! Trafo

Sele
t Symbols : P(Symbol) ! Trafo

Forget Tags : P(Tag) ! Trafo

Forget Symbols : P(Symbol) ! Trafo

Figure 3.1: Sele
tion of rules

Figure 3.2 enumerates operators for the sele
tion of symbols, that is, for the de�ned and

used symbols in a given set of rules, for the symbols either pre�xed or unpre�xed (possibly

restri
ted to a 
ertain pre�x) in a given set of symbols and for the symbols asso
iated in

a given sequen
e of asso
iations.

Figure 3.3 enumerates operators for the sele
tion of either all tags or the tags of rules

de�ning 
ertain symbols.

Figure 3.4 enumerates operators for the sele
tion of parameters and variables of a


ertain sort.



3.2. AUXILIARY OPERATORS 67

Symbols In : Rules! P(Symbol)

Symbols De�ned In : Rules! P(Symbol)

Symbols Used In : Rules! P(Symbol)

Unpre�xed In : P(Symbol) ! P(Symbol)

Pre�xed In : P(Symbol) ! P(Symbol)

Pre�xed By In : Pre�x�P(Symbol) ! P(Symbol)

Symbols Asso
iated In : Asso
iation

?

! P(Symbol)

Figure 3.2: Sele
tion of symbols

Tags In : Rules! P(Tag)

Tags For In : P(Symbol)� Rules! P(Tag)

Figure 3.3: Sele
tion of tags

Parameters Of Sort In : Sort�P(Parameter) ! P(Parameter)

Variables Of Sort In : Sort�P(Variable) ! P(Variable)

Figure 3.4: Sele
tion of parameters / variables

There is an auxiliary operator

Positions For Of Sort : Io�P(Symbol)� Sort! Position

?

for the 
onstru
tion of a sequen
e of sele
tors (for positions) addressing either input or

output positions (�rst parameter) of 
ertain symbols (se
ond parameter) of a 
ertain sort

(third parameter).

For sele
ting symbols to parti
ipate in a propagation, often 
losures in the sense of

rea
hability similar to 
ontext-free grammars have to be 
omputed; refer to Figure 3.5

for the auxiliary operators supporting the 
omputation of su
h 
losures. Refer also to

Figure 3.6 for some examples for the 
orresponding 
losures. The 
losures fa
ilitate, for

example, the de�nition of propagation s
hemata; refer to Subse
tion 3.4.2.

3.2.2 Renaming

Renaming all kinds of entities should be possible in a meta-program. The 
orresponding

group of operators for renaming tags (Rename Tag), symbols (Rename Symbol), pre-

�xes (Rename Pre�x) and sorts (Rename Sort) is listed in Figure 3.7. The s
ope for

renaming symbols 
an be restri
ted to 
on
lusions (Rename Con
lusion) and premises

(Rename Premise). Renaming a sort 
an be restri
ted to some parameter positions

(Rename Positions). The spe
i�
ations of all these renaming operators 
orrespond to

traversals. It should be pointed out that the term renaming is meant here in very broad



68 CHAPTER 3. THE OPERATOR SUITE

Derivable From In : P(Symbol)� Skeleton! P(Symbol)

Derivable To In : P(Symbol)� Skeleton! P(Symbol)

From To In : P(Symbol)�P(Symbol)� Skeleton! P(Symbol)

Figure 3.5: Computation of 
losures 
on
erning rea
hability

program

de
larations

de
laration

identi�er

type

de
larations

statements

statement

identi�er \:="

expression

identi�er

\+"

identi�er

statements

statements is derivable to (Derivable To : : :) statement , identi�er , expression and to statements

itself. identi�er is derivable from (Derivable From : : :) program , de
larations , de
laration ,

statements , statement and expression . The symbols statements and statement o

ur on paths

between program and expression (From : : : To : : :).

Figure 3.6: Examples for rea
hability

sense. It is possible, for example, to identify two entities (e.g. two symbols or two sorts)

by the above operators. Identi�
ation is usually not permitted when renaming is regarded

as restri
ted form of substitution, but in the 
ase of meta-programming it is desirable, e.g.

for the instantation of open programs.

Rename Symbol To : Symbol� Symbol! Trafo

Rename Con
lusion To : Name� Name! Trafo

Rename Premise To : Symbol� Symbol! Trafo

Rename Tag To : Tag � Tag! Trafo

Rename Pre�x To : Pre�x� Pre�x! Trafo

Rename Sort To : Sort� Sort! Trafo

Rename Positions To : P(Position)� Sort! Trafo

Figure 3.7: Forms of renaming

Let us 
omment us slightly more in detail on the traversals implementing the rename

operators. To rename a symbol, e.g. a name used in elements, is straightforward. To

rename a sort � to another sort �

0

, a traversal of the rules down to the parameters must

be performed. Any parameter of sort � is annotated during re
onstru
tion with the sort

�

0

. Sin
e the sort of a (meta-) variable v 
annot be 
hanged, a fresh variable v

0

of the new

sort on
e for v in a rule need to be generated. v is then repla
ed by v

0

allover the rule.



3.2. AUXILIARY OPERATORS 69

Finally, the operator Rename Positions renaming sorts in 
ertain parameter positions

is dis
ussed. The operator is useful to perform 
ertain kinds of data re�nements in target

programs, where the sorts of parameter positions need to be uni�ed or distinguished, the

latter, for example, when new sum domains need to be established. Renaming positions is

performed as follows. Variables of mat
hing positions are repla
ed by variables of the new

sort. Sin
e the variables o

urring on a 
ertain mat
hing position will in general o

ur on

some other positions, too, all these positions should be renamed as well. Indeed, to for
e a


onsistent renaming, we must list all positions whi
h have to be renamed simultaneously,

i.e. if a variable o

urs on a mat
hing position, it must not o

ur on a position whi
h is

not expli
itly listed for renaming. Renaming positions preserves semanti
s in the following

sense.

Proposition 3.2.1

Let be d

1

; : : : ; d

n

2 Io, s

1

; : : : ; s

n

2 Symbol, �; �

0

2 Sort. Con
erning the interpretation

used for the semanti
s de�nition (refer to Subse
tion 2.6.9) we assume that the 
arriers of

� and �

0

are uni�ed. Then the transformation

Rename Positions fhd

1

; s

1

; �i; : : : ; hd

n

; s

n

; �ig To �

0

is semanti
s-preserving. }

In x3.4.3.5 on interpolating pre
omputations and others we will give an example where

renaming positions is useful in establishing a new sum domain in a given spe
i�
ation;

refer to Example 3.4.6.

3.2.3 Sorting

In this subse
tion a trivial operatorOrder By : P(Tag)! Trafo for arranging sequen
es

of rules in a 
ertain way is presented. Su
h a transformation is useful, for example, to

preserve the order of the rules, whi
h serve as an input for a transformation, in the output

of the transformation. There are possibly other operators doing some kind of sorting

or \pretty printing" whi
h 
ould be useful in an operator suite for meta-programming.

We will not go into detail, but we want to mention a further simple example. Results of

transformations whi
h are presented to the user should 
ontain meaningful variable names.

Auxiliary operators 
ould be useful to preserve variable identi�ers provided by the user

and to renumber variable indi
es if appropriate.

� by : P(Tag) . � rs : Rules .

( Fold Left

� rest : Rules . � t : Tag . rest ./ (Sele
t Tags ftg On rs)

Neutral h i Set by

)

./ (Forget Tags by On rs).

Figure 3.8: Order By : P(Tag) ! Trafo



70 CHAPTER 3. THE OPERATOR SUITE

Order By ts On rs arranges all rules in rs so that the relative order of the tags in ts

is preserved, and all rules with tags not 
overed by ts are appended to the end preserving

the original order in rs. The order of the rules 
an be relevant in some instan
es, e.g. it is

operationally relevant for logi
 programs with the depth-�rst proof sear
h rule. Moreover,

the preservation of the order usually 
ontributes to readability.

Operations should be spe
i�ed in su
h a way that the order of rules is preserved. For

rule-wise transformations based on the Fold or Map re
ursion s
hemata this property is

often a
hieved without further e�ort. However, for some operators it is ne
essary or more


onvenient to rearrange the result by an appli
ation of Order By.

3.2.4 Combinators

We present 
ertain 
ombinators on transformations. The 
orresponding operators 
ompute

from a given transformation another transformation. First, the operator Repla
e is sug-

gested (x3.2.4.1). It supports so-
alled element substitution. For short, the operator takes

some des
ription of how 
on
lusions and premises have to be transformed and derives a


omplete transformation performing all the smaller transformations in a systemati
 way

at on
e. Afterwards, we introdu
e operators to support sele
tive transformation (x3.2.4.2)

and in
remental 
onstru
tion of premises (x3.2.4.3).

3.2.4.1 Element substitution

We introdu
e a general s
hema for so-
alled element substitution. The sear
h for su
h

higher-order s
hemata is an interesting problem be
ause these s
hemata allow more 
on-


rete s
hemata to be de�ned at a higher level of abstra
tion. In parti
ular, some properties

of s
hemata 
an be analysed at a more general level.

We need two auxiliary types:

LhsSubstitution = Con
lusion! (Con
lusion
 Premise

?


 Premise

?


 Substitution)

RhsSubstitution = Premise! (Premise

?


 Substitution)

These types are intended to spe
ify how 
on
lusions and premises 
an be repla
ed. The


ombinator Repla
e 
an be used to de�ne several transformation s
hemata whi
h adapt

elements in a systemati
 way as we will see below. Repla
e t

l

t

r

applied to a rule

[t℄ e

0

( e

1

; : : : ; e

n

returns the following rule:

[t℄ �

n

Æ � � � Æ �

1

(e

0

0

)( e

?

0

; �

n

Æ � � � Æ �

2

Æ �

0

(e

?

1

); : : : ; �

n�1

Æ � � � Æ �

1

Æ �

0

(e

?

n

); e

?

0

0

,

where t

l

(e

0

) 7! he

0

0

; e

?

0

; e

?

0

0

; �

0

i and t

r

(e

q

) 7! he

?

q

; �

q

i for q = 1; : : : ; n.

The identity for repla
ements on LHSs, denoted by lhsIdentity, is de�ned by the ex-

pression �e : Element:h e; hi; hi; hi i. The identity for repla
ements of premises, denoted by



3.2. AUXILIARY OPERATORS 71

rhsIdentity, is de�ned by the expression �e : Element:h hei; hi i. As de�ned above, all the

single substitutions are just 
omposed. Another probably more general approa
h would

be to a

umulate a set of equations and then to use the substitution 
orresponding to its

solved form.

In some appli
ations of Repla
e, e.g. to add a parameter position for a 
ertain symbol,

substitution is not involved. However, for other appli
ations, substitution is ne
essary,

for example, for the 
ontra
tion of parameter positions, the substitution has to unify


ontra
ted positions. In many appli
ations, a spe
i�
 LHS / RHS substitution will behave

for many elements like the identity fun
tion.

3.2.4.2 Sele
tive transformation

Fun
tions on Rules must often be restri
ted. If a 
omputation is inserted into a 
ertain

rule r, for example, the 
orresponding transformation has to be restri
ted to r. A group

of operators Sele
ting / Forgetting are o�ered for that purpose; refer to Figure 3.9.

Sele
ting Symbols Do : P(Symbol)� Trafo! Trafo

Sele
ting Tags Do : P(Tag)� Trafo! Trafo

Forgetting Symbols Do : P(Symbol)� Trafo! Trafo

Forgetting Tags Do : P(Tag)� Trafo! Trafo

Figure 3.9: Sele
tive transformation

Sele
ting Tags ht

1

; : : : ; t

n

i Do trafo On rs transforms rs in the following steps:

1. The rules with tags t

1

; : : : ; t

n

are sele
ted in rs.

2. trafo is applied to the result of (1.).

3. The result of (2.) and all rules whi
h were not sele
ted in (1.) are 
on
atenated.

� ts : P(Tag) . � trafo : Trafo . � rs : Rules .

Order By Tags In rs

On ((trafo On (Sele
t Tags ts On rs)) ./ (Forget Tags ts On rs)).

Figure 3.10: Sele
ting Tags Do : P(Tag)� Trafo! Trafo

The transformation trafo has to be type-preserving and it must not return rules with

tags overlapping with the 
omplementary set of rules sele
ted in (1.), if the de�nedness

of the whole transformation, in general, is required to follow from the de�nedness of (2.).

The simple de�nition of Sele
ting Tags is shown in Figure 3.10. Other forms of restri
ted

transformations 
an be expressed based on Sele
ting Tags, in the same manner as Sele
t

Tags is suÆ
ient to express Sele
t Symbols, Forget Tags and Sele
t Symbols:

� Sele
ting Symbols: restri
tion to rules de�ning 
ertain symbols,

� Forgetting Tags: restri
tion to the 
omplementary set of Sele
ting Tags,

� Forgetting Symbols: restri
tion to the 
omplementary set of Sele
ting Symbols



72 CHAPTER 3. THE OPERATOR SUITE

3.2.4.3 Temporary invisibility of symbols

Finally, the operator Hiding is proposed. Hiding s Do t On rs makes the symbol

s invisible in rs during the performan
e of the transformation t applied to rs; refer to

Figure 3.11 for the formal de�nition. Hiding is based here on renaming the symbol s

to a fresh symbol whi
h is de�nitely not in use. An extra servi
e added to the a
tual

operator Hiding is that the pro�le of the hidden symbol is possibly permuted (refer to

Subse
tion 3.3.1 for the permutation of positions) to 
oin
ide with the pro�le a

ording to

the existing use before the renaming is undone.

� sym : Symbol . � t : Trafo . � rs : Rules .

Let profOld = Pro�le Of sym In Sigma Of rs In

Let fresh = Name? sym ! New Name, New Operation In

Rename Symbol fresh To sym

Æ (� rs : Rules .

% if the hidden symbol is not present, no permutation will be ne
essary

profOld = ? !

rs,

Let profNew = Pro�le Of sym In Sigma Of rs In

profNew = ? !

rs,

% if the pro�les are equal, no permutation is ne
essary

(Sorts Input Of profOld = Sorts Input Of profNew) And

(Sorts Output Of profOld = Sorts Output Of profNew) !

rs,

% try to permute the new 
omputational elememts a

ording to the original pro�le

Permute profOld On rs

)

Æ t

Æ Rename Symbol sym To fresh

On rs.

Figure 3.11: Hiding Do : Symbol� Trafo! Trafo

Hiding turned out to be ne
essary, for example, for the in
remental 
onstru
tion of

premises. Essentially, the operator Hiding enables us to insert and parameterize premises

(and 
on
lusions) in several steps without 
on
i
ting with existing uses of the underlying

symbol in the given program. Note that without further e�ort, stepwise parameterization is

not possible due to the type system be
ause a symbol must have a 
onsistent type all over a

target program at any time. On the other hand, stepwise parameterization is ne
essary with

regard to orthogonality of operators and granularity of adaptation. Besides type 
on
i
ts,

there is another problem with \naive" stepwise 
onstru
tion of 
omputational elements:

While 
onstru
ting 
omputational elements in n steps, it is not straightforward how to

avoid that existing elements with the same underlying symbol are not e�e
ted in steps 2,

: : :, n� 1. Here step 1 is assumed to perform the initial 
onstru
tion of the 
omputation.

Sometimes, su
h interferen
es 
an be avoided by \forgetting" (refer ro x3.2.4.2) some rules

during the transformation, but not in general.



3.3. BASIC SCHEMATA 73

The permutation of the parameterization is useful for stepwise 
onstru
tion of 
ompu-

tational elements be
ause there are usually dependen
ies on the order of the steps whi
h

in
uen
e the order of the parameterization. Thereby, the order of parameters might di�er

between the new elements and existing uses.

3.3 Basi
 s
hemata

A

ording to Figure 1.12 we want to des
ribe a number of s
hemata modelling basi
 
on-


epts during program synthesis, adaptation and 
omposition. If we think for example of the

\in
remental" development of an attribute grammar or its adaptation by means of meta-

programming, 
ertain basi
 
on
epts are evident. More elaborate s
hemata in the sense of

strategies are explored in the subsequent se
tion. We suggest the following 
lassi�
ation

for basi
 s
hemata:

� s
hemata dealing primary with positions (or parameterization), e.g. the operator

Add to add a parameter position; refer to Subse
tion 3.3.1;

� s
hemata 
on
erning 
opies, de�nitions and uses, e.g. the operator De�ne to de�ne

a parameter position by a 
onstant 
omputation; refer to Subse
tion 3.3.2;

� s
hemata a
ting primary at the rules level, e.g. operators fa
ilitating program trans-

formation in the sense of folding and unfolding.

3.3.1 Positions

Semanti
 aspe
ts of an AG spe
i�
ation or a natural semanti
s des
ription are roughly

represented by the pro�les of the underlying symbols. The traversal, the propagation and

the synthesis of data stru
tures 
an be asso
iated with 
orresponding parameter positions

of 
ertain symbols. The spe
i�
ation of type 
he
king, for example, requires an output

position for the grammar symbol for expressions, sin
e a type position has to be synthesized.

Consequently, the suite should o�er 
orresponding operators. There are basi
 operators

for adding (Add), removing (Sub), 
ontra
ting (Contra
t) and permuting (Permute)

parameter positions; refer to Figure 3.12 for the pro�les of the operators.

Add : Position! Trafo

Sub : Position! Trafo

Contra
t : Position! Trafo

Permute : Pro�le! Trafo

Figure 3.12: Basi
 s
hemata for positions

The operator Sub for the removal of parameter positions 
an be regarded as the op-

posite of Add. Contra
tion of parameterization as fa
ilitated by the operator Contra
t

needs to be performed during program 
omposition if two operands have some part of the

parameterization in 
ommon. More pre
isely, the operator Contra
t is suitable to unify



74 CHAPTER 3. THE OPERATOR SUITE

all (input or output) parameters of a symbol s whi
h are of the same sort �. It is not so

obvious if 
ontra
tion is a basi
 
on
ept like the addition of positions. Possibly, we 
ould

argue that 
ontra
tion 
an be regarded as a 
ombination of uni�
ation and removal of

parameter positions. Contra
tion will be demonstrated in x3.3.3.1, where the 
omposition

of spe
i�
ations with the same underlying skeleton is dis
ussed. Permutation of parame-

ters is a very simple operation. It is obviously needed in a position-oriented framework.

The operator Permute is based rather on a pro�le than indi
es of positions. Des
ribing

the permutation of a symbol's parameterization by means of the intended pro�le is more

readable, but we must insist on uniquely sorted symbols. Subse
tion 3.4.1 will show some

elaborate s
hemata dealing with positions. Re
all that there is also a form of renaming

whi
h 
an be used to 
hange the sorts of some parameter positions (Rename Positions);

refer to Subse
tion 3.2.2 on renaming for this issue.

The above s
hemata 
an be expressed in terms of the parameterized transformation

s
hema for element substitution introdu
ed in x3.2.4.1 be
ause the s
hemata 
an be re-

garded as homogeneous transformations of parameter lists of elements; refer to Se
tion C.2.

Let us 
onsider the operator Add in more detail. Add hio; s; �i adds an input position

(io = Input) or an output position (io = Output) respe
tively to any element with the

symbol s by inserting fresh variables of the sort �.

Example 3.3.1

The operator Add is used to add several parameter positions suitable to eventually prop-

agate a symbol table. We start from the following grammar fragment:

program : de
larations ; statements : [prog℄

The following transformation is applied to the above fragment:

Add hInput; de
larations; STi

Æ Add hOutput; de
larations; STi

Æ Add hInput; statements; STi

The result of the transformation is as follows:

program : de
larations(ST

0

) ! (ST

1

);

statements(ST

2

):

[prog℄

}

3.3.2 Copies & De�nitions & Uses

To in
rementally develop the 
omputational behaviour of a spe
i�
ation, there is a need

for unifying parameters and adding 
omputational elements in
luding 
onditions. To adapt

a spe
i�
ation we have to be able to perform the oppositional transformation, i.e. to liqui-

date uni�
ation of parameter positions or to remove 
omputational elements. During the

synthesis of an attribute grammar, for example, attributes (in our framework: parameter

positions) are added in a �rst step. This is modelled by the operator Add. In a next step

usually the new attributes (positions) are \de�ned" in the sense of de�nitions and 
opies



3.3. BASIC SCHEMATA 75


orresponding to the insertion of semanti
 rules in
luding semanti
 
opy rules. During

adaptation, semanti
 rules possibly have to removed or repla
ed. The 
orresponding set of

basi
 operators is shown in Figure 3.13.

Copy To : Position� Position! Trafo

De�ne By : Position� Symbol! Trafo

Use By : Position� Symbol! Trafo

Unde�ned! : Position! Trafo

Unused! : Position! Trafo

Purge : Symbol! Trafo

Figure 3.13: Basi
 
omputation s
hemata

Several more elaborate s
hemata for adding 
omputational behaviour are dis
ussed in

Se
tion 3.4.3.

3.3.2.1 Copies

The simplest way to eliminate an unde�ned variable o

urren
e at a position pos

u

is to


opy a parameter from a de�ning position pos

d

to the position pos

u

, what is expressed by

Copy pos

d

To pos

u

. Applying the transformation to a rule r, pos

d

has to be a unique

sele
tor of a de�ning position in r, whereas pos

u

has to be a unique sele
tor for an applied

position in r.

To restri
t the data 
ow to 
opying from de�ning to applied positions has been adopted

from attribute grammars, where semanti
 rules always de�ne synthesized attributes of the

LHS and inherited attributes of the RHS (i.e. applied positions in our terminology) and

the normal form property of attribute grammars says that only inherited attributes of the

LHS and synthesized attributes of the RHS 
an be used in the semanti
 rules (i.e. de�ning

positions in our terminology). The same assumption will be used whenever 
omputational

elements (e.g. de�nitions and uses) are inserted, i.e. the input (resp. output) positions have

to be uni�ed with de�ning (resp. applied) positions.

Example 3.3.2

We 
ontinue Example 3.3.1 by adding a 
opy rule in order to inherit the symbol table

synthesized in the de
laration part to the statement part. Applying the following trans-

formation to Example 3.3.1

Copy hOutput; de
larations ;STi To hInput; statements ;STi

we obtain the following output:

program : de
larations(ST

0

) ! (ST

1

);

statements(ST

1

):

[prog℄

}



76 CHAPTER 3. THE OPERATOR SUITE

3.3.2.2 Adding de�nitions

The operator De�ne 
an be used to insert de�nitions. Consider the transformation

De�ne pos By s applied to the rule r. For every unde�ned parameter p mat
hing

with pos a new premise of the form s! p is inserted into r. This 
onstant 
omputation is

intended to 
ompute the 
orresponding parameter p.

Example 3.3.3

We 
ontinue Example 3.3.1 and Example 3.3.2. The initialization of the symbol table is

modelled by the following transformation:

De�ne hInput; de
larations ;STi By &

stati


init

The 
orresponding output is as follows:

program : &

stati


init ! (ST

0

);

de
larations(ST

0

) ! (ST

1

);

statements(ST

1

):

[prog℄

}

The operator De�ne is also appli
able if the given sele
tor is not a unique sele
tor for

an unde�ned position be
ause it usually makes sense to insert the 
orresponding 
onstant


omputation for all mat
hing positions. Note that by adding input positions to the symbol

used for the 
onstant 
omputation and providing de�nitions to these new positions, the


onstant 
omputations 
an be extended to 
omputations of any arity.

Proposition 3.3.1

8d 2 Io 8s; s

0

2 Symbol, 8� 2 Sort, the transformation Add hd; s; �i isWD-re
overable by

the transformation De�ne hd; s; �i By s

0

. }

3.3.2.3 Adding uses

Uses of de�ning positions 
an be for
ed by the operator Use. Consider the transformation

Use pos By s applied to the rule r. For every parameter p on a de�ning parameter position

mat
hing with pos a new premise of the form s(p) (i.e. a unary 
ondition) is inserted into

r. For pragmati
 reasons the opertor Use is not 
ompletely dual to the operator De�ne

in the sense that the fo
us is on all relevant de�ning positions and not only on unused

variables (on de�ning positions). It is not very 
ommon to 
onsider multiple de�nitions for

a variable, whereas multiple uses are very 
ommon. A
tually, there should be operators

dual to De�ne and Use, but they have not been required so far.

3.3.2.4 Establishing unde�ned and unused variables

The operators for inserting 
opy rules (Copy) or 
omputational elements serving as de�-

nitions (De�ne) or uses (Use) of positions are 
entral to program synthesis. However, to

adapt a program, the e�e
t of su
h operators has possibly to be nulli�ed.



3.3. BASIC SCHEMATA 77

For an appli
ation of the Unde�ned! operator, every mat
hing applied position is

refreshed, i.e. a fresh variable of the appropriate sort is inserted. This behaviour is obviously

suÆ
ient to dis
ard the e�e
t of a 
opy rule. Suppose that a 
omputation served as

de�nition of the mat
hing position. Then the 
omputation will possibly be useless.

The operator Unused! 
auses every mat
hing de�ning position to be refreshed. Sup-

pose that a (unary) 
ondition served as use of the mat
hing position. Then the 
ondition

will possibly be useless.

3.3.2.5 Removing 
omputations

The operator Purge supports the removal of 
omputations. To retain orthogonality

w.r.t. Unde�ned! and Unused! a 
omputation with the symbol s is removed in rs by

Purge s On rs if all of its input parameters are unde�ned and all of its output parameters

are unused. Obviously, the e�e
t of De�ne (resp. Use) 
an be nulli�ed by Unde�ned!

(resp. Unused!) and a subsequent appli
ation of Purge.

3.3.3 Rules

Here we de�ne some basi
 operators a
ting at the rules level. The pro�les of the 
or-

responding operator are shown in Figure 3.14. First, the 
on
ept of superimposition

(Superimpose) is introdu
ed. Afterwards, program transformations supporting folding

and unfolding are added to the operator suite (Fold and Unfold).

Superimpose And : Rules� Rules! Rules

Fold By Into : Tag � Name?

?

� Tag! Trafo

Unfold By Into : Tag � Tag?

?

� Tag? ! Trafo

Figure 3.14: Basi
 s
hemata for rules

3.3.3.1 Superimposition

The operator ./ provides the most obvious form of 
omposition for two sequen
es of

rules, that is to say the 
on
atenation of the rules. Another form of 
omposition will be

dis
ussed in the sequel. This form models superimposition of rules syn
hronized by skele-

tons. Thereby, the parameterization and the 
omputational behaviour of two sequen
es of

rules 
an be 
ombined in one spe
i�
ation in the sense of tupling.

More in detail, Superimpose rs

1

And rs

2

superimposes the skeletons of the operands,


on
atenates the parameters of superimposed symbols and takes over 
omputational ele-

ments.

Example 3.3.4

We 
ompose the 
omplete frontend spe
i�
ation from Figure 2.9 by means of superimpo-

sition. Figure 2.15 and Figure 2.16 
ontain two proje
tions whi
h 
an be superimposed to



78 CHAPTER 3. THE OPERATOR SUITE

obtain the 
omplete spe
i�
ation. The �rst proje
tion models stati
 semanti
s, whereas

the se
ond proje
tion spe
i�es AST 
onstru
tion.

Figure 2.9 � Contra
t hOutput; identi�er ; IDi On

Superimpose Figure 2.15 And Figure 2.16

An appli
ation of Contra
t is involved in the above 
omposition, be
ause the parameter-

ization of the symbol identi�er , whi
h both operands have in 
ommon, has to be uni�ed.

}

Superimposition is de�ned i� the operands are based on the same skeleton. Refer to

Se
tion C.5 for the formal de�nition. Example 3.3.4 demonstrates how to handle the 
ase

of a 
ommon part of parameterization whi
h has to be uni�ed, although it is a trivial

example, where the 
ommon part 
orresponds to \terminal" attribution. However, the

approa
h of using Contra
t (refer to Se
tion 3.3.1 for its presentation) also works for

more 
omplex parameterizations. Thereby, we support a kind of modularity similar to

Watt's Partitioned AGs [Wat75℄. Moreover, a re
onstru
tion of 
omposition in the sense

of stepwise enhan
ement [Lak89, SS94, JS94℄ is a
hieved.

3.3.3.2 Folding

Folding and unfolding is well-known in semanti
s-preserving program transformation; refer

e.g. to [PP94℄. We suggest two operators Fold and Unfold whi
h are parti
ularly suitable

for stru
tural transformations in meta-programs; refer to Figure 3.14 for the pro�les and

refer to Se
tion C.6 for the formal de�nitions.

Fold t By hs?

1

; : : : ; s?

n

i Into t

0

with 9k su
h that s?

1

= ?; : : : ; s?

k�1

= ?, s?

k

6= ?,

s?

k+1

= ?; : : : ; s?

n

= ?, folds the rule with the tag t in the following manner:

� The s?

i

are mat
hed with the skeleton symbols of the premises of t, where ? mat
hes

with any single element and s?

k

mat
hes with any non-empty sequen
e of elements.

� The elements e

?


overed by s?

k

are repla
ed by an element e with symbol s?

k

and

the unde�ned variables in e

?

as inputs and the de�ning o

urren
es in from e

?

with

applied o

urren
es outside of e

?

as outputs.

� Moreover, the rule [t

0

℄ e( e

?

is added.

3.3.3.3 Unfolding

Unfold o�ers the operation reverse to Fold, i.e. some skeleton elements e

1

, : : :, e

m

among

the premises of a rule t are repla
ed by the premises of some rules t

1

, : : :, t

m

with the

same symbols in the 
on
lusion as the e

i

. If a premise (note that only skeleton element are


ounted) of t mat
hes with ?, the 
orresponding premise will be taken over un
hanged, i.e.

it will not be unfolded.



3.4. ELABORATE SCHEMATA 79

statement(ST)! (STM) :
expression(ST)! (T;EXP);

&

stati


isBool (T);

statements(ST)! (STM

1

);

else(ST)! (STM

2

) ;

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

else(ST)! (STM) : statements(ST)! (STM): [else℄

else(ST)! (STM) : &

ast

skip ! (STM) : [noelse℄

Figure 3.15: An optional if-
onstru
t obtained by fold/unfold

Example 3.3.5

Let us adapt the frontend spe
i�
ation from Figure 2.9 in su
h a way that an optional

else-path is supported. Figure 3.15 shows how the 
hanged GSF rules have to look like.

The a
tual transformation 
an be des
ribed as follows:

Figure 3.15 � Unfold [else℄ By h[skip℄i Into [noelse℄

Æ Fold [if℄ By h?; ?; elsei Into [else℄

On Figure 2.9

}

3.4 Elaborate s
hemata

It was the intention of the previous se
tion to present s
hemata 
orresponding to basi
 
on-


epts in program synthesis, adaptation and 
omposition. In 
ontrast to that, the s
hemata

of this Se
tion are rather thought as strategies. Some of the s
hemata presented below are

thought dire
tly as elaborations of some basi
 s
hema. Other s
hemata are obtained by a

more involved derivation 
ombining several basi
 aspe
ts.

First, some s
hemata extending our tool set for dealing with positions (or parameteri-

zation) are dis
ussed in Subse
tion 3.4.1. Se
ond, propagation s
hemata are investigated in

Subse
tion 3.4.2. We 
arry on with 
ertain strategies to establish 
omputational behaviour

in Subse
tion 3.4.3. Finally, 
omposition s
hemata are dis
ussed in Subse
tion 3.4.4.

3.4.1 Positions

The elaborations of s
hemata for positions introdu
ed in Subse
tion 3.3.1 are straight-

forward. The operators Add, Sub and Contra
t are generalized to 
ope with several

positions at on
e. The operator Ensure fa
ilitates the 
onditional addition of a position

depending on the fa
t if a position of the 
orresponding sort has not yet been added be-

fore. Ensure hhio; s; �ii On rs adds the position if and only if s has not an io-position



80 CHAPTER 3. THE OPERATOR SUITE

of sort � in rs . Several elaborate s
hemata de�ned below use the operator Ensure to

ensure the existen
e of a 
ertain parameterization as a kind of pre
ondition. The operator

Proje
t 
ombines permutation (Permute) and removal (Sub) of parameter positions.

For proje
tion we assume uniquely sorted symbols.

Add : Position

?

! Trafo

Sub : Position

?

! Trafo

Contra
t : Position

?

! Trafo

Ensure : Position

?

! Trafo

Proje
t : Pro�le! Trafo

Figure 3.16: More elaborate s
hemata for positions

3.4.2 Propagation

Many aspe
ts of a de
larative program 
on
ern the propagation of data. Thus, it is obvious

that the operator suite should provide 
orresponding support; refer to Figure 3.17 for an

enumeration of 
orresponding operators.

From The Left : Sort! Trafo

Left To Right : Sort! Trafo

Inherit From To : Sort�P(Symbol)�P(Symbol)! (Skeleton! Trafo)

A

umulate From To : Sort�P(Symbol)�P(Symbol)! (Skeleton! Trafo)

Remote From : Sort�P(Symbol)! Trafo

Figure 3.17: S
hemata for propagation

3.4.2.1 Left-to-right dependen
ies

The operator From The Left : Sort ! Trafo. fa
ilitates propagation by 
opying

systemati
ally de�ning o

urren
es of a 
ertain sort to unde�ned variables from left to right.

As long as we 
onsider variables as the only form of parameters, every single 
opy rule 
ould

be expressed by means of the operator Copy, but From The Left is independent from

parameter positions and a single appli
ation of the operator 
orresponds to a potentially

unlimited number of 
opy rules. The s
hema is suÆ
ient to establish a 
omputational

behaviour suitable to en
ode pervasive inheritan
e or a bu
ket brigade [Ada91℄ or any

mixture of them provided the ne
essary positions have been added in advan
e. All of the

propagation s
hemata 
onsidered below make use of the operator From The Left.

Example 3.4.1

The propagation of a symbol table 
an be spe
i�ed by an appli
ation of From The Left

as follows:



3.4. ELABORATE SCHEMATA 81

Figure 3.18 � From The Left ST

Æ Add hhInput; de
larations ;STi; hInput; de
laration ;STi;

hOutput; de
larations ;STi; hOutput; de
laration ;STi;

hInput; statements ;STi; hInput; statement ;STi;

hInput; expression ;STii

On Figure 2.14

}

program :
de
larations(ST

0

)! (ST

1

);

statements(ST

1

):

[prog℄

de
larations(ST

0

)! (ST

2

) :
de
laration(ST

0

)! (ST

1

);

de
larations(ST

1

)! (ST

2

):

[de
s℄

de
larations(ST)! (ST) :
: [node
s℄

: : :

statements(ST) :
statement(ST);

statements(ST):

[
on
at℄

statements(ST) :
: [skip℄

: : :

Figure 3.18: Symbol table propagation

We suggest the operator Left To Right � as a slight elaboration of From The Left.

Copying is performed based on fresh positions rather than the original positions. Thereby,

additional symbols and positions 
an be in
orporated in an existing propagation path. It

seems to be impossible to express su
h an adaptation within other 
ommon frameworks,

parti
ularly [KW94℄, [Kos91℄ and [KLMM93℄ (rule models). Refer to the motivating ex-

ample in Subse
tion 1.2.2.

All the following propagation s
hemata have in 
ommon, that Left To Right (whi
h in

turn is 
on
eptionally based on From The Left

1

) or From The Left are used in order to

establish the proper data 
ow. The s
hemata di�er in the way how symbols parti
ipating

in the propagation are sele
ted and how the mode of propagation for every symbol, i.e.

inheritan
e or a

umulation, is de�ned.

3.4.2.2 Inheritan
e

The operator Inherit propagates a data stru
ture a

ording to pervasive inheritan
e

[Ada91℄. Two sets of symbols from and to are required. The parameter from enumer-

ates the symbols where the propagation should start. Often this is a singleton set. The

1

The de�nition of Left To Right shown in Figure 1.5 does not refer to From The Left, but we are

working on a reformulation of the propagation s
hemata to express this relationship.



82 CHAPTER 3. THE OPERATOR SUITE

parameter to 
orresponds to the symbols whi
h require reading a

ess to the propagated

data stru
ture of a 
ertain sort. The data stru
ture is 
opied along input positions of all

symbols in the 
losure (
on
erning rea
hability) between from and to in
luding to. Refer

to Figure 3.19 for the de�nition of the operator.

� s : Sort . � from : P(Symbol) . � to : P(Symbol) .

� sk : Skeleton . � rs : Rules .

Let 
losure = (From from To to In sk) [ to In

Left To Right s

Æ Ensure Positions Input For 
losure Of Sort s

On rs.

Figure 3.19: Inherit From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo)

3.4.2.3 A

umulation

The operator A

umulate is quite similar to the previous one, but the symbols in to

require reading and writing a

ess to the data stru
ture. Thus, for all relevant symbols

an input and an output position is added. The data 
ow a
hieved by the subsequent

appli
ation of the Left To Right ensures that an a

umulator is simulated. Refer to

Figure 3.20 for the de�nition of the operator. The 
orresponding propagation pattern is

also 
alled bu
ket brigade [Ada91℄.

� s : Sort . � from : P(Symbol) . � to : P(Symbol) .

� sk : Skeleton . � rs : Rules .

Let 
losure = (From from To to In sk) [ to In

Left To Right s

Æ Ensure (Positions Output For 
losure Of Sort s)

Æ Ensure (Positions Input For 
losure Of Sort s)

On rs.

Figure 3.20: A

umulate From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo)

3.4.2.4 Remote a

ess

A set of symbols read of de�ned symbols in rules with unde�ned o

urren
es of a given sort

is derived assuming that these symbols need reading a

ess to the data stru
ture. Dually,

a set of symbols write of de�ned symbols in rules with unused o

urren
es of the given sort

is derived assuming that these symbols update or synthesize the data stru
ture. Input and

output positions are added to symbols a

ordingly based on 
losures between a parameter

from as above and the derived sets read and write; refer to Figure 3.21.

The operatorRemote promotes a style of spe
i�
ation similar to remote a

ess [KW94,

JF85, Boy96b, Boy98℄.



3.4. ELABORATE SCHEMATA 83

� s : Sort . � from : P(Name) . � rs : Rules .

Let unde�ned =

Map Union � r : Rule .

Variables Of Sort s In (Ao In r n Do In r) = ; !

;,

fName Of Con
lusion Of rg

List rs

In

Let unused =

Map Union � r : Rule .

Variables Of Sort s In (Do In r n Ao In r) = ; !

;,

fName Of Con
lusion Of rg

List rs

In

Let sk = Skeleton Of rs In

Let read = (From from To unde�ned In sk) [ unde�ned In

Let write = (From from To unused In sk) [ unused In

From The Left s

Æ Add (Positions Input For read Of Sort s)

Æ Add (Positions Output For write Of Sort s)

On rs.

Figure 3.21: Remote From : Sort�P(Symbol) ! Trafo

Example 3.4.2

Consider the rules in Figure 3.22 as variants of the 
orresponding rules in the frontend

spe
i�
ation in Figure 2.9. The symbol table is used in 
omputations, but the a
tual

propagation is not spe
i�ed. The resulting attribute grammar has to be 
onsidered as

non-well-de�ned be
ause of the uses unde�ned ST-positions. Moreover, there are unused

ST-positions, e.g. in [de
℄. However, the propagation of the symbol table 
an be established

by the following appli
ation of the operator Remote:

Figure 2.9 � Remote ST From fprogramg On Figure 3.22

}

3.4.3 Computations

In Subse
tion 3.3.2 basi
 operators 
on
erning the addition of \
opy rules", 
onstant 
om-

putations serving as de�nitions and unary 
onditions serving as uses were introdu
ed. In

this subse
tion, elaborations for these s
hemata, i.e. to insert arbitrary 
omputational el-

ements (Compute and Condition), are presented. Afterwards, the operator Default,

whi
h is more 
exible in some 
ases than the operator De�ne, is introdu
ed. Then, three

advan
ed s
hemata for establishing 
omputational behaviour (Relate, Redu
e and Pre-


ompute) are presented. Finally, the relationship between 
omputational elements and

term 
onstru
tion (Constru
tion et
.) is investigated.



84 CHAPTER 3. THE OPERATOR SUITE

program ! (PRO) :
&

stati


init ! ( ST );

de
larations

statements ! (PRO);

&

ast

prog(STM)! PRO:

[prog℄

: : :

de
laration :
identi�er ! (ID);

type ! (T);

&

stati


add ( ST ; ID;T)! ( ST' ):

[de
℄

: : :

statement ! (STM) :
identi�er ! (ID);

&

stati


lookup( ST ; ID)! (T

LHS

);

expression ! (T

RHS

;EXP);

&

stati


assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP)! STM:

[assign℄

: : :

Figure 3.22: A frontend spe
i�
ation before making the remote a

ess expli
it

Compute ! : Symbol� Position

?

! Position

?

! Trafo

Condition : Symbol� Position

?

! Trafo

Default For By : Sort� Symbol! Trafo

Relate : Io� Asso
iation

?

� Pre�x! Trafo

Redu
e By : Sort� Symbol! Trafo

Pre
ompute By : Asso
iation� Symbol! Trafo

Constru
tion : Pre�x! Trafo

De
onstru
tion : Pre�x! Trafo

Constru
tion

�1

: P(Sort)� Pre�x! Trafo

De
onstru
tion

�1

: P(Sort)� Pre�x! Trafo

Figure 3.23: Elaborate 
omputation s
hemata

3.4.3.1 Nontrivial 
omputations

The basi
 operators De�ne and Use are limited to 
onstant 
omputations for providing

de�nitions and unary 
onditions for providing uses. We generalize them so that we 
an


ope with 
omputations with any number of arguments and results.

Consider the transformation

Compute s hpos

1

; : : : ; pos

n

i ! hpos

n+1

; : : : ; pos

m

i

applied to the rule r. pos

1

, : : :, pos

n

must be unique sele
tors for de�ning positions in

r, whereas pos

n+1

, : : :, pos

m

must be unique sele
tors for applied positions in r. Then a


omputational element

s(p

1

; : : : ; p

n

)! (p

n+1

; : : : ; p

m

)



3.4. ELABORATE SCHEMATA 85

is inserted into r, where the p

i

are the parameters 
orresponding to the sele
ted parameter

positions in r.

Although the Compute operator generalizes De�ne and Use in the sense that several

positions 
an be used and de�ned simultaneously in a single 
omputational element, only


omputations based on unique sele
tors 
an be modelled.

3.4.3.2 Defaults for providing de�nitions

A slight generalization of the operator De�ne is o�ered by the operator Default. Variable

o

urren
es to be de�ned are not found by mat
hing a position, but variables are rather

found by the property to be of a 
ertain sort �. As for the operator De�ne, 
omputations

are only inserted for unde�ned variables. Default For � By s applied to the rule r inserts

a 
onstant 
omputation of the form s! v into r for ea
h unde�ned variable v of sort �.

Example 3.4.3

Another spe
i�
ation of the transformation required in Example 3.3.3 based on the operator

Default instead of the operator De�ne is provided:

Default For ST By &

stati


init

The result is the same as in Example 3.3.3. However, the approa
h based on the operator

Default is slightly more abstra
t be
ause it is assumed that any \unde�ned" variable

o

urren
e of sort ST should be asso
iated with a de�ning o

urren
e. There is not a

dependen
y on parti
ular positions of grammar symbols any longer. }

As a 
ondition is a 
omputational element without output positions, we 
an de�ne the

operator Condition as follows:

Condition s hpos

1

; : : : ; pos

n

i = Compute s hpos

1

; : : : ; pos

n

i ! hi

3.4.3.3 Compositional 
omputations

Now the operator Relate to be regarded as a high-level s
hema for adding 
omputational

behaviour will be dis
ussed. Many spe
i�
ation problems are of a 
ompositional nature,

e.g. semanti
s de�nition, AST traversal, traversal of data stru
tures, 
ode generation,

translations, i.e. for all rules, an output position of the de�ned symbol is 
omputed from


ertain output positions of the premises (Relate Output) or input positions of premises

are 
omputed from an input position of the 
on
lusion (Relate Input) respe
tively.

Relate io hhs

1

; �

1

i; : : : ; hs

m

; �

m

ii pfx


an be 
hara
terized as follows: Let us 
onsider a rule r of the form as usual [t℄ e

0

(

e

1

; : : : ; e

n

. Let be pos

?

= hio; s

1

; �

1

i, : : :, hio; s

m

; �

m

i. Let lhs

1

, : : :, lhs

k

be the parameters



86 CHAPTER 3. THE OPERATOR SUITE

on positions of the 
on
lusion mat
hing the positions pos

?

respe
ting the order of the

parameters in the 
on
lusion (usually k = 1). Let rhs

1

, : : :, rhs

q

be the parameters on

positions of the premises mat
hing the positions pos

?

respe
ting the order of the premises

and the parameters in ea
h single premise. If k > 0 and/or q > 0, then a new 
omputational

element e is inserted into r. The result of the transformation is denoted by r

0

below:

� io = Input: e = Premise From s (lhs

1

; : : : ; lhs

k

) ! (rhs

1

; : : : ; rhs

q

), r

0

= [t℄ e

0

(

e; e

1

; : : : ; e

n

,

� io = Output: e = Premise From s (rhs

1

; : : : ; rhs

q

)! (lhs

1

; : : : ; lhs

k

), r

0

= [t℄ e

0

(

e

1

; : : : ; e

n

; e,

where s = Operation From pfx t (refer to Subse
tion 2.4.5). s should be a pre�xed

symbol be
ause 
omputational behaviour should be added and the skeleton should be

retained. The position, where the new 
omputational element e is inserted into the original

sequen
e premises is indi
ated in order to point out the parameter dependen
ies; refer to

Subse
tion C.3.5 for the a
tual de�nition of the operator.

Example 3.4.4

The following transformation shows that the operator Relate is useful to add 
omputa-

tional behaviour modelling the (inherently 
ompositional) AST 
onstru
tion in a frontend

spe
i�
ation. We start from the skeleton (i.e. the underlying 
ontext-free grammar) of a

simple imperative language; refer to Figure 2.14. Note that the result of the below trans-

formation is equivalent to the proje
tion in Figure 2.16 whi
h models exa
tly the aspe
t

of AST 
onstru
tion 
ontained in the 
omplete frontend spe
i�
ation originally introdu
ed

in Figure 2.9.

Figure 2.16 � Relate Output

h hprogram ;PROi; hstatements ;STMi; hstatement ;STMi;

hexpression ;EXPi; hidenti�er ; IDi

i

&

ast

On Figure 2.14

}

3.4.3.4 Combining unused parameters

Similarly to the operator From The Left, whi
h inserts 
opy rules to identify de�ning

and applied o

urren
es of a 
ertain sort � from the left to the right, the operator Redu
e

is used to pair unused variables of a 
ertain sort � in a dyadi
 
omputation deriving a new

de�ning position of sort �. The purpose of these 
omputations is to redu
e any number > 1

of unused variables of sort � to 1. Consider the transformation Redu
e � By s applied

to the rule r. Let be v

1

; : : : ; v

n

all the unused variables of sort � in r (in the order of their

de�ning o

urren
e in r). The following 
omputations are inserted into r:

s(v

1

; v

2

)! v

n+1

; s(v

n+1

; v

3

)! v

n+2

; : : : ; s(v

n+n�2

; v

n

)! v

n+n�1

;



3.4. ELABORATE SCHEMATA 87

where the variables v

n+1

; : : : ; v

n+n�1

are fresh variables of sort �. Thus, v

n+n�1

will be the

only unused variable of sort � in the result of the transformation.

Example 3.4.5

Assume that all identi�ers used in the statement part should be a

umulated in order to

dete
t super
uous variables. Attributes with sets of identi�ers as asso
iated type (sort IDS

below) have to be synthesized for that purpose and for 
ompound synta
ti
al 
onstru
ts,

the a

umulation 
an be performed by taking the union of the sets of identi�ers (relational

symbol &

ids

union) a

umulated for the sub
onstru
ts.

Default For IDS By &

ids

empty

Æ From The Left IDS

Æ Redu
e IDS By &

ids

union

Æ Add hhOutput; statements ; IDSi; hOutput; statement ; IDSi; hOutput; expression ; IDSii

On

statements : statement ; statements : [
on
at℄

statements : : [skip℄

statement : expression ; statements ; statements : [if℄

...

;

statements ! (IDS

3

) : statement ! (IDS

1

);

statements ! (IDS

2

);

&

ids

union(IDS

1

; IDS

2

) ! (IDS

3

):

[
on
at℄

statements ! (IDS) : &

ids

empty ! (IDS): [skip℄

statement ! (IDS

5

) : expression ! (IDS

1

);

statements ! (IDS

2

);

statements ! (IDS

3

);

&

ids

union(IDS

1

; IDS

2

) ! (IDS

4

);

&

ids

union(IDS

4

; IDS

3

) ! (IDS

5

):

[if℄

...

}

3.4.3.5 Interpolating 
omputational elements

There are several forms of inserting 
omputational elements into rules in order to adapt

parameters of 
ertain sorts or 
ertain parameter positions. We use the term interpolation

for that purpose to point out that premises are not only inserted but the data 
ow of the

given rule is adapted as well.

There are several possibilities for interpolation. The operator Pre
ompute, for exam-

ple, models the insertion of pre
omputations for input positions of premises. Consider a

premise of the following form:

s (: : : ; p; : : :)! (: : :);



88 CHAPTER 3. THE OPERATOR SUITE

� hsym, sorti : Asso
iation . � by : Symbol .

Repla
e

lhsIdentity

( rhsForSymbol

On sym

On � e : Premise .

% a

umulate pre
omputations and modi�ed input parameters

Let hpre
omputations, psIi =

Fold Left

� hes, psi : Premise* � Parameter*. � p : Parameter .

Sort Of p = sort !

Let fresh = New Variable Of Sort sort In

hes ++ hPremise From by hpi ! hfreshii, ps ++ hfreshii,

hes, ps ++ hpii

Neutral hh i, h ii List Parameters Input Of e

In

% 
onstru
t result of RHS substitution

hpre
omputations ++ hPremise From sym psI ! Parameters Output Of ei,

h i

i

).

Figure 3.24: Pre
ompute By : Asso
iation� Symbol! Trafo

where p is of sort �. To insert a unary pre
omputation with the symbol by intended to

adapt p, means to substitute the above premise by the following two premises

by (p)! (v); s (: : : ; v; : : :)! (: : :);

where v is a fresh variable of sort �. The 
orresponding transformation is for
ed by the

following appli
ation of the operator Pre
ompute; refer to Figure 3.24 for the formal

de�nition:

Pre
ompute hs; �i By by:

Su
h an adaptation is useful whenever the parameter p 
annot dire
tly be used by

s. The inserted 
omputation is expe
ted to adapt the parameter a

ordingly. Another

approa
h would be to adjust the de�nition of s|provided it is a

essible|by an operator

dual to Pre
ompute.

Example 3.4.6

In our running example there are only simple variable de
larations so far; refer to the

frontend spe
i�
ation in Figure 2.9. If we want to 
ope with 
onstants, pro
edures, type

de�nitions et
., the symbol table a

ess be
omes slightly more involved. We 
annot simply

asso
iate identi�ers with types any longer. We need more information 
lassifying the a
tual

symbol table entry. That is a typi
al situation, where inje
tions and proje
tions for a sum

domain 
oming into being need to be inserted. Refer to Figure 3.25 for the new variants



3.4. ELABORATE SCHEMATA 89

of rules dealing with symbol table entries. The following transformation 
an be applied

to derive the new variant for [de
℄ Figure 3.25 from the original frontend spe
i�
ation in

Figure 2.9.

Rename Positions fhOutput;&

stati


var2entry ;Ti; hInput;&

stati


add ;Tig To ENTRY

Æ Pre
ompute hInput;&

stati


add ;Ti By &

stati


var2entry

The appli
ation of the operator Pre
ompute inserts a 
omputation

&

stati


var2entry(T)! (T

0

);

whereas the new sort ENTRY is established by renaming some parameter positions subse-

quently. The new variant of the rule [var℄ 
an be derived in a dual manner. }

de
laration(ST)! (ST

0

) :
identi�er ! (ID);

type ! (T);

&

stati


var2entry(T)! (ENTRY) ;

&

stati


add (ST; ID;ENTRY)! (ST

0

):

[de
℄

expression(ST)! (T;EXP) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (ENTRY);

&

stati


entry2var (ENTRY)! (T) ;

&

ast

var (ID)! EXP:

[var℄

Figure 3.25: Symbol table a

ess 
oping with more than one kind of entries

The operator Pre
ompute obeys some 
omfortable properties 
on
luded in Proposi-

tion 3.4.1. They 
an be easily shown based on the de�nition of Pre
ompute viaRepla
e.

Proposition 3.4.1

8s 2 Name; by 2 Operation; � 2 Sort : Pre
ompute hs; �i By by is:

� WD-preserving,

� type-monoton in
reasing (in
reasing be
ause by is possibly added),

� skeleton-preserving,

� 
ompatible

by

-total for 
ompatible

by

� Rules su
h that

8rs 2 
ompatible

by

: Sigma Of rs t (by : � ! �) is de�ned.

}

Similarly to the insertion of pre
omputations for premises, post
omputations 
an be

supposed. The insertion of 
omputations for 
on
lusions makes sense as well. The 
orre-

sponding details are omitted.

We also want to 
omment on the relation of the operator Pre
ompute to semanti
s

preservation. The operator is not extending (refer to De�nition 2.6.9). Thus, our simple



90 CHAPTER 3. THE OPERATOR SUITE

synta
ti
al 
riterion for dis
iplined transformations is not appli
able. However, the opera-

tor is semanti
s-preserving by a spe
i�
 but simple argument: If we substitute the premises

inserted by Pre
ompute by identity, we obtain the original rules. Thus, if the inserted

premises behave like an identity for all previous appli
ations, semanti
s preservation holds.

Finally, we want to 
omment on the orthogonality of the operator suite from a spe
i�


point of view. The usability of the operator Hiding for the in
remental 
onstru
tion of

premises is dis
ussed in the following example.

Example 3.4.7

Let us assume, we want to insert a pre
omputation s(p; q) ! (p

0

) for a 
ertain position

pos. q should be regarded as an auxiliary parameter. The 
orresponding transformation


onsists of the following steps:

1. The basi
 pre
omputation s(p)! (p

0

) is inserted with the operator Pre
ompute.

2. The parameter position for q is added using the operator Add.

3. The auxiliary parameter has to be de�ned, e.g. with the operator De�ne.

A problem arises in step (1.), if there are already uses of s. Su
h existing uses are proba-

bly binary 
omputations in 
ontrast to the inserted unary 
omputation. The intermediate

result would not be de�ned be
ause well-typedness would not hold.

We 
ould try to invent a kind of pre
omputation operator, whi
h simultaneously adds

auxiliary positions to the pre
omputation. However, there are many other possible s
e-

narios of stepwise 
onstru
tion of premises. Thus, it is impra
ti
al to support all su
h

s
enarios by spe
ial operators of the operator suite. We prefer to be able to unbundle

roles. The operator Hiding provides our our generi
 solution for the problem of the in-


remental 
onstru
tion of premises. In the above example we simply have to hide s during

the performan
e of the three steps. }

3.4.3.6 Terms versus 
omputational elements

In Subse
tion 2.4.1 we have shown how terms in the sense of a form of 
ompound param-

eters 
an be understood as a rather modest extension of the general framework, where

we 
onsider variables as the only form of parameters. Appli
ations of term 
onstru
tors


an be turned into premises and vi
e versa. The advantage of su
h a relationship is that

operations whi
h are appli
able to premises are thereby immediately useful for terms, too.

The operators Constru
tion, De
onstru
tion : Pre�x ! Trafo turn 
omputa-

tional elements into terms. More pre
isely, the operator Constru
tion (resp. De
on-

stru
tion) transforms the given rules by interpreting all 
omputational elements with a

given pre�x as term 
onstru
tors (resp. de
onstru
tors). The operators Constru
tion

�1

,

De
onstru
tion

�1

: P(Sort) � Pre�x ! Trafo work in the opposite dire
tion, i.e.

terms are turned into 
omputational elements. The operator Constru
tion

�1

(resp.

De
onstru
tion

�1

) repla
es terms on applied (resp. de�ning) positions of the given sorts

by auxiliary variables and inserts 
omputational elements with the same shape using the

term 
onstru
tor together with a given pre�x as relational symbol.



3.4. ELABORATE SCHEMATA 91

program ! (prog(STM)) :
de
larations ;

statements ! (STM):

[prog℄

: : :

statements ! (
on
at(STM

1

; STM

2

)) :
statement ! (STM

1

);

statements ! (STM

2

):

[
on
at℄

statements ! (skip) :
: [skip℄

statement ! (assign(ID;EXP)) :
identi�er ! (ID);

expression(ST)! (EXP):

[assign℄

statement ! (if (EXP; STM

1

; STM

2

)) :
expression ! (EXP);

statements(STM

1

);

statements(STM

2

):

[if℄

: : :

expression ! (var (ID)) :
identi�er ! (ID): [var℄

: : :

Figure 3.26: Figure 2.16 with term 
onstru
tion made expli
it

Example 3.4.8

Consider the result from Example 3.4.4. The a
tual result was shown in Figure 2.16. There

are several relational formulae pre�xed by &

ast

. They model AST 
onstru
tion. Let us

\unfold" this interpretation by making the term 
onstru
tion expli
it:

Figure 3.26 � Constru
tion &

ast

On Figure 2.16

Refer to Figure 3.26 for the result. Obviously, the 
orresponding 
omputational ele-

ments are dis
arded, but terms are substituted for the variables on their output positions.

}

The operator Repla
e, i.e. the s
hema for element substitution, 
an naturally be in-

strumented for both dire
tions, that is, for turning terms into 
omputational elements and

vi
e versa. We only 
onsider the dire
tion of turning 
omputational elements into terms.

The other dire
tion 
an be implemented in a dual manner. Computational elements whi
h

are intended to model term 
onstru
tion must have the following form:

s(p

1

; : : : ; p

n

)! p

Making term 
onstru
tion expli
it means to dis
ard the element and to substitute the pa-

rameter p by the term s(p

1

; : : : ; p

n

). There is a further pre
ondition: The parameter on the

output position must be a variable. Otherwise the basi
 
on
ept of substitution (mapping

variables to parameters) is not appli
able. Figure 3.27 presents a fun
tion mapping a sym-

bol s to an element of RhsSubstitution spe
ifying how elements based on s are rewritten as

term 
onstru
tors. Now it is straigthforward to de�ne the operator Constru
tion from

above; similarly for the other operators.



92 CHAPTER 3. THE OPERATOR SUITE

� e : Premise .

Let in = Parameters Input Of e In

Let houti = Parameters Output Of e In

hh i, hhVariable Of out, Term From Constru
tor From Operation Of e in Of Sort Sort

Of outiii.

Figure 3.27: Repla
ing 
omputations by term 
onstru
tion

3.4.4 Composition

We have seen already some forms of 
omposition, namely 
on
atenation of rules ( ./

) and superimposition (Superimpose). In this Subse
tion, we present some elaborate


omposition s
hemata; refer to Figure 3.28 for the pro�les of the 
orresponding operators.

First, a more 
exible form of rule 
on
atenation is presented (Merge). Se
ond, a kind of


omposition fa
ilitating the repla
ement of rules by other variants with the same tag is

dis
ussed (Override). The 
orresponding operator 
ombines 
on
atenation and sele
tion.

Afterwards, the rather simple problem of inserting keywords into rules (Con
retize),

whi
h 
an be regarded as another kind of superimposition, is 
onsidered. Finally, an

operator fa
ilitating the derivation of 
hain rules in the sense of attribute grammars is

suggested (Chain). Lifting (Lift) is the subje
t of a separate se
tion; refer to Se
tion 3.5.

Merge And : Rules� Rules! Rules

Override By : Rules� Rules! Rules

Con
retize By : (Tag � String?)

?

! Trafo

Chain Rule ( : Tag � Symbol� Symbol! Trafo

Lift : ((Skeleton! Trafo)

?


 Rules)

?

! Rules

Figure 3.28: Elaborate s
hemata for 
omposition

3.4.4.1 A relaxed form of rule 
on
atenation

For a 
on
atenation rs

1

./ rs

2

to be de�ned means that for all symbols whi
h have rs

1

and

rs

2

in 
ommon, the 
orresponding pro�les are equal (i.e. the LUB exists). For uniquely

sorted symbols the requirement for equal pro�les 
ould be weakened by saying that there

must exist a unique permutation to make the pro�les equal. Thereby, rs

2


an be made


ompatible to rs

1

by permuting the parameterization of elements in rs

2

a

ordingly. The

a
tual 
ombination now 
an be performed with ./ . This additional servi
e is provided

by the operator Merge. Note that the property of unique sortedness is only required for

symbols with di�erent pro�les in the operands. Figure 3.29 presents the spe
i�
ation of

the operator Merge.

Example 3.4.9

The following two rules 
annot be 
ombined by ./ , be
ause the pro�les of expression in

the two rules are not equal.



3.4. ELABORATE SCHEMATA 93

expression(ST) ! (T;EXP) : identi�er ! (ID);

&

stati


lookup(ST; ID) ! (T);

&

ast

var(ID) ! EXP:

[var℄

statement(ST) ! (STM) : identi�er ! (ID);

&

stati


lookup(ST; ID) ! (T

LHS

);

expression(ST) ! (EXP;T

RHS

) ;

&

stati


assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP) ! STM:

[assign℄

However, sin
e there is a unique permutation to make the pro�les equal, 
on
atenation

based on the operator Merge is possible. The pro�le of expression is taken over from the

�rst rule. }

� rs1 : Rules . � rs2 : Rules .

rs1 ./

Let t2 = Sigma Of rs2 In

Fold Left

� rs0 : Rules . � p1 : Pro�le .

Let p2 = Pro�le Of Symbol Of p1 In t2 In

(p2 = ?) !

rs0,

(Sorts Input Of p1 = Sorts Input Of p2) And

(Sorts Output Of p1 = Sorts Output Of p2) !

rs0,

Permute p1 On rs0

Neutral rs2 List Sigma Of rs1.

Figure 3.29: Merge And : Rules� Rules! Rules

There is an important advantage of usingMerge instead of ./ . The parameterization

has often a di�erent order for two operands to be 
omposed be
ause the 
orresponding

aspe
ts of 
omputational behaviour have been possibly established in di�erent orders. The

operands 
annot be 
on
atenated, but they 
an be merged.

Example 3.4.10

Consider two sets of rules rs

1

and rs

2

and two parts of 
omputational behaviour a and b.

There are transformations t

a

and t

b

intended to add the 
omputational behaviour of a and

b, respe
tively. Now assume, that rs

1

only re
e
ts a, whereas rs

2

only re
e
ts b.

(t

b

On rs

1

) ./ (t

a

On rs

2

)

will not be de�ned in general, but

Merge (t

b

On rs

1

) And (t

a

On rs

2

):

}



94 CHAPTER 3. THE OPERATOR SUITE

3.4.4.2 Overriding rules

A 
ru
ial problem 
on
erning reuse is the possibility to override parts of a program. We

have mentioned the operators Unde�ned!, Unused! and Purge whi
h 
an be used in

order to override 
opies and 
omputations. Another kind of overriding, whi
h 
an be

regarded as a 
ombination of two sets of rules, is dis
ussed in the sequel.

It is assumed that some rules in a given set of rules rs

1

should be repla
ed by other

variants 
ontained in another set of rules rs

2

. A pair of mat
hing rules 
an be found by

di�erent strategies, e.g.:

1. equality of the tags,

2. equality of the skeletons,

3. existen
e of an uni�er for the input positions of the 
on
lusions, espe
ially a renaming.

We only 
onsider the �rst approa
h be
ause it is appli
able to the general framework

and not only to some suitable instan
es as the third approa
h. The se
ond approa
h is

also generally appli
able, but it has not been proved to be useful so far.

Override rs

1

By rs

2

repla
es rules in rs

1

with tags also o

urring in rs

2

by the


orresponding variants in rs

2

. Moreover, all the rules in rs

1

and rs

2

with tags whi
h do not

o

ur in both operands, are taken over to the result; refer to Figure 3.30. A more orthogonal

de�nition w.r.t. ./ would ensure that rs

2

does not 
ontain rules without a 
ounterpart in

rs

1

. However, this requirement is not 
omfortable be
ause then the 
on
atenating aspe
t

and the overriding aspe
t had always to be separated during 
omposition. There is another

possible option for overriding: It has to be de
ided if the skeleton of the rs

2

should respe
t

the skeleton of 
orresponding rules in rs

1

or not. In any 
ase, the relative order of the

rules in rs

1

should be preserved; refer to Subse
tion 3.2.3 for sorting rules. Note that the

existen
e of the LUB of the types of rs

1

and rs

2

is a suÆ
ient but not ne
essary 
ondition

for the existen
e of the result of overriding.

� rs1 : Rules . � rs2 : Rules .

Order By Tags In rs1 On Merge (Forget Tags (Tags In rs2) On rs1) And rs2.

Figure 3.30: Override By : Rules� Rules! Rules

As long as there is a proper transformational relationship between two stages of a

spe
i�
ation, overriding should not be applied be
ause it is a rather drasti
 operation.

3.4.4.3 Inserting keywords

We 
omment on a rather trivial, but nevertheless ne
essary 
omposition, that is to say

the insertion of keywords. This 
omposition 
an be regarded as a kind of superimposition.

Keywords are assumed as a kind of premises. The 
orresponding operator for insertion of

keywords has the following pro�le:

Con
retize By : (Tag� String?)

?

! Trafo



3.4. ELABORATE SCHEMATA 95

The parameter 
an be regarded as a sequen
e of patterns of rules. It is assumed that

a question mark is superimposed with a skeleton element, whereas a proper string denotes

a keyword to be inserted.

statement(ST)! (STM) :
\If"; expression(ST)! (T;EXP);

&

stati


isBool (T);

\Then"; statements(ST)! (STM

1

);

else(ST)! (STM

2

);

\End-If";

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

else(ST)! (STM) :
\Else"; statements(ST)! (STM): [else℄

else(ST)! (STM) :
&

ast

skip ! (STM): [noelse℄

Figure 3.31: An optional if-
onstru
t (
on
rete syntax)

Example 3.4.11

Let us transform the rules 
on
erning the if-statement with the optional else-path from

Figure 3.15 to re
e
t a rather 
on
rete syntax by inserting keywords. The result is shown

in Figure 3.31.

Figure 3.31 � Con
retize By h h[if ℄; h\If"; ?; \Then"; ?; ?; \End-If"ii;

h[else ℄; h\Else"; ?ii

i

On Figure 3.15

}

3.4.4.4 Chain rules

Context-free grammars (or skeletons) in pra
ti
e 
ontain 
hain rules to improve readabil-

ity. In AGs, 
hain rules are often ne
essary to distinguish entities of the same stru
ture.

Introdu
ing 
hain rules frequently is required during stru
tural adaptations. The operator

Chain Rule adds a 
hain rule to a given program.

Chain Rule t lhs ( rhs On rs has the following e�e
t. A new rule is added to rs,

where t is taken as the tag, i.e. rs must not 
ontain a rule tagged by t and the name lhs is

used to build the 
on
lusion, whereas the name rhs is used to build the only premise. The


on
lusion and the premise are parameterized with the same fresh variables based on the

pro�les of lhs and rhs in rs . At least one of the symbols must have a pro�le in rs. If both

have a pro�le, the pro�les must be equal.

Example 3.4.12

Assume that a stru
tural adaptation shall be applied to the frontend spe
i�
ation Figure 2.9

in order to distinguish basi
 expressions and 
ompound expressions, be
ause we want to



96 CHAPTER 3. THE OPERATOR SUITE

deal with priorities by layers of expressions as 
ommon in top-down parsing. Then a 
hain

rule modelling \Every expression en
losed in bra
kets is a basi
 expression as well." is

useful:

basi
 expression(ST) ! (T;EXP) : \(\;

expression(ST) ! (T;EXP);

\)\:

[bra
kets℄

We 
an establish the above 
hain rule by the following transformation:

Con
retize By hh[bra
kets℄; h\(\; ?; \)

00

iii

Æ Chain Rule [bra
kets℄ basi
 expression ( expression

Note that the above adaptation 
an be performed for any pro�le of expression. In


ontrast, if the above rule was spe
i�ed dire
tly, a 
ertain pro�le would be assumed. }

3.5 Composition by lifting

Lifting is a kind of 
omposition of program fragments (more pre
isely rules) and program

transformations modelling 
omputational behaviour. There 
an be several \pa
kets" of

rules to be lifted. Ea
h of them 
overs 
ertain 
omputational aspe
ts, where the remaining

aspe
ts are expe
ted to be established by the 
orresponding transformations. Con
atena-

tion, superimposition and overriding are involved in the 
omplete pro
ess of lifting as more

basi
 s
hemata of 
omposition.

In Subse
tion 3.5.1 a detailed but informal and abstra
t view on lifting is outlined,

before a 
ertain variant of lifting is formalized as the operator Lift in Subse
tion 3.5.2.

The whole se
tion is partially based on our previous work presented in [L�am97, LR97℄. As

there are several options for instantiating the notion of lifting and there are some ideas

how to go beyond the variant in
orporated into the operator suite, we 
lose the se
tion

with a dis
ussion in Subse
tion 3.5.3.

3.5.1 Notions

We need a number of basi
 notions whi
h are suitable to derive �nally the notion of lifting.

Complete program In program 
omposition (or in general in program development) we

are interested in 
omplete programs, that is a program is required to solve a 
ertain

task or to perform 
ertain 
omputations. A

ording to our examples and the used

formalisms, 
omplete programs are type 
he
kers, program simpli�ers, interpreters,

et
.

Computational aspe
t Programs are assumed to be semanti
ally stru
tured a

ording

to 
omputational aspe
ts. To manage the 
omplexity of a program, it is 
ru
ial to

identify these aspe
ts.



3.5. COMPOSITION BY LIFTING 97

Example 3.5.1

For the frontend spe
i�
ation in Figure 2.9 we 
an think, for example, of the following

atomar aspe
ts:

1. Terminal attribution for identi�ers

2. Representation of type expressions

3. A

umulation of the symbol table entries in the de
laration part

4. Initialization of the symbol table

5. Propagation of the symbol table in the statements part

6. Representation of operator symbols

7. Type synthesis for expressions

8. Context 
onditions for statements

9. Compositional 
omputations for AST 
onstru
tion

}

The idea is to represent 
omputational aspe
ts by program transformations what

will be 
lari�ed below when the notion transformer is introdu
ed. Note that in

semanti
s, parti
ularly in (modular) denotational semanti
s, a 
omputational aspe
t

is often referred to as a semanti
 aspe
t.

Level of the 
omputational model Considering all possible sets of 
omputational as-

pe
ts we obtain a spa
e of levels, a latti
e-like stru
ture. Among these 
ompositions

there are probably some whi
h are 
on
eptionally parti
ular important be
ause they


orrespond to subproblems of the 
omplete program. The spa
e of levels 
orresponds

to the �rst dimension of a 
omplete program in our approa
h.

Example 3.5.2

For the frontend with the aspe
ts given in Example 3.5.1, the following meaningful

levels 
an be identi�ed:

� The stati
 semanti
s 
orresponds to the level 
omposed from the aspe
ts (1.), : : :,

(8.). Note that (7.) and (8.) 
an be regarded as the primary aspe
ts, whereas

the remaining aspe
ts are needed to spe
ify type 
he
king of expressions and


ontext 
onditions of statements for some forms.

� The a
tual AST 
onstru
tion is lo
ated at the level 
onsisting of the 
ompu-

tational aspe
ts (1.), (6.) and (9.). Note that the aspe
ts (1.) and (6.) are

se
ondary in the sense that they supply some parameter positions 
ontributing

to the ASTs. The a
tual 
ompositional AST 
onstru
tion is modelled by (9.).

}

Note that in semanti
s, parti
ularly in (modular) denotational semanti
s, a level is

often referred to as a level (layer) of the semanti
 model. We use the term 
omputa-

tional model to denote the 
omputational level of the 
omplete program.



98 CHAPTER 3. THE OPERATOR SUITE

Skeleton Re
all that the spa
e of 
omputational levels 
orresponds to the �rst (a more

semanti
al) dimension for 
omplete programs. The se
ond (a more stru
tural) di-

mension is provided by the power set of skeleton rules of the 
omplete program.

Remember that a skeleton is simply a set of non-parameterized rules; refer to Fig-

ure 2.14 for the skeleton of our running example. One 
an think of a 
ontext-free

grammar, a signature, or a data type des
ription as well. The 
onne
tion between

skeletons and 
omputational aspe
ts / levels is the assumption, that the 
omplete

program is based on a 
ertain skeleton whi
h is 
onstant for intermediate stages of


omposing and synthesizing the 
omputational behaviour of the 
omplete program.

Rules at levels One 
an speak of rules at 
ertain levels a

ording to the 
omputational

aspe
ts 
overed by them as manifested by the 
omputational behaviour of the rules.

Note that skeleton rules are at the empty level of 
omputational aspe
ts, whereas

the 
omplete program is at the level of the 
omputational model.

de
laration(ST

0

)! (ST

1

) :
identi�er ! (ID);

type ! (T);

&

stati


add (ST

0

; ID;T)! (ST

1

):

[de
℄

statement(ST) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

);

&

stati


assignable(T

LHS

;T

RHS

):

[assign℄

statement :
expression ! (T);

&

stati


isBool (T);

statements;

statements:

[if℄

expression(ST)! (T) :
identi�er ! (ID);

&

stati


lookup(ST; ID)! (T):

[var℄

Figure 3.32: Some rules at 
ertain levels of the 
omputational model

Example 3.5.3

Consider, for example, the rules in Figure 3.32. We explain the level of the rule

[if℄ with regard to the aspe
ts in Example 3.5.1. Aspe
t (8.), i.e. 
ontext 
onditions

of statements, has to be instantiated for if -statements as follows: The expression

serving as a 
ondition of the if -statement must be of the Boolean type. Therefore,

[if℄ is at the level 
omposed from (8.) and (7.) be
ause we need the synthesized

attribute for the type of an expression in order to spe
ify the 
ontext 
ondition. }

Irrelevan
e and 
ontribution The advantage of using rules at 
ertain levels is that we


an go along our two dimensions addressing parts of the 
omplete problem with

the fo
us on 
ertain skeleton rules. Usually we 
an abstra
t from details. The


orresponding aspe
ts are 
alled irrelevant (w.r.t. the part of the 
omplete problem

and some skeleton rules).



3.5. COMPOSITION BY LIFTING 99

Example 3.5.4

Aspe
ts (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the 
ontext 
ondition

of an if -statement. Note that there are statements whose 
ontext 
onditions possibly

require other aspe
ts. To spe
ify the usual 
ontext 
ondition for assignment, for

example, the aspe
ts (1.) and (5.) are needed as well. }

An aspe
t is said to 
ontribute to the 
omputational behaviour of a 
ertain skeleton

rule, if the 
orresponding rule of the 
omplete program has some 
omputational

behaviour whi
h 
an be asso
iated with the aspe
t. Note that irrelevan
e w.r.t. the


omplete 
omputational model 
an be regarded as the opposite of 
ontribution.

Example 3.5.5

Although aspe
ts (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the 
ontext


ondition of an if -statement, some of these aspe
ts 
ontribute to the 
omputational

behaviour of [if℄, namely (5.) and (9.) be
ause the rule 
ontributes to the propagation

of the symbol table and AST 
onstru
tion needs also to be performed; refer to the

rule [if℄ in Figure 2.9. }

Superimposition and 
ontra
tion Given two rules based on the same skeleton rule

whi
h are intended to des
ribe di�erent parts of the 
omputational behaviour for the

skeleton rule, they 
an be 
omposed by superimposition in the sense of the 
orre-

sponding operator Superimpose; refer to x3.3.3.1. A 
ontra
tion of the parameteri-

zation 
an be ne
essary, if the rules have some assumption about the parameterization

in 
ommon; refer to the operator Contra
t in Subse
tion 3.3.1.

Completeness and 
onsisten
y Let us 
onsider the 
ompleteness and 
onsisten
y of a


olle
tion C of sets of rules at 
ertain levels with regard to some skeleton and some


omputational model in the following way: For ea
h skeleton rule, the 
orresponding

rules in C 
over exa
tly all aspe
ts 
ontributing to the 
omputational model for this

skeleton rule. Note that this 
hara
terization does not take program transformations

into 
onsideration yet.

Transformer relating levels Rules at 
ertain levels are one possible way to represent


omputational behaviour. We suggest program transformations adding parameter-

ization, 
omputational elements and adapting 
omputational behaviour as another

form. A transformer is a program transformation t intended to model an aspe
t

a. Given a rule r at a 
ertain level (i.e. a skeleton rule in the trivial 
ase) we 
an

add the aspe
t a to r by applying t on r. For some skeleton rules, t will not be

required be
ause there is possibly a 
orresponding rule at a 
ertain level 
overing a.

Transformers should be skeleton-preserving and semanti
s-preserving. Completeness


an be relaxed by saying for ea
h skeleton rule a 
ontributing aspe
t must be either


overed by a rule in C or there must be a suitable transformer. Note also that a

transformer sometimes needs to be restri
ted as far as it 
on
erns the level of rules

whi
h the transformer is appli
able to.



100 CHAPTER 3. THE OPERATOR SUITE

Example 3.5.6

Some aspe
ts from Example 3.5.1 
an be modelled by transformers as follows:

� (3.): A

umulate ST From fprogramg To fde
larationg

� (4.): Default For ST By &

stati


init

� (5.): Inherit ST From fprogramg To fexpressiong

� (9.): Relate Output hhprogram , PROi, hstatements , STMi, hstatement , STMi,

hexpression , EXPi, hidenti�er , IDi, : : :i &

ast

Note (4.) should not be applied to a rule at a level whi
h does not 
ontain (3.), where

(3.) is an aspe
t 
ontributing to the rule. }

Lifting is the pro
ess of deriving a 
omplete program from:

1. a skeleton,

2. a 
omputational model,

3. a 
olle
tion of sets of rules at 
ertain levels,

4. a set of transformers.

Possibly, the skeleton and the 
omputational model 
an be regarded as impli
itly

des
ribed by the other two ingredients.

Example 3.5.7

The frontend spe
i�
ation in Figure 2.9 is obtained by lifting the rules at 
ertain

levels from Figure 3.32 using the transformers in Example 3.5.6. Note that we need

less rules at levels than �nal GSF rules. Note also that the rules at the levels are not

so 
omplex, sin
e they abstra
t from irrelevant aspe
ts. }

This abstra
t 
hara
terization of lifting 
an be put in 
on
rete form in di�erent ways

in
luding the possibility to enri
h the pro
ess by features helpful for program 
omposition

or adaptation.

3.5.2 A 
on
rete form

Now we want to present a 
on
rete form of lifting whi
h proved to be useful in our work


on
erning the 
omposition of language pro
essors from reusable fragments [LRBS℄. The

operator suite supports that form by the operator Lift; refer to Figure 3.33 for the de�ni-

tion.

The input of the operator Lift is a sequen
e hp

1

; : : : ; p

n

i of so-
alled parts, whereas the

output is a set of rules. Ea
h part has the following stru
ture:

(Skeleton! Trafo)

?

| {z }

transformers

to be applied to the rules


 Rules

| {z }

rules

at a level



3.5. COMPOSITION BY LIFTING 101

� parts : ((Skeleton ! Trafo)* � Rules)* .

% 
ompute skeleton and override

Let hsk, overriddeni =

Fold Right

� hts, rsi : (Skeleton ! Trafo)* � Rules .

� hskSofar, partsSofari : Skeleton � ((Skeleton ! Trafo)* � Rules)* .

Let tags = Map � ht, l, ri : Shape . t List skSofar In

Let rest = Forget Tags tags On rs In

h(Skeleton Of rest) ./ skSofar, hhts, restii ++ partsSofari

Neutral hh i, h ii List parts

In

% iterate the overridden parts

Fold Left

� sofar : Rules . � hts, rsi : (Skeleton ! Trafo)* � Rules .

Order By Tags In sofar On

Merge sofar

And

% apply transformers to rules of this part

Fold Left

� rsSofar : Rules . � t : Skeleton ! Trafo .

t On sk On rsSofar

Neutral rs List ts

Neutral h i List overridden.

Figure 3.33: Lift : ((Skeleton! Trafo)

?


 Rules)

?

! Rules

The se
ond proje
tion 
an be regarded as a set of rules at a 
ertain level, whereas

the �rst proje
tion enumerates the transformers, ea
h of the type Skeleton ! Trafo to be

applied to the rules in order to establish the 
omplete 
omputational model for these rules.

The type of transformers re
e
ts that a transformer is assumed to observe the skeleton

of the 
omplete program, what is important, for example, for any kind of propagation.

Besides the skeleton parameter, a transformer is simply a fun
tion on Rules.

The a
tual lifting is performed with regard to the skeleton of the rules of all parts. The


omputational model is impli
itly de�ned by the parts. Note that there 
an be aspe
ts

without a 
orresponding transformer if the rules of all parts are at levels already 
ontaining

this aspe
t. This 
ase is even very 
ommon be
ause there are often aspe
ts whi
h are so


entral that all fragments 
over these aspe
ts, e.g. type synthesis for expressions in a

frontend de�nition or evaluation of expressions in an interpreter de�nition.

Besides the formal de�nition of the operator Lift in Figure 3.33, an informal explanation

is provided here as well. Consider an appli
ation of Lift of the following form:

Lift hp

1

; : : : ; p

n

i:

Ea
h part p

i


onsists of transformers ht

i;1

; : : : ; t

i;m

i

i and of some rules rs

i

. From all the rs

i

a skeleton 
an be obtained. The basi
 strategy is the 
on
atenation of the skeletons of the



102 CHAPTER 3. THE OPERATOR SUITE

parts. The operator Lift follows a more general approa
h in the sense that overriding is

integrated in lifting, i.e. a set of rules rs

i


an override rules of any rs

j

with j < i based on

tags as usual. Thus, the skeleton is a

umulated from ba
kwards (Fold Right : : :) and

only those rules of the skeleton of rs

i

are in
orporated whi
h have a tag not o

urring in

the skeleton a

umulated so far. Simultaneously, the parts are minimized to fade out of

those rules whi
h are to be overridden. Now the 
omposition of the 
omplete programs is

performed as an iteration on minimized parts, where the rules of the a
tual part are lifted

by the asso
iated transformers observing the a

umulated skeleton.

Example 3.5.8

We explain the lifting pro
ess for the frontend spe
i�
ation in Figure 2.9. We use (3.), (4.),

(5.) and (9.) to denote the transformers from Example 3.5.6 asso
iated with 
omputational

aspe
ts from Example 3.5.1.

Lift h

h h(3:); (4:); (5:); (9:)i; Figure 2.14 i;

h hi; Figure 3.32:[de
℄ i;

h h(9:)i; Figure 3.32:[assign℄ i;

h h(5:); (9:)i; Figure 3.32:[if℄ i;

h h(9:)i; Figure 3.32:[var℄ i; : : :

i

Note that Figure 2.14 refers to the 
omplete skeleton of the frontend spe
i�
ation. It would

be slightly more pre
ise to fade out rules with tags o

urring in subsequent parts, but that

is not ne
essary be
ause the operator Lift performs su
h a minimization anyway. }

As pointed out above, transformers need to be skeleton-preserving. If stru
tural adap-

tations have to be performed on the operands of lifting, they must already be manifest in

rules in the parts. Thus, lifting will be based on the modi�ed stru
ture.

3.5.3 Dis
ussion

The operator Lift does not 
onsider parts with overlapping skeleton rules. For more 
om-

plex 
omputational models, the approa
h outlined in the abstra
t view might be preferred,

i.e. there 
an be any number of rules with the same underlying skeleton. These rules, whi
h

usually are 
on
erned with di�erent 
omputational aspe
ts, must �rst be 
ombined by su-

perimposition. Contra
tion may be ne
essary to identify parameterization due to 
ommon

assumptions about the 
omputational aspe
ts. Afterwards, the remaining aspe
ts 
an be

added by transformers. In 
ontrast to the operator Lift, ea
h set of rules has to be asso
i-

ated with the aspe
ts rather 
overed by the rules in the sense of a stati
 type information

than to be applied to the rules. Moreover overriding has to be realized expli
itly, e.g. by

applying the operator Forget to the rules before giving them as arguments to the lifting

pro
ess.

Let us formalize the approa
h of having several rules at levels per skeleton rule. The

input has the following stru
ture:



3.5. COMPOSITION BY LIFTING 103

transformers

z }| {

(Skeleton! Trafo)

?




parts

z }| {

( P(N )

| {z }

to index

transformers


 Rules

| {z }

rules

at a level

)

?

Aspe
ts with an asso
iated transformer are enumerated by the �rst proje
tion. The

se
ond proje
tion somehow 
orresponds to the parts from above, but here rules are asso-


iated with indi
es indexing the transformers from �rst proje
tion saying whi
h of those

aspe
ts are already 
overed by the rules of the parts. That is in 
ontrast to the form of the

parts assumed for the operator Lift, where ea
h part enumerates the aspe
ts to be applied.

Example 3.5.9

We asso
iate the rules in Figure 3.32 with the 
orresponding aspe
ts:

[de
℄ : (1.), (2.), (3.)

[assign℄ : (1.), (5.), (7.), (8.)

[if℄ : (7.), (8.)

[var℄ : (1.), (5.), (7.)

}

Let hht

1

; : : : ; t

n

i; hp

1

; : : : ; p

m

ii be an input for the lifting pro
ess with the skeleton sk ,

ea
h p

i

has the following stru
ture: hfn

i;1

; : : : ; n

i;k

i

g; rs

i

i. To 
onsider an input as valid

means the following:

1. 1 � n

i;j

� n for i = 1; : : : ; m, j = 1; : : : ; k

i

2. 6 9i; j : 1 � i; j � m; i 6= j ^

Tags In rs

i

\Tags In rs

j

6= ; ^ fn

i;1

; : : : ; n

i;k

i

g \ fn

j;1

; : : : ; n

j;k

j

g 6= ;

The �rst 
ondition ensures that indi
es in the parts are valid indi
es in the list of

aspe
ts (transformers). Note that due to the stru
ture of the parts, no aspe
t is referred to

more than on
e in a part anyway. The se
ond 
ondition 
on
erns the problem when rules

of parts with an overlapping skeleton have aspe
ts in 
ommon. Su
h an ambiguity must

possibly be regarded as in
onsisten
y be
ause there are possibly multiple (
ontradi
tory)

de�nitions for some parameter positions. However, there is a solution to this problem

explained below.

Lifting in the more general form starts from a skeleton sk and it is performed for ea
h

single skeleton rule as follows:

1. For every single skeleton rule we �rst lookup all 
orresponding rules in the parts.

These rules are denoted by r

1

, : : :, r

q

.

2. r

1

, : : :, r

q

are superimposed:

Superimpose r

1

And (Superimpose r

2

And (� � � And r

q

) � � �)



104 CHAPTER 3. THE OPERATOR SUITE

3. The result of the superimposition is transformed by:

(t

d

w

On sk) Æ � � � Æ (t

d

1

On sk);

where the d

1

, : : :, d

w

are the indi
es of aspe
ts not 
overed by r

1

, : : :, r

q

.

4. The separately lifted rules are merged.

There is another option in steps (2.) and (3.): The 
omposed transformation mentioned

in (3.) 
ould also be applied to the 
orresponding skeleton rule and the result will be

superimposed with the superimposition from the previous step. However, this option

ignores that transformers are likely to adapt rules at 
ertain levels, i.e. that some aspe
ts

must be present before a 
ertain transformer 
an be applied. Consequently we should even

assume an order of applying transformers in step (3.). For simpli
ity, the following strategy

is assumed:

� Transformers are applied as late as possible, i.e. �rst the rules are superimposed and

the transformers are applied to that intermediate result. This issue is re
e
ted in

(2.) and (3.)

� The order of the transformers in the �rst proje
tion of the input is regarded as a

referen
e and step (3.) 
an easily be adjusted to preserve that order by adding the

requirement d

1

< d

2

< : : : < d

w

.

The se
ond 
ondition for an input to be valid 
an be relaxed. Suppose two parts

with an overlapping skeleton have aspe
ts in 
ommon. A rule from the interse
tion of the

skeletons 
an still be superimposed as des
ribed in the se
ond step of lifting above, but

the parameterization a

ording to the 
ommon aspe
ts must be uni�ed. That is easy to

perform by 
ontra
tion in the superimposed intermediate result. There are a number of

problems with this approa
h.

� When de�ning positions are 
ontra
ted, variables with multiple de�ning o

urren
es

are obtained. That is not always a

eptable, although it makes sense for some target

languages.

� It is not obvious how to determine the parameter positions to be 
ontra
ted. In

general, de
larations about the parameterization asso
iated with aspe
ts would be

needed. It also must be assumed that every part enumerates exhaustively the aspe
ts


overed by the rules. On the other hand there is a pragmati
 strategy if unique

sortedness for skeleton elements is assumed. After ea
h superimposition a 
ontra
tion


an be performed so that unique sortedness is re
overed.

The dis
ussion of lifting is 
on
luded by pointing out some remaining problems making


lear that this topi
 is worth to be 
onsidered further:

Well-de�nedness A rule is regarded as well-de�ned if all applied o

urren
es 
an be

asso
iated with at least one or exa
tly one de�ning o

urren
e. It is not 
lear if

well-de�nedness of the rules in the parts should be required? If the adaptation and

the initialization of a data stru
ture, for example, are regarded as separate aspe
ts,



3.5. COMPOSITION BY LIFTING 105

non-well-de�ned rules make sense be
ause the fragment dealing with adaptation 
an

rely on a separate initialization. Mostly, well-de�nedness is useful.

Type 
he
king It is easy to observe that lifting (espe
ially the operator Lift) as des
ribed

above is partial, even if the transformers are total. During superimposition and


on
atenation type 
on
i
ts 
an o

ur. It is not so obvious how to approa
h to a

kind of type 
he
king for the input of lifting. One approa
h is to enumerate all aspe
ts

exhaustively and to des
ribe the 
ontribution of ea
h aspe
t to the parameterization

(e.g. in terms of parameter positions) and to the 
omputational behaviour (e.g. in

terms of pro�les of relational symbols). It 
ould be 
he
ked then if rules from the

parts are well-typed. It would remain to prove that the transformers a
tually adhere

to the de
lared 
ontribution.

Rules versus transformers The operator Lift supports only one rule at some level per

skeleton rule. The remaining 
omputational behaviour must be added by transform-

ers. In prin
iple, this is always possible due to the expressive power of the 
al
ulus

for transformations. One extreme for the style of a transformer is that it adds 
om-

putational behaviour following a 
ompletely uniform s
hema. Another extreme is

that it modi�es only a 
ertain rule or it des
ribes a 
ase distin
tion on the rules,

where rules at levels are possibly more appropriate. At this point it is not 
lear how

to de
ompose 
omplex programs in terms of rules at levels and transformers.

Overriding The operator Lift in
orporates smoothly overriding of rules into the pro
ess

of lifting. It is not obvious how to perform su
h an amalgamation for other approa
hes

to lifting. Besides overriding rules, overriding 
omputational behaviour is possibly

useful, too.





Chapter 4

Related work

We want to understand how reuse is fa
ilitated in other spe
i�
ation frameworks and

parti
ular problem domains (e.g. formal semanti
s spe
i�
ation). For some of the manip-

ulations provided in other frameworks and domains we want to attempt a re
onstru
tion

based on our meta-programming-like point of view. The bene�t of su
h a re
onstru
tion

is that the underlying 
on
epts are made available for other instan
es of our framework.

For some approa
hes we are able to identify parti
ular weaknesses and limitations.

First, the s
ope of related work 
overed by this 
hapter is explained in Se
tion 4.1.

Se
ond, paradigm shifts in attribute grammars are 
ompared with our meta-programming

approa
h in Se
tion 4.2. Some of the paradigm shifts 
an be simulated in our framework.

Third, sophisti
ated approa
hes to reusability in semanti
s are dis
ussed in Se
tion 4.3.

The most promising attempts in semanti
s are not dire
tly appli
able to the target lan-

guages in our work. Nevertheless, we will try to identify the limitations of the 
orrespond-

ing attempts and to make some use of the 
orresponding 
on
epts in our 
ontext. Finally,

several approa
hes belonging to the �eld of formal program development are outlined in

Se
tion 4.4.

4.1 S
ope

When I started my resear
h presented in the thesis in early 1995, I was interested in 
om-

piler 
ompilers, parti
ularly based on attribute grammars and formal semanti
s, parti
u-

larly, denotational semanti
s. The very rough goal I had in mind was to provide support for

reuse based on operations on (attribute grammar and/or semanti
s) spe
i�
ations. Reuse

is too often based on \text editing". My operations should fa
ilitate a formal way of reuse.

Moreover, reuse should be exe
utable in 
ontrast to several other meta-level approa
hes,

e.g. re�nement. Consequently, I have dedi
ated two se
tions on improvements of the basi


attribute grammars paradigm (with the emphasis on any kind of modularity) (Se
tion 4.2)

and on extensibility in semanti
s (Se
tion 4.3).

Even at the beginning of my resear
h I was aware of modularity 
on
epts in pro-

gramming languages, in
luding de
larative programming languages. Modularity in the

107



108 CHAPTER 4. RELATED WORK


ommon sense essentially supports programming in the large by de
omposition and para-

metri
ity. This overall approa
h emphasizes design for reuse in advan
e. In prin
iple, I

agree to the suitability of that premise, but I wanted to look beyond the border of this

restri
tion to reuse. What kind of reusability 
an be a
hieved by adaptations based on a

transformational point of view?

As far as I 
an see, there are two major problems with modularity in the 
ommon sense:

� An insuÆ
ient de
omposition and parameterization makes reuse impossible. Thus,

the de
isions about the a
tual de
omposition and the parameters in
luding the as-

sumptions about the parameters are very 
riti
al. On the 
ontrary, transformations


an adapt, in prin
iple, \any" given program. In parti
ular, a transformation may

even install a parameterization in a given input program. Thus, the long term goal

of my study is to show that transformations may improve reusability.

� Another problem 
on
erns the overhead for establishing a suÆ
ient de
omposition

and parameterization and for realizing proper instantiations. I want to 
onsider

several powerful te
hniques, e.g. monads [Wad92℄ or obje
t-orientation in fun
tional

programming [SA97℄, as \
oding te
hniques". Again, transformations might be more

appropriate in some 
ases, sin
e the properties for their appli
ability and their e�e
t

are easier to understand.

Be
ause of these limitations, 
ommon approa
hes to modularity will be 
ommented on

in this 
hapter only to a limited extent. As my proje
t pro
eeded, I be
ame more familiar

with methods of formal program development, su
h as program transformation, program

synthesis, program re�nement, mainly in the 
ontext of logi
 programming. Se
tion 4.4

reports on related work in this area.

The s
ope of the related work 
hapter 
overs 
ompiler 
onstru
tion, extensibility in

semanti
s, program transformation and re�nement, operations on spe
i�
ations and some

more almost unrelated �elds. It was my intention to 
over su
h a wide spe
trum, although

my results 
ould possibly be stated for one or another parti
ular 
ommunity. With that


ommitment to su
h a wide spe
trum, some related work will not be 
ommented on in

depth, in
luding the following approa
hes:

� Meta-programming uses the meta-level to de�ne 
lasses of target programs. In higher-

order fun
tional programming 
ertain operators like map / foldl / foldr are used

in 
onjun
tion with polymorphism to des
ribe 
lasses of algorithms. Shapes and

polytypism [JC94, JJ96, JJ97, Jeu95℄ lead us even a step further in the degree of

abstra
tion. The idea of map, for example, 
an be applied to any algebrai
 type su
h

as trees and matri
es. Thereby, we obtain a generi
 map when applied to a data

stru
ture of a 
ertain shape returns a data stru
ture of the same shape.

� Representing a whole 
lass of 
omputations on a parti
ular data stru
ture by means of

suitable higher-order predi
ates has been suggested for example by L. Naish [Nai96℄.

Essentially, Naish argues for a higher order approa
h to programming in Prolog based

on similar te
hniques widely used in fun
tional programming. That approa
h depends



4.1. SCOPE 109

on impure features of Prolog. A similar but more abstra
t and formal approa
h to

higher-order predi
ates is taken by J.F. Nilsson and A. Hamfelt [HN95, HN96, NH95℄.

We should mention another paper [NS97℄ by Naish and Sterling, where they apply

higher-order logi
 programming in Prolog for a kind of higher-order re
onstru
tion

of stepwise enhan
ement whi
h is des
ribed in some detail in Subse
tion 4.4.2.

� The Demeter Resear
h Group (Karl J. Lieberherr et al.) has developed an extension

of obje
t-oriented programming, that is to say adaptive obje
t-oriented programming

[Lie95, PPSL96℄. The Demeter method proposes 
lass di
tionaries for de�ning the

stru
ture of obje
ts and propagation patterns for implementing the behaviour of the

obje
ts. Our approa
h is similar to that of Demeter in that transformations are

independent from the a
tual skeleton and how 
omputational behaviour (in
luding

propagation based on the notion of rea
hability) 
an be established in 
on
rete target

programs.

� Aspe
t-oriented programming [KLM

+

97℄ is a very re
ent programming te
hnique

whi
h 
laims to support the separation and 
omposition of aspe
ts (design de
isions

and others). Thereby, it 
an be avoided that \tangled" 
ode arises from the fa
t that


ertain design de
isions 
ross-
ut the system's basi
 fun
tionality. The te
hnique is

based on a very general view on pro
edural programming (in
luding obje
t-oriented

programming), where spe
ial language support is added for the development of aspe
t


ode. [KLM

+

97℄ introdu
es the 
entral notions 
omponent and aspe
t as follows:

With respe
t to a system and its implementation using a general pro
edure-based

language, a property that must be implemented is:

� a 
omponent if it 
an be 
leanly en
apsulated in a pro
edure, a method, an

obje
t, or an API; 
omponents tend to be units of the system's fun
tional de-


omposition,

� an aspe
t, if it 
annot be 
leanly en
apsulated in su
h a way; aspe
ts tend to

be properties that e�e
t the performan
e or semanti
s of the 
omponents in

systemi
 ways.

Although aspe
t-oriented programming so far has been formulated in the impera-

tive paradigm, a distin
tion between 
omponents and aspe
ts is similar in intent to

our notions of skeleton rules and 
omputational aspe
ts as proposed in Se
tion 3.5

on lifting. The a
tual 
hoi
e of an aspe
t language, i.e. the language used for the

des
ription of aspe
ts, depends on the nature of the aspe
ts. One example given

in [KLM

+

97℄ brings us very 
losely to meta-programming: An aspe
t dealing with

optimization is expe
ted to operate on the data 
ow graph of a 
omponent program.

Furthermore, the 
omponent programs and the aspe
t 
ode are 
ompiled into a 
om-

plete program based on a te
hnique 
alled weaving whi
h again|at a super�
ial

level|
orresponds to our lifting. The main di�eren
e between the two approa
hes

is, that we are 
on
erned with de
larative programs and that we have a very detailed

methodology for meta-programming and lifting instead of a rather abstra
t proposal



110 CHAPTER 4. RELATED WORK

for aspe
ts and weaving.

� There are various further language extensions whose expressive power should be 
om-

pared with our meta-programming approa
h, e.g. multi-stage programming suitable

for expressing staged 
omputations expli
itly [NN92, TS97℄, and mixins in obje
t-

oriented programming [DS96, Bra92, BL92℄.

4.2 Extension of the AG formalism

There are several surveys on (extensions of) the attribute grammar formalism, e.g. [Bau98,

Ada91, KW94, Boy96b, Paa95℄. We also want to refer to Parigot's 
omplete bibliography

on attribute grammars

1

and Attribute Grammar Page

2

. For reasons of e
onomy, we will


omment here only on some spe
i�
 paradigm shifts, namely:

� obje
t-orientation (Subse
tion 4.2.1),

� remote a

ess (Subse
tion 4.2.2),

� symbol 
omputations (Subse
tion 4.2.3),

� 
oupling (Subse
tion 4.2.4),

� patterns (Subse
tion 4.2.5),

� a
tual features of AG systems using FNC-2 as an example (Subse
tion 4.2.6).

We regard several other approa
hes as beyond our s
ope, in parti
ular the style of

obje
t-orientation in Koskimies' et al. system Tools [Kos91℄, the non-de
larative features of

Hedin's Door AGs [Hed91, Hed92℄, the \uni�
ation" of syntax and semanti
s in Swierstra's

and Vogt's Higher-Order AGs [SV91℄. For a survey on approa
hes with the emphasis on

modularity we re
ommend Baum's thesis [Bau98℄. Simpler forms of modularity are for

example provided by di�erent instan
es of hierar
hi
al/fun
tional de
omposition of AGs.

Watt's partitioned AGs [Wat75℄ and Ganzinger's signature morphisms [Gan83℄ 
an be

regarded as sophisti
ated approa
hes to modularity.

4.2.1 Obje
t-orientation

4.2.1.1 Motivation

There are di�erent approa
hes to in
orporate obje
t-oriented notions into attribute gram-

mars. [Kos91℄ provides a survey on this subje
t. Refer also to [Paa95℄. Besides the

pragmati
 aims to shorten the notation and to improve readability, there are essentially

the following motivations for su
h extensions:

1. A bene�t of obje
t orientation is that it supports reusing existing 
ode. Computa-

tional behaviour 
an be spe
i�ed somewhere in the 
lass hierar
hy. The behaviour

1

http://www-ro
q.inria.fr/os
ar/www/fn
2/AGabstra
t.html

2

http://www-ro
q.inria.fr/os
ar/www/fn
2/attribute-grammar-people.html



4.2. EXTENSION OF THE AG FORMALISM 111

is then inherited to des
endant 
lasses, where it 
an possibly be adapted. This mo-

tivation arises from the view in Smalltalk, for example.

2. Inheritan
e 
an also be used to stru
ture domain-spe
i�
 frameworks. Thereby,

appli
ation-oriented software is supported. This motivation arises from the view

in Simula, for example.

3. The AG formalism is an open formalism and not a 
omplete spe
i�
ation language.

It is 
ommon to look for spe
i�
ation language features in order to improve the

pragmati
 properties of AG spe
i�
ation.

4. Obje
t-oriented notions like state of an obje
t and message passing 
an be used to

extend the AG formalism with expli
it dynami
 
apabilities.

We will ignore the forth point 
ompletely in the following 
onsideration, be
ause the

kind of dynami
 
apabilities goes beyond our purely de
larative framework. There are other

approa
hes to the extension by dynami
 
apabilities, e.g. Dynami
 Attribute Grammars

[PRJD96a, PRJD96b℄, whi
h are more appropriate in our 
ontext.

The remainder of this subse
tion will deal with obje
t-orientation based on obje
t-

oriented 
ontext-free grammars. Note that Se
tion 4.2.3 reports on paradigm shifts in

Lido based on another kind of inheritan
e whi
h is almost independent from the underlying

CFG.

4.2.1.2 Obje
t-oriented 
ontext-free grammars

An obje
t-oriented view of attribute grammars 
an be based on an obje
t-oriented view of

the underlying 
on
ept, i.e. CFGs; refer to Figure 4.1. Thus, 
hain produ
tions A! B 
an

be regarded as the de�nition of a 
lass system (refer to Se
tion A.4 for te
hni
al details),

whereas a produ
tion A ! B

1

: : : B

n


an be regarded as stru
tural des
ription, i.e. an

obje
t of 
lass A has attributes of stati
 
lasses B

1

, : : :, B

n

. To be sensible from the

obje
t-oriented point of view, all alternatives for a given nonterminal A are either 
hain

produ
tions or there is only one produ
tion giving a stru
tural spe
i�
ation.

OO CFG


lass nonterminal

obje
t a (sub)word derived from a nonterminal

stru
tural spe
i�
ation of an obje
t produ
tion

super
lass/sub
lass relation 
hain produ
tions

Figure 4.1: Obje
t-oriented notions for CFGs

From a synta
ti
 point of view redu
ed CFGs are 
ommon. However, from the point of

view of obje
t-oriented AGs, it is useful to allow nonterminals n

i

whi
h are not rea
hable

from the axiom of the CFG. These n

i

model semanti
 base 
lasses. Behaviour 
an thus be

inherited to a nonterminal (
lass) n by a 
hain produ
tion n

i

! n. Consequently, the 
lass

system of an obje
t-oriented AG is mainly obtained by 
hain produ
tions of the underlying

syntax des
ription possibly extended by 
hain produ
tions with non-rea
hable symbols on



112 CHAPTER 4. RELATED WORK

the LHS 
orresponding to semanti
 
lasses. Note that CFGs with multiple inheritan
e


annot e�e
tively be used for obje
t-oriented AGs as explained in more detail below.

Refer to Se
tion A.5 for a formal de�nition of obje
t-oriented CFGs in
luding examples.

4.2.1.3 Attribute inheritan
e and default values

An ordinary AG asso
iates a set of synthesized and inherited attributes with ea
h sym-

bol. Ea
h synta
ti
 rule must be asso
iated with semanti
 rules de�ning the synthesized

attributes of the symbol on the LHS and the inherited attributes of the symbols on the

RHS. In order to avoid 
onfusion 
on
erning the meaning of the term inherited attribute,

we adhere to the Mj 6olner/Orm terminology to use the term an
estral attribute instead. In

the following inheritan
e is only used in the sense of obje
t-orientation.

Essentially, obje
t-orientation for AGs is an extension of the basi
 AG paradigm by

inheritan
e of attributes and semanti
 rules, where the underlying CFG must obey single

inheritan
e. Inheritan
e of attributes is not very e�e
tive, espe
ially if we take into 
onsid-

eration that the existen
e of the 
orresponding 
hain produ
tions in
luding the auxiliary

nonterminals (to have exa
tly one stru
tural spe
i�
ation per nonterminal) is almost a


onsequen
e of the required form of obje
t-oriented CFGs. Without any further exten-

sions (su
h as rule models dis
ussed below) inheritan
e of semanti
 rules does not give not

mu
h expressive power. The RHSs of semanti
 rules asso
iated with a nonterminal n to be

regarded as a super
lass 
an only depend on an
estral attributes of n itself. The following

example taken from [KLMM93℄ shall illustrate the 
on
ept of inheritan
e of semanti
 rules.

Example 4.2.1

There are sometimes proper defaults for synthesized attributes in the sense that only a

few sub
lasses have to de�ne a di�erent value, i.e. the inheritan
e of the default value is

useful. Consider, for example, the following extension of the 
lass Exp modelling any kind

of expressions. Che
king 
ontextual 
onstraints, we need to dete
t expressions whi
h are

proper forms for LHSs of assignments. Thus, a synthesized attribute hasLeftValue is suitable

for that purpose. For several forms of expressions, e.g. 
onstants, monadi
 and dyadi


arithmeti
 expression, the following default formalized in the notation of Mj 6olner/Orm is


orre
t:

addto Exp

f

syn hasLeftValue : Boolean;

hasLeftValue := false;

g

By the way, using addto 
onstru
t of Mj6 olner/Orm, attributes and 
orresponding

semanti
 rules 
an be added. Thereby, the semanti
s de
omposition of a spe
i�
ation

similar to phases in OLGA of FNC-2 [JP91, JP90, Par88, JPJ

+

90℄ is supported. However,

note that this feature should not be regarded as an obje
t-oriented feature be
ause the

extension is not 
oupled with inheritan
e. }



4.2. EXTENSION OF THE AG FORMALISM 113

Refer to Se
tion A.6 for some more samples of obje
t-oriented AGs.

4.2.1.4 Models of semanti
 rules

Without adding further 
on
epts like, for example, rule models, I 
laim that obje
t-

orientation in AGs does not improve modularity signi�
antly. A 
olle
tive equation [Hed92,

p. 82℄, [KLMM93, p. 472℄, or a rule model

for all sons(x) in 
lass

son(x):a

1

:= f(a

2

; : : : ; a

n

)

de�nes the value of an inherited attribute a

1

for all son nodes of a given 
lass. The 
on
ept

of 
olle
tive equations provides one possibility for de�ning general behaviour at suitable

levels of generalization with regard to the 
lass hierar
hy. A rule model is not dedi
ated to

a 
ertain synta
ti
al rule. This 
exibility is possible be
ause a rule model does not depend

on the exa
t number and the types of sons.

Example 4.2.2

Let us 
onsider a part of the stati
 semanti
s of a blo
k-stru
tured language. We are

a
tually 
on
erned with the symbol table propagation. The symbol table information has

to be spread pra
ti
ally throughout the whole AST in order to rea
h all identi�er referen
es.

In the basi
 paradigm of AGs, 
orresponding attributes have to be de
lared for all relevant

symbols and 
opy rules have to be inserted in order to 
ode the a
tual propagation. The

following spe
i�
ation (a variant adopted from [Kos91℄) uses a rule model as default for

the normal propagation.

<Node> ::= Abstra
t

<Root> : <Node> ::= Abstra
t

Lo
 rootST : SymbolTable;

stROOT := init;

for all sons(x) in Des
endant son(x):st := stROOT;

<Des
endant> : <Node> ::= Abstra
t

An
 st : SymbolTable;

for all sons(x) in Des
endant son(x):st := st;

<Program> : <Root> ::= f<mainBlo
k : BeginBlo
k>g

<BeginBlo
k> : <Des
endant> ::= f<de
lPart : De
lList> & <stmtPart : StmtList>g

Lo
 stLOCAL : SymbolTable;

stLOCAL := de
lPart:stASSEMBLED;

stmtPart:st := stLOCAL;

The 
lass Node models general (abstra
t) nodes in the whole AST. We assume that

grammar symbols either inherit from Root or Des
endant, both being sub
lasses of Node.

Program is the start symbol of a 
on
rete grammar. BeginBlo
k models nested blo
ks


onsisting of de
larations and statements. For that produ
tion, the propogation has to be

overridden. Note that the a
tual a

umulation of symbol table entries in the de
larations

part is not modelled yet by the above spe
i�
ation. }



114 CHAPTER 4. RELATED WORK

4.2.1.5 Dis
ussion

There are some problems with obje
t-oriented AGs (based on obje
t-oriented CFGs) be-

sides the need for adhering to a 
ertain style of CFGs:

InsuÆ
ient support for propagation Example 4.2.2 demonstrates how the propaga-

tion downwards in an AST 
an be spe
i�ed. The 
on
ept of rule models de�ning

an
estral attributes is 
ru
ial for that purpose. However, this 
on
ept is not suÆ
ient

to des
ribe the a

umulation of a data stru
ture, i.e. the symbol table in a de
lara-

tion part, for example. To de�ne su
h 
omputational behaviour in a 
ompa
t way,

we had to be able to de�ne how attributes are 
opied on the RHS (not only from the

LHS to the RHS), and how synthesized attributes of the LHS are 
omputed. Sin
e

rule models are not appli
able in this 
ase, we 
an only use 
on
rete semanti
 rules.

Consequently, the 
omputational behaviour 
annot be des
ribed in a way abstra
t-

ing from the underlying CFG. This short
oming is over
ome in our transformational

approa
h be
ause the propagation and 
omputation s
hemata provide more expres-

sive power than rule models; refer also to Se
tion D.3 for an example generalizing

Example 4.2.2. Note that 
ertain paradigm shifts of Lido provide a means for that

problem, too.

Missing 
on
epts for adaptation There is a notion of overriding semanti
 rules. More

in detail, semanti
 rules and rule models (in Mj6olner/Orm) 
an be overridden by

semanti
 rules, but we 
annot override given semanti
 rules by a rule model. This is

a minor te
hni
al point. There is another problem due to la
k of expressive power:

For several adaptations of the 
omputational behaviour we have in mind, there is

no way to express them, e.g. the insertion of pre-/post- 
omputations for 
ertain

semanti
 rules, the extension of a propagation.

Another serious la
k of adaptability 
on
erns stru
tural spe
i�
ations. They 
annot

be overridden. On
e a nonterminal has been spe
i�ed by a stru
tural des
ription, it is

subje
t to inheritan
e no longer. This anomaly is not mu
h improved by 
ase-
lasses

in Mj6olner/Orm, be
ause the inherited synta
ti
al stru
ture 
an be insuÆ
ient and

the appli
ability of the 
on
ept 
ru
ially relies on the proper introdu
tion of 
ase-


lasses during the initial design pro
ess.

Consequently, obje
t-oriented AGs fa
ilitate design of AGs, but adaptation is only

addressed to a lower extent.

Relationship to obje
t-oriented programming languages The outlined approa
h to

add obje
t-oriented 
on
epts to the AG formalism omits several notions typi
al for

obje
t-oriented programming languages. Attributes do not des
ribe a modi�able

state of an obje
t. There are extensions of that view, e.g. in the system Tools

[Kos91℄, but then the de
larative nature is not preserved. Thus, we 
onsider that

property rather as an advantage. Nevertheless, this problem indi
ates 
ru
ial di�er-

en
es between obje
t-oriented (imperative) programming languages and de
larative

formalisms.



4.2. EXTENSION OF THE AG FORMALISM 115

Semanti
 rules 
orrespond to methods in an a

eptable manner: Due to the lo
ality

prin
iple of AGs, all the attributes of a synta
ti
 rule to be de�ned are known.

For ea
h of them there must be a semanti
 rule (a "method for de�nition"). It is

sometimes suggested to regard the method sele
tion in obje
t-oriented AGs as late

binding, e.g. in [Hed89℄. That point of view seems to be arti�
al be
ause even in the

basi
 AG paradigm ea
h produ
tion lo
ally de�nes how synthesized attributes of the

LHS and an
estral attributes of the RHS are 
omputed.

It would be interesting to see if the 
onstru
ts super and self present in obje
t-

oriented programming languages were useful in the 
ontext of AGs.

To sum up, the primary notion added to AGs, when speaking of obje
t-oriented AGs,

is inheritan
e. To obtain some expressive power, rule models or other 
on
epts must

be added. Although rule models rely on inheritan
e, they provide rather yet another


on
ept than some inherently obje
t-oriented 
on
ept.

Restri
tions to retain well-formedness Dealing with attribute inheritan
e, some ex-

tra e�ort is ne
essary to retain well-formedness of the underlying AG. An AG is

well-formed if ea
h synta
ti
al rule is asso
iated with semanti
 rules de�ning synthe-

sized attributes of the LHS and an
estral attributes of the RHS. Moreover, ea
h root

nonterminal, i.e. the synta
ti
al start symbol and/or the semanti
 base 
lasses, must

not have an
estral attributes, be
ause it would not be possible to de�ne them.

For CFGs obeying single inheritan
e, this property 
an be 
he
ked. The following

restri
tion permits us to 
he
k that all an
estral attributes of the RHS are de�ned

in a reasonable way: Des
endants of the nonterminals on the RHS must not de
lare

new an
estral attributes. It is 
orre
t that this restri
tion does not introdu
e pra
-

ti
al problems, as stated in [Hed89℄ be
ause we 
an always move the de
laration of

an
estral attributes upwards in the 
lass hierar
hy. However, it is a formal artifa
t as

well as a 
ontradi
tion to the obje
t-oriented point of view, that adaptations should

not e�e
t existing 
lasses.

In
ompatibility of multiple inheritan
e and attribute inheritan
e Allowing CFGs

to de�ne a 
lass system with multiple inheritan
e, severe restri
tions are needed on

the attribute de
larations to ensure well-formedness. Thus, multiple inheritan
e 
an

not be used de fa
to. This a serious problem be
ause it is by no means obvious that

one super
lass per nonterminal is suÆ
ient to fa
tor out the 
ommon behaviour.

Following our transformational approa
h, the above problem does not exist be
ause

an arbitrary number of parts of the 
omputational behaviour 
an be added by subse-

quent transformations. For ea
h of these steps a di�erent 
losure of symbols 
an be

used. The limited form of inheritan
e based on grammar symbols 
an be simulated

by suitable rea
hability 
losures in our approa
h. We 
an take other 
olle
tions of

symbols as well.



116 CHAPTER 4. RELATED WORK

4.2.2 Remote a

ess

The basi
 formalism of attribute grammars imposes the prin
iple of lo
ality. Attributes

referred to in the semanti
 rules asso
iated with a synta
ti
al rule r must be attributes of

the symbols in r. If a 
omputation depends on a non-lo
al attribute, auxiliary attributes

for symbols on the path and suitable semanti
 
opy rules have to be added to propagate

the attributes along the tree. To avoid this expli
it propagation, 
onstru
ts for remote

(attribute) a

ess have been suggested by Kastens [Kas76℄ and Lorho [Lor77℄, for example.

A 
omprehensive presentation of the subje
t has been published by Kastens and Waite in

[KW94℄, where some of the examples and 
omments have been taken from. There, the

following three forms of remote a

ess are distinguished:

1. A 
omputation depends on an attribute to be found walking up the tree from the


urrent node.

2. A 
omputation is a 
ombination of 
ertain attributes in the subtree rooted in the


urrent node.

3. A 
omputation updates an invariant for some iterative 
omputation visiting nodes

in (depth-�rst) left-to-right order.

Note that these 
on
epts are \stati
" in spite of the above explanation, i.e. the 
orre-

sponding attributes are known at AG 
ompile time. Furthermore, we want to mention,

that the se
ond form somehow 
ombines the aspe
t of remote a

ess and the use of all the

a

essed attributes in 
omputations. We will present some examples for these patterns of

remote a

ess and we will dis
uss the 
orresponding simulation based on our approa
h.

In the �rst example we want to 
ompute the stati
 nesting depth of a blo
k. The main

program blo
k has nesting depth 0; refer to the rule [program℄. Let us assume that a blo
k

is one form of statement, then the depth of a nested blo
k is obtained from the in
rement

of the depth of its as
endant blo
k. To a

ess the depth of the as
endant blo
k, it has to be

transmitted to the nonterminal statement by means of auxiliary attributes and semanti



opy rules. To avoid this 
oding, the In
luding : : : 
onstru
t 
an be used to �nd the �rst

instan
e of the spe
i�ed attribute by walking up the tree.

[program℄ root ::= blo
k

blo
k :DEPTH = zero

[inner℄ statement ::= blo
k

blo
k :DEPTH = in
(In
luding blo
k :DEPTH)

There are some possibilities to simulate this kind of remote a

ess. Let us sket
h one

s
enario where we start from the following non-well-de�ned GSF s
hema:

root(: : :) : & zero ! DEPTH; blo
k(: : : ;DEPTH; : : :): [program℄

statement(: : :) : & in
(DEPTH) ! DEPTH

0

; blo
k (: : : ;DEPTH

0

; : : :): [inner℄

In rule [inner℄ there is an unde�ned variable DEPTH. To derive a well-de�ned spe
i�-


ation with the proper propagation and update of nesting depths, the following transfor-

mation 
an be applied:



4.2. EXTENSION OF THE AG FORMALISM 117

Remote DEPTH From frootg

We only have to point out that the nesting depths are propagated starting at root . We


an even omit the initialization of the nesting depth as provided by the semanti
 rule for

[program℄ be
ause it 
an be represented by the following transformation:

Default For DEPTH By & zero

To illustrate the se
ond pattern of remote a

ess, that is to say attributes in des
endant

nodes are 
ombined in a 
ertain way, the problem of determining unde
lared and useless

variables is addressed

3

. Variable identi�ers are a

umulated separately in the de
laration

and the statement part:

[blo
krule℄ blo
k ::= de
laration partstatement part

blo
k :unde
lared = statement part :IDS n de
laration part :IDS

blo
k :useless = de
laration part :IDS n statement part :IDS

[dp℄ de
laration part ::= de
laration list

de
laration part :IDS = Constituents variable :ID

With (IDS; [ ; f g; ;)

[sp℄ statement part ::= statement list

statement part :IDS = Constituents variable :ID

With (IDS; [ ; f g; ;)

In general, the Constituents : : : With : : : 
onstru
t is de�ned as follows. Let s be a

grammar symbol, �, �

0

sorts (attribute names), union, unit and zero are semanti
 fun
tion

symbols with the pro�les union : �

0

� �

0

! �

0

, unit : � ! �

0

, zero :! �

0

. Let v

1

; : : : ; v

n

be

the instan
es of s:� found in the des
endant nodes of the 
urrent node.

Constituents s:� With (�

0

; union; unit ; zero)

denotes the following 
omputation:

� n = 0: zero

� n > 0: union(unit(v

1

); union(unit(v

2

); union(� � � ; v

n

)))

In the above example, the parameters are instantiated as follows:

� �

0

: IDS denoting the sort of sets of identi�ers, i.e. IDS = P(ID),

� union: [ , i.e. the union on sets,

3

We prefer to use a di�erent example than the pedagogi
al (?) example presented in [KW94℄.



118 CHAPTER 4. RELATED WORK

� unit : f g, i.e. the singleton set 
onstru
tion,

� zero: ;, i.e. the empty set.

Obviously, two aspe
ts are intermingled in the Constituents : : : With : : : 
onstru
t, that

is to say the a

ess of attributes in the subtree|whi
h is somehow dual to the a

ess of

attributes found by walking up the tree|and the 
ombination of the potentially unknown

number of attribute instan
es. It is the unknown number that requires the higher-order

behaviour in the sense of fold re
ursion s
hemata, but the a
tual way of 
omputing the


ombination is not really a 
on
ept inherent to remote a

ess. All the aspe
ts of the

Constituents : : :With : : : 
onstru
t 
an be unbundled in a 
orresponding de�nition based on

our operator suite; refer to Se
tion D.4. We use the operator Redu
e for the 
ombination

of multiple attributes in a rule and the propagation s
hemata are useful to propagate the


omposed value.

Let us 
omment on the third pattern of remote a

ess, that is to say 
hains. A 
hain

relates 
omputations in left-to-right depth-�rst order within 
ertain subtrees. A 
hain may

propagate values or spe
ify dependen
ies in that order. To support remote a

ess for 
hains

means that we spe
ify only 
omputations whi
h 
ompute a new 
hain value, whereas the

a
tual propagation is not spe
i�ed. The a

umulation of symbol table entries serves as an

example:

[dp℄ de
laration part ::= de
laration list

Chainstart de
laration list :ST = init

[de
s℄ de
laration list ::= de
laration de
laration list

[de
℄ de
laration ::= variable \:" type

de
laration :ST = add (de
laration :ST; variable :ID; type :T)

It is obvious that 
hains 
an be simulated using the operator suite, be
ause all the

propagation s
hemata in our operator suite are based on left-to-right propagation. To

spe
ify only the 
omputations whi
h 
ompute a new value 
orresponds to the style proposed

for the operator Remote.

Boyland des
ribes in [Boy96b, Boy98℄ 
olle
tion attributes as a way to 
ombine dis-

parate de�nitions of an attribute. The de
laration of a 
olle
tion attribute states an initial

value and a 
ombining fun
tion. In 
ontrast to that, the above approa
h des
ribes the

\
olle
tion" (i.e. 
ombination) as part of the a
tual 
omputation in terms of the Con-

stituents-
onstru
t. In similarity to Kastens and Waite, Boyland also strongly links 
olle
-

tion attributes and remote a

ess, although his understanding of remote a

ess is di�erent.

He proposes a paradigm shift su
h that obje
ts with �elds may be 
reated. Referen
es to

su
h obje
ts may be transmitted as ordinary attributes. The �elds 
an be read and writ-

ten via the referen
e attributes. In [Boy98℄ Boyland analyses the resulting dire
t non-lo
al

dependen
ies and he shows how to render these dependen
ies in 
lassi
al terms. Essen-

tially, the �elds of an obje
t must be s
heduled in a way that 
lassi
al dependen
ies based

on 
ontrol attributes are suÆ
ient. The Lido spe
i�
ation formalism [Kas91, KW94℄ in



4.2. EXTENSION OF THE AG FORMALISM 119

the system Eli [GHL

+

92℄ supports side-e�e
ts in a related way where dependen
ies be-

tween 
omputations 
an be for
ed by the Depends : : : On : : : 
onstru
t. In 
ontrast to

that, Boyland derives su
h dependen
ies by an analysis. Hedin's door attribute grammars

[Hed92, Hed91, Hed94℄ leave all responsibility for s
heduling to hand-written 
ode.

4.2.3 Symbol 
omputations

In the previous subse
tion we have des
ribed forms of remote a

ess with emphasis on the


on
epts as provided by Lido|the AG spe
i�
ation language of Eli. In this subse
tion we

want to 
omment on further paradigm shifts of Lido, that is to say symbol 
omputations

and inheritan
e. Besides rule models, symbol 
omputations are another 
on
ept to spe
ify

semanti
 rules (i.e. 
omputations) abstra
ting from the underlying 
ontext-free grammar.

We should point out that the form of inheritan
e in Lido is quite di�erent from the inher-

itan
e whi
h we have 
hara
terized in Se
tion 4.2.1 on obje
t-oriented AGs. It is a matter

of terminology if Lido should be 
alled an obje
t-oriented AG spe
i�
ation language.

Following our meta-programming approa
h, it is straightforward to de�ne transfor-

mations whi
h insert 
omputations (in
luding 
onditions) and 
opy parameters. Thus,


omputational behaviour 
an obviously be des
ribed independently from a skeleton. By

turning the sorts and the symbols, whi
h are used to address parameter positions et
., into

parameters of the transformation, su
h des
riptions of 
omputational behaviour be
ome

reusable. Thereby, symbol 
omputations in the sense of [KW94℄ 
an be presented as appli-


ations of operators like De�ne and Use. Applying su
h transformations to some rules,

a spe
i�
 
omputational behaviour is inserted. More elaborate symbol 
omputations usu-

ally have to make use of remote a

ess. Again, the simulation in our meta-programming

approa
h is straightforward. The 
orresponding transformations simply make use of the


orresponding propagation s
hemata.

Consider the following fragment of an AG. It spe
i�es how the blo
k nesting depth is

initialized for the axiom of the AG and how it is adapted for blo
ks as a form of statements

and for pro
edure bodies, where the new depth is obtained by in
rementing the 
urrent

depth in both 
ases.

[program℄ root ::= blo
k

blo
k :DEPTH = zero

[inner℄ statement ::= blo
k

blo
k :DEPTH = in
(In
luding blo
k :DEPTH)

[pro
body℄ body ::= blo
k

blo
k :DEPTH = in
(In
luding blo
k :DEPTH)

Symbol 
omputations make it possible to asso
iate 
omputations rather with symbols

than with rules. Thus, a more reusable formulation of the 
omputational behaviour asso-


iated with the rules [inner ℄ and [pro
body℄ is expressed as follows:



120 CHAPTER 4. RELATED WORK

Symbol blo
k : Inh:DEPTH = in
(In
luding blo
k :DEPTH)

Instead of 
on
rete grammar symbols, abstra
t symbols 
an be used. Grammar symbols


an inherit from the abstra
t symbols by a separate de
laration.

Symbol 
ontour : Inh:DEPTH = in
(In
luding 
ontour :DEPTH)

Symbol blo
k : Inherits 
ontour

Multiple inheritan
e is possible. Furthermore, symbol 
omputations 
an be overridden

by 
on
rete 
omputations asso
iated with rules. The fa
t that symbol 
omputations are re-

ally independent of the symbols used in a parti
ular language de�nition depends very often

on the use of remote a

ess. The above abstra
t symbol 
omputation 
an be represented

as a transformation as follows:

�
ontour : Name: �from : Name: Hiding & in
 Do (

Remote DEPTH From ffromg

Æ Add hhInput;& in
;DEPTHii

Æ De�ne hInput; 
ontour ;DEPTHi By & in


Æ Ensure hhInput; 
ontour ;DEPTHii)

The parameter from is needed to establish the remote a

ess. Note that it is possible

to use a more 
ompa
t form for 
ertain symbol 
omputations by introdu
ing auxiliary

s
hemata. The above symbol 
omputation, for example, suggest the following pattern: A

unary 
omputation is added to de�ne an input position of a grammar symbol, where the

input of the 
omputation is obtained by remote a

ess.

4.2.4 Coupling

Attribute 
oupled grammars (ACGs) have been proposed by Ganzinger & Giegeri
h for

designing phase-oriented AG spe
i�
ations; refer e.g. to [Gie88℄. Two AGs are 
oupled

via the underlying CFG of the se
ond AG, i.e. the CFG 
an be thought of to de�ne

an intermediate language. A spe
ial root attribute of the former AG is synthesized by


onstru
ting a word of the intermediate language by exploiting produ
tions of the se
ond

CFG as 
onstru
tors.

Coupling is not a proper extension to the AG paradigm. It is rather a programming

te
hnique. The beni�t of 
oupling is that a problem 
an be spe
i�ed in separate phases

whi
h 
an be 
ombined into a single spe
i�
ation under 
ertain 
ir
umstan
es based on

des
riptional 
omposition. Thereby, the 
onstru
tion and the traversal of intermediate

data stru
tures 
an be avoided. The relationships between des
riptional 
omposition

and deforestation have been studied by Correnson, Duris, Jourdan, Parigot and Roussel

[DPRJ96, DPRJ97, CDPR98℄ emphasizing the bene�ts and the point of view of des
rip-

tional 
omposition.



4.2. EXTENSION OF THE AG FORMALISM 121

The question is whether the degree of reusability a
hieved by 
oupling is suÆ
ient. This

is 
ertainly not the 
ase be
ause phase-like de
omposition is only a very simple means of

modularity. The mapping des
ribed by a 
omponent AG of a ACG 
annot be modi�ed, but

only surrounded by further phases. Belle
, Jourdan, Parigot, Roussel extend the 
on
ept

of des
riptional 
omposition with the intent to improve modularity in AG spe
i�
ation

[LJPR93, RPJ94℄. Parti
ularly, they suggest to derive the 
oupling from simple asso
ia-

tions between the grammar symbols of two grammars rather than to spe
ify the 
oupling.

Another a
hievement is separate 
ompilation (i.e. separate evaluator 
onstru
tion). Sep-

arate 
ompilation is an aspe
t of modularity whi
h we almost ignored in our work, sin
e

our emphasis is on expressive power fa
ilitating reuse.

Farrow's et al. Composable Attribute Grammars (CAGs) [FMY92℄ 
an be understood

as a generalization of ACGs. A so-
alled glue AG may 
onstru
t phrases of so-
alled 
om-

ponent AGs by using produ
tions as 
onstru
tors. Terminals may have input and output

attributes in order to allow bidire
tional data 
ow between glue and 
omponents. Essen-

tially, CAGs generalize ACGs be
ause of the output attributes for terminals. Following

[FMY92℄, the expressive power of output attributes 
an be gained alternatively by synthe-

sizing a single 
omplexly-stru
tured root attribute. [KW94℄ reports a number of problems


on
erning reusability of CAGs.

4.2.5 Patterns

Due
k's and Corma
k's MAGs (Modular Attribute Grammars) [DC90℄ are based on (pro-

du
tion) patterns and (attribution) templates. A pattern is similar to a 
ontext-free rule.

Whereas a 
ontext-free rule 
ontains only vo
abulary symbols, a MAG pattern 
ontains

variable symbols, whi
h mat
h any vo
abulary symbol, quoted symbols whi
h mat
h one

vo
abulary symbol and ellipses, whi
h mat
h zero or more vo
abulary symbols. A template

is a semanti
 rule on the variable or quoted symbols.

Attribution of a CFG with regard to a set of MAGs is done in terms of synta
ti
al

mat
hing 
ontrolled by semanti
 
onstraints, i.e. a produ
tion pattern mat
hes a 
ontext-

free rule. The attributes de�ned in the 
orresponding semanti
 rules and these semanti


rules themselves are only added, if the attributes used in the semanti
 rules 
an be syn-

thesized due to other semanti
 rules, and if the de�ned attributes are used somewhere

else.

Example 4.2.3

The following two MAGs de�ne the attribution s
hema for a bu
ket brigade. The module

env des
ribes how the data stru
ture is propagated down the derivation tree, whereas the

module def des
ribes how the data stru
ture is passed up the tree. We assume that the

start symbol in the grammar is goal.



122 CHAPTER 4. RELATED WORK

module env

1

0

goal ! A : : :

A:env = 0

2 A! B : : :

B:env = A:env

3 A! : : : B C : : :

C:env = B:def

module def

4 A! : : : B : : :

B:def = B:env

5 A! : : : B

A:def = B:def

6 A!

A:def = A:env

}

The way in whi
h an attribution is added to a CFG is primarily 
ontrolled by syntax.

That is not most appropriate to obtain an abstra
t de�nition of aspe
ts of attribution.

Indeed, [KW94℄ reports problems in instrumenting that kind of mat
hing for the design

pro
ess, e.g. auxiliary attributes have to be added to trigger mat
hing in the desired way.

The Constituents-
onstru
t (see Subse
tion 4.2.2), for example, 
annot generally be simu-

lated by MAGs. Our transformational approa
h is more 
exible than the use of patterns

and templates. Example 4.2.3 
an be simulated by propagation s
hemata of our operator

suite.

Adams reports in his thesis [Ada91℄ on an approa
h similar to MAGs.

4.2.6 FNC-2

There are many 
ompiler 
ompilers with support for attribute grammars, e.g. FNC-2

[JP91, JP90, Par88, JPJ

+

90℄, Eli [GHL

+

92℄ and Co
ktail [GE90℄. Su
h systems use mostly

a 
ertain instan
e of the attribute grammar paradigm with some parti
ular spe
i�
ation

features. The most interesting 
on
epts underlying Lido|the attribute grammar formal-

ism of Eli|have been explained in Subse
tion 4.2.2 and Subse
tion 4.2.3 (i.e. remote

a

ess, symbol 
omputations and inheritan
e). The 
on
ept of obje
t-oriented attribute

grammars as used in the Ag spe
i�
ation language in Co
ktail has been dis
ussed in Sub-

se
tion 4.2.1. Besides that, Ag supports a rather simple straightforward module 
on
ept

whi
h need not to be 
onsidered here.

4

FNC-2 o�ers a number of des
riptional tools

supporting reuse. There are features arising from the system ar
hite
ture of FNC-2 and

there are other features more 
losely related to OLGA|the attribute grammar des
ription

language of FNC-2.

Now let us 
onsider FNC-2 's features relevant for reusability in more detail.

Passes A large appli
ation 
an be split into a sequen
e of passes where ea
h pass takes as

input the intermediate representation produ
ed by a previous one and as output and

transforms it into another intermediate representation to be fed to the next pass. The

passes are usually des
ribed by AGs or other spe
i�
ations following the tree-to-tree

mapping paradigm. If a pass is des
ribed by an AG, it is either

� a side-e�e
t AG, where the output tree is the same as the input tree ex
ept that

it 
arries di�erent attributes, or

4

The module 
on
ept is similar to the 
on
ept of phases mentioned below for the FNC-2 system.



4.2. EXTENSION OF THE AG FORMALISM 123

� a fun
tional AG having zero, one or more output trees, generally di�erent from

the input tree.

FNC-2 supports merging of side-e�e
t AGs as well as des
riptional 
omposition of

fun
tional AGs, i.e. 
oupling.

AAS The intermediate representations are 
alled attributed abstra
t syntaxes (AAS)

whi
h 
an be regarded as grammars extended with attribute de
larations. The spe
-

i�
ation of AASs and AGs is done separately.

De
laration and de�nition modules Regarding OLGA as a general-purpose appli
a-

tive language, it supports the notion of modules, in whi
h a set of related obje
ts

(type, fun
tions, 
onstants and ex
eptions) 
an be de�ned. Similar to Modula-2, a

module is split into two 
ompilation units, a de
laration module de
laring the obje
ts

visible from outside and a de�nition module in whi
h the a
tual implementation of

visible and non-visible obje
ts is given. Obje
ts 
an be opaque and modules 
an be

parameterized.

Phases An AG 
an be divided into phases to be regarded as blo
ks with lo
al de
larations

and import 
lauses. A phase is likely to 
ontain the semanti
 rules for some aspe
t

of the 
omplete AG. A phase is a pure de
omposition 
onstru
t, i.e. it is not an

extension of AGs.

Produ
tions Produ
tions are also regarded as blo
ks. This is at least useful for the


onsideration of values whi
h are lo
al to the produ
tion. These values, whi
h may

depend on attributes of the produ
tion, are usually referred to as lo
al attributes.

Attribute 
lasses The automati
 generation of semanti
 
opy rules is a rather well-known

te
hnique to de�ne attribute o

urren
es more impli
itly. FNC-2 also supports the

generation of non-
opy rules based on the 
on
ept of attribute 
lasses [Le 89, Le 93℄.

An attribute 
lass 
onsists of

� sets of attribute o

urren
es and

� asso
iated templates to spe
ify the semanti
 rules whi
h de�ne these o

ur-

ren
es.

A template spe
i�es

� the produ
tions to whi
h the template will be applied to and

� the a
tual semanti
 rules.

If some attribute o

urren
e is not de�ned expli
itly, it will be tried to mat
h the


orresponding produ
tion with the synta
ti
 part of some template, and|under 
er-

tain not so straightforward 
ir
umstan
es|the semanti
 rules of the template are

used to de�ne the o

urren
e. The 
on
ept of attribute 
lasses is similar to symbol


omputations in Lido; refer to Subse
tion 4.2.3 as far as it 
on
erns the expressive

power.



124 CHAPTER 4. RELATED WORK

Consequently, FNC-2 supports modular spe
i�
ation in a sophisti
ated manner, i.e.

passes 
an be used at the top level of a 
ompound appli
ation. Phases support seman-

ti
s de
omposition similar to Watt's Partitioned Attribute Grammars [Wat75℄. Attribute


lasses support semanti
s de
omposition as well, but the a
tual details of synta
ti
al and

semanti
 
onstraints to �nd default rules are not so apparent. Last but not least, the

module 
on
ept of OLGA as a general-purpose appli
ative language makes it possible to

use ADTs in the design of an AG.

Even with these powerful modularity 
on
epts, FNC-2 fails to solve some problems we


an solve with our operator suite, mostly be
ause 
omposition is supported rather than

adaptation. In parti
ular, semanti
 rules and thereby 
omputational behaviour 
annot

be adapted. Su
h an adaptation would be useful, for example, to establish a di�erent

propagation or to insert a pre
omputation. Synta
ti
al rules 
annot be overridden, folded

and unfolded, but that is ne
essary for stru
tural adaptations. Some problems 
an be

handled in FNC-2 by fairly simple textual adaptions of spe
i�
ations or by introdu
ing

a di�erent pass. The situation 
ould be slightly improved if phases and attribute 
lasses


ould be separately 
he
ked. However, in general, a modular spe
i�
ation will fail to be

reusable, if the assumed stru
ture and the supported parameterization is not suÆ
ient for

a 
ertain appli
ation.

Belle
, Jourdan, Parigot and Roussel have done some work on improving modularity

based on des
riptional 
omposition [LJPR93, Le 93, RPJ94, Rou94℄. They suggest, for

example, to derive an attribute grammar spe
ifying the translation from one grammar

to the other from 
ertain asso
iations between the non-terminals and terminals of the

grammar. Thereby, one 
an deal with ACGs (refer to Subse
tion 4.2.4) more modular.

The 
orresponding 
on
epts will possibly be added to the implementation of the FNC-2

system.

4.3 Semanti
s

Many resear
hers have worked on reusability (
ompositionality, modularity, extensibility)

of semanti
s spe
i�
ations, refer e.g. to [Mos83, Mos88, Mog89, Mog91, SJ94, Mos92, BL92,

Bra92, CF94, BR94, Hud96, Mos96, LH96, WH97, BS98℄. In this se
tion we 
omment on

some of these attempts. We also want to 
ompare our meta-programming approa
h with

some attempts in the semanti
s 
ommunity. Su
h a 
omparison must appear somehow

arti�
al be
ause the most promising attempts are usually based on styles and notations

whi
h are beyond our general framework, e.g. denotational semanti
s, a
tion semanti
s

and abstra
t state ma
hines. On the other hand, this situation makes 
lear that we 
annot

adopt existing (partial) solutions to a
hieve reusability for representatives of our framework,

e.g. natural semanti
s, attribute grammars et
. The solutions suggested in the framework

of denotational semanti
s (or higher-order fun
tional programming), for example, heavily

rely on the higher-order nature of the spe
i�
ations.

This se
tion is stru
tured as follows. Subse
tion 4.3.1 re
alls some well-known problems

regarding the extensibility of (denotational) semanti
s. Afterwards, we 
onsider possible



4.3. SEMANTICS 125

improvements of mainly extensibility, but also other pragmati
 properties. First, Mosses'

and Watt's a
tion semanti
s are reviewed in Subse
tion 4.3.2. Se
ond, the use of mon-

ads in semanti
s (and fun
tional programming) is the subje
t of Subse
tion 4.3.3. Third,

Cartwright's and Felleisen's extensible denotational semanti
s are presented in Subse
-

tion 4.3.4. Finally, the notions of 
onservative extension and (su

essive) re�nement for

abstra
t statement ma
hines (evolving algebras) are regarded in Subse
tion 4.3.5.

4.3.1 Motivation

In denotational (and operational) semanti
s adding an unforeseen 
onstru
t to a language

may require a reformulation of the entire des
ription be
ause denotational des
riptions


ru
ially depend on the domains used in the pro�les of the semanti
 fun
tions whi
h have to

be adapted for new 
onstru
ts. This problem be
omes a serious hindran
e when developing

des
riptions of larger languages. It also prevents the reuse of parts of a denotational

des
ription when des
ribing a related language.

We want to present examples for problems with the extensibility of denotational seman-

ti
s. We start with the pro�le of the semanti
 fun
tion for statements of a rather simple

language:

[[�℄℄

STM

: STM! MEM! MEM

The semanti
 meaning of a statement sequen
e, for example, is obtained by the normal


omposition:

[[S

1

;S

2

℄℄

STM

= [[S

2

℄℄

STM

Æ [[S

1

℄℄

STM

= �m:[[S

2

℄℄

STM

([[S

1

℄℄

STM

m)

The way �-notation is used for spe
ifying semanti
 entities depends strongly on the

details of domain de�nitions. If errors during statement exe
ution are taken into 
on-

sideration, not only the above pro�le will 
hange, but any intermediate meaning must be

handled di�erently. The new version of the semanti
 fun
tion will be based on the following

pro�le:

[[�℄℄

STM

: STM! MEM! (MEM� ferrorg

?

)

The above semanti
 equation is reformulated as follows:

[[S

1

;S

2

℄℄

STM

= [[S

1

℄℄

STM

then [[S

2

℄℄

STM

;

where then : (D ! (D

0

� ferrorg

?

)) � (D

0

! (D

00

� ferrorg

?

)) ! (D ! (D

00

�

ferrorg

?

)) 
orresponds to stri
t (w.r.t. error) 
omposition and it is de�ned as follows:

f then g x =

(

error ; if Is

ferrorg

?

(f x) = True

g (f x); if Is

D

0

(f x) = True

For languages with sharing, i.e. with pointers or 
all-by-referen
e parameter passing,

the 
at memory model is insuÆ
ient. An environment binding identi�ers to denotable



126 CHAPTER 4. RELATED WORK

values, e.g. lo
ations of a store and a store asso
iating lo
ations with storable values must

be distinguished. Consequently, the pro�le of the semanti
 fun
tion be
omes as follows:

[[�℄℄

STM

: STM! ENV! STORE! (STORE � ferrorg

?

)

Note also that all semanti
 equations need to be reformulated to adhere to the new style of

variable lookup and modi�
ation and to propagate environments and stores a

ordingly.

An even more fundamental 
hange is required when jumps are added be
ause a migra-

tion from the dire
t style to the 
ontinuation style has to be performed. The pro�le of the

semanti
 fun
tion for statements be
omes as follows:

[[�℄℄

STM

: STM! ENV! CONT! CONT;

where CONT = STORE! (STORE � ferrorg

?

). The semanti
s of statements sequen
es,

for example, 
hanges be
ause the 
omposition of meanings has essentially to be reversed


ompared to the dire
t style:

[[S

1

;S

2

℄℄

STM

e 
 = [[S

1

℄℄

STM

e ([[S

2

℄℄

STM

e 
)

Similar serious problems arise when we generalize to power domains when adding non-

determinism. If we anti
ipated all these 
hanges, we 
ould start with the more 
omplex

domains, but that would be unreasonable as well as notionally burdensome. Note that

although the above examples are tuned towards denotational semanti
s, similar problems

arise for operational semanti
s des
riptions, e.g. in the style of SOS, or natural semanti
s,

i.e. domains, pro�les and data 
ow be
omes inappropriate if a language extension must be

performed.

4.3.2 A
tion semanti
s

A
tion semanti
s [Mos92, Mos96℄ is a framework for the formal des
ription of programming

languages. Its main advantage over other frameworks is the inherent extensibility and mod-

i�ability of a
tion semanti
s des
riptions (ASDs), ensuring that extensions and 
hanges to

the des
ribed language require only proportionate 
hanges to its des
riptions. Another

purely pragmati
 problem addressed by a
tion semanti
s is the diÆ
ulty of re
overing

fundamental 
on
epts, su
h as order of exe
ution or s
opes for bindings, from their deno-

tational semanti
s des
ription. The 
on
epts are rather en
oded in higher-order fun
tions

on domains. In a
tion semanti
s, there is support for several 
on
epts su
h as transient,

s
oped, stable and permanent information built into the notation.

The overall stru
ture of an ASD is similar to a denotational semanti
s des
ription:

� a 
ontext-free grammar de�nes the abstra
t syntax,

� semanti
 equations are used to give indu
tive de�nitions of 
ompositional semanti


fun
tions mapping abstra
t-syntax trees to semanti
 entities.



4.3. SEMANTICS 127

In 
ontrast to denotational semanti
s, the main kind of semanti
 entities is a
tions. Se-

manti
 entities are spe
i�ed by the so-
alled a
tion notation in 
ontrast to �-notation in

denotational semanti
s. A
tions are essentially 
omputational entities. The performan
e

of an a
tion dire
tly represents information pro
essing behaviour and re
e
ts the gradual,

step-wise nature of 
omputation. There are subsidiary kinds of semanti
 entities, that is

to say data and yielders. Items of data are (in 
ontrast to a
tions) essentially stati
, math-

emati
al entities, representing pie
es of information, e.g. parti
ular numbers. A yielder

represents an unevaluated item of data the value of whi
h depends on the 
urrent informa-

tion. A
tion semanti
s is intended as a framework for semanti
s des
ription. To approa
h

this goal, the a
tion notation supports a reasonable number of 
on
epts for semanti
s

des
ription dire
tly.

Example 4.3.1

Let us 
onsider a semanti
 equation modelling the semanti
s of an identi�er as an expression

(in the sense of a 
onstant or a variable) as 
ommon for imperative languages:

evaluate I = give the number bound to I or

give the number stored in the 
ell bound to I.

or is an a
tion 
ombinator to 
hoose between alternative a
tions. If one or another

operand is bound to fail|as in the example|the 
hoi
e is deterministi
. In the �rst option

I 
orresponds to a 
onstant, whereas in the se
ond option I 
orresponds to a variable, with

an asso
iated 
ell (a

ording to s
oped information) and with a stored value in the 
ell

(a

ording to stable information). The yielder the d bound to Y evaluates to the 
urrent

binding for the parti
ular token Y , provided that it is of sort d. The yielder the d stored in

Y is a similar yielder to a

ess stable information. The primitive a
tion give Y 
ompletes

and gives the data yielded by evaluating the yielder Y . Thereby, transient information is

produ
ed. }

The a
tion notation 
an be spe
ialized a

ording to parti
ular semanti
s des
ription,

i.e. 
ertain domains are instantiated as appropriate for the a
tual language, e.g. a simple

language de
lares values like numbers and booleans as storable values, whereas memory


ells and values are bindable values to 
ope with variables and 
onstants.

A performan
e of an a
tion, whi
h may be part of an en
losing a
tion, either 
ompletes,

es
apes, fails, or diverges. An a
tion may be nondeterministi
 having di�erent possible

performan
es. An a
tion performan
e pro
esses information. There are di�erent kinds of

information giving rise to so-
alled fa
ets of a
tions. The information may be 
lassi�ed

a

ording to how far it tends to be propagated, as follows:

� transient : tuples of data, 
orresponding to intermediate results;

� s
oped : bindings of tokens to data, 
orresponding to symbol tables;

� stable: data stored in 
ells, 
orresponding to values assigned to variables;

� permanent : data 
ommuni
ated between distributed a
tions.

Making extensions and 
hanges to an ASD generally a�e
ts only those parts of the



128 CHAPTER 4. RELATED WORK

des
ription dealing dire
tly with the 
onstru
ts involved. This property depends on two


ru
ial features of a
tion notation:

� Ea
h 
ombinator is de�ned universally on a
tions, in 
ontrast with fun
tion 
ompo-

sition in �-notation, for example, whi
h requires exa
t mat
hing of types between

the 
omposed fun
tions.

� There is no mention of the presen
e or absense of any parti
ular kind of information

pro
essing, ex
ept where 
reation or inspe
tion of this information is required. For

instan
e, stored information is referred to only in semanti
 equations dealing with

program variables.

It is obvious that a
tion semanti
s su

eeds to support extensibility in semanti
s de�ni-

tion. However, this requires the use of a spe
ial notation based on quite a few a
tion prim-

itives and 
ombinators. It is hard to 
ompare su
h a semanti
s framework with our meta-

programming approa
h whi
h is not tuned towards semanti
s des
ription. Our approa
h

emphasizes the synthesis, transformation and 
ombination of (�rst-order) spe
i�
ations.

We try to give some 
on
luding remarks on the relationship between both approa
hes:

1. Extensibility of ASDs relies on the above mentioned features of a
tion notation, i.e.

a parti
ular spe
i�
ation language is used. In 
ontrast to that, extensibility in our

approa
h arises from the modi�ability of spe
i�
ations through meta-programs.

2. Sin
e we do not perform any spe
i�
 extension of the 
onsidered (�rst-order) target

spe
i�
ation formalisms, we are not able to make semanti
 
on
epts expli
it in the

manner as a
tion semanti
s does. On the other hand, some s
hemata of the operator

suite 
an be related to semanti
 
on
epts built into the a
tion notation. The propa-

gation of storable and s
oped information, for example, is fa
ilitated by propagation

s
hemata. The a

ess to and the produ
tion of transient information 
an be modelled

by the 
omputation s
hemata in various ways.

3. Although a
tion notation 
an be extended, there are some basi
 assumptions whi
h

are tuned towards semanti
s de�nition. Inheritan
e and a

umulation of data, for

example, is supported by the de
larative fa
et (s
oped information) and the impera-

tive fa
et (stable information). There is no obvious way to propagate several di�erent

data stru
tures in di�erent ways.

4. Without programming at the meta-level 
ertain adaptations and 
ompositions 
annot

be performed per se, pre
omputations, for example, 
annot be interpolated. In more

general terms, semanti
 equations 
annot be adapted at all.

5. A
tion notation satis�es several algebrai
 laws. However, the intended interpreta-

tion of an ASD is based on an operational semanti
s (SOS) for a
tion notation. In

this respe
t, a
tion semanti
s 
an be regarded as a higher level of semanti
s des
rip-

tion 
ompared to operational (denotational) semanti
s. Our operator suite rather

re
e
ts possible manipulations on programs of 
ertain target languages. Several of



4.3. SEMANTICS 129

these manipulations 
an be regarded as abstra
tions from programming pra
ti
e. In

this respe
t, meta-programming 
an be regarded as a higher level of programming


ompared to the underlying target language.

4.3.3 Monads and monad transformers

Moggi proposed to use monads to stru
ture denotational semanti
s [Mog89℄. A monad

is essentially an (endo-) fun
tor with an additional stru
ture (
ertain natural transfor-

mations) in the 
ategori
al sense. We will sti
k here to the simpler view based on the

terminology of fun
tional programming and we will use Haskell-like notation for our ex-

amples. In fun
tional programming, a monad is a type 
onstru
tor together with some

polymorphi
 fun
tions 
hara
terized below. Wadler [Wad92℄ popularized Moggi's ideas in

the fun
tional programming 
ommunity by showing that many frequently used type 
on-

stru
tors together with 
ommon 
ombinators are a
tually monads and that interpreters for

a great variety of language 
on
epts, for example, 
an be designed in a modular fashion if

the equations adhere to the monadi
 style. Espinosa developed Semanti
 Lego [Esp95℄|a

S
heme-based system for the 
omposition of modular interpreters exploiting monads and

monad transformers. Some other 
ontributions to modular interpretation based on monads

are [SJ94, LHJ95℄.

The basi
 idea of the monadi
 style of programming is to 
onsider a fun
tion of type � !

�

0

rather as a fun
tion of type � !M �

0

, where M is a type 
onstru
tor. Extensibility is

a
hieved by instantiatingM as appropriate. M 
an, for example, add state transformation

to �

0

. For a given type � , elements of � are 
alled values and elements of M � are 
alled


omputations, a

ording to the terminology of Moggi. Besides the type 
onstru
tor M, we

need two polymorphi
 fun
tions:

unit

M

:: � !M �

bind

M

:: M � ! (� !M �

0

)!M �

0

unit

M

is a generalization of the identity fun
tion. unit

M

x takes x 2 � to the 
orresponding

representation in M � . bind

M

is a generalization of the fun
tional appli
ation in a monad.

bind

M

takes a value x 2M � and a fun
tion on � (but not M �). bind

M

is usually written

in in�x notation.

A monad is a triple hM; unit

M

; bind

M

i, where the fun
tions satisfy the following laws:

� bind

M

is asso
iative.

� bind

M

has unit

M

as left and right identity.

Figure 4.2 lists some simple monad de�nitions. M

I

is the identity monad. M

S

is the

monad for state transformation. M

E

is the environment monad.

We want to 
hara
terize the approa
h to modular interpreters and the monadi
 style of

higher-order fun
tional programming using interpreter examples in a Haskell-like notation

as in [Wad92℄. The domains a

ording to the 
ore of an interpreter for a fun
tional language

are presented in Figure 4.3. An interpreter in the monadi
 style is presented in Figure 4.4.



130 CHAPTER 4. RELATED WORK

Monad type M � = unit

M

v = 
 bind

M

f =

M

I

a v f 


M

S

State! (a;State) �s:(v; s) �s

0

:let (v; s

1

) = 
 s

0

in f v s

1

M

E

Env! a �e:v �e:let v = 
 e in f v e

Figure 4.2: Some monads

type Name = String

data Exp = Var Name j Lambda Name Exp j Apply Exp Exp

j Const Int j Dyadi
 Exp Exp Dsym

data Dsym = Plus j : : :

data Value = Wrong j Num Int j Fun (Value!M Value)

type Env = [(Name;Value)℄

Figure 4.3: Signature for an interpreter of a pure fun
tional language

Nested fun
tion appli
ations are 
attened in terms of a sequen
e of appli
ations of bind

M

.

Values are 
oer
ed to 
omputations by unit

M

.

ie :: Exp! Env!M Value

ie (Const n) � = unit

M

(Num n)

ie (Var i) � = lookup

Env

� i

ie (Lambda i e) � = unit

M

(Fun (�x:ie e ((i; x) : �)))

ie (Dyadi
 e

1

e

2

ds) � = (ie e

1

�) bind

M

(�v

1

:(ie e

2

�) bind

M

(�v

2

:
omp v

1

v

2

ds))

ie (Apply e

1

e

2

) � = (ie e

1

�) bind

M

(�v

1

:(ie e

2

�) bind

M

(�v

2

:apply v

1

v

2

))

lookup

Env

:: Env! Name!M Value

lookup

Env

[ ℄ i = unit

M

Wrong

lookup

Env

((j; v) : �) i = if i == j then unit

M

v else lookup

Env

� i


omp :: Value! Value! Dsym!M Value


omp (Num n

1

) (Num n

2

) Plus = unit

M

(Num (n

1

+ n

2

))

: : :


omp v

1

v

2

ds = unit

M

Wrong

apply :: Value! Value!M Value

apply (Fun f) x = f x

apply f x = unit

M

Wrong

Figure 4.4: Interpretation in a monad (
all-by-value)

Some �rst remarks should be made. The monadi
 style is burdensome be
ause of all

the appli
ations of the polymorphi
 fun
tions unit

M

and bind

M

. Moreover, it must be

de
ided whi
h fun
tions return values and whi
h return 
omputations. It 
an be assumed

that all fun
tions return 
omputations, but this is possibly an overspe
i�
ation. Note

also that there 
an be di�erent layers of 
omputations. If we think of, for example, state

transformation in an interpreter, the 
entral interpreter fun
tion will possibly transform

the state, whereas an auxiliary fun
tion will not. If we think of error handling, several



4.3. SEMANTICS 131

fun
tions will possibly produ
e error messages, not only the 
entral interpreter fun
tion.

As with all parameterization te
hniques, su
h problems 
annot be avoided 
ompletely.

Eventually, di�erent monads for di�erent parts are needed. Su
h an adaptation 
annot

be performed. In the 
ase of statement-oriented imperative languages, the evaluation of

expressions either involves side-e�e
ts or it does not. In the absen
e of side-e�e
ts the

monad used for evaluation of expressions should not represent state transformation but

rather propagation of a 
onstant state.

The standard 
all-by-value interpreter 
an be derived from Figure 4.4 by the following

substitution. M , unit

M

and bind

M

is substituted by the identity monad M

I

. It is now

assumed that the interpreter should be extended with language 
onstru
ts for referen
e


ells; refer to Figure 4.5 showing the signature part. The following new 
onstru
ts have to

be established:

type Lo
 = Int

data Exp = : : : j Ref j Set Exp Exp j Deref

data Value = : : : j Lo


type State = [(Lo
;Value)℄

Figure 4.5: Extension for referen
e 
ells (signature part)

� Ref intended for the allo
ation of a 
ell,

� Set e

1

e

2

for the update of a 
ell, where e

1

is 
omputed to a 
ell, whereas e

2

is


omputed to the value to be stored and

� Deref e for dereferen
ing the 
ell 
omputed from e.

The monad parameters have to be substituted by the monad for state transformation. We

ommit the straighforward equations for de�ning the interpretation of the new 
onstru
ts.

Let us 
omment on another extension of the intial interpreter. Instead of using the

error valueWrong, proper error messages will be returned. A distin
tion between su

essful

values and error messages 
an be modelled by a monad as in Figure 4.6. One advantage

of using the monadi
 style for the more realisti
 kind of error handling is that the stri
t

behaviour 
an be ensured, i.e. on
e an error o

urred, the evaluation of the entire expression

fails.

type Partial a = Ok a j Fail String

* :: Partial a! (a! Partial b)! Partial b

Fail s * f = Fail s

Ok x * f = f x

Figure 4.6: The error monad

The substitution of the monad parameters by the error monad is not suÆ
ient yet

be
ause the possibility of produ
ing error messages is not used at all. There are still

equations returning the a

identally \su

essful" value Wrong. We 
annot anti
ipate all



132 CHAPTER 4. RELATED WORK

su
h 
hanges and the monadi
 style fails to provide a solution required here. What is

needed is that the equations 
on
erning error handling are repla
ed

5

; refer to Figure 4.7

for the suitable equations.

lookup

Env

[ ℄ i = Fail \variable not bound"


omp v

1

v

2

ds = Fail \type error in basi
 operation"

apply f x = Fail \illegal appli
ation"

Figure 4.7: Variants of equations making use of error messages

All in all, the monadi
 style is an elegant parameterization te
hnique giving support for

modular programming and spe
i�
ation. The style 
ru
ially relies on the possibility that

extensions 
an be expressed by a suitable a
tual parameterization of the monad parameters.

There are extensions or in other words adaptations, whi
h 
annot be expressed in this way.

The te
hnique is well-studied for interpreters of programming languages, sin
e the entire

spa
e of features 
an be anti
ipated.

It is interesting to noti
e that meta-programming provides some oppurtunities to im-

prove the usability of the monadi
 style:

� It is a rather simple transformation to establish the monadi
 style in a given pro-

gram. Thereby, it is not ne
essary any longer to 
ode in the monadi
 style all the

time. More signi�
antly, the de
ision whi
h fun
tions return values and whi
h return


omputations 
an be delayed. Moreover, di�erent sets of monad parameters 
an be

distinguished.

� We 
an perform adaptations whi
h are beyond the parametri
ity provided by the

monadi
 style, e.g. to override equations, or to insert pre
omputations.

ie :: Exp! Value

ie (Const n) = Num n

ie (Dyadi
 e

1

e

2

ds) = 
omp (ie e

1

) (ie e

2

) ds

ie (Apply e

1

e

2

) = apply (ie e

1

) (ie e

2

)


omp :: Value! Value! Dsym! Value


omp (Num n

1

) (Num n

2

) Plus = Num (n

1

+ n

2

)

: : :


omp v

1

v

2

ds = Wrong

apply :: Value! Value! Value

apply (Fun f) x = f x

apply f x = Wrong

Figure 4.8: Constru
ts at the Value-level

5

[Wad92℄ points out su
h an adaptation, but there, the only option is text-editing.



4.3. SEMANTICS 133

� It is not always the obvious 
hoi
e to hide semanti
 aspe
ts in a monad. However,

to a
hieve modularity based on the monadi
 style, we must put all aspe
ts into the

monad. Meta-programming provides other possibilities to install semanti
 aspe
ts.

Consider, for example, the interpreter module in Figure 4.8 whi
h 
on
erns the same

fun
tional language as in Figure 4.4, but only the 
onstru
ts at the Value-level being

the most basi
 level of the semanti
 model for interpretation. The module is not

written in the monadi
 style. In 
ontrast to Figure 4.4, environments are not propa-

gated. Using a suitable propagation s
hema (e.g. the operator Inherit) we 
an add

environment propagation; refer to Figure 4.9 for the result. Wadler's examples in

[Wad92℄ do not 
onsider environments as part of the 
omposed monad, i.e. environ-

ments are propagated expli
itly as in Figure 4.9. Espinosa's Semanti
 Lego [Esp95℄

points out a separate environment level. Both approa
hes are problemati
 (without

meta-programming). In the �rst approa
h we 
annot a
hieve modularity be
ause


onstru
ts at the Value-level must be des
ribed with the irrelevant propagation of

environments, i.e. a module like Figure 4.8 
ould not be reused. Following the se
-

ond approa
h, a remarkable overspe
i�
ation 
an be re
ognized be
ause environment

propagation is restri
ted to only a few fun
tions and not to all interpreter fun
tions,

e.g. the fun
tions apply and 
omp do not 
ontribute to the environment propagation.

ie :: Exp ! Env ! Value

ie (Const n) � = Num n

ie (Dyadi
 e

1

e

2

ds) � = 
omp (ie e

1

� ) (ie e

2

� ) ds

ie (Apply e

1

e

2

) � = apply (ie e

1

� ) (ie e

2

� )


omp :: Value! Value! Dsym! Value

: : :

apply :: Value! Value! Value

: : :

Figure 4.9: Figure 4.8 with added environment propagation

Finally, we want to 
omment on the super�
ial 
orresponden
e of monads (or monad

transformation) and program transformation. For that purpose we explain in more detail

Espinosa's approa
h to modular interpreters [Esp95℄ based on lifting ignoring the similar

approa
h based on strati�
ation.

For a fun
tional language as in Figure 4.4 with the extension for referen
e 
ells in

Figure 4.5 the semanti
 model 
an be 
hara
terized by the following type A:

A = Env! State! (Value� State)

Modularity is possible be
ause most language 
onstru
ts operate primarily at a single

\level" of the above type. The following levels 
an be distinguished:

A = Env! State! (Value� State)



134 CHAPTER 4. RELATED WORK

S = State! (Value� State)

V = Value

These levels are related to ea
h other in the sense that A 
aptures S and V , whereas S


aptures V . More te
hni
ally, S is related to V by the monad M

S

(Figure 4.2) and in

turn A is related to S by the monadM

E

. Figure 4.8, for example, shows all 
onstru
ts at

level V . The 
onstru
ts for referen
e 
ells are at the level S. The level A is suÆ
ient for

all 
onstru
ts. A
tually, we would like to have a level 
overing values and environments:

E = Env! Value

This level would be optimal for the semanti
s of �-variables (
onstru
ts Var Name and

Lambda Name Exp). However, we 
annot in
lude this level into the tower of levels be
ause

there is no monad relating E and A, i.e. we 
annot reuse modules at the level E. Thereby,

environment 
onstru
ts 
annot be des
ribed in a 
ompletely modular way.

To reuse modules at some levels, lifting is performed. In our examples we 
an lift

through V , S and A. Lifting means here, that a monad is used to lift fun
tions at a lower

level to an upper level. Thus, we 
an 
ombine the result of lifting with a module whi
h

is de�ned at the upper level anyway. This pro
ess 
an be repeated as often as ne
essary.

To lift a fun
tion f with a 
ertain pro�le a

ording to a monad hM; unit

M

; bind

M

i 
an be

des
ribed by lifting operators. Consider, for example, a fun
tion f with one parameter p

whi
h is untou
hed by the lifting pro
ess and another parameter 
 to be lifted, i.e. f has

the following pro�le:

f : X � A! A

The resulting fun
tion f

0

has the following pro�le:

f

0

: X �B ! B

The monad relates A and B. We assume, that the result of fun
tions is lifted in all 
ases.

The 
orresponding lifting operator whi
h is suitable to lift f to f

0


an be des
ribed by the

following �-expression:

�f:�p:�
:
 bind

M

�v:unit

M

f(p; v)

The above problem with the level E is related to general problem that monads do not


ompose. More pre
isely, there is no general 
onstru
tive way to 
ompose a monad from

two other monads su
h that the features of both monads are 
ombined; refer to [JD93℄

for a proof and some methods for 
omposition in parti
ular 
ases. Thereby, modularity

based on monads is limited. Moggi's way out of this dilemma (and Espinosa's reminds us

in this respe
t) is to use monad transformers, whi
h is a next step of abstra
tion. Gen-

erally speaking, a monad transformer is a fun
tion on monads. The monad transformers

T

E

(M)(T ) to add environment propagation or T

S

(M)(T ) to add state transformation to a

monad M applied to a type T 
an be de�ned as follows when only the e�e
t to the type

is shown:

T

E

(M)(T ) = Env!M(T )

T

S

(M)(T ) = State!M(T � State)



4.3. SEMANTICS 135

Again, lifting operators 
an be de�ned. As modules are parameterized by monad transform-

ers, it is possible, for example, to de�ne the environment 
onstru
ts 
ompletely modular

and to pass the state transformation monad transformer T

S

to that module as a parameter

in order to arive at A.

Let us 
ompare the monadi
 style and our meta-programming approa
h.

� To \lift" a target program from one level to another is performed by a program trans-

formation (e.g. transformers in the sense of Se
tion 3.5 on lifting) in our approa
h.

Thus, the problem of �nding a suitable monad (transformer) 
orresponds to �nding

a suitable program transformation. Regarding the running example in a �rst-order

setting, we should be able to deal with modules at all the levels V , S, E, A.

� An important di�eren
e is that the reuse of modules in the monadi
 style 
ru
ially

relies on the previous parameterization of a module by a monad (transformer). More-

over, the monadi
 style is per se only appli
able to settings with order higher-order

fun
tions, e.g. fun
tional programming and denotational semanti
s. Following our

approa
h, we de not rely on an expli
it parameterization and we provide a solution

for even �rst-order settings.

� The 
orresponden
e of monads and program transformations is obviously super�
ial

be
ause monads and monad transformers are higher-order obje
ts in the underlying

formalism, i.e. monads are a means for modularity within the language, whereas

transformations are obje
ts from the meta-level.

� Lifting in our sense (refer to Se
tion 3.5) 
orresponds to the 
omplete pro
ess of

lifting in the monadi
 sense, where several modules are lifted (in the sense of monads)

through several levels.

The monadi
 style relies on proper design for reuse in advan
e. Programs have to be

parameterized. Reuse 
orresponds to passing monads or to expli
it lifting. Program trans-

formations emphasize adaptation of programs.

4.3.4 Extensible denotational semanti
s

Cartwright and Felleisen present in [CF94℄ an approa
h to extensible denotational se-

manti
s spe
i�
ations. A
tually, they introdu
e a new format for denotational language

spe
i�
ations, the so-
alled extended dire
t semanti
s (EDS), that a

ommodates orthog-

onal extensions of a language without 
hanging the denotations of existing phrases. The

authors demonstrate the method by a stepwise de�nition of a powerful diale
t of S
heme.

The method also supports the 
onstru
tion of interpreters for 
omplete languages by 
om-

posing interpreters for language fragments. Many of the subsequent explanations and the

examples have been taken from [CF94℄.

The suggested s
hema 
ru
ially relies on a distin
tion between a 
omplete program and

a nested program phrase. A 
omplete program is thought of as an agent that intera
ts

with the outside world, e.g. a �le system and that e�e
ts global resour
es, e.g. the store.

A 
entral authority administers these resour
es. The meaning of a program phrase is a



136 CHAPTER 4. RELATED WORK


omputation, whi
h may be a value or an e�e
t. If it is an e�e
t, it is propagated to a


entral authority. The propagation pro
ess adds a fun
tion in the sense of a handle to the

e�e
t pa
kage su
h that the 
entral authority 
an resume the suspended 
al
ulation. An

\administrator" fun
tion modelling the 
entral authority performs the a
tions spe
i�ed

by e�e
ts. A
tions 
an examine and modify resour
es, or may simply abort exe
ution.

On
e the a
tion has been performed, the administrator extra
ts the handle portion of the

e�e
t and invokes it, if ne
essary, in similarity to the 
ontinuation passing style. Casting

a language extension into the framework requires the spe
i�
ation of four 
omponents:

� the new synta
ti
 
onstru
tors,

� the extension of the domains for values, resour
es and a
tions,

� new 
lauses of the meaning fun
tion for program phrases and

� new 
lauses of the administrator fun
tion.

EDS are extensible be
ause for several semanti
 
on
epts, su
h as error handling, 
on-

tinuations, stores, the pro�le of meaning fun
tion for program phrases and previous se-

manti
 equations have not to be modi�ed. Extensions e�e
t only the 
entral authority

whi
h must adapted to perform the new a
tions a

ording to the language extension. A

spe
ial 
omposition operator for meanings ensures that all e�e
ts are always passed to the


entral authority. Some more te
hni
al details about EDS and an example are 
on
luded

in Se
tion A.8.

The approa
h of EDS is very mu
h tuned towards (dynami
) semanti
s des
ription

similar to a
tion semanti
s. This is in 
ontrast to the monadi
 style and to our meta-

programming approa
h. In parti
ular, a distin
tion between 
omplete programs and nested

program phrases and the overall design of the semanti
 framework only applies to dynami


semanti
s des
riptions (of 
ertain languages). Besides extensibility, the primary a
hieve-

ment is that extensions do not imply 
hanges to the denotations of program phrases. That

does not hold for the monadi
 style. EDS is a small framework 
ompared to a
tion se-

manti
s whi
h is huge spe
i�
ation language. Te
hni
ally, EDS is rather a programming

style or a style of denotational semanti
s than an extension of a spe
i�
ation language or

a new language per se. The style of EDS 
orresponds again to a kind of parameterization.

It is assumed that pro�les of fun
tions and the stru
ture of domains do not need to be

modi�ed and that is suÆ
ient to extend domains in a 
ertain way to take new a
tions

(e�e
t messages) into 
onsideration.

4.3.5 Extension and re�nement of abstra
t state ma
hines

Gurevi
h's Abstra
t State Ma
hines (ASMs), previously 
alled Evolving Algebras [Gur95℄,

provide an operational semanti
s approa
h. It is a good intuition to understand an ASM

as \pseudo-
ode over abstra
t data". For the purpose of our work we will 
on
entrate

on the appli
ation of ASMs for modelling semanti
s and implementations of programming

languages, although the formalism is also appli
able for modelling ar
hite
tures, proto
ols

and 
ontrol software et
. Very roughly, to spe
ify an abstra
t state ma
hine, an algebra



4.3. SEMANTICS 137

to start with and rules des
ribing fun
tion updates need to be 
hara
terized. Thus, alge-

bras 
orrespond to states, whereas the update rules whi
h are performed simultaneously


orrespond to the transition relation in the sense of operational semanti
s.

It is a parti
ular feature of the ASM approa
h that an ASM 
an be tailored to an arbi-

trary abstra
tion level (in 
ontrast to Turing ma
hines and other approa
hes to operational

semanti
s). If di�erent abstra
t levels are needed, one 
an even have a hierar
hy of ASMs.

In [BR94℄, for example, Egon B�orger and Dean Rosenzweig develop a hierar
hy of ASMs

by means of su

essive re�nement in order to re
onstru
t the WAM [War93℄ from a more

abstra
t ASM for Prolog. Another interesting example showing that the ASM approa
h

supports modularity and extensibility is the modular Java semanti
s [BS98℄ by Egon B�orger

and Wolfram S
hulte where they fa
tor out sublanguages by isolating orthogonal language

features, namely imperative, pro
edural, obje
t-oriented, ex
eption handling and 
on
ur-

ren
y features. Starting from the imperative kernel language all the other features 
an be

added in su

essive steps. The resulting ASMs build up a sequen
e of models, where ea
h

model is a 
onservative extension of its prede
essor.

Let us �rst 
hara
terize the notion of re�nement following [BR94℄. Afterwards the

stronger notion of 
onservative extension is outlined. Finally, we 
omment on the kind of

extensibility and modularity provided by ASMs with regard to our approa
h.

In a re�nement step a more \
on
rete" ASM B is 
onstru
ted and it is related to a

more \abstra
t" ASM A. For a proper re�nement we are seeking for a F mapping states

B of B to states F(B) of A, and rule sequen
es R of B to rule sequen
es F(R) of A, so

that the following diagram 
ommutes:

6 6

-

-

F F

A A

0

B B

0

F(R)

R

Refer to [BR94℄ for details in
luding notions like 
orre
tness, 
ompleteness and oper-

ational equivalen
e. Let us mention some kinds of adaptations to be performed during

re�nement. One possibility is to pla
e assumptions on 
ertain members of the signature

of the more abstra
t ASM whi
h are \implemented" in the more 
on
rete ASM. Another

kind of adaptation 
on
erns rules. They 
an be repla
ed. New rules 
an be added. It is

possibly also ne
essary to adapt the signature of the given ASM making the de�nition of

the above F more involved.

A 
onservative extension is a spe
ial kind of re�nement, where ea
h run of B, whi
h

only depends on A's signature, 
an be transformed 
anoni
ally into a run of A. Egon

B�orger and 
olleagues work on the rigorous de�nition of this 
on
ept and they plan to

publish proofs for the 
onservative extensions presented in [BS98℄.

Comparing ASMs with our meta-programming approa
h, we �rst should state that

ASMs are beyond the s
ope of our target languages. A more interesting question is how

the kind of modularity and extensibility a
hieved by re�nement 
an be 
ompared with



138 CHAPTER 4. RELATED WORK

our results. ASMs are exe
utable (under 
ertain 
onditions), but note that the notion of

re�nement only fa
ilitates the proof of a 
ertain relationship between ASMs. There is no

useful e�e
tive method so far to make a more abstra
t ASM more 
on
rete. Thus, in a

narrow sense the ASM approa
h does not fa
ilitate modular 
omposition or performan
e of

an extension. It rather provides a proof te
hnique to realize that one ASM is a re�nement

/ 
onservative extension of another one. In our approa
h we are interested in e�e
tive

methods for program 
omposition and adaptation. We are 
omputing target programs.

4.4 Program development

4.4.1 Stepwise re�nement

Mu
h of the work on formal methods for the development of 
orre
t programs is based

on Dijkstra's work on the weakest pre
ondition 
al
ulus. Ba
k, for example, developed a

re�nement 
al
ulus [BvW98℄ providing a uni�ed framework for stepwise re�nement, pro-

gram transformation and program synthesis for imperative programming. There are some

works on re�nement of logi
 programs. [KT93, Tr
93℄ is based on partial dedu
tion (PD)

originating from partial evaluation in fun
tional programming. The primary �eld of ap-

pli
ation for PD is program optimization and spe
ialization, but it turned out that it is

quite suitable for stepwise re�nement based on a transformational approa
h. Most of the

following de�nitions and explanations are taken from [Tr
93℄.

De�nition 4.4.1

Let S and S

0

be programs. S is 
orre
tly re�ned by S

0

, denoted by S ref S

0

, if S

0

satis�es

any spe
i�
ation that S does, i.e. S sat R) S

0

sat R for any R in the set of spe
i�
ations.

}

Here sat denotes the satisfa
tion relation. It follows from the de�nition that ref is a

preorder, i.e. ref is re
exive and transitive. Constru
ts for 
ombining programs into larger

ones must be monotoni
 w.r.t. ref , for subprograms for example, a subprogram T in a

program S[T ℄ 
an always be repla
ed by its re�ning program T

0

.

Let us mention several operators for re�nement in logi
 programming; refer to Se
-

tion A.9 for details. unfold allows an atom in the body of a 
lause 
 to be repla
ed by

a 
onjun
tion of atoms. fold is inverse to unfold . It abbreviates a 
onjun
tion of atoms.

prune and add delete or add a 
lause in a program. On 
lause level, thin and fatten delete

or add an atom in the body of a 
lause. restri
t sele
ts a subprogram.

However, the operators for re�nement are neither intended nor suÆ
ient to fa
ilitate

meta-programming:

� There are no operators on the atom level (and at the term level either). A large set

of s
hemata, e.g. Repla
e, Left To Right, 
annot be spe
i�ed. What is needed are

basi
 operations for 
onstru
ting and de
onstru
ting programs.



4.4. PROGRAM DEVELOPMENT 139

� Ex
ept for the simple appli
ation of the 
on
ept of a 
all-graph in restri
t , no global


onsiderations are involved as for our rea
hability operators building the basis for

propagation s
hemata.

� The form of the operators unfold , fold , thin and fatten is not suitable for meta-

programming at all be
ause writing a meta-program we 
annot regard the a
tual

atoms of programs as assumed.

� Based on fatten, 
omputations 
an be inserted, but again one would require total

knowledge of the variables of the rule under 
onsideration. Transformation 
annot

be stated here in a way abstra
ting from the a
tual program. Moreover, the insertion

of 
omputations 
annot be 
ombined with 
hanging the parameters of the original

premises as ne
essary for the insertion of pre
omputations, for example.

The obvious advantage of a stepwise re�nement approa
h during program development

is the straightforward support for 
orre
tness of derivation. The operators preserve re�ne-

ment equivalen
e if 
ertain appli
ability 
onditions are satis�ed; refer to Se
tion A.9 for

details. The operations are suitable for reasoning about re�nements of programs and about

partial dedu
tion. The a
tual set of operations is not useful for general program synthe-

sis, transformation and 
omposition. Moreover, re�nement equivalen
e is too restri
tive in

several 
ases during program adaptation.

In general, re�nement has been studied mu
h more exhaustively for the imperative

paradigm [BvW98, Heh93℄. There is 
ertain dire
tion in re�nement 
alled data re�nement

or (data transformation [Heh93℄) whi
h possibly 
ould be adopted for our framework to


hara
terize properties of 
ertain program transformations in a systemati
 manner.

4.4.2 Stepwise enhan
ement

Stepwise enhan
ement [Lak89, SS94, JS94℄ developed by Sterling et al. is a program devel-

opment methodology. The methodology suggests to develop Prolog programs systemati-


ally from two 
lasses of standard 
omponents. Skeletons are simple Prolog programs with

a well-understood 
ontrol 
ow. Te
hniques are standard Prolog programming pra
ti
es.

Example 4.4.1

This example is taken from [NS97℄. The following two programs are skeletons for traversing

binary trees with values only at the leaf nodes.

The following program does a 
omplete traversal of the tree.

is_tree(leaf(X)).

is_tree(tree(L, R)) :- is_tree(L), is_tree(R).

In 
ontrast to that, the following program traverses a single bran
h of the tree.

bran
h(leaf(X)).

bran
h(tree(L, R)) :- bran
h(L).

bran
h(tree(L, R)) :- bran
h(R).



140 CHAPTER 4. RELATED WORK

Note that the �rst program 
an be regarded as a type de�nition of trees. }

Standard examples for skeletons are traversals of re
ursive data stru
tures. Te
hniques


apture basi
 Prolog programming pra
ti
es, su
h as building a data stru
ture of perform-

ing 
al
ulations in re
ursive 
ode. A te
hnique interleaves some additional 
omputation

around the 
ontrol 
ow of a skeleton. More synta
ti
ally, te
hniques may rename predi-


ates, add arguments to predi
ates, add goals to 
lauses and/or add 
lauses to programs.

Unlike skeletons, te
hniques are not programs but 
an be 
on
eived as a family of operations

that 
an be applied to a program to produ
e a program. Obviously, this 
hara
terization

brings us very 
lose to our meta-programming methodology.

Example 4.4.2

We will give two examples of applying the so-
alled 
al
ulate te
hnique to the is tree

predi
ate given in Example 4.4.1 (again adopted from [NS97℄). The 
al
ulate te
hnique


omputes a value. An extra argument is added to the de�ning predi
ate of the skeleton for

the 
omputed value and an extra goal for an arithmeti
 
al
ulation is added to the body

of ea
h re
ursive 
lause.

The following program 
omputes the produ
t of the value of the leaves of the tree. Note

the predi
ate is tree has been renamed.

prod_leaves(leaf(X), X).

prod_leaves(tree(L, R), Z)

:- prod_leaves(L, X), prod_leaves(R, Y), Z is X * Y.

Similarly, the following program 
omputes the sum of the value of the leaves of the

tree. The only di�eren
e is the 
hoi
e of names and the extra goal.

sum_leaves(leaf(X), X).

sum_leaves(tree(L, R), Z)

:- sum_leaves(L, X), sum_leaves(R, Y), Z is X + Y.

}

A te
hnique applied to a skeleton is said to yield an enhan
ement. An enhan
ement

whi
h preserves the 
omputational behaviour of the skeleton is 
alled an extension. Two en-

han
ements of the same skeleton share 
omputational behaviour and they 
an be 
ombined

into a single program by 
omposition. Obviously, we 
an also 
onsider the 
ombination of

two te
hniques.

We try to present a 
omparison of stepwise enhan
ement and our methodology based

on meta-programming:

� Stepwise enhan
ement is dedi
ated to Prolog programming. Indeed, the kind of 
om-

putations and synta
ti
al manipulations 
onsidered are really tuned towards Prolog.

Re
ently, Kirs
hbaum et al. [KMS96℄ dis
ussed that stepwise enhan
ement is equally

appli
able to other logi
 programming languages. Our approa
h provides a general

framework whi
h 
an be instantiated for quite di�erent spe
i�
ation formalisms.



4.4. PROGRAM DEVELOPMENT 141

� Stepwise enhan
ement does not 
onsider modes or types. The use of dire
tional

types is a 
ru
ial fa
tor in our approa
h. Types (sorts) are needed for the sele
tion

of parameters, for example. Moreover, programs are required to be well-typed 
or-

responding to a safety feature for program 
onstru
tion. Modes are needed for data


ow 
riteria. A transformation, for example, whi
h should provide de�nitions for

unde�ned variables must use modes.

� The emphasis in stepwise enhan
ement is on the identi�
ation of useful skeletons and

te
hniques. Another issue is 
orre
tness of program 
onstru
tion [SJK93, JKS94℄,

whi
h means that properties of 
omponents are retained in a 
omposed program.

Here the notions of 
omposition and extension as well as program maps are 
en-

tral [Jai95, KSJ93℄. In our work, the emphasis is on the a
tual 
al
ulus for meta-

programming, i.e. on the ma
hinery to de�ne te
hniques in the sense of stepwise

enhan
ement. Nevertheless, our operator suite attempts to 
apture programming

pra
ti
es as well.

� We unbundle several roles of useful program transformations by our s
hemata for

parameterization, 
omputation, et
. Thereby, we have a kind of a basis for deriving

useful te
hniques. Properties of transformations are analysed in some depth in
luding

properties beyond the s
ope of the settings of stepwise enhan
ement, e.g. totality,

idempoten
e.

� The 
on
ept of 
omposition (of enhan
ements) is similar in intent to our operation

for superimposition. However, there are some te
hni
al di�eren
es. First, following

our approa
h the same skeleton (in
luding names) is assumed for both operands of

superimposition, whereas in stepwise enhan
ement, renaming is 
onsidered as part

of 
omposition. Se
ond, in our approa
h skeleton elements and 
omputations are

stri
tly distinguished from ea
h other arising from the origin in attribute grammars.

A more 
on
eptional di�eren
e arises from the possibility in our approa
h to 
ontra
t

parameters.

� The pro
ess of produ
ing an enhan
ement (an extension), i.e. the the appli
ation

of a te
hnique to a skeleton, is quite similar to the appli
ation of an (extending)

transformation to some rules. The extension and the skeleton 
an be related to ea
h

other by a symbol mapping studied, for example, in [Jai95, KSJ93℄. Our proje
tions

are similar to the 
on
ept of symbol mappings.

� A 
on
ept like lifting (refer to Se
tion 3.5) is not 
onsidered at all in stepwise en-

han
ement be
ause lifting is rather related to program 
omposition.

4.4.3 Generi
 fragments and transformations

Generi
 fragments (or s
hemata, templates, 
li
hes et
.) are used in program synthesis,

whereas generi
 transformations (or transformation s
hemata) are used in program trans-

formation. In both �elds there are other tools than su
h s
hemata whi
h are however



142 CHAPTER 4. RELATED WORK

beyond the s
ope of this work. For a survey on program transformation in logi
 pro-

gramming refer to [PP94℄. Program s
hemata (refer to [Dev90℄ for an early referen
e,

refer e.g. to [FLO97℄ for some enumeration of re
ent work) have been introdu
ed in logi


programming in the 
ontext of program synthesis [DL94℄ with the motivation of reusability.

r(X)! (Y) :
isMinimal (X);

solve(X)! (Y):

[minimal℄

r(X)! (Y) :
isNonminimal (X);

de
ompose(X)! (Z ;X

1

;X

2

);

r(X

1

)! (Y

1

);

r(X

2

)! (Y

2

);


ompose(Z;Y

1

;Y

2

)! Y :

[nonminimal℄

Figure 4.10: A generi
 fragment for the divide-and-
onquer s
hema

Consider, for example, the rules in Figure 4.10 de�ning the divide-and-
onquer s
hema

as useful for logi
 programming. We refer to [Smi85℄, where the synthesis of divide-and-


onquer algorithms is 
onsidered in the �eld of fun
tional programming. As far as meta-

programming is 
on
erned, we 
an regard su
h a generi
 fragment t as a fun
tion f

t

of the

following form:

f

t

: Symbol

?

� Symbol

?

� Sort

?

! Rules

f

t

(de�ned ; required ; sorts) is intended to derive a 
on
rete spe
i�
ation fragment from the

generi
 fragment, where de�ned are the a
tual symbols to be de�ned by the template (r

in Figure 4.10), required are the a
tual symbols required in the s
hema (isMinimal , solve,

: : : in Figure 4.10) and sorts enumerates the sorts to be used in the s
hema (X, Y, Z in

Figure 4.10). f

t


an be derived from t by a simple transformation; refer to Se
tion D.2 for

the fun
tion 
orresponding to Figure 4.10.

Consequently, program s
hemata 
an be represented as su
h fun
tions, whereas pro-

gram transformation s
hemata 
an be regarded as parameterized meta-programs. In both


ases instantiation is simply fun
tional appli
ation. Our meta-programming framework

and the a
tual operator suite provide a detailed framework for reusable and exe
utable

des
riptions of program (transformation) s
hemata.

4.4.4 Spe
i�
ation-building operators

Several approa
hes to modularity have been formalized in terms of operators on spe
i�-


ations. There are for example formal operators to model import and export 
onstru
ts,

e.g. the operations union, interse
tion and en
apsulation with a 
ompositional semanti
s

supporting modularity in logi
 programming [Bro93, BMPT94℄.

In this subse
tion, we want to 
onsider a sophisti
ated approa
h to modularity in

algebrai
 spe
i�
ation based on so-
alled spe
i�
ation-building operators [Wir86, ST88,

SST92, Wir94℄. The following 
hara
terization has been taken from [SST92℄ to a great

extent.



4.4. PROGRAM DEVELOPMENT 143

Algebrai
 spe
i�
ation is used to model (software) systems as algebras. The simplest

possible way to give a spe
i�
ation of a system is to present a (very long, unstru
tured

and hen
e unmanageable) list of axioms over a given signature. Thereby, the properties


an be des
ribed whi
h have to be satis�ed by the system. Spe
i�
ation languages allow

spe
i�
ations to be built in a stru
tured manner using a prede�ned set of spe
i�
ation-

building operations. Consequently, �-spe
i�
ations are 
onsidered instead of �-senten
es.

A �-spe
i�
ation SP is expe
ted to determine a 
lass [[SP ℄℄ 2 P(Alg(� )) of �-algebras,

the models of SP . SP is 
onsistent if [[SP ℄℄ 6= ;.

Let us mention some typi
al operators; refer to Se
tion A.10 for formal details.

� impose � On SP to impose (further) axioms � on a spe
i�
ation SP ,

� derive from SP by � and translate SP by � to apply signature morphisms in

various ways,

� [ and + to 
ombine two spe
i�
ations,

� minimal SP : : : to 
onsider minimal algebras only,

� iso� 
lose SP to take the 
losure under isomorphism.

At the semanti
 level, spe
i�
ation-building operations are fun
tions mapping 
lasses of

algebras to 
lasses of algebras. Su
h operations may also be regarded as fun
tions mapping

spe
i�
ations to spe
i�
ations, the operator impose, for example, synta
ti
ally merges two

sets of axioms.

We provide a 
omparison of the algebrai
 approa
h and our meta-programming ap-

proa
h to reusability. The arguments, whi
h are raised here, apply a

ordingly to several

other operator suites, e.g. those in [Bro93, BMPT94℄:

� The spe
i�
ation building operators support programming in the large. Sets of ax-

ioms and the asso
iated 
lass of algebras are the main subje
ts under 
onsideration.

This is in 
ontrast to our approa
h, as we 
an operate on any fragment of a spe
-

i�
ation, not only on rules but also on parameterized symbols and on parameters.

Higher-order fun
tional programs are used to 
ompute spe
i�
ations, signatures and

fragments of them.

� Operators like derive and translate are abstra
t forms of well-established 
on
epts

for modularity, mainly parameterization (with renaming involved).

� Several operators are only meaningful as far as the asso
iated models are 
on
erned.

They 
annot be regarded as fun
tions from sets of axioms to sets of axioms, e.g. the

operators iso� 
lose and minimal.

� Indeed, the algebrai
 approa
h supposes model-theoreti
 operators (or in other words

semanti
s-oriented operators in [Bro93, BMPT94℄), whereas we take a rather synta
-

ti
al approa
h, although we insist on 
ertain preservation properties.





Chapter 5

Con
luding remarks

First, the main a
hievements of the thesis are summarized in Se
tion 5.1. Se
ond, the

implementation of the framework and the operator suite for meta-programming is outlined

in Se
tion 5.2. We also 
omment on �rst experien
es with this implementation. Finally,

topi
s for future work are indi
ated in Se
tion 5.3.

5.1 A
hievements

The results of the thesis have been dis
ussed in an abstra
t style in Se
tion 1.3. In this

Se
tion, we point out some parti
ular 
ontributions of our work reported in the thesis.

1. There are several suggestions for frameworks for meta-programming, e.g. the ap-

proa
h supported in the logi
 programming language G�odel [HL94℄. An important


ontribution of our work is its generality and its high level of abstra
tion. We 
an deal

with reusability in attribute grammars and logi
 programming et
. in mu
h the same

abstra
t way. Generality is a
hieved by the identi�
ation of some 
ommon target

language kernel; refer to Chapter 2. Abstra
tion is essentially a
hieved by di�erent

layers of operators for meta-programming; refer to Figure 1.12.

2. A parti
ular emphasis of our meta-programming approa
h is to 
reate a fully-typed

framework, whi
h is in 
ontrast to several meta-level approa
hes in the Prolog 
ontext

and also in 
ontrast to the AsFix approa
h [Kli94℄|to mention an approa
h in the


ontext of algebrai
 spe
i�
ation. To take into 
onsideration target types in meta-

programs obviously improves safety of meta-programming. More interestingly, we

have shown how types 
an e�e
tively be exploited to 
ontrol meta-programs, e.g. for

addressing parameter positions in target programs.

3. A
tually, we are not only 
on
erned with types, but also with modes. Modes are as

useful for safety of meta-programs and for the 
ontrol of meta-programs as types are.

The usefulness of modes has been re
ognized in the attribute grammar 
ommunity as

we 
an see in several works on related paradigm shifts su
h as Due
k's and Corma
k's

145



146 CHAPTER 5. CONCLUDING REMARKS

modular attribute grammars [DC90℄ and Lido [KW94℄. On the other hand, modes

have been ignored in other related attempts, e.g. stepwise enhan
ement [Lak89, SS94,

JS94℄ in logi
 programming. Our s
hemata for 
omputations and propagation heavily

rely on modes showing the general usefulness of them for other instan
es su
h as

natural semanti
s, logi
 programming and algebrai
 spe
i�
ation.

4. Semanti
s preservation is an important notion for reasoning about program trans-

formation. We have indi
ated several other (and in some 
ontexts more useful)

preservation properties of meta programs (Se
tion 2.6), e.g. extending transforma-

tions or re
overy of well-de�nedness and fragment sele
tion properties and others

for target programs (Se
tion 2.3). In 
ontrast to other attempts su
h as stepwise

re�nement [BvW98, KT93, Tr
93℄, we 
ompiled an operator suite suitable for rather

meta-programming than formal reasoning.

5. Program s
hemata and program transformation s
hemata have been extensively in-

vestigated, for example, in the �eld of logi
 programming; refer e.g. to the surveys on

program synthesis [DL94℄ and program transformation [PP94℄ in logi
 programming

and the LOPSTR pro
eedings [Fu
97, Gal97, Pro96℄. Our suite \unbundles" roles

whi
h are used in program transformation aiming, for example, at optimization, pro-

gram re�nement, program 
omposition, program synthesis and programming te
h-

niques used for example in stepwise enhan
ement.

6. As a 
onsequen
e of generality and abstra
tion, we 
an provide a re
onstru
tion of

existing attempts. Con
epts introdu
ed for one target language, 
an be adopted for

other languages. First, su
h a re
onstru
tion provides an abstra
t rigorous de�nition

of the 
on
ept. Se
ond, it may drasti
ally improve the pragmati
s of target languages,

where the extra
ted 
on
ept has not been 
onsidered so far. We 
onsidered, for

example, the re
onstru
tion of remote a

ess spe
i�
 to attribute grammars, stepwise

enhan
ement spe
i�
 to logi
 programming. Now these 
on
epts 
an be applied in

natural semanti
s and algebrai
 spe
i�
ation as well.

7. There are some unique s
hemata for transformation and 
omposition:

� superimposition where 
ontra
tion is involved; refer to Example 3.3.4;

� left-to-right propagation where a given propagation is extended in the sense

that the previous data 
ow is \res
heduled"; refer to the introdu
tory example

of Subse
tion 1.2.2;

� simultaneous renaming of sorts of parameter positions; refer to Subse
tion 3.2.2;

� interpolation of 
omputational elements; refer to x3.4.3.5;

� hiding symbols for the in
remental 
onstru
tion of premises; refer to x3.2.4.3;

� lifting as introdu
ed as higher-order 
omposition on transformations and rules;

refer to Se
tion 3.5.



5.2. IMPLEMENTATION 147

5.2 Implementation

The general framework from Chapter 2 instantiated for natural semanti
s and GSFs has

been implemented in

�

�

�

[HLR97, LRH96, RL93, Rie92℄. A superset of the operator

suite presented in Chapter 3 has been spe
i�ed in the fun
tional 
al
ulus provided by

the implementation of the instantiated framework. Thereby, we 
an exploit the meta-

programming approa
h for formal spe
i�
ation|espe
ially language de�nition|in the

spe
i�
ation framework of

�

�

�

.

A Meta

nA 1
Meta I m

TargetI 1
Target

Module system

TargetO

Datatypes for
meta-programming

Evaluator
Analyser

+
Expander

Backend

MP

Interpreter for modular meta-programs

Type-
checker

Figure 5.1: Interpretation of modular meta-programs in

�

�

�

Figure 5.1 shows the overall stru
ture of the implementation. A meta-program MP

is interpreted as follows. First, MP is analysed to obtain an intermediate representation.

MP possibly refers to target-level modules I

Target

i

or auxiliary meta-level modules A

Meta

j

;

refer to Subse
tion 2.5.5 for modular meta-programming. These modules are obtained

from the

�

�

�

module system and expanded in the intermediate representation. A natural

semanti
s is used to 
he
k stati
 semanti
s of the intermediate representation. Note that

a meta-program 
an be 
onsidered as a fun
tional program. Thus, there are no spe
ial

problems with type 
he
king. If type 
he
king is su

essful, the a
tual interpretation or

evaluation is performed whi
h is spe
i�ed by a re
ursive fun
tion de�nition in the style

of denotational semanti
s. Again, the evaluator is spe
i�ed in a standard way as 
om-

mon for the semanti
s of a fun
tional programming language. The evaluator makes use

of an ADT for the meta-programming data types introdu
ed in Se
tion 2.1. The ADT

is obtained by all the axioms and inferen
e rules shown in Chapter 2 in
luding them for

spe
ial features related to the instan
es natural semanti
s and GSFs. A su

essful evalu-

ation of MP returns the abstra
t representation of a target program whi
h is passed to

a ba
kend as 
ommon for

�

�

�

spe
i�
ation formalisms. The ba
kend writes the target

program ba
k to the module systems, keeps tra
k of the dependen
ies between modules

in the module system to support make features, pretty-prints type information and target


ode and generates exe
utable Prolog 
ode from the target program a

ording to

�

�

�

's

implementation strategy.



148 CHAPTER 5. CONCLUDING REMARKS

The 
urrent implementation has some short
omings we should 
omment on.

1. The meta-programming interpreter is very slow. Doing a 
omposition like the lan-

guage 
omposition in Se
tion D.1 takes several minutes on a SUN Ultra 5. The main

reason for that is that the interpreter is spe
i�ed in

�

�

�

's spe
i�
ation framework

and

�

�

�

's implementation strategy is useful for prototyping but not for eÆ
ient

language implementation. Sin
e the entire operator suite is implemented in the in-

terpreted 
al
ulus, huge environments holding all the operator de�nitions are passed

around during interpretation. That results in an una

eptable a

ess eÆ
ien
y due

to the naive environment implementation. The eÆ
ien
y of interpretation 
ould be

improved drasti
ally by an implementation of the fun
tional 
al
ulus based on a state

of the art implementation of a fun
tional programming language like SML or Haskell.

2. There are some 
on
i
ts between the a
tual

�

�

�

spe
i�
ation framework and the

ideal meta-programming framework developed in Chapter 2. There are for example

some

�

�

�


onstru
ts not 
overed by the implemented meta-programming frame-

work. There are di�erent representations used in the extended

�

�

�

system. E.g.

GSFs and types have been represented in another way in the previous system 
om-

pared to what is sensible for meta-programming. Altogether, the a
tual

�

�

�

system

should be re
onstru
ted to support meta-programming in a 
lean way without re-

dundan
y so that an orthogonal spe
i�
ation framework is a
hieved.

3. There is no support for �nding type errors and debugging at the meta-level.

4. The 
urrent implementation of the framework is monolithi
 in the sense that a
-

tually the instan
e of the framework is spe
i�ed, i.e. the basi
 framework and the

instantiation is not separated from ea
h other. We would like approa
h to a modular

approa
h to instantiation.

In spite of these limitations, we 
an 
on
lude some positive remarks on the a
tual

integration of

�

�

�

and our meta-programming approa
h. The expressive power of meta-

programming allows us to de
ompose, 
ompose and adapt spe
i�
ations in many ways

whi
h were not possible before in

�

�

�

. We 
an go stri
tly beyond the s
ope of modular

spe
i�
ation as supported by

�

�

�

's spe
i�
ation formalism PRA [HLR97, LRH96℄. The

modular language de�nition dis
ussed in Se
tion D.1, for example, requires the reusable

spe
i�
ation of semanti
 aspe
ts, the 
omposition te
hnique lifting and stru
tural adap-

tations. There is no other system to the best of our knowledge whi
h supports su
h a

modular de�nition.

5.3 Future work

Further areas should be investigated in future.

1. We have tried to outline possible notions of preservation and other properties. We

should sear
h for further properties and we should try to develop a more 
omplete

programming methodology. The relation between the properties and the real pro-

gramming pra
ti
e should be analysed in more detail. An advantage of our approa
h



5.3. FUTURE WORK 149

to reuse is that the meta-programs are exe
utable. A weakness is that many prop-

erties of operands and results of transformations 
an only be ensured by separate

proofs. We would like to 
over more properties, in the meta language itself in the

sense of a kind of type 
he
king.

2. It is 
urrent limitation of the operator suite that the 
omputation and propagation

s
hemata are only appli
able to instan
es with a well-de�nedness notion meeting L-

attribution. In general terms, the state of the operator suite 
on
erning 
ompleteness,

orthogonality and simpli
ity 
an 
ertainly be improved.

3. The meta-programming approa
h together with the a
tual operator suite requires


ase studies. We would like to demonstrate that the additional expressive power

gained by meta-programming really improves reusability in a pra
ti
al 
ontext. I

am working together with 
oauthors N.v. Ba
 and G. Riedewald on a language


onstru
tion set [LRBS℄, that is to say a library with spe
i�
ation fragments for

language design supporting the derivation of prototype interpreters.

4. To a
tually write meta-programs is only one possible appli
ation of our work. For

many appli
ations, a program manipulation system 
an be more e�e
tive. The 
hal-

lenge of a work on providing su
h tool support arises from the fa
t that in exist-

ing systems like Translog [Bru95℄ and Spes [ABFQ92℄ essentially fold/unfold-based

strategies are 
onsidered. A program manipulation system should not only support

the appli
ation of transformation rules and strategies. It should also guide the user

in showing dependen
ies and 
on
i
ts or in
omplete aspe
ts of a target program.

We possibly 
an adopt some 
on
epts from Attali's, Pas
ual's and Roudet's environ-

ment for program transformation based on the rule-based language TrfL for program

transformations [APR97℄.

5. We should investigate 
on
rete spe
i�
ation frameworks and systems in order to �nd

out if they are useful for the implementation of our meta-programming approa
h

and if they 
ould take advantage from some 
on
epts supplied by the framework

and the operator suite. We regard 
ompiler 
ompilers su
h as Co
ktail [GE90℄ or

FNC-2 [JP91, JP90, Par88, JPJ

+

90℄ and spe
i�
ation environments su
h as Centaur

[BCD

+

88℄ or ASF+SDF [Kli93℄ as some possible 
andidates.

6. The general framework is tuned towards �rst-order spe
i�
ation formalism with a

monomorphi
 type system. Due to the popularity of polymorphi
 higher-order fun
-

tional programming, e.g. Haskell [Has97, Tho96℄ and SML [MTH90℄, we would like

to see how a similar approa
h 
an be taken for su
h programming languages. Then

we need to model, for example, the following notions: anonymous fun
tions, poly-

morphism, 
urried fun
tions, type 
onstru
tion. Type 
onstru
tors and asso
iated


ombinators tend to be vital parts of fun
tional programs. Therefore, a 
orrespond-

ing meta-programming approa
h must address type 
onstru
tors whi
h is out of the

s
ope of the 
urrent framework.





Appendix A

Ba
kground

A.1 Domain notation

We use the following domain 
onstru
tors:

� Boolean = fTrue;Falseg

?

,

� 
 for produ
ts,

� � for 
oales
ed sums,

�

?

for sequen
es,

� ! for fun
tion spa
es,

� P( ) for power sets,

� ? for the maybe 
onstru
tion, i.e. D? = D � f?g

?

.

�

D

i

denotes the i-th proje
tion in D = D

1


 � � � 
D

n

. For d 2 D = D

0?

, �

D

i

(d) evaluates

to the element indexed by i in d. In

D

i

denotes the i-th inje
tion, Out

D

i

denotes the i-th

proje
tion, Is

D

i

denotes the test for D

i

in D = D

1

�� � ��D

n

. The i in �

D

i

, In

D

i

, Out

D

i

, Is

D

i

is repla
ed by D

i

if the D

i

are distinguishable. The D in supers
ripts is omitted if it 
an

be derived from the 
ontext. Sometimes we also use another notation for 
onstru
ting sum

domains whi
h fa
ilitates pattern mat
hing. D = inje
tion

1

(D

1

) � � � � � inje
tion

n

(D

n

),

where the inje
tion

i

denote user-de�ned names for the inje
tions.

A.2 Inferen
e rules

Rules of a natural semanti
s [Kah87℄ de�ne a logi
 and are used as proof-theoreti
 tool

to prove theorems within that logi
, building proof trees in a re
ursive top-down strategy

applying axioms and rules and involving uni�
ation. This pro
ess is non-deterministi
, i.e.

there 
an be several proof trees for the same fa
t.

A prominent example of an exe
utable spe
i�
ation formalism for natural semanti
s

is Typol [Des88℄ as integrated in the Centaur system [BCD

+

88, JRG92℄. One option to

151



152 APPENDIX A. BACKGROUND

exe
ute Typol is provided by a translation of the inferen
e rules into Prolog rules taking

advantage of the similarity of inferen
e rules and de�nite 
lauses.

The style of natural semanti
s is very suitable for de�ning stati
 semanti
s (or type


he
king) and dynami
 semanti
s of languages. The general idea of a semanti
 de�nition

in natural semanti
s is to provide axioms and rules 
hara
terizing semanti
 properties of

language 
onstru
ts. Thus, a semanti
 de�nition 
oin
ides with a logi
 and reasoning about

the language means proving theorems within that logi
. Proofs are done using stru
tural

indu
tion on abstra
t syntax patterns. The initial goal to prove 
ontains a 
omplete

abstra
t syntax term. The 
orresponding proof tree 
an be bigger than the given abstra
t

syntax term and even in�nite. That is the reason for natural semanti
s to be suitable for

the des
ription of dynami
 semanti
s.

Let us 
onsider the Typol formalism slightly more in detail. Inferen
e rules indi
ate how

a 
on
lusion I

0

` T

0

: S

0

may be dedu
ed from 
ertain premises I

i

` T

i

: S

i

for i = 1; : : : ; n.

The I

j

are 
alled inherited positions, the T

j

are abstra
t syntax patterns and the S

j

are


alled synthesized positions. A Typol rule is of the following form:

I

1

` T

1

: S

1

; : : : ; I

n

` T

n

: S

n

I

0

` T

0

: S

0

Besides premises, the numerator 
an also 
ontain predi
ates for auxiliary 
omputations of

the form:

pred(�

1

; : : : ; �

l

! �

1

; : : : ; �

m

)

Inherited and synthesized positions are (tuples of) variables. The set of input positions

of a rule is 
omposed from I

0

, S

1

, : : :, S

n

, �

1

, : : :, �

m

, whereas the 
omplementary set


orresponds to the set of output positions. Roughly, input positions are 
omputed by the

outer 
ontext and they are used in the rule to 
ompute the output positions whi
h are then

transmitted to the outer 
ontext.

For spe
ifying any kind of judgements in this thesis we use a notational variant of

inferen
e rules similar to RML [Pet95, Pet94℄ suggested for natural semanti
s spe
i�
ations.

� Alphanumeri
 identi�ers are used to name propositions. Subs
ripts and supers
ripts

are not parameters, but they qualify the name of the proposition (for readability or

to avoid overloading).

� Arguments and results are distinguished. If there are any results, they are separated

from the arguments by !.

� Premises are read from left to right. A
tually, arguments of a premise are required

to o

ur somewhere before on a result position of another premise or as an argument

of the 
on
lusion.

We do not make use of unknowns.



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 153

A.3 Grammars of Synta
ti
al Fun
tions

GSFs (Grammars of Synta
ti
al Fun
tions, [Rie91, RMD83, Rie72, Rie79℄) are a kind of

attribute grammars 
losely related to logi
 programs, and logi
al grammars. The GSF

formalism has been derived from two-level grammars during 1971{1972 with the aim to

obtain an exe
utable and more readable form of two-level grammars. GSFs are also similar

to the more re
ent formalism RAG [CD84, DM85, DM93℄.

A GSF 
onsists of

� a GSF s
hema, i.e. a set of GSF rules, that is to say a parameterized 
ontext-free

grammar with relational formulae asso
iated with the rules and

� a GSF interpretation providing 
arriers for the parameters and interpretations for

relational symbols in the relational formulae.

Con
erning formal language de�nition, a GSF s
hema de�nes the syntax and the rough

stru
ture of the semanti
s of a language. The GSF interpretation re�nes the GSF s
hema.

De�nition A.3.1

A GSF s
hema is a tuple GS = hB;R; V; �;PPi, where B = hN; T; P; si is a redu
ed


ontext-free grammar (N set of nonterminals, T set of terminals, P set of produ
tion rules,

s 2 N start symbol)|the basi
 grammar of the GSF|, R and V are �nite sets of relational

symbols and variables, respe
tively. PP is a �nite set of produ
tion rule patterns, ea
h of

the form

f

0

(P

f

0

;1

; : : : ; P

f

0

;�(f

0

)

) :

f

1

(P

f

1

;1

; : : : ; P

f

1

;�(f

1

)

); : : : ; f

n

(P

f

n

;1

; : : : ; P

f

n

;�(f

n

)

); (A.1)

h

1

(P

h

1

;1

; : : : ; P

h

1

;�(h

1

)

); : : : ; h

m

(P

h

m

;1

; : : : ; P

h

m

;�(h

m

)

):

where f

0

2 N; f

1

; : : : ; f

n

2 N [ T , h

1

; : : : ; h

m

2 R,

P

f

0

;1

; : : : ; P

h

m

;�(h

m

)

2 V and

f

0

! f

1

: : : f

n

2 P .

N , T and R are pairwise disjoint. The arity � maps ea
h symbol (element of N[T [R)

into N

0

(number of parameters of a fun
tion). Ea
h s(P

1

; : : : ; P

�(s)

) o

urring on the left-

hand side of some produ
tion rule pattern is a start element of the GSF. }

We also use the term GSF rule instead of produ
tion rule pattern. Variables are the

only kind of parameters so far. It is possible to extend the basi
 formalism to 
ope with


onstants, tupels, terms and sequen
es. We instrument a spe
ial notation, where the

relational symbols are marked by the symbol &. Thereby, spe
ial de
larations of grammar

symbols and relational symbols are not required. GSF rules are usually labelled by a tag.

Example A.3.1

Consider the following GSF rules modelling syntax, stati
 semanti
s and AST 
onstru
tion

for sequen
es of assignments as in an imperative programming language.



154 APPENDIX A. BACKGROUND

statements(ST;STM) : statement(ST;STM

1

);

statements(ST;STM

2

);

& 
on
at(STM

1

;STM

2

;STM):

[
on
at℄

statements(ST;STM) : & skip(STM): [skip℄

statement(ST;STM) : identi�er(ID);

& lookup(ST; ID;T

LHS

);

expression(ST;T

RHS

;EXP);

& assignable(T

LHS

;T

RHS

);

& assign(ID;EXP;STM):

[assign℄

statements, statement , expression 2 N , identi�er 2 T , 
on
at , skip, lookup, assignable,

assign 2 R, ST, STM, STM

1

, STM

2

, T

LHS

, T

RHS

, ID, EXP 2 V . The parameters 
on
ern

symbol table propagation (ST), types of identi�ers and expressions (T

LHS

, T

RHS

), termi-

nal attribution for identi�ers (ID), abstra
t representations of expressions and statements

(STM, STM

1

, STM

2

, EXP). The relational formula & lookup(ST; ID; T

LHS

) models a sym-

bol table lookup to retrieve the type asso
iated with the variable identi�er. The relational

formula & assignable(T

LHS

;T

RHS

) models a test if types of LHS and RHS of an assignment

are 
ompatible. All the other relational formulae are 
on
erned with the 
onstru
tion of

ASTs. }

In many appli
ations it is 
omfortable to distinguish di�erent groups of relational sym-

bols. Thus, we use a form &

p

to pre�x relational formulae. p 
an be regarded as a kind of

quali�er in the sense of a module name, e.g. in the above example it makes sense to 
on-

sider one group of relational formulae related to stati
 semanti
s, whereas another group


on
erns 
onstru
tions of ASTs.

A GSF interpretation de�nes the domains of the parameter positions and assigns rela-

tions between these domains to the relational symbols.

De�nition A.3.2

Let GS = hB;R; V; �;PPi be a GSF s
hema. A GSF interpretation for GS is a tuple

IP = hD; Æ

p

; Æ

V

; �i, where

� D is a family of domains,

� Æ

p

is a fun
tion assigning to the i-th parameter position of a symbol f a domain

Æ

p

(f; i) 2 D,

� Æ

V

is a fun
tion assigning to ea
h variable v 2 V a domain Æ

V

(v) 2 D,

� � is a fun
tion asso
iating with ea
h element f 2 R an �(f)-ary relation �(f) �

Æ

p

(f; 1)� � � � � Æ

p

(f; �(f)).

For all produ
tion rule patterns p 2 PP and all elements f(P

1

; : : : ; P

�(f)

) o

urring in p

with P

1

; : : : ; P

�(f)

2 V the following 
onditions have to be satis�ed for i = 1; : : : ; �(f):

P

i

2 V ) Æ

V

(P

i

) = Æ

p

(f; i). }



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 155

Example A.3.2

We give an interpretation for the above GSF s
hema. ST is the domain of symbol tables,

T is the domain of types (i.e. type expressions), I is the domain of identi�ers. E , C are

the domains of abstra
t representations of expressions and statements respe
tively. The

following tables de�ne Æ

p

and Æ

V

:

f �(f) Æ

p

(f; 1) Æ

p

(f; 2) Æ

p

(f; 3)

statements 2 ST C

statement 2 ST C

expression 3 ST T E

identi�er 1 I

skip 1 C


on
at 3 C C C

lookup 3 ST I T

assignable 2 T T

assign 3 I E C

v Æ

V

(v)

ST ST

STM C

STM

1

C

STM

2

C

T

LHS

T

T

RHS

T

ID I

EXP E

Let us assume the following de�nition of the domain of symbol tables.

ST = I ! T

The relations asso
iated with the relational symbols are de�ned as follows:

�(skip) = fskipg

�(
on
at ) = f(


1

; 


2

; 


3

)j


i

2 C; for i = 1; 2; 3; 


3

= 
on
at(


1

; 


2

)g

�(lookup) = f(st; i; t)jst 2 ST ; i 2 I; t 2 T ; t = st(i)g

�(assignable) = f(t; t)jt 2 T g

�(assign) = f(i; e; 
)ji 2 I; e 2 E ; 
 2 C; 
 = assign(i; e)g

skip, 
on
at and assign are interpreted as term 
onstru
tors in the sense of a term algebra.

Thus, the domain C is regarded as a domain of terms, where skip, 
on
at and assign are

the 
orresponding term 
onstru
tors. The interpretation for lookup is suitable to lookup

the type of a variable in a symbol table. The interpretation of assignable is �xed in a way

that types of the LHS and the RHS in an assignment must be equal. }

De�nition A.3.3

A GSF is a pair G = hGS ; IPi, where GS is a GSF s
hema and IP is a GSF interpretation

for GS . }

To generate a word by means of 
ontext-free derivation, �rst the produ
tion rule pat-

terns have to be turned into 
ontext-free produ
tion rules. Ea
h variable o

urring in a

produ
tion rule pattern is 
onsistently substituted by a value from its 
orresponding do-

main. This substitution pro
ess is 
ontrolled by the relations o

urring in the produ
tion

rule pattern.



156 APPENDIX A. BACKGROUND

De�nition A.3.4

Let G = hGS ; IPi be a GSF with GS = hB;R; V; �;PPi and IP = hD; Æ

p

; Æ

V

; �i.

I(f) = ff(d

1

; : : : ; d

�(f)

)jd

i

2 Æ

p

(f; i); i = 1; : : : ; �(f)g

is 
alled the set of instan
es of the symbol f

1

.

I(A) =

[

f2A

I(f) where A � N [ T [R

F

0

! F

1

: : : F

n

is a 
ontext-free produ
tion rule derived from p 2 PP of form (A.1) if

f

0

(d

f

0

;1

; : : : ; d

f

0

;�(f

0

)

) :

f

1

(d

f

1

;1

; : : : ; d

f

1

;�(f

1

)

); : : : ; f

n

(d

f

n

;1

; : : : ; d

f

n

;�(f

n

)

); (A.2)

h

1

(d

h

1

;1

; : : : ; d

h

1

;�(h

1

)

); : : : ; h

m

(d

h

m

;1

; : : : ; d

h

m

;�(h

m

)

):

� is the result of the 
onsistent substitution of ea
h variable v 2 V o

urring in p by a

value from Æ

V

(v),

� hd

h

i

;1

; : : : ; d

h

i

;�(h

i

)

i 2 �(h

i

) for i = 1; : : : ; m and

� F

0

; : : : ; F

n

are the instan
es f

0

(d

f

0

;1

; : : : ; d

f

0

;�(f

0

)

); : : : ; f

n

(d

f

n

;1

; : : : ; d

f

n

;�(f

n

)

) of the

symbols f

0

; : : : ; f

n

.

I


f

(p) is the set of 
ontext-free produ
tion rules derived from p 2 PP ; I


f

(PP) is the set

of 
ontext-free produ
tion rules derived from the produ
tion rule patterns in PP . }

De�nition A.3.5

Let G = hGS ; IPi be a GSF with GS = hB;R; V; �;PPi and IP = hD; Æ

p

; Æ

V

; �i. The

binary relation ) on I(N [ T )

�

is de�ned as follows:

uFw) uvw () F ! v 2 I


f

(PP)

where uw 2 I(N [ T )

�

. The relation)

+

is the transitive 
losure of ), )

�

is the re
exive


losure of )

+

. Let be s the start symbol of the basi
 grammar of GS , t

�

2 I(T )

�

. t

�

is a

word generated by G, if

9F

0

2 I(s) : F

0

)

�

t

�

:

L(G) denotes the language generated by the GSF G. It 
ontains all the words generated

by G. }

Note that L(G) � L(B), i.e. the language generated by the GSF is usually some subset

of the language generated by the underlying 
ontext-free grammar.

Usually, there is an in�nite number of derived produ
tion rule patterns. Thus, for

the analysis of a given string of terminal symbols it is impra
ti
al to use a 
ontext-free

parsing te
hnique with the derived 
ontext-free produ
tion rules. There are two general

1

In the 
ase of �(f) = 0 the parentheses are omitted, thus I(f) = ffg



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 157

approa
hes to solve this problem. The �rst approa
h parses the program a

ording to

the basi
 
ontext-free grammar and then 
al
ulates a variable substitution satisfying all

the 
orresponding relations. The se
ond approa
h in
orporates the variable substitution

and the evaluation of the relations into the parsing pro
ess based on a dire
ted evaluation

s
hema. Thereby, semanti
s-dire
ted parsing (or parsing dire
ted by attribute values) 
an

be modelled.

The se
ond approa
h is more general be
ause in a te
hni
al sense it permits parsing to

depend on attribute values. The approa
h is formalized in the sequel. We start by re�ning

the de�nition of a GSF s
hema by dividing parameter positions into input and output

positions and requiring a 
ertain data 
ow 
riterion.

De�nition A.3.6

Let GS = hB;R; V; �;PPi be a GSF s
hema, � is a fun
tion de�ning dire
tions (also 
alled

modes) for GS , if �(f; i) 2 f#; "g for f 2 (N [ T [ R), i = 1; : : : ; �(f). If �(f; i) =#, i is

an input position of f , whereas for �(f; i) =", i is an output position. }

In the Knuthian terminology, input and output positions of terminals and nonterminals


an be 
alled inherited and synthesized positions respe
tively.

De�nition A.3.7

Let GS = hB;R; V; �;PPi be a GSF s
hema, � is a fun
tion de�ning dire
tions for GS .

Suppose that for ea
h f 2 (N [ T [ R), the partitioning of parameter positions by � is

written as follows: i(f; 1), : : :, i(f; i

f

) are the input positions of f , whereas o(f; 1), : : :,

o(f; o

f

) are the output positions of f .

Ea
h o

urren
e of a variable in a produ
tion rule pattern r of the form (A.1) is 
lassi�ed

either as applied or de�ning o

urren
e. The sets A

r

of applied o

urren
es and D

r

of

de�ning o

urren
es are de�ned as follows:

A

r

= (

n

[

k=1

fP

f

k

;i(f

k

;1)

; : : : ; P

f

k

;i(f

k

;i

f

k

)

g) [ fP

f

0

;o(f

0

;1)

; : : : ; P

f

0

;o(f

0

;o

f

0

)

g

D

r

= fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g [ (

n

[

k=1

fP

f

k

;o(f

k

;1)

; : : : ; P

f

k

;o(f

k

;o

f

k

)

g)

}

Applied o

urren
es are expe
ted to be \
omputed" in terms of de�ning positions.

These terms are used in mu
h the same way in extended attribute grammars [WM77℄. In

attribute grammars, notions like used and de�ned attribute o

urren
es are de�ned. These

terms are tuned towards named attributes rather than a position-oriented framework as in

our 
ase.

De�nition A.3.8

Let GS = hB;R; V; �;PPi be a GSF s
hema, � is a fun
tion de�ning dire
tions for GS .

GS is a �-dire
ted GSF s
hema, if the following property holds A

r

� D

r

, i.e. ea
h variable



158 APPENDIX A. BACKGROUND

o

urring on an input position in the rule body or an output position in the rule head

o

urs on an output position in the rule body or an input position in the rule head. }

The notion of a �-dire
ted GSF s
hema 
an be used for a deterministi
 evaluation

strategy in the following manner. If the interpretations of relational symbols allow out-

put positions to be 
omputed e�e
tively from the input positions, the appli
ation of the

interpretations is delayed until all input positions have been 
omputed.

Example A.3.3

The GSF s
hema from Example A.3.1 is a �-dire
ted GSF s
hema with regard to the

following �.

f �(f; 1) �(f; 2) �(f; 3) i(f; 1); o(f; 1);

: : : ; : : : ;

i(f; i

f

) o(f; o

f

)

statements # " 1 2

statement # " 1 2

expression # " " 1 2,3

identi�er " 1

lookup # # " 1,2 3

assignable # # 1,2

skip " 1


on
at # # " 1,2 3

assign # # " 1,2 3

}

The following de�nition 
aptures what is meant by \output positions of a parameterized

relational symbol 
an e�e
tively be 
omputed from the input positions by the interpretation

of the relational symbol".

De�nition A.3.9

A GSF G = hGS ; IPi is �-dire
ted GSF, if GS is a �-GSF s
hema, and the following

property holds for the GSF interpretation IP : For ea
h r 2 R, �(r) 
an be des
ribed by a

�

!

(r) as follows:

8d

#

1

2 Æ

p

(r; i(r; 1)); : : : ; d

#

i

r

2 Æ

p

(r; i(r; i

r

)) :

�

!

(r)hd

#

1

; : : : ; d

#

i

r

i = hd

"

1;1

; : : : ; d

"

1;o

r

i; hd

"

2;1

; : : : ; d

"

2;o

r

i; : : : su
h that

hd

1

; : : : ; d

�(r)

i 2 �(r) with d

i(r;1)

= d

#

1

; : : : ; d

i(r;i

r

)

= d

#

i

r

,

9k : d

o(r;1)

= d

"

k;1

; : : : ; d

o(r;o

r

)

= d

"

k;o

r

}

An even more restri
ted variant of � should be mentioned, that is to say the output positions

of a parameterized relational symbol are uniquely de�ned for given input parameters. That

is similar to the interpretation of semanti
 fun
tion symbols in an ordinary AG by fun
tions.



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 159

This kind of GSF s
hemata has been suggested in [RL89℄ as fun
tional GSFs. A slightly

more general variant of � requires a �nite set of possible output substitutions. This form of

GSFs has been suggested in [Har97℄ (exe
utable GSFs). The above de�nition 
opes with

an arbitrary number of output substitutions.

Instead of de�ning �, a notational variant for produ
tion rule patterns is suggested.

Assuming for ea
h f 2 (N [ T [ R) a 
(f) su
h that �(f; 1) =#, : : :, �(f; 
(f)) =#,

�(f; 
(f) + 1) =", : : :, �(f; �(f)) =", then the 
(f) and thereby � 
an be obtained if the

produ
tion rule patterns are of the following form:

f

0

(P

f

0

;1

; : : : ; P

f

0

;
(f

0

)

)! (P

f

0

;
(f

0

)+1

; : : : ; P

f

0

;�(f

0

)

) :

f

1

(P

f

1

;1

; : : : ; P

f

1

;
(f

1

)

)! (P

f

1

;
(f

1

)+1

; : : : ; P

f

1

;�(f

1

)

); : : : ; (A.3)

f

n

(P

f

n

;1

; : : : ; P

f

n

;
(f

n

)

)! (P

f

n

;
(f

n

)+1

; : : : ; P

f

n

;�(f

n

)

);

h

1

(P

h

1

;1

; : : : ; P

h

1

;
(h

1

)

)! (P

h

1

;
(h

1

)+1

; : : : ; P

h

1

;�(h

1

)

); : : : ;

h

m

(P

h

m

;1

; : : : ; P

h

m

;
(h

m

)

)! (P

h

m

;
(h

m

)+1

; : : : ; P

h

m

;�(h

m

)

):

Thus, the ! is used to separate input and output positions.

Example A.3.4

Example A.3.1 is rewritten in the arrow notation. Moreover, we also use di�erent pre�xes

to point out the di�erent groups of relational symbols.

statements(ST) ! (STM) : statement(ST) ! (STM

1

);

statements(ST) ! (STM

2

);

&

ast


on
at(STM

1

;STM

2

) ! (STM):

[
on
at℄

statements(ST) ! (STM) : &

ast

skip ! (STM): [skip℄

statement(ST) ! (STM) : identi�er ! (ID);

expression(ST) ! (T

RHS

;EXP);

&

stati


lookup(ST; ID) ! (T

LHS

);

&

stati


assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP) ! (STM):

[assign℄

}

There are various 
hoi
es for restri
ting the data 
ow a

ording to evaluation strategies.

A simple example are L-attributed AGs, where attibute evaluation 
oin
ides with a single

left-ro-right traversal of the syntax tree.

De�nition A.3.10

Let GS = hB;R; V; �;PPi be a GSF s
hema, � is a fun
tion de�ning dire
tions for GS .

GS is L-attributed, if there is some permutation g

1

, : : :, g

q

, q = n +m of f

1

, : : :, f

n

, h

1

,

: : :, h

m

su
h that the relative order of f

1

, : : :, f

n

is preserved and the following properties

hold:



160 APPENDIX A. BACKGROUND

fP

g

s

;i(g

s

;1)

; : : : ; P

g

s

;i(g

s

;i

g

s

)

g �

s�1

[

k=1

fP

g

k

;o(g

k

;1)

; : : : ; P

g

k

;o(g

k

;o

g

k

)

g where s = 1; : : : ; q

[ fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g

fP

f

0

;o(f

0

;1)

; : : : ; P

f

0

;o(f

0

;o

f

0

)

g �

q

[

k=1

fP

g

k

;o(g

k

;1)

; : : : ; P

g

k

;o(g

k

;o

g

k

)

g

[ fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g

}

Using L-attributed GSF s
hemata, another notation of GSF rules making L-attribution

more expli
it is straightforward. Parameterized grammar symbols and relational symbols

are no longer grouped, but parameterized relational symbols are inserted in su
h positions

that a proper permutation in the sense of De�nition A.3.10 is made expli
it. Su
h GSF

s
hemata are 
all-
orre
t in similarity to 
all-
orre
tness of logi
 programs with modes

(w.r.t. the simple Prolog 
omputation rule for example) [Boy96a℄. A formal de�nition is

omitted. The data-
ow in a 
all-
orre
t rule is visualized in Figure A.1.

s

0

(: : :)! (: : :) : s

1

(: : :)! (: : :); s

2

(: : :)! (: : :); : : : ; s

n

(: : :)! (: : :)

� �

?

� �

?

� �

?

: : :

� �

6

- -

$

%

Figure A.1: Dependen
ies from the left to the right

Besides dire
tions, the usability of types will be dis
ussed below. So far typing is only


onsidered at the level of the GSF interpretation. Parameter positions and variables are

asso
iated with domains. We 
an also re�ne the notion of a GSF s
hema to 
ope with

types, e.g. many-sorted types.

De�nition A.3.11

A many-sorted GSF s
hema is a tuple GS = hB;R; V;D; �; �;PPi, where D is a set of

sorts (also 
alled names of domains), the fun
tion � : (N [ T [ R) ! D

�

asso
iates a

type (also 
alled pro�le) with every fun
tion name, the fun
tion � : V ! D asso
iates

a sort (also 
alled type) with every parameter, hB;R; V; �;PPi is a a GSF s
hema su
h

that �(f) = j�(f)j for all f 2 (N [ T [ R), for all p 2 PP of form (A.1), for all f 2

ff

0

; f

1

; : : : ; f

n

; h

1

; : : : ; h

m

g the following soundness 
ondition must be satis�ed:

�(f) = h�(P

f;1

); : : : ; �(P

f;�(f)

)i

}



A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 161

GSF interpretations should be restri
ted for many-sorted GSF s
hemata in the same

way as �-algebras are 
ertain algebras satisfying �. We omit the 
orresponding de�nition.

Obviously, types and dire
tions may be 
ombined. Other 
on
epts 
an be integrated

with the basi
 GSF formalism as well. The GS spe
i�
ation formalism [LRH96℄ of

�

�

�

,

for example, supports a 
ombination of many-sorted types, dire
tions, tagged rules and

optional pre�xes (quali�er) for relational formulae, 
onstants and terms as further forms of

parameters and prede�ned relational symbols for the support of basi
 data types. There are

further possible extensions 
on
erning overloading, polymorphism or higher-order features.

From a pra
ti
al point of view it is not so 
onvenient to de
lare expli
itly pro�les of

symbols and sorts of variables (fun
tions � and �). Espe
ially, it 
an be de
ided if a suitable

� exists for a given � . On the other hand, we 
an also assume a kind of naming dis
ipline

for variables, where the stems of the variables are supposed to represent sorts. A
tually,

this kind of dis
ipline is assumed in the spe
i�
ation framework of

�

�

�

. Thus, neither �

nor � need to be de�ned expli
itly.

Example A.3.5

Let us derive the signature asso
iated with the dire
ted GSF s
hema in Example A.3.4.

We use the stems of the variables as sorts.

statements : ST! STM

statement : ST! STM

expression : ST! T� EXP

identi�er : ! ID

&

ast

skip : ! STM

&

ast


on
at : STM� STM! STM

&

stati


lookup : ST� ID! T

&

stati


assignable : T� T

&

ast

assign : ID� EXP! STM

}

To 
on
lude the presentation of the GSF formalism, we want to re
onstru
t below a

famous example of Knuth's paper on Attribute Grammars [Knu68℄. The example 
on
erns

the 
omputation of the de
imal value of binary numbers.

Example A.3.6

The underlying 
ontext-free grammar of the below GSF s
hema des
ribes binary numbers

l

1

:l

2

, i.e. l

1

and l

2

are sequen
es of 0's and 1's. The attribution models the 
omputation of

the (de
imal) value of a binary number. Attributes of the sort VAL are 
omputed as the

value of (a part of) a binary number. Attributes of the sort LEN a

umulate the length

of the parts l

1

and l

2

. Attributes of the sort SCALE are inherited to point out the valen
y

of a position. There are the following GSF rules. Note that the same example is shown in

some standard notation in Example A.3.7.



162 APPENDIX A. BACKGROUND

z ! (VAL) : l(SCALE

1

) ! (LEN

1

;VAL

1

);

\.";

l(SCALE

2

) ! (LEN

2

;VAL

2

);

& add(VAL

1

;VAL

2

) ! (VAL);

& zero

SCALE

! (SCALE

1

);

& neg(LEN

2

) ! (SCALE

2

):

[p

1

℄

z ! (VAL) : l(SCALE) ! (LEN ;VAL);

& zero

SCALE

! (SCALE):

[p

2

℄

l(SCALE) ! (LEN

0

;VAL

0

) : l(SCALE

0

) ! (LEN ;VAL

1

);

b(SCALE) ! (VAL

2

);

& add(VAL

1

;VAL

2

) ! (VAL

0

);

& in


LEN

(LEN ) ! (LEN

0

);

& in


SCALE

(SCALE ) ! (SCALE

0

):

[p

3

℄

l(SCALE) ! (LEN ;VAL) : b(SCALE ) ! (VAL);

& one ! (LEN ):

[p

4

℄

b(SCALE) ! (VAL) : \1";

& power (SCALE ) ! (VAL):

[p

5

℄

b(SCALE) ! (VAL) : \0";

& zero

VAL

! (VAL):

[p

6

℄

The GSF interpretation 
an be des
ribed as follows. First, we asso
iate the sorts with

some suitable domains:

VAL = Q (rational numbers)

LEN = N

0

(natural numbers in
luding zero)

SCALE = Z (integer numbers)

Se
ond, the relational symbols are asso
iated with suitable relations:

hv

1

; v

2

; v

3

i 2 add , v

3

= v

1

+ v

2

s 2 zero

SCALE

, s = 0

hl; si 2 neg , s = �l

hl; l

0

i 2 in


LEN

, l

0

= l + 1

hs; s

0

i 2 in


SCALE

, s

0

= s + 1

l 2 one , l = 1

hs; vi 2 power , v = 2

s

v 2 zero

VAL

, v = 0

}



A.4. OBJECT-ORIENTED CLASS SYSTEMS 163

Example A.3.7

The below AG spe
i�
ation developed in the 
ommon AG notation is intended to be

equivalent to the GSF from Example A.3.6.

[p

1

℄ : z ! l

1

:l

2

z:VAL := l

1

:VAL + l

2

:VAL

l

1

:SCALE := 0

l

2

:SCALE := �l

2

:LEN

[p

2

℄ : z ! l

z:VAL := l

1

:VAL

l:SCALE := 0

[p

3

℄ : l

0

! l

1

b

l

0

:VAL := l

1

:VAL + b:VAL

l

0

:LEN := l

1

:LEN + 1

l

1

:SCALE := l

0

:SCALE + 1

b:SCALE := l

0

:SCALE

[p

4

℄ : l! b

l:VAL := b:VAL

l:LEN := 0

b:SCALE := l:SCALE

[p

5

℄ : b! 1

b:VAL := 2

b:SCALE

[p

6

℄ : b! 0

b:VAL := 0

}

A.4 Obje
t-oriented 
lass systems

We establish some basi
 notions for dealing with 
lass hierar
hies and inheritan
e. These

notions are needed for obje
t-oriented attribute grammars. B ! A reads as A is a sub
lass

of B or B is a super
lass of A. (C;!) denotes a 
lass system, where C is a set of 
lasses. !

+

denotes the transitive 
losure of!, whereas !

?

denotes the re
exive, transitive 
losure of

!. C !

+

A reads as A is a des
endant 
lass of C or C is an an
estor 
lass of A.

(C;!) is a 
y
le-free 
lass system if A !

+

A holds for no A. Without any further re-

stri
tions, multiple inheritan
e (MI) is 
aptured. Single inheritan
e (SI) puts the following

restri
tion on the 
lass system: B ! A )69C 6= B with C ! A, i.e. ! 
orresponds to a

forest.

A.5 Obje
t-oriented 
ontext-free grammars

We de�ne various forms of obje
t-oriented 
ontext-free grammars [Kos91℄.



164 APPENDIX A. BACKGROUND

De�nition A.5.1

Let G be a CFG, i.e. a quadrupel hN; T; s; P i. N is the set of nonterminals, whereas T is

the set of terminals. N and T are �nite sets su
h N [ T = ;. s 2 N is the start symbol of

G. P is a �nite set of 
ontext-free produ
tions.

1. A CFG is pseudo-redu
ed, if for all nonterminals A either s )

?

uAv )

?

w, or

A)

+

B and s)

?

uBv )

?

w, where u; v 2 (T [N)

?

and w 2 T

?

.

2. A pseudo-redu
ed, 
y
le-free CFG is MI-stru
tured, if for ea
h A 2 N (1) or (2)

holds:

(1) jfp 2 P j p = (A! v for some vgj = 1 and (A! v) 2 P implies v 2 (T [N)

?

(2) (A! v) 2 P implies v 2 N

3. An MI-stru
tured CFG is SI-stru
tured, if (A ! B) 2 P and (C ! B) 2 P implies

A = C.

4. An MI(SI)-stru
tured CFG is strongly MI(SI)-stru
tured if it is redu
ed.

}

Example A.5.1

The following rules are part of a CFG for the syntax of a simple imperative language.

Statement ! Identi�er \ := " Expression

Statement ! Identi�er \("Expression\)"

Statement ! \While" Expression \Do" Statement

: : :

To obey the above mentioned properties for 
ontext-free grammars to be sensible from

the obje
t-oriented point of view, the rules have to be transformed as follows:

Statement ! AssignStatement

Statement ! Pro
edureCall

Statement ! WhileStatement

AssignStatement ! Identi�er \ := " Expression

Pro
edureCall ! Identi�er \("Expression\)"

WhileStatement ! \While" Expression \Do" Statement

: : :

}



A.6. OBJECT-ORIENTED ATTRIBUTE GRAMMARS 165

A.6 Obje
t-oriented attribute grammars

Here we want to present some examples of obje
t-oriented AGs. The 
omputation of some

forms of expressions serve as a running example.

Example A.6.1

The 
omputation of expressions is spe
i�ed in the Ag notation of Co
ktail.

Expr = [Value : INTEGER℄ fValue := 0g

<

Add = Lop : Expr \ + " Rop : Expr fValue := Lop : Value + Rop : Valueg:

Sub = Lop : Expr \� " Rop : Expr fValue := Lop : Value � Rop : Valueg:

Const = Integer fValue := Integer : Valueg:

>:

Integer : [Value : INTEGER℄:

The CFG is SI-stru
tured due to the nested notation of sub
lasses. Attribute de
-

larations are en
losed in square bra
kets (the role of either an an
estral or synthesized

attribute is derived from the 
ontext), whereas semanti
 rules are en
losed in bra
es. For


ompleteness, the underlying CFG is shown:

Expr ! Add j Sub j Const

Add ! Expr \ + " Expr

Sub ! Expr \� " Expr

Const ! Integer

The use of attribute inheritan
e is obvious. The synthesized attribute Value is de
lared

for Expr , only. It is inherited to Add , Sub, Const . That is not an impressive result be
ause

these nonterminals have been introdu
ed to adhere to the style of obje
t-oriented 
ontext-

free grammar. Inheritan
e of semanti
 rules is shown only in the sense of a pedagogi
al

example: The 
omputed value of an expression is 0 by default. This de�nition has to be

overridden in all 
on
rete sub
lasses. }

It is essential for obje
t-orientation in CFGs to distinguish nonterminals de�ned by


hain produ
tions and nonterminals de�ned by a stru
tural spe
i�
ation. For 
ompleteness,

we mention the Mj6olner/Orm terminology for 
lass de�nitions using a �ner granularity:

� Abstra
t 
lasses 
orrespond to super
lass nonterminals.

� Stru
tured 
lasses 
orrespond to nonterminals with a stru
tural spe
i�
ation.

� Case 
lasses are a spe
ial feature supporting the inheritan
e of synta
ti
 patterns.

Stru
tured 
lasses are further divided into

� 
onstru
tion 
lasses spe
i�ed by a sequen
e of 
omponents,

� list 
lasses for lists of 
omponents of the same kind and

� lexeme 
lasses for lexi
al items.



166 APPENDIX A. BACKGROUND

Example A.6.2

Example A.6.1 is rewritten in the style of Mj6olner/Orm.

<Expr> ::= Abstra
t

Syn Value : integer ;

Value := 0;

<Const> : <Expr> ::= Lexeme

Value := : : : integer value of the 
onstant : : : ;

<BinOp> : <Expr> ::= f<left : Expr> & <right : Expr>g

<Add> : <BinOp> ::= Case

Value := left :Value + right :Value;

<Sub> : <BinOp> ::= Case

Value := left :Value � right :Value;

Using 
ase 
lasses we obtain a CFG whi
h slightly di�ers from that in Example A.6.1.

Case 
lasse are useful to point out the 
ommon stru
ture of binary addition and subtra
tion.

Expr = BinOp j Const

BinOp = Add j Sub

Add = Expr Expr

Sub = Expr Expr

}

A.7 A
tion semanti
s

The spe
i�
ation of a simple imperative language SIMPL is presented below in order to


omplete the dis
ussion of a
tion semanti
s in Subse
tion 4.3.2. The spe
i�
ation of SIMPL

has been taken from [Mos96℄.

module: Abstra
t Syntax. grammar:

(*) Stmt = [[Id \:=" Expr℄℄

j [[\if" Expr \then" Stmts \else" Stmts℄℄

j [[\while" Expr \do" Stmts℄℄.

(*) Stmts = <Stmt <\;" Stmt >*>.

(*) Expr = Num j Id j [[ Expr Op Expr ℄℄.

(*) Op = \+" j \/=".

(*) Num = [[digit+℄℄.

(*) Id = [[letter (letterjdigit)*℄℄.

endgrammar. 
losed. endmodule: Abstra
t Syntax.

Figure A.2: Abstra
t syntax of the SIMPL language

� Figure A.2 de�nes the abstra
t syntax of SIMPL.



A.7. ACTION SEMANTICS 167

� Figure A.3 provides the equations de�ning the semanti
s of SIMPL.

� Figure A.4 spe
ializes the a
tion notation for the a
tion semanti
s of SIMPL.

module: Semanti
 Fun
tions. needs: Abstra
t Syntax, Semanti
 Entities.

introdu
es: exe
ute , evaluate , the result of .

variables: I:Id; N:Num; E,E1,E2:Expr; O:Op; S:Stmt; S1, S2:Stmts.

(*) exe
ute :: Stmts �> a
tion[
ompletingjdivergingjstoring℄.

[1:℄ exe
ute [[I \:=" E℄℄ = evaluate E then

store the given number in the 
ell bound to I.

[2:℄ exe
ute [[\if" E \then" S1 \else" S2℄℄ = evaluate E then (

( 
he
k the given truth-value and then exe
ute S1) or

( 
he
k not the given truth-value and then exe
ute S2)).

[3:℄ exe
ute [[\while" E \do" S1℄℄ = unfolding ( evaluate E then (

( 
he
k the given truth-value and then exe
ute S1 and then unfold) or

( 
he
k not the given truth-value))).

[4:℄ exe
ute <S \;" S2> = exe
ute S and then exe
ute S2.

(*) evaluate :: Expr �> a
tion[giving a value℄.

[5:℄ evaluate N = give de
imal N.

[6:℄ evaluate I = give the number bound to I or

give the number stored in the 
ell bound to I.

[7:℄ evaluate [[E1 O E2℄℄ = (evaluate E1 and evaluate E2)

then give the result of O.

(*) the result of :: Op �> yielder[of a value℄ [using given (value, value)℄.

[8:℄ the result of \+" = the number yielded by the sum of

(the given number#1, the given number#2).

[9:℄ the result of \/=" = not (the given value#1 is the given value#2).

endmodule: Semanti
 Fun
tions.

Figure A.3: A
tion semanti
s of the SIMPL language

module: Semanti
 Entities. in
ludes: A
tion Notation.

introdu
es: value, number.

(*) token = string.

(*) bindable = 
ell j number.

(*) storable = number.

(*) value = number j truth-value.

(*) number =< integer.

endmodule: Semanti
 Entities.

Figure A.4: Spe
ializing a
tion notation for SIMPL semanti
s



168 APPENDIX A. BACKGROUND

A.8 Extensible denotational semanti
s

In Subse
tion 4.3.4 we 
ommented on the style of extensible denotational semanti
s [CF94℄.

Some more details 
on
erning this style of semanti
s are provided in this se
tion. First let

us 
onsider the semanti
 framework. The meaning fun
tions P of a 
omplete program and

M of a program phrase have the following pro�les:

P : Prog ! ((V � E)
R)

M : Expr ! Env ! C

Thus, the interpretation of a program returns either a value (V ) or an error (E) paired with

the �nal resour
es (R). In general, the domain of value V is a sum of domains 
onstru
ted

from V and the domain of 
omputations C. This is indi
ated by the following notation:

V = �

1

(V; C)

For Pure S
heme, V 
ontains numbers, Boolean values, fun
tions from values to 
omputa-

tions and ? as the denotation of the diverging expression. The domain E of errors 
an be

assumed as follows:

E = ferrg

?

The domain of resour
es R 
an be regarded as produ
t of domains 
onstru
ted from V , C

and others as indi
ated by the following notation:

R = �

1

(V; C; : : :)

Environments are fun
tions from variables to values. The domain of denotations for phrases


onsists of two disjoint pie
es: the sub-domain of value denotations V and the sub-domain

of e�e
t messages (e�e
ts):

C = inV (V )�

e�e
t messages

z }| {

inFX ((V ! C)

| {z }

handles


 A

|{z}

a
tions

)

The a
tion 
omponent A is a sum of domains built from V and C.

A = inE (E)� �

2

(V; C)

Here the error a
tion is in
luded into A as the most basi
 e�e
t. The meaning of a 
omplete

program is spe
i�ed as follows:

P[[P ℄℄ = admin(M[[P ℄℄?; r

0

);

where ? denotes the empty environment and r

0

denotes the initial resour
es. The basi


de�nition of the administrator 
onsists of the following 
lauses:

admin : C �R! ((C � E)
 R)

admin(?; r) = ?

admin(inV (v); r) = hv; ri

admin(inFX (k; inE (err)); r) = herr ; ri



A.8. EXTENSIBLE DENOTATIONAL SEMANTICS 169

The �rst 
lause 
on
erns 
onverging programs. The se
ond 
lause des
ribes normal

termination, that is a value has been 
omputed. The third 
lause is applied if the evaluation

fails due to an error. Adding a
tions for extensions, new 
lauses will be
ome relevant. They

de�ne how a
tions are pro
essed a

essing the resour
es and that the handle possibly is

invoked to 
ontinue the 
omputation.

Semanti
 domains

V = inN (N

?

)� inB(ftrue; falseg

?

)� inP((V ! C))

Semanti
 fun
tions

M[[n℄℄� = inV (inN (n))

: : :

M[[x℄℄� = inV (�(x))

M[[�x:e℄℄� = inV (inP(�d : V:M[[e℄℄�[x=d℄))

M[[e

1

e

2

℄℄� = handler (M[[e

1

℄℄�)

(�f : V:handler (M[[e

2

℄℄�)

(�a : V:
ase f of

[inP(g)) g(a)℄

[g ) inAC (inE (err ))℄)

: : :

Figure A.5: An extended dire
t semanti
s of Pure S
heme

We start with two basi
 
onstru
ts 
 denoting the diverging expressions and err to

signal an error. Their denotations are de�ned as follows:

M[[
℄℄� = inV (?)

M[[err ℄℄� = inAC (inE (err))

Here inAC (a) is an abbreviation for inFX (inV ; a).

Sub-phrases of 
omplex phrases are evaluated via re
ursive 
alls to the interpreter.

Sin
e the result of su
h a re
ursive 
all is a 
omputation, it is ne
essary to inspe
t the tag

of the result. If it is a plain value, the value 
omponent 
an be 
onsumed lo
ally. If it is

an e�e
t, however, it must be propagated to the 
entral administrator. To deal with this

situation uniformly, the fun
tion handler mapping a 
omputation and the 
onsumer of its

eventual value to 
omputations is introdu
ed:

handler : C !


onsumer

z }| {

(V ! C) ! C

handler(?)f = ?

handler(inV (v))f = f(v)

handler(inFX (k; p))f = inFX (�v : V:handler(k(v))f); p)



170 APPENDIX A. BACKGROUND

Essentially, the de�nition makes sure that an e�e
t message is propagated from handler

to handler until it eventually rea
hes the administrator.

Refer to Figure A.5 for the semanti
s of Pure S
heme. To add, for example, referen
e


ells to Pure S
heme, essentially three new a
tions have to be introdu
ed:

� inRef (V ), whi
h represents an allo
ation message;

� inSet(L; V ), whi
h represents an update message;

� inDer(L), whi
h represents a dereferen
ing message.

Here L denotes the domain of lo
ations. The meaning fun
tion M is straightforwardly

extended for the 
orresponding 
onstru
ts whi
h essentially delegate the interpretation to

the administrator (i.e. the fun
tion admin). The adminstrator also has to be extended to

perform the new a
tions on the resour
es (the state). Constru
ts for programming with

�rst-
lass 
ontinuation obje
ts are added in [CF94℄ in the same orthogonal manner. The

equations of the meaning fun
tionM need never to be 
hanged.

A.9 Stepwise re�nement

In Subse
tion 4.4.1 we 
ommented on stepwise re�nement in logi
 programming. In this

se
tion, some more details are provided. Most of the following de�nitions and explanations

are taken from [Tr
93℄.

The operators for stepwise re�nement of logi
 programs are de�ned as follows:

unfold Let P be a program, 
 : A  A

1

; : : : ; A

i�1

; A

i

; A

i+1

; : : : ; A

n

a 
lause in P . Let




j

; 1 � j � m be all the 
lauses in P where there exists �

j

= mgu(B

j

; A

i

), 


j

: B

j

 

B

j

1

; : : : ; B

j

h

.

De�ne 


0

j

: (A A

1

; : : : ; A

i�1

; B

j

1

; : : : ; B

j

h

; A

i+1

; : : : ; A

n

)�

j

.

Then unfold(P; 
; A

i

) = (P � f
g) [ f


0

j

j1 � j � mg.

fold Let P be a program, 
 : A  B

1

; : : : ; B

i

; A

1

; : : : ; A

k

; B

i+1

; : : : ; B

n

and d : B  

A

0

1

; : : : ; A

0

k

, k � 1, be 
lauses in P . Let � = mgu((A

1

; : : : ; A

k

); (A

0

1

; : : : ; A

0

k

)).

De�ne 


0

: A B

1

; : : : ; B

i

; B�; B

i+1

; : : : ; B

n

.

Then fold(P; 
; (A

1

; : : : ; A

k

)) = (P � f
g) [ f


0

g.

prune Let P be a program, 
 a 
lause in P .

Then prune(P; 
) = P � f
g.

add Let P be a program, 
 a 
lause in P .

Then add(P; 
) = P [ f
g.

thin Let 
 : A A

1

; : : : ; A

i�1

; A

i

; A

i+1

; : : : ; A

n

be a 
lause.

Then thin(
; A

i

) = A A

1

; : : : ; A

i�1

; A

i+1

; : : : ; A

n

.



A.10. SPECIFICATION-BUILDING OPERATORS 171

fatten Let 
 : A A

1

; : : : ; A

n

be a 
lause and B an atom.

Then fatten(
; B) = A A

1

; : : : ; A

i

; B; A

i+1

; : : : ; A

n

.

restri
t Let P be a program. Let p 2 preds(P ). Let Q =

S

def

P

(q) for all q su
h that

def

P

(q) \ P (p) = ;.

Then restri
t(P; p) = (P �Q).

Here preds(P ) denotes all predi
ate symbols in P , def

P

(q) all 
lauses of P de�ning q,

i.e. the 
lauses with q as the predi
ate symbol of the head. P (p) is the 
all-graph for

the predi
ate symbol p. It is the set of 
lauses obtained from P starting with def

P

(p)

and adding re
ursively all 
lauses de�ning predi
ate symbols o

urring in bodies of

the 
omputed 
losure.

The operators preserve re�nement equivalen
e if the following appli
ability 
onditions

are satis�ed:

unfold A single unfolding step is always 
orre
t be
ause all MGUs of the atom and the

heads of other 
lauses are 
onsidered. If a 
lause is added in the next step, this

re�nement is not ne
essarily equivalent for the inverse order of steps.

fold Abbreviating a part of the body of a 
lause is 
orre
t, if the abbreviated 
lauses 
an

be unfolded to obtain the original 
lause again.

prune Pruning a 
lause is appli
able if either the 
lause is redundant or if it 
annot be

used to derive an answer, i.e. the body of the 
lause 
an never be proven.

add A 
lause 
an be added, if it is implied already by the program or if it 
annot be used

to derive an answer.

restri
t The 
all-graphs of the original and the restri
ted program are equal.

A.10 Spe
i�
ation-building operators

In Subse
tion 4.4.4 we 
ommented on spe
i�
ation-building operators in algebrai
 spe
i�-


ation. In this se
tion, some more details are provided. The following details are mostly

taken from [SST92℄. We assume that the reader is familar with standard notions of alge-

brai
 spe
i�
ation, parti
ularly:

� algebrai
 many-sorted signatures, usually denoted by �, �

0

,

� algebrai
 signature morphism � : �! �

0

,

� �-algebra, 
lass Alg(�) of �-algebras,

� �-homomorphism and �-isomorphism,

� �-equation, �rst-order �-senten
e,

� satisfa
tion relation between �-algebras and �-senten
es,



172 APPENDIX A. BACKGROUND

� the redu
t fun
tor j

�

: Alg(�)! Alg(�

0

) for a signature morphism � : �! �

0

.

A �-spe
i�
ation SP is expe
ted to determine a 
lass [[SP ℄℄ 2 P(Alg(� )) of �-algebras,

the models of SP . SP is 
onsistent if SP 6= ;. There are the following spe
i�
ation-building

operators:

� If � is a signature, then � is a �-spe
i�
ation with the semanti
s:

[[�℄℄ = Alg(�)

� If SP is �-spe
i�
ation and � is a set of �-senten
es, then impose � On SP is a

�-spe
i�
ation with the semanti
s:

[[impose � On SP ℄℄ = fA 2 [[SP ℄℄jA j= �g

� If SP is a �-spe
i�
ation and � : �

0

! � is a signature morphism, then derive from

SP by � is a �

0

-spe
i�
ation with the semanti
s:

[[derive from SP by �℄℄ = fAj

�

jA 2 [[SP ℄℄g

� If SP is a �-spe
i�
ation and � : � ! �

0

is a signature morphism, then translate

SP by � is a �

0

-spe
i�
ation with the semanti
s:

[[translate SP by �℄℄ = fA

0

2 Alg(�

0

)jA

0

j

�

2 [[SP ℄℄g

� If SP and SP

0

are �-spe
i�
ations, then SP [ SP

0

is a �-spe
i�
ation with the

semanti
s:

[[SP [ SP

0

℄℄ = [[SP ℄℄ \ [[SP

0

℄℄

� If SP is a �-spe
i�
ation and � : � ! �

0

is a signature morphism, then minimal

SP w:r:t: � is a �-spe
i�
ation with the semanti
s:

[[minimal SP w:r:t: �℄℄ = fA 2 [[SP ℄℄jA is minimal in Alg(�) w.r.t. �g;

where a �-algebra is minimal w.r.t. � if it has no non-trivial subalgebra with an

isomorphi
 �-redu
t.

� If SP is a �-spe
i�
ation, then iso� 
lose SP is a �-spe
i�
ation with the semanti
s:

[[iso� 
lose SP ℄℄ = fA 2 Alg(�)jA is isomorphi
 to B for some B 2 [[SP ℄℄g

� If SP is a �-spe
i�
ation and � : � ! �

0

is a signature morphism and �

0

is a

set of �

0

-senten
es, then abstra
t SP w:r:t: �

0

via � is a �-spe
i�
ation with the

semanti
s:

[[abstra
t SP w:r:t: �

0

via �℄℄ = fA 2 Alg(�)jA �

�

�

0

B for some B 2 [[SP ℄℄g;

where A �

�

�

0

B means that A is observationally equivalent to B w.r.t. �

0

via �.



A.10. SPECIFICATION-BUILDING OPERATORS 173

� If SP is a �-spe
i�
ation and If SP

0

is a �

0

-spe
i�
ation, then SP +SP

0

is a (�[�

0

)-

spe
i�
ation with the semanti
s:

[[SP + SP

0

℄℄ = fA 2 Alg(� [ �

0

)jAj

�

2 [[SP ℄℄ and Aj

�

0

2 [[SP

0

℄℄g

This is expressible using [ and translate as de�ned above.

� If SP is a �-spe
i�
ation, S is a set of sort names, 
 is a set of ranked operation

names su
h that adding S and 
 to � yields a well-formed signature �

0

and �

0

is a set

of �

0

-senten
es, then enri
h SP by sorts S opns 
 axioms �

0

is a �

0

-spe
i�
ation

with the semanti
s:

[[enri
h SP by sorts S opns 
 axioms �

0

℄℄ =

fA 2 Alg(�

0

)jAj

�

2 [[SP ℄℄ and A j= �

0

g

This is expressible using translate and impose as de�ned above.

� If SP is a �-spe
i�
ation and S is a set of sort names, then rea
hable SP on S is

a �-spe
i�
ation with the semanti
s:

[[rea
hable SP on S℄℄ = fA 2 [[SP ℄℄jA is generated on Sg;

where A is said to be generated on S if it has no proper subalgebra having the same


arriers of sorts not in S. This is expressible using minimal as de�ned above.





Appendix B

Te
hni
al details of the framework

B.1 De
onstru
tion of sequen
es of rules

Head Of : Rules! Rule

Tail Of : Rules! Rules

Nil? : Rules! Boolean

Head Of Rules From hr

1

; : : : ; r

n

i ! r

1

[Head Of ℄

Tail Of Rules From hr

1

; r

2

; : : : ; r

n

i ! hr

2

; : : : ; r

n

i [Tail Of ℄

Nil? Rules From hi ! True [Nil?:1℄

n � 1

Nil? Rules From hr

1

; : : : ; r

n

i ! False

[Nil?:2℄

B.2 Sele
tion of variables

The relations for the sele
tion of variables in elements are de�ned below. In meta-programs,

we refer to VARS

Parameter

?

by Variables In .

VARS

Parameter

(Variable From v Of Sort �) ) fvg [VARS:1℄

VARS

Parameter

(p

1

) ) V

1

^ : : :

^ VARS

Parameter

(p

m

) ) V

m

VARS

Parameter

?

(hp

1

; : : : ; p

m

i) ) V

1

[ � � � [ V

m

[VARS:2℄

VARS

Parameter

?

(h
p

#

1

; : : : ;
p

#

m

i) ) V

#

VARS

#

Element

(hn; hp

#

1

; : : : ; p

#

m

i; hp

"

1

; : : : ; p

"

k

ii) ) V

#

[VARS:3℄

175



176 APPENDIX B. TECHNICAL DETAILS OF THE FRAMEWORK

VARS

Parameter

?

(hp

"

1

; : : : ; p

"

k

i) ) V

"

VARS

"

Element

(hn; hp

#

1

; : : : ; p

#

m

i; hp

"

1

; : : : ; p

"

k

ii) ) V

"

[VARS:4℄

VARS

#

Element

(e) ) V

#

^ VARS

"

Element

(e) ) V

"

VARS

Element

(e) ) V

#

[ V

"

[VARS:5℄

B.3 Applied and de�ning o

urren
es

VARS

#

Element

(e

0

) ) V

0

^ VARS

"

Element

(e

1

) ) V

1

^ : : :

^ VARS

"

Element

(e

n

) ) V

n

Do In ht; e

0

; he

1

; : : : ; e

n

ii ) V

0

[ V

1

� � � [ V

n

[DO℄

VARS

"

Element

(e

0

) ) V

0

^ VARS

#

Element

(e

1

) ) V

1

^ : : :

^ VARS

#

Element

(e

n

) ) V

n

Ao In ht; e

0

; he

1

; : : : ; e

n

ii ) V

0

[ V

1

� � � [ V

n

[AO℄

B.4 Left-to-right dependen
ies (WD)

To work out a 
ommon restri
tion of well-de�nedness (WD), left-to-right dependen
ies

are formalized here. Thereby, we obtain a very simple data 
ow 
riterion whi
h 
an be

understood, for example, as the property of L-attribution [Alb91℄ for attribute grammars or


all-
orre
tness [Boy96a℄ for logi
 programs with dire
tional types. To for
e this property,

the rule DF :1 (refer to Subse
tion 2.3.3) has to be reje
ted in favour of the rule DF :2

given below.

L2R(r

j

) for j = 1; : : : ; n

DF(hr

1

; : : : ; r

n

i; i)

[DF :2℄

VARS

#

Element

(e

1

) � VARS

#

Element

(e

0

)

^ VARS

#

Element

(e

2

) � VARS

#

Element

(e

0

) [ VARS

"

Element

(e

1

)

^ : : :

^ VARS

#

Element

(e

n

) � VARS

#

Element

(e

0

) [

S

n�1

i=1

VARS

"

Element

(e

i

)

^ VARS

"

Element

(e

0

) � VARS

#

Element

(e

0

) [

S

n

i=1

VARS

"

Element

(e

i

)

L2R(ht; e

0

; he

1

; : : : ; e

n

ii)

[L2R℄



B.5. BASIC UNIFICATION 177

B.5 Basi
 uni�
ation

The following de�nition of SOLVE only 
opes with variables as parameters. If instan
es

of the general framework with 
ompound parameters (terms) are 
onsidered, the 
omplete

Robinson's uni�
ation algorithm need to be instrumented; refer e.g. to [NM95, p. 39℄ for

a suitable presentation.

E is in solved form

SOLVE(E) ! E

[SOLVE :1℄

9p 2 Parameter :

hp; pi 2 E

^ SOLVE(E n fhp; pig) ! �

SOLVE(E) ! �

[SOLVE :2℄

9p; p

0

2 Parameter : p 6= p

0

^ hp; p

0

i 2 E

^ Variable Of p! v

^ p o

urs in E n fhp; p

0

ig

^ SOLVE( ((E n fhp; p

0

ig) [v=p

0

℄) [ fhp; p

0

ig ) ! �

SOLVE(E) ! �

[SOLVE :3℄

B.6 Terms

Is

Term

(�

1

(p)) ! b

Term? p! b

[Term?℄

Constru
tor Of Term From f p

?

Of Sort � ! f [Constru
tor Of ℄

Subterms Of Term From f p

?

Of Sort � ! p

?

[Subterms Of ℄

Is

Name

(s) ! b

Name? s! b

[Name?℄

Is

Constru
tor

(s) ! b

Constru
tor? s! b

[Constru
tor?℄

Term? p! True

^ Constru
tor Of p! f

^ Subterms Of p! hp

1

; : : : ; p

n

i

^ Sort Of p! �

^ Substitute � In Parameter p

i

! p

0

i

for i = 1; : : : ; n

^ Term From f hp

0

1

; : : : ; p

0

n

i Of Sort � ! p

0

Substitute � In Parameter p! p

0

[SUBST :3℄



178 APPENDIX B. TECHNICAL DETAILS OF THE FRAMEWORK

B.7 Computational elements

Is

Element

(pre) ! b

Element? pre ! b

[Element?℄

Is

Computation

(pre) ! b

Computation? pre ! b

[Computation?℄

Symbol Of Premise From s p

?

#

! p

?

"

! s

[Symbol Of ℄

Parameters Input Of Premise From s p

?

#

! p

?

"

! p

?

#

[Parameters:3℄

Parameters Output Of Premise From s p

?

#

! p

?

"

! p

?

"

[Parameters:4℄

Is

Name

(s) ! b

Name? s ! s

[Name?℄

Is

Operation

(s) ! b

Operation? s ! s

[Operation?℄



Appendix C

Remainder of the operator suite

C.1 More auxiliary operators

We need to de�ne some other auxiliary operators used elsewhere.

C.1.1 Transformations on fragments

In this subse
tion, trivial transformations on fragment types are presented. Many of them


an be regarded as lifting operators to apply transformations to more 
omplex fragment

types. The transformations are useful for the de�nition of several more elaborate operators,

e.g. for appli
ations of the operator Repla
e.

% identity for substituting 
on
lusions

lhsIdentity :

� e : Con
lusion . he, h i, h i, h ii.

% identity for substituting premises

rhsIdentity :

� e : Premise . hhei, h ii.

% substitute 
on
lusions with a 
ertain symbol, only

lhsForSymbol :

� s : Symbol . �tLhs : LhsSubstitution . � e : Con
lusion .

s = Symbol Of e ! tLhs On e, lhsIdentity On e.

% substitute premises with a 
ertain symbol, only

rhsForSymbol :

� s : Symbol . �tRhs : RhsSubstitution . � e : Premise .

s = Symbol Of e ! tRhs On e, rhsIdentity On e.

% 
oer
e transformation on elements to LhsSubstitution

tE2tLhs :

� tE : Element ! Element . � e : Con
lusion .

htE On e, h i, h i, h ii.

% 
oer
e transformation on premises to RhsSubstitution

tP2tRhs :

� tP : Premise ! Premise . � e : Premise .

hhtP On ei, h ii.

179



180 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% transform elements with a 
ertain symbol, only

tEforSymbol :

� s : Symbol . � tE : Element ! Element . � e : Element .

Symbol Of e = s ! tE On e, e.

% transform premises with a 
ertain symbol, only

tPforSymbol :

� s : Symbol . � tP : Premise ! Premise . � e : Premise .

Symbol Of e = s ! tP On e, e.

% 
oer
e Element ! (Element x Substitution) to LhsSubstitution

tEandSubst2tLhs :

� tEandSubst : Element ! (Element � Substitution) . � e0 : Con
lusion .

Let he1, substi = tEandSubst On e0 In he1, h i, h i, substi.

% 
oer
e Premise ! (Premise x Substitution) to RhsSubstitution

tPandSubst2tRhs :

� tPandSubst : Premise ! (Premise � Substitution) . � e0 : Premise .

Let he1, substi = tPandSubst On e0 In hhe1i, substi.

% 
oer
e Parameter* ! (Parameter* x Substitution) to LhsSubstitution

tPsAndSubst2tLhs :

� tPsAndSubst : Parameter* ! (Parameter* � Substitution) .

� io : Io .

� e0 : Element .

Let hps, substi = tPsAndSubst On Parameters io Of e0 In

io = Input !

hCon
lusion From Symbol Of e0 ps ! Parameters Output Of e0, h i, h i, substi,

hCon
lusion From Symbol Of e0 Parameters Input Of e0 ! ps, h i, h i, substi.

% 
oer
e Parameter* ! (Parameter* x Substitution) to RhsSubstitution

tPsAndSubst2tRhs :

� tPsAndSubst : Parameter* ! (Parameter* � Substitution) .

� io : Io .

� e0 : Premise .

Let hps, substi = tPsAndSubst On Parameters io Of e0 In

io = Input !

hhPremise From Symbol Of e0 ps ! Parameters Output Of e0i, substi,

hhPremise From Symbol Of e0 Parameters Input Of e0 ! psi, substi.

% 
oer
e transformation on Parameter* to Element

tPs2tE :

� io : Io . � tPs : Parameter* ! Parameter* . � e : Element .

Let f = � sele
t : Io .

Let ps = Parameters sele
t Of e In

sele
t = io ! tPs On ps, ps

In

Element From (Symbol Of e) (f On Input) ! (f On Output).



C.1. MORE AUXILIARY OPERATORS 181

% 
oer
e transformation on Parameter* to Premise

tPs2tP :

� io : Io . � tPs : Parameter* ! Parameter* . � e : Premise .

Let f = � sele
t : Io .

Let ps = Parameters sele
t Of e In

sele
t = io ! tPs On ps, ps

In

Premise From (Symbol Of e) (f On Input) ! (f On Output).

C.1.2 Inserting premises into rules

Given a rule and a premise, there are various possibilities how to de�ne the target position

of the premise. One way is to spe
ify the exa
t position by an index. Another one is to

leave it unspe
i�ed, what is suitable if we assume that the a
tual position of 
omputa-

tional elements is meaningless. We prefer to adhere to the more restri
ted well-de�nedness

property, where an applied o

urren
e of a variable must not o

ur before a de�ning o
-


urren
e. There are two extremes, that is to say to insert the premise either as early as

possible (insertEarly) or as late as possible (insertLate). For pragmati
 reasons, the �rst

extreme is suitable for premises that do not have an output position at all.

Insert Into : Premise� Rule! (Rule! Rule)

� e : Premise .

Nil? Parameters Output Of e !

insertEarly On e,

insertLate On e.

insertEarly :

� e : Premise . � r : Rule .

Let required = Variables In Parameters Input Of e In

Letre
 early : Premise* ! P(Variable) ! Premise* =

� es : Premise* . � vs : P(Variable) .

required � vs !

hei ++ es,

Let skip = Head Of es In

hskipi ++ (

early

On Tail Of es

On (vs [ Variables In Parameters Output Of skip)

)

In

Rule From Tag Of r Con
lusion Of r ( (

early

On Premises Of r

On Variables In Parameters Input Of Con
lusion Of r

).



182 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

insertLate :

� e : Premise . � r : Rule .

Let de�ned = Variables In Parameters Output Of e In

Letre
 late : Premise* ! Premise* = � es : Premise* .

Nil? es !

hei,

Let head = Head Of es In

Variables In Parameters Input Of head \ de�ned = ; !

hheadi ++ (late On Tail Of es),

hei ++ es

In

Rule From Tag Of r Con
lusion Of r ( (late On Premises Of r).

C.1.3 Skipping 
omputations in a sequen
e of premises

In our instan
e of the 
al
ulus skeleton elements and 
omputations are distinguished. In

several 
ases, iterations on the skeleton elements (ex
luding 
omputations) must be per-

formed, e.g. during folding and unfolding. The following fun
tion skips the heading 
om-

putations in a sequen
e of premises. Thus, a 
aller of the fun
tion re
eives a pair ha; bi,

where a are the skipped 
omputations, whereas b is the remaining sequen
e of premises

starting with a skeleton element if there is any left.

skipComputations :

� es : Premise* .

Letre
 skipComputationsSlave : (Premise* � Premise*) ! (Premise* � Premise*) =

� sofar : Premise* � Premise* .

Let hskipped, todoi = sofar In

todo = h i !

sofar,

Let spot = Head Of todo In

Computation? spot !

skipComputationsSlave On hskipped ++ hspoti, Tail Of todoi,

sofar

In

skipComputationsSlave On hh i, esi.

C.1.4 Sele
tion of parameters

The sele
tion of parameters on de�ning and applied o

urren
es follows a 
ommon s
hema

whi
h is presented below:

sele
tO

urren
es :

� 
trl : Io . � r : Rule . � hio, sy, soi : Position .

% sele
t parameters of 
orresponding sort

Let sele
tPs = � ps : Parameter* .

Parameters Of Sort so In ps

In

io = 
trl !



C.2. PARAMETERIZATION SCHEMATA 183

% de�ning (applied) o

urren
es on input (output) positions are found on LHS

Symbol Of Con
lusion Of r = sy ! sele
tPs On Parameters io Of Con
lusion Of r, h i,

% de�ning (applied) o

urren
es on output (input) positions are found on RHS

Fold Left � sofar : Parameter* . � e : Premise .

sofar ++ (Symbol Of e = sy ! sele
tPs On Parameters io Of e, h i)

Neutral h i List Premises Of r.

The sele
tion of a de�ning o

urren
e 
an now be performed by applying the above

abstra
tion to Input, i.e.:

sele
tDos :

sele
tO

urren
es On Input.

Dually, the sele
tion of an applied o

urren
e 
an now be performed by applying the

above abstra
tion to Output, i.e.:

sele
tAos :

sele
tO

urren
es On Output.

In some 
ases we need unique o

urren
es. Su
h a restri
tion 
an be easily obtained

from the above s
hema sele
tO

urren
es.

sele
tUniqueO

urren
e :

� io : Io . � r : Rule . � pos : Position .

Let fpg = sele
tO

urren
es On io On r On pos In p.

The sele
tion of unique de�ning (applied) o

urren
es is denoted by sele
tDo (sele
tAo).

C.2 Parameterization s
hemata

C.2.1 Addition, removal, 
ontra
tion

We present the details of the following parameterization s
hemata:

Add : Position

?

! Trafo

Ensure : Position

?

! Trafo

Sub : Position

?

! Trafo

Contra
t : Position

?

! Trafo

These operators 
an be spe
i�ed following the s
hema of element substitution, i.e. using

the operator Repla
e. A
tually, the essential behaviour of these operators 
an be stated

as a transformation of the following pro�le:

Parameter

?

! (Parameter

?


 Substitution)

To lift su
h transformations to LHS / RHS substitutions, and to iterate on the sequen
es

of asso
iations, the following more elaborate variant of Repla
e is assumed:



184 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

repla
ePositions :

� tPs : Sort ! Parameter* ! (Parameter* � Substitution) .

� poss : Position* .

� rs : Rules .

Fold Left

� sofar : Rules . � hio, sy, soi : Position .

Repla
e

(lhsForSymbol On sy On (tPsAndSubst2tLhs On (tPs On so) On io))

(rhsForSymbol On sy On (tPsAndSubst2tRhs On (tPs On so) On io))

On sofar

Neutral rs List poss.

Now the operators Add, Sub and Contra
t 
an be dire
tly implemented by applying

repla
ePositions to the following expressions:

for Add:

� sort : Sort . � ps : Parameter* .

hps ++ hNew Variable Of Sort sorti, h ii.

for Sub:

� sort : Sort . � ps : Parameter* .

hFold Left � sofar : Parameter* . � p : Parameter .

sofar ++ ( (Sort Of p) = sort ! h i, hpi )

Neutral h i List ps,

h i

i.

for Contra
t:

� sort : Sort . � ps : Parameter* .

hps n Tail Of Parameters Of Sort sort In ps,

Let keep = Head Of Parameters Of Sort sort In ps In

Fold Left

� subst : Substitution . � p : Parameter .

subst ./ Unify Parameters keep And p

Neutral h i

List Tail Of Parameters Of Sort sort In ps

i.

C.2.2 Conditional addition

Sin
e the operator Ensure is intended to add only those positions whi
h do not exist yet,

it 
an be expressed via Add if we �rst reje
t the asso
iations 
orresponding to existing

positions by a simple traversal of the type of the input rules.



C.3. COMPUTATION SCHEMATA 185

� poss : Position* . � rs : Rules .

Let possToBeAdded =

Let sigma = Sigma Of rs In

Fold Left � sofar : Position* . � hio, sy, soi : Position .

Let prof = Pro�le Of sy In sigma In

prof = ? !

sofar,

so 2 Sorts io Of prof !

sofar,

sofar ++ hhio, sy, soii

Neutral h i List poss

In

Add possToBeAdded On rs.

C.2.3 Permutation

Permute : Pro�le! Trafo

% permute parameters a

ording to sorts

Let tPs = � ps : Parameter* . � ss : Sort* .

# ps = # ss Æ!

Map � sort : Sort . Let hpi = Parameters Of Sort sort In ps In p List ss

In

� prof : Pro�le .

% permutation of a 
on
lusion

Let tE = tEforSymbol On Symbol Of prof On

(� e : Element .

Element From Symbol Of e

(tPs On Parameters Input Of e On Sorts Input Of prof)

! (tPs On Parameters Output Of e On Sorts Output Of prof)

)

In

% permutation of a premise

Let tP = tPforSymbol On Symbol Of prof On

(� e : Premise .

Premise From Symbol Of e

(tPs On Parameters Input Of e On Sorts Input Of prof)

! (tPs On Parameters Output Of e On Sorts Output Of prof)

)

In

Repla
e (tE2tLhs On tE) (tP2tRhs On tP).

C.3 Computation s
hemata

C.3.1 Copies

Copy To : Position� Position! Trafo



186 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

� from : Position . � to : Position .

Let h�o, fsy, fsoi = from In

Let htio, tsy, tsoi = to In

fso = tso Æ!

(� rs : Rules .

Map � r : Rule .

Let pF = sele
tUniqueDo On r On from In

Let pT = sele
tUniqueAo On r On to In

: Variables In fpTg \ (Ao In r n Do In r) = ; Æ!

Substitute Unify Parameters pF And pT In Rule r

List rs

)

Æ Ensure hfrom, toi.

C.3.2 Constant 
omputations

De�ne By : Position� Symbol! Trafo

� pos : Position . � by : Symbol .

(� rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � p : Parameter .

Insert Premise From by h i ! hpi Into r

Neutral r0

List (Variables In (sele
tAos On r0 On pos) n Do In r0)

List rs

).

Default For By : Sort� Symbol! Trafo

� so : Sort . � by : Symbol . � rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � v : Variable .

Insert Premise From by h i ! hvi Into r

Neutral r0

List Variables Of Sort so In (Ao In r0 n Do In r0)

List rs.

C.3.3 Unary 
onditions

Use By : Position� Symbol! Trafo

� pos : Position . � by : Symbol .

(� rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � p : Parameter .

Insert Premise From by hpi ! h i Into r

Neutral r0

List Variables In (sele
tDos On r0 On pos)

List rs



C.3. COMPUTATION SCHEMATA 187

C.3.4 Nontrivial 
omputations

Compute ! : Symbol� Position

?

! Position

?

! Trafo

� sy : Symbol . � possI : Position* . � possO : Position* .

(� rs : Rules .

Map � r : Rule .

% 
ompute inputs of premise

Let psI =

Map � pos : Position .

Let p = sele
tUniqueDo On r On pos In p

List possI

In

% 
ompute outputs of premise

Let psO =

Map � pos : Position .

Let p = sele
tUniqueAo On r On pos In p

List possO

In

% ensure that the outputs are not yet de�ned

Variables In psO \ Do In r = ; Æ!

% insert premise

Insert Premise From sy psI ! psO Into r

List rs

)

Æ Ensure possO

Æ Ensure possI.

C.3.5 Compositional 
omputations

Relate : Io� Asso
iation

?

� Pre�x! Trafo

� io : Io . � as : Asso
iation* . � pfx : Pre�x .

% sele
t parameters a

ording to asso
iations

Let parasToRelate = � e : Element .

Fold Right

� p : Parameter . � ps : Parameter* .

( Fold Right

� hsym, sorti : hSymbol, Sorti . � ps : Parameter* .

(((Symbol Of e) = sym) \ ((Sort Of p) = sort) ! hpi, h i) ++ ps

Neutral h i List as

) ++ ps

Neutral h i List Parameters io Of e

In

(� rs : Rules . Map � r : Rule .



188 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% a

umulate relevant positions on LHS and RHS

Let lhs = parasToRelate On Con
lusion Of r In

Let rhs =

Fold Right � e : Premise . � ps : Parameter* .

(Element? e ! (parasToRelate On e), h i) ++ ps

Neutral h i List Premises Of r

In

Let s = Operation From pfx Tag Of r In

io = Output !

% outputs from RHS are used to DEFINE outputs on LHS

Let defo

 = Variables In lhs In

(: defo

 = ;) And (defo

 � (Ao In r n Do In r)) !

Let e = Premise From s rhs ! lhs In

Rule From Tag Of r Con
lusion Of r ( (Premises Of r ++ hei),

r,

% inputs from LHS are used to DEFINE inputs on RHS

Let useo

 = Variables In lhs In

Let defo

 = Variables In rhs In

(: useo

 = ;) And (defo

 � (Ao In r n Do In r)) !

Let e = Premise From s lhs ! rhs In

Rule From Tag Of r Con
lusion Of r ( (hei ++ Premises Of r),

r

List rs) Æ Ensure Map � hsy, soi : Asso
iation . hio, sy, soi List as.

C.3.6 Combining unused parameters

Redu
e By : Sort� Symbol! Trafo

� so : Sort . � by : Symbol . � rs : Rules .

Map

� r0 : Rule .

Let vs = Variables Of Sort so In (Do In r0 n Ao In r0) In

vs = ; !

r0,

Let hr1, unusedi =

Fold Left � hr, v1i : Rule � Variable . � v2 : Variable .

Let new = New Variable Of Sort so In

hInsert Premise From by hv1, v2i ! hnewi Into r, newi

Neutral hr0, Head Of vsi

List Tail Of vs

In r1

List rs.

C.4 Rea
hability

Derivable From In : P(Symbol)� Skeleton! P(Symbol)



C.5. SUPERIMPOSITION 189

� from : P(Symbol) . � sk : Skeleton .

Letre
 f : P(Symbol) ! P(Symbol) =

� ss0 : P(Symbol) .

Let ss1 =

ss0 [

Fold Right

� ht, l, ri : Shape . � syms : P(Symbol) .

l 2 (from [ syms) ! syms [ r, syms

Neutral ss0 List sk

In (ss0 � ss1) And (ss1 � ss0) ! ss0, f On ss1

In f On ;.

Derivable To In : P(Symbol)� Skeleton ! P(Symbol)

� to : P(Symbol) . � sk : Skeleton .

Letre
 f : P(Symbol) ! P(Symbol) =

� ss0 : P(Symbol) .

Let ss1 =

ss0 [

Fold Right

� ht, l, ri : Shape . � syms : P(Symbol) .

: ((to [ syms) \ r) = ; ! syms [ flg, syms

Neutral ss0 List sk

In (ss0 � ss1) And (ss1 � ss0) ! ss0, f On ss1

In f On ;.

From To In : P(Symbol)� P(Symbol)� Skeleton! P(Symbol)

� from : P(Symbol) . � to : P(Symbol) . � sk : Skeleton .

Derivable From from In sk \ Derivable To to In sk.

C.5 Superimposition

Superimpose And : Rules� Rules! Rules

Let superimposeEs = � e1 : Element . � e2 : Element .

Element From Symbol Of e1

(Parameters Input Of e1 ++ Parameters Input Of e2) !

(Parameters Output Of e1 ++ Parameters Output Of e2)

In

� rs1 : Rules . � rs2 : Rules .

% ensure soundness of superimposition

Skeleton Of rs1 = Skeleton Of (Order By Tags In rs1 On rs2) Æ!

% iterate the rules

Map � r1 : Rule .

Let hr2i = Sele
t Tags fTag Of r1g On rs2 In



190 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% ensure disjoint variables

Let r2fresh = refreshRule On r2 In

Rule From Tag Of r1

% superimpose LHSs

superimposeEs On Con
lusion Of r1 On Con
lusion Of r2fresh

(

Let hrhs, resti =

% iterate RHSs for superimposition

Fold Left

� hsofar, r2ai : Premise* � Premise* . � e : Premise .

Computation? e !

hsofar ++ hei, r2ai,

Let hskipped, r2bi = skipComputations On r2a In

hsofar ++ skipped ++ hsuperimposeEs On e On Head Of r2bi, Tail Of r2bi

Neutral hh i, Premises Of r2freshi List Premises Of r1

In rhs ++ rest

List rs1.

C.6 Folding & unfolding

Fold By Into : Tag� Symbol?

?

� Tag! Trafo

� from : Tag . � syms : Symbol?* . � to : Tag . � rs : Rules .

Let hri = Sele
t Tags ffromg On rs In

%

% remove heading "?"

%

Letre
 aÆx

: hPremise*, Premise*, Symbol?*i ! hPremise*, Premise*, Symbol?*i =

� hes1, es2, ssi : hPremise*, Premise*, Symbol?*i .

Let hes3, es5i = skipComputations On es2 In

Let es4 = es1 ++ es3 In

Head Of ss = ? !

aÆx On h es4 ++ hHead Of es5i, Tail Of es5, Tail Of ss i,

hes4, es5, ssi

In

%

% split the rule in:

% before: premises mat
hing heading "?"

% after: premises mat
hing trailing "?"

% mat
h: premises mat
hing the skeleton symbol

%

Let hbefore, rest, taili = aÆx On hh i, Premises Of r, symsi In

Let hai, mi, ssi = aÆx On hh i, Reverse rest, Reverse taili In

Let after = Reverse ai In

Let mat
h = Reverse mi In

(: mat
h = h i) Æ! Let hsi = ss In



C.6. FOLDING & UNFOLDING 191

% a


umulate variables on input or output positions

Let ios = � io : Io .

Fold Left

� vs : P(Variable) . � e : Element .

vs [ Variables In Parameters io Of e

Neutral ; List mat
h

In

% 
onstru
t bridge element for fold; 
onstru
t rules

Let ins = ios On Input In

Let outs = ios On Output In

Let new = Element From s (ins n outs) ! (outs n ins) In

( Forget Tags ffromg On rs)

./ hRule From Tag Of r Con
lusion Of r ( (before ++ hnewi ++ after)i

./ hRule From to new ( mat
hi.

Unfold By Into : Tag� Tag?

?

� Tag?! Trafo

� from : Tag . � ts : Tag* . � to : Tag? . � rs : Rules .

Let hri = Sele
t Tags ffromg On rs In

Let hlhs, rhsi =

Letre
 pumpRe


: Tag* ! Con
lusion ! Premise* ! Premise* ! hCon
lusion, Premise*i =

� ts : Tag* . � lhs : Con
lusion . � done : Premise* . � rest : Premise* .

ts = h i !

hlhs, done ++ resti,

Let spot = Head Of rest In

% skip 
omputations

Computation? spot !

pumpRe
 On ts On lhs On (done ++ hspoti) On Tail Of rest,

Head Of ts = ? !

% do not expand premise be
ause of tag "?"

pumpRe
 On Tail Of ts On lhs On (done ++ hHead Of resti) On Tail Of rest,

% expand premise a

ording to tag

Let hri = Sele
t Tags fHead Of tsg On rs In

Let fresh = (refreshRule On r) In

Let s = unifyElements On Head Of rest On Con
lusion Of fresh In

pumpRe


On Tail Of ts

On (substituteInElement On s On lhs)

On (substituteInElements On s On (done ++ Premises Of fresh))

On (substituteInElements On s On Tail Of rest)

In

pumpRe
 On ts On Con
lusion Of r On h i On Premises Of r

In

% modify input rule or add a 
opy with a new tag

to = ? !

Forget Tags ffromg On rs ./ hRule From Tag Of r lhs ( rhsi,

rs ./ hRule From to lhs ( rhsi.



192 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

C.7 Deriving 
hain rules

Chain Rule ( : Tag� Symbol� Symbol! Trafo

� tag : Tag . � lhs : Symbol . � rhs : Symbol . � rs : Rules .

rs ./

h

Let sorts2ps = � sorts : Sort* .

Map � sort : Sort . New Variable Of Sort sort List sorts

In

Let prof =

Let lhsProf = Pro�le Of lhs In Sigma Of rs In

Let rhsProf = Pro�le Of rhs In Sigma Of rs In

lhsProf = ? !

: rhsProf = ? Æ! rhsProf,

rhsProf = ? !

lhsProf,

(Sorts Input Of lhsProf = Sorts Input Of rhsProf) And

(Sorts Output Of lhsProf = Sorts Output Of rhsProf) Æ! rhsProf

In

Let psI = sorts2ps On Sorts Input Of prof In

Let psO = sorts2ps On Sorts Output Of prof In

Rule From tag

Con
lusion From lhs psI ! psO

( hPremise From rhs psI ! psOi

i.



Appendix D

A 
olle
tion of meta-programs

The purpose of this Appendix Chapter is to provide some show
ases for nontrivial meta-

programs demonstrating the expressive power of the 
al
ulus.

D.1 Composition of a simple language de�nition

A language de�nition is 
omposed from modules spe
ifying language 
onstru
ts. More

te
hni
ally, we 
ompose an interpreter de�nition 
onsisting essentially of a frontend part

and a separate dynami
 semanti
s. We 
onsider a very simple imperative programming

language with the fundamental imperative 
onstru
ts (assignment, sele
tion, iteration,

sequen
e, input, output) and only basi
 data types for integer and Boolean values. The


omplete example has been 
he
ked with

�

�

�

[HLR97, LRH96, RL93, Rie92℄.

D.1.1 The stru
ture of the interpreter de�nition

The PRA [LRH96℄ spe
i�
ation below makes the stru
ture of the interpreter de�nition

expli
it. Interpretation 
onsists of two phases. First, the 
on
rete input is analysed, 
ontext


onditions are 
he
ked and an abstra
t synta
ti
al representation is 
onstru
ted. Se
ond,

the intermediate representation is \interpreted" a

ording to the dynami
 semanti
s.

l
s/examples/basi
/main.pra

% modular 
omposition of a spe
ifi
ation for analysing sour
e programs

frontend : Interpret In

Re�ne ./analyser By lib/s
anner/trivial

&stati
 By (Interpret In ./stati
 &st By l
s/adts/simpleSt)

&ast As Constru
tor.

% modular 
omposition of a spe
ifi
ation interpreting abstra
t programs

dynami
 : Interpret In ./dynami


&bops By l
s/adts/bops

&memory By l
s/adts/memory.

193



194 APPENDIX D. A COLLECTION OF META-PROGRAMS

% a
tual exe
ution of the language pro
essor

With SOURCE, IN Return OUT Do

% exe
uting the frontend spe
ifi
ation in a reading s
ope

Reading ./examples/SOURCE.basi
 Do

Run frontend ! PROG

End Reading;

% applying the interpreter spe
ifi
ation to the abstra
t representation

Run dynami
(PROG, IN) ! OUT;

End.

Below we show how the main 
omponents of the interpreter de�nition, that is to say the

dynami
 semanti
s (./dynami
; refer to Subse
tion D.1.2), the GSF s
hema of the frontend

(./analyser ; refer to Subse
tion D.1.3 and Subse
tion D.1.5), the auxiliary predi
ates fa-


ilitating type 
he
king in the above GSF s
hema (./stati
; refer to Subse
tion D.1.4), are


omposed from atomar spe
i�
ation units. Some rather auxiliary modules are presented

in Subse
tion D.1.6.

D.1.2 Composition of the dynami
 semanti
s

We are seeking for a natural semanti
s spe
i�
ation for the dynami
 semanti
s of the

sample language. The �nal semanti
s des
ription is as follows.

l
s/examples/basi
/dynami
.pp

[prog℄ &memory init ! MEM

4

,

initOUT ! OUT

4

,

exe
ute(STM, MEM

4

, IN

3

, OUT

4

) ! (MEM

5

, IN

5

, OUT

5

)

--------------------------------------------------

program(prog(STM), IN

3

) ! OUT

5

[initOUT℄ initOUT ! [℄nOUT

[assign℄ evaluate(EXP, MEM, IN

12

) ! (VAL, IN

15

),

&memory update(MEM, ID, VAL) ! MEM'

---------------------------------------

exe
ute(assign(ID, EXP), MEM, IN

12

, OUT

8

) ! (MEM', IN

15

, OUT

8

)

[skip℄ exe
ute(skip, MEM

14

, IN

26

, OUT

18

) ! (MEM

14

, IN

26

, OUT

18

)

[
on
at℄ exe
ute(STM

1

, MEM

16

, IN

28

, OUT

20

) ! (MEM

19

, IN

31

, OUT

23

),

exe
ute(STM

2

, MEM

19

, IN

31

, OUT

23

) ! (MEM

21

, IN

33

, OUT

25

)

---------------------------------------------------------

exe
ute(
on
at(STM

1

, STM

2

), MEM

16

, IN

28

, OUT

20

) ! (MEM

21

, IN

33

, OUT

25

)

[if℄ evaluate(EXP, MEM

47

, IN

48

) ! (VAL, IN

51

),


ond(VAL, STM

1

, STM

2

, MEM

47

, IN

51

, OUT

38

) ! (MEM

51

, IN

53

, OUT

41

)

-----------------------------------------------------------------

exe
ute(if(EXP, STM

1

, STM

2

), MEM

47

, IN

48

, OUT

38

) ! (MEM

51

, IN

53

, OUT

41

)

[while℄ 
on
at(STM, while(EXP, STM)) = STM

unfold

,

exe
ute(if(EXP, STM

unfold

, skip), MEM

68

, IN

66

, OUT

54

) ! (MEM

71

, IN

69

, OUT

57

)

-----------------------------------------------------------------------------

exe
ute(while(EXP, STM), MEM

68

, IN

66

, OUT

54

) ! (MEM

71

, IN

69

, OUT

57

)



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 195

[output℄ evaluate(EXP, MEM

95

, IN

106

) ! (VAL, IN

109

),

addOUT(OUT, VAL) ! OUT'

-------------------------------------------

exe
ute(output(EXP), MEM

95

, IN

106

, OUT) ! (MEM

95

, IN

109

, OUT')

[var℄ &memory lookup(MEM, ID) ! VAL

------------------------------

evaluate(var(ID), MEM, IN

16

) ! (VAL, IN

16

)

[int℄ evaluate(
onst(intC(INT)), MEM

80

, IN

86

) ! (intV(INT), IN

86

)

[true℄ evaluate(
onst(boolC(true)), MEM

81

, IN

88

) ! (boolV(TruenBOOL), IN

88

)

[false℄ evaluate(
onst(boolC(false)), MEM

82

, IN

90

) ! (boolV(FalsenBOOL), IN

90

)

[monadi
℄ evaluate(EXP, MEM

83

, IN

92

) ! (VAL, IN

95

),

&bops evaluateMonadi
(MOS, VAL) ! VAL'

-----------------------------------------

evaluate(monadi
(MOS, EXP), MEM

83

, IN

92

) ! (VAL', IN

95

)

[dyadi
℄ evaluate(EXP, MEM

85

, IN

96

) ! (VAL, IN

99

),

evaluate(EXP', MEM

85

, IN

99

) ! (VAL', IN

101

),

&bops evaluateDyadi
(DOS, VAL, VAL') ! VAL''

---------------------------------------------

evaluate(dyadi
(EXP, DOS, EXP'), MEM

85

, IN

96

) ! (VAL'', IN

101

)

[input℄ inputType(T, VAL)

-----------------

evaluate(input(T), MEM

89

, [VALjVAL*℄nIN) ! (VAL, VAL*nIN)

[then℄ exe
ute(STM, MEM

52

, IN

54

, OUT

42

) ! (MEM

55

, IN

57

, OUT

45

)

--------------------------------------------------------


ond(boolV(TruenBOOL), STM, STM

3

, MEM

52

, IN

54

, OUT

42

) ! (MEM

55

, IN

57

, OUT

45

)

[else℄ exe
ute(STM, MEM

56

, IN

58

, OUT

46

) ! (MEM

59

, IN

61

, OUT

49

)

--------------------------------------------------------


ond(boolV(FalsenBOOL), STM

4

, STM, MEM

56

, IN

58

, OUT

46

) ! (MEM

59

, IN

61

, OUT

49

)

[addOUT℄ OUT ++ [VAL℄nOUT ! OUT'

------------------------

addOUT(OUT, VAL) ! OUT'

[inputInt℄ VAL = intV(INT

0

)

----------------

inputType(intT, VAL)

[inputBool℄ VAL = boolV(BOOL

0

)

------------------

inputType(boolT, VAL)

The 
omposition is performed by means of lifting.

l
s/examples/basi
/dynami
.sg


% aspe
ts of 
omputational behaviour

mem : l
s/transformers/memory.

in : l
s/transformers/input.

out : l
s/transformers/output.

Inferen
e Rules

Axiom Is program



196 APPENDIX D. A COLLECTION OF META-PROGRAMS

Lift

h

hhmem, in, outi, l
s/fragments/program/dynami
i,

hhin, outi, l
s/fragments/variable/dynami
i,

hhmem, in, outi, l
s/fragments/
ompound/natural/dynami
i,

hhmem, in, outi, l
s/fragments/sele
tion/if/deterministi
/dynami
i,

hhmem, in, outi, l
s/fragments/iteration/while/dynami
i,

hhmem, ini, l
s/fragments/type/dynami
i,

hhmemi, l
s/fragments/input/dynami
i,

hhmem, ini, l
s/fragments/output/dynami
i

i

There are three semanti
 aspe
ts, that is to say memory propagation in
luding initial-

ization (mem), inputs (in) and output (out). The 
orresponding transformers are shown

below.

l
s/transformers/memory.fra

� sk : Skeleton .

Default For MEM By &memory init

Æ (Inherit MEM From fprogramg To fevaluateg On sk)

Æ (A

umulate MEM From fprogramg To fexe
uteg On sk)

l
s/transformers/input.fra

� sk : Skeleton .

Let 
losure = (From fprogramg To fevaluateg In sk) [ fevaluateg In

Left To Right IN

Æ Ensure Positions Output For 
losure Of Sort IN

Æ Ensure Positions Input For 
losure [ fprogramg Of Sort IN

l
s/transformers/output.fra

� sk : Skeleton .

Let 
losure = (From fprogramg To fexe
uteg In sk) [ fexe
uteg In

Default For OUT By initOUT

Æ Left To Right OUT

Æ Ensure Positions Output For 
losure [ fprogramg Of Sort OUT

Æ Ensure Positions Input For 
losure Of Sort OUT

Now we present the modular semanti
s of the underlying language 
onstru
ts. Usually,

we give a short

�

�

�

interfa
e des
ription for the abstra
t syntax (a module name ending

with as.if ) and a fragment of natural semanti
s (a module name ending with dynami
.ir)

to be regarded as rules at some level in the terminology of lifting.

De
larations are not regarded as relevant for the semanti
s de�nition. Thus, the fol-

lowing abstra
t syntax for entire programs is appropriate.

l
s/fragments/program/as.if



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 197

PROG = prog(STM)

To interprete a program, means to exe
ute the statements.

l
s/fragments/program/dynami
.ir

% abstra
t syntax

In
lude ./as

% semanti
 fun
tions

program: PROG

exe
ute: STM

[prog℄ exe
ute(STM)

------------------

program(prog(STM))

The 
on
ept of the imperative variable provides a building blo
k for imperative lan-

guages. There are two important 
onstru
ts, that is to say assignment and variables (as

expressions) with the following abstra
t synta
ti
al representation.

l
s/fragments/variable/as.if

STM = assign(ID, EXP)

EXP = var(ID)

The semanti
s of the above 
onstru
ts is easily de�ned. To evaluate a variable iden-

ti�er, the memory is observed. To exe
ute an assignment, the memory is updated. The

relational symbols pre�xed by &

memory

are 
on
erned with memory a

ess. The module

l
s/adts/memory.ir providing the 
orresponding interpretations is presented in Subse
-

tion D.1.6.

l
s/fragments/variable/dynami
.ir

% abstra
t syntax

In
lude ./as

% semanti
 fun
tions

exe
ute: STM � MEM ! MEM

evaluate: EXP � MEM ! VAL

% assignment

[assign℄ evaluate(EXP, MEM) ! VAL,

&memory update(MEM, ID, VAL) ! MEM'

-------------------------------------

exe
ute(assign(ID, EXP), MEM) ! MEM'

% variables as expressions

[var℄ &memory lookup(MEM, ID) ! VAL

------------------------------

evaluate(var(ID), MEM) ! VAL



198 APPENDIX D. A COLLECTION OF META-PROGRAMS

Statements 
an be 
omposed in the sense of statement sequen
es. The following pie
e

of abstra
t syntax introdu
es the empty statement and the 
ompound statement.

l
s/fragments/
ompound/as.if

STM = skip + 
on
at(STM, STM)

The exe
ution of the empty statement is modelled by a simple axiom, whereas the

exe
ution of a 
ompound statement means sequen
ed exe
ution.

l
s/fragments/
ompound/natural/dynami
.ir

% abstra
t syntax

In
lude ../as

% semanti
 fun
tions

exe
ute: STM � MEM ! MEM

% semanti
s of the empty statement (sequen
e)

[skip℄ exe
ute(skip, MEM) ! MEM

% semanti
s of a sequen
e of statements

[
on
at℄ exe
ute(STM

1

, MEM) ! MEM',

exe
ute(STM

2

, MEM') ! MEM''

-----------------------------------------

exe
ute(
on
at(STM

1

, STM

2

), MEM) ! MEM''

If -statements are well-known representatives of the 
lass of statements serving for se-

le
tion. We assume the following abstra
t synta
ti
al representation.

l
s/fragments/sele
tion/if/as.if

STM = if(EXP, STM, STM)

The semanti
s of an if -statement is de�ned below in a deterministi
 style, i.e. �rst the


ondition is evaluated and then an auxiliary relation 
ond is used to exe
ute either the

then-part or the else-part depending on the value of the 
ondition.

l
s/fragments/sele
tion/if/deterministi
/dynami
.ir

% abstra
t syntax

In
lude ../as

% values

VAL = boolV(BOOL)

BOOL = Boolean

% semanti
 fun
tions

exe
ute: STM

evaluate: EXP ! VAL


ond: VAL � STM � STM



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 199

% first evaluate 
ondition, then bran
h on value

[if℄ evaluate(EXP) ! VAL,


ond(VAL, STM

1

, STM

2

)

----------------------------

exe
ute(if(EXP, STM

1

, STM

2

))

% exe
ute the Then�path of an If�statement

[then℄ exe
ute(STM)

----------------------------


ond(boolV(True), STM, STM)

% exe
ute the Else�path of an If�statement

[else℄ exe
ute(STM)

-----------------------------


ond(boolV(False), STM, STM)

While-loops are well-known representatives of the 
lass of statements serving for itera-

tion. We assume the following abstra
t synta
ti
al representation.

l
s/fragments/iteration/while/as.if

STM = skip + 
on
at(STM, STM) + if(EXP, STM, STM) + while(EXP, STM)

The semanti
s of a while-statement is de�ned below by a kind of unfolding, i.e. the

semanti
s is expressed in terms of an if -statement.

l
s/fragments/iteration/while/dynami
.ir

% abstra
t syntax

In
lude ./as

% semanti
 fun
tions

exe
ute: STM

[while℄ 
on
at(STM, while(EXP, STM)) = STM

unfold

,

exe
ute(if(EXP, STM

unfold

, skip))

-----------------------------------------

exe
ute(while(EXP, STM))

To 
ope with simple forms of expressions a

ording to basi
 data types (
onstants,

monadi
 and dyadi
 expressions), the following pie
e of abstra
t syntax is needed.

l
s/fragments/type/as.if

EXP = 
onst(C) + monadi
(MOS, EXP) + dyadi
(EXP, DOS, EXP)

C = intC(INT) + boolC(BC)

INT = Integer

BC = true + false

The evaluation of all the above kinds of 
onstants, monadi
 and dyadi
 expressions is

shown below.

l
s/fragments/type/dynami
.ir



200 APPENDIX D. A COLLECTION OF META-PROGRAMS

% abstra
t syntax

In
lude ./as

% values

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

% semanti
 fun
tions

evaluate: EXP ! VAL

[int℄ evaluate(
onst(intC(INT))) ! intV(INT)

[true℄ evaluate(
onst(boolC(true))) ! boolV(True)

[false℄ evaluate(
onst(boolC(false))) ! boolV(False)

[monadi
℄ evaluate(EXP) ! VAL,

&bops evaluateMonadi
(MOS, VAL) ! VAL'

---------------------------------------

evaluate(monadi
(MOS, EXP)) ! VAL'

[dyadi
℄ evaluate(EXP) ! VAL,

evaluate(EXP') ! VAL',

&bops evaluateDyadi
(DOS, VAL, VAL') ! VAL''

---------------------------------------------

evaluate(dyadi
(EXP, DOS, EXP')) ! VAL''

The appli
ation of 
orresponding basi
 operations is modelled by the premises pre-

�xed by &

bops

. The module l
s/adts/bops.ir providing the 
orresponding interpretations is

presented in Subse
tion D.1.6.

To 
onsume an input value is regarded as a form of an expression. Thus, the following

abstra
t representation for an input 
onstru
t is appropriate.

l
s/fragments/input/as.if

EXP = input(T)

T = intT + boolT

To evaluate an input expression means to 
onsume the head of the propagated input,

where the head is regarded at the same time as the value of the expression.

l
s/fragments/input/dynami
.ir

% abstra
t syntax

In
lude ./as

% semanti
 domains

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

IN = VAL*

% semanti
/auxiliary fun
tions

evaluate: EXP � IN ! VAL � IN

inputType: T � VAL



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 201

[input℄ inputType(T, VAL)

---------------------------------------------

evaluate(input(T), [VALjVAL*℄) ! (VAL, VAL*)

[inputInt℄ VAL = intV( INT) ) inputType(intT, VAL)

[inputBool℄ VAL = boolV( BOOL) ) inputType(boolT, VAL)

Produ
ing output is regarded as a side-e�e
t similar to an assignment. The following

abstra
t synta
ti
al representation is suggested.

l
s/fragments/output/as.if

STM = output(EXP)

The semanti
 meaning of an output statement is modelled as follows. The value of the

expression to be written is appended with the propagated output.

l
s/fragments/output/dynami
.ir

% abstra
t syntax

In
lude ./as

% semanti
 domain

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

OUT = VAL*

% semanti
 fun
tions

evaluate: EXP ! VAL

exe
ute: STM � OUT ! OUT

[output℄ evaluate(EXP) ! VAL,

addOUT(OUT, VAL) ! OUT'

---------------------------------

exe
ute(output(EXP), OUT) ! OUT'

% return the empty output

initOUT: ! OUT

[initOUT℄ initOUT ! [℄

% extend the output 
onsumed already by a value

addOUT: OUT � VAL ! OUT

[addOUT℄ OUT ++ [VAL℄nOUT ! OUT'

------------------------

addOUT(OUT, VAL) ! OUT'



202 APPENDIX D. A COLLECTION OF META-PROGRAMS

D.1.3 Composition of the frontend

We are seeking for a GSF s
hema de�ning the syntax, stati
 semanti
s and the 
onstru
tion

of an abstra
t synta
ti
al representation for our sample language. The �nal GSF s
hema

looks as follows.

l
s/examples/basi
/stru
ture.pp

[prog℄ program ! PROG

0

:

&stati
 initST ! ST

41

,

de
larations(ST

41

) ! ST

42

,

statements(ST

42

) ! STM

5

,

&ast prog(STM

5

) ! PROG

0

.

[de
s℄ de
larations(ST

44

) ! ST

49

:

de
laration(ST

44

) ! ST

47

,

de
larations(ST

47

) ! ST

49

.

[node
s℄ de
larations(ST

50

) ! ST

50

: .

[
on
at℄ statements(ST

58

) ! STM

6

:

statement(ST

58

) ! STM

12

,

statements(ST

58

) ! STM

7

,

&ast 
on
at(STM

12

, STM

7

) ! STM

6

.

[skip℄ statements(ST

61

) ! STM

8

:

&ast skip ! STM

8

.

[vde
℄ de
laration(ST) ! ST'

:

id ! ID,

type ! T,

&stati
 addVar(ST, ID, T) ! ST'.

[if℄ statement(ST

62

) ! STM

13

:

expression(ST

62

) ! (T, EXP

6

),

&stati
 isBoolType(T),

statements(ST

62

) ! STM

10

,

statements(ST

62

) ! STM

9

,

&ast if(EXP

6

, STM

10

, STM

9

) ! STM

13

.

[while℄ statement(ST

66

) ! STM

14

:

expression(ST

66

) ! (T, EXP

7

),

&stati
 isBoolType(T),

statements(ST

66

) ! STM

11

,

&ast while(EXP

7

, STM

11

) ! STM

14

.

[output℄ statement(ST

70

) ! STM

15

:

expression(ST

70

) ! (T, EXP

9

),

&stati
 isOutputType(T),

&ast output(EXP

9

) ! STM

15

.



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 203

[assign℄ statement(ST) ! STM

16

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

11

),

&stati
 assignable(T, T'),

&ast assign(ID, EXP

11

) ! STM

16

.

[intT℄ type ! intT : .

[boolT℄ type ! boolT : .

[
onst℄ expression(ST

52

) ! (T, EXP

0

)

:


onstant ! (T, C

0

),

&ast 
onst(C

0

) ! EXP

0

.

[monadi
℄ expression(ST

53

) ! (T, EXP

1

)

:

mos ! MOS,

expression(ST

53

) ! (T', EXP

2

),

&stati
 profileMonadi
(MOS, T') ! T,

&ast monadi
(MOS, EXP

2

) ! EXP

1

.

[dyadi
℄ expression(ST

55

) ! (T, EXP

3

)

:

expression(ST

55

) ! (T

1

, EXP

5

),

dos ! DOS,

expression(ST

55

) ! (T

2

, EXP

4

),

&stati
 profileDyadi
(DOS, T

1

, T

2

) ! T,

&ast dyadi
(EXP

5

, DOS, EXP

4

) ! EXP

3

.

[input℄ expression(ST

69

) ! (T, EXP

8

)

:

type ! T,

&stati
 isInputType(T),

&ast input(T) ! EXP

8

.

[var℄ expression(ST) ! (T, EXP

10

)

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

&ast var(ID) ! EXP

10

.

[boolC℄ 
onstant ! (boolT, C

1

)

:

boolean ! BC

0

,

&ast boolC(BC

0

) ! C

1

.

[intC℄ 
onstant ! (intT, C

2

)

:

nat ! INT

0

,

&ast intC(INT

0

) ! C

2

.

[neg℄ mos ! neg : .

[not℄ mos ! not : .

[plus℄ dos ! plus : .

[minus℄ dos ! minus : .



204 APPENDIX D. A COLLECTION OF META-PROGRAMS

[times℄ dos ! times : .

[div℄ dos ! div : .

[eq℄ dos ! eq : .

[neq℄ dos ! neq : .

[gt℄ dos ! gt : .

[lt℄ dos ! lt : .

[ge℄ dos ! ge : .

[le℄ dos ! le : .

[and℄ dos ! and : .

[or℄ dos ! or : .

[true℄ boolean ! BC

1

:

&ast true ! BC

1

.

[false℄ boolean ! BC

2

:

&ast false ! BC

2

.

We use two pre�xes for di�erent kinds of relational formulae. The pre�x &

ast

refers to

AST 
onstru
tion, whereas the pre�x &

stati


quali�es relational formulae modelling stati


semanti
s. The interpretation of the �rst kind of relational symbols is simply term 
on-

stru
tion, whereas the relational formulae dealing with stati
 semanti
s are interpreted by

the relations dis
ussed in Subse
tion D.1.4.

The underlying 
ontext-free grammar of the above GSF s
hema spe
i�es a rather ab-

stra
t syntax. The more or less trivial adaptation to 
ope with a more 
on
rete syntax is

the subje
t of Subse
tion D.1.5.

The 
omposition of the above GSF s
hema is performed by means of lifting.

l
s/examples/basi
/stru
ture.sg


% aspe
ts of 
omputational behaviour

st : l
s/transformers/simpleSt.

as : l
s/transformers/ast On ./dynami
 On Output On fde
larationsg On &ast.

Gsf S
heme

Axiom Is program

Lift

h

hhst, asi, l
s/fragments/program/stru
ture

./ l
s/fragments/de
larations/stru
ture

./ l
s/fragments/type/stru
ture

./ l
s/fragments/
ompound/stru
ture

./ l
s/fragments/sele
tion/if/stru
ture

./ l
s/fragments/iteration/while/stru
ture

./ l
s/fragments/input/stru
ture

./ l
s/fragments/output/stru
ture

i,

hhasi, l
s/fragments/variable/stru
turei

i



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 205

There are two 
omputational aspe
ts 
overed by transformers. The aspe
t st deals with

the initialization and the propagation of the symbol table, whereas the aspe
t as deals with

the 
onstru
tion of an abstra
t synta
ti
al representation. Remember that ASTs need to

be synthesized, be
ause they are interpreted in the se
ond phase of the interpreter, i.e. by

the dynami
 semanti
s. The de�nition of the transformer for the aspe
t st is shown below.

l
s/transformers/simpleSt.fra

� sk : Skeleton .

(./defaultSt On sk)

Æ (./inheritSt On sk)

Æ (./a

umulateSt On sk)

To have a more modular de�nition of the above transformer, the following three 
om-

ponents were identi�ed.

l
s/transformers/defaultSt.fra

� sk : Skeleton . Default For ST By &stati
 initST

l
s/transformers/inheritSt.fra

� sk : Skeleton . Inherit ST From fprogramg To fexpressiong On sk

l
s/transformers/a

umulateSt.fra

� sk : Skeleton . A

umulate ST From fprogramg To fde
larationg On sk

The transformer for the aspe
t as is not presented here, be
ause the a
tual de�nition

is not language-spe
i�
. Its de�nition is 
onsidered in some depth in Se
tion D.7, be
ause

it is interesting on its own. We only want to 
omment on the underlying generi
 approa
h.

The transformer as 
ould be de�ned in terms of a Relate Output ... transformation, but

we also 
an 
ompute su
h a transformation by unifying the skeleton to be lifted and the

signature of a \referen
e" spe
i�
ation, where the dynami
 semanti
s spe
i�ation serves

for this purpose here. Te
hni
ally, term 
onstru
tors and sorts in the signature are uni�ed

with tags and symbols in the skeleton.

Now we present the rules (at some level) from whi
h the above GSF s
hema has been


omposed. We start with the overall stru
ture of programs.

l
s/fragments/program/stru
ture.gs

[prog℄ program : de
larations, statements.

Sequen
es of de
larations are de�ned as follows.

l
s/fragments/de
larations/stru
ture.gs



206 APPENDIX D. A COLLECTION OF META-PROGRAMS

[de
s℄ de
larations : de
laration, de
larations.

[node
s℄ de
larations : .

The rules 
on
erning type expressions, 
onstants, monadi
 and dyadi
 expressions a
-


ording to basi
 data types are the following.

l
s/fragments/type/stru
ture.gs

[intT℄ type ! intT : .

[boolT℄ type ! boolT : .

[
onst℄ expression ! T

:


onstant ! T.

[monadi
℄ expression ! T

:

mos ! MOS,

expression ! T',

&stati
 profileMonadi
(MOS, T') ! T.

[dyadi
℄ expression ! T

:

expression ! T

1

,

dos ! DOS,

expression ! T

2

,

&stati
 profileDyadi
(DOS, T

1

, T

2

) ! T.

[boolC℄ 
onstant ! boolT : boolean.

[intC℄ 
onstant ! intT : nat.

[true℄ boolean : .

[false℄ boolean : .

[neg℄ mos ! neg : .

[not℄ mos ! not : .

[plus℄ dos ! plus : .

[minus℄ dos ! minus : .

[times℄ dos ! times : .

[div℄ dos ! div : .

[eq℄ dos ! eq : .

[neq℄ dos ! neq : .

[gt℄ dos ! gt : .

[lt℄ dos ! lt : .

[ge℄ dos ! ge : .

[le℄ dos ! le : .

[and℄ dos ! and : .

[or℄ dos ! or : .

Statement sequen
es are spe
i�ed by the following rules.

l
s/fragments/
ompound/stru
ture.gs



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 207

[
on
at℄ statements

:

statement,

statements.

[skip℄ statements : .

The 
on
ept of an imperative variable e�e
ts several synta
ti
al 
lasses. Variable de
-

larations, assignments and variables as expressions need to be spe
i�ed.

l
s/fragments/variable/stru
ture.gs

[vde
℄ de
laration(ST) ! (ST')

:

id ! ID,

type ! T,

&stati
 addVar(ST, ID, T) ! ST'.

[var℄ expression(ST) ! T

:

id ! ID,

&stati
 isVar(ST, ID) ! T.

[assign℄ statement(ST)

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

expression(ST) ! T',

&stati
 assignable(T, T').

If - and while-statements are spe
i�ed below. As far as stati
 semanti
s is 
on
erned,

we want to ensure that 
onditions are Boolean expressions.

l
s/fragments/sele
tion/if/stru
ture.gs

[if℄ statement

:

expression ! T,

&stati
 isBoolType(T),

statements,

statements.

l
s/fragments/iteration/while/stru
ture.gs

[while℄ statement

:

expression ! T,

&stati
 isBoolType(T),

statements.



208 APPENDIX D. A COLLECTION OF META-PROGRAMS

Input expressions and output statements are spe
i�ed below. Possibly, the types legal

for input or output need to be restri
ted.

l
s/fragments/input/stru
ture.gs

[input℄ expression ! T

:

type ! T,

&stati
 isInputType(T).

l
s/fragments/output/stru
ture.gs

[output℄ statement

:

expression ! T,

&stati
 isOutputType(T).

D.1.4 Auxiliary relations for the stati
 semanti
s

We develop the module providing interpretations for relational symbols pre�xed by &

stati


in the GSF s
hema above.

l
s/examples/basi
/stati
.pp

[initST℄ &st init ! ST

--------------

initST ! ST

[addVar℄ &st add(ST, ID, varEntry(T)) ! ST'

-----------------------------------

addVar(ST, ID, T) ! ST'

[isVar℄ &st lookup(ST, ID) ! varEntry(T)

---------------------------------

isVar(ST, ID) ! T

[assignable℄ equalTypes(T

lhs

, T

rhs

)

----------------------

assignable(T

lhs

, T

rhs

)

[isIntType℄ isIntType(intT)

[isBoolType℄ isBoolType(boolT)

[profile1℄ profileMonadi
(neg, intT) ! intT

[profile2℄ profileMonadi
(not, boolT) ! boolT

[profile3℄ profileDyadi
(plus, intT, intT) ! intT

[profile4℄ profileDyadi
(minus, intT, intT) ! intT

[profile5℄ profileDyadi
(times, intT, intT) ! intT

[profile6℄ profileDyadi
(div, intT, intT) ! intT

[profile7℄ profileDyadi
(eq, intT, intT) ! boolT

[profile8℄ profileDyadi
(neq, intT, intT) ! boolT



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 209

[profile9℄ profileDyadi
(lt, intT, intT) ! boolT

[profileA℄ profileDyadi
(gt, intT, intT) ! boolT

[profileB℄ profileDyadi
(ge, intT, intT) ! boolT

[profileC℄ profileDyadi
(le, intT, intT) ! boolT

[profileD℄ profileDyadi
(eq, boolT, boolT) ! boolT

[profileE℄ profileDyadi
(neq, boolT, boolT) ! boolT

[profileF℄ profileDyadi
(lt, boolT, boolT) ! boolT

[profileG℄ profileDyadi
(gt, boolT, boolT) ! boolT

[profileH℄ profileDyadi
(ge, boolT, boolT) ! boolT

[profileI℄ profileDyadi
(le, boolT, boolT) ! boolT

[profileJ℄ profileDyadi
(and, boolT, boolT) ! boolT

[profileK℄ profileDyadi
(or, boolT, boolT) ! boolT

[tEqT℄ equalTypes(T, T)

[inputInt℄ isIntType(T)

------------

isInputType(T)

[inputBool℄ isBoolType(T)

-------------

isInputType(T)

[outputInt℄ isIntType(T)

------------

isOutputType(T)

[outputBool℄ isBoolType(T)

-------------

isOutputType(T)

The above spe
i�
ation is obtained by a simple 
on
atenation of some rules.

l
s/examples/basi
/stati
.sg


Inferen
e Rules

l
s/fragments/program/stati


./ l
s/fragments/variable/stati


./ l
s/fragments/type/stati


./ l
s/fragments/input/stati


./ l
s/fragments/output/stati


The rules below are related to entire programs, 
onstru
ts for variables, basi
 data

types or I/O 
onstru
ts. The following modules are used in the above 
omposition.

l
s/fragments/program/stati
.ir

% return the empty symbol table

initST: ! ST

[initST℄ &st init ! ST

--------------

initST ! ST



210 APPENDIX D. A COLLECTION OF META-PROGRAMS

l
s/fragments/variable/stati
.ir

% symbol table entries

INFO = varEntry(T)

% add an entry for a variable to a symbol table

addVar: ST � ID � T ! ST

[addVar℄ &st add(ST, ID, varEntry(T)) ! ST'

-----------------------------------

addVar(ST, ID, T) ! ST'

% lookup an entry for a variable in a symbol table

[isVar℄ &st lookup(ST, ID) ! varEntry(T)

---------------------------------

isVar(ST, ID) ! T

% 
he
k two types to be 
ompatible for assignment

assignable: T � T

[assignable℄ equalTypes(T

lhs

, T

rhs

)

----------------------

assignable(T

lhs

, T

rhs

)

l
s/fragments/type/stati
.ir

T = intT + boolT

MOS = neg + not

DOS = plus + minus + times + div

+ eq + neq + gt + lt + ge + le

+ and + or

isIntType: T

isBoolType: T

profileMonadi
: MOS � T ! T

profileDyadi
: DOS � T � T ! T

% test for integer/boolean type

[isIntType℄ isIntType(intT)

[isBoolType℄ isBoolType(boolT)

% 
ompute result type for unary operators

[profile1℄ profileMonadi
(neg, intT) ! intT

[profile2℄ profileMonadi
(not, boolT) ! boolT



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 211

% 
ompute result type for binary operators

[profile3℄ profileDyadi
 (plus, intT, intT) ! intT

[profile4℄ profileDyadi
 (minus, intT, intT) ! intT

[profile5℄ profileDyadi
 (times, intT, intT) ! intT

[profile6℄ profileDyadi
 (div, intT, intT) ! intT

[profile7℄ profileDyadi
 (eq, intT, intT) ! boolT

[profile8℄ profileDyadi
 (neq, intT, intT) ! boolT

[profile9℄ profileDyadi
 (lt, intT, intT) ! boolT

[profileA℄ profileDyadi
 (gt, intT, intT) ! boolT

[profileB℄ profileDyadi
 (ge, intT, intT) ! boolT

[profileC℄ profileDyadi
 (le, intT, intT) ! boolT

[profileD℄ profileDyadi
 (eq, boolT, boolT) ! boolT

[profileE℄ profileDyadi
 (neq, boolT, boolT) ! boolT

[profileF℄ profileDyadi
 (lt, boolT, boolT) ! boolT

[profileG℄ profileDyadi
 (gt, boolT, boolT) ! boolT

[profileH℄ profileDyadi
 (ge, boolT, boolT) ! boolT

[profileI℄ profileDyadi
 (le, boolT, boolT) ! boolT

[profileJ℄ profileDyadi
 (and, boolT, boolT) ! boolT

[profileK℄ profileDyadi
 (or, boolT, boolT) ! boolT

% equivalen
e of types

[tEqT℄ equalTypes(T, �T)

l
s/fragments/input/stati
.ir

isInputType: T

[inputInt℄ isIntType(T) ) isInputType(T)

[inputBool℄ isBoolType(T) ) isInputType(T)

l
s/fragments/output/stati
.ir

[outputInt℄ isIntType(T) ) isOutputType(T)

[outputBool℄ isBoolType(T) ) isOutputType(T)

D.1.5 The frontend 
oping with 
on
rete syntax

It is shown how the GSF s
hema from Subse
tion D.1.3 
an be adapted to 
ope with a

rather 
on
rete syntax. The transformational approa
h whi
h was taken here is rather

pragmati
. We refer to [KW96℄ for a rather dis
iplined alternative. There, an approa
h is

presented whi
h simpli�es the design of the grammars representing 
on
rete and abstra
t

syntax as well as the mapping between them.

First, the �nal GSF s
hema is shown.

l
s/examples/basi
/analyser.pp



212 APPENDIX D. A COLLECTION OF META-PROGRAMS

[prog℄ program ! PROG

0

:

&stati
 initST ! ST

41

,

de
larations(ST

41

) ! ST

42

,

\Begin",

statements(ST

42

) ! STM

5

,

\End ",

\. ",

&ast prog(STM

5

) ! PROG

0

.

[de
s℄ de
larations(ST

44

) ! ST

49

:

de
laration(ST

44

) ! ST

47

,

\; ",

de
larations(ST

47

) ! ST

49

.

[node
s℄ de
larations(ST

50

) ! ST

50

: .

[
on
at℄ statements(ST

58

) ! STM

6

:

statement(ST

58

) ! STM

12

,

\; ",

statements(ST

58

) ! STM

7

,

&ast 
on
at(STM

12

, STM

7

) ! STM

6

.

[skip℄ statements(ST

61

) ! STM

8

:

&ast skip ! STM

8

.

[vde
℄ de
laration(ST) ! ST'

:

\Var ",

id ! ID,

\: ",

type ! T,

&stati
 addVar(ST, ID, T) ! ST'.

[while℄ statement(ST

66

) ! STM

14

:

\While",

expression(ST

66

) ! (T, EXP

7

),

\Do ",

&stati
 isBoolType(T),

statements(ST

66

) ! STM

11

,

\End ",

&ast while(EXP

7

, STM

11

) ! STM

14

.

[output℄ statement(ST

70

) ! STM

15

:

\Output",

expression(ST

70

) ! (T, EXP

9

),

&stati
 isOutputType(T),

&ast output(EXP

9

) ! STM

15

.



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 213

[assign℄ statement(ST) ! STM

16

:

id ! ID,

\:= ",

&stati
 isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

11

),

&stati
 assignable(T, T'),

&ast assign(ID, EXP

11

) ! STM

16

.

[if℄ statement(ST

62

) ! STM

13

:

\If ",

expression(ST

62

) ! (T, EXP

6

),

\Then",

&stati
 isBoolType(T),

statements(ST

62

) ! STM

10

,

else(ST

62

) ! STM

9

,

\End",

&ast if(EXP

6

, STM

10

, STM

9

) ! STM

13

.

[intT℄ type ! intT

:

\Integer".

[boolT℄ type ! boolT

:

\Boolean".

[
onst℄ expression(ST

52

) ! (T, EXP

0

)

:


onstant ! (T, C

0

),

&ast 
onst(C

0

) ! EXP

0

.

[monadi
℄ expression(ST

53

) ! (T, EXP

1

)

:

mos ! MOS,

expression(ST

53

) ! (T', EXP

2

),

&stati
 profileMonadi
(MOS, T') ! T,

&ast monadi
(MOS, EXP

2

) ! EXP

1

.

[dyadi
℄ expression(ST

55

) ! (T, EXP

3

)

:

\( ",

expression(ST

55

) ! (T

1

, EXP

5

),

dos ! DOS,

expression(ST

55

) ! (T

2

, EXP

4

),

\) ",

&stati
 profileDyadi
(DOS, T

1

, T

2

) ! T,

&ast dyadi
(EXP

5

, DOS, EXP

4

) ! EXP

3

.

[input℄ expression(ST

69

) ! (T, EXP

8

)

:

\Input",

type ! T,

&stati
 isInputType(T),

&ast input(T) ! EXP

8

.



214 APPENDIX D. A COLLECTION OF META-PROGRAMS

[var℄ expression(ST) ! (T, EXP

10

)

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

&ast var(ID) ! EXP

10

.

[else℄ else(ST

62

) ! STM

9

:

\Else",

statements(ST

62

) ! STM

9

.

[noelse℄ else(ST

72

) ! STM

18

:

&ast skip ! STM

18

.

[boolC℄ 
onstant ! (boolT, C

1

)

:

boolean ! BC

0

,

&ast boolC(BC

0

) ! C

1

.

[intC℄ 
onstant ! (intT, C

2

)

:

nat ! INT

0

,

&ast intC(INT

0

) ! C

2

.

[neg℄ mos ! neg

:

\�".

[not℄ mos ! not

:

\Not ".

[plus℄ dos ! plus

:

\+".

[minus℄ dos ! minus

:

\�".

[times℄ dos ! times

:

\* ".

[div℄ dos ! div

:

\Div ".

[eq℄ dos ! eq

:

\= ".

[neq℄ dos ! neq

:

\6=".

[gt℄ dos ! gt

:

\>".



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 215

[lt℄ dos ! lt

:

\<".

[ge℄ dos ! ge

:

\�".

[le℄ dos ! le

:

\�".

[and℄ dos ! and

:

\And ".

[or℄ dos ! or

:

\Or ".

[true℄ boolean ! BC

1

:

\True",

&ast true ! BC

1

.

[false℄ boolean ! BC

2

:

\False",

&ast false ! BC

2

.

The above GSF s
hema is obtained by transforming the GSF s
hema from Subse
-

tion D.1.3 (./stru
ture). Essentially, 
ertain keywords and separators are inserted (refer to

the appli
ation of the operator Con
retize By) and the rule for if -statement is adapted

to 
ope with an optional else-part.

l
s/examples/basi
/analyser.sg


Gsf S
heme

Axiom Is program

Con
retize By

( l
s/fragments/program/
on
rete

++ l
s/fragments/de
larations/
on
rete

++ l
s/fragments/type/
on
rete

++ l
s/fragments/
ompound/
on
rete

++ l
s/fragments/sele
tion/if/optional/
on
rete

++ l
s/fragments/iteration/while/
on
rete

++ l
s/fragments/variable/
on
rete

++ l
s/fragments/input/
on
rete

++ l
s/fragments/output/
on
rete

)

On

( l
s/tools/dyadi
InBra
kets

Æ (l
s/tools/ifOptional On [skip℄)

On ./stru
ture

)



216 APPENDIX D. A COLLECTION OF META-PROGRAMS

First, all the trivial fragments used in the appli
ation of the operator Con
retize By

are presented.

l
s/fragments/program/
on
rete.fra

hh[prog℄, h?, \Begin", ?, \End", \."iii

l
s/fragments/de
larations/
on
rete.fra

hh[de
s℄, h?, \;", ?iii

l
s/fragments/type/
on
rete.fra

h

h[intT℄, h\Integer"ii,

h[boolT℄, h\Boolean"ii,

h[true℄, h\True"ii,

h[false℄, h\False"ii,

h[neg℄, h\n"ii,

h[not℄, h\Not"ii,

h[plus℄, h\+"ii,

h[minus℄, h\n"ii,

h[times℄, h\*"ii,

h[div℄, h\Div"ii,

h[eq℄, h\="ii,

h[neq℄, h\h i"ii,

h[gt℄, h\i"ii,

h[lt℄, h\h"ii,

h[ge℄, h\�"ii,

h[le℄, h\�"ii,

h[and℄, h\And"ii,

h[or℄, h\Or"ii

i

l
s/fragments/
ompound/
on
rete.fra

hh[
on
at℄, h?, \;", ?iii

l
s/fragments/sele
tion/if/optional/
on
rete.fra

h

h[if℄, h\If ", ?, \Then", ?, ?, \End"ii,

h[else℄, h\Else", ?ii

i

l
s/fragments/iteration/while/
on
rete.fra



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 217

hh[while℄, h\While", ?, \Do", ?, \End"iii

l
s/fragments/variable/
on
rete.fra

h

h[vde
℄, h\Var", ?, \:", ?ii,

h[assign℄, h?, \:=", ?ii

i

l
s/fragments/input/
on
rete.fra

hh[input℄, h\Input", ?iii

l
s/fragments/output/
on
rete.fra

hh[output℄, h\Output", ?iii

The following transformation adapts the rule for dyadi
 expressions to for
e en
losing

bra
kets. Thereby, priorities of operation symbols be
ome irrelevant.

l
s/tools/dyadi
InBra
kets.fra

Con
retize By hh[dyadi
℄, h\( ", ?, ?, ?, \)"iii

The following transformation installs an optional else-part for if -statements.

l
s/tools/ifOptional.fra

� skip : Tag .

Unfold [else℄ By hskipi Into [noelse℄

Æ Fold [if℄ By h?, ?, elsei Into [else℄

Note that the above approa
h based on folding and unfolding has been des
ribed in

Example 3.3.5.

D.1.6 Auxiliary modules

For 
ompleteness, all the auxiliary modules used in the 
omposition of the sample language

are in
luded below. First, a suitable s
anner de�nition is shown (lib/s
anner/trivial.lg).

Se
ond, a simple symbol table management module is presented (l
s/adts/simpleSt.ir).

Third, the appli
ation of basi
 operations (of the sample language) is spe
i�ed in terms of

basi
 operations of

�

�

�

. Finally, an ADT for memories is in
luded (l
s/adts/memory.ir).

lib/s
anner/trivial.lg



218 APPENDIX D. A COLLECTION OF META-PROGRAMS

Sets

letter = `A' .. `Z ' j `a ' .. `z '.

digit = `0' .. `9 '.

but eoln = Any � Eoln.

but star = Any � `* '.

but div star = Any � \/* ".

Classes

spa
es = (Spa
e j Tab j Eoln)+.

id = letter (letter j digit)* : lib/
onv 
hars2identifier.

nat = digit+ : lib/
onv 
hars2integer.

end = Eof.


omment = `/ ' `* ' ( but star j `*'+ but div star )* `* '+ `/ '

j `%' but eoln*.

Swit
hes

Skip spa
es.

Skip 
omment.

l
s/adts/simpleSt.ir

ST = ENTRY*

ENTRY = <ID, INFO>

% return the empty symbol table

init: ! ST

init ! [℄

% add an entry

add: ST � ID � INFO ! ST

[add℄ : ENTRY* = ++ [<�ID, >℄ ++

--------------------------------------------

add(ENTRY*, ID, INFO) ! [<ID, INFO>jENTRY*℄

% lookup an entry

lookup: ST � ID ! INFO

[lookup℄ lookup( ++ [<ID, INFO>℄ ++ , �ID) ! INFO

l
s/adts/bops.ir

INT = Integer

BOOL = Boolean

VAL = intV(INT) + boolV(BOOL)

MOS = neg + not

DOS = plus + minus + times + div

+ eq + neq + gt + lt + ge + le

+ and + or

evaluateMonadi
: MOS � VAL ! VAL

evaluateDyadi
: DOS � VAL � VAL ! VAL



D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 219

[neg℄ �INT ! INT'

---------------------------------------------

evaluateMonadi
(neg, intV(INT)) ! intV(INT')

[not1℄ evaluateMonadi
(not, boolV(True)) ! boolV(False)

[not2℄ evaluateMonadi
(not, boolV(False)) ! boolV(True)

[plus℄ INT

1

+ INT

2

! INT

---------------------------------------------------------

evaluateDyadi
(plus, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[minus℄ INT

1

� INT

2

! INT

----------------------------------------------------------

evaluateDyadi
(minus, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[times℄ INT

1

* INT

2

! INT

----------------------------------------------------------

evaluateDyadi
(times, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[div℄ INT

1

// INT

2

! INT

--------------------------------------------------------

evaluateDyadi
(div, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[and℄ ? BOOL  BOOL

1

^ BOOL

2

--------------------------------------------------------------

evaluateDyadi
(and, boolV(BOOL

1

), boolV(BOOL

2

)) ! boolV(BOOL)

[or℄ ? BOOL  BOOL

1

_ BOOL

2

-------------------------------------------------------------

evaluateDyadi
(or, boolV(BOOL

1

), boolV(BOOL

2

)) ! boolV(BOOL)

[eq1℄ evaluateDyadi
(eq, VAL, �VAL) ! boolV(True)

[eq1℄ VAL === VAL' ) evaluateDyadi
(eq, VAL, VAL') ! boolV(False)

[neq℄ evaluateDyadi
(eq, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi
(not, VAL) ! VAL'

---------------------------------------

evaluateDyadi
(neq, VAL

1

, VAL

2

) ! VAL'

[lt1℄ evaluateDyadi
(lt, boolV(False), boolV(True)) ! boolV(True)

[lt2℄ evaluateDyadi
(lt, boolV(False), boolV(False)) ! boolV(False)

[lt3℄ evaluateDyadi
(lt, boolV(True), boolV(True)) ! boolV(False)

[lt4℄ ? BOOL  INT

1

< INT

2

---------------------------------------------------------

evaluateDyadi
(lt, intV(INT

1

), intV(INT

2

)) ! boolV(BOOL)

[gt1℄ evaluateDyadi
(gt, boolV(False), boolV(True)) ! boolV(False)

[gt2℄ evaluateDyadi
(gt, boolV(False), boolV(False)) ! boolV(False)

[gt3℄ evaluateDyadi
(gt, boolV(True), boolV(True)) ! boolV(True)

[gt4℄ ? BOOL  INT

1

> INT

2

---------------------------------------------------------

evaluateDyadi
(gt, intV(INT

1

), intV(INT

2

)) ! boolV(BOOL)

[ge℄ evaluateDyadi
(lt, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi
(not, VAL) ! VAL'

---------------------------------------

evaluateDyadi
(ge, VAL

1

, VAL

2

) ! VAL'



220 APPENDIX D. A COLLECTION OF META-PROGRAMS

[le℄ evaluateDyadi
(gt, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi
(not, VAL) ! VAL'

--------------------------------------

evaluateDyadi
(le, VAL

1

, VAL

2

) ! VAL'

l
s/adts/memory.ir

% memories binding identifiers to values

MEM = <ID, VAL>*

% return the empty memory

init: ! MEM

[init℄ init ! [℄

% update the memory

update: MEM � ID � VAL ! MEM

[update1℄ update([℄, ID, VAL) ! [<ID, VAL>℄

[update2℄ update([<ID, VAL>jMEM℄, �ID, VAL) ! [<ID, VAL>jMEM℄

[update3℄ ID 6= ID',

update(MEM, ID', VAL') ! MEM'

------------------------------------------------------

update([<ID, VAL>jMEM℄, ID', VAL') ! [<ID, VAL>jMEM'℄

% lookup the memory

lookup: MEM � ID ! VAL

[lookup℄ lookup( MEM ++ [<ID, VAL>℄ ++ MEM, �ID) ! VAL

D.2 The divide-and-
onquer s
hema

The program transformation below 
an be regarded as a representation of the divide-and-


onquer s
hema; refer also to Subse
tion 4.4.3.

�hri : Symbol

?

:

�hisMinimal ; solve; isNonminimal ; de
ompose ; 
omposei : Symbol

?

:

�hx; y; zi : Sort

?

:

Let x

0

= New Variable Of Sort x In

Let y

0

= New Variable Of Sort y In

Let x

1

= New Variable Of Sort x In

Let y

1

= New Variable Of Sort y In

Let x

2

= New Variable Of Sort x In

Let y

2

= New Variable Of Sort y In

Let z

0

= New Variable Of Sort z In h

Rule From [minimal℄ r hxi ! hyi ( h isMinimal hxi ! hi; solve hxi ! hyi i;

Rule From [nonminimal℄ r hxi ! hyi ( h isNonminimal hxi ! hi;

de
ompose hxi ! hz ; x

1

; x

2

i;

r hx

1

i ! hy

1

i;

r hx

2

i ! hy

2

i;


ompose hz; y

1

; y

2

i ! hyi i

i



D.3. SYMBOL TABLES IN A BLOCK-STRUCTURED LANGUAGE 221

D.3 Symbol tables in a blo
k-stru
tured language

The following transformation des
ribes the a

umulation of a symbol table in the de
laration part,

the pervasive inheritan
e in the statement part and its proper initialization for a blo
k-stru
tured

language. Thus, it generalizes Example 4.2.2.

� sk : Skeleton .

Default For ST By &stati
 initST

Æ Left To Right ST

Æ (Let write = From fblo
kg To fde
larationg In sk In

Let read = From fblo
kg To fde
laration, expressiong In sk In

Ensure (

Positions Output For (write [ fde
larationg) n fblo
kg Of Sort ST ++

Positions Input For read [ fblo
k, de
laration, expressiong Of Sort ST

)

)

The transformation is based on the following assumptions: The nonterminal expression models

expressions, whereas de
laration models de
larations. Both, program blo
ks and any other kind

of nested blo
ks (e.g. as a part of a fun
tion or a pro
edure de
laration), are modelled by the

nonterminal blo
k . A blo
k 
onsists of a de
laration and a statement part. All symbols on

paths between blo
k and de
laration / expression in
luding the symbols blo
k , de
laration and

expression need at least reading a

ess to the symbol table (Positions Input). Sin
e, the

symbol table is a

umulated in the de
larations part, some more symbols need writing pro
ess as

well (Positions Output). We have to take 
are that blo
k does not synthesize a symbol table

(: : : n fblo
kg) be
ause the symbol table entries of a nested blo
k should not be visible in the

en
losing blo
k.

D.4 The Constituents : : : With : : : 
onstru
t

We derive a s
hema useful to establish a 
omputational behaviour simulating the Constituents

: : : With : : : 
onstru
t for remote a

ess dis
ussed in Subse
tion 3.4.2. The pro�le of the s
hema

takes the following form:

Constituents : With ; ; ; For In :

Symbol� Sort� Sort� Symbol� Symbol� Symbol� Symbol�P(Tag) ! Trafo

Consider the following appli
ation of the s
hema:

Constituents s:� With �

0

; union ; unit ; zero For for In in;

The s
hema 
an be subdivided into several transformations to be performed subsequently:

1. For any o

urren
e of a parameter p of sort � on an output position of s a 
omputation

unit(p) ! (p

0

), where p

0

is a fresh variable of sort �

0

, will be in
luded.

2. All symbols on paths between for and (in
luding) the symbols de�ned by rules using s get

atta
hed an output position of sort �

0

.



222 APPENDIX D. A COLLECTION OF META-PROGRAMS

3. All unused o

urren
es of parameters p

1

, : : :, p

n

of sort �

0

have to be 
omposed by a

sequen
e of 
omputations

union(p

1

; p

2

) ! p

0

1

; : : : ; union(p

0

n�2

; p

n

) ! p

0

n�1

where p

0

1

, : : :, p

0

n�1

are fresh variables of sort �

0

.

4. The added output positions (refer to step (2.)) are de�ned by taking the most re
ent

de�nition from the left.

5. The remaining unde�ned o

urren
es p of sort �

0

are de�ned by inserting a 
omputation

zero ! p assuming zero as a left unit of union .

The a
tual spe
i�
ation is the following:

� rsym : Symbol .

� rsort : Sort .

� aux : Sort .

� union : Symbol .

� unit : Symbol .

� zero : Symbol .

� for : Symbol .

� in : P(Tag) .

� rs : Rules .

Let sk = Skeleton Of rs In

Let 
l = (From fforg To frsymg In sk) [ fforg In

% 5. insert 
onstant 
omputations

Default For aux By zero

% 4. 
opy a

umulated value to the LHS

Æ From The Left aux

% 3. 
ombine de�ning o

urren
es

Æ Forgetting Tags in Do

Redu
e aux By union

% 2. add positions for synthesis

Æ Add Positions Output For 
l Of Sort aux

% 1. add unary 
omputations

Æ Sele
ting Symbols 
l Do

Hiding unit Do (

Add hhOutput, unit, auxii

Æ Use hOutput, rsym, rsorti By unit

)

On rs.

To give an example, we start with a GSF s
hema for a part of an imperative language with

terminal attribution for identi�ers. For simpli
ity, no other attribution is 
onsidered here.

[prog℄ program : de
larations, statements.

[de
s℄ de
larations : de
laration, de
larations.

[node
℄ de
larations : .

[de
℄ de
laration : type, identifier ! ID.



D.4. THE CONSTITUENTS : : : WITH : : : CONSTRUCT 223

[int℄ type : .

[bool℄ type : .

[
on
at℄ statements : statement, statements.

[skip℄ statements : .

[assign℄ statement : variable, expression.

[var℄ expression : variable.

[varid℄ variable : identifier ! ID.

Similarly to the example in Subse
tion 3.4.2, all o

urren
es of identi�ers should be a

umu-

lated separately for the de
laration and the statement part. This is modelled by the following

appli
ation of the operator Constituents:

Let t = � s : Symbol .

Constituents identi�er.ID

With IDS, &ids union, &ids unit, &ids zero

For s

In f[prog℄g

In (t On de
larations) Æ (t On statements).

The result of the transformation is the following:

[prog℄ program

:

de
larations ! IDS

17

,

statements ! IDS

3

.

[de
s℄ de
larations ! IDS

21

:

de
laration ! IDS

15

,

de
larations ! IDS

19

,

&ids union(IDS

15

, IDS

19

) ! IDS

21

.

[node
℄ de
larations ! IDS

20

:

&ids zero ! IDS

20

.

[
on
at℄ statements ! IDS

12

:

statement ! IDS

1

,

statements ! IDS

5

,

&ids union(IDS

1

, IDS

5

) ! IDS

12

.

[skip℄ statements ! IDS

6

:

&ids zero ! IDS

6

.

[de
℄ de
laration ! IDS

14

:

type,

identifier ! ID,

&ids unit(ID) ! IDS

14

.

[assign℄ statement ! IDS

13

:

variable ! IDS

7

,

expression ! IDS

10

,

&ids union(IDS

7

, IDS

10

) ! IDS

13

.



224 APPENDIX D. A COLLECTION OF META-PROGRAMS

[int℄ type : .

[bool℄ type : .

[varid℄ variable ! IDS

0

:

identifier ! ID,

&ids unit(ID) ! IDS

0

.

[var℄ expression ! IDS

8

:

variable ! IDS

8

.

The rule [prog℄ 
ould be extended to make use of the derived sets of identi�ers, e.g. to 
he
k

that all de
lared identi�ers are also used.

D.5 Elimination of tail re
ursion

We demonstrate a simple elimination pro
edure for tail re
ursion. It is assumed that the rules

for the dedi
ated symbol sym des
ribe a traversal of a data stru
ture of 
ertain sort sort. Tail-

re
ursive 
alls of sym are then eliminated by returning the parameter of sort as a new output of

the 
on
lusion.

Consider, for example, the following inferen
e rules of a big step semanti
s. There are tail


alls in [while℄, [then℄ and [else℄.

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

-------------------------------------

exe
ute(assign(ID, EXP), MEM) ! MEM'

% first evaluate 
ondition, then bran
h on value

[if℄ evaluate(EXP, MEM) ! VAL,


ond(VAL, STM

1

, STM

2

, MEM) ! MEM'

-----------------------------------------

exe
ute(if(EXP, STM

1

, STM

2

), MEM) ! MEM'

[while℄ 
on
at(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM'',

exe
ute(STM'', MEM) ! MEM'

-------------------------------------

exe
ute(while(EXP, STM), MEM) ! MEM'

% exe
ute the Then�path of an If�statement

[then℄ exe
ute(STM, MEM) ! MEM'

-----------------------------------------


ond(boolV(True), STM, STM, MEM) ! MEM'

% exe
ute the Else�path of an If�statement

[else℄ exe
ute(STM, MEM) ! MEM'

------------------------------------------


ond(boolV(False), STM, STM, MEM) ! MEM'

The following variant is the result of the transformation eliminating the tail 
alls. The param-

eter skip is used for rules without tail-re
ursive 
alls. Con
erning styles of semanti
s de�nition,



D.6. ESTABLISHING CPS 225

we moved from a big step semanti
s (natural semanti
s) to a small step semanti
s (transitional

semanti
s).

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

----------------------------

exe
ute(assign(ID, EXP), MEM) ! (MEM', skip)

[if℄ evaluate(EXP, MEM) ! VAL,


ond(VAL, STM

1

, STM

2

, MEM) ! (MEM', STM

5

)

------------------------------------------

exe
ute(if(EXP, STM

1

, STM

2

), MEM) ! (MEM', STM

5

)

[while℄ 
on
at(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM''

-----------------------------------

exe
ute(while(EXP, STM), MEM) ! (MEM, STM'')

[then℄ 
ond(boolV(TruenBOOL), STM, STM

3

, MEM) ! (MEM, STM)

[else℄ 
ond(boolV(FalsenBOOL), STM

4

, STM, MEM) ! (MEM, STM)

There are 
ertain assumptions for the elimination pro
edure whi
h are skipped here. The

de�nition of the transformation is omitted here as well be
ause of its extent.

D.6 Establishing CPS

We demonstrate a transformation whi
h is suitable to establish the 
ontinuation passing style

for the rules of a dedi
ated symbol sym. The 
ontinuations are of a 
ertain sort sort. There

is a fun
tor skip for the empty 
ontinuation and another fun
tor 
on
at for the 
ombination of


ontinuations. To illustrate this transformation, we 
ontinue the example of the previous se
tion

by transforming the transitional semanti
s into a semanti
s in the 
ontinuation passing style.

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

----------------------------

exe
ute(assign(ID, EXP), MEM, STM

6

) ! (MEM', STM

6

)

[if℄ evaluate(EXP, MEM) ! VAL,


ond(VAL, STM

1

, STM

2

, MEM) ! (MEM', STM

5

)

------------------------------------------

exe
ute(if(EXP, STM

1

, STM

2

), MEM, STM

7

) ! (MEM', 
on
at(STM

5

, STM

7

))

[while℄ 
on
at(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM''

-----------------------------------

exe
ute(while(EXP, STM), MEM, STM

8

) ! (MEM, 
on
at(STM'', STM

8

))

[then℄ 
ond(boolV(TruenBOOL), STM, STM

3

, MEM) ! (MEM, STM)

[else℄ 
ond(boolV(FalsenBOOL), STM

4

, STM, MEM) ! (MEM, STM)

There are 
ertain assumptions for the appli
ability of the transformation whi
h are skipped

here. The de�nition of the transformation is omitted here as well be
ause of its extent.



226 APPENDIX D. A COLLECTION OF META-PROGRAMS

D.7 Coupling

Modular spe
i�
ations 
onsisting of several phases impli
itly des
ribe 
ertain 
entral data stru
-

tures more than on
e. In a language pro
essor, for example, the abstra
t syntax is des
ribed

twi
e, on
e by the \frontend" performing AST 
onstru
tion among other subtask and on
e by

the dynami
 semanti
s de�nition performing essentially a traversal of the given AST.

In this se
tion we want to introdu
e a transformation whi
h s
ans a given spe
i�
ation for term


onstru
tors and then tries to mat
h the skeleton of another spe
i�
ation with these 
onstru
tors.

The justi�
ation for su
h a mat
hing pro
ess is the well-known 
orresponden
e between signatures

(term 
onstru
tors) and 
ontext-free grammars (skeletons).

Let us �rst 
onsider an example. The following rule de�nes the stati
 semanti
s of assignment

statement of a simple imperative language.

[assign℄ statement(ST)

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

expression(ST) ! T',

&stati
 assignable(T, T').

The following rule de�nes the dynami
 semanti
s of the assignment statements. The abstra
t

syntax is impli
itly 
overed, sin
e a semanti
s de�nition is essentially a traversal of the abstra
t

syntax.

exe
ute: STM � MEM ! MEM

evaluate: EXP � MEM ! VAL

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

-------------------------------------

exe
ute(assign(ID, EXP), MEM) ! MEM'

To 
ouple the two phases, the above GSF rules should 
onstru
t terms a

ording to the term


onstru
tors in the semanti
s de�nition. We �rst show the result we are interested in.

[assign℄ statement(ST) ! STM

0

:

id ! ID,

&stati
 isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

0

),

&stati
 assignable(T, T'),

&ast assign(ID, EXP

0

) ! STM

0

.

The result 
an be obtained from the previous GSF rule whi
h does not 
over AST 
onstru
tion

by the transformation below. The meta-program takes two spe
i�
ations as input. Furthermore,

a number of nonterminals whi
h do not 
ontribute to abstra
t syntax 
an be enumerated. The

transformation �rst looks for asso
iations of skeleton symbols and sorts by mat
hing the 
on-

stru
tor pro�les with skeleton rules based on 
onforman
e of 
onstru
tor symbol and tag. The

a

umulated asso
iations are then used in a simple appli
ation of the operator Relate for adding


ompositional parameterization to 
onstru
t (as in the example) or de
onstru
t terms a

ordingly.

l
s/transformers/ast.fra



D.7. COUPLING 227

% add an asso
iation preserving mapping 
ondition

Let extendMap = � as : P(Asso
iation) . � sym : Symbol . � sort : Sort .

Let sofar =

Fold Left

� sort0 : Sort? . � hsym1, sort1i : Asso
iation .

sym = sym1 ! sort1, sort0

Neutral ? List as

In sofar = ? ! as ++ hhsym, sortii, sofar = sort Æ! as

In

� at : Rules . � io : Io . � ignore : P(Symbol) . � pfx : Pre�x .

� sk : Skeleton .

% a

umulate all 
onstru
tors (auxiliary fun
tion)

Let 
onstru
tors = 
onstru
torsInRules On at In

Let asso
iations =

% iterate signature with 
onstru
tors

Fold Left

� as : P(Asso
iation) . � prof : Pro�le .

: Symbol Of prof 2 
onstru
tors !

as,

Let tag = Tag From Symbol Of prof In

Let maybe =

Fold Left � maybe : (Name � Name*)? . � ht, l, ri : Shape .

t = tag ! hl, ri, maybe

Neutral ? List sk

In

maybe = ? !

% no mat
hing rule found for 
urrent 
onstru
tor pro�le

as,

Let hsym, symsi = maybe In

sym 2 ignore !

% LHS symbol to be ignored ) ignore rule altogether

as,

Let htargeti = Sorts Output Of prof In

Let hsorts, asi =

% mat
h LHS / RHS of rule with target / sour
e of 
onstru
tor

Fold Left

� hrest, sofari : hSort*, P(Asso
iation)i . � sym : Name .

sym 2 ignore !

hrest, sofari,

hTail Of rest, extendMap On sofar On sym On Head Of resti

Neutral hSorts Input Of prof, (extendMap On as On sym On target)i

List syms

In sorts = h i Æ! as

Neutral ; List Sigma Of at

In

% atta
h 
ompositional 
omputational behaviour

Sele
ting Symbols Symbols Asso
iated In asso
iations

Do Relate io asso
iations pfx





Bibliography

[ABFQ92℄ Fran
is Alexandre, Khadel Bsaies, Jean Pierre Finan
e, and Alain Quere. Spes:

A System for Logi
 Program Transformation. In A. Voronkov, editor, Logi
 Pro-

gramming and Automated Reasoning, LPAR'92, volume 624 of LNCS, pages 445{447.

Springer-Verlag, 1992.

[AC90℄ Isabelle Attali and Ja
ques Chazarain. Fun
tional evaluation of strongly non-
ir
ular

typol spe
i�
ations. In Pierre Deransart and Martin Jourdan, editors, Attribute

Grammars and their Appli
ations (WAGA), volume 461 of LNCS, pages 157{176.

Springer-Verlag, September 1990. Paris.

[ACG92℄ Isabelle Attali, Ja
ques Chazarain, and Serge Gilette. In
remental Evaluation of

Natural Semanti
s Spe
i�
ations. In M. Bruynooghe and M.Wirsing, editors, Pro-

gramming Language Implementation and Logi
 Programming, volume 631 of Le
ture

Notes in Computer S
ien
e, pages 87{99. Springer-Verlag, New York{Heidelberg{

Berlin, August 1992.

[Ada91℄ Stephen Robert Adams. Modular Grammars for Programming Language Prototyp-

ing. PhD thesis, University of Southampton, Fa
ulty of Engineering, Department of

Ele
troni
s and Computer S
ien
e, Mar
h 1991.

[AFZ88℄ I. Attali and P. Fran
hi-Zannetta

i. Uni�
ation-free exe
ution of TYPOL programs

by Semanti
 Attribute Evaluation. In Fifth International Conferen
e Symposium on

Logi
 Programming, Seattle, pages 166{177. Cambridge MIT Press, August 1988.

[Alb91℄ H. Alblas. Introdu
tion to attribute grammars. In Alblas and Meli
har [AM91℄,

pages 1{15.

[AM91℄ Henk Alblas and Bo�rivoj Meli
har, editors. Attribute grammars, Appli
ations and

Systems, Pro
eedings of the In ternational Summer S
hool SAGA, Prague, Cze
hoslo-

vakia, volume 545 of LNCS. Springer-Verlag, June 1991.

[AP91℄ Mart��n Abadi and Gordon D. Plotkin. A logi
al view of 
omposition and re�nement.

In Conferen
e Re
ord of the Eighteenth Annual ACM Symposium on Prin
iples of

Programming Languages, pages 323{332, Orlando, Florida, January 1991.

[AP94℄ I. Attali and D. Parigot. Integrating natural semanti
s and attribute grammars: the

minotaur system. Resear
h Report no. 2339, Inria, September 1994.

229



230 BIBLIOGRAPHY

[APR97℄ Isabelle Attali, Valrie Pas
ual, and Christophe Roudet. A language and an integrated

environment for program transformations. Rapport de re
her
he 3313, INRIA, De-


ember 1997.

[Att89℄ I. Attali. Compiling TYPOL with Attribute Grammars. In Deransart et al. [DLM89℄,

pages 252{272.

[Bau98℄ Beate Baum. Modularisierung attributierter Grammatiken. PhD thesis, Department

of Comp. S
., University Rosto
k, 1998.

[BCD

+

88℄ P. Borras, D. Clement, Th. Despeyroux, J. In
erpi, G. Kahn, B. Lang, and V. Pas
ual.

Centaur: the system. In Pro
eedings of SIGSOFT'88, Boston, USA, 1988.

[BD77℄ R. M. Burstall and John Darlington. A transformation system for developing re
ur-

sive programs. Journal of the ACM, 24(1):44{67, January 1977.

[BdM97℄ Ri
hard Bird and Oege de Moor. Algebra of Programming. Prenti
e Hall, 1997.

[BL92℄ Gilad Bra
ha and Gary Lindstrom. Modularity Meets Inheritan
e. In Pro
eedings of

the IEEE International Conferen
e on Computer Languages, April 1992.

[BMPT94℄ A. Brogi, P. Man
arella, D. Pedres
hi, and F. Turini. Modular Logi
 Programming.

ACM Transa
tions on Programming Languages and Systems, 16(3):225{237, 1994.

[Boy96a℄ Johan Boye. Dire
tional Types in Logi
 Programming. PhD thesis, University of

Link�oping, 1996.

[Boy96b℄ John Tang Boyland. Des
riptional Composition of Compiler Components. PhD

thesis, University of California, Berkeley, September 1996. Available as te
hni
al

report UCB//CSD-96-916.

[Boy98℄ John Tang Boyland. Analyzing Dire
t Non-lo
al Dependen
ies. In Kai Koskimies,

editor, Compiler Constru
tion, 7th International Conferen
e, CC'98, volume 1383 of

LNCS, pages 31{49. Springer-Verlag, April 1998.

[BR94℄ E. B�orger and D. Rosenzweig. The WAM { De�nition and Compiler Corre
tness. In

C. Beierle and L. Pl�umer, editors, Logi
 Programming: Formal Methods and Pra
ti
al

Appli
ations, Studies in Computer S
ien
e and Arti�
ial Intelligen
e, 
hapter 2, pages

20{90. North-Holland, 1994.

[Bra92℄ Gilad Bra
ha. The Programming Language Jigsaw: Mixins, Modularity and Multiple

Inheritan
e. PhD thesis, The University of Utah, Department of Computer S
ien
e,

Mar
h 1992.

[Bro93℄ Antonio Brogi. Program Constru
tion in Computational Logi
. PhD thesis, Univer-

sity of Pisa, 1993.

[Bru95℄ J.J. Brunekreef. Translog, an Intera
tive Tool for Transformation of Logi
 Programs.

Te
hni
al Report P9512, University of Amsterdam, Programming Resear
h Group,

De
ember 1995.



BIBLIOGRAPHY 231

[BS98℄ E. B�orger and W. S
hulte. Programmer Friendly Modular De�nition of the Semanti
s

of Java. In J. Alves-Foss, editor, Formal Syntax and Semanti
s of Java, LNCS.

Springer-Verlag, 1998.

[BvW98℄ Ralph-Johan Ba
k and Joakim von Wright. Re�nement Cal
ulus: A Systemati


Introdu
tion. Graduate Texts in Computer S
ien
e. Springer-Verlag, April 1998.

[CD84℄ Bruno Cour
elle and Pierre Deransart. Proofs of Partial Corre
tness for Attribute

Grammars with Appli
ation to Re
ursive Pro
edures and Logi
 Programming. Te
h-

ni
al Report RR 332, INRIA Ro
quen
ourt, 1984.

[CDPR98℄ L. Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Symboli
 
omposi-

tion. Te
hni
al Report 3348, INRIA, January 1998.

[CF94℄ Robert Cartwright and Matthias Felleisen. Extensible denotational language spe
-

i�
ations. In Masami Hagiya and John C. Mit
hell, editors, Theoreti
al Aspe
ts of

Computer Software: International Symposium, volume 789, pages 244{272. Springer-

Verlag, April 1994.

[CFZ82a℄ Bruno Cour
elle and Paul Fran
hi-Zannetta

i. Attribute Grammars and Re
ursive

Program S
hemes I. Theoreti
al Computer S
ien
e, 17(2):163{191, February 1982.

[CFZ82b℄ Bruno Cour
elle and Paul Fran
hi-Zannetta

i. Attribute Grammars and Re
ursive

Program S
hemes II. Theoreti
al Computer S
ien
e, 17(3):235{257, Mar
h 1982.

[CI84℄ Robert D. Cameron and M. Robert Ito. Grammar-Based De�nition of Metapro-

gramming Systems. ACM Transa
tions on Programming Languages and Systems,

6(1):20{54, 1984.

[Coa95℄ P. Coad. Obje
t Models: Strategies, Patterns and Appli
ations. Prenti
e Hall, 1995.

[DC90℄ G.D. Due
k and G.V. Corma
k. Modular Attribute Grammars. The Computer

Journal, 33(2):164{172, 1990.

[Des88℄ T. Despeyroux. Typol: A formalism to implement natural semanti
s. Te
hni
al

report 94, INRIA, Mar
h 1988.

[Dev90℄ Y. Deville. Logi
 Programming: Systemati
 Program Development. Addison Wesley,

1990.

[Dij76℄ E.W. Dijkstra. A Dis
ipline of Programming. Prenti
e Hall International, 1976.

[DL94℄ Yves Deville and Kung-Kiu Lau. Logi
 Program Synthesis. The Journal of Logi


Programming 19, pages 321{350, 1994.

[DLM89℄ P. Deransart, B. Lorho, and J. Maluszy�nski, editors. Programming Languages Im-

plementation and Logi
 Programming, Pro
eedings of the International Workshop

PLILP '88, Orleans, Fran
e, number 348 in LNCS. Springer-Verlag, May 1989.

[DM85℄ Pierre Deransart and Jan Ma luszy�nski. Relating Logi
 Programs and Attribute

Grammars. Journal of Logi
 Programming, 2(2):119{155, 1985.



232 BIBLIOGRAPHY

[DM93℄ Pierre Deransart and Jan Maluszy�nski. A Grammati
al View of Logi
 Programming.

The MIT Press, 1993.

[DPRJ96℄ Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Attribute gram-

mars and folds: Generi
 
ontrol operators. Rapport de re
her
he 2957, INRIA,

August 1996.

[DPRJ97℄ Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Stru
ture-

dire
ted generi
ity in fun
tional programming and attribute grammars. Rapport

de Re
her
he 3105, INRIA, February 1997.

[DS96℄ Domini
 Duggan and Constantinos Sourelis. Mixin modules. In Pro
eedings of the

1996 ACM SIGPLAN International Conferen
e on Fun
tional Programming, pages

262{273, Philadelphia, Pennsylvania, 24{26 May 1996.

[Esp95℄ David A. Espinosa. Semanti
 Lego. PhD thesis, Graduate S
hool of Arts and S
ien
es,

Columbia University, 1995.

[FFG91℄ Limor Fix, Nissim Fran
ez, and Orna Grumberg. Program 
omposition and mod-

ular veri�
ation. In Javier Lea
h Albert, Burkhard Monien, and Mario Rodr��guez-

Artalejo, editors, Automata, Languages and Programming, 18th International Collo-

quium, volume 510 of LNCS, pages 93{114, Madrid, Spain, 8{12 July 1991. Springer-

Verlag.

[FLO97℄ P. Flener, K.-K. Lau, and M. Ornaghi. On Corre
t Program S
hemas. In Fu
hs

[Fu
97℄. Report CW 253, Katholieke Universiteit Leuven, Department Of Computing

S
ien
e.

[FMY92℄ R. Farrow, T.J. Marlowe, and D.M. Yellin. Composable Attribute Grammars. In

Pro
eedings of 19th ACM Symposium on Prin
iples of Programming Languages (Al-

buquerque, NM), pages 223{234, January 1992.

[Fu
97℄ Norbert E. Fu
hs, editor. Pro
eedings LOPSTR'97, Leuven, Belgium. July 10{12,

1997, 1997. Report CW 253, Katholieke Universiteit Leuven, Department Of Com-

puting S
ien
e.

[Gal97℄ John (John P.) Gallagher, editor. Logi
 program synthesis and transformation: 6th

International Workshop, LOPSTR'96, Sto
kholm, Sweden, August 28{30, 1996: pro-


eedings, volume 1207 of LNCS, New York, NY, USA, 1997. Springer-Verlag In
.

[Gan83℄ Harald Ganzinger. In
reasing Modularity and Language Independen
y in Automat-

i
ally Generated Compilers, 1983.

[GE90℄ Josef Gros
h and Helmut Emmelmann. A Tool Box for Compiler Constru
tion. In

Pro
eedings of CC'90, 1990.

[GHL

+

92℄ R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A Complete,

Flexible Compiler Constru
tion System. Communi
ations of the ACM 35, pages 121{

131, February 1992.



BIBLIOGRAPHY 233

[Gie88℄ R. Giegeri
h. Composition and Evaluation of Attribute Coupled Grammars. A
ta

Informati
a 25, pages 355{423, 1988.

[Gur95℄ Y. Gurevi
h. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Spe
i�
a-

tion and Validation Methods, pages 9{36. Oxford University Press, 1995.

[Har97℄ J�org Harm. Automati
 Test Program Generation from Formal Language Spe 
i�
a-

tions. In RIB [RIB97℄. 24 pages, to appear.

[Has97℄ Haskell 1.4|A Non-stri
t, Purely Fun
tional Language, April 1997. Yale University,

University of St. Andrews.

[Hed89℄ G�orel Hedin. An obje
t-oriented notation for attribute grammars. In S. Cook, ed-

itor, Pro
eedings of the 3rd European Conferen
e on Obje
t-Oriented Programming

(ECOOP'89), BCS Workshop Series, pages 329{345. Cambridge University Press,

July 1989.

[Hed91℄ G�orel Hedin. In
remental stati
-semanti
s analysis for obje
t-oriented languages us-

ing door attribute grammars. In Alblas and Meli
har [AM91℄, pages 374{379.

[Hed92℄ G�orel Hedin. In
remental Semanti
 Analysis. Ph.D. thesis, Lund University, Lund,

Sweden, 1992. LUTEDX/(TECS-1003)/1-276/(1992).

[Hed94℄ G�orel Hedin. An Overview of Door Attribute Grammars. In P.A. Fritzson, editor,

Pro
eedings of Compiler Constru
tion CC'94, 5th International Conferen
e, CC'94,

Edinburgh, U.K., number 786 in LNCS, pages 31{51, 1994.

[Heh93℄ E.C.R. Hehner. A Pra
ti
al Theory of Programming. Springer-Verlag, 1993.

[HL89℄ Ivo Van Horebeek and Johan Lewi. Algebrai
 Spe
i�
ations in Software Engineering.

Springer-Verlag, 1989.

[HL94℄ P.M. Hill and J.W. Lloyd. The G�odel Programming Language. MIT Press, 1994.

[HLR97℄ J�org Harm, Ralf L�ammel, and G�unter Riedewald. The Language Development Lab-

oratory (

�

�

�

). In Magne Haveraaen and Olaf Owe, editors, Sele
ted papers from

the 8th Nordi
 Workshop on Programming Theory, De
ember 4{6, Oslo, Norway,

Resear
h Report 248, ISBN 82-7368-163-7, pages 77{86, May 1997.

[HN95℄ A. Hamfelt and J.F. Nilsson. Towards a Logi
 Programming Methodology based on

Higher-order Predi
ates. 23 pages, 1995.

[HN96℄ A. Hamfelt and J.F. Nilsson. De
larative Logi
 Programming with Primitive Re
ur-

sive Relations on Lists. In P. Maher, editor, Pro
eedings of the Joint International

Conferen
e and Symposium on Logi
 Programming, MIT Press, pages 230{243, 1996.

[Hud96℄ Paul Hudak. Building Domain-Spe
i�
 Embedded Languages, De
ember 1996.

[Jai95℄ Ashish Jain. Proje
tions of Logi
 Programs using Symbol Mappings. In Leon Sterling,

editor, Logi
 Programming, Pro
eedings of the Twelfth International Conferen
e on

Logi
 Programming, June 13-16, 1995, Tokyo, Japan. MIT Press, June 1995.



234 BIBLIOGRAPHY

[JC94℄ C.B. Jay and J.R.B. Co
kett. Shapely types and shape polymorphism. In Donald

Sannella, editor, Pro
eedings Programming Languages and Systems-ESOP'94, volume

788 of LNCS, pages 302{316. Springer-Verlag, 1994.

[JD93℄ Mark P. Jones and Lu
 Dupon
heel. Composing monads. Te
hni
al Report

YALEU/DCS/RR-1004, Yale University, De
ember 1993.

[Jeu95℄ J. Jeuring. Polytypi
 pattern mat
hing. In Conferen
e Re
ord of FPCA '95,

SIGPLAN-SIGARCH-WG2.8 Conferen
e on Fun
tional Programming Languages

and Computer Ar
hite
ture, pages 238{248, 1995.

[JF85℄ Gregory F. Johnson and Charles N. Fis
her. A meta-language and system for nonlo
al

in
remental attribute evaluation in language-based editors. In Conferen
e Re
ord of

the Twelfth Annual ACM Symposium on Prin
iples of Programming Languages, pages

141{151, New Orleans, Louisiana, January 1985.

[JJ96℄ J. Jeuring and P. Jansson. Polytypi
 programming. In J. Laun
hbury, E. Meijer, and

T. Sheard, editors, Advan
ed Fun
tional Programming, Se
ond International S
hool,

volume 1129 of LNCS, pages 68{114. Springer-Verlag, 1996.

[JJ97℄ P. Jansson and J. Jeuring. PolyP - a polytypi
 programming language extension.

In POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Pro-

gramming Languages, pages 470{482. ACM Press, 1997.

[JKS94℄ Ashish Jain, Mar
 Kirs
henbaum, and Leon Sterling. Constru
ting provably 
orre
t

logi
 programs. Te
hni
al Report CES-94-04, Department of Computer Engineering

and S
ien
e, Case Western Reserve University, Mar
h 1994.

[JP90℄ Martin Jourdan and Didier Parigot. Appli
ation Development with the FNC-2 At-

tribute Grammar System. In Dieter Hammer and Mi
hael Albinus, editors, Compiler

Compilers '90, volume 477 of LNCS, pages 11{25. Springer-Verlag, S
hwerin, 1990.

[JP91℄ Martin Jourdan and Didier Parigot. Internals and Externals of the FNC-2 Attribute

Grammar System. In Alblas and Meli
har [AM91℄, pages 485{504.

[JPJ

+

90℄ Martin Jourdan, Didier Parigot, Catherine Juli�e, Olivier Durin, and Carole Le Belle
.

Design, implementation and evaluation of the FNC-2 attribute grammar system. In

Conf. on Programming Languages Design and Implementation, pages 209{222, White

Plains, NY, June 1990. Published as ACM SIGPLAN Noti
es, 25(6).

[JRG92℄ Ian Ja
obs and Lauren
e Rideau-Gallot. A Centaur Tutorial. Rapport de re
her
he

2881, INRIA Sophia-Antipolis, July 1992.

[JS94℄ Ashish Jain and Leon Sterling. A methodology for program 
onstru
tion by stepwise

stru
tural enhan
ement. Te
hni
al Report CES-94-10, Department of Computer

Engineering and S
ien
e, Case Western Reserve University, June 1994.

[Kah87℄ Gilles Kahn. Natural semanti
s. In 4th Annual Symposium on Theoreti
al Aspe
ts

of Computer S
ien
e, volume 247 of LNCS, pages 22{39, Passau, Germany, 19{

21 February 1987. Springer-Verlag.



BIBLIOGRAPHY 235

[Kan91℄ Max I. Kanovi
h. EÆ
ient program synthesis: Semanti
s, logi
, 
omplexity. In

T. Ito and A. R. Meyer, editors, Theoreti
al Aspe
ts of Computer Software, volume

526, pages 615{632. Springer-Verlag, September 1991.

[Kas76℄ Uwe Kastens. Ein

�

Ubersetzer-erzeugendes System auf der Basis Attributierter Gram-

matiken. interner Beri
ht 10, Fakult�at f�ur Informatik, University Karlsruhe, Septem-

ber 1976.

[Kas91℄ Uwe Kastens. Attribute Grammars in a Compiler Constru
tion Environment. In

Alblas and Meli
har [AM91℄, pages 380{400.

[Kli93℄ Paul Klint. A meta-environment for generating programming environments. ACM

Transa
tions on Software Engineering and Methodology, 2(2), pages 176{201, 1993.

[Kli94℄ Paul Klint. Writing meta-level spe
i�
ations in ASF+SDF. Draft, November 1994.

[KLM

+

97℄ Gregor Ki
zales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Mar
 Loingtier, and John Irwin. Aspe
t-oriented programming. In Mehmet

Aksit and Satoshi Matsuoka, editors, ECOOP'97|Obje
t-Oriented Programming,

11th European Conferen
e, volume 1241 of LNCS, pages 220{242, Jyv�askyl�a, Finland,

9{13 June 1997. Springer-Verlag.

[KLMM93℄ J. Lindskov Knudsen, M. L�ofgren, O. Lehrmann Madsen, and B. Magnusson, editors.

Obje
t-Oriented Environments: The Mjo=lner Approa
h. Prenti
e Hall, 1993.

[KMS96℄ M. Kirs
henbaum, S. Mi
haylov, and L.S. Sterling. Skeletons and Te
hniques as a

Normative Approa
h to Program Development in Logi
-Based Languages. In Pro
eed-

ings ACSC'96, Australian Computer S
ien
e Communi
ations, 18(1), pages 516{524,

1996.

[Knu68℄ D.E. Knuth. Semanti
s of 
ontext-free languages. Math. Syst. Theory, 2:127{145,

1968. Corre
tions in 5:95-96, 1971.

[Kos91℄ Kai Koskimies. Obje
t Orientation in Attribute Grammars. In Alblas and Meli
har

[AM91℄, pages 297{329.

[KSJ93℄ M. Kirs
henbaum, L.S. Sterling, and A. Jain. Relating logi
 programs via program

maps. In Annals of Mathemati
s and Arti�
al Intelligen
e, 8(III-IV), pages 229{246,

1993.

[KT93℄ J. Komorowski and S. Tr
ek. Towards Re�nement of De�nite Logi
 Programs. In

ERCIM Workshop on Development and Transformation of Logi
 Programs, Fran
e,

1993.

[KW94℄ Uwe Kastens and W.M. Waite. Modularity and reusability in attribute grammars.

A
ta Informati
a 31, pages 601{627, 1994.

[KW96℄ Basim M. Kadhim and William M. Waite. Maptool | Supporting Modular Syntax

Development. In Tibor Gyim�othy, editor, Compiler Constru
tion, 6th International

Conferen
e, CC'96, volume 1060 of LNCS, pages 268{280. Springer-Verlag, April

1996.



236 BIBLIOGRAPHY

[Lak89℄ A. Lakhotia. A Workben
h for Developing Logi
 Programs by Stepwise Enhan
ement.

PhD thesis, Case Western Reserve University, 1989.

[L�am97℄ Ralf L�ammel. Composition based on Meta-Programming. In Antonio Brogi and

Patri
ia Hill, editors, Pro
eedings of LOCOS'97, LOGIC-BASED COMPOSITION

OF SOFTWARE, Post Conferen
e Workshop for the International Conferen
e on

Logi
 Programming, Leuven, Belgium, July 8-11th, 1997, pages 49{58, July 1997.

[Lar97℄ Craig Larman. Applying UML and Patterns. Prenti
e Hall, 1997.

[Le 89℄ Carole Le Belle
. Sp�e
i�
ation de r�egles s�emantiques manquantes. rapport de DEA,

D�ept. d'Informatique, University d'Orl�eans, September 1989.

[Le 93℄ Carole Le Belle
. La g�en�eri
it�e et les grammaires attribu�ees. PhD thesis, D�ept.

d'Informatique, University d'Orl�eans, 1993.

[LEW96℄ Ja
ques Loe
kx, Hans-Dieter Ehri
h, and Markus Wolf. Spe
i�
ation of Abstra
t

Data Types. Wiley and Teubner, 1996.

[LH96℄ S. Liang and P. Hudak. Modular Denotational Semanti
s for Compiler Constru
tion.

In Nielson [Nie96℄, pages 219{234.

[LHJ95℄ Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and modular

interpreters. In Conferen
e Re
ord of POPL '95: 22nd ACM SIGPLAN-SIGACT

Symposium on Prin
iples of Programming Languages, pages 333{343, San Fran
is
o,

California, January 1995.

[Lie95℄ Karl J. Lieberherr. Adaptive Obje
t-Oriented Software | The Demeter Method. PWS

Publishing Company, 1995.

[LJPR93℄ Carole Le Belle
, Martin Jourdan, Didier Parigot, and Gilles Roussel. Spe
i�
ation

and Implementation of Grammar Coupling Using Attribute Grammars. In Mau-

ri
e Bruynooghe and Jaan Penjam, editors, Programming Language Implementation

and Logi
 Programming (PLILP '93), volume 714 of LNCS, pages 123{136, Tallinn,

August 1993. Springer-Verlag.

[LNC91℄ Algebrai
 Methods II: Theory, Tools and Appli
ations. In Jan A. Bergstra and

Loe M.G. Feijs, editors, Algebrai
 Methods II: Theory, Tools and Appli
ations, volume

490. Springer-Verlag, 1991.

[Lor77℄ Bernard Lorho. Semanti
 attributes pro
essing in the system DELTA. In A. Ershov

and Cornelius H. A. Koster., editors, Methods of Algorithmi
 Language Implementa-

tion, volume 47 of LNCS, pages 21{40. Springer-Verlag, 1977.

[LR96℄ Ralf L�ammel and G�unter Riedewald. A 
al
ulus for modular and extensible language

de�nition. April 1996. Pro
eedings (Te
hni
al Report) of ALEL Workshop at CC'96,

Link�oping, Sweden, April 26, 1996.

[LR97℄ Ralf L�ammel and G�unter Riedewald. Operations on fragments of formal language

de�nitions towards semanti
 extensibility. In RIB [RIB97℄. 19 pages.



BIBLIOGRAPHY 237

[LRBS℄ Ralf L�ammel, G�unter Riedewald, Nguyen Van Ba
, and Susanne Stas
h. A language


onstru
tion set. in preparation.

[LRH96℄ Ralf L�ammel, G�unter Riedewald, and J�org Harm. Spe
i�
ation formalisms in

�

�

�

.

Preprint CS-08-96, University of Rosto
k, Department of Computer S
ien
e, De
em-

ber 1996. 100 pages.

[Mog89℄ Eugenio Moggi. An abstra
t view of programming languages. Te
hni
al Report

ECS-LFCS-90-113, University of Edinburgh, 1989.

[Mog91℄ Eugenio Moggi. Notions of 
omputation and monads. Information and Computation,

93(1):55{92, July 1991.

[Mos83℄ Peter D. Mosses. Abstra
t semanti
 algebras! In Formal Des
ription of Programming

Con
epts II, Pro
. IFIP TC2 Working Conferen
e, Garmis
h-Partenkir
hen, 1982,

pages 45{71. North-Holland, 1983.

[Mos88℄ Peter D. Mosses. A
tion semanti
s. Cubus, 1(4):9{13, 1988. Published by Dansk

Datamatik Center, Lyngby, Denmark.

[Mos92℄ Peter D. Mosses. A
tion Semanti
s. Number 26 in Cambridge Tra
ts in Theoreti
al

Computer S
ien
e. Cambridge University Press, 1992.

[Mos96℄ Peter D. Mosses. Theory and pra
ti
e of a
tion semanti
s. In MFCS '96, Pro
. 21st

Int. Symp. on Mathemati
al Foundations of Computer S
ien
e (Cra
ow, Poland,

Sept. 1996), volume 1113 of LNCS, pages 37{61. Springer-Verlag, 1996.

[Mos97℄ Peter D. Mosses. CoFI: The Common Framework Initiative for Algebrai
 Spe
i�
a-

tion and Development. In TAPSOFT'97, volume 1214. Springer-Verlag, 1997.

[MTH90℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. The MIT Press,

1990.

[Nai96℄ Lee Naish. Higher Order Logi
 Programming in Prolog. In Pro
. Workshop on

Multi-Paradigm Logi
 Programming, JICSLP'96, Bonn, 1996.

[NH95℄ J.F. Nilsson and A. Hamfelt. Constru
ting Logi
 Programs with Higher Order Pred-

i
ates. In M. Alpuente and M. Sessa, editors, Pro
eedings of GULP-PRODE'95,

the Joint Conferen
e on De
larative Programming 1995, Universita' Degli Studi di

Salerno, Salerno, pages 307{312, 1995.

[Nie96℄ Hanne Riis Nielson, editor. 6th European Symposium on Programming, Link�oping,

Sweden, April 1996, Pro
eedings of ESOP'96, volume 1058. Springer-Verlag, April

1996.

[NM95℄ U. Nilsson and J. Maluszynski. Logi
 Programming and Prolog (2 ed). John Wiley,

1995.

[NN92℄ F. Nielson and H. R. Nielson. Two-Level Fun
tional Languages. Cambridge Tra
ts

in Theoreti
al Computer S
ien
e vol. 34. Cambridge University Press, 1992.



238 BIBLIOGRAPHY

[NS97℄ Lee Naish and Leon Sterling. A Higher Order Re
onstru
tion of Stepwise Enhan
e-

ment. In Fu
hs [Fu
97℄. Report CW 253, Katholieke Universiteit Leuven, Department

Of Computing S
ien
e.

[Paa91℄ Jukka Paakki. Paradigms for Attribute-grammar-based Language Implementation.

Ph.D. thesis, Department of Comp. S
., University of Helsinki, February 1991.

[Paa95℄ Jukka Paakki. Attribute grammar paradigms | A high-level methodology in lan-

guage implementation. ACM Computing Surveys, 27(2):196{255, June 1995.

[Par88℄ Didier Parigot. Transformations,

�

Evaluation In
rmentale et Optimisations des Gram-

maires Attribus: Le Systme FNC-2. PhD thesis, Universit de Paris-Sud, Orsay, 1988.

[Pet94℄ Mikael Pettersson. RML { a new language and implementation for natural se-

manti
s. In M. Hermenegildo and J. Penjam, editors, Pro
eedings of the 6th In-

ternational Symposium on Programming Language Implementation and Logi
 Pro-

gramming, PLILP'94, volume 844 of LNCS, pages 117{131. Springer-Verlag, 1994.

[Pet95℄ Mikael Pettersson. Compiling Natural Semanti
s. PhD thesis, Department of Com-

puter and Information S
ien
e, Link�oping University, De
ember 1995.

[PP94℄ Alberto Pettorossi and Maurizio Proietti. Transformation of Logi
 Programs: Foun-

dations and Te
hniques. The Journal of Logi
 Programming 19, 20, pages 261{320,

1994.

[PPSL96℄ Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approa
h to 
ompiling

adaptive programs. In Nielson [Nie96℄, pages 280{295.

[PRJD96a℄ Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dynami
 At-

tribute Grammars. In Herbert Ku
hen and S. Doaitse Swierstra, editors, Int. Symp.

on Progr. Languages, Implementations, Logi
s and Programs (PLILP'96), volume

1140 of LNCS, pages 122{136, Aa
hen, September 1996. Springer-Verlag.

[PRJD96b℄ Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dy-

nami
 Attribute Grammars. Rapport de re
her
he 2881, INRIA, May 1996.

ftp://ftp.inria.fr/INRIA/publi
ation/RR/RR-2881.ps.gz.

[Pro96℄ Maurizio Proietti, editor. Logi
 program synthesis and transformation: 5th Interna-

tional Workshop, LOPSTR'95, Utre
ht, The Netherlands, September 20{22, 1995:

pro
eedings, volume 1048 of LNCS, New York, NY, USA, 1996. Springer-Verlag In
.

[PW80℄ Fernando C. N. Pereira and David H. D. Warren. De�nite Clause Grammars for

Language Analysis|A Survey of the Formalism and a Comparison with Augmented

Transition Networks. Arti�
ial Intelligen
e, 13(3):231{278, 1980.

[RIB97℄ Rosto
ker Informatik-Beri
hte, volume 20. Universit�at Rosto
k, 1997.

[Rie72℄ G�unter Riedewald. Syntaktis
he Analyse von ALGOL68-Programmen. Dissertation

A, Universit�at Rosto
k, Sektion Mathematik, 1972.



BIBLIOGRAPHY 239

[Rie79℄ G�unter Riedewald. Compilerkonstruktion und Grammatiken syntaktis
her Funktio-

nen. Dissertation B, Re
henzentrum der Universit�at Rosto
k, 1979.

[Rie91℄ G�unter Riedewald. Prototyping by Using an Attribute Grammar as a Logi
 Program.

In Alblas and Meli
har [AM91℄, pages 401{437.

[Rie92℄ G�unter Riedewald. The LDL { Language Development Laboratory. In U. Kastens

and P. Pfahler, editors, Compiler Constru
tion, 4th International Conferen
e, CC'92,

Paderborn, Germany, number 641 in LNCS, pages 88{94, O
tober 1992.

[RL89℄ G�unter Riedewald and Uwe L�ammel. Using an attribute grammar as a logi
 program.

In Deransart et al. [DLM89℄, pages 161{179.

[RL93℄ G�unter Riedewald and Ralf L�ammel. Provable 
orre
tness of prototype interpreters

in LDL. Preprint CS-09-93, University of Rosto
k, Department of Computer S
ien
e,

1993.

[RMD83℄ G. Riedewald, J. Maluszy�nski, and P. Dembinski. Formale Bes
hreibung von Pro-

grammierspra
hen, Eine Einf�uhrung in die Semantik. Oldenbourg-Verlag, M�un
hen,

Wien and Akademie-Verlag, Berlin, 1983.

[Rou94℄ Gilles Roussel. Algorithmes de base pour la modularit et la rutilisabilit des grammaires

attribues. PhD thesis, D�epartement d'Informatique, Universit�e de Paris 6, Mar
h

1994.

[RPJ94℄ Gilles Roussel, Didier Parigot, and Martin Jourdan. Coupling Evaluators for At-

tribute Coupled Grammars. In Peter A. Fritzson, editor, 5th Int. Conf. on Compiler

Constru
tion (CC' 94), volume 786 of LNCS, pages 52{67, Edinburgh, April 1994.

Springer-Verlag.

[SA97℄ Wolfram S
hulte and Klaus A
hatz. Fun
tional Obje
t-oriented Programming with

Obje
t-Gofer. In Herbert Ku
hen, editor, Pro
eedings Arbeitstagung Programmier-

spra
hen, Aa
hen, 22.-23. September, 1997, GI-Jahrestagung'97, 12 pages, Septem-

ber 1997. 9 pages.

[SHLG94℄ Viggo Stoltenberg-Hansen, Ingrid Lindstr�om, and Edward R. Gri�or. Mathemati-


al Theory of Domains. Number 22 in Cambridge Tra
ts in Theoreti
al Computer

S
ien
e. Cambridge University Press, 1994.

[SJ94℄ Guy L. Steele Jr. Building interpreters by 
omposing monads. In Conferen
e Re
ord

of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Prin
iples of Pro-

gramming Languages, pages 472{492, Portland, Oregon, January 1994.

[SJK93℄ Leon Sterling, Ashish Jain, and Mar
 Kirs
henbaum. Composition based on skele-

tons and te
hniques. In ILPS '93 post 
onferen
e workshop on Methodologies for

Composing Logi
 Programs, Van
ouver, O
tober 1993.

[Smi85℄ D.R. Smith. Top-down synthesis of divide-and-
onquer algorithms. Arti�
ial Intelli-

gen
e, 27(1):43{96, 1985.



240 BIBLIOGRAPHY

[SS94℄ L.S. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press, 1994. 2nd edition.

[SST92℄ Donald Sannella, Stefan Sokolowski, and Andrzej Tarle
ki. Toward formal devel-

opment of programs from algebrai
 spe
i�
ations: Parameterisation revisited. A
ta

Informati
a, 29(8):689{736, 1992.

[ST88℄ Donald Sannella and Andrzej Tarle
ki. Spe
i�
ations in an arbitrary institution.

Information and Computation, 76(2/3):165{210, February/Mar
h 1988.

[Sta97℄ Susanne Stas
h. Fallstudie f�ur Spra
hde�nitionen aus wiederverwendbaren

Bausteinen auf der Basis des Semanti
 Grammar Cal
ulus. Master's thesis, Uni-

versity of Rosto
k, Department of Computer S
ien
e, 1997.

[Sto77℄ Joseph E. Stoy. Denotational Semanti
s: The S
ott-Stra
hey Approa
h to Pro-

gramming Language Theory. The MIT Press, 1977.

[SV91℄ Doaitse Swierstra and Harald Vogt. Higher Order Attribute Grammars. In Alblas

and Meli
har [AM91℄, pages 256{296.

[Tho96℄ Simon Thompson. Haskell, The Craft of Fun
tional Programming. Addison-Wesley,

1996.

[Tr
93℄ S. Tr
ek. A 
ontribution to re�nement of logi
 programs. Studienarbeit, 1993.

[TS97℄ Walid Taha and Tim Sheard. Multi-Stage Programming with Expli
it Annotations.

In PEPM '97, Amsterdam, June 1997, 1997.

[TWW81℄ James W. That
her, Eri
 G. Wagner, and Jesse B. Wright. More an advi
e on stru
-

turing 
ompilers and proving them 
orre
t. Theoreti
al Computer S
ien
e, 15:223{

249, 1981.

[Wad92℄ Philip Wadler. The essen
e of fun
tional programming. In Conferen
e Re
ord of

the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin
iples of Pro-

gramming Languages, pages 1{14, Albequerque, New Mexi
o, January 1992.

[War93℄ D.H.D Warren. An Abstra
t Prolog Instru
tion Set. Te
hni
al report, 1993. Te
hni
al

Note 309, Arti�
al Intelligen
e Center, SRI International.

[Wat75℄ David A. Watt. Modular Des
ription of Programming Languages. Te
hni
al Report

A-81-734, University of California, Berkeley, 1975.

[WH97℄ Keith Wansbrough and John Hamer. A modular monadi
 a
tion semanti
s. In

Conferen
e on Domain-Spe
i�
 Languages, pages 157{170. The USENIX Asso
iation,

1997.

[Wil90℄ Reinhard Wilhelm. Tree transformations, fun
tional languages, and attribute gram-

mars. In Pierre Deransart and Martin Jourdan, editors, Attribute Grammars and

their Appli
ations (WAGA), volume 461 of Le
ture Notes in Computer S
ien
e, pages

116{129. Springer-Verlag, New York{Heidelberg{Berlin, September 1990. Paris.



BIBLIOGRAPHY 241

[Wir74℄ Niklaus Wirth. On the 
omposition of well-stru
tured programs. ACM Computing

Surveys, 6(4):247{259, De
ember 1974.

[Wir86℄ Martin Wirsing. Stru
tured algebrai
 spe
i�
ations: A kernel language. Theoreti
al

Computer S
ien
e, 42(2):123{249, August 1986.

[Wir94℄ M. Wirsing. Algebrai
 spe
i�ation languages: An overview. In E. Astesiano, G. Reg-

gio, and A. Tarle
ki, editors, Re
ent Trends in Data Type Spe
i�
ation, 10th Work-

shop on Spe
i�
ation of Abstra
t Data Types, Joint with the 5th COMPASS Work-

shop, S. Margherita, Italy, May/June 1994, Sele
ted Papers, volume 906 of LNCS,

pages 81{115. Springer-Verlag, 1994.

[WM77℄ D.A. Watt and O.L. Madsen. Extended attribute grammars. Te
hni
al Report no.

10, University of Glasgow, July 1977.





Index

++, 24

Æ!, 49

?, 49

./, 24, 33, 92

Æ, 34, 48

!, 48

>, 49

?, 52

abstra
t state ma
hine, 136

A

umulate : : :, 82

a

umulation, 82

ACG, 120

a
tion semanti
s, 126

adaptability, 1

Add : : :, 6, 73, 80

addressing fragments, 35

AG, 47

adaptation, 73


omposable, 121

in
remental development, 73

modular, 121

obje
t-orientation, 110

partitioned, 124

algebrai
 spe
i�
ation, 41

�-property, 57

an
estral attribute, 112

Ao In : : :, 31

appli
ation, 48

appli
ative 
al
ulus, 48

applied position, see position

applied variable o

urren
e, see o

urren
e

arranging rules, 69

ASF+SDF, 22, 43, 149

aspe
t, 109


omputational, 96

semanti
, 97

aspe
t-oriented programming, 109

Asso
iation, 20

attribute grammar, see AG

attribute inheritan
e, 112

attribution 
lass, 123

Axiom Is : : :, 50

basi
 s
hema, see s
hema

CAG, 121


all-
orre
tness, 22, 31

Centaur, 4, 41

Chain : : :, 92, 95


hain rule, 95


li
he, 141


losure, 67

Co
ktail, 122, 149


oer
ion, 50


ombinator, 70


ombining de�nitions, 86


omplete program, 96


ompleteness, 99


omponent, 109


omposition, 92, 140


ompositional 
omputation, see 
omputation


ompositionality, 124

Computation, 45


omputation, 45, 83


ompositional, 85

interpolating, 87

Computation? : : :, 47


omputational aspe
t, see aspe
t


omputational behaviour, 62


omputational element, see 
omputation


omputational model, see model

Compute : : :, 83, 85

Con
lusion, 19, 21, 22

Con
lusion From : : :, 8

Con
lusion Of : : :, 8, 23

243



244 INDEX

Con
retize : : :, 92, 94

Condition : : :, 83, 85


onditional, 48

partial, 49


onditional rewrite rule, 43


onforman
e, 31


onservative extension, 137


onsisten
y, 99

Constru
tion : : :, 83, 90


onstru
tive algebrai
 spe
i�
ation, see alge-

brai
 spe
i�
ation

Constru
tor? : : :, 39

Constru
tor From : : :, 40

Constru
tor Of : : :, 39


ontext, 25

Contra
t : : :, 73, 78, 80


ontra
tion, 74, 99


ontribution, 99

Copy : : :, 11, 75, 80


opy, 33, 75


opy rule, 6, 48


oupling, 120

De
onstru
tion : : :, 90

Default : : :, 11, 83, 85

default value, 112

De�ne : : :, 76, 83

de�ned symbol, see symbol

de�ning o

urren
e, see o

urren
e

de�ning position, see position

de�ning variable o

urren
e, see o

urren
e

de�nition, 33

adding, 76

Demeter, 109

denotational semanti
s, see semanti
s

Derivable : : :, 67

des
riptional 
omposition, 120

design patterns, 2

dire
tional type, 41

Do In : : :, 31

domain 
onstru
tor, 50

elaborate s
hema, see s
hema

Element, 19, 21, 22, 25

element substitution, 70

Element? : : :, 47

Element From : : :, 25

Eli, 122

embedding, 50

empty sequen
e, see sequen
e

empty set, see set

enhan
ment, 140

Ensure : : :, 80

error, 125

error element, 49

error spe
i�
ation, 49

evolving algebra, 136

export, 53

extensibility, 1, 124

extension, 140

False : : :, 48

�rst-order fun
tions, 44


attening RHS, 42

FNC-2, 112, 122, 149

Fold : : :, 77, 78

Fold Left : : :, 8, 20, 50

Fold Right : : :, 20, 50

folding, 78

Forget : : :, 66

Forgetting : : :, 71

formal language de�nition, 17

fragment sele
tion, 35

From : : :, 67

From The Left : : :, 80, 86

fun
tional 
omposition, 48

fun
tional program, 44

GSF, 44, 153

GSF interpretation, 45

GSF s
hema, 45

Haskell, 149

Head Of : : :, 20, 30, 50

Hiding : : :, 72, 90

higher-order fun
tion, 44

higher-order logi
 programming, 109

i/o-
orre
tness, 22, 31

Id, 19

idempoten
e, 61


losed under : : :, 61

identity, 61



INDEX 245


losed under : : :, 61

IMPLEMENT S, 31

import, 53

in
remental 
onstru
tion of premises, 72, 90

Inherit : : :, 82

inheritan
e, 82

inje
tion, 66

inserting keywords, 94

instan
e, 38

Interfa
e, 24

interfa
e, 24

Interfa
e From : : :, 25

interpolation, 87

Io, 20, 26

irrelevan
e, 98

iteration, 50

L-attribution, 39

�-abstra
tion, 48

�-
al
ulus, 48

layer, see level

�

�

�

, 46, 147, 193

left-to-right dependen
ies, 80

Left To Right : : :, 7, 81

Let : : :, 20, 49

Letre
 : : :, 20, 49

level, 97

LhsSubstitution, 70

Lift : : :, 92, 100

lifting, 17, 96, 100, 134

Map : : :, 8, 20, 50

Map Union : : :, 52

maybe type, 52

Merge : : :, 12, 92

merging, 8, 92

meta-programming, 1

meta-variable, 27

minimal semanti
s, 9

mixin, 110

Mj6olner/Orm, 112

model


omputational, 97

semanti
, 97

modular interpreter, 129

modular meta-programming, 52

modularity, 124

module, 52

module quali�er, 46

monad, 129

multi-stage programming, 110

Name, 19, 21, 28

Name? : : :, 39, 47

Name From : : :, 26, 40

Name Of : : :, 25

natural semanti
s, 4

Negative, 44

negative equations, 44

NEW

Name

, 26, 50

New Name : : :, 50

NEW

Operation

, 47, 50

New Operation : : :, 50

NEW

Variable

, 27, 50

New Variable : : :, 8, 50

Nil? : : :, 20, 30, 50

non-empty sequen
e, see sequen
e

non-empty set, see set

normalization, 42

o

urren
e

applied, 31

de�ning, 31

OLGA, see FNC-2

On : : :, 20, 48

OO CFG, 111

OOAG, 110

Operation, 45

Operation? : : :, 47

Operation From : : :, 47

operational semanti
s, see semanti
s

Order : : :, 69

orthogonality, 90

overlapping skeleton rules, 102

Override : : :, 92, 94

Parameter, 19, 21, 25, 26, 39

parameterization, 73, 79

Parameters : : :, 8, 25, 47, 66

part, 100

partial 
onditional, see 
onditional

partial dedu
tion, 138



246 INDEX

partial evaluation, 138

pass, 122

pattern, 121

Permute : : :, 73

phase, 123

polytypism, 108

Position, 20, 37

position, 73, 79

applied, 31

de�ning, 31

Positions : : :, 67

Positive, 44

positive equations, 44

post
omputation, 89

pre
omputation, 88

Pre
ompute : : :, 83, 87

Pre�x, 45

pre�x, 46

Pre�xed : : :, 66

Premise, 19, 21, 22

Premise From : : :, 8, 46

Premises Of : : :, 8, 23

preservation

semanti
s, 62

skeleton, see skeleton

type, see type

well-de�nedness, see well-de�nedness

produ
t, 50

Pro�le, 20, 28

Pro�le From : : :, 28

Pro�le Of : : :, 52

Program, 19, 21, 24, 53

program map, 62

Program From : : :, 25

Proje
t : : :, 80

proje
tion, 50, 59, 66, 80

propagation, 80

propagation pattern, 109

property

of meta-program, 54

quali�er, 46

RAG, 45

rea
hability, 67

rearranging rules, 69

re
ursion s
hema, 50

Redu
e : : :, 12, 83, 86

redu
edness, 32

re�nement, 63, 137

stepwise, 138

Relate : : :, 83, 85

relational formula, 45

relational symbol, 45

Remote : : :, 82

remote a

ess, 82

Rename : : :, 11, 68

renaming, 68

Repla
e : : :, 71

required symbol, see symbol

reusability, 1, 124

reuse, 21, 107

Reverse : : :, 50

RhsSubstitution, 70

RML, 4, 22, 31, 39, 152

Rule, 19{22

rule at level, 98

Rule From : : :, 8, 23

Rules, 19{21, 23, 50

Rules From : : :, 24

s
hema, 2, 141

basi
, 73


omposition, 92


omputation, 83

elaborate, 79

parameterization, 73, 79

position, 73, 79

Sele
t : : :, 66

sele
tAo, 183

sele
tAos, 183

sele
tDo, 183

sele
tDos, 183

Sele
ting : : :, 71

sele
tion, 66

sele
tive transformation, see transformation

sele
tor, 35

semanti
 aspe
t, see aspe
t

semanti
 model, see model

semanti
 rule, 48

semanti
s, 124

denotational, 125



INDEX 247

operational, 125

semanti
s preservation, see preservation

separate 
ompilation, 121

sequen
e, 50

empty, 50

non-empty, 50

set, 51

empty, 51

non-empty, 51

Shape, 55

shape, 108

SIGMA, 28

Sigma, 20, 27, 28, 50

Sigma Of : : :, 30

signature, 23

Skeleton, 55

skeleton, 55, 98, 139

preservation, 55

SML, 50, 149

SOLVE , 35, 40

Sort, 20, 28

Sort Of : : :, 27, 30

sorting rules, 69

stepwise enhan
ement, 78, 139

stri
tness, 49

Sub : : :, 73, 80

Substitute In : : :, 34, 40

Substitution, 20, 33, 50

substitution, 33

Subterms Of : : :, 39

Superimpose : : :, 77

superimposition, 47, 77, 99

Symbol, 19, 28

symbol

de�ned, 22

required, 24

used, 22

Symbol Of : : :, 8, 30, 47

Symbols : : :, 66

synta
ti
al rule, 48

Tag, 19, 21, 23

Tag From : : :, 26, 40, 47

Tag Of : : :, 8, 23

Tags : : :, 66

Tail Of : : :, 20, 30, 50

te
hnique, 139

template, 121, 123, 141

Term, 39

term 
onstru
tion, 41, 90

term de
onstru
tion, see term 
onstru
tion

Term? : : :, 39

Term From : : :, 39

To : : :, 67

totality, 56

Trafo, 20

transformation


ontra
ting, 60

extending, 60, 62

lo
al, 62

rule, 62

sele
tive, 71

stru
ture, 62

type-extending, 58

transformer, 99

True : : :, 48

tuple, 50

type

de
reasing, 58

extension, 58

in
reasing, 58

preservation, 58

type 
onstru
tor, 129

T YPE

Parameter

, 26, 40

Typol, 4, 41

unde�ned variable, see variable

Unde�ned! : : :, 77

Unfold : : :, 77, 78

unfolding, 78

uni�
ation, 33

Unify Element : : :, 35

Unify Parameters : : :, 34

unique sele
tor

for a de�ning position, 37

for a position, 37

for a premise, 36

for an applied position, 37

unique sortedness, 37

Unpre�xed : : :, 66

unused variable, see variable

Unused! : : :, 77



248 INDEX

Use : : :, 76

use, 33

adding, 76

used symbol, see symbol

Variable, 19, 26

variable

unde�ned, 32

unused, 32, 86

Variable? : : :, 27

Variable From : : :, 27

Variable Of : : :, 27

Variables : : :, 66

Variables In : : :, 27

WD, see well-de�nedness

weaving, 109

well-de�nedness, 6, 20, 31

preservation, 57

re
overy, 57

well-formedness, 20, 27

well-typedness, 6, 20, 28

WF , see well-formedness

WT , see well-typedness


