
Funtional meta-programs

towards reusability

in the delarative paradigm

Dissertation

zur

Erlangung des akademishen Grades

Doktor{Ingenieur (Dr.{Ing.)

der Fakult�at f�ur Ingenieurwissenshaften

der Universit�at Rostok

vorgelegt von Dipl.{Inf. Ralf L�ammel

geb. am 15. Dezember 1968 in Karl{Marx{Stadt

Rostok, 6. September 1998

Referees

Prof. Dr. rer. nat. Dr.-Ing. habil. G�unter Riedewald (supervisor)

Universit�at Rostok

Germany

Dr. habil. Isabelle Attali (external referee)

INRIA Sophia Antipolis

Frane

Prof. Dr. Paul Klint (external referee)

Centrum voor Wiskunde en Informatia (CWI) & Universiteit van Amsterdam

The Netherlands

Dates

Submission 6th September 1998

Defene 14th January 1999

 1998 University of Rostok, Ralf L�ammel

III

Abstrat

Funtional meta-programs on delarative target programs are proposed as a means to support

reuse. We approah to this goal in the following two steps:

1. A general framework for meta-programming is developed. It ombines

� an appliative alulus ontaining suitable basi data types for delarative programs

and fragments obeying well-typedness and other important properties and

� properties of target programs and meta-programs for formal reasoning, e.g. ertain

preservation properties of transformations.

We assume modes and types at the target level. They are useful to improve safety of meta-

programming and to ontrol program transformation. The framework an be instantiated

for example for natural semantis, attribute grammars, logi programming and onstru-

tive algebrai spei�ation. Spei� features of an instane an often be modelled in the

general framework by a kind of normalization. Higher-order funtions are useful to ahieve

generiity in meta-programs.

2. An operator suite for meta-programming is derived, where its operators model shemata of

program transformation, synthesis and omposition at a high level of abstration:

Transformation: Certain operators failitate adaptation of programs, e.g. the interpolation

of omputations or the establishment of new sum domains.

Synthesis: Aspets of omputational behaviour an be represented as meta-programs de-

rived from shemata supported by the operator suite, e.g. propagation shemata.

Composition: Target programs an be omposed for example by means of onatenation

and superimposition. Target programs an be derived from target program fragments

and program transformations modelling aspets of omputational behaviour by means

of lifting.

Meta-programming oasionally surpasses other approahes to reusability based on deomposi-

tion and parameterization in the ommon sense. The reuse of a module, for example, depends on

a suitable instantiation. In ontrast, our transformational approah does not rely on suh param-

eterization, although formal reasoning is neessary to prove orretness of reuse. We demonstrate

the meta-programming approah in the ontext of formal language de�nition based on natural

semantis and attribute grammars. The framework and the operator suite are ompared with par-

tiular approahes to reusability in the delarative paradigm, e.g. extensible semantis de�nitions

and paradigm shifts in attribute grammars.

Keywords

Meta-Programming, Delarative Programming, Reusability, Modularity, Extensibility, For-

mal Language De�nition, Program Transformation, Program Synthesis, Program Compo-

sition, Lifting

CR Classi�ation: D.1.1, D.1.6, D.2.1, D.2.13, D.3.1, D.3.3, D.3.4, F.3.1, F.3.2,

F.3.3, F.4.2

IV

Zusammenfassung

Funktionale Meta-Programme �uber deklarativen Objektprogrammen werden zur Unterst�utzung

von Wiederverwendbarkeit vorgeshlagen. Dieses Ziel wird in zwei Shritten angegangen:

1. Ein allgemeines Rahmenwerk zur Meta-Programmierung wird entwikelt. Es kombiniert

die folgenden Bestandteile:

� einen applikativen Kalk�ul mit Datentypen f�ur deklarative Programme und Frag-

mente, welhe die Einhaltung von Wohlgetyptheit und anderen wihtigen Eigen-

shaften siherstellen, und

� Eigenshaften von Objekt- und Meta-Programmen zur formalen Behandlung dieser,

z.B. bestimmte Erhaltungseigenshaften von Transformationen.

Wir setzen Modi und Typen auf Objektebene voraus. Sie sind hilfreih zur Erh�ohung

der Siherheit in der Meta-Programmierung und zur Steuerung von Programmtransfor-

mationen. Das Rahmenwerk kann z.B. f�ur nat�urlihe Semantik, attributierte Grammatiken,

logishe Programmierung und algebraishe Spezi�kation instanziiert werden. Spezielle Mit-

tel von Instanzen k�onnen oft auh in dem allgemeinen Rahmenwerk mit Hilfe einer Normal-

isierung modelliert werden. Funktionen h�oherer Ordnung sind nutzbringend, um Gener-

izit�at in Meta-Programmen zu erreihen.

2. Eine Sammlung von Operationen zur Modellierung von Shemata f�ur die Programmtransfor-

mation, -synthese und -komposition auf einer hohen Abstraktionsstufe wird abgeleitet:

Transformation: Bestimmte Operationen unterst�utzen die Anpassung von Programmen,

z.B. das Einshieben von Berehnungselementen oder die Herstellung von neuen Sum-

menbereihen.

Synthese: Berehnungsaspekte k�onnen durh Meta-Programme, welhe von grundlegen-

deren Shemata (z.B. Propagierungsshemata) abgeleitet wurden, repr�asentiert wer-

den.

Komposition: Objektprogramme k�onnen z.B. im Sinne einer Verkettung oder Superim-

position kombiniert werden. Objektprogramme k�onnen von Objektprogrammfrag-

menten und Programmtransformationen, welhe Berehnungsaspekte modellieren, mit-

tels Liften abgeleitet werden.

Meta-Programmierung �ubertri�t in Einzelf�allen andere Ans�atze zur Wiederverwendbarkeit, welhe

auf Dekomposition und Parameterisierung im �ublihen Sinne basieren. Wiederverwendung eines

Modules z.B. ist nur m�oglih, wenn eine brauhbare Instanziierung m�oglih ist. Unser transfor-

mationaler Zugang h�angt niht von einer Parameterisierung in diesem Sinne ab. Die Korrektheit

der Wiederverwendung bleibt aber Beweisgegenstand. Wir f�uhren unseren Ansatz zur Meta-

Programmierung im Kontext der formalen Sprahbeshreibung auf der Basis nat�urliher Seman-

tik und attributierter Grammatiken vor. Das Rahmenwerk und die Operationen werden mit

Ans�atzen zur Wiederverwendbarkeit im deklarativen Paradigma, z.B. erweiterbare Semantikbe-

shreibungen und Erweiterungen des Formalismus f�ur attributierte Grammatiken, verglihen.

V

Abbreviations

ADT abstrat data type

AG attribute grammar

AS abstrat syntax

ASM abstrat state mahine

AST abstrat syntax tree

CFG ontext-free grammar

EDS extensible denotational semantis

GSF grammar of syntatial funtions

HO higher-order ...

LHS left-hand side

LUB least upper bound

MGU most general uni�er

MI multiple inheritane

OO objet-orientation

RHS right-hand side

SI single inheritane

WAM Warren abstrat mahine

WD well-de�nedness

WF well-formedness

w.r.t. with respet to

WT well-typedness

Notation

Boolean Boolean values True and False

�

i

projetions for tuples/sequenes

In

D

i

injetions for sums

Out

D

i

projetions for sums

Is

D

i

test for addend

 domain onstrutor for produts

� domain onstrutor for oalesed sums

? domain onstrutor for sequenes

! funtion spaes / onditional

Æ! \partial" onditional

N

0

natural numbers (with 0)

P power sets

? \maybe" onstrution, i.e. D? = D � f?g

?

Æ funtional omposition (f Æ g)x = f(g(x))

On funtional appliation in meta-programs

? bottom element in the sense of divergene

> error element

h� � �i for sequenes and tuples

++ onatenation of sequenes

./ restrited forms of ++

VI

Aknowledgement

I would like to thank all the people who have helped me in several ways during all these

years. First of all, thanks to my advisor G�unter Riedewald for his guidane. He has given

me all the support one ould ask for. He was very patient and exible in spite of my style

of working: I have spent quite a while on investigating and abandoning potential topis.

Thanks to Jan Maluszy�nski and Ulf Nilsson for their kind hospitality when I was guesst

at IDA, University Link�oping in the LOGPRO group in 1995. Muh of the initial orien-

tation for my �nal topi was established during these days. I am also very grateful to the

Programming Researh Group at University of Amsterdam, CWI Amsterdam, partiularly

to Paul Klint and Mark van den Brand who invited me for a stay in 1996. The stay in

Amsterdam was very helpful in obtaining a leaner proposal for a PhD thesis. I had some

other invaluable oppurtunities for presenting my work in a preliminary state whih I want

to mention here. In Otober 1996 I was a guest at University of Latvia, Faulty of Physis

and Mathematis. Many thanks to Karlis Cerans, Vineta Arniane, Guntis Arnians, Janis

Bievskis, Guntis Barzdins for their interest and the disussions. I had two helpful visits

at INRIA. Many thanks to Pierre Deransart and Martin Jourdan for making possible the

�rst stay at INRIA Roquenourt in November 1996. Many thanks to Isabelle Attali for

organizing my visit to the CROAP group at INRIA Sophia-Antipolis in September 1997.

I am also very grateful for her detailed review of a draft of the thesis.

Lots of thanks to my present and past olleagues here in Rostok for providing the en-

vironment for my PhD projet. Beate Baum, Anke Dittmar, J�org Harm and Uwe L�ammel

deserve my warmest gratitude, sine they helped me with their omments to improve my

manusript. There are also some students who ontributed in some way to my work. I

would like to thank Susanne Stash and Wolfgang Lohmann.

I had several other stimulating exhanges, verbal and eletroni. I want to thank Egon

B�orger, Jan Bosh, Mark van den Brand, David Espinosa, Uwe Kastens, Peter Knauber,

Kung-Kiu Lau, Karl J. Lieberherr, Peter D. Mosses, Didier Parigot and Eelo Visser.

Speial thanks go to my mother, my sister Kathrin, my girlfriend Ellen, my friends

Burkhard and Mihael who always believed in me.

This PhD projet was supported, in part, by Deutshe Forshungsgemeinshaft, in the projet

KOKS.

Contents

1 Introdution 1

1.1 The topi . 1

1.2 Motivating examples . 4

1.2.1 Preliminaries . 4

1.2.2 Adapting the propagation of a data struture 5

1.2.3 Adding omputational behaviour 8

1.2.4 Further senarios . 13

1.3 Results and struture . 14

1.3.1 A general framework for meta-programming 14

1.3.2 The operator suite for meta-programming 15

1.3.3 Composition by lifting . 17

1.3.4 Modular language de�nition . 17

2 The general framework 19

2.1 Overview . 19

2.2 Fragments . 21

2.2.1 Rule . 22

2.2.2 Rules . 23

2.2.3 Program . 24

2.2.4 Element . 25

2.2.5 Parameter . 26

2.3 Notions for target programs . 27

2.3.1 Well-formedness . 27

2.3.2 Well-typedness . 28

2.3.3 Well-de�nedness . 31

2.3.4 Substitution and uni�ation . 33

2.3.5 Addressing fragments . 35

2.4 Instanes . 38

2.4.1 Natural Semantis . 39

2.4.2 Logi Programming . 41

2.4.3 Algebrai Spei�ation . 41

2.4.4 Funtional programs . 44

2.4.5 Grammars of Syntatial Funtions 44

VII

VIII CONTENTS

2.4.6 Knuthian Attribute Grammars . 47

2.5 Completion to an appliative alulus . 48

2.5.1 Simple �-alulus-like onstruts . 48

2.5.2 Error spei�ation . 49

2.5.3 Embedding data types for meta-programming 50

2.5.4 Domain onstrutors . 50

2.5.4.1 Tuples . 50

2.5.4.2 Sequenes . 50

2.5.4.3 Sets . 51

2.5.4.4 The Maybe type onstrutor 52

2.5.5 Modules . 52

2.6 Properties of meta-programs . 54

2.6.1 Skeletons and their preservation . 54

2.6.2 Totality . 56

2.6.3 Preservation and reovery of well-de�nedness 57

2.6.4 Type preservation . 57

2.6.5 Type extension . 58

2.6.6 Projetions . 58

2.6.7 Identity . 61

2.6.8 Struture of transformations . 62

2.6.9 Disussion . 62

3 The operator suite 65

3.1 Overview . 65

3.2 Auxiliary operators . 66

3.2.1 Seletions, projetions, injetions and losures 66

3.2.2 Renaming . 67

3.2.3 Sorting . 69

3.2.4 Combinators . 70

3.2.4.1 Element substitution . 70

3.2.4.2 Seletive transformation 71

3.2.4.3 Temporary invisibility of symbols 72

3.3 Basi shemata . 73

3.3.1 Positions . 73

3.3.2 Copies & De�nitions & Uses . 74

3.3.2.1 Copies . 75

3.3.2.2 Adding de�nitions . 76

3.3.2.3 Adding uses . 76

3.3.2.4 Establishing unde�ned and unused variables 76

3.3.2.5 Removing omputations 77

3.3.3 Rules . 77

3.3.3.1 Superimposition . 77

3.3.3.2 Folding . 78

CONTENTS IX

3.3.3.3 Unfolding . 78

3.4 Elaborate shemata . 79

3.4.1 Positions . 79

3.4.2 Propagation . 80

3.4.2.1 Left-to-right dependenies 80

3.4.2.2 Inheritane . 81

3.4.2.3 Aumulation . 82

3.4.2.4 Remote aess . 82

3.4.3 Computations . 83

3.4.3.1 Nontrivial omputations 84

3.4.3.2 Defaults for providing de�nitions 85

3.4.3.3 Compositional omputations 85

3.4.3.4 Combining unused parameters 86

3.4.3.5 Interpolating omputational elements 87

3.4.3.6 Terms versus omputational elements 90

3.4.4 Composition . 92

3.4.4.1 A relaxed form of rule onatenation 92

3.4.4.2 Overriding rules . 94

3.4.4.3 Inserting keywords . 94

3.4.4.4 Chain rules . 95

3.5 Composition by lifting . 96

3.5.1 Notions . 96

3.5.2 A onrete form . 100

3.5.3 Disussion . 102

4 Related work 107

4.1 Sope . 107

4.2 Extension of the AG formalism . 110

4.2.1 Objet-orientation . 110

4.2.1.1 Motivation . 110

4.2.1.2 Objet-oriented ontext-free grammars 111

4.2.1.3 Attribute inheritane and default values 112

4.2.1.4 Models of semanti rules 113

4.2.1.5 Disussion . 114

4.2.2 Remote aess . 116

4.2.3 Symbol omputations . 119

4.2.4 Coupling . 120

4.2.5 Patterns . 121

4.2.6 FNC-2 . 122

4.3 Semantis . 124

4.3.1 Motivation . 125

4.3.2 Ation semantis . 126

4.3.3 Monads and monad transformers 129

X CONTENTS

4.3.4 Extensible denotational semantis 135

4.3.5 Extension and re�nement of abstrat state mahines 136

4.4 Program development . 138

4.4.1 Stepwise re�nement . 138

4.4.2 Stepwise enhanement . 139

4.4.3 Generi fragments and transformations 141

4.4.4 Spei�ation-building operators . 142

5 Conluding remarks 145

5.1 Ahievements . 145

5.2 Implementation . 147

5.3 Future work . 148

A Bakground 151

A.1 Domain notation . 151

A.2 Inferene rules . 151

A.3 Grammars of Syntatial Funtions . 153

A.4 Objet-oriented lass systems . 163

A.5 Objet-oriented ontext-free grammars . 163

A.6 Objet-oriented attribute grammars . 165

A.7 Ation semantis . 166

A.8 Extensible denotational semantis . 168

A.9 Stepwise re�nement . 170

A.10 Spei�ation-building operators . 171

B Tehnial details of the framework 175

B.1 Deonstrution of sequenes of rules . 175

B.2 Seletion of variables . 175

B.3 Applied and de�ning ourrenes . 176

B.4 Left-to-right dependenies (WD) . 176

B.5 Basi uni�ation . 177

B.6 Terms . 177

B.7 Computational elements . 178

C Remainder of the operator suite 179

C.1 More auxiliary operators . 179

C.1.1 Transformations on fragments . 179

C.1.2 Inserting premises into rules . 181

C.1.3 Skipping omputations in a sequene of premises 182

C.1.4 Seletion of parameters . 182

C.2 Parameterization shemata . 183

C.2.1 Addition, removal, ontration . 183

C.2.2 Conditional addition . 184

CONTENTS XI

C.2.3 Permutation . 185

C.3 Computation shemata . 185

C.3.1 Copies . 185

C.3.2 Constant omputations . 186

C.3.3 Unary onditions . 186

C.3.4 Nontrivial omputations . 187

C.3.5 Compositional omputations . 187

C.3.6 Combining unused parameters . 188

C.4 Reahability . 188

C.5 Superimposition . 189

C.6 Folding & unfolding . 190

C.7 Deriving hain rules . 192

D A olletion of meta-programs 193

D.1 Composition of a simple language de�nition 193

D.1.1 The struture of the interpreter de�nition 193

D.1.2 Composition of the dynami semantis 194

D.1.3 Composition of the frontend . 202

D.1.4 Auxiliary relations for the stati semantis 208

D.1.5 The frontend oping with onrete syntax 211

D.1.6 Auxiliary modules . 217

D.2 The divide-and-onquer shema . 220

D.3 Symbol tables in a blok-strutured language 221

D.4 The Constituents : : : With : : : onstrut . 221

D.5 Elimination of tail reursion . 224

D.6 Establishing CPS . 225

D.7 Coupling . 226

List of Figures

1.1 Reasoning at the meta-level . 2

1.2 An interpreter fragment for a simple imperative language 5

1.3 Intermediate step from Figure 1.2 to Figure 1.4 6

1.4 An interpreter oping with side e�ets in expression evaluation 7

1.5 Left To Right : Sort! (Rules! Rules) . 9

1.6 A \minimal" semantis of a write-statement 10

1.7 A \minimal" semantis of a read-expression 10

1.8 Adapted semantis of write and read . 10

1.9 An interpreter oping with inputs and outputs 12

1.10 Data types modelling target programs . 14

1.11 Analysing onrete spei�ation frameworks 15

1.12 Layers of the operator suite . 16

1.13 Mapping the general framework to onrete spei�ation frameworks . . . 16

1.14 Program omposition by lifting . 17

2.1 Data types for meta-programming (part 1/2) 19

2.2 Data types for meta-programming (part 2/2) 20

2.3 �-alulus-like onstruts . 21

2.4 Figure 1.2 in the pure framework . 40

2.5 An algebrai spei�ation for the interpreter from Figure 1.2 42

2.6 Conditional equations de�ning the dynami semantis of the if-onstrut . 43

2.7 \Pure" variant of Figure 2.6 . 43

2.8 Normalized funtional program obtained from Figure 2.5 44

2.9 A frontend for a simple imperative language 46

2.10 Operations on sequenes . 51

2.11 Iteration on sequenes . 51

2.12 Operations on sets . 51

2.13 Modular meta-programming . 53

2.14 Skeleton of the frontend spei�ation from Figure 2.9 56

2.15 A projetion (stati semantis) of the spei�ation from Figure 2.9 59

2.16 Another projetion (AST onstrution) of the spei�ation from Figure 2.9 60

3.1 Seletion of rules . 66

3.2 Seletion of symbols . 67

XII

LIST OF FIGURES XIII

3.3 Seletion of tags . 67

3.4 Seletion of parameters / variables . 67

3.5 Computation of losures onerning reahability 68

3.6 Examples for reahability . 68

3.7 Forms of renaming . 68

3.8 Order By : P(Tag) ! Trafo . 69

3.9 Seletive transformation . 71

3.10 Seleting Tags Do : P(Tag)� Trafo! Trafo 71

3.11 Hiding Do : Symbol� Trafo! Trafo . 72

3.12 Basi shemata for positions . 73

3.13 Basi omputation shemata . 75

3.14 Basi shemata for rules . 77

3.15 An optional if-onstrut obtained by fold/unfold 79

3.16 More elaborate shemata for positions . 80

3.17 Shemata for propagation . 80

3.18 Symbol table propagation . 81

3.19 Inherit From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo) . 82

3.20 Aumulate From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo) 82

3.21 Remote From : Sort�P(Symbol) ! Trafo 83

3.22 A frontend spei�ation before making the remote aess expliit 84

3.23 Elaborate omputation shemata . 84

3.24 Preompute By : Assoiation� Symbol! Trafo 88

3.25 Symbol table aess oping with more than one kind of entries 89

3.26 Figure 2.16 with term onstrution made expliit 91

3.27 Replaing omputations by term onstrution 92

3.28 Elaborate shemata for omposition . 92

3.29 Merge And : Rules� Rules! Rules . 93

3.30 Override By : Rules� Rules! Rules . 94

3.31 An optional if-onstrut (onrete syntax) 95

3.32 Some rules at ertain levels of the omputational model 98

3.33 Lift : ((Skeleton! Trafo)

?

 Rules)

?

! Rules 101

4.1 Objet-oriented notions for CFGs . 111

4.2 Some monads . 130

4.3 Signature for an interpreter of a pure funtional language 130

4.4 Interpretation in a monad (all-by-value) 130

4.5 Extension for referene ells (signature part) 131

4.6 The error monad . 131

4.7 Variants of equations making use of error messages 132

4.8 Construts at the Value-level . 132

4.9 Figure 4.8 with added environment propagation 133

4.10 A generi fragment for the divide-and-onquer shema 142

XIV LIST OF FIGURES

5.1 Interpretation of modular meta-programs in

�

�

�

. 147

A.1 Dependenies from the left to the right . 160

A.2 Abstrat syntax of the SIMPL language 166

A.3 Ation semantis of the SIMPL language 167

A.4 Speializing ation notation for SIMPL semantis 167

A.5 An extended diret semantis of Pure Sheme 169

Chapter 1

Introdution

In Setion 1.1 we explain the topi of the thesis, that is to say \Funtional meta-programs

towards reusability in the delarative paradigm" inluding a very short indiation of results

and related work. Afterwards, in Setion 1.2 a number of examples demonstrating our

approah to meta-programming failitating reuse is demonstrated. The examples onern

the adaptation of dynami semantis de�nitions for simple imperative languages in the

style of natural semantis. Finally, in Setion 1.3 we omment on the main results of our

work whih are aordingly reeted by the struture of the thesis.

1.1 The topi

Aording to [CI84℄ a meta-program is a program about programs. To failitate meta-

programming for programs in the language L, we need a framework M (i.e. a kind of

alulus, a (meta-) programming language, or an environment), the basi data objets

of whih inlude the programs and suitable fragments of L, sometimes denoted as the

target language or the objet language of M . Meta-programs take as input programs

and fragments in the target language L, perform various operations on them and possibly

generate modi�ed target language programs as outputs.

The appliations of meta-programming inlude soure-to-soure translation and appli-

ation generation in software development, program transformation (optimization, speial-

ization, deforestation, partial evaluation/dedution, et.; refer e.g. to [BD77, Wil90, PP94,

APR97℄), program synthesis (refer e.g. to [DL94, Kan91, BdM97℄) and program om-

position (refer e.g. to [Wir74, BMPT94, Bro93, FFG91, AP91℄) in formal programming

methodology. In this thesis, we use meta-programs to failitate reuse of target programs.

Reusability is a property of a programming development method where modi�ations and

extensions in the design of a programming problem an be easily realized at the imple-

mentation level. It is also ommon to use the terms extensibility and adaptability for

this purpose. We propose meta-programs to ompose, to extend and to adapt (target)

programs. We are also interested in modelling ertain parts of the software as rather

meta-programs than ordinary target programs. Thereby, we an obtain a more generi

1

2 CHAPTER 1. INTRODUCTION

desription of the omputational behaviour.

Meta-level

Extensions

Language core

Inheritance Encapsulation

Macros Subprograms Modularity Genericity

Imperative ... Logic ...

Functional ...

Meta-Programs

Design Patterns Frameworks Schemata Enhancement

RefinementCompositionSynthese

Attr. GrammarsAlgebraic Spec.

Polymorphism

Transformation

Figure 1.1: Reasoning at the meta-level

We onsider meta-programming as one possible onept to improve reusability and to

avoide errors and thereby to inrease produtivity in programming. Many other onepts

are ommon for programming languages and spei�ation frameworks. Some of them are

possibly integrated with the underlying language, i.e. these onepts an be regarded as

a kind of extension of the underlying language kernel, e.g. subprograms, modules, objet-

oriented onepts, generiity et. in Figure 1.1. There are other onepts whih are loated

rather at a separate level in the sense of a meta-level ; refer again to Figure 1.1. These

are onepts like re�nement (e.g. in the sense of Dijkstra's method [Dij76℄), design pat-

terns [Coa95, Lar97℄, frameworks and program synthesis [DL94℄. Meta-programming is

obviously loated at the meta-level as well. Note that for some onepts it depends on

the point of view if they should be regarded as a language extension or as a meta-level

onept. The style of adapative programming [Lie95℄, for example, suggests a way in whih

(propagation) patterns an be beome an integral part of programming. Another example

onerns modularity, whih is not neessarily integrated with a language, but it an be

the subjet of meta-level reasoning like for many other approahes to program omposi-

tion. Let us point out what our kind of meta-programs are meant to do. Our style of

meta-programming allows to onstrut, deonstrut and observe target programs and type

information about them. Meta-programs an represent program shemata (patterns) and

program transformation shemata. Moreover, meta-programs are used to perform program

ompositions. We propose ertain properties for formal reasoning in order to support a

ontrolled way of omposition, synthesis and transformation. Another important property

of our approah is that meta-programs are exeutable, whereas several other meta-level

onepts are rather useful for reasoning.

This thesis addresses the delarative paradigm as far as it onerns target languages. We

think that meta-programming is a viable approah to reuse in the delarative paradigm

1.1. THE TOPIC 3

beause it is partiularly suited for the review and the reonstrution of several other

attempts in di�erent spei�ation frameworks and problem domains. In our style of meta-

programming, we ruially rely on notions like many-sorted types, modes, terms, plae

holders, rules or equations and others as present in the delarative paradigm. To simplify

the terminology, we use the term delarative (target) language for both, for programming

languages like Prolog, G�odel and SML, and for spei�ation formalisms like attribute gram-

mars, natural semantis, algebrai spei�ations and de�nite lause programs. We want to

ahieve general results appliable for several representatives of the delarative paradigm.

Thus, we try to onsider an abstrat form of delarative programs. Indeed, the approah

an be instantiated for several existing languages or formalisms. Sine delarative lan-

guages are the target languages in our meta-programming approah, our target programs

are delarative programs. Note that other terms than program are often used in the liter-

ature for ertain representatives of the delarative paradigm, e.g. the term spei�ation is

used for example in the ontext of attribute grammars and natural semantis.

The �rst important subjet of the thesis is a framework for meta-programming on-

sisting of a funtional (i.e. �-) alulus for meta-programming with built-in data types for

delarative programs and fragments and some formal support to guide formal program

development based on our instane of meta-programming. The data types modelling pro-

grams and fragments are de�ned in a way that only \orret" values an be obtained.

Corretness is meant here in the sense of well-typedness and other properties. We have

hosen funtional meta-programs beause higher-order funtional programming provides

us with a way to write generi meta-programs. Formal program development is supported

by suitable properties of target programs and meta-programs, e.g. preservation properties.

The seond important subjet of the thesis is a high-level operator suite for meta-

programming whih is derived from the basi operators supported by the general frame-

work. The operator suite provides us with generi shemata for omposition, synthesis and

transformation. The presentation of the operator suite ulminates with a sophistiated

omposition tehnique alled lifting.

Although the ahievements of our work and the relationship to other approahes are

explained in muh more detail later on (see Setion 1.3 and Setion 5.1), we �rst pro-

vide a rough overview. Important properties of our approah to meta-programming are

generality. The general framework an be instantiated for quite di�erent representatives

of the delarative paradigm. Moreover, the general framework permits us to investigate

spei�ation tehniques and features as well as paradigm shifts introdued in di�erent om-

munities in a uniform way. We an simulate, for example, stepwise enhanement in logi

programming [Lak89, SS94, JS94℄, symbol omputations in attribute grammars [KW94℄

and remote aess in attribute grammars [Kas76, Lor77, JF85, KW94, Boy96b, Boy98℄.

We an unbundle roles intermingled in other approahes, for example ertain programming

tehniques in stepwise re�nement an be regarded as the omposition of some more elemen-

tary transformations. Our meta-programming approah ruially relies on types and modes

at the target level. Thereby, safety of meta-programming is improved. Moreover, types and

modes are shown to be useful to ontrol meta-programs. The operator suite provides a solid

basis for meta-programming at a high level of abstration. Many approahes to reusability

4 CHAPTER 1. INTRODUCTION

rely on ertain forms of modularity in the sense of parameterization and deomposition,

e.g. modular logi programming [HL94, Bro93, BMPT94℄, modules in AGs [Paa91, Bau98℄,

spei�ation-building operators in algebrai spei�ation [Wir86, ST88, SST92, Wir94℄, or

higher-order funtional programs / denotational semantis parameterized by monads (or

monad transformers) [Wad92, Mog89, Esp95℄. We want to omment on the bene�ts and

some limitations of reusability based on suh modularity. Meta-programming-like trans-

formations allow us to perform adaptations and extensions without depending too muh

on a sensible modular struture. Finally, our new omposition tehnique lifting should

be regarded as a major result of the thesis. At a super�ial level, lifting an be om-

pared with the monadi style in semantis [Mog89, Esp95℄ and funtional programming

[Wad92℄. However, we deal with program transformation based on �rst-order target lan-

guages instead of monads and monad transformation in a higher-order funtional setting.

Our meta-programming approah is shown to be useful, for example, in the ontext of

modular language de�nition based on natural semantis and attribute grammars.

1.2 Motivating examples

The purpose of this setion is to present a number of examples taken from the �eld of

formal semantis in order to demonstrate our meta-programming approah to reusability.

We use spei�ations in the style of natural semantis as target programs. Thereby, we also

provide a demonstration how our general meta-programming framework is instantiated for

an atual target language (here: natural semantis). We have hosen some senarios where

given spei�ations must be adapted or extended. It is shown how meta-programming-like

transformations an serve for that purpose. Other ommon approahes fail to solve suh

problems as below. The objetive of this setion is to show that the expressive power of

our high-level transformation shemata and the formal degree of program manipulation

provide a viable approah to reuse. A proper omparison with related work is presented

in Chapter 4.

1.2.1 Preliminaries

Natural semantis [Kah87℄ is a popular spei�ation formalism for stati and dynami

semantis, for translations between representations and stati analyses. In this thesis, nat-

ural semantis is used as one primary target language. Fragments of dynami semantis

for imperative languages in the style of natural semantis are used in numereous exam-

ples. A notational form of natural semantis similar to RML [Pet95, Pet94℄ and Typol

[Des88, BCD

+

88, JRG92℄ is used. In partiular, alphanumeri identi�ers are used to name

propositions and a distintion between inputs and outputs in propositions is assumed.

The pro�les for the relations modelling the semantis of statements and expressions for

a very simple imperative language, for example, are the following:

exeute : STM�MEM! MEM

evaluate : EXP�MEM! VAL

1.2. MOTIVATING EXAMPLES 5

The exeution of a statement (STM) is spei�ed by saying how the memory (MEM) is

transformed, whereas the evaluation of an expression (EXP) is spei�ed by saying how

the memory is observed and what value (VAL) is returned. Refer to Figure 1.2 for some

rules for these relations. Let us explain the piee of abstrat syntax whose semantis is

overed by the �gure: The empty statement sequene is denoted by the onstant (term)

skip, whereas the ompound statement sequene is represented by a term of the form

1

onat(STM

1

; STM

2

). An assignment statement with ID on the LHS and EXP on the RHS

is represented by the term assign(ID;EXP). Finally, a variable ID as a form of expression

is represented by the term var(ID).

: : :

exeute(skip;MEM) ! (MEM) [skip℄

exeute(STM

1

;MEM

0

) ! (MEM

1

)

^ exeute(STM

2

;MEM

1

) ! (MEM

2

)

exeute(onat(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[onat℄

evaluate(EXP;MEM

0

) ! (VAL)

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exeute(assign(ID;EXP);MEM

0

) ! (MEM

1

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL)

[var℄

: : :

Figure 1.2: An interpreter fragment for a simple imperative language

Consequently, the inferene rule [skip℄ spei�es the semantis of an empty statement

sequene, the rule [onat℄ spei�es the semantis of a statement sequene and the rule

[assign℄ spei�es the exeution of an assignment. Finally, the rule [var℄ onerns the evalu-

ation of a variable.

1.2.2 Adapting the propagation of a data struture

As we deal with a rather simple language, it is natural that the relation evaluate de�ning

the semantis of expressions only observes the memory, but it annot modify it. Thereby,

we express that side-e�ets do not our during expression evaluation. It is now assumed

that the language must be extended by a onstrut suh that the evaluation of expressions

may ause side-e�ets. The evaluation of an appliation of a Pasal-like funtion, for

example, may ause side-e�ets due to the statement part of the funtion body. To reuse

the interpreter program in Figure 1.2, the propagation of memories has to be adjusted. As

1

Note the following onvention for variables in target languages in this thesis: The identi�er of a domain,

e.g. STM, is used as the stem of variable identi�ers, possibly indexed or quoted, e.g. STM

1

.

6 CHAPTER 1. INTRODUCTION

far as it onerns the pro�les of the relations used and de�ned in Figure 1.2, it is obvious

that the pro�le of the relation evaluate must be extended as follows:

evaluate : EXP�MEM! VAL� MEM

We adjust the propagation of memories in Figure 1.2 in two steps. First, a new output

position of sortMEM is inserted in any proposition with the name evaluate. This adaptation

is performed by the following transformation:

Figure 1.3 � Add hOutput; evaluate;MEMi On

2

Figure 1.2

: : :

exeute(skip;MEM) ! (MEM) [skip℄

exeute(STM

1

;MEM

0

) ! (MEM

1

)

^ exeute(STM

2

;MEM

1

) ! (MEM

2

)

exeute(onat(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[onat℄

evaluate(EXP;MEM

0

) ! (VAL; MEM')

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exeute(assign(ID;EXP);MEM

0

) ! (MEM

1

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL; MEM')

[var℄

: : :

Figure 1.3: Intermediate step from Figure 1.2 to Figure 1.4

Refer to Figure 1.3 for the intermediate result. The inserted fresh variables are boxed

in Figure 1.3. Note that the rule [var℄ is not well-de�ned with regard to the data ow

beause of the single ourrene of MEM

0

on an output position of the onlusion. We do

not insist on a well-de�ned data-ow for intermediate results. However, even intermediate

results have to satisfy a number of properties inluding well-typedness in the sense of a

many-sorted type system. In ontrast to intermediate results, �nal results must have a

well-de�ned data ow. This issue is implemented by making a distintion between two

di�erent types in the meta-programming type system, that is to say Rules for inomplete

programs and Program for programs to be regarded as �nal results.

To adjust the propagation of the memory, a seond step remains to be performed: The

new variables must be inorporated orretly into the data ow in suh a way that the

result in Figure 1.4 is obtained. We do not simply speak of inserting \opy rules" to use

the attribute grammar jargon, but the data ow has really to be modi�ed and not only

2

On is used for funtion appliation, i.e. f On x � f(x).

1.2. MOTIVATING EXAMPLES 7

extended. Consider, for example, the rule [assign℄ in Figure 1.4: The memory omputed

by the premise with the name evaluate is used in the proposition with the name update.

In ontrast to that, the memory \ows" diretly from the onlusion to the proposition

with the name update in the original spei�ation in Figure 1.2. For suh problems of

propagation the operator Left To Right is suggested to be used. It is a transformation,

whih, when applied to a sort �, establishes a data ow from left to right by an identi�ation

of de�ning and applied ourrenes

3

of sort � in the suitable way after having refreshed

all these ourrenes. Thus, the propagation of memories an be adjusted by the following

transformation:

: : :

exeute(skip;MEM) ! (MEM) [skip℄

exeute(STM

1

;MEM

0

) ! (MEM

1

)

^ exeute(STM

2

;MEM

1

) ! (MEM

2

)

exeute(onat(STM

1

;STM

2

);MEM

0

) ! (MEM

2

)

[onat℄

evaluate(EXP;MEM

0

) ! (VAL;MEM

1

)

^ update(MEM

1

; ID;VAL) ! (MEM

2

)

exeute(assign(ID;EXP);MEM

0

) ! (MEM

2

)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

evaluate(var(ID);MEM) ! (VAL;MEM)

[var℄

: : :

Figure 1.4: An interpreter oping with side e�ets in expression evaluation

Figure 1.4 � Left To Right MEM On Figure 1.3

The operator Left To Right has a number of omfortable properties whih make it useful

for well-founded program transformation, e.g. it is total, the type of the underlying program

is not hanged and the skeleton of the program and well-de�nedness (in the sense of a

orret data-ow) is preserved.

In our approah, suh operators are de�ned in an appliative alulus supporting frag-

ment types as basi data types. To prove the properties as mentioned above, equational

reasoning (starting from the �-expression de�ning an operation) an be used.

The way how transformations are formalized in the funtional alulus is illustrated in

Figure 1.5 whih presents the alulus expression de�ning the operator Left To Right.

First, the auxiliary funtions use und def are delared, whih are useful to replae and to

refresh parameters of the given sort. The onstruts

4

3

The input positions of the onlusion and the output positions of the premises are regarded as de�ning

positions, whereas the omplementary set orresponds to the applied positions. The variables on the

orresponding positions are alled ourrenes.

4

We are using mix�x notation in our funtional alulus.

8 CHAPTER 1. INTRODUCTION

� Map f : � ! � List l : �

?

and

� Fold Left � : �

0

� � ! �

0

Neutral e : �

0

List �

?

are reursion/iteration shemata ommon in higher-order funtional programming. The

transformation Left To Right adapts eah single rule by essentially refreshing and iden-

tifying variables of the given sort from left to right. There is an impure onstrut New

Variable : : : to generate fresh variables. A number of operators for the deonstrution of

program fragments is used:

� Tag Of : Rule! Tag,

� Conlusion Of : Rule! Conlusion,

� Premises Of : Rule! Premise

?

,

� Symbol Of : � ! Symbol,

� Parameters Of : Io� � ! Parameter

?

,

where Io = fInput;Outputg, � = Conlusion or � = Premise. Similarly, several onstru-

tor operators are exploited:

� Rule From (: Tag � Conlusion� Premise

?

! Rule,

� Conlusion From ! : Symbol� Parameter

?

� Parameter

?

! Conlusion,

� Premise From ! : Symbol� Parameter

?

� Parameter

?

! Premise.

This introdutory example dealing with the adaptation of Figure 1.2 will be �nished

with some onluding remarks. The �nal result of the above adaptation as shown in Fig-

ure 1.4 opes with side-e�ets during expression evaluation. The bene�t of this adaptation

is that we an perform a omposition of Figure 1.4 and any fragment whih adheres to the

same semanti model, e.g. an interpreter fragment for the evaluation of a Pasal-like fun-

tion all. To \onatenate" two sets of rules is alled merging in our work. It is failitated

by a orresponding binary operator Merge.

It should be pointed out that it is a big advantage to be able to speify the semantis

of onstruts at a level whih is suÆient for the atual onstruts, e.g. the evaluation of

variables in Figure 1.2 does not involve side-e�ets. Thus, we an use the simple pro�le

for the relation evaluate in Figure 1.2. The following remark should be stressed:

To be able to ignore semanti aspets is not only a matter of saving lines of ode or

to have a oneptionally well-strutured spei�ation, but as we annot foresee all aspets

of a spei�ation in general|although, for interpreters of simple imperative languages we

an|, it makes reuse possible per se.

1.2.3 Adding omputational behaviour

Let us arry on with a slightly more omplex extension. We want to add a statement of

the form write(EXP) to perform an output and an expression of the form read to retrieve

an input. In the semantis de�nition, we model the onept of outputs by aumulating

output values in a orresponding sequene, whereas the remaining input is propagated

to the relation evaluate by orresponding parameter positions. Sine both, inputs and

outputs, are sequenes, we want to delare some straightforward polymorphi relations for

1.2. MOTIVATING EXAMPLES 9

� s : Sort .

% replae parameters of sort s by v

Let use = � ps : Parameter* . � v : Variable .

Map � p : Parameter . Sort Of p = s ! v, p List ps

In

% refresh parameters of sort s; propagate fresh variable

Let def = � ps : Parameter* . � v : Variable .

Fold Left

� hps, vi : Parameter* � Variable . � p : Parameter .

Sort Of p = s !

Let new = New Variable Of Sort s In hps ++ hnewi, newi,

hps ++ hpi, vi

Neutral hh i, vi List ps

In

% transform eah single rule

� rs : Rules . Map � r : Rule .

Let onl = Conlusion Of r In

Let fresh = New Variable Of Sort s In

Let honlI, v1i = def On Parameters Input Of onl On fresh In

Let hprems, v2i =

% iterate the premises

Fold Left

� hpres, vnexti : Premise* � Variable . � pre : Premise .

Let preI = use On Parameters Input Of pre On vnext In

Let hpreO, vnewi = def On Parameters Output Of pre On vnext In

hpres ++ hPremise From Symbol Of pre preI ! preOi, vnewi

Neutral hh i, v1i List Premises Of r

In

Let onlO = use On Parameters Output Of onl On v2 In

Rule From Tag Of r Conlusion From Symbol Of onl onlI ! onlO (prems

List rs.

Figure 1.5: Left To Right : Sort! (Rules! Rules)

list proessing required below in some fragments:

empty : ! List(�) % to denote the empty list

singleton : � ! List(�) % to transform an element into a list

append : List(�)� List(�) ! List(�) % ordinary onatenation of lists

head : List(�) ! � % to obtain the head of a list

tail : List(�) ! List(�) % to obtain the tail of a list

aÆx : � � List(�) ! List(�) % to extend a list

To ahieve a kind of modular semantis, where the semantis of partiular onstruts is

spei�ed without too muh assumptions about other design deisions whih are not so

relevant for the onstruts, we try to speify the semantis of the new onstruts in some

eonomial way; refer to Figure 1.6 and Figure 1.7.

The reason why we all the semantis fragments \minimal" is that we abstrat from

10 CHAPTER 1. INTRODUCTION

evaluate(EXP) ! (VAL)

^ singleton(VAL) ! (OUT)

exeute(write(EXP)) ! (OUT)

[write℄

Figure 1.6: A \minimal" semantis of a write-statement

head (IN

0

) ! (VAL)

^ tail (IN

0

) ! (IN

1

)

evaluate(read; IN

0

) ! (VAL; IN

1

)

[read℄

Figure 1.7: A \minimal" semantis of a read-expression

ertain details like the propagation of memories. Aiming at reusable fragments it is mean-

ingful to abstrat from the propagation of memories beause there are several options for

memory propagation as we have seen above in Subsetion 1.2.2. It an also be the ase that

a two-level model onsisting of an envrionment and a store must be used instead of \at"

memories. Suh assumptions should not be �xed in fragments whih do not rely on one or

another deision. The semantis of the write-statement and the read-expression is minimal

also in the sense that we ignore inputs in the rule [write℄ and we also ignore outputs in

the rule [read℄. Finally, the rule [write℄ resembles the basi ase that statements produe

outputs, but expressions do not. That is in ontrast to the senario, where expression

evaluation an ause all kinds of side e�ets.

To reuse the given semantis fragments from Figure 1.6 and Figure 1.7 in the ontext of

our interpreter in Figure 1.4, the orresponding rules must be quali�ed aordingly; refer

to Figure 1.8 for the result.

evaluate(EXP; MEM

0

; IN

0

) ! (VAL; MEM

1

; IN

1

; OUT

0

)

^ aÆx (VAL; OUT

0

) ! (OUT

1

)

exeute(write(EXP); MEM

0

; IN

0

) ! (MEM

1

; IN

1

;OUT

1

)

[write℄

head (IN

0

) ! (VAL)

^ tail(IN

0

) ! (IN

1

)

^ empty ! OUT

evaluate(read; MEM ; IN

0

) ! (VAL; MEM ; IN

1

; OUT)

[read℄

Figure 1.8: Adapted semantis of write and read

The adaptation an be desribed in terms of some transformations:

� Positions of sort MEM are added and the data ow for memories is established; refer

to the inserted positions of sort MEM. The operators Add and Left To Right,

1.2. MOTIVATING EXAMPLES 11

whih we have introdued in Subsetion 1.2.2, are suÆient for that purpose.

� In the same way the rule [write℄ is transformed to ontribute to the propagation of

the remaining input; refer to the inserted positions of sort IN.

� Sine we assume that the evaluation of expressions may ause side-e�ets, the relation

evaluate also must return an output; refer to the inserted positions of sort OUT.

� For the rule [write℄, we must make sure that the output from the premise with the

name evaluate is inorporated into the output produed by the statement. Thus, we

perform the following transformations:

1. Rename Symbol singleton To aÆx

2. Add hInput; aÆx ;OUTi

3. Copy hOutput; evaluate;OUTi To hInput; aÆx ;OUTi

The operator Rename is a straightforward operator: It serves for renaming names

of propositions. The atual appliation from above is semantis-preserving. The

operator Copy : : : To : : : uni�es the parameters on two positions. In attribute

grammars jargon, we would say that a semanti opy rule is inserted.

� Finally, it must be spei�ed that the evaluation of a read-expression produes no

output. Therefore, the position of sort OUT, whih we have inserted into the rule

[read℄, is assoiated with a new proposition serving as a kind of initialization. The

following transformation performs the neessary adapation:

Default For OUT By empty

In general, the operator Default adds for every variable of a given sort (i.e. OUT

in the example) without an assoiated de�ning ourenes a new premise with the

given name (i.e. empty in the example) and the variable as the only output position.

To onlude on the above transformations we should point out that transformations al-

low us to instantiate a spei�ation for ertain uses. The transformations we have shown so

far onern the addition of parameter positions, the adaptation of the data ow, renaming

and the insertion of premises.

Before we an merge our interpreter and the new (instantiated) onstruts, the inter-

preter from Figure 1.4 must be adapted to ope with the aumulation of output and the

propagation of the remaining input; refer to Figure 1.9 for the orresponding variant of the

interpreter whih is \ompatible" to Figure 1.8 with the I/O onstruts. Essentially, we add

parameterization and omputational behaviour in a way that the input is propagated by

positions of sort IN in the sense of a buket brigade [DC90, Ada91℄ or aumulator, whereas

the output is \purely synthesized" based on positions of sort OUT. Let us omment on

the transformations modelling the neessary adaptation:

� Positions of sort IN and OUT are inserted as visualized in Figure 1.9. The operator

Add serves for that purpose as before. The proper data ow for the positions of sort

IN is ahieved by another appliation of Left To Right. The positions of sort OUT

require more e�ort as disussed below.

12 CHAPTER 1. INTRODUCTION

: : :

empty ! OUT

exeute(skip;MEM; IN) ! (MEM; IN ; OUT)

[skip℄

exeute(STM

1

;MEM

0

; IN

0

) ! (MEM

1

; IN

1

; OUT

1

)

^ exeute(STM

2

;MEM

1

; IN

1

) ! (MEM

2

; IN

2

; OUT

2

)

^ append (OUT

1

;OUT

2

) ! (OUT)

exeute(onat(STM

1

;STM

2

);MEM

0

; IN

0

) ! (MEM

2

; IN

2

; OUT)

[onat℄

evaluate(EXP;MEM

0

; IN

0

) ! (VAL;MEM

1

; IN

1

; OUT)

^ update(MEM

1

; ID;VAL) ! (MEM

2

)

exeute(assign(ID;EXP);MEM

0

; IN

0

) ! (MEM

2

; IN

1

; OUT)

[assign℄

: : :

apply(MEM; ID) ! (VAL)

^ empty ! OUT

evaluate(var(ID);MEM; IN) ! (VAL;MEM; IN ; OUT)

[var℄

: : :

Figure 1.9: An interpreter oping with inputs and outputs

� In general, their an be several premises returning some output; refer e.g. to the rule

[onat℄. In suh ases all the positions must be \omposed" to a single output. Let

us insert premises of the form append(OUT

1

;OUT

2

) ! (OUT) to perform suh a

omposition. There is another operator failitating this kind of pairwise ombination

whih is used in the following instane:

Redue OUT By append

� The variables on the inserted applied positions of sort OUT are not de�ned yet. If

there is a de�ning position of sort OUT (note that there is at most one due to the

previous step) it an be opied. Otherwise the empty output should be returned.

Copying is ahieved by a weaker variant of the operator Left To Right, that is to

say From The Left. If there is an unde�ned ourrene of a variable of sort OUT,

it will be uni�ed with a de�ned ourrene from the left|if there is any. From The

Left is weaker in the sense that ourrenes of the orresponding sort should not

be refreshed as in the ase of the operator Left To Right. To return the empty

output a orresponding premise has to be inserted based on the operator Default in

similarity to the rule [read℄ in Figure 1.8.

The atual omposition of the adopted interpreter fragment for basi language on-

struts and the I/O onstruts is expressed as follows in our alulus:

Merge Figure 1.9 And Figure 1.8

1.2. MOTIVATING EXAMPLES 13

The result is simply the onatenation of the rules from the referred �gures. The om-

position an be desribed in some more detail by making expliit how the above operands

were ahieved. t

1

is assumed to denote the adaptations whih were neessary for the in-

terpreter in Figure 1.4 to ope with I/O, similarly, for t

2

and t

3

with respet to the I/O

onstruts from Figure 1.6 and Figure 1.7. These transformations have been desribed

above. Thus, the above omposition has the following more detailed desription:

Merge (t

1

On Figure 1.4) And (Merge (t

2

On Figure 1.6) And (t

3

On Figure 1.7))

This example demonstrates how we an ombine fragments of spei�ations at di�erent

layers (or levels) of the omputational model (or the semanti model). Transformations

like the t

i

above are used to relate the levels or|to put it di�erently|to qualify fragments

at one level for another level.

1.2.4 Further senarios

Adapting and extending semantis spei�ations, there are a lot more appliations for

transformations. Often there are only small adaptations neessary for suessful reuse,

the extension of the memory propagation in Subsetion 1.2.2 for example is suh a rather

simple adaptation. Nevertheless, without meta-programming reuse is not feasible even for

suh simple senarios. Let us sketh some further senarios:

Adding ontrol-ow onstruts When adding onstruts like jumps the style of the

semantis needs to be adjusted. We an use a rather transitional semantis in that

ase. One an de�ne a transformation shema to adopt ertain parts of a big step

semantis for use in small step semantis (and vie versa).

From non-reursive abstrations to reursive abstrations It is simple to write and

to understand the semantis for abstrations like proedures or funtions as long as

we do not ope with reursion. The variants supporting reursion are slightly more

omplex. Again, we an use a transformation to adapt the semantis of non-reursive

abstrations to ope with reursion. It an be based on a oding tehnique whih

is ommon in funtional programming and formal semantis, that is to say �nite

unfolding.

More general forms of LHSs in assignments A very simple language like the one in

Figure 1.2 regards variable identi�ers as the only form of LHSs for assignments. If we

add arrays, reords, pointers, or funtions, assignments beome more involved. There

is a lean way to perform the orresponding generalization in the stati semantis

spei�ation by means of transformations. Essentially, we fold the rule modelling

the simple semantis of assignment in a way that the premises orresponding to the

LHS moves to a new relation modelling the semantis of LHSs. Further forms are

supported by adding rules for the new relation.

14 CHAPTER 1. INTRODUCTION

1.3 Results and struture

The results of the thesis aordingly represented by the struture of the thesis are on-

luded in the following subsetions. Note that many tehnial details and some bakground

material is ontained in the Appendix hapters.

1.3.1 A general framework for meta-programming

We propose a general framework for modular and funtional meta-programs on delarative

target programs. It is important to notie that target programs, fragments and type in-

formation an be manipulated in meta-programs beause suitable data types (Figure 1.10)

are embedded into the meta-language. Let us desribe and justify the atual data types

and the entire framework in some detail.

Rule

Rules

Program

Name

Sort Variable

Tag

Profile

Sigma

Interface

Element

Parameter

Composition

Transformation

Figure 1.10: Data types modelling target programs

The data types for meta-programmming are meant to apture basi language onstruts

of several delarative programming languages and spei�ation frameworks suh as natural

semantis (e.g. RML), attribute grammars (e.g. GSFs) and onstrutive algebrai spei�-

ation. Thus, there are data types for fragments like rules, onlusions, premises et. The

data types should also take into onsideration properties whih are important for delara-

tive programs, e.g. well-typedness. Atually, we an regard the data types of our general

framework as an abstration from onrete languages. Analysing onrete examples fF

i

g

i2I

(languages, spei�ation frameworks) we do not only get a kind of abstrat language ker-

nel L

i

(onstruts + properties), but we are also interested in a haraterization of M

i

denoting the manipulations (paradigm shifts, features, extensions and meta-level onepts

in the sense of Figure 1.1) supported by the frameworks F

i

. Suh an abstration an be

visualized as in Figure 1.11.

1.3. RESULTS AND STRUCTURE 15

�

�

�

�	

�

�

�

�R

abstration

F

i

L

i

M

i

Figure 1.11: Analysing onrete spei�ation frameworks

Certain representatives of the delarative paradigm are not aptured by our atual

data types for meta-programming, e.g. denotational semantis, higher-order funtional

programming, \non-onstrutive" algebrai spei�ation are beyond our sope. However,

some reuse onepts o�ered by the representatives might be relevant in our disussion. In an

abstrat sense, our data types represent an idealized language L derived from some seletion

fL

j

g

j2J�I

. Meta-programs on the data types for L provide the lowest level of manipulations

M we propose for L in our general framework. We assume that L an be instantiated for

the L

j

. Tehnially, meta-programming is implemented by embedding the data types

for meta-programming into a alulus for modular appliative programs. What we are

�nally looking for are obviously manipulations M

0

at a higher level of abstration. The

manipulationsM

j

of our examples F

j

(e.g. modularity, remote aess, shemata) are mostly

at a higher level. We will try to represent suh manipulations as meta-programs. Formal

reasoning about target programs and meta-programs is supported by suitable properties

in our general framework. Preservation properties, totality, fragment seletion properties,

for example, provide important ingredients for reasoning about meta-programming.

The general framework for meta-programming (i.e. the data types from Figure 1.10,

the resulting alulus and properties for formal reasoning) is presented in full detail in

Chapter 2. There is also shown how the language L of the general framework an be

instantiated for several onrete languages L

j

suh as natural semantis, attribute gram-

mars, logi programming and algebrai spei�ation; refer to Setion 2.4. Note that suh

an instantiation does not explain yet how to reonstrut the manipulations M

j

assoiated

with the spei�ation frameworks F

j

, e.g. modularity, remote aess and shemata.

1.3.2 The operator suite for meta-programming

The general framework supports the development of modular funtional meta-programs

and formal reasoning about them. In our meta-programs, target programs an be on-

struted and deonstruted and the type information of a target program an be observed.

These are the basi manipulationsM in our general framework based on our idealized lan-

guage L. Preservation properties and others mentioned above permits us formal reasoning

about meta-programs. To approah to a higher level of abstration in meta-programming,

we develop an operator suite in the sense of a library of meta-programs. The onepts M

0

embodied by the operators of the suite will serve for the review and the reonstrution of

existing onepts M

j

.

Figure 1.12 presents the struture of the operator suite. We start from some set of

16 CHAPTER 1. INTRODUCTION

Elaborate schemata

Positions CompositionPropagation Computation

Auxiliary operators

Selections, projections,
injections, closures CombinatorsRenaming Sorting

Embedded data types for meta-programming

Typed applicative calculus

Basic schemata

Copies & Definitions & Uses RulesPositions

Figure 1.12: Layers of the operator suite

auxiliary operators. Then basi shemata apturing basi onepts of the synthesis, the

adaptation and the omposition of delarative target programs are de�ned, e.g. to add posi-

tions or simple omputational elements. In the next layer, several more elaborate shemata

are proposed, e.g. omplex shemata to add omputational behaviour or to propagate data

strutures. All these shemata are meant to support program omposition, synthesis and

transformation. The operator suite is based on a slight re�nement of the idealized language

L of the general framework. The atual re�nement permit us to apply the suite for natu-

ral semantis and GSFs (Grammars of Syntatial Funtions: parameterized ontext-free

grammars with relational formulae on the parameters assoiated with the rules; a kind of

attribute grammars losely related to logi programming). The suite is developed in full

detail in Chapter 3. We will present several shemata whih are not desribed elsewhere

in the literature in the ontext of stepwise enhanement [Lak89, SS94, JS94℄, rule models

[Hed92, KLMM93℄, modular attribute grammars [DC90℄, paradigm shifts in Lido [KW94℄,

et.

? ?

instantiation

L M

0

L

0

j

M

0

j

Figure 1.13: Mapping the general framework to onrete spei�ation frameworks

Based on a meta-programming-like point of view and on the atual operator suite we an

reonstrut existing onepts, whih have been proposed in the delarative paradigm to sup-

port reuse. Remote aess, for examples, an be \ompiled" by propagation shemata. In

1.3. RESULTS AND STRUCTURE 17

an abstrat sense, we try to understand existing frameworks as instantiations fhL

0

j

;M

0

j

ig

j2J

of our enrihed general meta-programming framework hL;M

0

i; refer to Figure 1.13. We do

not say that exatly hL

j

;M

j

i is reonstruted beause the language and the manipulations

need possibly to be extended, restrited or adapted. We only make a few reonstrutions

expliit in Chapter 4 desribing related work, but it is often ommented on the onepts

modelled by one or another operator.

1.3.3 Composition by lifting

We propose a new omposition tehnique lifting based on meta-programming; refer to

Setion 3.5. The starting point is to subdivide a programming problem into omputational

aspets. Program fragments an be loated at some \level" of the omplete omputational

model. Transformations alled transformers an be used to add omputational aspets.

Lifting means to derive a omplete program with the omplete omputational behaviour

from a program skeleton (a ontext-free grammar or a signature), fragments at ertain

levels and transformers; refer to Figure 1.14.

Lifting Process program
Complete

Rules
at levels

Computational
aspects

Skeleton

Transformers

Figure 1.14: Program omposition by lifting

In some sense, our notion of lifting is similar to lifting (or strati�ation) in modular de-

notational semantis based on monads and monad transformers and to the monadi style

of funtional programming; refer e.g. to [Esp95℄. Monads are dediated to higher-order

funtional spei�ation frameworks suh as higher-order funtional programming and de-

notational semantis. In our approah, we an ahieve a similar degree of extensibility by

meta-programs serving as transformers, even for �rst-order target languages. The monadi

style depends on a suitable parameterization. We indiate that our transformational ap-

proah does not require suh preonditions or those inherent to other forms of modularity in

Chapter 4 desribing related work. It is also interesting to notie that our transformational

approah to omposition is similar in intent to aspet-oriented programming [KLM

+

97℄ in

the sense that we also try to speify aspets of omputational behaviour separatly to avoid

\tangled" ode.

1.3.4 Modular language de�nition

As the motivating examples have made lear, we onentrate on appliations of the meta-

programming approah in formal language de�nition. Therefore, attribute grammars and

18 CHAPTER 1. INTRODUCTION

operational semantis (e.g. natural semantis) are used as target languages in all examples.

It is demonstrated that meta-programming failitates the spei�ation in the following

problem domains:

� semanti aspets of programming languages,

� adaptations for ommon syntatial and semanti variants of the desribed onstruts

and onepts and

� omposition of language fragments.

We laim that the �ne granularity of omputational aspets we an deal with, the possi-

bilities for omposition and adaptation annot be ahieved by other prominent tehniques

promising reusability, partiularly in AG design.

A language onstrution set whih ruially relies on the meta-programming approah

will be presented in a separate paper [LRBS℄. Attribute grammars and operational se-

mantis are used as the underlying formalisms. The onstrution set overs imperative

languages and simple modular and objet-oriented languages.

Chapter 2

The general framework

In this Chapter, we propose funtional meta-programs on delarative target programs. To

be appliable to a ertain range of representatives of the delarative paradigm, the data

types for meta-programming and the orresponding notions suh as well-typedness are de-

�ned in a general way. Setion 2.1 provides an overview of the data types, the resulting

appliative alulus and the properties of target programs and meta-programs. In Se-

tion 2.2 the data types onerning programs and fragments of them are onsidered in more

detail. Afterwards, ruial notions for dealing with delarative programs are introdued

in Setion 2.3, e.g. well-typedness and seletion riteria for fragments. In Setion 2.4, we

re�ne the data types for meta-programming and the notions for delarative programs to

ope with atual target languages. The data types for meta-programming are embedded

into an appliative alulus in Setion 2.5. Setion 2.6 de�nes a number of properties of

meta-programs, e.g. preservation properties.

2.1 Overview

Data type Explanation WF/WT Struture

Program omplete programs

p

Rules
 Interfae

Rules ompatible sequenes of rules

p

Rule

?

Rule rules

p

Tag
 Conlusion
 Premise

?

Conlusion onlusions for rules

p

Element

Premise premises for rules

p

Element� � � �

Element parameterized symbols

p

Name
 Parameter

?

 Parameter

?

Parameter parameters

p

(Variable� � � �)
 Sort

Variable ountable set of variables

Name symbols for elements Id

Interfae import / export / optional axiom

p

P(Name)
P(Name)
 Name?

Symbol universe of symbols Name� � � �

Tag tags of rules Id

Id ountable set of identi�ers

Figure 2.1: Data types for meta-programming (part 1/2)

19

20 CHAPTER 2. THE GENERAL FRAMEWORK

The starting point for our approah to meta-programming is a olletion of suitable

data types for meta-programming. There are data types for programs and fragments of

them; refer to Figure 2.1 for an overview. Moreover, there are auxiliary data types dealing

with type information (in the sense of the target language), fragment seletion, substitution

and uni�ation; refer to Figure 2.2 for an overview.

Data type Explanation WF/WT Struture

Sort sorts of positions et.

Pro�le pro�les of symbols Symbol� Sort

?

� Sort

?

Sigma signatures

p

P(Pro�le)

Substitution substitutions

p

P(Variable
 Parameter)

Assoiation assoiations of symbols and sorts Symbol
 Sort

Io seletor fragments fInput;Outputg

Position addresses of parameter positions Io
 Symbol
 Sort

Figure 2.2: Data types for meta-programming (part 2/2)

Consequently, basi operations for onstruting and deonstruting fragments need

to be de�ned. A partiular property of our approah to meta-programming is that the

data types for programs and fragments are restrited to elements obeying well-formedness

and well-typedness; refer to the olumn WF/WT in Figure 2.1 and Figure 2.2. Well-

formedness aptures simple ontext-sensitive properties of programs and fragments, suh

as that the tags of the rules are pairwise distint. Well-typedness is meant in the sense of a

many-sorted type system, like for many-sorted algebrai spei�ations or programming

languages like G�odel. For omplete programs we additionally require well-de�nedness

apturing properties partiularly important for omplete programs suh as a well-de�ned

data ow (e.g. L-attribution or strong non-irularity for AGs, or all orretion or i/o-

orretness for logi programs) and a kind of reduedness property (e.g. in the ontext-free

sense). Thereby, it is guaranteed that only proper fragments and spei�ations are derived

in any step of a meta-program, but this also means that some appliations of onstrution

operators are not de�ned.

The entral data types are Rule and Rules, i.e. single rules and ompatible sequenes

of them. Transformations in the narrow sense are funtions on Rules, i.e. they are of the

following type:

Trafo = Rules! Rules

The above data types are embedded into an appliative alulus in order to support

funtional meta-programs; refer to Figure 2.3 for the funtional programming-like on-

struts we assume. We prefer funtional meta-programs instead of other possible options,

beause:

� the meta-programs should be delarative (versus imperative) to allow us simple formal

reasoning about meta-programs and

� higher-order funtions (versus �rst-order spei�ation formalisms) are quite useful as

meta-programs, sine they provide, for example, a straightforward means to model

2.2. FRAGMENTS 21

generi transformations.

Form Explanation

On funtional appliation

Let x = e In e

0

non-reursive Let

Letre x = e In e

0

reursive Let

Æ omposition f Æ g On x = f On (g On x)

= equality (on non-funtional domains)

! ; onditional

> an error value being an element of any type

Æ! partial onditional; b Æ! e means b ! e;>

h: : :i onstrution of sequenes / tuples

Head Of , Tail Of , Nil? deonstrution of sequenes

++ onatenation of sequenes

Fold =Map reursion shemata

? the \maybe" type onstrutor; D? = D � f?g

?

Figure 2.3: �-alulus-like onstruts

Program transformations are very expressive. This is a statement we will omment on

all through the thesis. In partiular, we an perform adaptations whih are not supported

by ommon forms of modularity. On the other hand, we have to aspire to a disipline

of meta-programming supporting a kind of ontrolled reuse. It is obvious that one an

desribe almost every adaptation by suÆiently powerful transformations, but ontrolled

reuse means that the appliation of meta-programming operators is driven by their prop-

erties and by the semantis of the target programs serving as operands and results. Con-

sequently, we disuss properties of meta-programs in some depth in Setion 2.6, e.g. the

well-known general semantis preservation. If we go on to de�ne high-level operators for

program transformation, synthesis and omposition in the next hapter, this analysis will

be helpful in haraterizing partiular operators. The notions for target programs from

Setion 2.3 suh as well-typedness are ruial for our approah to safe meta-programming

as well.

2.2 Fragments

The domains Rule, Rules, Program, Conlusion, Premise, Element, Parameter and some other

auxiliary data types, e.g. Tag and Name, are de�ned below. For some domains we will

distinguish a strutural de�nition and the atual domain obtained as a restrition of the

strutural de�nition. The name of the domain orresponding to the strutural de�nition

is the overlined name of the atual domain, e.g. Rule denotes the name of the domain of

the strutural de�nition for Rule. If no restrition is neessary, the overlined domain and

the atual domain are not distinguished, e.g. for Tag. The restrited domains are usually

de�ned by inferene rules in similarity to type systems.

22 CHAPTER 2. THE GENERAL FRAMEWORK

2.2.1 Rule

The data type Rule is an abstration from onstruts being relevant in many spei�ation

frameworks, e.g. rules in natural semantis, or de�nite lauses in logi programming. A rule

onsists of a tag, a onlusion and some premises. Tags are useful to refer to a partiular

rule within sequenes of rules. The following strutural de�nition is suggested:

Rule = Tag
 Conlusion
 Premise

?

Conlusion = Element

Premise = Element� � � �

Elements are parameterized symbols (names) in orrespondene to propositions in natural

semantis, literals in logi programs and grammar symbols with assoiated attributes in

attribute grammars. Elements are onsidered in more detail in Subsetion 2.2.4. The

symbol of the onlusion is said to be de�ned by the rule. The symbols of the premises

are said to be used by the rule. At this point, we ignore that there an be other forms of

premises than elements. The domain Premise an be extended later on to ope with other

forms, e.g.:

� semanti rules of an attribute grammar,

� mathing onstruts (=) in a logi program and

� negative equations of an algebrai spei�ation.

We should omment on the atual deision to onsider a sequene of premises rather

than an (unordered) set of premises. If the body of a de�nite lause is read simply as a

onjuntion, there will be no neessity for maintaining the order among the literals in the

onjuntion. For many instanes, however, the atual order of the premises is signi�ant

or at least pragmatially useful:

� The order is signi�ant for the RHS of a ontext-free grammar rule. Consequently,

sequenes of elements need to be onsidered for attribute grammars.

� Several spei�ation formalisms or well-modedness onditions require ertain data

ow properties, e.g. RML [Pet95, Pet94℄, ASF (+SDF) [Kli93℄, all-orretness and

i/o-orretness in logi programming [Boy96a℄, whih depend on an atual order of

premises.

� The order of the premises is often understood as a desription of ontrol ow and data

ow, Sterling's et al. notion of a skeleton in [KMS96℄, for example, aptures (logi)

programs with a well-understood omputational behaviour (inluding ontrol-ow).

Indeed, we will assume that the relative order of the premises possibly ontributes

to ontrol-ow and/or data-ow.

� Finally, premises an be addressed by their position in the sequene.

Note also that the order of premises is possibly relevant for ertain evaluation strategies or

for inremental evaluation; refer e.g. to [AC90, ACG92℄ in the ontext of natural semantis.

2.2. FRAGMENTS 23

Proper values of Rule are haraterized as follows:

r 2 Rule is a triple of the form ht; e

0

; he

1

; : : : ; e

n

ii; n � 0

^ e

i

2 Element for i = 0; : : : ; n

^ WF

Rule

(r)

^ 9 � : WT

Rule

(�; r)

r 2 Rule

[Rule℄

Well-formedness (WF) is disussed in Subsetion 2.3.1, whereas well-typedness (WT)

of target programs and fragments is the subjet of Subsetion 2.3.2. Signatures � are

expeted to assoiate names (symbols) with many-sorted diretional types (or pro�les).

The onstrution of a rule r from a tag t, a onlusion e and a sequene of premises e

?

is expressed in the following mix�x notation:

Rule From t e (e

?

It should be pointed out that operations for the onstrution of fragments are usually

partial.

It is simple to de�ne basi operations for the deonstrution of rules:

Tag Of : Rule! Tag

Conlusion Of : Rule! Conlusion

Premises Of : Rule! Premise

?

Tag Of Rule From t e (e

?

! t [Tag Of ℄

Conlusion Of Rule From t e (e

?

! e [Conlusion Of ℄

Premises Of Rule From t e (e

?

! e

?

[Premises Of ℄

2.2.2 Rules

The data type Rules models ertain restrited sequenes of rules. Thus, obviously the

following strutural de�nition an be assumed:

Rules = Rule

?

Elements of Rules are restrited in the sense that they have to satisfy well-formedness

and the types of the single rules must be ompatible to eah other. Consequently, proper

values of Rules are haraterized as follows:

rs 2 Rules is a sequene of the form hr

1

; r

2

; : : : ; r

n

i; n � 0

^ r

i

2 Rule for i = 1; : : : ; n

^ WF

Rules

(rs)

^ 9 � : (WT

Rule

(�; r

i

) for i = 1; : : : ; n)

rs 2 Rules

[Rules℄

24 CHAPTER 2. THE GENERAL FRAMEWORK

The onstrution of an element rs 2 Rules is expressed in the following way:

Rules From : Rule

?

! Rules

Conatenation on Rules is denoted by ./ : Rules� Rules! Rules.

rs

1

++ rs

2

2 Rules

Rules From rs

1

./ Rules From rs

2

! rs

1

++ rs

2

[./ for Rules℄

Here ++ denotes ordinary onatenation of sequenes.

It is straightforward to de�ne basi operations Nil?, Head Of and Tail Of for the

deonstrution of elements of Rules in similarity to the iteration on sequenes; refer to

Setion B.1.

2.2.3 Program

A program p 2 Program is an even more restrited sequene of rules as onstrained in the

data type Rules together with a kind of interfae. The strutural de�nition of programs is

the following:

Program = Rules
 Interfae

Interfae = P(Name)
P(Name)
 Name?

An interfae for some rules de�nes the imported symbols, the exported symbols and

an optional axiom in the ontext-free sense. The imported symbols should be a subset of

the required symbols whih orrespond to all symbols used but not de�ned in the rules.

The exported symbols should be a subset of the de�ned symbols. Finally, if an axiom is

given it has to be an exported symbol.

ss

import

2 P

finite

(Name); ss

export

2 P

finite

(Name); a 2 Name?

^ ss

import

\ ss

export

= ;

^ a 6= ?) a 2 ss

export

hss

import

; ss

export

; ai 2 Interfae

[Interfae℄

Well-formedness and well-typedness of programs are assumed to result from the proper-

ties of the data type Rules. Any proper program p has to satisfy well-de�nedness. Indeed,

well-de�nedness is the distinguishing property of Program and Rules. To hek that the

rules \implement" the interfae is part of the well-de�nedness property; refer to Subse-

tion 2.3.3.

rs 2 Rules

^ i 2 Interfae

^ WD

Program

(rs ; i)

hrs ; ii 2 Program

[Program℄

2.2. FRAGMENTS 25

To onstrut an interfae and to lift some rules rs 2 Rules (w.r.t. an interfae) onto

Program, the following operations an be used:

Interfae From # " : P(Name)
P(Name) ! Interfae

Interfae From # " Axiom Is : P(Name)
P(Name)
 Name! Interfae

Program From With Interfae : Rules� Interfae! Program

These operations are partial like many other operations for onstruting fragments. The

rule [Program℄ models that a sequene of rules an only be onsidered as a proper program,

if well-de�nedness holds.

2.2.4 Element

Again, the data type Element is an abstration from onstruts being relevant in many

spei�ation frameworks, e.g. onlusions or premises in natural semantis, atoms or liter-

als in logi programming, onlusions and onditions (with free variables on one side) in

algebrai spei�ation.

An element onsists of a name (or a symbol), some inputs and some outputs. Conse-

quently, the following strutural de�nition an be given:

Element = Name
 Parameter

?

 Parameter

?

Proper values of Element are haraterized as follows:

e 2 Element is of the form hn, hp

1

; : : : ; p

m

i, hp

m+1

; : : : ; p

k

ii;m � 0; k � m

^ p

i

2 Parameter for i = 1; : : : ; k

^ WF

Element

(e)

^ 9 �;� : WT

Element

(�;�; e)

e 2 Element

[Element℄

Contexts � assoiate variables (parameters) with sorts. For a given rule, it must be possible

to assoiate eah variable with a single sort.

The onstrution of an element e is expressed in the following mix�x notation:

Element From n p

?

#

! p

?

"

The basi operations for the deonstrution of elements are as follows:

Name Of : Element! Name

Parameters Of : Io� Element! Parameter

?

26 CHAPTER 2. THE GENERAL FRAMEWORK

Here the domain Io is de�ned as follows: Io = fInput;Outputg.

Name Of Element From n p

?

#

! p

?

"

! n

[Name Of ℄

Parameters Input Of Element From n p

?

#

! p

?

"

! p

?

#

[Parameters:1℄

Parameters Output Of Element From n p

?

#

! p

?

"

! p

?

"

[Parameters:2℄

Some minor remarks onerning the domain Name are neessary. We assume that

both, tags and names for elements, are based on the same underlying set of identi�ers.

This property an be failitated to turn tags into symbols and vie versa. That possibility

an be used, for example, in order to add omputations to rules based on tags of the rules,

or to swith from a signature to a program skeleton. Consequently, we assume oerions

for both diretions:

Tag From : Name! Tag

Name From : Tag! Name

Finally, the generation of fresh names should be supported, for example, in order to be

able to speify the ompilation-oriented semantis of the operators for modularity in [Bro93,

BMPT94℄. We assume an operation NEW

Name

: P(Name) ! Name. NEW

Name

(N) 7! n

means: n is a name not mentioned in N . There is the pragmati problem of the proper

aumulation and propagation of the set of names N being in use in a meta-program. This

problem is addressed in Subsetion 2.5.3.

2.2.5 Parameter

The data type Parameter is an abstration for entities like terms (in natural semantis, logi

programming, and algebrai spei�ation), attributes (in attribute grammars) et. We will

have at least variables as a form of parameters. Thus, the initial strutural de�nition is

the following:

Parameter = (Variable� � � �)
 Sort;

where Variable is a ountable set of variables. As shown in the equation de�ning Parameter,

a parameter is always expeted to be assoiated with a sort, i.e. the type of the parameter.

Parameters are required to satisfy the properties of well-formedness and well-typedness.

Consequently, proper values of Parameter are haraterized as follows:

WF

Parameter

(p)

^ 9 �;� : T YPE

Parameter

(�;�; p) = �

Sort

(p)

p 2 Parameter

[Parameter℄

The partial funtion T YPE

Parameter

: Context � Sigma� Parameter ! Sort assoiates a

potential parameter with its sort; refer to Subsetion 2.3.2 for details. Sine we should

2.3. NOTIONS FOR TARGET PROGRAMS 27

be able to generate variables, there is a need for an operation NEW

Variable

: P(Variable)�

Sort ! Variable, where NEW

Variable

(V; �) 7! v means: v is a variable not mentioned in

V . The sort position of NEW

Variable

supports the onept of meta-variables, i.e. eah

variable has an assoiated sort, that is to say � for the above v. Similar to the generation

of names, there is the pragmati problem with generating fresh variables onerning the

proper aumulation and propagation of the set of variables V being in use in a meta-

program. We will return to this issue in Subsetion 2.5.3 when the data types are embedded

into an appliative alulus.

The onstrution of a parameter of a ertain sort � from a variable v is expressed as

follows:

Variable From v Of Sort �

However, if we assume meta-variables, the appliation of the onstrution operator an be

omitted in the sense of an impliit oerion.

To deonstrut parameters, the following operations are useful.

Sort Of : Parameter ! Sort

Variable? : Parameter ! Boolean

Variable Of : Parameter ! Variable

�

Sort

(p) ! �

Sort Of p! �

[Sort Of ℄

Is

Variable

(�

1

(p)) ! b

Variable? p! b

[Variable?℄

Variable Of Variable From v Of Sort � ! v [Variable Of ℄

Finally, we delare an operation seleting all variables ontained within a given sequene

of parameters. It is frequently needed for omputing losures of variables. Its spei�ation

is straightforward; refer to Setion B.2.

Variables In : Parameter

?

! P(Variable)

2.3 Notions for target programs

2.3.1 Well-formedness

The data types above have been de�ned in suh a way that a neessary preondition for

the well-formedness of a ompound fragment is the well-formedness of its omponents. To

satisfy well-formedness a partiular requirement for a program is the uniqueness of tags.

28 CHAPTER 2. THE GENERAL FRAMEWORK

WF

Rule

(r

i

) for i = 1; : : : ; n

^ �

Tag

(r

i

) 6= �

Tag

(r

j

) for i; j = 1; : : : ; n; i 6= j

WF

Rules

(hr

1

; : : : ; r

n

i)

[WF

Rules

℄

Instanes of the framework an add other requirements suh as:

� normal form properties of rules (as ommon for AGs),

� only one de�ning ourrene of a variable (linearity),

� pattern riteria for funtional equations (e.g. non-overlapping patterns).

2.3.2 Well-typedness

Any fragment suh as a rule, an element and a parameter an be assoiated with the type

information relevant for the symbols ourring in the fragment. Let Sort be the data type

of sorts. At this point, there are only symbols in the sense of Name ontributing to the

de�nition of Element. In several instanes other kinds of symbols are neessary, e.g. term

onstrutors (data type onstrutors) in natural semantis or funtion symbols (funtors)

in logi programming. Thus, a orresponding sum domain is established:

Symbol = Name� � � �

Every s 2 Symbol shall be assoiated with a diretional type based on a many-sorted type

system in similarity to [Boy96a℄. The notation

s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

;

where s 2 Symbol, �

i

2 Sort, i = 1; : : : ; m, is used for pro�les modelled by the domain

Pro�le. 1; : : : ; n are regarded as the input positions of s, whereas n+1; : : : ; m are regarded

as the output positions of s. Note the following speial ases:

� s has no input positions at all, i.e. n = 0, or

� s has no output positions at all, i.e. m = n, or

� s has no positions at all, i.e. m = 0 = n.

The onstrution of the above pro�le is expressed as follows:

Pro�le From s h�

1

; : : : ; �

n

i! h�

n+1

; : : : ; �

m

i

The data types Pro�le of pro�les and Sigma of signatures are de�ned as follows:

Pro�le = Symbol
 Sort

?

 Sort

?

Sigma = SIGMA(P(Pro�le)
 � � �)

SIGMA restrits elements of (P(Pro�le)
 � � �) to proper signatures � 2 Sigma. Some

ommon restritions an be indiated as follows:

2.3. NOTIONS FOR TARGET PROGRAMS 29

1. uniqueness of the pro�les for any symbol, i.e. the following de�nition of Sigma is

assumed:

Sigma = Symbol! (Sort

?

 Sort

?

);

2. funtion symbols have exatly one output position, as for example in logi pro-

gramming.

It is assumed in the sequel that SIGMA satis�es at least the �rst ondition, that is to say,

symbols are not overloaded. The atual struture of Sigma possibly has to be adapted or

extended in some instanes, e.g. if sorts are de�ned by domain equations, this information

will have to be maintained within a signature.

The following operations on Sigma are required:

t : Sigma� Sigma! Sigma % least upper bound (LUB)

� : Sigma� Sigma! fTrue;Falseg % subtype relationship

�

1

� � ��

k

denotes a proper signature if f�

1

g t � � � t f�

k

g is de�ned.

Example 2.3.1

For the names de�ned and used in our introdutory interpreter example in Figure 1.2 the

following pro�les (diretional many-sorted types) are appropriate:

exeute : STM�MEM! MEM

evaluate : EXP�MEM! VAL

update : MEM� ID� VAL! MEM

apply : MEM� ID! VAL

Note that we also use the following term onstrutors in the referred spei�ation:

skip : ! STM

onat : STM� STM! STM

assign : ID� EXP! STM

var : ID! EXP

We will see later on that another kind of symbols needs to be added to the de�nition

of the domain Symbol beause of terms. Any way, in some or another way we must qualify

pro�les by the orresponding kind of symbol. Above, we use di�erent typesets for names

and onstrutors.

}

Here are the basi operations for the deonstrution of pro�les:

Symbol Of : Pro�le! Symbol

Sorts Of : Io� Pro�le! Sort

?

30 CHAPTER 2. THE GENERAL FRAMEWORK

Symbol Of Pro�le From s �

?

#

! �

?

"

! s

[Symbol Of ℄

Sorts Input Of Pro�le From s �

?

#

! �

?

"

! �

?

#

[Sorts Input℄

Sorts Output Of Pro�le From s �

?

#

! �

?

"

! �

?

"

[Sorts Output℄

Iteration on signatures

1

is based on operators similar to the operations for deonstrut-

ing sequenes:

Head Of : Sigma! Pro�le

Tail Of : Sigma! Sigma

Nil? : Sigma! Boolean

Remember that the data types Program, Rules, Rule, Element and Parameter ontain

well-typed elements only. The general framework assumes type heking / inferene rela-

tions for these data types. The following rules are the basis:

Is

Variable

(�

1

(p)) ! True

^ Out

Variable

(�

1

(p)) ! v

^ �

Sort

(p) ! �

^ (v : �) 2 �

T YPE

Parameter

(�;�; p) ! �

[type of a variable℄

s : �

1

� � � � � �

m

! �

m+1

� � � � � �

k

2 �

^ T YPE

Parameter

(�;�; p

i

) ! �

i

for i = 1; : : : ; k

WT

Element

(�;�; hn; hp

1

; : : : ; p

m

i; hp

m+1

; : : : ; p

k

ii)

[WT

Element

℄

9 � : (WT

Element

(�;�; e

i

) for i = 0; : : : ; n)

WT

Rule

(�; ht; e

0

; he

1

; : : : ; e

n

ii)

[WT

Rule

℄

We should also de�ne the type of a program. For every rs 2 Rules its type � is denoted by

Sigma Of rs.

WT

Rule

(�; r

i

) for i = 1; : : : ; n

^ � is minimal,

i.e. 8 �

0

6= � : WT

Rule

(�

0

; r

i

) for i = 1; : : : ; n) j�j � j�

0

j

Sigma Of Rules From hr

1

; : : : ; r

n

i ! �

[Sigma Of ℄

Note that a minimal � is assumed beause the type of a fragment should not ontain

useless pro�les. It is assumed that the operator Sigma Of is overloaded to be appliable

to other fragment types as well.

1

We assume a suitable representation for Sigma based on sequenes, e.g. (Symbol
 Sort

?

 Sort

?

)

?

.

2.3. NOTIONS FOR TARGET PROGRAMS 31

Example 2.3.2

The pro�les shown in Example 2.3.1 represent exatly Sigma Of Figure 1.2. For all

the variants of the interpreter from Setion 1.2, WT holds beause we annot ompute

programs or fragements whih are not well-typed. }

2.3.3 Well-de�nedness

A program is said to be well-de�ned if it satis�es ertain riteria partiularly important

for omplete programs. Here are some examples:

1. variables are bound from left to right and they are not used before they are bound

(refer e.g. to RML [Pet95, Pet94℄|a variant of natural semantis),

2. reduedness of the underlying ontext-free grammar of an AG,

3. non-irularity of an attribute grammar,

4. absene of free �-variables in funtional equations,

5. all- or i/o-orretness in logi programs with diretional types [Boy96a℄.

To approah to an initial form of well-de�nedness in our framework we need some further

notions. Parameter positions in a rule are divided into de�ning and applied positions.

De�nition 2.3.1

Let be r 2 Rule. The input positions of the onlusion of r and the output positions of

the premises of r are alled de�ning positions of r. A position in r whih is not a de�ning

position, is alled an applied position of r. }

The idea behind these terms is that the variables with ourrenes on applied posi-

tions are expeted to be \omputed" in terms of variables with ourrenes on the de�ning

positions. These terms are used in muh the same way in extended attribute grammars

[WM77℄. There are other terms used for this purpose, e.g. imported and exported posi-

tions in diretional typing [Boy96a℄. In attribute grammars, notions like used and de�ned

attribute ourrenes are de�ned. The latter terms are tuned towards named attributes

rather than a position-oriented framework as in our ase.

Now it is straightforward to de�ne the sets Ao In r and Do In r for a given rule

r whih represent the applied and the de�ning (variable) ourrenes of r, i.e. all the

variables ourring on applied or de�ning positions respetively. Refer to Setion B.3 for

the inferene rules de�ning the orresponding relations.

The following de�nition of well-de�nedness is assumed. A requirement for rules in the

ontext of diretional types of symbols is that every applied ourrene of a variable is

justi�ed by a de�ning ourrene of the same variable. This data ow riterion is modelled

by the rule DF :1 below. Moreover, a kind of onformane should be satis�ed between the

rules and the interfae of a program; refer to the rule IMPLEMENT S.

DF(rs; i)

^ IMPLEMENT S(rs ; i)

WD

Program

(hrs ; ii)

[WD

Program

℄

32 CHAPTER 2. THE GENERAL FRAMEWORK

Ao In r

j

� Do In r

j

for j = 1; : : : ; n

DF(hr

1

; : : : ; r

n

i; i)

[DF :1℄

ss

export

are de�ned symbols in rs

^ ss

import

are not de�ned symbols in rs

^ rs is redued in the ontext-free sense w.r.t. ss

import

; ss

export

; a

IMPLEMENT S(rs ; hss

import

; ss

export

; ai)

[IMPLEMENT S℄

We an speak about reduedness in the ontext-free sense, if we regard the imported names

of the interfae as \terminals", whereas the exported names are regarded as \nonterminals".

If the interfae spei�es an axiom, reduedness an be heked in its full extent. Otherwise,

we an only hek that all required names (i.e. names whih are used but not de�ned) are

listed as imported names.

A very simple and ommon data ow riterion is obtained by restriting the depen-

denies of variables in the elements of a rule from left to right; refer to Setion B.4 for

details.

Well-de�nedness is only required for omplete programs, beause transformations an

often be de�ned in a more onvenient way, if intermediate results do not have to satisfy the

properties modelled by well-de�nedness. The proess of establishing a propagation pattern

along ertain symbols of a set of rules, for example, an be divided into two phases. The

�rst phase adds new parameter positions, whereas the seond phase establishes a ertain

data ow based on the new positions. The intermediate result will not be well-de�ned.

Example 2.3.3

Reall our introdutory interpreter example of Subsetion 1.2.2. The orginal interpreter in

Figure 1.2 and the �nal adaptation in Figure 1.4 oping with side e�ets during expression

evaluation are well-de�ned, i.e. WD holds, whereas the intermediate result in Figure 1.3

with the new output position of sort MEM is not well-de�ned beause of the variableMEM

0

whih only ours on an applied position of the rule [var℄, but not on a de�ning position,

i.e. WD does not hold due to [DF :1℄. }

The �nal result of a meta-programmust be well-de�ned. The following de�nition de�nes

the term of unde�ned variables in a rule. We might also say that these variables are not

de�ned. These variables are exatly those variables whih violate well-de�nedness and

thus meta-programs have to fous on them. Dually, we an also speak of unused variables

orresponding to useless variable ourrenes in a target program. Unused variables are

not regarded as a violation of well-de�nedness but still they are useful to ontrol meta-

programs.

De�nition 2.3.2

Let be r 2 Rule. Ao In r nDo In r denotes the set of all unde�ned variables in r. Dually,

Do In r nAo In r denotes the set of all unused variables in r. }

Note that there an be several applied ourrenes of an unde�ned variable in a rule.

There are two basi ways in whih an ourrene of an unde�ned variable v an be elimi-

nated in a rule r.

2.3. NOTIONS FOR TARGET PROGRAMS 33

� The variable v is replaed in the orresponding ourrene by another variable, more

generally by a parameter not referring to v.

� A de�ning ourrene of v an be reated, most likely by the insertion of a new

premise with v on an output position.

Both approahes model somehow the addition of a semanti rule in the AG jargon, where

the �rst approah orresponds to the addition of semanti opy rules. Unused variables an

obviously be eliminated in a dual manner. Let us delare some useful terms. If a premise

p is inserted in order to eliminate an unde�ned variable v, then p is also alled de�nition

(of v). Dually, if a premise p is inserted in order to eliminate an unused variable v, then

p is also alled use (of v). De�nitions are basially onstant omputations, i.e. premises

with zero input positions and one output position. Uses are basially unary onditions, i.e.

premises with one input position and zero output positions. Finally, if a parameter on an

applied position is replaed by a variable with a de�ning ourrene, more generally by a

parameter without unde�ned variables, the resulting parameter is alled a opy.

2.3.4 Substitution and uni�ation

The notions substitution and uni�ation are well-established in the delarative paradigm.

Usually they are used to desribe the meaning of programs or to explain the syntatial

proof derivation. In the ontext of meta-programming, we need these onepts at the

meta-level to perform \symboli" substitution and uni�ation in meta-programs. Note

that additional requirements for our kind of substitution and uni�ation arise from our

well-typedness onstraints.

In a formal sense, a substitution is a mapping from variables to parameters. As it

is ommon pratie, we use a rather syntati de�nition based on pairs of variables and

parameters:

Substitution = P(Variable
 Parameter)

hv; pi

2

means that v has to be substituted by p in parameters, elements and others. Proper

substitutions, i.e. elements of Substitution, are suh sets fhv

1

; p

1

i; : : : ; hv

n

; p

n

ig, where n �

0, v

i

6= p

i

for i = 1; : : : ; n and v

i

6= v

j

for i 6= j. For several instanes, e.g. natural

semantis, ompound parameters in the sense of terms need to be onsidered. Then the

sort of any nested ourrene of a variable v

i

in the parameters p

j

must not be in onit

with the sort of p

i

, and the LUB of the type information assoiated with the p

j

has to

exist in order to retain well-typedness. Consequently, the onatenation of substitutions

is restrited. Let � and � be substitutions. � ./ � = � [� provided � [� denotes a

proper substitution.

Substitutions an be applied to parameters. The appliation of substitutions an

straightforwardly be generalized for other syntatial domains, suh as elements and rules.

2

The notation v=p is used quite often in the literature instead of hv; pi.

34 CHAPTER 2. THE GENERAL FRAMEWORK

Substitute In Parameter : Substitution� Parameter ! Parameter

Substitute In Element : Substitution� Element! Element

Substitute In Rule : Substitution� Rule! Rule

We give only the inferene rules for the appliation of substitutions to parameters.

Remember that there are only variables as parameters in the general framework.

Variable? p! True

^ Variable Of p = v

^ Sort Of p = Sort Of p

0

Substitute f: : : ; hv; p

0

i; : : :g In Parameter p! p

0

[SUBST :1℄

Variable? p! True

^ Variable Of p 6= v

i

for i = 1; : : : ; n

Substitute fhv

1

; p

1

i; : : : ; hv

n

; p

n

ig In Parameter p! p

[SUBST :2℄

The appliation of a substitution has to be restrited to retain well-typedness as ex-

pressed by the above inferene rules. For notational onveniene we may write e [v=p℄ for

the appliation of a substitution fhv; pig to a syntatial entity e.

Another important operation on substitutions is omposition oiniding with funtion

omposition. Given two substitutions � = fhv

1

; p

1

i, : : : ; hv

n

; p

n

ig and � = fhv

n+1

; p

n+1

i,

: : :, hv

m

; p

m

ig, their omposition is denoted by � Æ �, and it is obtained from the set

fhv

1

; p

1

�i; : : : ; hv

n

; p

n

�i; hv

n+1

; p

n+1

i; : : : ; hv

m

; p

m

ig by removing all hv

i

; p

i

�i with v

i

=

p

i

� for i = 1; : : : ; n and by removing those hv

j

; p

j

i for whih v

j

2 fv

1

; : : : ; v

n

g for j =

n+ 1; : : : ; m.

The onept of substitution permits us to introdue another onept, that is uni�ation

of parameters, similarly to logi programming; refer e.g. to [NM95℄. The omputation of the

most general uni�er of equations fht

1

; t

0

1

i; : : : ; ht

n

; t

0

n

ig is based on deriving an equivalent

set of equations in solved form aording to Robinson's algorithm. As usual, a set of

equations is in solved form if the LHS of every equation is a variable, and the variables

do not our in the parameters on the RHSs. Two sets of equations are equivalent if

they have the same sets of uni�ers. Thus, we need an auxiliary domain Equations =

P(Parameter
 Parameter). Proper sets of equations have to be restrited to retain well-

typedness similarly to Substitution.

As far as uni�ation is onerned, the following relations are needed:

Unify Parameters And : Parameter � Parameter ! Substitution

SOLVE() : Equations! Substitution

2.3. NOTIONS FOR TARGET PROGRAMS 35

SOLVE(fhp; p

0

ig) ! �

Unify Parameters p And p

0

! �

[MGU :1℄

There should be possibly also a relation to test if a uni�er exists at all. Refer to Setion B.5

for details of the relation SOLVE , whih omputes the solved form of some equations. Uni-

�ation is easily generalized for elements. Un�ation of elements (with the same underlying

pro�le) orresponds to the uni�ation of their parameters in the same positions. Thus the

following de�nition is appropriate:

Unify Element And : Element� Element! Substitution

SOLVE(fhp

#

1

; p

0

#

1

i; : : : ; hp

#

m

; p

0

#

m

i; hp

"

1

; p

0

"

1

i; : : : ; hp

"

k

; p

0

"

k

ig) ! �

Unify Elements Element From n hp

#

1

; : : : ; p

#

m

i ! hp

"

1

; : : : ; p

"

k

i

And Element From n hp

0

#

1

; : : : ; p

0

#

m

i ! hp

0

"

1

; : : : ; p

0

"

k

i

! �

[MGU :2℄

Subsitution is useful in meta-programs, for example, for establishing a ertain data ow

by the uni�ation of variables in a suitable way. Uni�ation is useful in meta-programs,

for example, for unfolding, i.e. a ertain premise is unfolded aording to a rule de�ning

the premise's symbol.

2.3.5 Addressing fragments

Meta-programs frequently need to address (selet) ertain fragments in programs, namely:

� a rule in a sequene of rules,

� a premise in a sequene of premises,

� a (parameter) position of a onlusion / a premise,

� a de�ning or an applied position.

The purpose of this subsetion is to omment on suh fragment seletions in more detail.

Values intended to address fragments are alled seletors in the sequel. Usually a seletor

is expeted to selet uniquely a fragment. However, in some ases it is aeptable that a

seletor mathes with several fragments or even with no fragment at all.

Rules an easily be seleted based on tags. For ertain instanes of the framework a

seletion based on parameter patterns (for the input positions of the onlusions) makes

sense as well, e.g. for reursive funtion de�nitions and onstrutive algebrai spei�ations.

Premises of rules an be addressed, in general, by indies. There are the following

objetions for using this addressing method:

1. It is not readable.

2. It depends on the order of the premises and on the absene or presene respetively

of premises possibly not relevant for the atual seletion.

36 CHAPTER 2. THE GENERAL FRAMEWORK

3. For ertain forms of premises, e.g. semanti rules in an AG, there is no natural order

beause the order is semantially meaningless.

Consequently, names of premises should be used for seletion. If a name is atually used

to selet a ertain premise, we must ensure that the name an be used as a unique seletor.

De�nition 2.3.3

Let be s 2 Name, r 2 Rule. We say, s is a unique seletor for a premise of r if

jfi j Name Of e

i

= s with i = 1; : : : ; ngj = 1, where Premises Of r = e

1

, : : :, e

n

. }

De�nition 2.3.3 an be easily generalized to ope with other forms of premises.

Example 2.3.4

Let us onsider again the introdutory interpreter example in Figure 1.2. All the names

exeute, evaluate, update and apply an be used as unique seletors for premises, exept

for exeute in the rule [onat℄ beause there are two mathing premises. }

A rule violating the property of premise seletion an be folded in a way that new

auxiliary symbols are used instead of the non-unique symbol. Thereby, unique seletion is

ahieved. Another possibility is the augmentation of premises with seletors as in several

spei�ation languages.

Now addressing positions in premises and onlusions is regarded. Sine we use a

position-oriented framework, symbols have many-sorted pro�les. That is suitable for logi

programming, logial grammars, GSFs, algebrai spei�ations and natural semantis.

In ontrast to suh frameworks, attribute grammars in the Knuthian style are based on

attributes instead of (sorts assoiated with) positions. The attributes have pairwise disjoint

names for a given grammar symbol. Thus, the names allow attributes to be addressed

uniquely. In a position-oriented framework, (indies of) positions must be applied, in

general, as unique seletors. There are two points to be ritiised with regard to this

method based on indies:

1. It is not readable.

2. It ruially depends on the order of the positions.

The latter point is ritial beause transformations using this poor addressing method

annot be applied to programs with a di�erent order in the pro�les. We will even not

neessarily realize that the wrong positions are addressed. Consequently, we look for an

addressing method based on sorts rather than indies.

3

The following de�nition aptures the neessary and suÆient ondition for a symbol so

that its positions an be uniquely addressed based on sorts.

De�nition 2.3.4

Let be s 2 Symbol; rs 2 Rules. s is uniquely sorted in rs , if �

i

6= �

j

for i; j = 1; : : : ; n and

for i; j = n + 1, : : :, m, where i 6= j and s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

is the pro�le

of s aording to the type of rs . }

3

Instead of using sorts, we also ould adopt the strutural de�nitions of pro�les and/or elements to

ope with key parameters.

2.3. NOTIONS FOR TARGET PROGRAMS 37

Example 2.3.5

In the interpreter in Figure 1.2 all symbols are uniquely sorted. Refer to Example 2.3.1

for the pro�les of the symbols. In ontrast to that, the symbol append , for example, is not

uniquely sorted in the interpreter in Figure 1.9 oping with I/O. }

If a symbol is not used in some rules at all it is not uniquely sorted by de�nition. Note

that it is usually suÆient to onsider the uniqueness of a partiular sort � w.r.t. a symbol

s when � is used as a seletor among the input or output position of sort � of s. The

following de�nition explains how positions are seleted.

De�nition 2.3.5

Let be io 2 Io, s 2 Symbol, � 2 Sort, rs 2 Rules. We say, the triple hio; s; �i 2 Position is

a unique seletor for a position in rs, if

� jfij�

i

= � with i = 1; : : : ; ngj = 1, for io = Input,

� jfij�

i

= � with i = n + 1; : : : ; mgj = 1, for io = Output,

where the pro�le of s in rs is s : �

1

� � � � � �

n

! �

n+1

� � � � � �

m

. }

Example 2.3.6

We ontinue Example 2.3.5. The symbol append is not uniquely sorted in Figure 1.9,

beause hInput; append ;OUTi is not a unique seletor for a position. }

As far as meta-programs are onerned, it must be ensured that the result of a trans-

formation is not de�ned if improper seletors are involved, i.e. stritness of meta-programs

with regard to failures arising from seletions is to be preferred.

If a meta-program has to inorporate omputational elements, e.g. de�nitions for ap-

plied positions or uses for de�ning positions if it has to opy parameters from de�ning to

applied positions, the unique seletion of de�ning and applied positions is ruial.

De�nition 2.3.6

Let be io 2 Io, s 2 Symbol, � 2 Sort, r 2 Rule.

We say, the triple hio; s; �i is a unique seletor for a de�ning position in r, if hio; s; �i is a

unique seletor for a position in r and

� for io = Input: Name Of Conlusion Of r = s,

� for io = Output: s is a unique seletor for a premise of r.

Dually, we say, the triple hio; s; �i is a unique seletor for an applied position in r, if

hio; s; �i is a unique seletor for a position in r and

� for io = Input: s is a unique seletor for a premise of r,

� for io = Output: Name Of Conlusion Of r = s.

}

38 CHAPTER 2. THE GENERAL FRAMEWORK

Example 2.3.7

We omment again on the interpreter from Figure 1.2. hInput; exeute; STMi is a unique

seletor of a de�ning position in the rule [onat℄, whereas it is not a unique seletor for

an applied position beause there are two mathing premises. }

The property of unique seletors for applied and de�ning positions is important if several

positions have to be seleted simultaneously, e.g. if a ondition of arity > 1 is added to a

rule: Consider seletors p

1

; : : : ; p

n

for the positions of the ondition. If some seletor turns

out to be an improper seletor in the sense that no mathing position an be determined,

the whole ondition annot be assembled. However, even uniqueness is needed beause

whih of the mathing positions should be seleted otherwise.

On the other hand, there is no need to insist on unique seletors for de�ning and applied

positions in general, e.g. if it should be ensured that single positions are used by unary

onditions or they are de�ned by onstant omputations. If the seletion is not unique, the

orresponding number of omputational elements an be added. The ase of no mathing

position an be aepted in suh a way that no omputational element is added. Indeed,

the operator suite o�ers operators adhering to that style; refer e.g. to the operators De�ne

and Use presented in Subsetion 3.3.2

Finally, we want to mention another opportunity for seleting rules, premises and pa-

rameters, that is to say a seletion based on pattern mathing. In [DC90, Ada91℄ it is

argued that pattern mathing is useful for the simultaneous seletion of entities, e.g. for

the assoiation of semanti rules with syntatial rules, where the underlying rule pattern

of the semanti rules must be mathed with an atual syntatial rule. In ontrast to that,

we are interested here in more atomi seletions.

2.4 Instanes

We instantiate the general framework for ertain target languages, e.g. natural seman-

tis, attribute grammars, logi programming and algebrai spei�ation. New forms of

onstruts, e.g ompound parameters or re�nements of the notions well-de�nedness, well-

typedness et. need to be taken into onsideration. A seletion of the features disussed in

this Setion will be used in the next Chapter as the underlying instane for establishing

an operator suite for meta-programming. It should be lear that ertain extensions, e.g.

funtion symbols and thus terms for logi programs, permit us to onsider spei� meta-

operations. Nevertheless, we try to understand the instanes below as \onservative" ex-

tensions of the general framework, that is to say we want to indiate how spei� features,

e.g. terms, an be simulated in the general framework. We take advantage of researh

onerning the relation between di�erent representatives of the delarative paradigm; refer

e.g. to [CFZ82a, CFZ82b, PW80, DM85, DM93, AFZ88, Att89, AC90, AP94℄. Some ar-

guments also arise from ommon programming pratie, e.g. the simulation of produts as

targets for pro�les in algebrai spei�ation by means of dediated tupling onstrutors.

2.4. INSTANCES 39

2.4.1 Natural Semantis

The data type Rule obviously oinides with rules in the sense of natural semantis. The

data type Parameter has to be extended to ope with ompound parameters, i.e. terms.

Terms (ompound parameters) are needed for the representation of abstrat syntax trees,

semanti objets, environments, ontexts, and other data. In RML [Pet95, Pet94℄, for

example, SML-like algebrai data types are used for that purpose. Well-formedness possibly

onerns the proper distintion between names of relations and data type onstrutors.

Our type system as outlined in the general framework is very muh the same like in RML,

although we had to put extra e�ort to ahieve polymorphism. Thus, the re�nement ofWT

is straightforward. Conerning well-de�nedness, we adopt the philosophy of RML, where

it is de�ned exatly when variables are bound. Sine, RML exeutes premises from left to

right, it also binds variables in that order. If we assume, that the inputs of a premise must

be known before it is exeuted, we will obtain a data-ow riterion similar to L-attribution

in AGs.

4

First, we present the re�nement of the strutural de�nition of the data types:

Parameter = (Variable� Term)
 Sort

Term = Construtor
 Parameter

?

Construtor = Id

Symbol = Name� Construtor

SIGMA has to restrit the targets of data type onstrutors to single sorts (in ontrast

to arbitrary �nite sequenes). The de�nition of operations for the onstrution and deon-

strution of ompound parameters is straightforward. A ompound parameter onsisting

of a onstrutor f and parameters p

?

is onstruted as follows:

Term From f p

?

Of Sort �

Here � denotes the sort of the resulting term, i.e. f is supposed to be a onstrutor with

a pro�le f : �

1

� � � ��

n

! �, where the �

i

are supposed to math with the types of the

parameters p

?

. Deonstrution of terms and tests for di�erent kinds of symbols is failitated

by the following operations:

Term? : Parameter ! Boolean

Construtor Of : Parameter ! Construtor

Subterms Of : Parameter ! Parameter

?

Name? : Symbol! Boolean

Construtor? : Symbol! Boolean

4

If unknowns, whih play an important role in some appliations of natural semantis, are taken into

onsideration, a more general approah must be followed to.

40 CHAPTER 2. THE GENERAL FRAMEWORK

Refer to Setion B.6 for the straightforward inferene rules. Moreover, oerions should be

assumed to oere onstrutors into tags and names (Tag From, Name From) and vie

versa (Construtor From).

Types of ompound parameters are determined as follows:

Is

Term

(�

1

(p)) ! True

^ Out

Term

(�

1

(p)) ! hf; hp

1

; : : : ; p

n

ii

^ �

Sort

(p) ! �

^ f : �

1

� � � � � �

n

! � 2 �

^ T YPE

Parameter

(�;�; p

i

) ! �

i

for i = 1; : : : ; n

T YPE

Parameter

(�;�; p) ! �

[type of a ompound parameter℄

Setion B.6 also generalizes the appliation of substitutions to parameters for ompound

parameters. Uni�ation has to be generalized by implementing Robinson's uni�ation

algorithm by the relation SOLVE taking into onsideration additional onstraints due to

well-typedness; refer also to Subsetion 2.3.4 and Setion B.5.

: : :

out

skip

(STM)

exeute(STM ;MEM) ! (MEM)

[skip℄

out

onat

(STM) ! (STM

1

;STM

2

)

^ exeute(STM

1

;MEM

0

) ! (MEM

1

)

^ exeute(STM

2

;MEM

1

) ! (MEM

2

)

exeute(STM ;MEM

0

) ! (MEM

2

)

[onat℄

out

assign

(STM) ! (ID;EXP)

^ evaluate(EXP;MEM

0

) ! (VAL)

^ update(MEM

0

; ID;VAL) ! (MEM

1

)

exeute(STM ;MEM

0

) ! (MEM

1

)

[assign℄

: : :

out

var

(EXP) ! (ID)

^ apply(MEM; ID) ! (VAL)

evaluate(EXP ;MEM) ! (VAL)

[var℄

: : :

Figure 2.4: Figure 1.2 in the pure framework

We should make lear that this instane is a modest extension of the general frame-

work. We an represent any target program of this instane in the general framework in the

following way. Appliations of data type onstrutors an be regarded as speial premises

modelling term onstrution (for applied positions) or deonstrution (for de�ning posi-

tions); refer for example to Figure 2.4 showing the \pure" variant of the natural semantis

2.4. INSTANCES 41

from Figure 1.2. It should be pointed out that the transformation from natural semantis

to the pure framework (and vie versa) an be spei�ed in the instane of natural semantis

itself. All transformations whih are appliable for the general framework are appliable

to natural semantis without further adaptation. It is also very omfortable that we an

deal with data type onstrutors in muh the same way as with premises. There is no need

for additional tools.

Let us onlude this subsetion with remarks on ertain features of partiular variants

of natural semantis. In Typol [Des88, BCD

+

88, JRG92℄ subjets and prediates are re-

garded as di�erent forms of premises. Atually, prediates are alled rather omputations

than premises. It is a onvention whih does not add expressive power. Nevertheless, an

adaptation of the alulus with two di�erent forms of premises will be demonstrated for

the instane of Grammars of Syntatial Funtions; refer to Subsetion 2.4.5 beause there

is more onvining argument for suh a distintion. Finally, if unknowns are to be used,

there are two options: Unknowns are delared as in RML or there is no expliit delaration

as in Typol. To delare an unknown an be onsidered as a simple form of a premise.

Well-de�nedness has to be adjusted aordingly if unknowns are used.

2.4.2 Logi Programming

It is obvious that logi programming with sorts and modes an be regarded as an instane

of the general framework. The most important extension, i.e. terms, an be performed

in the same way as for the instane of natural semantis. By the way, the similarity of

inferene rules and de�nite lauses is the basis for the translation of natural semantis into

Prolog rules providing an option for exeuting the exeutable spei�ation formalism Typol

for natural semantis as integrated in the Centaur system [Des88, BCD

+

88, JRG92℄.

The data type Rule obviously oinides with de�nite lauses. The data type Parameter

has to be extended to ope with terms. Well-formedness possibly onerns the proper

distintion between prediate and funtion symbols. Our type system as outlined in the

general framework an be regarded as a many-sorted type system of a G�odel-like [HL94℄

logi programming language. Thus, the re�nement ofWT is straightforward. In logi pro-

gramming, there are notions like \well-modedness", whih are appropriate as an instane

of WD, refer e.g. to all- or i/o-orretness in [Boy96a℄.

To onsider elements and not other forms of premises orresponds to pure logial

programs. Several forms of premises an be handled like Element, e.g. negative literals,

mathing onstruts and omputations aording to prede�ned (impure) prediates (e.g.

for dealing with numbers or atoms). Computations will be onsidered in more detail for

the instane of Grammars of Syntatial Funtions; refer to Subsetion 2.4.5.

2.4.3 Algebrai Spei�ation

The general framework an easily be instantiated for algebrai spei�ation [HL89, LEW96,

LNC91, Mos97℄. As a matter of fat, we are mainly onerned with onstrutive spei-

�ations (refer e.g. to [HL89℄), i.e. the LHS of a term equation (or rewrite rule) must

42 CHAPTER 2. THE GENERAL FRAMEWORK

have a non-onstrutor funtion symbol as an outermost symbol applied to terms without

non-onstrutor funtion symbols. The orresponding distintion between non-onstrutor

operations and onstrutors and the restrited struture of term equations �t with the gen-

eral framework; refer to Figure 2.5 for onstrutive term equations desribing the dynami

semantis in muh the same way as the interpreter in the style of natural semantis in

Figure 1.2 does.

: : :

exeute(skip;MEM) = MEM [skip℄

exeute(onat(STM

1

;STM

2

);MEM) = exeute(STM

2

;

exeute(STM

1

;MEM)

)

[onat℄

exeute(assign(ID;EXP);MEM) = update(MEM; ID;

evaluate(EXP;MEM)

)

[assign℄

: : :

evaluate(var(ID);MEM) = apply(MEM; ID) [var℄

: : :

Figure 2.5: An algebrai spei�ation for the interpreter from Figure 1.2

We �rst have to look for the ounterpart for rules in algebrai spei�ation. Obviously,

term equations and the data type Rule have to be related to eah other. There is no diret

orrespondene beause the RHS of a onstrutive term equation is simply a term and

it is not some sequene of premises as in the general framework. To adopt the general

framework for algebrai spei�ations, we an use a normalization proedure as follows:

RHSs are attened by taking the sequene of appliations of non-onstrutor operations in

the order of nesting adhering to the all-by-value evaluation strategy.

Consequently, LHSs of onstrutive term equations and onlusions of the data type

Rule oinide. RHSs of term equations are simpli�ed to obtain a sequene of premises

orresponding to appliations with at most one non-onstrutor operation. Terms are not

a problem at all, sine we an deal with them in the same way as for instane of natural

semantis; refer to Subsetion 2.4.1. Indeed, by attening the algebrai spei�ation in

Figure 2.5 we obtain a variant literally equivalent to the interpreter in Figure 1.2 in the

style of natural semantis.

A minor problem with algebrai spei�ations with respet to the data types of the

general framework is that an operation has exatly a single sort as its target in algebrai

spei�ation, whereas the general framework promotes any arity (inluding 0). This exi-

bility onerning output positions is ruial for our approah. There are two solutions to

this problem:

� Extending the result of a non-onstrutor operation is onsidered as the extension

of a dediated onstrutor pro�le where this onstrutor is used as a kind of tu-

2.4. INSTANCES 43

pling onstrutor for the result of the operation. This approah orresponds to the

programming pratie in algebrai spei�ation where auxiliary sorts for ompound

funtion results are introdued.

� We allow non-onstrutor operations to have Cartesian produts as their targets.

Finally, suh a spei�ation an be transformed into a usual algebrai spei�ation

by assoiating non-onstrutor operations with proper produts as targets with ded-

iated onstrutors in the sense of the �rst solution. For notational onveniene, we

an assume that (), (), (;), : : : denote these (overloaded) tupling onstrutors.

The normalization of term equations indues an order of premises and thereby an order

of introdued variables from left to right. Thereby, well-de�nedness is straightforward to

de�ne.

evaluate(EXP;MEM) = true

exeute(if(EXP;STM

1

;STM

2

);MEM) = exeute(STM

1

;MEM)

[if.true℄

evaluate(EXP;MEM) = false

exeute(if(EXP;STM

1

;STM

2

);MEM) = exeute(STM

2

;MEM)

[if.false℄

Figure 2.6: Conditional equations de�ning the dynami semantis of the if-onstrut

Conditional rewrite rules as for example in ASF (+SDF) [Kli93℄ an also be redued to

rules in the sense of the general framework. For a proper onditional rewrite rule it must be

satis�ed that non-onstrutor operation symbols must not our on a variable-introduing

side beause suh a side annot be redued anyway. To represent onditional rewrite rules

in the general framework, not only the RHSs of the onlusions need to be attened as for

an ordinary algebrai spei�ation, but the onditions must be attened as well.

Consider Figure 2.6 for the onditional rewrite rules desribing the interpretation of an

if-statement. The attened variant is shown in Figure 2.7.

evaluate(EXP;MEM

0

) ! (true)

^ exeute(STM

1

;MEM

0

) ! (MEM

1

)

exeute(if(EXP;STM

1

;STM

2

);MEM

0

) ! (MEM

1

)

[if.true℄

evaluate(EXP;MEM

0

) ! (false)

^ exeute(STM

2

;MEM

0

) ! (MEM

1

)

exeute(if(EXP;STM

1

;STM

2

);MEM

0

) ! (MEM

1

)

[if.false℄

Figure 2.7: \Pure" variant of Figure 2.6

An extension for negative equations as in ASF (+SDF) is straightforward. The basi

form of premise orresponds to positive equations, whereas another form of premise is

needed for negative equations.

44 CHAPTER 2. THE GENERAL FRAMEWORK

Premise = Positive� Negative

Positive = Element

Negative = Element

Constrution and deonstrution of negative onditions are quite similar to the ase of

positive onditions.

2.4.4 Funtional programs

Obviously, �rst-order funtions an be regarded as an instane in muh the same way

as algebrai spei�ations, but it should be pointed out that the normalization an be

regarded as a semantis-preserving transformation of �rst-order funtions, whereas the

normalization of algebrai spei�ations requires them to be mapped to the data types for

meta-programming. Considering Figure 2.5 as a funtional program, the orresponding

normalized funtional program is shown in Figure 2.8.

: : :

exeute(skip;MEM) = MEM
[skip℄

exeute(onat(STM

1

; STM

2

);MEM

0

) =

Let MEM

1

= exeute(STM

1

;MEM

0

) In

Let MEM

2

= exeute(STM

2

;MEM

1

) In

MEM

2

[onat℄

exeute(assign(ID;EXP);MEM

0

) =

Let VAL = evaluate(EXP;MEM

1

) In

Let MEM

1

= update(MEM

0

; ID;VAL) In

MEM

1

[assign℄

: : :

evaluate(var(ID;MEM) =

Let VAL = apply(MEM; ID) In

VAL

[var℄

: : :

Figure 2.8: Normalized funtional program obtained from Figure 2.5

Higher-order funtional programming requires a substantial adaptation of the frame-

work whih is a subjet of our urrent work.

2.4.5 Grammars of Syntatial Funtions

Here we omment on an instane for Grammars of Syntatial Funtions (GSFs) [Rie91,

RMD83, Rie72, Rie79℄ whih are a kind of attribute grammars losely related to logi

2.4. INSTANCES 45

programs; refer to Setion A.3 for a short presentation of GSFs. GSFs are also similar to

the more reent formalism RAG [CD84, DM85, DM93℄. Ordinary Knuthian AGs [Alb91℄

must be treated di�erently; refer to Subsetion 2.4.6.

A GSF onsists of

� a GSF shema orresponding to a set of so-alled GSF rules, whih an be regarded

as parameterized ontext-free rules with relational formulae on the parameters and

� a GSF interpretation orresponding to arriers for the parameters and relations for

the interpretation of the relational symbols.

We are rather interested in GSF rules than GSF interpretations. AGs (inluding GSF

shemata) are usually open in the sense that spei�ations use semanti funtion sym-

bols (orresponding to relational symbols in GSF rules). The atual interpretation of the

symbols is beyond the sope of the AG formalism.

Figure 2.9 shows a typial appliation of AGs, that is, a frontend spei�ation for an

imperative language. The spei�ation is intended to model type heking and the on-

strution of an abstrat syntatial representation. Atually, the language

5

is the same as

in the interpreter examples, e.g. in Figure 1.2. The parameters of sort STmodel the symbol

table to be propagated for type heking. The parameters of sort T are bound to types

of variables and expressions. The parameters of sort EXP and STM should be regarded

as plaeholders for abstrat syntatial representations for expressions and statements re-

spetively. The relational formulae with the pre�x &

ast

model onstrution of abstrat

syntatial representations, whereas the relational formulae with the pre�x &

stati

onern

type heking. Note that the atual interpretation of the relational symbols is beyond the

sope of this spei�ation.

Let us onsider GSFs as an instane of the general framework. The type Rule oinides

with GSF rules and the type Premise has to be extended to ope with relational formulae.

There are no speial problems with well-formedness and well-typedness. Well-de�nedness

an be regarded as non-irularity + reduedness. As far as strutural de�nitions are

onerned the following re�nement of the data types is assumed:

Premise = Element� Computation

Computation = Operation
 Parameter

?

 Parameter

?

Operation = Pre�x
 Id

Symbol = Name�Operation

The data type Computation models relational formulae, whereas Operation models symbols

used in relational formulae (for short: relational symbols) in similarity to names of elements.

In earlier presentations of the GSF formalism [Rie91, RMD83, Rie72, Rie79℄ two lasses of

5

Note that the underlying ontext-free grammar reets a rather abstrat syntax. Refer, for example,

to Figure 3.31 for the onrete syntax of the if -onstrut obtained by a ertain re�nement of the rule [if℄.

46 CHAPTER 2. THE GENERAL FRAMEWORK

program ! (PRO) :
&

stati

init ! (ST

0

);

delarations(ST

0

)! (ST

1

);

statements(ST

1

)! (STM);

&

ast

prog(STM)! (PRO):

[prog℄

delarations(ST

0

)! (ST

2

) :
delaration(ST

0

)! (ST

1

);

delarations(ST

1

)! (ST

2

):

[des℄

delarations(ST) ! (ST): [nodes℄

delaration(ST

0

)! (ST

1

) :
identi�er ! (ID);

type ! (T);

&

stati

add (ST

0

; ID;T)! (ST

1

):

[de℄

: : :

statements(ST)! (STM) :
statement(ST)! (STM

1

);

statements(ST)! (STM

2

);

&

ast

onat(STM

1

; STM

2

)! (STM):

[onat℄

statements(ST)! (STM) :
&

ast

skip ! (STM): [skip℄

statement(ST)! (STM) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

;EXP);

&

stati

assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP)! STM:

[assign℄

statement(ST)! (STM) :
expression(ST)! (T;EXP);

&

stati

isBool (T);

statements(ST)! (STM

1

);

statements(ST)! (STM

2

);

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

: : :

expression(ST)! (T;EXP) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T);

&

ast

var (ID)! EXP:

[var℄

: : :

Figure 2.9: A frontend for a simple imperative language

relational symbols were distinguished for pragmati reasons. Here it is assumed that there

an be an arbitrary number of lasses of relational symbols like in

�

�

�

[HLR97, LRH96,

RL93, Rie92℄, where relational symbols are pre�xed by a kind of module quali�er. Here

Pre�x is some ountable set of pre�xes. To avoid onfusion with other kinds of identi�ers,

we will use \&" followed by ordinary identi�ers to denote pre�xes. \&" denotes the empty

pre�x whih is used in examples if there is no need for di�erent pre�xes. Sine the kind

of symbol is the only di�erene between Element and Computation, a single onstrutor for

both kinds of premises an be used:

Premise From ! : Symbol� Parameter

?

� Parameter

?

! Premise

2.4. INSTANCES 47

To retain a simple notation we assume impliit oerions between Element and Premise.

Conerning the deonstrution of premises, some relations in similarity to the deonstru-

tion of elements are needed. Moreover relations to test for di�erent kinds of premises and

symbols are needed:

Element? : Premise! Boolean

Computation? : Premise! Boolean

Symbol Of : Premise! Symbol

Parameters Of : Io� Premise! Parameter

?

Name? : Symbol! Boolean

Operation? : Symbol! Boolean

Refer to Setion B.7 for the orresponding inferene rules. For ompleteness, an oper-

ation for onstruting relational symbols from tags (similar to Name From) is assumed.

Moreover, a generalized variant of the operation Tag From to oere a name into a tag

oping with symbols instead of names is assumed. Finally, an operation for generating

fresh relational symbols is introdued.

Operation From : Pre�x� Tag! Operation

Tag From : Symbol! Tag

NEW

Operation

: P(Operation) ! Operation

It follows from the above delarations that we onsider sequenes of parameterized

grammar symbols and relational symbols as proper RHSs of GSF rules. In ontrast, tak-

ing the purely delarative point of view, GSF rules are parameterized ontext-free rules

with omputations assoiated with the parameters. The order of the relational formulae

among eah other and also relative to the parameterized grammar symbols is delaratively

meaningless. However, the atual order an be used to ontrol meta-programs. Refer also

to Subsetion 2.2.1 for the reasons why we prefer sequenes of premises instead of sets of

premises.

It is interesting to notie that a distintion between grammar symbols and relational

symbols and the notion of the underlying ontext-free grammar of a GSF shema leads us

diretly to a orresponding notion of omposition. GSF shemata with the same underlying

ontext-free grammar an be omposed rule-wise by superimposing grammar symbols,

onatenating parameters of superimposed grammar symbols and taking over relational

formulae. This tehnique whih we all superimposition is presented more in detail in

x3.3.3.1; refer also to [L�am97℄ where we have suggested a variant of this tehnique in the

ontext of logi programming.

2.4.6 Knuthian Attribute Grammars

We ontinue the disussion on instantiating the general framework for attribute grammars

by ommenting on the Knuthian style of attribute grammars. (Knuthian) AGs require

48 CHAPTER 2. THE GENERAL FRAMEWORK

some enoding, that is, semanti rules have to be modelled by another form of premises.

We desribe the instane for Knuthian AGs by de�ning a transformation from Knuthian

AGs to GSF shemata. The transformation is performed for every syntatial rule of the

AG as follows:

� Inherited (synthesized) attributes orrespond to the input (output) positions of gram-

mar symbols. For every attribute of every symbol in a syntatial rule, we introdue

a orresponding variable and use it as a parameter on the orresponding parameter

position.

� Semanti opy rules an be ompiled by identifying parameters aordingly.

� A semanti equation e of the form a

e;0

:= f

e

(a

e;1

; : : : ; a

e;n

e

) is transformed into a

orresponding relational formula & f

e

(v

e;1

; : : : ; v

e;n

e

) ! v

e;0

, where the v

e;i

are the

variables assoiated with the attributes a

e;i

.

� The parameterized grammar symbols and the derived relational formulae representing

the semanti equations are ombined in a rule aording to the data type Rule.

Refer to Setion A.3 for an example of a Knuthian AG and the assoiated GSF shema.

2.5 Completion to an appliative alulus

The omplete alulus is obtained by augmenting a typed �-alulus with the data types for

meta-programming. Spei�ation features for dealing with ompound domains and with

error spei�ation are added. Reusability of meta-programs is supported by modularity

partiularly at the meta-level. Altogether, we obtain an appliative alulus for typed,

modular and strit funtional meta-programs.

2.5.1 Simple �-alulus-like onstruts

Typed �-abstration is denoted as usual by �x : � : e. Funtional appliation is denoted

by f On p, whereas f Æ g denotes funtional omposition, where

f Æ g On x = f On (g On x):

The onditional is denoted by b! e

1

; e

2

, where the ompound expression evaluates to

the value of e

1

(resp. e

2

) if the ondition b an be evaluated to True (resp. False). The

onditional is the only onstrut whih is not strit w.r.t. ? (i.e. divergene).

Let x = e In e

0

binds x to e during the evaluation of e

0

. Free ourrenes of x in

e are not bound to e. Letre f : � = e In e

0

binds f being of type � to e during the

evaluation of e

0

. Free ourrenes of f in e refer to e as well. The Letre-onstrut is the

2.5. COMPLETION TO AN APPLICATIVE CALCULUS 49

only possibility to express general reursion. However, the iteration onstruts introdued

below are strongly reommended beause termination de�nitely holds for them.

Divergene, i.e. non-terminating evaluations are denoted by ?. We say that exp is

de�ned if the value of exp is not equal to ?. Whenever variables are quanti�ed, ? is not

onsidered as a proper value, i.e. 8rs 2 Rules does atually mean 8rs 2 (Rulesnf?g). Note

that both of these diretives need to be updated in Subsetion 2.5.2.

2.5.2 Error spei�ation

Simple features for error spei�ation are required for two reasons. First, if we embed the

data types for meta-programming into the appliative alulus, we need a standard way for

representing the unde�ned value, sine several basi operations are partial. Seond, meta-

programs (transformations, analyses, et.) are quite often partial, sine the parameters

have to satisfy ertain preonditions. Thus, a spei�ation feature is needed to propagate

an error. Errors should be handled stritly, i.e. one an error ourred during the evaluation

of some part of an expression, the entire evaluation must fail.

Consequently, a speial error element > (pronouned as top

6

) is assumed to be an

element of any type. Instead of inluding > as a onstrut, the partial onditional is

added:

b Æ! e

The above expression is evaluated as follows. The value of the expression is the value of

e, if the value of b is True. Otherwise, the value of the expression is >. Thus, the exat

meaning of b Æ! e an be understood as b ! e;>. Note that the onditional is also not

strit w.r.t. >.

The notion of de�nedness needs to be updated as follows: exp is de�ned if its value is

neither > nor ?. Whenever variables are quanti�ed, > is not onsidered as a proper value

either, i.e. 8rs 2 Rules does atually mean 8rs 2 (Rules n f?;>g).

Note that the above approah to error spei�ation in meta-programs is quite minimal.

We an say a transformation fails if it returns >. Unfortunately, it an mean almost

anything, if an expression is evaluated to >. It an mean, for example, that

� the onstrution of a fragment failed or

� well-de�nedness of the �nal target program does not hold or

� some seletion made in the meta-program was not orret or

� at some stage well-typedness was not satis�ed.

Errors are noti�ed by the partial onditional. A more realisti alulus should probably

support a more sensible error noti�ation, e.g. meaningful error messages. It is important

that our simple approah to error spei�ation ensures stritness, that is to say failures

annot be \overlooked".

6

in the sense of a top element in a omplete lattie; refer e.g. to [Sto77, page 81℄

50 CHAPTER 2. THE GENERAL FRAMEWORK

2.5.3 Embedding data types for meta-programming

All the basi data types for meta-programming beome proper types of the alulus. Thus,

the names of these types Program, Rules, et. an be regarded as basi type expressions,

whereas the operations on the data types an be regarded as prede�ned funtions in the

alulus. Instead of onsidering partial funtions in the alulus, the value of the appliation

of f(v

1

; : : : ; v

n

) is assumed to be >, if the appliation of the basi operation f is not de�ned.

The operations NEW

Variable

NEW

Name

and NEW

Operation

for the generation of fresh

variables and names are inorporated in the resulting alulus in another way. We assume

impure variants (similarly to referene alloation in SML [MTH90℄):

New Variable Of Sort : Sort! Variable

New Name : ! Name

New Operation : ! Operation

Ordinary sequenes on Rule are not permitted. We delare that hr

1

; : : : ; r

n

i is an abbre-

viation of Rules From hr

1

; : : : ; r

n

i. Thereby, oerions from Rule

?

to Rules an be omitted.

The type Rules is oered to Program at the top level of a meta-program. Without further

delarations it is assumed that all required symbols are imported, all de�ned symbols are

exported and no axiom is de�ned. There are lauses to override these defaults, e.g. an

Axiom Is lause to de�ne an axiom.

2.5.4 Domain onstrutors

Domain onstrutors for produts, domains of sequenes, power sets and domains with

optional values are added.

2.5.4.1 Tuples

Let �

1

, : : :, �

n

be proper type expressions. �

1

 � � �
 �

n

denotes the type of all tupels with

the i-th projetion of type �

i

for i = 1; : : : ; n. The expression hexp

1

, . . . , exp

n

i denotes

the ommon onstrution of tuples from expressions exp

1

, . . . , exp

n

. The Let-onstrut is

generalized to ope with tuples, i.e. Let hx

1

; : : : ; x

n

i = e In e

0

binds the projetions of e

to the x

i

in e

0

. Typed �-abstration is generalized as well, i.e. the projetions of a tuple

an be bound to several �-variables in the following way: �hx

1

; : : : ; x

n

i : �

1

 � � �
 �

n

:e.

2.5.4.2 Sequenes

Let � be a proper type expression. �

?

denotes the type of all sequenes of elements of

type � . The expression hexp

1

, . . . , exp

n

i denotes the ommon onstrution of sequenes

from expressions exp

1

: � , : : :, exp

n

: � . The empty sequene is denoted by hi. Figure 2.10

enumerates all the basi operations on sequenes, whereas Figure 2.11 establishes some

reursion / iteration shemata well-known in higher-order funtional programming. It is

assummed that these shemata are appliable to Rules, Sigma and Substitution as well.

2.5. COMPLETION TO AN APPLICATIVE CALCULUS 51

Pro�le Explanation

Head Of : �

?

! � head of a sequene

Tail Of : �

?

! �

?

tail of a sequene

Nil? : �

?

! Boolean test for the empty sequene

++ : �

?

� �

?

! �

?

onatenation of sequenes

: �

?

!N

0

length of the sequene

Reverse : �

?

! �

?

to reverse a sequene

Figure 2.10: Operations on sequenes

Map f List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

hf(x

1

); f(x

2

); : : : ; f(x

n�1

); f(x

n

)i

Fold Left � Neutral e List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

(� � � ((e� x

1

)� x

2

)� � � � � x

n�1

)� x

n

Fold Right � Neutral e List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

x

1

� (x

2

� � � � � (x

n�1

� (x

n

� e)) � � �)

Figure 2.11: Iteration on sequenes

2.5.4.3 Sets

Let � be a type expression. Then P(�) denotes the type of subsets of � . Here � must be

a non-funtional type beause we need equality on � for obvious tehnial reasons. The

empty set is denoted by ;. Let be exp

1

: � , : : :, exp

n

: � . The expression fexp

1

; : : : ; exp

n

g

denotes the set of values of the expressions exp

i

for i = 1; : : : ; n.

Eah set of type P(�) is a sequene of type �

?

, i.e. all operations on sequenes diretly

apply to sets as well. In partiular, for iteration on sets, it is important to know that the

order in fexp

1

; : : : ; exp

n

g is transferred into the resulting set. Figure 2.12 enumerates all

the additional basi operations on sets.

Eah sequene hv

1

; : : : ; v

n

i of type �

?

is automatially oered to the orresponding set

fv

1

g[� � � [fv

n

g of type P(�) if it serves as an atual parameter for a formal parameter of

type P(�).

Pro�le Explanation

[: P(�)� P(�)! P(�) union of sets

\ : P(�)� P(�)! P(�) intersetion of sets

n : P(�)� P(�)! P(�) di�erene of sets

� : P(�)� P(�)! Boolean test of proper subset

2 : � � P(�)! Boolean membership test

Figure 2.12: Operations on sets

52 CHAPTER 2. THE GENERAL FRAMEWORK

Another iteration onstrut is frequently needed:

Map Union f List hx

1

; x

2

; : : : ; x

n�1

; x

n

i

k

f(x

1

) [f(x

2

) [: : : [f(x

n�1

) [f(x

n

)

Note also that all the iteration onstruts are written as Map Set , Fold Left

Neutral Set , Fold Right Neutral Set and Map Union Set when it should

be pointed out that iteration is performed on a set instead of a list.

2.5.4.4 The Maybe type onstrutor

For every type � , there is also the maybe type �?. Every element of � is an element of �?.

Additionally, a speial element ? is added to �?.

Maybe types are useful in meta-programming for:

� optional arguments, where funtions an observe ? providing an indiation of a miss-

ing argument,

� return values, where ? is returned as an indiation of a missing meaningful result. To

return > instead of ? is not appropriate, sine we annot test for > due to stritness.

Example 2.5.1

Consider the following expression:

� s : Symbol . � t : Sigma .

Fold Left

� p0 : Pro�le? . � p : Pro�le . Name Of p = s ! p, p0

Neutral ? List t.

It de�nes the operator Pro�le Of In : Symbol� Sigma ! Pro�le? looking up the

pro�le of a symbol s in a given signature t. There are senarios in meta-programs where

a symbol does not need to have a type at all in a given signature. The lookup should not

fail, sine the whole surrounding appliation would fail beause of stritness. Thus, the

neutral element ? will be returned if no pro�le for s is ontained in t. }

2.5.5 Modules

To failitate meta-programming a ertain module onept should be supported. Here a

module is regarded simply as a separate spei�ation unit with its own semantis, i.e. in a

tehnial sense a kind of module allowing for separate ompilation. Although information

hiding is a entral notion in many module systems, it is almost ignored as far as it onerns

this work.

There are two kinds of modules:

� modules at the target-level and

2.5. COMPLETION TO AN APPLICATIVE CALCULUS 53

� modules at the meta-level.

Modularity at the target-level is useful for obvious reasons, even without onsidering

meta-programming at all. For meta-programming, target-level modules provide the entral

operands on whih transformations and ompositions are performed. The exeution of a

meta-program results in a new target-level program. Modules at the meta-level are useful

in order to implement reusable program transformations and to represent entral parts of

a problem rather at the meta-level (in a more abstrat manner) than at the target-level.

Meta

n

Meta

1

I

I

Target

m

1

Target

OTarget

MP

A A

Figure 2.13: Modular meta-programming

Figure 2.13 shows the senario of modular meta-programming. There is a entral

meta-program MP whih is applied to target-level modules I

Target

i

serving as inputs for a

program transformation / omposition. The exeution of MP produes the target-level

module O

Target

as output. The meta-level modules A

Meta

j

are assumed to provide reusable

program transformations, generi fragments et.

To support this kind of modularity, module identi�ers are permitted as a form of expres-

sion in meta-programs. If the module identi�er refers to a target program, the expression

is of type Program. If the module identi�er refers to a meta-program, the type of the

meta-program is the type of the underlying expression. It is also useful to support a kind

of abstration in meta-program modules so that all the abstrations an be \imported" in

another program. Without suh a faility, a meta-program module only \exports" a single

expression.

Example 2.5.2

Reall our attempt to modular semantis desription as outlined in the introdution; refer

to Setion 1.2. There we have seen that target program and meta-program modules are

very useful during the omposition of semantis desriptions fragments. Here we want

to omment on a more omplex problem. Consider, for example, a simple imperative

language with simple statement forms for assignment, seletion (if), iteration (while), and

ompound statements (statement sequene), I/O, basi data types.

We an isolate target program modules (speifying the semantis of some onstruts)

like the following:

54 CHAPTER 2. THE GENERAL FRAMEWORK

� variables as expressions and in assignments,

� if -statements,

� while-statements,

� statement sequenes,

� I/O onstruts,

� the overall struture of a program and the delaration part and

� onstants, basi operations, simple type expressions.

We assume that the above modules abstrat from any semanti issue whih is not relevant

for the atual onstrut, i.e. they are \minimal" in the sense of Setion 1.2. Most modules,

for example, abstrat from I/O. Many modules abstrat from the atual memory model, i.e.

whether a at model or a two-level model is used and whether side-e�ets might possibly

be involved in expression evaluation et.

We need transformations to adapt the above fragments aordingly. The atual memory

model an be manifested by a orresponding transformation, for example. More in detail,

the following meta-program modules are involved:

� the transformation to establish memory propagation,

� the transformation to propagate the remaining input,

� the transformation to aumulate the output.

The omposition of the semantis desription an be represented by a meta-program apply-

ing the above transformations to the orresponding target program modules and merging

the intermediate results. We will omment in more detail on suh a omposition in Se-

tion 3.5 on lifting. Refer also to Setion D.1 for the omplete soure ode onerning the

omposition of a frontend spei�ation and an interpreter de�nition (dynami semantis)

for a language like the one above. }

2.6 Properties of meta-programs

By haraterizing transformations, we are looking for lasses of transformations satisfying

ertain useful or important properties. We an be interested, for example, in the question

whether a transformation is total or we an ask whether a transformation preserves ertain

properties of the input program suh as the type or the \skeleton" obtained from rules by

abstrating from parameterization.

2.6.1 Skeletons and their preservation

An important property of many meta-programs is skeleton preservation, where the notion

of a skeleton wants to grasp the overall struture of some rules rs 2 Rules abstrating from

omputational behaviour, similar to the underlying CFG of an AG. The purpose of this

subsetion is to formalize skeletons and to de�ne skeleton preservation.

2.6. PROPERTIES OF META-PROGRAMS 55

Two further data types are needed, that is to say Skeleton for an abstration from Rules

and Shape for an abstration from Rule, with the following strutural de�nitions:

Skeleton = Shape

?

Shape = Tag
 Name
 Name

?

There are no onstraints on Shape onerningWF ,WT andWD. The only onstraint

for Skeleton onerns WF , namely tags have to be unique. The skeleton of some rules

rs 2 Rules is obtained by disarding the parameterization and all premises whih are not

elements in rs; refer to De�nition 2.6.1.

De�nition 2.6.1

Consider the following de�nition of a funtion Skeleton Of : Rules! Skeleton:

� rs : Rules .

Map

� r : Rule .

hTag Of r, Name Of Conlusion Of r,

Fold Left

� rhs : Name* . � e : Element . rhs ++ (Element? e ! hName Of ei, h i)

Neutral h i List Premises Of r

i

List rs.

Let be rs 2 Rules, sk is the skeleton of rs, if sk = Skeleton Of rs . }

As De�nition 2.6.1 points out, other premises than elements (data type Element) are not

inluded into the skeleton. To point out this role of elements as form of premises, we some-

times use the term skeleton elements. Reall that there are other forms of premises with

the same struture as Element, e.g. omputations (relational formulae) in GSF shemata.

The notion of a skeleton beomes a more vital abstration devie if there are other forms

of premises than (skeleton) elements.

Example 2.6.1

Consider Figure 2.14 showing the skeleton of the GSF shema from Figure 2.9 serving as

a frontend spei�ation for a simple imperative language. The skeleton an be regarded as

the underlying ontext-free grammar of the GSF shema. }

De�nition 2.6.2

A transformation t 2 Trafo is skeleton-preserving if 8rs 2 Rules :

rs

0

is de�ned) Skeleton Of rs = Skeleton Of rs

0

;

where rs

0

= t On rs. }

Consider the following Proposition 2.6.1 as a sort of an example.

56 CHAPTER 2. THE GENERAL FRAMEWORK

program :
delarations ; statements: [prog℄

delarations :
delaration ; delarations : [des℄

delarations :
: [nodes℄

delaration :
identi�er ; type : [de℄

: : :

statements :
statement ; statements: [onat℄

statements :
: [skip℄

statement :
identi�er ; expression : [assign℄

statement :
expression ; statements; statements: [if℄

: : :

expression :
identi�er : [var℄

: : :

Figure 2.14: Skeleton of the frontend spei�ation from Figure 2.9

Proposition 2.6.1

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is skeleton-preserving.

}

Proofs of suh statements an be based on a simple equational reasoning in our frame-

work. Proposition 2.6.1 an be proved by showing that the struture of the de�nition of a

skeleton in De�nition 2.6.1 (i.e. the reursion shema) is ontained in the de�nition of the

operation Left To Right (refer to Figure 1.5) and that the di�erenes are invariant for

the resulting skeleton what an be derived from simple properties of element onstrution

and deonstrution.

2.6.2 Totality

Transformations are potentially partial beause of the possibility that an appliation of a

basi operation or a partial onditional fails. However, we an show that some transfor-

mations are total aording to the following de�nition.

De�nition 2.6.3

A transformation t 2 Trafo is:

1. total if t On rs is de�ned 8rs 2 Rules,

2. �-total if t On rs is de�ned 8rs 2 �, where � � Rules.

}

Certain properties often do not hold for all rs 2 Rules, but only for a restrited subset �.

In De�nition 2.6.3, for example, �-total transformations were introdued, i.e. transforma-

2.6. PROPERTIES OF META-PROGRAMS 57

tions whose result is de�ned at least for all rs 2 �. In the sequel, we sometimes onsider

�-properties. If the � is omitted, it means that the property holds for all rs 2 Rules.

Obviously, a property whih holds for all rs 2 Rules is more omfortable to use. For an �-

property, we always have to make sure that a given rs belongs to � to derive the property.

This makes indeed sense for �-totality, for example beause the � simply spei�es where

the transformation is de�ned (i.e. appliable).

2.6.3 Preservation and reovery of well-de�nedness

De�nition 2.6.4

A transformation t 2 Trafo is �-WD-preserving if 8rs 2 � � Rules :

WD

Program

(rs) ^ rs

0

is de�ned)WD

Program

(rs

0

);

where rs

0

= t On rs. }

Note that there is no sense in de�ning �-WF -preserving or �-WT -preserving transfor-

mations, beause results of transformations are well-formed and well-typed by de�nition.

Thus, these preservation properties are somehow aptured by �-totality.

�-WD-preservation for � � Rules is not very instrutive in many ases beause often we

are not interested in the � whose elements an be transformed suh thatWD is preserved,

but we rather look for a suitable desription how WD an be restored. Adding an input

position for a symbol s, for example, input positions in premises with s as symbol will

not be de�ned, but the violation of WD is restrited to these positions and it ould be

eliminated in a straightforward manner. The idea of reovery of WD is aptured by the

following de�nition; refer to Proposition 3.3.1 for an appliation of this onept.

De�nition 2.6.5

A transformation t 2 Trafo is �-WD-reoverable by another transformation t

0

2 Trafo if

8rs 2 � � Rules :

WD

Program

(rs) ^ rs

0

is de�ned)WD

Program

(rs

0

);

where rs

0

= (t

0

Æ t) On rs. }

2.6.4 Type preservation

De�nition 2.6.6

A transformation t 2 Trafo is:

1. �-type-preserving if Sigma Of rs t Sigma Of rs

0

is de�ned;

2. �-type-monoton inreasing if Sigma Of rs � Sigma Of rs

0

;

3. �-type-monoton dereasing if Sigma Of rs � Sigma Of rs

0

;

4. �-strongly type-preserving if it is �-type-monoton inreasing and dereasing

8rs 2 � � Rules suh that rs

0

is de�ned, where rs

0

= t On rs. }

58 CHAPTER 2. THE GENERAL FRAMEWORK

Proposition 2.6.2

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is strongly type-

preserving.

}

2.6.5 Type extension

By taking a transformational approah to program synthesis, many transformations are

likely to hange the type of the input program, i.e. none of the riteria in De�nition 2.6.6

applies, but we are still looking for useful restritions for the behaviour of transformations.

A type-extending transformation is a modest generalization of type-preserving transforma-

tion.

De�nition 2.6.7

Let be t 2 Trafo. 8rs 2 � � Rules suh that rs

0

is de�ned, where rs

0

= t On rs. t is a

type-extending transformation if the following property holds:

8p

0

2 Sigma Of rs

0

: 9p 2 Sigma Of rs :

p is a projetion of p

0

, i.e.

if p

0

= s �

#

1

� � � � � �

#

n

! �

"

1

� � � ��

"

m

,

then 9in

1

; : : : ; in

q

; out

1

; : : : ; out

r

:

the in

i

are pairwise distint,

the out

j

are pairwise distint,

eah in

i

2 f1; : : : ; ng, eah out

j

2 f1; : : : ; mg and

p = s �

#

in

1

� � � � � �

#

in

q

! �

"

out

1

� � � � � �

"

out

r

}

The property of type-extension is partiularly useful in ombination with uniquely

sorted symbols. Moreover, by adding skeleton preservation, a quite disiplined transfor-

mational style is ahieved.

2.6.6 Projetions

A projetion rs

0

of rules rs is obtained by deleting some premises and projeting the

parameterization of the onlusions and the remaining premises so that the result is equal

to rs

0

.

De�nition 2.6.8

Given rs ; rs

0

2 Rules, rs

0

is a projetion of rs if

1. 8p 2 Sigma Of rs:

9p

0

2 Sigma Of rs

0

: Symbol Of p = Symbol Of p

0

)

p

0

is a projetion of p (refer to De�nition 2.6.7).

2. Every rule [t℄ e

0

(e

1

; : : : ; e

n

in rs an be transformed into a orresponding rule

[t℄ �

Conlusion

(e

0

) (�

Premise

(e

w

1

); : : : ;�

Premise

(e

w

u

), where 1 � w

1

< � � � < w

u

� n

2.6. PROPERTIES OF META-PROGRAMS 59

and �

Conlusion

: Conlusion ! Conlusion and �

Premise

: Premise ! Premise are the

funtions projeting parameters of onlusions and premises aording to (1.), so that

the resulting rules are equal to rs

0

.

}

If rs

0

and rs have the same skeleton in ommon, then rs an be regarded as an exten-

sion of rs

0

preserving not only the omputational behaviour of rs

0

but also its skeleton.

Note that premises, whih are not skeleton elements, an still be deleted by suh a pro-

jetion. Transformations the input program of whih is always a projetion of the output

program (or vie versa), are very attrative transformations. They are more disiplined

transformations than type-extending transformations.

program :
&

stati

init ! (ST

0

);

delarations(ST

0

)! (ST

1

);

statements(ST

1

):

[prog℄

: : :

statements(ST) :
statement(ST);

statements(ST):

[onat℄

statements(ST) :
: [skip℄

statement(ST) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

);

&

stati

assignable(T

LHS

;T

RHS

):

[assign℄

statement(ST) :
expression(ST)! (T);

&

stati

isBool (T);

statements(ST);

statements(ST):

[if℄

: : :

expression(ST)! (T) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T):

[var℄

: : :

Figure 2.15: A projetion (stati semantis) of the spei�ation from Figure 2.9

Example 2.6.2

Figure 2.15 and Figure 2.16 show two di�erent projetions of the frontend spei�ation

from Figure 2.9. The �rst projetion ontains all the parameterization and omputational

elements whih are relevant for the spei�ation of stati semantis, whereas the seond

projetion is only onerned with AST onstrution. Note that the parameterizations of

both projetions are not \disjoint" beause identi�er 's terminal attribute of sort ID is

needed for both, stati semantis and AST onstrution. }

The following example should demonstrate how projetions are useful to haraterize

transformations.

60 CHAPTER 2. THE GENERAL FRAMEWORK

program ! (PRO) :
delarations ;

statements ! (STM);

&

ast

prog(STM)! (PRO):

[prog℄

: : :

statements ! (STM) :
statement ! (STM

1

);

statements ! (STM

2

);

&

ast

onat(STM

1

; STM

2

)! (STM):

[onat℄

statements ! (STM) :
&

ast

skip ! (STM): [skip℄

statement ! (STM) :
identi�er ! (ID);

expression(ST)! (EXP);

&

ast

assign(ID;EXP)! (STM):

[assign℄

statement ! (STM) :
expression ! (EXP);

statements(STM

1

);

statements(STM

2

);

&

ast

if (EXP; STM

1

; STM

2

)! (STM):

[if℄

: : :

expression ! (EXP) :
identi�er ! (ID);

&

ast

var(ID)! (EXP):

[var℄

: : :

Figure 2.16: Another projetion (AST onstrution) of the spei�ation from Figure 2.9

Example 2.6.3

For the operator Left To Right (refer to Figure 1.5), projetions support the harater-

ization of the following instrutive property. Let be rs 2 Rules, � 2 Sort. rs

=�

denotes

the projetion of rs, where all but the parameter positions of sort � have been removed,

whereas rs

=�

denotes the omplementary projetion, where all the parameter positions of

sort � have been removed. Given � 2 Sort; rs 2 Rules; rs

0

= Left To Right � On rs, the

following properties an be stated:

1. rs

=�

= rs

0

=�

2. rs

0

=�

represents the propagation of a data struture from left to right.

}

De�nition 2.6.9

Given a transformation t 2 Trafo, t is

1. �-extending, if rs is a projetion of rs

0

;

2. �-ontrating, if rs

0

is a projetion of rs

8rs 2 � � Rules suh that rs

0

is de�ned, where rs

0

= t On rs. }

Proposition 2.6.3

8� 2 Sort the transformation Left To Right � is not extending. }

2.6. PROPERTIES OF META-PROGRAMS 61

2.6.7 Identity

�-totality orresponds to the property where a transformation an only be applied to

ertain rules. There is a somewhat related property of �-identity onerning the question

for whih rules a transformation behaves like the identity funtion.

De�nition 2.6.10

A transformation t 2 Trafo is an �-identity if 8rs 2 � � Rules : rs = t On rs. }

�-total transformations makes sense beause we an have transformations whih are

only de�ned if ertain preonditions hold. Dually, �-identity makes sense beause we an

onsider the fat that a transformation t behaves like the identity funtion on rs 2 � as an

indiation for the property that rs already aptures the intended e�et of t. We an think of

appliations, where transformations are atually written in this style, i.e. they should test

if their \intended e�et" is not manifest yet. If it is manifest, they should silently behave

like the identity funtion. A rather weak haraterization of transformations written in

this style is given by idempotene.

De�nition 2.6.11

A transformation t 2 Trafo is �-idempotent if 8rs 2 � � Rules : t On rs = t Æ t On rs . }

Proposition 2.6.4

8� 2 Sort the transformation Left To Right � (refer to Figure 1.5) is idempotent. }

It is a weak haraterization beause two subsequent appliations of t are not likely

to our. We rather would prefer that transformations behave like the identity funtion

after a single appliation, even if transformations from a ertain lass were applied to the

intermediate result. The property of being an �-identity an be generalized in the same

way.

De�nition 2.6.12

Let be � � Trafo.

t is an �-identity losed under �, if 8t

0

2 �; rs 2 � � Rules : t

0

On rs = t Æ t

0

On rs.

t is �-idempotent losed under �, if 8t

0

2 �; rs 2 � � Rules : t

0

Æ t On rs = t Æ t

0

Æ t On rs.

}

Proposition 2.6.5

Let be � 2 Sort. The transformation Left To Right � (refer to Figure 1.5) is idempotent

losed under all extending transformations (refer to De�nition 2.6.9) whih do not establish

new positions of sort �. }

62 CHAPTER 2. THE GENERAL FRAMEWORK

2.6.8 Struture of transformations

The way a transformation is de�ned, that is, the struture of the expression, an give some

hints of other properties of transformation or it an be instrutive for proving properties.

Let us onsider one example of a strutural restrition for transformations. A loal trans-

formation transforms a sequene of rules rule-wise without \observing" the other rules.

De�nition 2.6.13

A transformation t 2 Trafo is loal if the following property holds:

9t

0

2 (Rule! Rule) : 8rs 2 Rules : t On rs = ht

0

On r

1

; : : : ; t

0

On r

n

i;

where rs = hr

1

; : : : ; r

n

i. t

0

is alled the rule transformation of t. }

Proposition 2.6.6

For a transformation t 2 Trafo to be loal it is a suÆient ondition if t is de�ned by a

�-expression of the following form:

�rs : Rules: Map t

0

List rs ;

where rs is not a free variable in t

0

. Moreover, then t

0

is the rule transformation of t. }

2.6.9 Disussion

Transformations are mostly expeted to preserve the omputational behaviour of a spei-

�ation. To deal with this requirement in detail, we had to de�ne what the semantis of a

spei�ation (at the target-level) is, or how we expet the omputational behaviour is to

be manifested. We will not onsider this topi here in detail, sine it is rather diÆult to

de�ne these notions in the general framework.

Kirshbaum, Sterling et al. have shown in [KSJ93℄ that program maps|a tool similar to

our extending transformations|preserve the omputational behaviour of a logi program,

if we assume that behaviour is manifested by the SLD omputations of the program.

Obviously, not all interesting transformations are extending, refer e.g. to Proposition 2.6.3

onerning the operator Left To Right.

A ommon requirement for transformations is general semantis preservation. We try

to indiate how this requirement an be stated in the general framework. Given rules

rs 2 Rules, arriers D

i

for the sorts �

i

in Sigma Of rs , the semantis of rs is de�ned by

a funtion with the following pro�le:

[[�℄℄ : Rules! (Name! U)

Here U denotes some suitable universal domain; refer e.g. to [SHLG94℄. The details of

the de�nition of [[�℄℄ depend on the atual framework. More in detail, a name n with pro�le

n : �

1

� � � � � �

m

! �

m+1

� � � � � �

k

2.6. PROPERTIES OF META-PROGRAMS 63

is assoiated with a semantis from the following domain:

E((D

�

1

� � � � � D

�

m

); (D

�

m+1

� � � � � D

�

k

))

Here E(D;D

0

) denotes some domain onstrution on D and D

0

. For an instane of the

framework with deterministi semantis, E will probably orrespond to ! , for example.

More modular approahes are possible, e.g. [Bro93, BMPT94℄ where the semantis of logi

programs is based on the intermediate onsequene operator. That is partiularly useful

sine we onsider potentially inomplete programs.

In the narrow sense, the appliation of a transformation t to rs 2 Rules is semantis-

preserving if rs

0

= t On rs is de�ned and [[rs℄℄ = [[rs

0

℄℄.

We an speak of an �-semantis-preserving transformation if the above ondition holds

for all rs 2 � � Rules. Usually, we do not insist on the property that the result of the

transformation is de�ned. In the broader, but still agreeable sense, semantis preservation

an be de�ned modulo some adaptation of [[rs℄℄ and/or [[rs

0

℄℄. Reall for example proje-

tions introdued in Subsetion 2.6.6. It is also possible to onsider a kind of projetion on

U , i.e. a semanti variant of an ontrating transformation whih has to be regarded as a

syntatial devie. In general terms, operations on U an be used to express the semantis

of the output of a transformation as a re�nement of the semantis of the input. We have

not investigated yet that issue more in depth, although there are several approahes in

the ontext of re�nement and orretness whih should provide a good starting point, e.g.

[BR94, BS98, TWW81, Heh93℄. Another problem is that there are several transformations,

whih are inherently not semantis-preserving in any obvious sense or only due to very spe-

i� arguments, e.g. Left To Right. The question how to ope with suh transformations

should be studied in future. Sine we do not only deal with synthesis and omposition but

also adaptation, semantis preservation does not seem to be appropriate in all ases.

Chapter 3

The operator suite

In this Chapter, we present an operator suite for meta-programming on delarative pro-

grams. Besides the general framework whih has to be regarded as a basis for this Chapter,

the suite is a further major result of the thesis. Di�erent layers of the suite are presented

in Setion 3.2 - Setion 3.4. The presentation ulminates with Setion 3.5 desribing the

sophistiated omposition tehnique lifting.

3.1 Overview

The operator suite models shemata for program omposition, synthesis and transforma-

tion. The orresponding operators are spei�ed in an instane of the general framework

supporting both, natural semantis (refer to Subsetion 2.4.1) and GSF shemata (see

Subsetion 2.4.5). Thereby, our instane supports terms as a kind of ompound param-

eters and there is a distintion between skeleton elements and omputational elements

(omputations for short).

The GSF shema from Figure 2.9 speifying the frontend of a language proessor for a

simple imperative language will serve as a running example. It will be shown how ertain

aspets of type heking, AST onstrution an be synthesized and ombined and how

intermediate variants an be reused in some ases.

Refer to Figure 1.12 for an illustrative presentation of the struture of the operator suite.

We start with Setion 3.2 presenting a set of auxiliary operators allowing more advaned

operators to be spei�ed in a more omprehensive way. Setion 3.3 ontinues with shemata

modelling basi onepts of synthesis, adaptation and omposition. Afterwards, Setion 3.4

introdues several more elaborate shemata on top of the basi onepts. This hapter

ulminates with Setion 3.5 desribing lifting whih is a new and powerful omposition

tehnique. Lifting failitates the derivation of omplete programs from transformations

and program fragments. Lifting substantially simpli�es the problem of �nding a proper

struture during nested program omposition, synthesis and transformation.

The atual de�nition of several operators of the suite is inluded in the text ow if the

de�nition is regarded as instrutive or the formal details are required for a disussion of

65

66 CHAPTER 3. THE OPERATOR SUITE

the properties of the operators. The remaining spei�ations are presented in Appendix C.

Note also that some showases are olleted in Appendix D. The atual set of operators

inluding their atual de�nition is far from being optimal, omplete and orthogonal. The

operator suite is regarded as a subjet of further researh. The suite ran through some

iterations, where early versions have been overed by [LR96, LR97℄ and a more reent

version has been thoroughly evaluated in [Sta97℄.

3.2 Auxiliary operators

There is a number of auxiliary operators whih an be reused frequently during program

transformation and for the de�nition of basi and elaborate shemata as desribed later

in this Chapter. Regarding the layers of the operator suite as presented in Figure 1.12,

the auxiliary operators orrespond to the layer on top of the appliative alulus with the

embedded basi data types for meta-programming.

First, simple seletions, projetions, injetions and losures over target program frag-

ments are presented in Subsetion 3.2.1. Seond, a group of renaming operators is on-

sidered in Subsetion 3.2.2. Third, in Subsetion 3.2.3 the simple problem to arrange a

sequene of rules aording to a given sequene of tags regarded as a referene is addressed.

Finally, ertain ombinators on transformations are disussed in Figure 3.2.4.

3.2.1 Seletions, projetions, injetions and losures

Figure 3.1 enumerates operators for the seletion of rules. Selet Tags ts On rs selets

all rules in rs with tags in ts. Selet Symbols ss On rs selets all rules in rs de�ning the

symbols in ss, i.e. the rules with a symbol in ss in the onlusion. Forget Tags ts On rs

selets the omplementary set of Selet Tags ts On rs. Forget Symbols ss On rs selets

the omplementary set of Selet Symbols ss On rs.

Selet Tags : P(Tag) ! Trafo

Selet Symbols : P(Symbol) ! Trafo

Forget Tags : P(Tag) ! Trafo

Forget Symbols : P(Symbol) ! Trafo

Figure 3.1: Seletion of rules

Figure 3.2 enumerates operators for the seletion of symbols, that is, for the de�ned and

used symbols in a given set of rules, for the symbols either pre�xed or unpre�xed (possibly

restrited to a ertain pre�x) in a given set of symbols and for the symbols assoiated in

a given sequene of assoiations.

Figure 3.3 enumerates operators for the seletion of either all tags or the tags of rules

de�ning ertain symbols.

Figure 3.4 enumerates operators for the seletion of parameters and variables of a

ertain sort.

3.2. AUXILIARY OPERATORS 67

Symbols In : Rules! P(Symbol)

Symbols De�ned In : Rules! P(Symbol)

Symbols Used In : Rules! P(Symbol)

Unpre�xed In : P(Symbol) ! P(Symbol)

Pre�xed In : P(Symbol) ! P(Symbol)

Pre�xed By In : Pre�x�P(Symbol) ! P(Symbol)

Symbols Assoiated In : Assoiation

?

! P(Symbol)

Figure 3.2: Seletion of symbols

Tags In : Rules! P(Tag)

Tags For In : P(Symbol)� Rules! P(Tag)

Figure 3.3: Seletion of tags

Parameters Of Sort In : Sort�P(Parameter) ! P(Parameter)

Variables Of Sort In : Sort�P(Variable) ! P(Variable)

Figure 3.4: Seletion of parameters / variables

There is an auxiliary operator

Positions For Of Sort : Io�P(Symbol)� Sort! Position

?

for the onstrution of a sequene of seletors (for positions) addressing either input or

output positions (�rst parameter) of ertain symbols (seond parameter) of a ertain sort

(third parameter).

For seleting symbols to partiipate in a propagation, often losures in the sense of

reahability similar to ontext-free grammars have to be omputed; refer to Figure 3.5

for the auxiliary operators supporting the omputation of suh losures. Refer also to

Figure 3.6 for some examples for the orresponding losures. The losures failitate, for

example, the de�nition of propagation shemata; refer to Subsetion 3.4.2.

3.2.2 Renaming

Renaming all kinds of entities should be possible in a meta-program. The orresponding

group of operators for renaming tags (Rename Tag), symbols (Rename Symbol), pre-

�xes (Rename Pre�x) and sorts (Rename Sort) is listed in Figure 3.7. The sope for

renaming symbols an be restrited to onlusions (Rename Conlusion) and premises

(Rename Premise). Renaming a sort an be restrited to some parameter positions

(Rename Positions). The spei�ations of all these renaming operators orrespond to

traversals. It should be pointed out that the term renaming is meant here in very broad

68 CHAPTER 3. THE OPERATOR SUITE

Derivable From In : P(Symbol)� Skeleton! P(Symbol)

Derivable To In : P(Symbol)� Skeleton! P(Symbol)

From To In : P(Symbol)�P(Symbol)� Skeleton! P(Symbol)

Figure 3.5: Computation of losures onerning reahability

program

delarations

delaration

identi�er

type

delarations

statements

statement

identi�er \:="

expression

identi�er

\+"

identi�er

statements

statements is derivable to (Derivable To : : :) statement , identi�er , expression and to statements

itself. identi�er is derivable from (Derivable From : : :) program , delarations , delaration ,

statements , statement and expression . The symbols statements and statement our on paths

between program and expression (From : : : To : : :).

Figure 3.6: Examples for reahability

sense. It is possible, for example, to identify two entities (e.g. two symbols or two sorts)

by the above operators. Identi�ation is usually not permitted when renaming is regarded

as restrited form of substitution, but in the ase of meta-programming it is desirable, e.g.

for the instantation of open programs.

Rename Symbol To : Symbol� Symbol! Trafo

Rename Conlusion To : Name� Name! Trafo

Rename Premise To : Symbol� Symbol! Trafo

Rename Tag To : Tag � Tag! Trafo

Rename Pre�x To : Pre�x� Pre�x! Trafo

Rename Sort To : Sort� Sort! Trafo

Rename Positions To : P(Position)� Sort! Trafo

Figure 3.7: Forms of renaming

Let us omment us slightly more in detail on the traversals implementing the rename

operators. To rename a symbol, e.g. a name used in elements, is straightforward. To

rename a sort � to another sort �

0

, a traversal of the rules down to the parameters must

be performed. Any parameter of sort � is annotated during reonstrution with the sort

�

0

. Sine the sort of a (meta-) variable v annot be hanged, a fresh variable v

0

of the new

sort one for v in a rule need to be generated. v is then replaed by v

0

allover the rule.

3.2. AUXILIARY OPERATORS 69

Finally, the operator Rename Positions renaming sorts in ertain parameter positions

is disussed. The operator is useful to perform ertain kinds of data re�nements in target

programs, where the sorts of parameter positions need to be uni�ed or distinguished, the

latter, for example, when new sum domains need to be established. Renaming positions is

performed as follows. Variables of mathing positions are replaed by variables of the new

sort. Sine the variables ourring on a ertain mathing position will in general our on

some other positions, too, all these positions should be renamed as well. Indeed, to fore a

onsistent renaming, we must list all positions whih have to be renamed simultaneously,

i.e. if a variable ours on a mathing position, it must not our on a position whih is

not expliitly listed for renaming. Renaming positions preserves semantis in the following

sense.

Proposition 3.2.1

Let be d

1

; : : : ; d

n

2 Io, s

1

; : : : ; s

n

2 Symbol, �; �

0

2 Sort. Conerning the interpretation

used for the semantis de�nition (refer to Subsetion 2.6.9) we assume that the arriers of

� and �

0

are uni�ed. Then the transformation

Rename Positions fhd

1

; s

1

; �i; : : : ; hd

n

; s

n

; �ig To �

0

is semantis-preserving. }

In x3.4.3.5 on interpolating preomputations and others we will give an example where

renaming positions is useful in establishing a new sum domain in a given spei�ation;

refer to Example 3.4.6.

3.2.3 Sorting

In this subsetion a trivial operatorOrder By : P(Tag)! Trafo for arranging sequenes

of rules in a ertain way is presented. Suh a transformation is useful, for example, to

preserve the order of the rules, whih serve as an input for a transformation, in the output

of the transformation. There are possibly other operators doing some kind of sorting

or \pretty printing" whih ould be useful in an operator suite for meta-programming.

We will not go into detail, but we want to mention a further simple example. Results of

transformations whih are presented to the user should ontain meaningful variable names.

Auxiliary operators ould be useful to preserve variable identi�ers provided by the user

and to renumber variable indies if appropriate.

� by : P(Tag) . � rs : Rules .

(Fold Left

� rest : Rules . � t : Tag . rest ./ (Selet Tags ftg On rs)

Neutral h i Set by

)

./ (Forget Tags by On rs).

Figure 3.8: Order By : P(Tag) ! Trafo

70 CHAPTER 3. THE OPERATOR SUITE

Order By ts On rs arranges all rules in rs so that the relative order of the tags in ts

is preserved, and all rules with tags not overed by ts are appended to the end preserving

the original order in rs. The order of the rules an be relevant in some instanes, e.g. it is

operationally relevant for logi programs with the depth-�rst proof searh rule. Moreover,

the preservation of the order usually ontributes to readability.

Operations should be spei�ed in suh a way that the order of rules is preserved. For

rule-wise transformations based on the Fold or Map reursion shemata this property is

often ahieved without further e�ort. However, for some operators it is neessary or more

onvenient to rearrange the result by an appliation of Order By.

3.2.4 Combinators

We present ertain ombinators on transformations. The orresponding operators ompute

from a given transformation another transformation. First, the operator Replae is sug-

gested (x3.2.4.1). It supports so-alled element substitution. For short, the operator takes

some desription of how onlusions and premises have to be transformed and derives a

omplete transformation performing all the smaller transformations in a systemati way

at one. Afterwards, we introdue operators to support seletive transformation (x3.2.4.2)

and inremental onstrution of premises (x3.2.4.3).

3.2.4.1 Element substitution

We introdue a general shema for so-alled element substitution. The searh for suh

higher-order shemata is an interesting problem beause these shemata allow more on-

rete shemata to be de�ned at a higher level of abstration. In partiular, some properties

of shemata an be analysed at a more general level.

We need two auxiliary types:

LhsSubstitution = Conlusion! (Conlusion
 Premise

?

 Premise

?

 Substitution)

RhsSubstitution = Premise! (Premise

?

 Substitution)

These types are intended to speify how onlusions and premises an be replaed. The

ombinator Replae an be used to de�ne several transformation shemata whih adapt

elements in a systemati way as we will see below. Replae t

l

t

r

applied to a rule

[t℄ e

0

(e

1

; : : : ; e

n

returns the following rule:

[t℄ �

n

Æ � � � Æ �

1

(e

0

0

)(e

?

0

; �

n

Æ � � � Æ �

2

Æ �

0

(e

?

1

); : : : ; �

n�1

Æ � � � Æ �

1

Æ �

0

(e

?

n

); e

?

0

0

,

where t

l

(e

0

) 7! he

0

0

; e

?

0

; e

?

0

0

; �

0

i and t

r

(e

q

) 7! he

?

q

; �

q

i for q = 1; : : : ; n.

The identity for replaements on LHSs, denoted by lhsIdentity, is de�ned by the ex-

pression �e : Element:h e; hi; hi; hi i. The identity for replaements of premises, denoted by

3.2. AUXILIARY OPERATORS 71

rhsIdentity, is de�ned by the expression �e : Element:h hei; hi i. As de�ned above, all the

single substitutions are just omposed. Another probably more general approah would

be to aumulate a set of equations and then to use the substitution orresponding to its

solved form.

In some appliations of Replae, e.g. to add a parameter position for a ertain symbol,

substitution is not involved. However, for other appliations, substitution is neessary,

for example, for the ontration of parameter positions, the substitution has to unify

ontrated positions. In many appliations, a spei� LHS / RHS substitution will behave

for many elements like the identity funtion.

3.2.4.2 Seletive transformation

Funtions on Rules must often be restrited. If a omputation is inserted into a ertain

rule r, for example, the orresponding transformation has to be restrited to r. A group

of operators Seleting / Forgetting are o�ered for that purpose; refer to Figure 3.9.

Seleting Symbols Do : P(Symbol)� Trafo! Trafo

Seleting Tags Do : P(Tag)� Trafo! Trafo

Forgetting Symbols Do : P(Symbol)� Trafo! Trafo

Forgetting Tags Do : P(Tag)� Trafo! Trafo

Figure 3.9: Seletive transformation

Seleting Tags ht

1

; : : : ; t

n

i Do trafo On rs transforms rs in the following steps:

1. The rules with tags t

1

; : : : ; t

n

are seleted in rs.

2. trafo is applied to the result of (1.).

3. The result of (2.) and all rules whih were not seleted in (1.) are onatenated.

� ts : P(Tag) . � trafo : Trafo . � rs : Rules .

Order By Tags In rs

On ((trafo On (Selet Tags ts On rs)) ./ (Forget Tags ts On rs)).

Figure 3.10: Seleting Tags Do : P(Tag)� Trafo! Trafo

The transformation trafo has to be type-preserving and it must not return rules with

tags overlapping with the omplementary set of rules seleted in (1.), if the de�nedness

of the whole transformation, in general, is required to follow from the de�nedness of (2.).

The simple de�nition of Seleting Tags is shown in Figure 3.10. Other forms of restrited

transformations an be expressed based on Seleting Tags, in the same manner as Selet

Tags is suÆient to express Selet Symbols, Forget Tags and Selet Symbols:

� Seleting Symbols: restrition to rules de�ning ertain symbols,

� Forgetting Tags: restrition to the omplementary set of Seleting Tags,

� Forgetting Symbols: restrition to the omplementary set of Seleting Symbols

72 CHAPTER 3. THE OPERATOR SUITE

3.2.4.3 Temporary invisibility of symbols

Finally, the operator Hiding is proposed. Hiding s Do t On rs makes the symbol

s invisible in rs during the performane of the transformation t applied to rs; refer to

Figure 3.11 for the formal de�nition. Hiding is based here on renaming the symbol s

to a fresh symbol whih is de�nitely not in use. An extra servie added to the atual

operator Hiding is that the pro�le of the hidden symbol is possibly permuted (refer to

Subsetion 3.3.1 for the permutation of positions) to oinide with the pro�le aording to

the existing use before the renaming is undone.

� sym : Symbol . � t : Trafo . � rs : Rules .

Let profOld = Pro�le Of sym In Sigma Of rs In

Let fresh = Name? sym ! New Name, New Operation In

Rename Symbol fresh To sym

Æ (� rs : Rules .

% if the hidden symbol is not present, no permutation will be neessary

profOld = ? !

rs,

Let profNew = Pro�le Of sym In Sigma Of rs In

profNew = ? !

rs,

% if the pro�les are equal, no permutation is neessary

(Sorts Input Of profOld = Sorts Input Of profNew) And

(Sorts Output Of profOld = Sorts Output Of profNew) !

rs,

% try to permute the new omputational elememts aording to the original pro�le

Permute profOld On rs

)

Æ t

Æ Rename Symbol sym To fresh

On rs.

Figure 3.11: Hiding Do : Symbol� Trafo! Trafo

Hiding turned out to be neessary, for example, for the inremental onstrution of

premises. Essentially, the operator Hiding enables us to insert and parameterize premises

(and onlusions) in several steps without oniting with existing uses of the underlying

symbol in the given program. Note that without further e�ort, stepwise parameterization is

not possible due to the type system beause a symbol must have a onsistent type all over a

target program at any time. On the other hand, stepwise parameterization is neessary with

regard to orthogonality of operators and granularity of adaptation. Besides type onits,

there is another problem with \naive" stepwise onstrution of omputational elements:

While onstruting omputational elements in n steps, it is not straightforward how to

avoid that existing elements with the same underlying symbol are not e�eted in steps 2,

: : :, n� 1. Here step 1 is assumed to perform the initial onstrution of the omputation.

Sometimes, suh interferenes an be avoided by \forgetting" (refer ro x3.2.4.2) some rules

during the transformation, but not in general.

3.3. BASIC SCHEMATA 73

The permutation of the parameterization is useful for stepwise onstrution of ompu-

tational elements beause there are usually dependenies on the order of the steps whih

inuene the order of the parameterization. Thereby, the order of parameters might di�er

between the new elements and existing uses.

3.3 Basi shemata

Aording to Figure 1.12 we want to desribe a number of shemata modelling basi on-

epts during program synthesis, adaptation and omposition. If we think for example of the

\inremental" development of an attribute grammar or its adaptation by means of meta-

programming, ertain basi onepts are evident. More elaborate shemata in the sense of

strategies are explored in the subsequent setion. We suggest the following lassi�ation

for basi shemata:

� shemata dealing primary with positions (or parameterization), e.g. the operator

Add to add a parameter position; refer to Subsetion 3.3.1;

� shemata onerning opies, de�nitions and uses, e.g. the operator De�ne to de�ne

a parameter position by a onstant omputation; refer to Subsetion 3.3.2;

� shemata ating primary at the rules level, e.g. operators failitating program trans-

formation in the sense of folding and unfolding.

3.3.1 Positions

Semanti aspets of an AG spei�ation or a natural semantis desription are roughly

represented by the pro�les of the underlying symbols. The traversal, the propagation and

the synthesis of data strutures an be assoiated with orresponding parameter positions

of ertain symbols. The spei�ation of type heking, for example, requires an output

position for the grammar symbol for expressions, sine a type position has to be synthesized.

Consequently, the suite should o�er orresponding operators. There are basi operators

for adding (Add), removing (Sub), ontrating (Contrat) and permuting (Permute)

parameter positions; refer to Figure 3.12 for the pro�les of the operators.

Add : Position! Trafo

Sub : Position! Trafo

Contrat : Position! Trafo

Permute : Pro�le! Trafo

Figure 3.12: Basi shemata for positions

The operator Sub for the removal of parameter positions an be regarded as the op-

posite of Add. Contration of parameterization as failitated by the operator Contrat

needs to be performed during program omposition if two operands have some part of the

parameterization in ommon. More preisely, the operator Contrat is suitable to unify

74 CHAPTER 3. THE OPERATOR SUITE

all (input or output) parameters of a symbol s whih are of the same sort �. It is not so

obvious if ontration is a basi onept like the addition of positions. Possibly, we ould

argue that ontration an be regarded as a ombination of uni�ation and removal of

parameter positions. Contration will be demonstrated in x3.3.3.1, where the omposition

of spei�ations with the same underlying skeleton is disussed. Permutation of parame-

ters is a very simple operation. It is obviously needed in a position-oriented framework.

The operator Permute is based rather on a pro�le than indies of positions. Desribing

the permutation of a symbol's parameterization by means of the intended pro�le is more

readable, but we must insist on uniquely sorted symbols. Subsetion 3.4.1 will show some

elaborate shemata dealing with positions. Reall that there is also a form of renaming

whih an be used to hange the sorts of some parameter positions (Rename Positions);

refer to Subsetion 3.2.2 on renaming for this issue.

The above shemata an be expressed in terms of the parameterized transformation

shema for element substitution introdued in x3.2.4.1 beause the shemata an be re-

garded as homogeneous transformations of parameter lists of elements; refer to Setion C.2.

Let us onsider the operator Add in more detail. Add hio; s; �i adds an input position

(io = Input) or an output position (io = Output) respetively to any element with the

symbol s by inserting fresh variables of the sort �.

Example 3.3.1

The operator Add is used to add several parameter positions suitable to eventually prop-

agate a symbol table. We start from the following grammar fragment:

program : delarations ; statements : [prog℄

The following transformation is applied to the above fragment:

Add hInput; delarations; STi

Æ Add hOutput; delarations; STi

Æ Add hInput; statements; STi

The result of the transformation is as follows:

program : delarations(ST

0

) ! (ST

1

);

statements(ST

2

):

[prog℄

}

3.3.2 Copies & De�nitions & Uses

To inrementally develop the omputational behaviour of a spei�ation, there is a need

for unifying parameters and adding omputational elements inluding onditions. To adapt

a spei�ation we have to be able to perform the oppositional transformation, i.e. to liqui-

date uni�ation of parameter positions or to remove omputational elements. During the

synthesis of an attribute grammar, for example, attributes (in our framework: parameter

positions) are added in a �rst step. This is modelled by the operator Add. In a next step

usually the new attributes (positions) are \de�ned" in the sense of de�nitions and opies

3.3. BASIC SCHEMATA 75

orresponding to the insertion of semanti rules inluding semanti opy rules. During

adaptation, semanti rules possibly have to removed or replaed. The orresponding set of

basi operators is shown in Figure 3.13.

Copy To : Position� Position! Trafo

De�ne By : Position� Symbol! Trafo

Use By : Position� Symbol! Trafo

Unde�ned! : Position! Trafo

Unused! : Position! Trafo

Purge : Symbol! Trafo

Figure 3.13: Basi omputation shemata

Several more elaborate shemata for adding omputational behaviour are disussed in

Setion 3.4.3.

3.3.2.1 Copies

The simplest way to eliminate an unde�ned variable ourrene at a position pos

u

is to

opy a parameter from a de�ning position pos

d

to the position pos

u

, what is expressed by

Copy pos

d

To pos

u

. Applying the transformation to a rule r, pos

d

has to be a unique

seletor of a de�ning position in r, whereas pos

u

has to be a unique seletor for an applied

position in r.

To restrit the data ow to opying from de�ning to applied positions has been adopted

from attribute grammars, where semanti rules always de�ne synthesized attributes of the

LHS and inherited attributes of the RHS (i.e. applied positions in our terminology) and

the normal form property of attribute grammars says that only inherited attributes of the

LHS and synthesized attributes of the RHS an be used in the semanti rules (i.e. de�ning

positions in our terminology). The same assumption will be used whenever omputational

elements (e.g. de�nitions and uses) are inserted, i.e. the input (resp. output) positions have

to be uni�ed with de�ning (resp. applied) positions.

Example 3.3.2

We ontinue Example 3.3.1 by adding a opy rule in order to inherit the symbol table

synthesized in the delaration part to the statement part. Applying the following trans-

formation to Example 3.3.1

Copy hOutput; delarations ;STi To hInput; statements ;STi

we obtain the following output:

program : delarations(ST

0

) ! (ST

1

);

statements(ST

1

):

[prog℄

}

76 CHAPTER 3. THE OPERATOR SUITE

3.3.2.2 Adding de�nitions

The operator De�ne an be used to insert de�nitions. Consider the transformation

De�ne pos By s applied to the rule r. For every unde�ned parameter p mathing

with pos a new premise of the form s! p is inserted into r. This onstant omputation is

intended to ompute the orresponding parameter p.

Example 3.3.3

We ontinue Example 3.3.1 and Example 3.3.2. The initialization of the symbol table is

modelled by the following transformation:

De�ne hInput; delarations ;STi By &

stati

init

The orresponding output is as follows:

program : &

stati

init ! (ST

0

);

delarations(ST

0

) ! (ST

1

);

statements(ST

1

):

[prog℄

}

The operator De�ne is also appliable if the given seletor is not a unique seletor for

an unde�ned position beause it usually makes sense to insert the orresponding onstant

omputation for all mathing positions. Note that by adding input positions to the symbol

used for the onstant omputation and providing de�nitions to these new positions, the

onstant omputations an be extended to omputations of any arity.

Proposition 3.3.1

8d 2 Io 8s; s

0

2 Symbol, 8� 2 Sort, the transformation Add hd; s; �i isWD-reoverable by

the transformation De�ne hd; s; �i By s

0

. }

3.3.2.3 Adding uses

Uses of de�ning positions an be fored by the operator Use. Consider the transformation

Use pos By s applied to the rule r. For every parameter p on a de�ning parameter position

mathing with pos a new premise of the form s(p) (i.e. a unary ondition) is inserted into

r. For pragmati reasons the opertor Use is not ompletely dual to the operator De�ne

in the sense that the fous is on all relevant de�ning positions and not only on unused

variables (on de�ning positions). It is not very ommon to onsider multiple de�nitions for

a variable, whereas multiple uses are very ommon. Atually, there should be operators

dual to De�ne and Use, but they have not been required so far.

3.3.2.4 Establishing unde�ned and unused variables

The operators for inserting opy rules (Copy) or omputational elements serving as de�-

nitions (De�ne) or uses (Use) of positions are entral to program synthesis. However, to

adapt a program, the e�et of suh operators has possibly to be nulli�ed.

3.3. BASIC SCHEMATA 77

For an appliation of the Unde�ned! operator, every mathing applied position is

refreshed, i.e. a fresh variable of the appropriate sort is inserted. This behaviour is obviously

suÆient to disard the e�et of a opy rule. Suppose that a omputation served as

de�nition of the mathing position. Then the omputation will possibly be useless.

The operator Unused! auses every mathing de�ning position to be refreshed. Sup-

pose that a (unary) ondition served as use of the mathing position. Then the ondition

will possibly be useless.

3.3.2.5 Removing omputations

The operator Purge supports the removal of omputations. To retain orthogonality

w.r.t. Unde�ned! and Unused! a omputation with the symbol s is removed in rs by

Purge s On rs if all of its input parameters are unde�ned and all of its output parameters

are unused. Obviously, the e�et of De�ne (resp. Use) an be nulli�ed by Unde�ned!

(resp. Unused!) and a subsequent appliation of Purge.

3.3.3 Rules

Here we de�ne some basi operators ating at the rules level. The pro�les of the or-

responding operator are shown in Figure 3.14. First, the onept of superimposition

(Superimpose) is introdued. Afterwards, program transformations supporting folding

and unfolding are added to the operator suite (Fold and Unfold).

Superimpose And : Rules� Rules! Rules

Fold By Into : Tag � Name?

?

� Tag! Trafo

Unfold By Into : Tag � Tag?

?

� Tag? ! Trafo

Figure 3.14: Basi shemata for rules

3.3.3.1 Superimposition

The operator ./ provides the most obvious form of omposition for two sequenes of

rules, that is to say the onatenation of the rules. Another form of omposition will be

disussed in the sequel. This form models superimposition of rules synhronized by skele-

tons. Thereby, the parameterization and the omputational behaviour of two sequenes of

rules an be ombined in one spei�ation in the sense of tupling.

More in detail, Superimpose rs

1

And rs

2

superimposes the skeletons of the operands,

onatenates the parameters of superimposed symbols and takes over omputational ele-

ments.

Example 3.3.4

We ompose the omplete frontend spei�ation from Figure 2.9 by means of superimpo-

sition. Figure 2.15 and Figure 2.16 ontain two projetions whih an be superimposed to

78 CHAPTER 3. THE OPERATOR SUITE

obtain the omplete spei�ation. The �rst projetion models stati semantis, whereas

the seond projetion spei�es AST onstrution.

Figure 2.9 � Contrat hOutput; identi�er ; IDi On

Superimpose Figure 2.15 And Figure 2.16

An appliation of Contrat is involved in the above omposition, beause the parameter-

ization of the symbol identi�er , whih both operands have in ommon, has to be uni�ed.

}

Superimposition is de�ned i� the operands are based on the same skeleton. Refer to

Setion C.5 for the formal de�nition. Example 3.3.4 demonstrates how to handle the ase

of a ommon part of parameterization whih has to be uni�ed, although it is a trivial

example, where the ommon part orresponds to \terminal" attribution. However, the

approah of using Contrat (refer to Setion 3.3.1 for its presentation) also works for

more omplex parameterizations. Thereby, we support a kind of modularity similar to

Watt's Partitioned AGs [Wat75℄. Moreover, a reonstrution of omposition in the sense

of stepwise enhanement [Lak89, SS94, JS94℄ is ahieved.

3.3.3.2 Folding

Folding and unfolding is well-known in semantis-preserving program transformation; refer

e.g. to [PP94℄. We suggest two operators Fold and Unfold whih are partiularly suitable

for strutural transformations in meta-programs; refer to Figure 3.14 for the pro�les and

refer to Setion C.6 for the formal de�nitions.

Fold t By hs?

1

; : : : ; s?

n

i Into t

0

with 9k suh that s?

1

= ?; : : : ; s?

k�1

= ?, s?

k

6= ?,

s?

k+1

= ?; : : : ; s?

n

= ?, folds the rule with the tag t in the following manner:

� The s?

i

are mathed with the skeleton symbols of the premises of t, where ? mathes

with any single element and s?

k

mathes with any non-empty sequene of elements.

� The elements e

?

overed by s?

k

are replaed by an element e with symbol s?

k

and

the unde�ned variables in e

?

as inputs and the de�ning ourrenes in from e

?

with

applied ourrenes outside of e

?

as outputs.

� Moreover, the rule [t

0

℄ e(e

?

is added.

3.3.3.3 Unfolding

Unfold o�ers the operation reverse to Fold, i.e. some skeleton elements e

1

, : : :, e

m

among

the premises of a rule t are replaed by the premises of some rules t

1

, : : :, t

m

with the

same symbols in the onlusion as the e

i

. If a premise (note that only skeleton element are

ounted) of t mathes with ?, the orresponding premise will be taken over unhanged, i.e.

it will not be unfolded.

3.4. ELABORATE SCHEMATA 79

statement(ST)! (STM) :
expression(ST)! (T;EXP);

&

stati

isBool (T);

statements(ST)! (STM

1

);

else(ST)! (STM

2

) ;

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

else(ST)! (STM) : statements(ST)! (STM): [else℄

else(ST)! (STM) : &

ast

skip ! (STM) : [noelse℄

Figure 3.15: An optional if-onstrut obtained by fold/unfold

Example 3.3.5

Let us adapt the frontend spei�ation from Figure 2.9 in suh a way that an optional

else-path is supported. Figure 3.15 shows how the hanged GSF rules have to look like.

The atual transformation an be desribed as follows:

Figure 3.15 � Unfold [else℄ By h[skip℄i Into [noelse℄

Æ Fold [if℄ By h?; ?; elsei Into [else℄

On Figure 2.9

}

3.4 Elaborate shemata

It was the intention of the previous setion to present shemata orresponding to basi on-

epts in program synthesis, adaptation and omposition. In ontrast to that, the shemata

of this Setion are rather thought as strategies. Some of the shemata presented below are

thought diretly as elaborations of some basi shema. Other shemata are obtained by a

more involved derivation ombining several basi aspets.

First, some shemata extending our tool set for dealing with positions (or parameteri-

zation) are disussed in Subsetion 3.4.1. Seond, propagation shemata are investigated in

Subsetion 3.4.2. We arry on with ertain strategies to establish omputational behaviour

in Subsetion 3.4.3. Finally, omposition shemata are disussed in Subsetion 3.4.4.

3.4.1 Positions

The elaborations of shemata for positions introdued in Subsetion 3.3.1 are straight-

forward. The operators Add, Sub and Contrat are generalized to ope with several

positions at one. The operator Ensure failitates the onditional addition of a position

depending on the fat if a position of the orresponding sort has not yet been added be-

fore. Ensure hhio; s; �ii On rs adds the position if and only if s has not an io-position

80 CHAPTER 3. THE OPERATOR SUITE

of sort � in rs . Several elaborate shemata de�ned below use the operator Ensure to

ensure the existene of a ertain parameterization as a kind of preondition. The operator

Projet ombines permutation (Permute) and removal (Sub) of parameter positions.

For projetion we assume uniquely sorted symbols.

Add : Position

?

! Trafo

Sub : Position

?

! Trafo

Contrat : Position

?

! Trafo

Ensure : Position

?

! Trafo

Projet : Pro�le! Trafo

Figure 3.16: More elaborate shemata for positions

3.4.2 Propagation

Many aspets of a delarative program onern the propagation of data. Thus, it is obvious

that the operator suite should provide orresponding support; refer to Figure 3.17 for an

enumeration of orresponding operators.

From The Left : Sort! Trafo

Left To Right : Sort! Trafo

Inherit From To : Sort�P(Symbol)�P(Symbol)! (Skeleton! Trafo)

Aumulate From To : Sort�P(Symbol)�P(Symbol)! (Skeleton! Trafo)

Remote From : Sort�P(Symbol)! Trafo

Figure 3.17: Shemata for propagation

3.4.2.1 Left-to-right dependenies

The operator From The Left : Sort ! Trafo. failitates propagation by opying

systematially de�ning ourrenes of a ertain sort to unde�ned variables from left to right.

As long as we onsider variables as the only form of parameters, every single opy rule ould

be expressed by means of the operator Copy, but From The Left is independent from

parameter positions and a single appliation of the operator orresponds to a potentially

unlimited number of opy rules. The shema is suÆient to establish a omputational

behaviour suitable to enode pervasive inheritane or a buket brigade [Ada91℄ or any

mixture of them provided the neessary positions have been added in advane. All of the

propagation shemata onsidered below make use of the operator From The Left.

Example 3.4.1

The propagation of a symbol table an be spei�ed by an appliation of From The Left

as follows:

3.4. ELABORATE SCHEMATA 81

Figure 3.18 � From The Left ST

Æ Add hhInput; delarations ;STi; hInput; delaration ;STi;

hOutput; delarations ;STi; hOutput; delaration ;STi;

hInput; statements ;STi; hInput; statement ;STi;

hInput; expression ;STii

On Figure 2.14

}

program :
delarations(ST

0

)! (ST

1

);

statements(ST

1

):

[prog℄

delarations(ST

0

)! (ST

2

) :
delaration(ST

0

)! (ST

1

);

delarations(ST

1

)! (ST

2

):

[des℄

delarations(ST)! (ST) :
: [nodes℄

: : :

statements(ST) :
statement(ST);

statements(ST):

[onat℄

statements(ST) :
: [skip℄

: : :

Figure 3.18: Symbol table propagation

We suggest the operator Left To Right � as a slight elaboration of From The Left.

Copying is performed based on fresh positions rather than the original positions. Thereby,

additional symbols and positions an be inorporated in an existing propagation path. It

seems to be impossible to express suh an adaptation within other ommon frameworks,

partiularly [KW94℄, [Kos91℄ and [KLMM93℄ (rule models). Refer to the motivating ex-

ample in Subsetion 1.2.2.

All the following propagation shemata have in ommon, that Left To Right (whih in

turn is oneptionally based on From The Left

1

) or From The Left are used in order to

establish the proper data ow. The shemata di�er in the way how symbols partiipating

in the propagation are seleted and how the mode of propagation for every symbol, i.e.

inheritane or aumulation, is de�ned.

3.4.2.2 Inheritane

The operator Inherit propagates a data struture aording to pervasive inheritane

[Ada91℄. Two sets of symbols from and to are required. The parameter from enumer-

ates the symbols where the propagation should start. Often this is a singleton set. The

1

The de�nition of Left To Right shown in Figure 1.5 does not refer to From The Left, but we are

working on a reformulation of the propagation shemata to express this relationship.

82 CHAPTER 3. THE OPERATOR SUITE

parameter to orresponds to the symbols whih require reading aess to the propagated

data struture of a ertain sort. The data struture is opied along input positions of all

symbols in the losure (onerning reahability) between from and to inluding to. Refer

to Figure 3.19 for the de�nition of the operator.

� s : Sort . � from : P(Symbol) . � to : P(Symbol) .

� sk : Skeleton . � rs : Rules .

Let losure = (From from To to In sk) [to In

Left To Right s

Æ Ensure Positions Input For losure Of Sort s

On rs.

Figure 3.19: Inherit From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo)

3.4.2.3 Aumulation

The operator Aumulate is quite similar to the previous one, but the symbols in to

require reading and writing aess to the data struture. Thus, for all relevant symbols

an input and an output position is added. The data ow ahieved by the subsequent

appliation of the Left To Right ensures that an aumulator is simulated. Refer to

Figure 3.20 for the de�nition of the operator. The orresponding propagation pattern is

also alled buket brigade [Ada91℄.

� s : Sort . � from : P(Symbol) . � to : P(Symbol) .

� sk : Skeleton . � rs : Rules .

Let losure = (From from To to In sk) [to In

Left To Right s

Æ Ensure (Positions Output For losure Of Sort s)

Æ Ensure (Positions Input For losure Of Sort s)

On rs.

Figure 3.20: Aumulate From To : Sort�P(Symbol)�P(Symbol) ! (Skeleton! Trafo)

3.4.2.4 Remote aess

A set of symbols read of de�ned symbols in rules with unde�ned ourrenes of a given sort

is derived assuming that these symbols need reading aess to the data struture. Dually,

a set of symbols write of de�ned symbols in rules with unused ourrenes of the given sort

is derived assuming that these symbols update or synthesize the data struture. Input and

output positions are added to symbols aordingly based on losures between a parameter

from as above and the derived sets read and write; refer to Figure 3.21.

The operatorRemote promotes a style of spei�ation similar to remote aess [KW94,

JF85, Boy96b, Boy98℄.

3.4. ELABORATE SCHEMATA 83

� s : Sort . � from : P(Name) . � rs : Rules .

Let unde�ned =

Map Union � r : Rule .

Variables Of Sort s In (Ao In r n Do In r) = ; !

;,

fName Of Conlusion Of rg

List rs

In

Let unused =

Map Union � r : Rule .

Variables Of Sort s In (Do In r n Ao In r) = ; !

;,

fName Of Conlusion Of rg

List rs

In

Let sk = Skeleton Of rs In

Let read = (From from To unde�ned In sk) [unde�ned In

Let write = (From from To unused In sk) [unused In

From The Left s

Æ Add (Positions Input For read Of Sort s)

Æ Add (Positions Output For write Of Sort s)

On rs.

Figure 3.21: Remote From : Sort�P(Symbol) ! Trafo

Example 3.4.2

Consider the rules in Figure 3.22 as variants of the orresponding rules in the frontend

spei�ation in Figure 2.9. The symbol table is used in omputations, but the atual

propagation is not spei�ed. The resulting attribute grammar has to be onsidered as

non-well-de�ned beause of the uses unde�ned ST-positions. Moreover, there are unused

ST-positions, e.g. in [de℄. However, the propagation of the symbol table an be established

by the following appliation of the operator Remote:

Figure 2.9 � Remote ST From fprogramg On Figure 3.22

}

3.4.3 Computations

In Subsetion 3.3.2 basi operators onerning the addition of \opy rules", onstant om-

putations serving as de�nitions and unary onditions serving as uses were introdued. In

this subsetion, elaborations for these shemata, i.e. to insert arbitrary omputational el-

ements (Compute and Condition), are presented. Afterwards, the operator Default,

whih is more exible in some ases than the operator De�ne, is introdued. Then, three

advaned shemata for establishing omputational behaviour (Relate, Redue and Pre-

ompute) are presented. Finally, the relationship between omputational elements and

term onstrution (Constrution et.) is investigated.

84 CHAPTER 3. THE OPERATOR SUITE

program ! (PRO) :
&

stati

init ! (ST);

delarations

statements ! (PRO);

&

ast

prog(STM)! PRO:

[prog℄

: : :

delaration :
identi�er ! (ID);

type ! (T);

&

stati

add (ST ; ID;T)! (ST'):

[de℄

: : :

statement ! (STM) :
identi�er ! (ID);

&

stati

lookup(ST ; ID)! (T

LHS

);

expression ! (T

RHS

;EXP);

&

stati

assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP)! STM:

[assign℄

: : :

Figure 3.22: A frontend spei�ation before making the remote aess expliit

Compute ! : Symbol� Position

?

! Position

?

! Trafo

Condition : Symbol� Position

?

! Trafo

Default For By : Sort� Symbol! Trafo

Relate : Io� Assoiation

?

� Pre�x! Trafo

Redue By : Sort� Symbol! Trafo

Preompute By : Assoiation� Symbol! Trafo

Constrution : Pre�x! Trafo

Deonstrution : Pre�x! Trafo

Constrution

�1

: P(Sort)� Pre�x! Trafo

Deonstrution

�1

: P(Sort)� Pre�x! Trafo

Figure 3.23: Elaborate omputation shemata

3.4.3.1 Nontrivial omputations

The basi operators De�ne and Use are limited to onstant omputations for providing

de�nitions and unary onditions for providing uses. We generalize them so that we an

ope with omputations with any number of arguments and results.

Consider the transformation

Compute s hpos

1

; : : : ; pos

n

i ! hpos

n+1

; : : : ; pos

m

i

applied to the rule r. pos

1

, : : :, pos

n

must be unique seletors for de�ning positions in

r, whereas pos

n+1

, : : :, pos

m

must be unique seletors for applied positions in r. Then a

omputational element

s(p

1

; : : : ; p

n

)! (p

n+1

; : : : ; p

m

)

3.4. ELABORATE SCHEMATA 85

is inserted into r, where the p

i

are the parameters orresponding to the seleted parameter

positions in r.

Although the Compute operator generalizes De�ne and Use in the sense that several

positions an be used and de�ned simultaneously in a single omputational element, only

omputations based on unique seletors an be modelled.

3.4.3.2 Defaults for providing de�nitions

A slight generalization of the operator De�ne is o�ered by the operator Default. Variable

ourrenes to be de�ned are not found by mathing a position, but variables are rather

found by the property to be of a ertain sort �. As for the operator De�ne, omputations

are only inserted for unde�ned variables. Default For � By s applied to the rule r inserts

a onstant omputation of the form s! v into r for eah unde�ned variable v of sort �.

Example 3.4.3

Another spei�ation of the transformation required in Example 3.3.3 based on the operator

Default instead of the operator De�ne is provided:

Default For ST By &

stati

init

The result is the same as in Example 3.3.3. However, the approah based on the operator

Default is slightly more abstrat beause it is assumed that any \unde�ned" variable

ourrene of sort ST should be assoiated with a de�ning ourrene. There is not a

dependeny on partiular positions of grammar symbols any longer. }

As a ondition is a omputational element without output positions, we an de�ne the

operator Condition as follows:

Condition s hpos

1

; : : : ; pos

n

i = Compute s hpos

1

; : : : ; pos

n

i ! hi

3.4.3.3 Compositional omputations

Now the operator Relate to be regarded as a high-level shema for adding omputational

behaviour will be disussed. Many spei�ation problems are of a ompositional nature,

e.g. semantis de�nition, AST traversal, traversal of data strutures, ode generation,

translations, i.e. for all rules, an output position of the de�ned symbol is omputed from

ertain output positions of the premises (Relate Output) or input positions of premises

are omputed from an input position of the onlusion (Relate Input) respetively.

Relate io hhs

1

; �

1

i; : : : ; hs

m

; �

m

ii pfx

an be haraterized as follows: Let us onsider a rule r of the form as usual [t℄ e

0

(

e

1

; : : : ; e

n

. Let be pos

?

= hio; s

1

; �

1

i, : : :, hio; s

m

; �

m

i. Let lhs

1

, : : :, lhs

k

be the parameters

86 CHAPTER 3. THE OPERATOR SUITE

on positions of the onlusion mathing the positions pos

?

respeting the order of the

parameters in the onlusion (usually k = 1). Let rhs

1

, : : :, rhs

q

be the parameters on

positions of the premises mathing the positions pos

?

respeting the order of the premises

and the parameters in eah single premise. If k > 0 and/or q > 0, then a new omputational

element e is inserted into r. The result of the transformation is denoted by r

0

below:

� io = Input: e = Premise From s (lhs

1

; : : : ; lhs

k

) ! (rhs

1

; : : : ; rhs

q

), r

0

= [t℄ e

0

(

e; e

1

; : : : ; e

n

,

� io = Output: e = Premise From s (rhs

1

; : : : ; rhs

q

)! (lhs

1

; : : : ; lhs

k

), r

0

= [t℄ e

0

(

e

1

; : : : ; e

n

; e,

where s = Operation From pfx t (refer to Subsetion 2.4.5). s should be a pre�xed

symbol beause omputational behaviour should be added and the skeleton should be

retained. The position, where the new omputational element e is inserted into the original

sequene premises is indiated in order to point out the parameter dependenies; refer to

Subsetion C.3.5 for the atual de�nition of the operator.

Example 3.4.4

The following transformation shows that the operator Relate is useful to add omputa-

tional behaviour modelling the (inherently ompositional) AST onstrution in a frontend

spei�ation. We start from the skeleton (i.e. the underlying ontext-free grammar) of a

simple imperative language; refer to Figure 2.14. Note that the result of the below trans-

formation is equivalent to the projetion in Figure 2.16 whih models exatly the aspet

of AST onstrution ontained in the omplete frontend spei�ation originally introdued

in Figure 2.9.

Figure 2.16 � Relate Output

h hprogram ;PROi; hstatements ;STMi; hstatement ;STMi;

hexpression ;EXPi; hidenti�er ; IDi

i

&

ast

On Figure 2.14

}

3.4.3.4 Combining unused parameters

Similarly to the operator From The Left, whih inserts opy rules to identify de�ning

and applied ourrenes of a ertain sort � from the left to the right, the operator Redue

is used to pair unused variables of a ertain sort � in a dyadi omputation deriving a new

de�ning position of sort �. The purpose of these omputations is to redue any number > 1

of unused variables of sort � to 1. Consider the transformation Redue � By s applied

to the rule r. Let be v

1

; : : : ; v

n

all the unused variables of sort � in r (in the order of their

de�ning ourrene in r). The following omputations are inserted into r:

s(v

1

; v

2

)! v

n+1

; s(v

n+1

; v

3

)! v

n+2

; : : : ; s(v

n+n�2

; v

n

)! v

n+n�1

;

3.4. ELABORATE SCHEMATA 87

where the variables v

n+1

; : : : ; v

n+n�1

are fresh variables of sort �. Thus, v

n+n�1

will be the

only unused variable of sort � in the result of the transformation.

Example 3.4.5

Assume that all identi�ers used in the statement part should be aumulated in order to

detet superuous variables. Attributes with sets of identi�ers as assoiated type (sort IDS

below) have to be synthesized for that purpose and for ompound syntatial onstruts,

the aumulation an be performed by taking the union of the sets of identi�ers (relational

symbol &

ids

union) aumulated for the subonstruts.

Default For IDS By &

ids

empty

Æ From The Left IDS

Æ Redue IDS By &

ids

union

Æ Add hhOutput; statements ; IDSi; hOutput; statement ; IDSi; hOutput; expression ; IDSii

On

statements : statement ; statements : [onat℄

statements : : [skip℄

statement : expression ; statements ; statements : [if℄

...

;

statements ! (IDS

3

) : statement ! (IDS

1

);

statements ! (IDS

2

);

&

ids

union(IDS

1

; IDS

2

) ! (IDS

3

):

[onat℄

statements ! (IDS) : &

ids

empty ! (IDS): [skip℄

statement ! (IDS

5

) : expression ! (IDS

1

);

statements ! (IDS

2

);

statements ! (IDS

3

);

&

ids

union(IDS

1

; IDS

2

) ! (IDS

4

);

&

ids

union(IDS

4

; IDS

3

) ! (IDS

5

):

[if℄

...

}

3.4.3.5 Interpolating omputational elements

There are several forms of inserting omputational elements into rules in order to adapt

parameters of ertain sorts or ertain parameter positions. We use the term interpolation

for that purpose to point out that premises are not only inserted but the data ow of the

given rule is adapted as well.

There are several possibilities for interpolation. The operator Preompute, for exam-

ple, models the insertion of preomputations for input positions of premises. Consider a

premise of the following form:

s (: : : ; p; : : :)! (: : :);

88 CHAPTER 3. THE OPERATOR SUITE

� hsym, sorti : Assoiation . � by : Symbol .

Replae

lhsIdentity

(rhsForSymbol

On sym

On � e : Premise .

% aumulate preomputations and modi�ed input parameters

Let hpreomputations, psIi =

Fold Left

� hes, psi : Premise* � Parameter*. � p : Parameter .

Sort Of p = sort !

Let fresh = New Variable Of Sort sort In

hes ++ hPremise From by hpi ! hfreshii, ps ++ hfreshii,

hes, ps ++ hpii

Neutral hh i, h ii List Parameters Input Of e

In

% onstrut result of RHS substitution

hpreomputations ++ hPremise From sym psI ! Parameters Output Of ei,

h i

i

).

Figure 3.24: Preompute By : Assoiation� Symbol! Trafo

where p is of sort �. To insert a unary preomputation with the symbol by intended to

adapt p, means to substitute the above premise by the following two premises

by (p)! (v); s (: : : ; v; : : :)! (: : :);

where v is a fresh variable of sort �. The orresponding transformation is fored by the

following appliation of the operator Preompute; refer to Figure 3.24 for the formal

de�nition:

Preompute hs; �i By by:

Suh an adaptation is useful whenever the parameter p annot diretly be used by

s. The inserted omputation is expeted to adapt the parameter aordingly. Another

approah would be to adjust the de�nition of s|provided it is aessible|by an operator

dual to Preompute.

Example 3.4.6

In our running example there are only simple variable delarations so far; refer to the

frontend spei�ation in Figure 2.9. If we want to ope with onstants, proedures, type

de�nitions et., the symbol table aess beomes slightly more involved. We annot simply

assoiate identi�ers with types any longer. We need more information lassifying the atual

symbol table entry. That is a typial situation, where injetions and projetions for a sum

domain oming into being need to be inserted. Refer to Figure 3.25 for the new variants

3.4. ELABORATE SCHEMATA 89

of rules dealing with symbol table entries. The following transformation an be applied

to derive the new variant for [de℄ Figure 3.25 from the original frontend spei�ation in

Figure 2.9.

Rename Positions fhOutput;&

stati

var2entry ;Ti; hInput;&

stati

add ;Tig To ENTRY

Æ Preompute hInput;&

stati

add ;Ti By &

stati

var2entry

The appliation of the operator Preompute inserts a omputation

&

stati

var2entry(T)! (T

0

);

whereas the new sort ENTRY is established by renaming some parameter positions subse-

quently. The new variant of the rule [var℄ an be derived in a dual manner. }

delaration(ST)! (ST

0

) :
identi�er ! (ID);

type ! (T);

&

stati

var2entry(T)! (ENTRY) ;

&

stati

add (ST; ID;ENTRY)! (ST

0

):

[de℄

expression(ST)! (T;EXP) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (ENTRY);

&

stati

entry2var (ENTRY)! (T) ;

&

ast

var (ID)! EXP:

[var℄

Figure 3.25: Symbol table aess oping with more than one kind of entries

The operator Preompute obeys some omfortable properties onluded in Proposi-

tion 3.4.1. They an be easily shown based on the de�nition of Preompute viaReplae.

Proposition 3.4.1

8s 2 Name; by 2 Operation; � 2 Sort : Preompute hs; �i By by is:

� WD-preserving,

� type-monoton inreasing (inreasing beause by is possibly added),

� skeleton-preserving,

� ompatible

by

-total for ompatible

by

� Rules suh that

8rs 2 ompatible

by

: Sigma Of rs t (by : � ! �) is de�ned.

}

Similarly to the insertion of preomputations for premises, postomputations an be

supposed. The insertion of omputations for onlusions makes sense as well. The orre-

sponding details are omitted.

We also want to omment on the relation of the operator Preompute to semantis

preservation. The operator is not extending (refer to De�nition 2.6.9). Thus, our simple

90 CHAPTER 3. THE OPERATOR SUITE

syntatial riterion for disiplined transformations is not appliable. However, the opera-

tor is semantis-preserving by a spei� but simple argument: If we substitute the premises

inserted by Preompute by identity, we obtain the original rules. Thus, if the inserted

premises behave like an identity for all previous appliations, semantis preservation holds.

Finally, we want to omment on the orthogonality of the operator suite from a spei�

point of view. The usability of the operator Hiding for the inremental onstrution of

premises is disussed in the following example.

Example 3.4.7

Let us assume, we want to insert a preomputation s(p; q) ! (p

0

) for a ertain position

pos. q should be regarded as an auxiliary parameter. The orresponding transformation

onsists of the following steps:

1. The basi preomputation s(p)! (p

0

) is inserted with the operator Preompute.

2. The parameter position for q is added using the operator Add.

3. The auxiliary parameter has to be de�ned, e.g. with the operator De�ne.

A problem arises in step (1.), if there are already uses of s. Suh existing uses are proba-

bly binary omputations in ontrast to the inserted unary omputation. The intermediate

result would not be de�ned beause well-typedness would not hold.

We ould try to invent a kind of preomputation operator, whih simultaneously adds

auxiliary positions to the preomputation. However, there are many other possible se-

narios of stepwise onstrution of premises. Thus, it is impratial to support all suh

senarios by speial operators of the operator suite. We prefer to be able to unbundle

roles. The operator Hiding provides our our generi solution for the problem of the in-

remental onstrution of premises. In the above example we simply have to hide s during

the performane of the three steps. }

3.4.3.6 Terms versus omputational elements

In Subsetion 2.4.1 we have shown how terms in the sense of a form of ompound param-

eters an be understood as a rather modest extension of the general framework, where

we onsider variables as the only form of parameters. Appliations of term onstrutors

an be turned into premises and vie versa. The advantage of suh a relationship is that

operations whih are appliable to premises are thereby immediately useful for terms, too.

The operators Constrution, Deonstrution : Pre�x ! Trafo turn omputa-

tional elements into terms. More preisely, the operator Constrution (resp. Deon-

strution) transforms the given rules by interpreting all omputational elements with a

given pre�x as term onstrutors (resp. deonstrutors). The operators Constrution

�1

,

Deonstrution

�1

: P(Sort) � Pre�x ! Trafo work in the opposite diretion, i.e.

terms are turned into omputational elements. The operator Constrution

�1

(resp.

Deonstrution

�1

) replaes terms on applied (resp. de�ning) positions of the given sorts

by auxiliary variables and inserts omputational elements with the same shape using the

term onstrutor together with a given pre�x as relational symbol.

3.4. ELABORATE SCHEMATA 91

program ! (prog(STM)) :
delarations ;

statements ! (STM):

[prog℄

: : :

statements ! (onat(STM

1

; STM

2

)) :
statement ! (STM

1

);

statements ! (STM

2

):

[onat℄

statements ! (skip) :
: [skip℄

statement ! (assign(ID;EXP)) :
identi�er ! (ID);

expression(ST)! (EXP):

[assign℄

statement ! (if (EXP; STM

1

; STM

2

)) :
expression ! (EXP);

statements(STM

1

);

statements(STM

2

):

[if℄

: : :

expression ! (var (ID)) :
identi�er ! (ID): [var℄

: : :

Figure 3.26: Figure 2.16 with term onstrution made expliit

Example 3.4.8

Consider the result from Example 3.4.4. The atual result was shown in Figure 2.16. There

are several relational formulae pre�xed by &

ast

. They model AST onstrution. Let us

\unfold" this interpretation by making the term onstrution expliit:

Figure 3.26 � Constrution &

ast

On Figure 2.16

Refer to Figure 3.26 for the result. Obviously, the orresponding omputational ele-

ments are disarded, but terms are substituted for the variables on their output positions.

}

The operator Replae, i.e. the shema for element substitution, an naturally be in-

strumented for both diretions, that is, for turning terms into omputational elements and

vie versa. We only onsider the diretion of turning omputational elements into terms.

The other diretion an be implemented in a dual manner. Computational elements whih

are intended to model term onstrution must have the following form:

s(p

1

; : : : ; p

n

)! p

Making term onstrution expliit means to disard the element and to substitute the pa-

rameter p by the term s(p

1

; : : : ; p

n

). There is a further preondition: The parameter on the

output position must be a variable. Otherwise the basi onept of substitution (mapping

variables to parameters) is not appliable. Figure 3.27 presents a funtion mapping a sym-

bol s to an element of RhsSubstitution speifying how elements based on s are rewritten as

term onstrutors. Now it is straigthforward to de�ne the operator Constrution from

above; similarly for the other operators.

92 CHAPTER 3. THE OPERATOR SUITE

� e : Premise .

Let in = Parameters Input Of e In

Let houti = Parameters Output Of e In

hh i, hhVariable Of out, Term From Construtor From Operation Of e in Of Sort Sort

Of outiii.

Figure 3.27: Replaing omputations by term onstrution

3.4.4 Composition

We have seen already some forms of omposition, namely onatenation of rules (./

) and superimposition (Superimpose). In this Subsetion, we present some elaborate

omposition shemata; refer to Figure 3.28 for the pro�les of the orresponding operators.

First, a more exible form of rule onatenation is presented (Merge). Seond, a kind of

omposition failitating the replaement of rules by other variants with the same tag is

disussed (Override). The orresponding operator ombines onatenation and seletion.

Afterwards, the rather simple problem of inserting keywords into rules (Conretize),

whih an be regarded as another kind of superimposition, is onsidered. Finally, an

operator failitating the derivation of hain rules in the sense of attribute grammars is

suggested (Chain). Lifting (Lift) is the subjet of a separate setion; refer to Setion 3.5.

Merge And : Rules� Rules! Rules

Override By : Rules� Rules! Rules

Conretize By : (Tag � String?)

?

! Trafo

Chain Rule (: Tag � Symbol� Symbol! Trafo

Lift : ((Skeleton! Trafo)

?

 Rules)

?

! Rules

Figure 3.28: Elaborate shemata for omposition

3.4.4.1 A relaxed form of rule onatenation

For a onatenation rs

1

./ rs

2

to be de�ned means that for all symbols whih have rs

1

and

rs

2

in ommon, the orresponding pro�les are equal (i.e. the LUB exists). For uniquely

sorted symbols the requirement for equal pro�les ould be weakened by saying that there

must exist a unique permutation to make the pro�les equal. Thereby, rs

2

an be made

ompatible to rs

1

by permuting the parameterization of elements in rs

2

aordingly. The

atual ombination now an be performed with ./ . This additional servie is provided

by the operator Merge. Note that the property of unique sortedness is only required for

symbols with di�erent pro�les in the operands. Figure 3.29 presents the spei�ation of

the operator Merge.

Example 3.4.9

The following two rules annot be ombined by ./ , beause the pro�les of expression in

the two rules are not equal.

3.4. ELABORATE SCHEMATA 93

expression(ST) ! (T;EXP) : identi�er ! (ID);

&

stati

lookup(ST; ID) ! (T);

&

ast

var(ID) ! EXP:

[var℄

statement(ST) ! (STM) : identi�er ! (ID);

&

stati

lookup(ST; ID) ! (T

LHS

);

expression(ST) ! (EXP;T

RHS

) ;

&

stati

assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP) ! STM:

[assign℄

However, sine there is a unique permutation to make the pro�les equal, onatenation

based on the operator Merge is possible. The pro�le of expression is taken over from the

�rst rule. }

� rs1 : Rules . � rs2 : Rules .

rs1 ./

Let t2 = Sigma Of rs2 In

Fold Left

� rs0 : Rules . � p1 : Pro�le .

Let p2 = Pro�le Of Symbol Of p1 In t2 In

(p2 = ?) !

rs0,

(Sorts Input Of p1 = Sorts Input Of p2) And

(Sorts Output Of p1 = Sorts Output Of p2) !

rs0,

Permute p1 On rs0

Neutral rs2 List Sigma Of rs1.

Figure 3.29: Merge And : Rules� Rules! Rules

There is an important advantage of usingMerge instead of ./ . The parameterization

has often a di�erent order for two operands to be omposed beause the orresponding

aspets of omputational behaviour have been possibly established in di�erent orders. The

operands annot be onatenated, but they an be merged.

Example 3.4.10

Consider two sets of rules rs

1

and rs

2

and two parts of omputational behaviour a and b.

There are transformations t

a

and t

b

intended to add the omputational behaviour of a and

b, respetively. Now assume, that rs

1

only reets a, whereas rs

2

only reets b.

(t

b

On rs

1

) ./ (t

a

On rs

2

)

will not be de�ned in general, but

Merge (t

b

On rs

1

) And (t

a

On rs

2

):

}

94 CHAPTER 3. THE OPERATOR SUITE

3.4.4.2 Overriding rules

A ruial problem onerning reuse is the possibility to override parts of a program. We

have mentioned the operators Unde�ned!, Unused! and Purge whih an be used in

order to override opies and omputations. Another kind of overriding, whih an be

regarded as a ombination of two sets of rules, is disussed in the sequel.

It is assumed that some rules in a given set of rules rs

1

should be replaed by other

variants ontained in another set of rules rs

2

. A pair of mathing rules an be found by

di�erent strategies, e.g.:

1. equality of the tags,

2. equality of the skeletons,

3. existene of an uni�er for the input positions of the onlusions, espeially a renaming.

We only onsider the �rst approah beause it is appliable to the general framework

and not only to some suitable instanes as the third approah. The seond approah is

also generally appliable, but it has not been proved to be useful so far.

Override rs

1

By rs

2

replaes rules in rs

1

with tags also ourring in rs

2

by the

orresponding variants in rs

2

. Moreover, all the rules in rs

1

and rs

2

with tags whih do not

our in both operands, are taken over to the result; refer to Figure 3.30. A more orthogonal

de�nition w.r.t. ./ would ensure that rs

2

does not ontain rules without a ounterpart in

rs

1

. However, this requirement is not omfortable beause then the onatenating aspet

and the overriding aspet had always to be separated during omposition. There is another

possible option for overriding: It has to be deided if the skeleton of the rs

2

should respet

the skeleton of orresponding rules in rs

1

or not. In any ase, the relative order of the

rules in rs

1

should be preserved; refer to Subsetion 3.2.3 for sorting rules. Note that the

existene of the LUB of the types of rs

1

and rs

2

is a suÆient but not neessary ondition

for the existene of the result of overriding.

� rs1 : Rules . � rs2 : Rules .

Order By Tags In rs1 On Merge (Forget Tags (Tags In rs2) On rs1) And rs2.

Figure 3.30: Override By : Rules� Rules! Rules

As long as there is a proper transformational relationship between two stages of a

spei�ation, overriding should not be applied beause it is a rather drasti operation.

3.4.4.3 Inserting keywords

We omment on a rather trivial, but nevertheless neessary omposition, that is to say

the insertion of keywords. This omposition an be regarded as a kind of superimposition.

Keywords are assumed as a kind of premises. The orresponding operator for insertion of

keywords has the following pro�le:

Conretize By : (Tag� String?)

?

! Trafo

3.4. ELABORATE SCHEMATA 95

The parameter an be regarded as a sequene of patterns of rules. It is assumed that

a question mark is superimposed with a skeleton element, whereas a proper string denotes

a keyword to be inserted.

statement(ST)! (STM) :
\If"; expression(ST)! (T;EXP);

&

stati

isBool (T);

\Then"; statements(ST)! (STM

1

);

else(ST)! (STM

2

);

\End-If";

&

ast

if (EXP; STM

1

; STM

2

)! STM:

[if℄

else(ST)! (STM) :
\Else"; statements(ST)! (STM): [else℄

else(ST)! (STM) :
&

ast

skip ! (STM): [noelse℄

Figure 3.31: An optional if-onstrut (onrete syntax)

Example 3.4.11

Let us transform the rules onerning the if-statement with the optional else-path from

Figure 3.15 to reet a rather onrete syntax by inserting keywords. The result is shown

in Figure 3.31.

Figure 3.31 � Conretize By h h[if ℄; h\If"; ?; \Then"; ?; ?; \End-If"ii;

h[else ℄; h\Else"; ?ii

i

On Figure 3.15

}

3.4.4.4 Chain rules

Context-free grammars (or skeletons) in pratie ontain hain rules to improve readabil-

ity. In AGs, hain rules are often neessary to distinguish entities of the same struture.

Introduing hain rules frequently is required during strutural adaptations. The operator

Chain Rule adds a hain rule to a given program.

Chain Rule t lhs (rhs On rs has the following e�et. A new rule is added to rs,

where t is taken as the tag, i.e. rs must not ontain a rule tagged by t and the name lhs is

used to build the onlusion, whereas the name rhs is used to build the only premise. The

onlusion and the premise are parameterized with the same fresh variables based on the

pro�les of lhs and rhs in rs . At least one of the symbols must have a pro�le in rs. If both

have a pro�le, the pro�les must be equal.

Example 3.4.12

Assume that a strutural adaptation shall be applied to the frontend spei�ation Figure 2.9

in order to distinguish basi expressions and ompound expressions, beause we want to

96 CHAPTER 3. THE OPERATOR SUITE

deal with priorities by layers of expressions as ommon in top-down parsing. Then a hain

rule modelling \Every expression enlosed in brakets is a basi expression as well." is

useful:

basi expression(ST) ! (T;EXP) : \(\;

expression(ST) ! (T;EXP);

\)\:

[brakets℄

We an establish the above hain rule by the following transformation:

Conretize By hh[brakets℄; h\(\; ?; \)

00

iii

Æ Chain Rule [brakets℄ basi expression (expression

Note that the above adaptation an be performed for any pro�le of expression. In

ontrast, if the above rule was spei�ed diretly, a ertain pro�le would be assumed. }

3.5 Composition by lifting

Lifting is a kind of omposition of program fragments (more preisely rules) and program

transformations modelling omputational behaviour. There an be several \pakets" of

rules to be lifted. Eah of them overs ertain omputational aspets, where the remaining

aspets are expeted to be established by the orresponding transformations. Conatena-

tion, superimposition and overriding are involved in the omplete proess of lifting as more

basi shemata of omposition.

In Subsetion 3.5.1 a detailed but informal and abstrat view on lifting is outlined,

before a ertain variant of lifting is formalized as the operator Lift in Subsetion 3.5.2.

The whole setion is partially based on our previous work presented in [L�am97, LR97℄. As

there are several options for instantiating the notion of lifting and there are some ideas

how to go beyond the variant inorporated into the operator suite, we lose the setion

with a disussion in Subsetion 3.5.3.

3.5.1 Notions

We need a number of basi notions whih are suitable to derive �nally the notion of lifting.

Complete program In program omposition (or in general in program development) we

are interested in omplete programs, that is a program is required to solve a ertain

task or to perform ertain omputations. Aording to our examples and the used

formalisms, omplete programs are type hekers, program simpli�ers, interpreters,

et.

Computational aspet Programs are assumed to be semantially strutured aording

to omputational aspets. To manage the omplexity of a program, it is ruial to

identify these aspets.

3.5. COMPOSITION BY LIFTING 97

Example 3.5.1

For the frontend spei�ation in Figure 2.9 we an think, for example, of the following

atomar aspets:

1. Terminal attribution for identi�ers

2. Representation of type expressions

3. Aumulation of the symbol table entries in the delaration part

4. Initialization of the symbol table

5. Propagation of the symbol table in the statements part

6. Representation of operator symbols

7. Type synthesis for expressions

8. Context onditions for statements

9. Compositional omputations for AST onstrution

}

The idea is to represent omputational aspets by program transformations what

will be lari�ed below when the notion transformer is introdued. Note that in

semantis, partiularly in (modular) denotational semantis, a omputational aspet

is often referred to as a semanti aspet.

Level of the omputational model Considering all possible sets of omputational as-

pets we obtain a spae of levels, a lattie-like struture. Among these ompositions

there are probably some whih are oneptionally partiular important beause they

orrespond to subproblems of the omplete program. The spae of levels orresponds

to the �rst dimension of a omplete program in our approah.

Example 3.5.2

For the frontend with the aspets given in Example 3.5.1, the following meaningful

levels an be identi�ed:

� The stati semantis orresponds to the level omposed from the aspets (1.), : : :,

(8.). Note that (7.) and (8.) an be regarded as the primary aspets, whereas

the remaining aspets are needed to speify type heking of expressions and

ontext onditions of statements for some forms.

� The atual AST onstrution is loated at the level onsisting of the ompu-

tational aspets (1.), (6.) and (9.). Note that the aspets (1.) and (6.) are

seondary in the sense that they supply some parameter positions ontributing

to the ASTs. The atual ompositional AST onstrution is modelled by (9.).

}

Note that in semantis, partiularly in (modular) denotational semantis, a level is

often referred to as a level (layer) of the semanti model. We use the term omputa-

tional model to denote the omputational level of the omplete program.

98 CHAPTER 3. THE OPERATOR SUITE

Skeleton Reall that the spae of omputational levels orresponds to the �rst (a more

semantial) dimension for omplete programs. The seond (a more strutural) di-

mension is provided by the power set of skeleton rules of the omplete program.

Remember that a skeleton is simply a set of non-parameterized rules; refer to Fig-

ure 2.14 for the skeleton of our running example. One an think of a ontext-free

grammar, a signature, or a data type desription as well. The onnetion between

skeletons and omputational aspets / levels is the assumption, that the omplete

program is based on a ertain skeleton whih is onstant for intermediate stages of

omposing and synthesizing the omputational behaviour of the omplete program.

Rules at levels One an speak of rules at ertain levels aording to the omputational

aspets overed by them as manifested by the omputational behaviour of the rules.

Note that skeleton rules are at the empty level of omputational aspets, whereas

the omplete program is at the level of the omputational model.

delaration(ST

0

)! (ST

1

) :
identi�er ! (ID);

type ! (T);

&

stati

add (ST

0

; ID;T)! (ST

1

):

[de℄

statement(ST) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T

LHS

);

expression(ST)! (T

RHS

);

&

stati

assignable(T

LHS

;T

RHS

):

[assign℄

statement :
expression ! (T);

&

stati

isBool (T);

statements;

statements:

[if℄

expression(ST)! (T) :
identi�er ! (ID);

&

stati

lookup(ST; ID)! (T):

[var℄

Figure 3.32: Some rules at ertain levels of the omputational model

Example 3.5.3

Consider, for example, the rules in Figure 3.32. We explain the level of the rule

[if℄ with regard to the aspets in Example 3.5.1. Aspet (8.), i.e. ontext onditions

of statements, has to be instantiated for if -statements as follows: The expression

serving as a ondition of the if -statement must be of the Boolean type. Therefore,

[if℄ is at the level omposed from (8.) and (7.) beause we need the synthesized

attribute for the type of an expression in order to speify the ontext ondition. }

Irrelevane and ontribution The advantage of using rules at ertain levels is that we

an go along our two dimensions addressing parts of the omplete problem with

the fous on ertain skeleton rules. Usually we an abstrat from details. The

orresponding aspets are alled irrelevant (w.r.t. the part of the omplete problem

and some skeleton rules).

3.5. COMPOSITION BY LIFTING 99

Example 3.5.4

Aspets (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the ontext ondition

of an if -statement. Note that there are statements whose ontext onditions possibly

require other aspets. To speify the usual ontext ondition for assignment, for

example, the aspets (1.) and (5.) are needed as well. }

An aspet is said to ontribute to the omputational behaviour of a ertain skeleton

rule, if the orresponding rule of the omplete program has some omputational

behaviour whih an be assoiated with the aspet. Note that irrelevane w.r.t. the

omplete omputational model an be regarded as the opposite of ontribution.

Example 3.5.5

Although aspets (1.), (2.), (3.), (4.), (5.), (6.) and (9.) are irrelevant for the ontext

ondition of an if -statement, some of these aspets ontribute to the omputational

behaviour of [if℄, namely (5.) and (9.) beause the rule ontributes to the propagation

of the symbol table and AST onstrution needs also to be performed; refer to the

rule [if℄ in Figure 2.9. }

Superimposition and ontration Given two rules based on the same skeleton rule

whih are intended to desribe di�erent parts of the omputational behaviour for the

skeleton rule, they an be omposed by superimposition in the sense of the orre-

sponding operator Superimpose; refer to x3.3.3.1. A ontration of the parameteri-

zation an be neessary, if the rules have some assumption about the parameterization

in ommon; refer to the operator Contrat in Subsetion 3.3.1.

Completeness and onsisteny Let us onsider the ompleteness and onsisteny of a

olletion C of sets of rules at ertain levels with regard to some skeleton and some

omputational model in the following way: For eah skeleton rule, the orresponding

rules in C over exatly all aspets ontributing to the omputational model for this

skeleton rule. Note that this haraterization does not take program transformations

into onsideration yet.

Transformer relating levels Rules at ertain levels are one possible way to represent

omputational behaviour. We suggest program transformations adding parameter-

ization, omputational elements and adapting omputational behaviour as another

form. A transformer is a program transformation t intended to model an aspet

a. Given a rule r at a ertain level (i.e. a skeleton rule in the trivial ase) we an

add the aspet a to r by applying t on r. For some skeleton rules, t will not be

required beause there is possibly a orresponding rule at a ertain level overing a.

Transformers should be skeleton-preserving and semantis-preserving. Completeness

an be relaxed by saying for eah skeleton rule a ontributing aspet must be either

overed by a rule in C or there must be a suitable transformer. Note also that a

transformer sometimes needs to be restrited as far as it onerns the level of rules

whih the transformer is appliable to.

100 CHAPTER 3. THE OPERATOR SUITE

Example 3.5.6

Some aspets from Example 3.5.1 an be modelled by transformers as follows:

� (3.): Aumulate ST From fprogramg To fdelarationg

� (4.): Default For ST By &

stati

init

� (5.): Inherit ST From fprogramg To fexpressiong

� (9.): Relate Output hhprogram , PROi, hstatements , STMi, hstatement , STMi,

hexpression , EXPi, hidenti�er , IDi, : : :i &

ast

Note (4.) should not be applied to a rule at a level whih does not ontain (3.), where

(3.) is an aspet ontributing to the rule. }

Lifting is the proess of deriving a omplete program from:

1. a skeleton,

2. a omputational model,

3. a olletion of sets of rules at ertain levels,

4. a set of transformers.

Possibly, the skeleton and the omputational model an be regarded as impliitly

desribed by the other two ingredients.

Example 3.5.7

The frontend spei�ation in Figure 2.9 is obtained by lifting the rules at ertain

levels from Figure 3.32 using the transformers in Example 3.5.6. Note that we need

less rules at levels than �nal GSF rules. Note also that the rules at the levels are not

so omplex, sine they abstrat from irrelevant aspets. }

This abstrat haraterization of lifting an be put in onrete form in di�erent ways

inluding the possibility to enrih the proess by features helpful for program omposition

or adaptation.

3.5.2 A onrete form

Now we want to present a onrete form of lifting whih proved to be useful in our work

onerning the omposition of language proessors from reusable fragments [LRBS℄. The

operator suite supports that form by the operator Lift; refer to Figure 3.33 for the de�ni-

tion.

The input of the operator Lift is a sequene hp

1

; : : : ; p

n

i of so-alled parts, whereas the

output is a set of rules. Eah part has the following struture:

(Skeleton! Trafo)

?

| {z }

transformers

to be applied to the rules

 Rules

| {z }

rules

at a level

3.5. COMPOSITION BY LIFTING 101

� parts : ((Skeleton ! Trafo)* � Rules)* .

% ompute skeleton and override

Let hsk, overriddeni =

Fold Right

� hts, rsi : (Skeleton ! Trafo)* � Rules .

� hskSofar, partsSofari : Skeleton � ((Skeleton ! Trafo)* � Rules)* .

Let tags = Map � ht, l, ri : Shape . t List skSofar In

Let rest = Forget Tags tags On rs In

h(Skeleton Of rest) ./ skSofar, hhts, restii ++ partsSofari

Neutral hh i, h ii List parts

In

% iterate the overridden parts

Fold Left

� sofar : Rules . � hts, rsi : (Skeleton ! Trafo)* � Rules .

Order By Tags In sofar On

Merge sofar

And

% apply transformers to rules of this part

Fold Left

� rsSofar : Rules . � t : Skeleton ! Trafo .

t On sk On rsSofar

Neutral rs List ts

Neutral h i List overridden.

Figure 3.33: Lift : ((Skeleton! Trafo)

?

 Rules)

?

! Rules

The seond projetion an be regarded as a set of rules at a ertain level, whereas

the �rst projetion enumerates the transformers, eah of the type Skeleton ! Trafo to be

applied to the rules in order to establish the omplete omputational model for these rules.

The type of transformers reets that a transformer is assumed to observe the skeleton

of the omplete program, what is important, for example, for any kind of propagation.

Besides the skeleton parameter, a transformer is simply a funtion on Rules.

The atual lifting is performed with regard to the skeleton of the rules of all parts. The

omputational model is impliitly de�ned by the parts. Note that there an be aspets

without a orresponding transformer if the rules of all parts are at levels already ontaining

this aspet. This ase is even very ommon beause there are often aspets whih are so

entral that all fragments over these aspets, e.g. type synthesis for expressions in a

frontend de�nition or evaluation of expressions in an interpreter de�nition.

Besides the formal de�nition of the operator Lift in Figure 3.33, an informal explanation

is provided here as well. Consider an appliation of Lift of the following form:

Lift hp

1

; : : : ; p

n

i:

Eah part p

i

onsists of transformers ht

i;1

; : : : ; t

i;m

i

i and of some rules rs

i

. From all the rs

i

a skeleton an be obtained. The basi strategy is the onatenation of the skeletons of the

102 CHAPTER 3. THE OPERATOR SUITE

parts. The operator Lift follows a more general approah in the sense that overriding is

integrated in lifting, i.e. a set of rules rs

i

an override rules of any rs

j

with j < i based on

tags as usual. Thus, the skeleton is aumulated from bakwards (Fold Right : : :) and

only those rules of the skeleton of rs

i

are inorporated whih have a tag not ourring in

the skeleton aumulated so far. Simultaneously, the parts are minimized to fade out of

those rules whih are to be overridden. Now the omposition of the omplete programs is

performed as an iteration on minimized parts, where the rules of the atual part are lifted

by the assoiated transformers observing the aumulated skeleton.

Example 3.5.8

We explain the lifting proess for the frontend spei�ation in Figure 2.9. We use (3.), (4.),

(5.) and (9.) to denote the transformers from Example 3.5.6 assoiated with omputational

aspets from Example 3.5.1.

Lift h

h h(3:); (4:); (5:); (9:)i; Figure 2.14 i;

h hi; Figure 3.32:[de℄ i;

h h(9:)i; Figure 3.32:[assign℄ i;

h h(5:); (9:)i; Figure 3.32:[if℄ i;

h h(9:)i; Figure 3.32:[var℄ i; : : :

i

Note that Figure 2.14 refers to the omplete skeleton of the frontend spei�ation. It would

be slightly more preise to fade out rules with tags ourring in subsequent parts, but that

is not neessary beause the operator Lift performs suh a minimization anyway. }

As pointed out above, transformers need to be skeleton-preserving. If strutural adap-

tations have to be performed on the operands of lifting, they must already be manifest in

rules in the parts. Thus, lifting will be based on the modi�ed struture.

3.5.3 Disussion

The operator Lift does not onsider parts with overlapping skeleton rules. For more om-

plex omputational models, the approah outlined in the abstrat view might be preferred,

i.e. there an be any number of rules with the same underlying skeleton. These rules, whih

usually are onerned with di�erent omputational aspets, must �rst be ombined by su-

perimposition. Contration may be neessary to identify parameterization due to ommon

assumptions about the omputational aspets. Afterwards, the remaining aspets an be

added by transformers. In ontrast to the operator Lift, eah set of rules has to be assoi-

ated with the aspets rather overed by the rules in the sense of a stati type information

than to be applied to the rules. Moreover overriding has to be realized expliitly, e.g. by

applying the operator Forget to the rules before giving them as arguments to the lifting

proess.

Let us formalize the approah of having several rules at levels per skeleton rule. The

input has the following struture:

3.5. COMPOSITION BY LIFTING 103

transformers

z }| {

(Skeleton! Trafo)

?

parts

z }| {

(P(N)

| {z }

to index

transformers

 Rules

| {z }

rules

at a level

)

?

Aspets with an assoiated transformer are enumerated by the �rst projetion. The

seond projetion somehow orresponds to the parts from above, but here rules are asso-

iated with indies indexing the transformers from �rst projetion saying whih of those

aspets are already overed by the rules of the parts. That is in ontrast to the form of the

parts assumed for the operator Lift, where eah part enumerates the aspets to be applied.

Example 3.5.9

We assoiate the rules in Figure 3.32 with the orresponding aspets:

[de℄ : (1.), (2.), (3.)

[assign℄ : (1.), (5.), (7.), (8.)

[if℄ : (7.), (8.)

[var℄ : (1.), (5.), (7.)

}

Let hht

1

; : : : ; t

n

i; hp

1

; : : : ; p

m

ii be an input for the lifting proess with the skeleton sk ,

eah p

i

has the following struture: hfn

i;1

; : : : ; n

i;k

i

g; rs

i

i. To onsider an input as valid

means the following:

1. 1 � n

i;j

� n for i = 1; : : : ; m, j = 1; : : : ; k

i

2. 6 9i; j : 1 � i; j � m; i 6= j ^

Tags In rs

i

\Tags In rs

j

6= ; ^ fn

i;1

; : : : ; n

i;k

i

g \ fn

j;1

; : : : ; n

j;k

j

g 6= ;

The �rst ondition ensures that indies in the parts are valid indies in the list of

aspets (transformers). Note that due to the struture of the parts, no aspet is referred to

more than one in a part anyway. The seond ondition onerns the problem when rules

of parts with an overlapping skeleton have aspets in ommon. Suh an ambiguity must

possibly be regarded as inonsisteny beause there are possibly multiple (ontraditory)

de�nitions for some parameter positions. However, there is a solution to this problem

explained below.

Lifting in the more general form starts from a skeleton sk and it is performed for eah

single skeleton rule as follows:

1. For every single skeleton rule we �rst lookup all orresponding rules in the parts.

These rules are denoted by r

1

, : : :, r

q

.

2. r

1

, : : :, r

q

are superimposed:

Superimpose r

1

And (Superimpose r

2

And (� � � And r

q

) � � �)

104 CHAPTER 3. THE OPERATOR SUITE

3. The result of the superimposition is transformed by:

(t

d

w

On sk) Æ � � � Æ (t

d

1

On sk);

where the d

1

, : : :, d

w

are the indies of aspets not overed by r

1

, : : :, r

q

.

4. The separately lifted rules are merged.

There is another option in steps (2.) and (3.): The omposed transformation mentioned

in (3.) ould also be applied to the orresponding skeleton rule and the result will be

superimposed with the superimposition from the previous step. However, this option

ignores that transformers are likely to adapt rules at ertain levels, i.e. that some aspets

must be present before a ertain transformer an be applied. Consequently we should even

assume an order of applying transformers in step (3.). For simpliity, the following strategy

is assumed:

� Transformers are applied as late as possible, i.e. �rst the rules are superimposed and

the transformers are applied to that intermediate result. This issue is reeted in

(2.) and (3.)

� The order of the transformers in the �rst projetion of the input is regarded as a

referene and step (3.) an easily be adjusted to preserve that order by adding the

requirement d

1

< d

2

< : : : < d

w

.

The seond ondition for an input to be valid an be relaxed. Suppose two parts

with an overlapping skeleton have aspets in ommon. A rule from the intersetion of the

skeletons an still be superimposed as desribed in the seond step of lifting above, but

the parameterization aording to the ommon aspets must be uni�ed. That is easy to

perform by ontration in the superimposed intermediate result. There are a number of

problems with this approah.

� When de�ning positions are ontrated, variables with multiple de�ning ourrenes

are obtained. That is not always aeptable, although it makes sense for some target

languages.

� It is not obvious how to determine the parameter positions to be ontrated. In

general, delarations about the parameterization assoiated with aspets would be

needed. It also must be assumed that every part enumerates exhaustively the aspets

overed by the rules. On the other hand there is a pragmati strategy if unique

sortedness for skeleton elements is assumed. After eah superimposition a ontration

an be performed so that unique sortedness is reovered.

The disussion of lifting is onluded by pointing out some remaining problems making

lear that this topi is worth to be onsidered further:

Well-de�nedness A rule is regarded as well-de�ned if all applied ourrenes an be

assoiated with at least one or exatly one de�ning ourrene. It is not lear if

well-de�nedness of the rules in the parts should be required? If the adaptation and

the initialization of a data struture, for example, are regarded as separate aspets,

3.5. COMPOSITION BY LIFTING 105

non-well-de�ned rules make sense beause the fragment dealing with adaptation an

rely on a separate initialization. Mostly, well-de�nedness is useful.

Type heking It is easy to observe that lifting (espeially the operator Lift) as desribed

above is partial, even if the transformers are total. During superimposition and

onatenation type onits an our. It is not so obvious how to approah to a

kind of type heking for the input of lifting. One approah is to enumerate all aspets

exhaustively and to desribe the ontribution of eah aspet to the parameterization

(e.g. in terms of parameter positions) and to the omputational behaviour (e.g. in

terms of pro�les of relational symbols). It ould be heked then if rules from the

parts are well-typed. It would remain to prove that the transformers atually adhere

to the delared ontribution.

Rules versus transformers The operator Lift supports only one rule at some level per

skeleton rule. The remaining omputational behaviour must be added by transform-

ers. In priniple, this is always possible due to the expressive power of the alulus

for transformations. One extreme for the style of a transformer is that it adds om-

putational behaviour following a ompletely uniform shema. Another extreme is

that it modi�es only a ertain rule or it desribes a ase distintion on the rules,

where rules at levels are possibly more appropriate. At this point it is not lear how

to deompose omplex programs in terms of rules at levels and transformers.

Overriding The operator Lift inorporates smoothly overriding of rules into the proess

of lifting. It is not obvious how to perform suh an amalgamation for other approahes

to lifting. Besides overriding rules, overriding omputational behaviour is possibly

useful, too.

Chapter 4

Related work

We want to understand how reuse is failitated in other spei�ation frameworks and

partiular problem domains (e.g. formal semantis spei�ation). For some of the manip-

ulations provided in other frameworks and domains we want to attempt a reonstrution

based on our meta-programming-like point of view. The bene�t of suh a reonstrution

is that the underlying onepts are made available for other instanes of our framework.

For some approahes we are able to identify partiular weaknesses and limitations.

First, the sope of related work overed by this hapter is explained in Setion 4.1.

Seond, paradigm shifts in attribute grammars are ompared with our meta-programming

approah in Setion 4.2. Some of the paradigm shifts an be simulated in our framework.

Third, sophistiated approahes to reusability in semantis are disussed in Setion 4.3.

The most promising attempts in semantis are not diretly appliable to the target lan-

guages in our work. Nevertheless, we will try to identify the limitations of the orrespond-

ing attempts and to make some use of the orresponding onepts in our ontext. Finally,

several approahes belonging to the �eld of formal program development are outlined in

Setion 4.4.

4.1 Sope

When I started my researh presented in the thesis in early 1995, I was interested in om-

piler ompilers, partiularly based on attribute grammars and formal semantis, partiu-

larly, denotational semantis. The very rough goal I had in mind was to provide support for

reuse based on operations on (attribute grammar and/or semantis) spei�ations. Reuse

is too often based on \text editing". My operations should failitate a formal way of reuse.

Moreover, reuse should be exeutable in ontrast to several other meta-level approahes,

e.g. re�nement. Consequently, I have dediated two setions on improvements of the basi

attribute grammars paradigm (with the emphasis on any kind of modularity) (Setion 4.2)

and on extensibility in semantis (Setion 4.3).

Even at the beginning of my researh I was aware of modularity onepts in pro-

gramming languages, inluding delarative programming languages. Modularity in the

107

108 CHAPTER 4. RELATED WORK

ommon sense essentially supports programming in the large by deomposition and para-

metriity. This overall approah emphasizes design for reuse in advane. In priniple, I

agree to the suitability of that premise, but I wanted to look beyond the border of this

restrition to reuse. What kind of reusability an be ahieved by adaptations based on a

transformational point of view?

As far as I an see, there are two major problems with modularity in the ommon sense:

� An insuÆient deomposition and parameterization makes reuse impossible. Thus,

the deisions about the atual deomposition and the parameters inluding the as-

sumptions about the parameters are very ritial. On the ontrary, transformations

an adapt, in priniple, \any" given program. In partiular, a transformation may

even install a parameterization in a given input program. Thus, the long term goal

of my study is to show that transformations may improve reusability.

� Another problem onerns the overhead for establishing a suÆient deomposition

and parameterization and for realizing proper instantiations. I want to onsider

several powerful tehniques, e.g. monads [Wad92℄ or objet-orientation in funtional

programming [SA97℄, as \oding tehniques". Again, transformations might be more

appropriate in some ases, sine the properties for their appliability and their e�et

are easier to understand.

Beause of these limitations, ommon approahes to modularity will be ommented on

in this hapter only to a limited extent. As my projet proeeded, I beame more familiar

with methods of formal program development, suh as program transformation, program

synthesis, program re�nement, mainly in the ontext of logi programming. Setion 4.4

reports on related work in this area.

The sope of the related work hapter overs ompiler onstrution, extensibility in

semantis, program transformation and re�nement, operations on spei�ations and some

more almost unrelated �elds. It was my intention to over suh a wide spetrum, although

my results ould possibly be stated for one or another partiular ommunity. With that

ommitment to suh a wide spetrum, some related work will not be ommented on in

depth, inluding the following approahes:

� Meta-programming uses the meta-level to de�ne lasses of target programs. In higher-

order funtional programming ertain operators like map / foldl / foldr are used

in onjuntion with polymorphism to desribe lasses of algorithms. Shapes and

polytypism [JC94, JJ96, JJ97, Jeu95℄ lead us even a step further in the degree of

abstration. The idea of map, for example, an be applied to any algebrai type suh

as trees and matries. Thereby, we obtain a generi map when applied to a data

struture of a ertain shape returns a data struture of the same shape.

� Representing a whole lass of omputations on a partiular data struture by means of

suitable higher-order prediates has been suggested for example by L. Naish [Nai96℄.

Essentially, Naish argues for a higher order approah to programming in Prolog based

on similar tehniques widely used in funtional programming. That approah depends

4.1. SCOPE 109

on impure features of Prolog. A similar but more abstrat and formal approah to

higher-order prediates is taken by J.F. Nilsson and A. Hamfelt [HN95, HN96, NH95℄.

We should mention another paper [NS97℄ by Naish and Sterling, where they apply

higher-order logi programming in Prolog for a kind of higher-order reonstrution

of stepwise enhanement whih is desribed in some detail in Subsetion 4.4.2.

� The Demeter Researh Group (Karl J. Lieberherr et al.) has developed an extension

of objet-oriented programming, that is to say adaptive objet-oriented programming

[Lie95, PPSL96℄. The Demeter method proposes lass ditionaries for de�ning the

struture of objets and propagation patterns for implementing the behaviour of the

objets. Our approah is similar to that of Demeter in that transformations are

independent from the atual skeleton and how omputational behaviour (inluding

propagation based on the notion of reahability) an be established in onrete target

programs.

� Aspet-oriented programming [KLM

+

97℄ is a very reent programming tehnique

whih laims to support the separation and omposition of aspets (design deisions

and others). Thereby, it an be avoided that \tangled" ode arises from the fat that

ertain design deisions ross-ut the system's basi funtionality. The tehnique is

based on a very general view on proedural programming (inluding objet-oriented

programming), where speial language support is added for the development of aspet

ode. [KLM

+

97℄ introdues the entral notions omponent and aspet as follows:

With respet to a system and its implementation using a general proedure-based

language, a property that must be implemented is:

� a omponent if it an be leanly enapsulated in a proedure, a method, an

objet, or an API; omponents tend to be units of the system's funtional de-

omposition,

� an aspet, if it annot be leanly enapsulated in suh a way; aspets tend to

be properties that e�et the performane or semantis of the omponents in

systemi ways.

Although aspet-oriented programming so far has been formulated in the impera-

tive paradigm, a distintion between omponents and aspets is similar in intent to

our notions of skeleton rules and omputational aspets as proposed in Setion 3.5

on lifting. The atual hoie of an aspet language, i.e. the language used for the

desription of aspets, depends on the nature of the aspets. One example given

in [KLM

+

97℄ brings us very losely to meta-programming: An aspet dealing with

optimization is expeted to operate on the data ow graph of a omponent program.

Furthermore, the omponent programs and the aspet ode are ompiled into a om-

plete program based on a tehnique alled weaving whih again|at a super�ial

level|orresponds to our lifting. The main di�erene between the two approahes

is, that we are onerned with delarative programs and that we have a very detailed

methodology for meta-programming and lifting instead of a rather abstrat proposal

110 CHAPTER 4. RELATED WORK

for aspets and weaving.

� There are various further language extensions whose expressive power should be om-

pared with our meta-programming approah, e.g. multi-stage programming suitable

for expressing staged omputations expliitly [NN92, TS97℄, and mixins in objet-

oriented programming [DS96, Bra92, BL92℄.

4.2 Extension of the AG formalism

There are several surveys on (extensions of) the attribute grammar formalism, e.g. [Bau98,

Ada91, KW94, Boy96b, Paa95℄. We also want to refer to Parigot's omplete bibliography

on attribute grammars

1

and Attribute Grammar Page

2

. For reasons of eonomy, we will

omment here only on some spei� paradigm shifts, namely:

� objet-orientation (Subsetion 4.2.1),

� remote aess (Subsetion 4.2.2),

� symbol omputations (Subsetion 4.2.3),

� oupling (Subsetion 4.2.4),

� patterns (Subsetion 4.2.5),

� atual features of AG systems using FNC-2 as an example (Subsetion 4.2.6).

We regard several other approahes as beyond our sope, in partiular the style of

objet-orientation in Koskimies' et al. system Tools [Kos91℄, the non-delarative features of

Hedin's Door AGs [Hed91, Hed92℄, the \uni�ation" of syntax and semantis in Swierstra's

and Vogt's Higher-Order AGs [SV91℄. For a survey on approahes with the emphasis on

modularity we reommend Baum's thesis [Bau98℄. Simpler forms of modularity are for

example provided by di�erent instanes of hierarhial/funtional deomposition of AGs.

Watt's partitioned AGs [Wat75℄ and Ganzinger's signature morphisms [Gan83℄ an be

regarded as sophistiated approahes to modularity.

4.2.1 Objet-orientation

4.2.1.1 Motivation

There are di�erent approahes to inorporate objet-oriented notions into attribute gram-

mars. [Kos91℄ provides a survey on this subjet. Refer also to [Paa95℄. Besides the

pragmati aims to shorten the notation and to improve readability, there are essentially

the following motivations for suh extensions:

1. A bene�t of objet orientation is that it supports reusing existing ode. Computa-

tional behaviour an be spei�ed somewhere in the lass hierarhy. The behaviour

1

http://www-roq.inria.fr/osar/www/fn2/AGabstrat.html

2

http://www-roq.inria.fr/osar/www/fn2/attribute-grammar-people.html

4.2. EXTENSION OF THE AG FORMALISM 111

is then inherited to desendant lasses, where it an possibly be adapted. This mo-

tivation arises from the view in Smalltalk, for example.

2. Inheritane an also be used to struture domain-spei� frameworks. Thereby,

appliation-oriented software is supported. This motivation arises from the view

in Simula, for example.

3. The AG formalism is an open formalism and not a omplete spei�ation language.

It is ommon to look for spei�ation language features in order to improve the

pragmati properties of AG spei�ation.

4. Objet-oriented notions like state of an objet and message passing an be used to

extend the AG formalism with expliit dynami apabilities.

We will ignore the forth point ompletely in the following onsideration, beause the

kind of dynami apabilities goes beyond our purely delarative framework. There are other

approahes to the extension by dynami apabilities, e.g. Dynami Attribute Grammars

[PRJD96a, PRJD96b℄, whih are more appropriate in our ontext.

The remainder of this subsetion will deal with objet-orientation based on objet-

oriented ontext-free grammars. Note that Setion 4.2.3 reports on paradigm shifts in

Lido based on another kind of inheritane whih is almost independent from the underlying

CFG.

4.2.1.2 Objet-oriented ontext-free grammars

An objet-oriented view of attribute grammars an be based on an objet-oriented view of

the underlying onept, i.e. CFGs; refer to Figure 4.1. Thus, hain produtions A! B an

be regarded as the de�nition of a lass system (refer to Setion A.4 for tehnial details),

whereas a prodution A ! B

1

: : : B

n

an be regarded as strutural desription, i.e. an

objet of lass A has attributes of stati lasses B

1

, : : :, B

n

. To be sensible from the

objet-oriented point of view, all alternatives for a given nonterminal A are either hain

produtions or there is only one prodution giving a strutural spei�ation.

OO CFG

lass nonterminal

objet a (sub)word derived from a nonterminal

strutural spei�ation of an objet prodution

superlass/sublass relation hain produtions

Figure 4.1: Objet-oriented notions for CFGs

From a syntati point of view redued CFGs are ommon. However, from the point of

view of objet-oriented AGs, it is useful to allow nonterminals n

i

whih are not reahable

from the axiom of the CFG. These n

i

model semanti base lasses. Behaviour an thus be

inherited to a nonterminal (lass) n by a hain prodution n

i

! n. Consequently, the lass

system of an objet-oriented AG is mainly obtained by hain produtions of the underlying

syntax desription possibly extended by hain produtions with non-reahable symbols on

112 CHAPTER 4. RELATED WORK

the LHS orresponding to semanti lasses. Note that CFGs with multiple inheritane

annot e�etively be used for objet-oriented AGs as explained in more detail below.

Refer to Setion A.5 for a formal de�nition of objet-oriented CFGs inluding examples.

4.2.1.3 Attribute inheritane and default values

An ordinary AG assoiates a set of synthesized and inherited attributes with eah sym-

bol. Eah syntati rule must be assoiated with semanti rules de�ning the synthesized

attributes of the symbol on the LHS and the inherited attributes of the symbols on the

RHS. In order to avoid onfusion onerning the meaning of the term inherited attribute,

we adhere to the Mj 6olner/Orm terminology to use the term anestral attribute instead. In

the following inheritane is only used in the sense of objet-orientation.

Essentially, objet-orientation for AGs is an extension of the basi AG paradigm by

inheritane of attributes and semanti rules, where the underlying CFG must obey single

inheritane. Inheritane of attributes is not very e�etive, espeially if we take into onsid-

eration that the existene of the orresponding hain produtions inluding the auxiliary

nonterminals (to have exatly one strutural spei�ation per nonterminal) is almost a

onsequene of the required form of objet-oriented CFGs. Without any further exten-

sions (suh as rule models disussed below) inheritane of semanti rules does not give not

muh expressive power. The RHSs of semanti rules assoiated with a nonterminal n to be

regarded as a superlass an only depend on anestral attributes of n itself. The following

example taken from [KLMM93℄ shall illustrate the onept of inheritane of semanti rules.

Example 4.2.1

There are sometimes proper defaults for synthesized attributes in the sense that only a

few sublasses have to de�ne a di�erent value, i.e. the inheritane of the default value is

useful. Consider, for example, the following extension of the lass Exp modelling any kind

of expressions. Cheking ontextual onstraints, we need to detet expressions whih are

proper forms for LHSs of assignments. Thus, a synthesized attribute hasLeftValue is suitable

for that purpose. For several forms of expressions, e.g. onstants, monadi and dyadi

arithmeti expression, the following default formalized in the notation of Mj 6olner/Orm is

orret:

addto Exp

f

syn hasLeftValue : Boolean;

hasLeftValue := false;

g

By the way, using addto onstrut of Mj6 olner/Orm, attributes and orresponding

semanti rules an be added. Thereby, the semantis deomposition of a spei�ation

similar to phases in OLGA of FNC-2 [JP91, JP90, Par88, JPJ

+

90℄ is supported. However,

note that this feature should not be regarded as an objet-oriented feature beause the

extension is not oupled with inheritane. }

4.2. EXTENSION OF THE AG FORMALISM 113

Refer to Setion A.6 for some more samples of objet-oriented AGs.

4.2.1.4 Models of semanti rules

Without adding further onepts like, for example, rule models, I laim that objet-

orientation in AGs does not improve modularity signi�antly. A olletive equation [Hed92,

p. 82℄, [KLMM93, p. 472℄, or a rule model

for all sons(x) in lass

son(x):a

1

:= f(a

2

; : : : ; a

n

)

de�nes the value of an inherited attribute a

1

for all son nodes of a given lass. The onept

of olletive equations provides one possibility for de�ning general behaviour at suitable

levels of generalization with regard to the lass hierarhy. A rule model is not dediated to

a ertain syntatial rule. This exibility is possible beause a rule model does not depend

on the exat number and the types of sons.

Example 4.2.2

Let us onsider a part of the stati semantis of a blok-strutured language. We are

atually onerned with the symbol table propagation. The symbol table information has

to be spread pratially throughout the whole AST in order to reah all identi�er referenes.

In the basi paradigm of AGs, orresponding attributes have to be delared for all relevant

symbols and opy rules have to be inserted in order to ode the atual propagation. The

following spei�ation (a variant adopted from [Kos91℄) uses a rule model as default for

the normal propagation.

<Node> ::= Abstrat

<Root> : <Node> ::= Abstrat

Lo rootST : SymbolTable;

stROOT := init;

for all sons(x) in Desendant son(x):st := stROOT;

<Desendant> : <Node> ::= Abstrat

An st : SymbolTable;

for all sons(x) in Desendant son(x):st := st;

<Program> : <Root> ::= f<mainBlok : BeginBlok>g

<BeginBlok> : <Desendant> ::= f<delPart : DelList> & <stmtPart : StmtList>g

Lo stLOCAL : SymbolTable;

stLOCAL := delPart:stASSEMBLED;

stmtPart:st := stLOCAL;

The lass Node models general (abstrat) nodes in the whole AST. We assume that

grammar symbols either inherit from Root or Desendant, both being sublasses of Node.

Program is the start symbol of a onrete grammar. BeginBlok models nested bloks

onsisting of delarations and statements. For that prodution, the propogation has to be

overridden. Note that the atual aumulation of symbol table entries in the delarations

part is not modelled yet by the above spei�ation. }

114 CHAPTER 4. RELATED WORK

4.2.1.5 Disussion

There are some problems with objet-oriented AGs (based on objet-oriented CFGs) be-

sides the need for adhering to a ertain style of CFGs:

InsuÆient support for propagation Example 4.2.2 demonstrates how the propaga-

tion downwards in an AST an be spei�ed. The onept of rule models de�ning

anestral attributes is ruial for that purpose. However, this onept is not suÆient

to desribe the aumulation of a data struture, i.e. the symbol table in a delara-

tion part, for example. To de�ne suh omputational behaviour in a ompat way,

we had to be able to de�ne how attributes are opied on the RHS (not only from the

LHS to the RHS), and how synthesized attributes of the LHS are omputed. Sine

rule models are not appliable in this ase, we an only use onrete semanti rules.

Consequently, the omputational behaviour annot be desribed in a way abstrat-

ing from the underlying CFG. This shortoming is overome in our transformational

approah beause the propagation and omputation shemata provide more expres-

sive power than rule models; refer also to Setion D.3 for an example generalizing

Example 4.2.2. Note that ertain paradigm shifts of Lido provide a means for that

problem, too.

Missing onepts for adaptation There is a notion of overriding semanti rules. More

in detail, semanti rules and rule models (in Mj6olner/Orm) an be overridden by

semanti rules, but we annot override given semanti rules by a rule model. This is

a minor tehnial point. There is another problem due to lak of expressive power:

For several adaptations of the omputational behaviour we have in mind, there is

no way to express them, e.g. the insertion of pre-/post- omputations for ertain

semanti rules, the extension of a propagation.

Another serious lak of adaptability onerns strutural spei�ations. They annot

be overridden. One a nonterminal has been spei�ed by a strutural desription, it is

subjet to inheritane no longer. This anomaly is not muh improved by ase-lasses

in Mj6olner/Orm, beause the inherited syntatial struture an be insuÆient and

the appliability of the onept ruially relies on the proper introdution of ase-

lasses during the initial design proess.

Consequently, objet-oriented AGs failitate design of AGs, but adaptation is only

addressed to a lower extent.

Relationship to objet-oriented programming languages The outlined approah to

add objet-oriented onepts to the AG formalism omits several notions typial for

objet-oriented programming languages. Attributes do not desribe a modi�able

state of an objet. There are extensions of that view, e.g. in the system Tools

[Kos91℄, but then the delarative nature is not preserved. Thus, we onsider that

property rather as an advantage. Nevertheless, this problem indiates ruial di�er-

enes between objet-oriented (imperative) programming languages and delarative

formalisms.

4.2. EXTENSION OF THE AG FORMALISM 115

Semanti rules orrespond to methods in an aeptable manner: Due to the loality

priniple of AGs, all the attributes of a syntati rule to be de�ned are known.

For eah of them there must be a semanti rule (a "method for de�nition"). It is

sometimes suggested to regard the method seletion in objet-oriented AGs as late

binding, e.g. in [Hed89℄. That point of view seems to be arti�al beause even in the

basi AG paradigm eah prodution loally de�nes how synthesized attributes of the

LHS and anestral attributes of the RHS are omputed.

It would be interesting to see if the onstruts super and self present in objet-

oriented programming languages were useful in the ontext of AGs.

To sum up, the primary notion added to AGs, when speaking of objet-oriented AGs,

is inheritane. To obtain some expressive power, rule models or other onepts must

be added. Although rule models rely on inheritane, they provide rather yet another

onept than some inherently objet-oriented onept.

Restritions to retain well-formedness Dealing with attribute inheritane, some ex-

tra e�ort is neessary to retain well-formedness of the underlying AG. An AG is

well-formed if eah syntatial rule is assoiated with semanti rules de�ning synthe-

sized attributes of the LHS and anestral attributes of the RHS. Moreover, eah root

nonterminal, i.e. the syntatial start symbol and/or the semanti base lasses, must

not have anestral attributes, beause it would not be possible to de�ne them.

For CFGs obeying single inheritane, this property an be heked. The following

restrition permits us to hek that all anestral attributes of the RHS are de�ned

in a reasonable way: Desendants of the nonterminals on the RHS must not delare

new anestral attributes. It is orret that this restrition does not introdue pra-

tial problems, as stated in [Hed89℄ beause we an always move the delaration of

anestral attributes upwards in the lass hierarhy. However, it is a formal artifat as

well as a ontradition to the objet-oriented point of view, that adaptations should

not e�et existing lasses.

Inompatibility of multiple inheritane and attribute inheritane Allowing CFGs

to de�ne a lass system with multiple inheritane, severe restritions are needed on

the attribute delarations to ensure well-formedness. Thus, multiple inheritane an

not be used de fato. This a serious problem beause it is by no means obvious that

one superlass per nonterminal is suÆient to fator out the ommon behaviour.

Following our transformational approah, the above problem does not exist beause

an arbitrary number of parts of the omputational behaviour an be added by subse-

quent transformations. For eah of these steps a di�erent losure of symbols an be

used. The limited form of inheritane based on grammar symbols an be simulated

by suitable reahability losures in our approah. We an take other olletions of

symbols as well.

116 CHAPTER 4. RELATED WORK

4.2.2 Remote aess

The basi formalism of attribute grammars imposes the priniple of loality. Attributes

referred to in the semanti rules assoiated with a syntatial rule r must be attributes of

the symbols in r. If a omputation depends on a non-loal attribute, auxiliary attributes

for symbols on the path and suitable semanti opy rules have to be added to propagate

the attributes along the tree. To avoid this expliit propagation, onstruts for remote

(attribute) aess have been suggested by Kastens [Kas76℄ and Lorho [Lor77℄, for example.

A omprehensive presentation of the subjet has been published by Kastens and Waite in

[KW94℄, where some of the examples and omments have been taken from. There, the

following three forms of remote aess are distinguished:

1. A omputation depends on an attribute to be found walking up the tree from the

urrent node.

2. A omputation is a ombination of ertain attributes in the subtree rooted in the

urrent node.

3. A omputation updates an invariant for some iterative omputation visiting nodes

in (depth-�rst) left-to-right order.

Note that these onepts are \stati" in spite of the above explanation, i.e. the orre-

sponding attributes are known at AG ompile time. Furthermore, we want to mention,

that the seond form somehow ombines the aspet of remote aess and the use of all the

aessed attributes in omputations. We will present some examples for these patterns of

remote aess and we will disuss the orresponding simulation based on our approah.

In the �rst example we want to ompute the stati nesting depth of a blok. The main

program blok has nesting depth 0; refer to the rule [program℄. Let us assume that a blok

is one form of statement, then the depth of a nested blok is obtained from the inrement

of the depth of its asendant blok. To aess the depth of the asendant blok, it has to be

transmitted to the nonterminal statement by means of auxiliary attributes and semanti

opy rules. To avoid this oding, the Inluding : : : onstrut an be used to �nd the �rst

instane of the spei�ed attribute by walking up the tree.

[program℄ root ::= blok

blok :DEPTH = zero

[inner℄ statement ::= blok

blok :DEPTH = in(Inluding blok :DEPTH)

There are some possibilities to simulate this kind of remote aess. Let us sketh one

senario where we start from the following non-well-de�ned GSF shema:

root(: : :) : & zero ! DEPTH; blok(: : : ;DEPTH; : : :): [program℄

statement(: : :) : & in(DEPTH) ! DEPTH

0

; blok (: : : ;DEPTH

0

; : : :): [inner℄

In rule [inner℄ there is an unde�ned variable DEPTH. To derive a well-de�ned spei�-

ation with the proper propagation and update of nesting depths, the following transfor-

mation an be applied:

4.2. EXTENSION OF THE AG FORMALISM 117

Remote DEPTH From frootg

We only have to point out that the nesting depths are propagated starting at root . We

an even omit the initialization of the nesting depth as provided by the semanti rule for

[program℄ beause it an be represented by the following transformation:

Default For DEPTH By & zero

To illustrate the seond pattern of remote aess, that is to say attributes in desendant

nodes are ombined in a ertain way, the problem of determining undelared and useless

variables is addressed

3

. Variable identi�ers are aumulated separately in the delaration

and the statement part:

[blokrule℄ blok ::= delaration partstatement part

blok :undelared = statement part :IDS n delaration part :IDS

blok :useless = delaration part :IDS n statement part :IDS

[dp℄ delaration part ::= delaration list

delaration part :IDS = Constituents variable :ID

With (IDS; [; f g; ;)

[sp℄ statement part ::= statement list

statement part :IDS = Constituents variable :ID

With (IDS; [; f g; ;)

In general, the Constituents : : : With : : : onstrut is de�ned as follows. Let s be a

grammar symbol, �, �

0

sorts (attribute names), union, unit and zero are semanti funtion

symbols with the pro�les union : �

0

� �

0

! �

0

, unit : � ! �

0

, zero :! �

0

. Let v

1

; : : : ; v

n

be

the instanes of s:� found in the desendant nodes of the urrent node.

Constituents s:� With (�

0

; union; unit ; zero)

denotes the following omputation:

� n = 0: zero

� n > 0: union(unit(v

1

); union(unit(v

2

); union(� � � ; v

n

)))

In the above example, the parameters are instantiated as follows:

� �

0

: IDS denoting the sort of sets of identi�ers, i.e. IDS = P(ID),

� union: [, i.e. the union on sets,

3

We prefer to use a di�erent example than the pedagogial (?) example presented in [KW94℄.

118 CHAPTER 4. RELATED WORK

� unit : f g, i.e. the singleton set onstrution,

� zero: ;, i.e. the empty set.

Obviously, two aspets are intermingled in the Constituents : : : With : : : onstrut, that

is to say the aess of attributes in the subtree|whih is somehow dual to the aess of

attributes found by walking up the tree|and the ombination of the potentially unknown

number of attribute instanes. It is the unknown number that requires the higher-order

behaviour in the sense of fold reursion shemata, but the atual way of omputing the

ombination is not really a onept inherent to remote aess. All the aspets of the

Constituents : : :With : : : onstrut an be unbundled in a orresponding de�nition based on

our operator suite; refer to Setion D.4. We use the operator Redue for the ombination

of multiple attributes in a rule and the propagation shemata are useful to propagate the

omposed value.

Let us omment on the third pattern of remote aess, that is to say hains. A hain

relates omputations in left-to-right depth-�rst order within ertain subtrees. A hain may

propagate values or speify dependenies in that order. To support remote aess for hains

means that we speify only omputations whih ompute a new hain value, whereas the

atual propagation is not spei�ed. The aumulation of symbol table entries serves as an

example:

[dp℄ delaration part ::= delaration list

Chainstart delaration list :ST = init

[des℄ delaration list ::= delaration delaration list

[de℄ delaration ::= variable \:" type

delaration :ST = add (delaration :ST; variable :ID; type :T)

It is obvious that hains an be simulated using the operator suite, beause all the

propagation shemata in our operator suite are based on left-to-right propagation. To

speify only the omputations whih ompute a new value orresponds to the style proposed

for the operator Remote.

Boyland desribes in [Boy96b, Boy98℄ olletion attributes as a way to ombine dis-

parate de�nitions of an attribute. The delaration of a olletion attribute states an initial

value and a ombining funtion. In ontrast to that, the above approah desribes the

\olletion" (i.e. ombination) as part of the atual omputation in terms of the Con-

stituents-onstrut. In similarity to Kastens and Waite, Boyland also strongly links olle-

tion attributes and remote aess, although his understanding of remote aess is di�erent.

He proposes a paradigm shift suh that objets with �elds may be reated. Referenes to

suh objets may be transmitted as ordinary attributes. The �elds an be read and writ-

ten via the referene attributes. In [Boy98℄ Boyland analyses the resulting diret non-loal

dependenies and he shows how to render these dependenies in lassial terms. Essen-

tially, the �elds of an objet must be sheduled in a way that lassial dependenies based

on ontrol attributes are suÆient. The Lido spei�ation formalism [Kas91, KW94℄ in

4.2. EXTENSION OF THE AG FORMALISM 119

the system Eli [GHL

+

92℄ supports side-e�ets in a related way where dependenies be-

tween omputations an be fored by the Depends : : : On : : : onstrut. In ontrast to

that, Boyland derives suh dependenies by an analysis. Hedin's door attribute grammars

[Hed92, Hed91, Hed94℄ leave all responsibility for sheduling to hand-written ode.

4.2.3 Symbol omputations

In the previous subsetion we have desribed forms of remote aess with emphasis on the

onepts as provided by Lido|the AG spei�ation language of Eli. In this subsetion we

want to omment on further paradigm shifts of Lido, that is to say symbol omputations

and inheritane. Besides rule models, symbol omputations are another onept to speify

semanti rules (i.e. omputations) abstrating from the underlying ontext-free grammar.

We should point out that the form of inheritane in Lido is quite di�erent from the inher-

itane whih we have haraterized in Setion 4.2.1 on objet-oriented AGs. It is a matter

of terminology if Lido should be alled an objet-oriented AG spei�ation language.

Following our meta-programming approah, it is straightforward to de�ne transfor-

mations whih insert omputations (inluding onditions) and opy parameters. Thus,

omputational behaviour an obviously be desribed independently from a skeleton. By

turning the sorts and the symbols, whih are used to address parameter positions et., into

parameters of the transformation, suh desriptions of omputational behaviour beome

reusable. Thereby, symbol omputations in the sense of [KW94℄ an be presented as appli-

ations of operators like De�ne and Use. Applying suh transformations to some rules,

a spei� omputational behaviour is inserted. More elaborate symbol omputations usu-

ally have to make use of remote aess. Again, the simulation in our meta-programming

approah is straightforward. The orresponding transformations simply make use of the

orresponding propagation shemata.

Consider the following fragment of an AG. It spei�es how the blok nesting depth is

initialized for the axiom of the AG and how it is adapted for bloks as a form of statements

and for proedure bodies, where the new depth is obtained by inrementing the urrent

depth in both ases.

[program℄ root ::= blok

blok :DEPTH = zero

[inner℄ statement ::= blok

blok :DEPTH = in(Inluding blok :DEPTH)

[probody℄ body ::= blok

blok :DEPTH = in(Inluding blok :DEPTH)

Symbol omputations make it possible to assoiate omputations rather with symbols

than with rules. Thus, a more reusable formulation of the omputational behaviour asso-

iated with the rules [inner ℄ and [probody℄ is expressed as follows:

120 CHAPTER 4. RELATED WORK

Symbol blok : Inh:DEPTH = in(Inluding blok :DEPTH)

Instead of onrete grammar symbols, abstrat symbols an be used. Grammar symbols

an inherit from the abstrat symbols by a separate delaration.

Symbol ontour : Inh:DEPTH = in(Inluding ontour :DEPTH)

Symbol blok : Inherits ontour

Multiple inheritane is possible. Furthermore, symbol omputations an be overridden

by onrete omputations assoiated with rules. The fat that symbol omputations are re-

ally independent of the symbols used in a partiular language de�nition depends very often

on the use of remote aess. The above abstrat symbol omputation an be represented

as a transformation as follows:

�ontour : Name: �from : Name: Hiding & in Do (

Remote DEPTH From ffromg

Æ Add hhInput;& in;DEPTHii

Æ De�ne hInput; ontour ;DEPTHi By & in

Æ Ensure hhInput; ontour ;DEPTHii)

The parameter from is needed to establish the remote aess. Note that it is possible

to use a more ompat form for ertain symbol omputations by introduing auxiliary

shemata. The above symbol omputation, for example, suggest the following pattern: A

unary omputation is added to de�ne an input position of a grammar symbol, where the

input of the omputation is obtained by remote aess.

4.2.4 Coupling

Attribute oupled grammars (ACGs) have been proposed by Ganzinger & Giegerih for

designing phase-oriented AG spei�ations; refer e.g. to [Gie88℄. Two AGs are oupled

via the underlying CFG of the seond AG, i.e. the CFG an be thought of to de�ne

an intermediate language. A speial root attribute of the former AG is synthesized by

onstruting a word of the intermediate language by exploiting produtions of the seond

CFG as onstrutors.

Coupling is not a proper extension to the AG paradigm. It is rather a programming

tehnique. The beni�t of oupling is that a problem an be spei�ed in separate phases

whih an be ombined into a single spei�ation under ertain irumstanes based on

desriptional omposition. Thereby, the onstrution and the traversal of intermediate

data strutures an be avoided. The relationships between desriptional omposition

and deforestation have been studied by Correnson, Duris, Jourdan, Parigot and Roussel

[DPRJ96, DPRJ97, CDPR98℄ emphasizing the bene�ts and the point of view of desrip-

tional omposition.

4.2. EXTENSION OF THE AG FORMALISM 121

The question is whether the degree of reusability ahieved by oupling is suÆient. This

is ertainly not the ase beause phase-like deomposition is only a very simple means of

modularity. The mapping desribed by a omponent AG of a ACG annot be modi�ed, but

only surrounded by further phases. Belle, Jourdan, Parigot, Roussel extend the onept

of desriptional omposition with the intent to improve modularity in AG spei�ation

[LJPR93, RPJ94℄. Partiularly, they suggest to derive the oupling from simple assoia-

tions between the grammar symbols of two grammars rather than to speify the oupling.

Another ahievement is separate ompilation (i.e. separate evaluator onstrution). Sep-

arate ompilation is an aspet of modularity whih we almost ignored in our work, sine

our emphasis is on expressive power failitating reuse.

Farrow's et al. Composable Attribute Grammars (CAGs) [FMY92℄ an be understood

as a generalization of ACGs. A so-alled glue AG may onstrut phrases of so-alled om-

ponent AGs by using produtions as onstrutors. Terminals may have input and output

attributes in order to allow bidiretional data ow between glue and omponents. Essen-

tially, CAGs generalize ACGs beause of the output attributes for terminals. Following

[FMY92℄, the expressive power of output attributes an be gained alternatively by synthe-

sizing a single omplexly-strutured root attribute. [KW94℄ reports a number of problems

onerning reusability of CAGs.

4.2.5 Patterns

Duek's and Cormak's MAGs (Modular Attribute Grammars) [DC90℄ are based on (pro-

dution) patterns and (attribution) templates. A pattern is similar to a ontext-free rule.

Whereas a ontext-free rule ontains only voabulary symbols, a MAG pattern ontains

variable symbols, whih math any voabulary symbol, quoted symbols whih math one

voabulary symbol and ellipses, whih math zero or more voabulary symbols. A template

is a semanti rule on the variable or quoted symbols.

Attribution of a CFG with regard to a set of MAGs is done in terms of syntatial

mathing ontrolled by semanti onstraints, i.e. a prodution pattern mathes a ontext-

free rule. The attributes de�ned in the orresponding semanti rules and these semanti

rules themselves are only added, if the attributes used in the semanti rules an be syn-

thesized due to other semanti rules, and if the de�ned attributes are used somewhere

else.

Example 4.2.3

The following two MAGs de�ne the attribution shema for a buket brigade. The module

env desribes how the data struture is propagated down the derivation tree, whereas the

module def desribes how the data struture is passed up the tree. We assume that the

start symbol in the grammar is goal.

122 CHAPTER 4. RELATED WORK

module env

1

0

goal ! A : : :

A:env = 0

2 A! B : : :

B:env = A:env

3 A! : : : B C : : :

C:env = B:def

module def

4 A! : : : B : : :

B:def = B:env

5 A! : : : B

A:def = B:def

6 A!

A:def = A:env

}

The way in whih an attribution is added to a CFG is primarily ontrolled by syntax.

That is not most appropriate to obtain an abstrat de�nition of aspets of attribution.

Indeed, [KW94℄ reports problems in instrumenting that kind of mathing for the design

proess, e.g. auxiliary attributes have to be added to trigger mathing in the desired way.

The Constituents-onstrut (see Subsetion 4.2.2), for example, annot generally be simu-

lated by MAGs. Our transformational approah is more exible than the use of patterns

and templates. Example 4.2.3 an be simulated by propagation shemata of our operator

suite.

Adams reports in his thesis [Ada91℄ on an approah similar to MAGs.

4.2.6 FNC-2

There are many ompiler ompilers with support for attribute grammars, e.g. FNC-2

[JP91, JP90, Par88, JPJ

+

90℄, Eli [GHL

+

92℄ and Coktail [GE90℄. Suh systems use mostly

a ertain instane of the attribute grammar paradigm with some partiular spei�ation

features. The most interesting onepts underlying Lido|the attribute grammar formal-

ism of Eli|have been explained in Subsetion 4.2.2 and Subsetion 4.2.3 (i.e. remote

aess, symbol omputations and inheritane). The onept of objet-oriented attribute

grammars as used in the Ag spei�ation language in Coktail has been disussed in Sub-

setion 4.2.1. Besides that, Ag supports a rather simple straightforward module onept

whih need not to be onsidered here.

4

FNC-2 o�ers a number of desriptional tools

supporting reuse. There are features arising from the system arhiteture of FNC-2 and

there are other features more losely related to OLGA|the attribute grammar desription

language of FNC-2.

Now let us onsider FNC-2 's features relevant for reusability in more detail.

Passes A large appliation an be split into a sequene of passes where eah pass takes as

input the intermediate representation produed by a previous one and as output and

transforms it into another intermediate representation to be fed to the next pass. The

passes are usually desribed by AGs or other spei�ations following the tree-to-tree

mapping paradigm. If a pass is desribed by an AG, it is either

� a side-e�et AG, where the output tree is the same as the input tree exept that

it arries di�erent attributes, or

4

The module onept is similar to the onept of phases mentioned below for the FNC-2 system.

4.2. EXTENSION OF THE AG FORMALISM 123

� a funtional AG having zero, one or more output trees, generally di�erent from

the input tree.

FNC-2 supports merging of side-e�et AGs as well as desriptional omposition of

funtional AGs, i.e. oupling.

AAS The intermediate representations are alled attributed abstrat syntaxes (AAS)

whih an be regarded as grammars extended with attribute delarations. The spe-

i�ation of AASs and AGs is done separately.

Delaration and de�nition modules Regarding OLGA as a general-purpose applia-

tive language, it supports the notion of modules, in whih a set of related objets

(type, funtions, onstants and exeptions) an be de�ned. Similar to Modula-2, a

module is split into two ompilation units, a delaration module delaring the objets

visible from outside and a de�nition module in whih the atual implementation of

visible and non-visible objets is given. Objets an be opaque and modules an be

parameterized.

Phases An AG an be divided into phases to be regarded as bloks with loal delarations

and import lauses. A phase is likely to ontain the semanti rules for some aspet

of the omplete AG. A phase is a pure deomposition onstrut, i.e. it is not an

extension of AGs.

Produtions Produtions are also regarded as bloks. This is at least useful for the

onsideration of values whih are loal to the prodution. These values, whih may

depend on attributes of the prodution, are usually referred to as loal attributes.

Attribute lasses The automati generation of semanti opy rules is a rather well-known

tehnique to de�ne attribute ourrenes more impliitly. FNC-2 also supports the

generation of non-opy rules based on the onept of attribute lasses [Le 89, Le 93℄.

An attribute lass onsists of

� sets of attribute ourrenes and

� assoiated templates to speify the semanti rules whih de�ne these our-

renes.

A template spei�es

� the produtions to whih the template will be applied to and

� the atual semanti rules.

If some attribute ourrene is not de�ned expliitly, it will be tried to math the

orresponding prodution with the syntati part of some template, and|under er-

tain not so straightforward irumstanes|the semanti rules of the template are

used to de�ne the ourrene. The onept of attribute lasses is similar to symbol

omputations in Lido; refer to Subsetion 4.2.3 as far as it onerns the expressive

power.

124 CHAPTER 4. RELATED WORK

Consequently, FNC-2 supports modular spei�ation in a sophistiated manner, i.e.

passes an be used at the top level of a ompound appliation. Phases support seman-

tis deomposition similar to Watt's Partitioned Attribute Grammars [Wat75℄. Attribute

lasses support semantis deomposition as well, but the atual details of syntatial and

semanti onstraints to �nd default rules are not so apparent. Last but not least, the

module onept of OLGA as a general-purpose appliative language makes it possible to

use ADTs in the design of an AG.

Even with these powerful modularity onepts, FNC-2 fails to solve some problems we

an solve with our operator suite, mostly beause omposition is supported rather than

adaptation. In partiular, semanti rules and thereby omputational behaviour annot

be adapted. Suh an adaptation would be useful, for example, to establish a di�erent

propagation or to insert a preomputation. Syntatial rules annot be overridden, folded

and unfolded, but that is neessary for strutural adaptations. Some problems an be

handled in FNC-2 by fairly simple textual adaptions of spei�ations or by introduing

a di�erent pass. The situation ould be slightly improved if phases and attribute lasses

ould be separately heked. However, in general, a modular spei�ation will fail to be

reusable, if the assumed struture and the supported parameterization is not suÆient for

a ertain appliation.

Belle, Jourdan, Parigot and Roussel have done some work on improving modularity

based on desriptional omposition [LJPR93, Le 93, RPJ94, Rou94℄. They suggest, for

example, to derive an attribute grammar speifying the translation from one grammar

to the other from ertain assoiations between the non-terminals and terminals of the

grammar. Thereby, one an deal with ACGs (refer to Subsetion 4.2.4) more modular.

The orresponding onepts will possibly be added to the implementation of the FNC-2

system.

4.3 Semantis

Many researhers have worked on reusability (ompositionality, modularity, extensibility)

of semantis spei�ations, refer e.g. to [Mos83, Mos88, Mog89, Mog91, SJ94, Mos92, BL92,

Bra92, CF94, BR94, Hud96, Mos96, LH96, WH97, BS98℄. In this setion we omment on

some of these attempts. We also want to ompare our meta-programming approah with

some attempts in the semantis ommunity. Suh a omparison must appear somehow

arti�al beause the most promising attempts are usually based on styles and notations

whih are beyond our general framework, e.g. denotational semantis, ation semantis

and abstrat state mahines. On the other hand, this situation makes lear that we annot

adopt existing (partial) solutions to ahieve reusability for representatives of our framework,

e.g. natural semantis, attribute grammars et. The solutions suggested in the framework

of denotational semantis (or higher-order funtional programming), for example, heavily

rely on the higher-order nature of the spei�ations.

This setion is strutured as follows. Subsetion 4.3.1 realls some well-known problems

regarding the extensibility of (denotational) semantis. Afterwards, we onsider possible

4.3. SEMANTICS 125

improvements of mainly extensibility, but also other pragmati properties. First, Mosses'

and Watt's ation semantis are reviewed in Subsetion 4.3.2. Seond, the use of mon-

ads in semantis (and funtional programming) is the subjet of Subsetion 4.3.3. Third,

Cartwright's and Felleisen's extensible denotational semantis are presented in Subse-

tion 4.3.4. Finally, the notions of onservative extension and (suessive) re�nement for

abstrat statement mahines (evolving algebras) are regarded in Subsetion 4.3.5.

4.3.1 Motivation

In denotational (and operational) semantis adding an unforeseen onstrut to a language

may require a reformulation of the entire desription beause denotational desriptions

ruially depend on the domains used in the pro�les of the semanti funtions whih have to

be adapted for new onstruts. This problem beomes a serious hindrane when developing

desriptions of larger languages. It also prevents the reuse of parts of a denotational

desription when desribing a related language.

We want to present examples for problems with the extensibility of denotational seman-

tis. We start with the pro�le of the semanti funtion for statements of a rather simple

language:

[[�℄℄

STM

: STM! MEM! MEM

The semanti meaning of a statement sequene, for example, is obtained by the normal

omposition:

[[S

1

;S

2

℄℄

STM

= [[S

2

℄℄

STM

Æ [[S

1

℄℄

STM

= �m:[[S

2

℄℄

STM

([[S

1

℄℄

STM

m)

The way �-notation is used for speifying semanti entities depends strongly on the

details of domain de�nitions. If errors during statement exeution are taken into on-

sideration, not only the above pro�le will hange, but any intermediate meaning must be

handled di�erently. The new version of the semanti funtion will be based on the following

pro�le:

[[�℄℄

STM

: STM! MEM! (MEM� ferrorg

?

)

The above semanti equation is reformulated as follows:

[[S

1

;S

2

℄℄

STM

= [[S

1

℄℄

STM

then [[S

2

℄℄

STM

;

where then : (D ! (D

0

� ferrorg

?

)) � (D

0

! (D

00

� ferrorg

?

)) ! (D ! (D

00

�

ferrorg

?

)) orresponds to strit (w.r.t. error) omposition and it is de�ned as follows:

f then g x =

(

error ; if Is

ferrorg

?

(f x) = True

g (f x); if Is

D

0

(f x) = True

For languages with sharing, i.e. with pointers or all-by-referene parameter passing,

the at memory model is insuÆient. An environment binding identi�ers to denotable

126 CHAPTER 4. RELATED WORK

values, e.g. loations of a store and a store assoiating loations with storable values must

be distinguished. Consequently, the pro�le of the semanti funtion beomes as follows:

[[�℄℄

STM

: STM! ENV! STORE! (STORE � ferrorg

?

)

Note also that all semanti equations need to be reformulated to adhere to the new style of

variable lookup and modi�ation and to propagate environments and stores aordingly.

An even more fundamental hange is required when jumps are added beause a migra-

tion from the diret style to the ontinuation style has to be performed. The pro�le of the

semanti funtion for statements beomes as follows:

[[�℄℄

STM

: STM! ENV! CONT! CONT;

where CONT = STORE! (STORE � ferrorg

?

). The semantis of statements sequenes,

for example, hanges beause the omposition of meanings has essentially to be reversed

ompared to the diret style:

[[S

1

;S

2

℄℄

STM

e = [[S

1

℄℄

STM

e ([[S

2

℄℄

STM

e)

Similar serious problems arise when we generalize to power domains when adding non-

determinism. If we antiipated all these hanges, we ould start with the more omplex

domains, but that would be unreasonable as well as notionally burdensome. Note that

although the above examples are tuned towards denotational semantis, similar problems

arise for operational semantis desriptions, e.g. in the style of SOS, or natural semantis,

i.e. domains, pro�les and data ow beomes inappropriate if a language extension must be

performed.

4.3.2 Ation semantis

Ation semantis [Mos92, Mos96℄ is a framework for the formal desription of programming

languages. Its main advantage over other frameworks is the inherent extensibility and mod-

i�ability of ation semantis desriptions (ASDs), ensuring that extensions and hanges to

the desribed language require only proportionate hanges to its desriptions. Another

purely pragmati problem addressed by ation semantis is the diÆulty of reovering

fundamental onepts, suh as order of exeution or sopes for bindings, from their deno-

tational semantis desription. The onepts are rather enoded in higher-order funtions

on domains. In ation semantis, there is support for several onepts suh as transient,

soped, stable and permanent information built into the notation.

The overall struture of an ASD is similar to a denotational semantis desription:

� a ontext-free grammar de�nes the abstrat syntax,

� semanti equations are used to give indutive de�nitions of ompositional semanti

funtions mapping abstrat-syntax trees to semanti entities.

4.3. SEMANTICS 127

In ontrast to denotational semantis, the main kind of semanti entities is ations. Se-

manti entities are spei�ed by the so-alled ation notation in ontrast to �-notation in

denotational semantis. Ations are essentially omputational entities. The performane

of an ation diretly represents information proessing behaviour and reets the gradual,

step-wise nature of omputation. There are subsidiary kinds of semanti entities, that is

to say data and yielders. Items of data are (in ontrast to ations) essentially stati, math-

ematial entities, representing piees of information, e.g. partiular numbers. A yielder

represents an unevaluated item of data the value of whih depends on the urrent informa-

tion. Ation semantis is intended as a framework for semantis desription. To approah

this goal, the ation notation supports a reasonable number of onepts for semantis

desription diretly.

Example 4.3.1

Let us onsider a semanti equation modelling the semantis of an identi�er as an expression

(in the sense of a onstant or a variable) as ommon for imperative languages:

evaluate I = give the number bound to I or

give the number stored in the ell bound to I.

or is an ation ombinator to hoose between alternative ations. If one or another

operand is bound to fail|as in the example|the hoie is deterministi. In the �rst option

I orresponds to a onstant, whereas in the seond option I orresponds to a variable, with

an assoiated ell (aording to soped information) and with a stored value in the ell

(aording to stable information). The yielder the d bound to Y evaluates to the urrent

binding for the partiular token Y , provided that it is of sort d. The yielder the d stored in

Y is a similar yielder to aess stable information. The primitive ation give Y ompletes

and gives the data yielded by evaluating the yielder Y . Thereby, transient information is

produed. }

The ation notation an be speialized aording to partiular semantis desription,

i.e. ertain domains are instantiated as appropriate for the atual language, e.g. a simple

language delares values like numbers and booleans as storable values, whereas memory

ells and values are bindable values to ope with variables and onstants.

A performane of an ation, whih may be part of an enlosing ation, either ompletes,

esapes, fails, or diverges. An ation may be nondeterministi having di�erent possible

performanes. An ation performane proesses information. There are di�erent kinds of

information giving rise to so-alled faets of ations. The information may be lassi�ed

aording to how far it tends to be propagated, as follows:

� transient : tuples of data, orresponding to intermediate results;

� soped : bindings of tokens to data, orresponding to symbol tables;

� stable: data stored in ells, orresponding to values assigned to variables;

� permanent : data ommuniated between distributed ations.

Making extensions and hanges to an ASD generally a�ets only those parts of the

128 CHAPTER 4. RELATED WORK

desription dealing diretly with the onstruts involved. This property depends on two

ruial features of ation notation:

� Eah ombinator is de�ned universally on ations, in ontrast with funtion ompo-

sition in �-notation, for example, whih requires exat mathing of types between

the omposed funtions.

� There is no mention of the presene or absense of any partiular kind of information

proessing, exept where reation or inspetion of this information is required. For

instane, stored information is referred to only in semanti equations dealing with

program variables.

It is obvious that ation semantis sueeds to support extensibility in semantis de�ni-

tion. However, this requires the use of a speial notation based on quite a few ation prim-

itives and ombinators. It is hard to ompare suh a semantis framework with our meta-

programming approah whih is not tuned towards semantis desription. Our approah

emphasizes the synthesis, transformation and ombination of (�rst-order) spei�ations.

We try to give some onluding remarks on the relationship between both approahes:

1. Extensibility of ASDs relies on the above mentioned features of ation notation, i.e.

a partiular spei�ation language is used. In ontrast to that, extensibility in our

approah arises from the modi�ability of spei�ations through meta-programs.

2. Sine we do not perform any spei� extension of the onsidered (�rst-order) target

spei�ation formalisms, we are not able to make semanti onepts expliit in the

manner as ation semantis does. On the other hand, some shemata of the operator

suite an be related to semanti onepts built into the ation notation. The propa-

gation of storable and soped information, for example, is failitated by propagation

shemata. The aess to and the prodution of transient information an be modelled

by the omputation shemata in various ways.

3. Although ation notation an be extended, there are some basi assumptions whih

are tuned towards semantis de�nition. Inheritane and aumulation of data, for

example, is supported by the delarative faet (soped information) and the impera-

tive faet (stable information). There is no obvious way to propagate several di�erent

data strutures in di�erent ways.

4. Without programming at the meta-level ertain adaptations and ompositions annot

be performed per se, preomputations, for example, annot be interpolated. In more

general terms, semanti equations annot be adapted at all.

5. Ation notation satis�es several algebrai laws. However, the intended interpreta-

tion of an ASD is based on an operational semantis (SOS) for ation notation. In

this respet, ation semantis an be regarded as a higher level of semantis desrip-

tion ompared to operational (denotational) semantis. Our operator suite rather

reets possible manipulations on programs of ertain target languages. Several of

4.3. SEMANTICS 129

these manipulations an be regarded as abstrations from programming pratie. In

this respet, meta-programming an be regarded as a higher level of programming

ompared to the underlying target language.

4.3.3 Monads and monad transformers

Moggi proposed to use monads to struture denotational semantis [Mog89℄. A monad

is essentially an (endo-) funtor with an additional struture (ertain natural transfor-

mations) in the ategorial sense. We will stik here to the simpler view based on the

terminology of funtional programming and we will use Haskell-like notation for our ex-

amples. In funtional programming, a monad is a type onstrutor together with some

polymorphi funtions haraterized below. Wadler [Wad92℄ popularized Moggi's ideas in

the funtional programming ommunity by showing that many frequently used type on-

strutors together with ommon ombinators are atually monads and that interpreters for

a great variety of language onepts, for example, an be designed in a modular fashion if

the equations adhere to the monadi style. Espinosa developed Semanti Lego [Esp95℄|a

Sheme-based system for the omposition of modular interpreters exploiting monads and

monad transformers. Some other ontributions to modular interpretation based on monads

are [SJ94, LHJ95℄.

The basi idea of the monadi style of programming is to onsider a funtion of type � !

�

0

rather as a funtion of type � !M �

0

, where M is a type onstrutor. Extensibility is

ahieved by instantiatingM as appropriate. M an, for example, add state transformation

to �

0

. For a given type � , elements of � are alled values and elements of M � are alled

omputations, aording to the terminology of Moggi. Besides the type onstrutor M, we

need two polymorphi funtions:

unit

M

:: � !M �

bind

M

:: M � ! (� !M �

0

)!M �

0

unit

M

is a generalization of the identity funtion. unit

M

x takes x 2 � to the orresponding

representation in M � . bind

M

is a generalization of the funtional appliation in a monad.

bind

M

takes a value x 2M � and a funtion on � (but not M �). bind

M

is usually written

in in�x notation.

A monad is a triple hM; unit

M

; bind

M

i, where the funtions satisfy the following laws:

� bind

M

is assoiative.

� bind

M

has unit

M

as left and right identity.

Figure 4.2 lists some simple monad de�nitions. M

I

is the identity monad. M

S

is the

monad for state transformation. M

E

is the environment monad.

We want to haraterize the approah to modular interpreters and the monadi style of

higher-order funtional programming using interpreter examples in a Haskell-like notation

as in [Wad92℄. The domains aording to the ore of an interpreter for a funtional language

are presented in Figure 4.3. An interpreter in the monadi style is presented in Figure 4.4.

130 CHAPTER 4. RELATED WORK

Monad type M � = unit

M

v = bind

M

f =

M

I

a v f

M

S

State! (a;State) �s:(v; s) �s

0

:let (v; s

1

) = s

0

in f v s

1

M

E

Env! a �e:v �e:let v = e in f v e

Figure 4.2: Some monads

type Name = String

data Exp = Var Name j Lambda Name Exp j Apply Exp Exp

j Const Int j Dyadi Exp Exp Dsym

data Dsym = Plus j : : :

data Value = Wrong j Num Int j Fun (Value!M Value)

type Env = [(Name;Value)℄

Figure 4.3: Signature for an interpreter of a pure funtional language

Nested funtion appliations are attened in terms of a sequene of appliations of bind

M

.

Values are oered to omputations by unit

M

.

ie :: Exp! Env!M Value

ie (Const n) � = unit

M

(Num n)

ie (Var i) � = lookup

Env

� i

ie (Lambda i e) � = unit

M

(Fun (�x:ie e ((i; x) : �)))

ie (Dyadi e

1

e

2

ds) � = (ie e

1

�) bind

M

(�v

1

:(ie e

2

�) bind

M

(�v

2

:omp v

1

v

2

ds))

ie (Apply e

1

e

2

) � = (ie e

1

�) bind

M

(�v

1

:(ie e

2

�) bind

M

(�v

2

:apply v

1

v

2

))

lookup

Env

:: Env! Name!M Value

lookup

Env

[℄ i = unit

M

Wrong

lookup

Env

((j; v) : �) i = if i == j then unit

M

v else lookup

Env

� i

omp :: Value! Value! Dsym!M Value

omp (Num n

1

) (Num n

2

) Plus = unit

M

(Num (n

1

+ n

2

))

: : :

omp v

1

v

2

ds = unit

M

Wrong

apply :: Value! Value!M Value

apply (Fun f) x = f x

apply f x = unit

M

Wrong

Figure 4.4: Interpretation in a monad (all-by-value)

Some �rst remarks should be made. The monadi style is burdensome beause of all

the appliations of the polymorphi funtions unit

M

and bind

M

. Moreover, it must be

deided whih funtions return values and whih return omputations. It an be assumed

that all funtions return omputations, but this is possibly an overspei�ation. Note

also that there an be di�erent layers of omputations. If we think of, for example, state

transformation in an interpreter, the entral interpreter funtion will possibly transform

the state, whereas an auxiliary funtion will not. If we think of error handling, several

4.3. SEMANTICS 131

funtions will possibly produe error messages, not only the entral interpreter funtion.

As with all parameterization tehniques, suh problems annot be avoided ompletely.

Eventually, di�erent monads for di�erent parts are needed. Suh an adaptation annot

be performed. In the ase of statement-oriented imperative languages, the evaluation of

expressions either involves side-e�ets or it does not. In the absene of side-e�ets the

monad used for evaluation of expressions should not represent state transformation but

rather propagation of a onstant state.

The standard all-by-value interpreter an be derived from Figure 4.4 by the following

substitution. M , unit

M

and bind

M

is substituted by the identity monad M

I

. It is now

assumed that the interpreter should be extended with language onstruts for referene

ells; refer to Figure 4.5 showing the signature part. The following new onstruts have to

be established:

type Lo = Int

data Exp = : : : j Ref j Set Exp Exp j Deref

data Value = : : : j Lo

type State = [(Lo;Value)℄

Figure 4.5: Extension for referene ells (signature part)

� Ref intended for the alloation of a ell,

� Set e

1

e

2

for the update of a ell, where e

1

is omputed to a ell, whereas e

2

is

omputed to the value to be stored and

� Deref e for dereferening the ell omputed from e.

The monad parameters have to be substituted by the monad for state transformation. We

ommit the straighforward equations for de�ning the interpretation of the new onstruts.

Let us omment on another extension of the intial interpreter. Instead of using the

error valueWrong, proper error messages will be returned. A distintion between suessful

values and error messages an be modelled by a monad as in Figure 4.6. One advantage

of using the monadi style for the more realisti kind of error handling is that the strit

behaviour an be ensured, i.e. one an error ourred, the evaluation of the entire expression

fails.

type Partial a = Ok a j Fail String

* :: Partial a! (a! Partial b)! Partial b

Fail s * f = Fail s

Ok x * f = f x

Figure 4.6: The error monad

The substitution of the monad parameters by the error monad is not suÆient yet

beause the possibility of produing error messages is not used at all. There are still

equations returning the aidentally \suessful" value Wrong. We annot antiipate all

132 CHAPTER 4. RELATED WORK

suh hanges and the monadi style fails to provide a solution required here. What is

needed is that the equations onerning error handling are replaed

5

; refer to Figure 4.7

for the suitable equations.

lookup

Env

[℄ i = Fail \variable not bound"

omp v

1

v

2

ds = Fail \type error in basi operation"

apply f x = Fail \illegal appliation"

Figure 4.7: Variants of equations making use of error messages

All in all, the monadi style is an elegant parameterization tehnique giving support for

modular programming and spei�ation. The style ruially relies on the possibility that

extensions an be expressed by a suitable atual parameterization of the monad parameters.

There are extensions or in other words adaptations, whih annot be expressed in this way.

The tehnique is well-studied for interpreters of programming languages, sine the entire

spae of features an be antiipated.

It is interesting to notie that meta-programming provides some oppurtunities to im-

prove the usability of the monadi style:

� It is a rather simple transformation to establish the monadi style in a given pro-

gram. Thereby, it is not neessary any longer to ode in the monadi style all the

time. More signi�antly, the deision whih funtions return values and whih return

omputations an be delayed. Moreover, di�erent sets of monad parameters an be

distinguished.

� We an perform adaptations whih are beyond the parametriity provided by the

monadi style, e.g. to override equations, or to insert preomputations.

ie :: Exp! Value

ie (Const n) = Num n

ie (Dyadi e

1

e

2

ds) = omp (ie e

1

) (ie e

2

) ds

ie (Apply e

1

e

2

) = apply (ie e

1

) (ie e

2

)

omp :: Value! Value! Dsym! Value

omp (Num n

1

) (Num n

2

) Plus = Num (n

1

+ n

2

)

: : :

omp v

1

v

2

ds = Wrong

apply :: Value! Value! Value

apply (Fun f) x = f x

apply f x = Wrong

Figure 4.8: Construts at the Value-level

5

[Wad92℄ points out suh an adaptation, but there, the only option is text-editing.

4.3. SEMANTICS 133

� It is not always the obvious hoie to hide semanti aspets in a monad. However,

to ahieve modularity based on the monadi style, we must put all aspets into the

monad. Meta-programming provides other possibilities to install semanti aspets.

Consider, for example, the interpreter module in Figure 4.8 whih onerns the same

funtional language as in Figure 4.4, but only the onstruts at the Value-level being

the most basi level of the semanti model for interpretation. The module is not

written in the monadi style. In ontrast to Figure 4.4, environments are not propa-

gated. Using a suitable propagation shema (e.g. the operator Inherit) we an add

environment propagation; refer to Figure 4.9 for the result. Wadler's examples in

[Wad92℄ do not onsider environments as part of the omposed monad, i.e. environ-

ments are propagated expliitly as in Figure 4.9. Espinosa's Semanti Lego [Esp95℄

points out a separate environment level. Both approahes are problemati (without

meta-programming). In the �rst approah we annot ahieve modularity beause

onstruts at the Value-level must be desribed with the irrelevant propagation of

environments, i.e. a module like Figure 4.8 ould not be reused. Following the se-

ond approah, a remarkable overspei�ation an be reognized beause environment

propagation is restrited to only a few funtions and not to all interpreter funtions,

e.g. the funtions apply and omp do not ontribute to the environment propagation.

ie :: Exp ! Env ! Value

ie (Const n) � = Num n

ie (Dyadi e

1

e

2

ds) � = omp (ie e

1

�) (ie e

2

�) ds

ie (Apply e

1

e

2

) � = apply (ie e

1

�) (ie e

2

�)

omp :: Value! Value! Dsym! Value

: : :

apply :: Value! Value! Value

: : :

Figure 4.9: Figure 4.8 with added environment propagation

Finally, we want to omment on the super�ial orrespondene of monads (or monad

transformation) and program transformation. For that purpose we explain in more detail

Espinosa's approah to modular interpreters [Esp95℄ based on lifting ignoring the similar

approah based on strati�ation.

For a funtional language as in Figure 4.4 with the extension for referene ells in

Figure 4.5 the semanti model an be haraterized by the following type A:

A = Env! State! (Value� State)

Modularity is possible beause most language onstruts operate primarily at a single

\level" of the above type. The following levels an be distinguished:

A = Env! State! (Value� State)

134 CHAPTER 4. RELATED WORK

S = State! (Value� State)

V = Value

These levels are related to eah other in the sense that A aptures S and V , whereas S

aptures V . More tehnially, S is related to V by the monad M

S

(Figure 4.2) and in

turn A is related to S by the monadM

E

. Figure 4.8, for example, shows all onstruts at

level V . The onstruts for referene ells are at the level S. The level A is suÆient for

all onstruts. Atually, we would like to have a level overing values and environments:

E = Env! Value

This level would be optimal for the semantis of �-variables (onstruts Var Name and

Lambda Name Exp). However, we annot inlude this level into the tower of levels beause

there is no monad relating E and A, i.e. we annot reuse modules at the level E. Thereby,

environment onstruts annot be desribed in a ompletely modular way.

To reuse modules at some levels, lifting is performed. In our examples we an lift

through V , S and A. Lifting means here, that a monad is used to lift funtions at a lower

level to an upper level. Thus, we an ombine the result of lifting with a module whih

is de�ned at the upper level anyway. This proess an be repeated as often as neessary.

To lift a funtion f with a ertain pro�le aording to a monad hM; unit

M

; bind

M

i an be

desribed by lifting operators. Consider, for example, a funtion f with one parameter p

whih is untouhed by the lifting proess and another parameter to be lifted, i.e. f has

the following pro�le:

f : X � A! A

The resulting funtion f

0

has the following pro�le:

f

0

: X �B ! B

The monad relates A and B. We assume, that the result of funtions is lifted in all ases.

The orresponding lifting operator whih is suitable to lift f to f

0

an be desribed by the

following �-expression:

�f:�p:�: bind

M

�v:unit

M

f(p; v)

The above problem with the level E is related to general problem that monads do not

ompose. More preisely, there is no general onstrutive way to ompose a monad from

two other monads suh that the features of both monads are ombined; refer to [JD93℄

for a proof and some methods for omposition in partiular ases. Thereby, modularity

based on monads is limited. Moggi's way out of this dilemma (and Espinosa's reminds us

in this respet) is to use monad transformers, whih is a next step of abstration. Gen-

erally speaking, a monad transformer is a funtion on monads. The monad transformers

T

E

(M)(T) to add environment propagation or T

S

(M)(T) to add state transformation to a

monad M applied to a type T an be de�ned as follows when only the e�et to the type

is shown:

T

E

(M)(T) = Env!M(T)

T

S

(M)(T) = State!M(T � State)

4.3. SEMANTICS 135

Again, lifting operators an be de�ned. As modules are parameterized by monad transform-

ers, it is possible, for example, to de�ne the environment onstruts ompletely modular

and to pass the state transformation monad transformer T

S

to that module as a parameter

in order to arive at A.

Let us ompare the monadi style and our meta-programming approah.

� To \lift" a target program from one level to another is performed by a program trans-

formation (e.g. transformers in the sense of Setion 3.5 on lifting) in our approah.

Thus, the problem of �nding a suitable monad (transformer) orresponds to �nding

a suitable program transformation. Regarding the running example in a �rst-order

setting, we should be able to deal with modules at all the levels V , S, E, A.

� An important di�erene is that the reuse of modules in the monadi style ruially

relies on the previous parameterization of a module by a monad (transformer). More-

over, the monadi style is per se only appliable to settings with order higher-order

funtions, e.g. funtional programming and denotational semantis. Following our

approah, we de not rely on an expliit parameterization and we provide a solution

for even �rst-order settings.

� The orrespondene of monads and program transformations is obviously super�ial

beause monads and monad transformers are higher-order objets in the underlying

formalism, i.e. monads are a means for modularity within the language, whereas

transformations are objets from the meta-level.

� Lifting in our sense (refer to Setion 3.5) orresponds to the omplete proess of

lifting in the monadi sense, where several modules are lifted (in the sense of monads)

through several levels.

The monadi style relies on proper design for reuse in advane. Programs have to be

parameterized. Reuse orresponds to passing monads or to expliit lifting. Program trans-

formations emphasize adaptation of programs.

4.3.4 Extensible denotational semantis

Cartwright and Felleisen present in [CF94℄ an approah to extensible denotational se-

mantis spei�ations. Atually, they introdue a new format for denotational language

spei�ations, the so-alled extended diret semantis (EDS), that aommodates orthog-

onal extensions of a language without hanging the denotations of existing phrases. The

authors demonstrate the method by a stepwise de�nition of a powerful dialet of Sheme.

The method also supports the onstrution of interpreters for omplete languages by om-

posing interpreters for language fragments. Many of the subsequent explanations and the

examples have been taken from [CF94℄.

The suggested shema ruially relies on a distintion between a omplete program and

a nested program phrase. A omplete program is thought of as an agent that interats

with the outside world, e.g. a �le system and that e�ets global resoures, e.g. the store.

A entral authority administers these resoures. The meaning of a program phrase is a

136 CHAPTER 4. RELATED WORK

omputation, whih may be a value or an e�et. If it is an e�et, it is propagated to a

entral authority. The propagation proess adds a funtion in the sense of a handle to the

e�et pakage suh that the entral authority an resume the suspended alulation. An

\administrator" funtion modelling the entral authority performs the ations spei�ed

by e�ets. Ations an examine and modify resoures, or may simply abort exeution.

One the ation has been performed, the administrator extrats the handle portion of the

e�et and invokes it, if neessary, in similarity to the ontinuation passing style. Casting

a language extension into the framework requires the spei�ation of four omponents:

� the new syntati onstrutors,

� the extension of the domains for values, resoures and ations,

� new lauses of the meaning funtion for program phrases and

� new lauses of the administrator funtion.

EDS are extensible beause for several semanti onepts, suh as error handling, on-

tinuations, stores, the pro�le of meaning funtion for program phrases and previous se-

manti equations have not to be modi�ed. Extensions e�et only the entral authority

whih must adapted to perform the new ations aording to the language extension. A

speial omposition operator for meanings ensures that all e�ets are always passed to the

entral authority. Some more tehnial details about EDS and an example are onluded

in Setion A.8.

The approah of EDS is very muh tuned towards (dynami) semantis desription

similar to ation semantis. This is in ontrast to the monadi style and to our meta-

programming approah. In partiular, a distintion between omplete programs and nested

program phrases and the overall design of the semanti framework only applies to dynami

semantis desriptions (of ertain languages). Besides extensibility, the primary ahieve-

ment is that extensions do not imply hanges to the denotations of program phrases. That

does not hold for the monadi style. EDS is a small framework ompared to ation se-

mantis whih is huge spei�ation language. Tehnially, EDS is rather a programming

style or a style of denotational semantis than an extension of a spei�ation language or

a new language per se. The style of EDS orresponds again to a kind of parameterization.

It is assumed that pro�les of funtions and the struture of domains do not need to be

modi�ed and that is suÆient to extend domains in a ertain way to take new ations

(e�et messages) into onsideration.

4.3.5 Extension and re�nement of abstrat state mahines

Gurevih's Abstrat State Mahines (ASMs), previously alled Evolving Algebras [Gur95℄,

provide an operational semantis approah. It is a good intuition to understand an ASM

as \pseudo-ode over abstrat data". For the purpose of our work we will onentrate

on the appliation of ASMs for modelling semantis and implementations of programming

languages, although the formalism is also appliable for modelling arhitetures, protools

and ontrol software et. Very roughly, to speify an abstrat state mahine, an algebra

4.3. SEMANTICS 137

to start with and rules desribing funtion updates need to be haraterized. Thus, alge-

bras orrespond to states, whereas the update rules whih are performed simultaneously

orrespond to the transition relation in the sense of operational semantis.

It is a partiular feature of the ASM approah that an ASM an be tailored to an arbi-

trary abstration level (in ontrast to Turing mahines and other approahes to operational

semantis). If di�erent abstrat levels are needed, one an even have a hierarhy of ASMs.

In [BR94℄, for example, Egon B�orger and Dean Rosenzweig develop a hierarhy of ASMs

by means of suessive re�nement in order to reonstrut the WAM [War93℄ from a more

abstrat ASM for Prolog. Another interesting example showing that the ASM approah

supports modularity and extensibility is the modular Java semantis [BS98℄ by Egon B�orger

and Wolfram Shulte where they fator out sublanguages by isolating orthogonal language

features, namely imperative, proedural, objet-oriented, exeption handling and onur-

reny features. Starting from the imperative kernel language all the other features an be

added in suessive steps. The resulting ASMs build up a sequene of models, where eah

model is a onservative extension of its predeessor.

Let us �rst haraterize the notion of re�nement following [BR94℄. Afterwards the

stronger notion of onservative extension is outlined. Finally, we omment on the kind of

extensibility and modularity provided by ASMs with regard to our approah.

In a re�nement step a more \onrete" ASM B is onstruted and it is related to a

more \abstrat" ASM A. For a proper re�nement we are seeking for a F mapping states

B of B to states F(B) of A, and rule sequenes R of B to rule sequenes F(R) of A, so

that the following diagram ommutes:

6 6

-

-

F F

A A

0

B B

0

F(R)

R

Refer to [BR94℄ for details inluding notions like orretness, ompleteness and oper-

ational equivalene. Let us mention some kinds of adaptations to be performed during

re�nement. One possibility is to plae assumptions on ertain members of the signature

of the more abstrat ASM whih are \implemented" in the more onrete ASM. Another

kind of adaptation onerns rules. They an be replaed. New rules an be added. It is

possibly also neessary to adapt the signature of the given ASM making the de�nition of

the above F more involved.

A onservative extension is a speial kind of re�nement, where eah run of B, whih

only depends on A's signature, an be transformed anonially into a run of A. Egon

B�orger and olleagues work on the rigorous de�nition of this onept and they plan to

publish proofs for the onservative extensions presented in [BS98℄.

Comparing ASMs with our meta-programming approah, we �rst should state that

ASMs are beyond the sope of our target languages. A more interesting question is how

the kind of modularity and extensibility ahieved by re�nement an be ompared with

138 CHAPTER 4. RELATED WORK

our results. ASMs are exeutable (under ertain onditions), but note that the notion of

re�nement only failitates the proof of a ertain relationship between ASMs. There is no

useful e�etive method so far to make a more abstrat ASM more onrete. Thus, in a

narrow sense the ASM approah does not failitate modular omposition or performane of

an extension. It rather provides a proof tehnique to realize that one ASM is a re�nement

/ onservative extension of another one. In our approah we are interested in e�etive

methods for program omposition and adaptation. We are omputing target programs.

4.4 Program development

4.4.1 Stepwise re�nement

Muh of the work on formal methods for the development of orret programs is based

on Dijkstra's work on the weakest preondition alulus. Bak, for example, developed a

re�nement alulus [BvW98℄ providing a uni�ed framework for stepwise re�nement, pro-

gram transformation and program synthesis for imperative programming. There are some

works on re�nement of logi programs. [KT93, Tr93℄ is based on partial dedution (PD)

originating from partial evaluation in funtional programming. The primary �eld of ap-

pliation for PD is program optimization and speialization, but it turned out that it is

quite suitable for stepwise re�nement based on a transformational approah. Most of the

following de�nitions and explanations are taken from [Tr93℄.

De�nition 4.4.1

Let S and S

0

be programs. S is orretly re�ned by S

0

, denoted by S ref S

0

, if S

0

satis�es

any spei�ation that S does, i.e. S sat R) S

0

sat R for any R in the set of spei�ations.

}

Here sat denotes the satisfation relation. It follows from the de�nition that ref is a

preorder, i.e. ref is reexive and transitive. Construts for ombining programs into larger

ones must be monotoni w.r.t. ref , for subprograms for example, a subprogram T in a

program S[T ℄ an always be replaed by its re�ning program T

0

.

Let us mention several operators for re�nement in logi programming; refer to Se-

tion A.9 for details. unfold allows an atom in the body of a lause to be replaed by

a onjuntion of atoms. fold is inverse to unfold . It abbreviates a onjuntion of atoms.

prune and add delete or add a lause in a program. On lause level, thin and fatten delete

or add an atom in the body of a lause. restrit selets a subprogram.

However, the operators for re�nement are neither intended nor suÆient to failitate

meta-programming:

� There are no operators on the atom level (and at the term level either). A large set

of shemata, e.g. Replae, Left To Right, annot be spei�ed. What is needed are

basi operations for onstruting and deonstruting programs.

4.4. PROGRAM DEVELOPMENT 139

� Exept for the simple appliation of the onept of a all-graph in restrit , no global

onsiderations are involved as for our reahability operators building the basis for

propagation shemata.

� The form of the operators unfold , fold , thin and fatten is not suitable for meta-

programming at all beause writing a meta-program we annot regard the atual

atoms of programs as assumed.

� Based on fatten, omputations an be inserted, but again one would require total

knowledge of the variables of the rule under onsideration. Transformation annot

be stated here in a way abstrating from the atual program. Moreover, the insertion

of omputations annot be ombined with hanging the parameters of the original

premises as neessary for the insertion of preomputations, for example.

The obvious advantage of a stepwise re�nement approah during program development

is the straightforward support for orretness of derivation. The operators preserve re�ne-

ment equivalene if ertain appliability onditions are satis�ed; refer to Setion A.9 for

details. The operations are suitable for reasoning about re�nements of programs and about

partial dedution. The atual set of operations is not useful for general program synthe-

sis, transformation and omposition. Moreover, re�nement equivalene is too restritive in

several ases during program adaptation.

In general, re�nement has been studied muh more exhaustively for the imperative

paradigm [BvW98, Heh93℄. There is ertain diretion in re�nement alled data re�nement

or (data transformation [Heh93℄) whih possibly ould be adopted for our framework to

haraterize properties of ertain program transformations in a systemati manner.

4.4.2 Stepwise enhanement

Stepwise enhanement [Lak89, SS94, JS94℄ developed by Sterling et al. is a program devel-

opment methodology. The methodology suggests to develop Prolog programs systemati-

ally from two lasses of standard omponents. Skeletons are simple Prolog programs with

a well-understood ontrol ow. Tehniques are standard Prolog programming praties.

Example 4.4.1

This example is taken from [NS97℄. The following two programs are skeletons for traversing

binary trees with values only at the leaf nodes.

The following program does a omplete traversal of the tree.

is_tree(leaf(X)).

is_tree(tree(L, R)) :- is_tree(L), is_tree(R).

In ontrast to that, the following program traverses a single branh of the tree.

branh(leaf(X)).

branh(tree(L, R)) :- branh(L).

branh(tree(L, R)) :- branh(R).

140 CHAPTER 4. RELATED WORK

Note that the �rst program an be regarded as a type de�nition of trees. }

Standard examples for skeletons are traversals of reursive data strutures. Tehniques

apture basi Prolog programming praties, suh as building a data struture of perform-

ing alulations in reursive ode. A tehnique interleaves some additional omputation

around the ontrol ow of a skeleton. More syntatially, tehniques may rename predi-

ates, add arguments to prediates, add goals to lauses and/or add lauses to programs.

Unlike skeletons, tehniques are not programs but an be oneived as a family of operations

that an be applied to a program to produe a program. Obviously, this haraterization

brings us very lose to our meta-programming methodology.

Example 4.4.2

We will give two examples of applying the so-alled alulate tehnique to the is tree

prediate given in Example 4.4.1 (again adopted from [NS97℄). The alulate tehnique

omputes a value. An extra argument is added to the de�ning prediate of the skeleton for

the omputed value and an extra goal for an arithmeti alulation is added to the body

of eah reursive lause.

The following program omputes the produt of the value of the leaves of the tree. Note

the prediate is tree has been renamed.

prod_leaves(leaf(X), X).

prod_leaves(tree(L, R), Z)

:- prod_leaves(L, X), prod_leaves(R, Y), Z is X * Y.

Similarly, the following program omputes the sum of the value of the leaves of the

tree. The only di�erene is the hoie of names and the extra goal.

sum_leaves(leaf(X), X).

sum_leaves(tree(L, R), Z)

:- sum_leaves(L, X), sum_leaves(R, Y), Z is X + Y.

}

A tehnique applied to a skeleton is said to yield an enhanement. An enhanement

whih preserves the omputational behaviour of the skeleton is alled an extension. Two en-

hanements of the same skeleton share omputational behaviour and they an be ombined

into a single program by omposition. Obviously, we an also onsider the ombination of

two tehniques.

We try to present a omparison of stepwise enhanement and our methodology based

on meta-programming:

� Stepwise enhanement is dediated to Prolog programming. Indeed, the kind of om-

putations and syntatial manipulations onsidered are really tuned towards Prolog.

Reently, Kirshbaum et al. [KMS96℄ disussed that stepwise enhanement is equally

appliable to other logi programming languages. Our approah provides a general

framework whih an be instantiated for quite di�erent spei�ation formalisms.

4.4. PROGRAM DEVELOPMENT 141

� Stepwise enhanement does not onsider modes or types. The use of diretional

types is a ruial fator in our approah. Types (sorts) are needed for the seletion

of parameters, for example. Moreover, programs are required to be well-typed or-

responding to a safety feature for program onstrution. Modes are needed for data

ow riteria. A transformation, for example, whih should provide de�nitions for

unde�ned variables must use modes.

� The emphasis in stepwise enhanement is on the identi�ation of useful skeletons and

tehniques. Another issue is orretness of program onstrution [SJK93, JKS94℄,

whih means that properties of omponents are retained in a omposed program.

Here the notions of omposition and extension as well as program maps are en-

tral [Jai95, KSJ93℄. In our work, the emphasis is on the atual alulus for meta-

programming, i.e. on the mahinery to de�ne tehniques in the sense of stepwise

enhanement. Nevertheless, our operator suite attempts to apture programming

praties as well.

� We unbundle several roles of useful program transformations by our shemata for

parameterization, omputation, et. Thereby, we have a kind of a basis for deriving

useful tehniques. Properties of transformations are analysed in some depth inluding

properties beyond the sope of the settings of stepwise enhanement, e.g. totality,

idempotene.

� The onept of omposition (of enhanements) is similar in intent to our operation

for superimposition. However, there are some tehnial di�erenes. First, following

our approah the same skeleton (inluding names) is assumed for both operands of

superimposition, whereas in stepwise enhanement, renaming is onsidered as part

of omposition. Seond, in our approah skeleton elements and omputations are

stritly distinguished from eah other arising from the origin in attribute grammars.

A more oneptional di�erene arises from the possibility in our approah to ontrat

parameters.

� The proess of produing an enhanement (an extension), i.e. the the appliation

of a tehnique to a skeleton, is quite similar to the appliation of an (extending)

transformation to some rules. The extension and the skeleton an be related to eah

other by a symbol mapping studied, for example, in [Jai95, KSJ93℄. Our projetions

are similar to the onept of symbol mappings.

� A onept like lifting (refer to Setion 3.5) is not onsidered at all in stepwise en-

hanement beause lifting is rather related to program omposition.

4.4.3 Generi fragments and transformations

Generi fragments (or shemata, templates, lihes et.) are used in program synthesis,

whereas generi transformations (or transformation shemata) are used in program trans-

formation. In both �elds there are other tools than suh shemata whih are however

142 CHAPTER 4. RELATED WORK

beyond the sope of this work. For a survey on program transformation in logi pro-

gramming refer to [PP94℄. Program shemata (refer to [Dev90℄ for an early referene,

refer e.g. to [FLO97℄ for some enumeration of reent work) have been introdued in logi

programming in the ontext of program synthesis [DL94℄ with the motivation of reusability.

r(X)! (Y) :
isMinimal (X);

solve(X)! (Y):

[minimal℄

r(X)! (Y) :
isNonminimal (X);

deompose(X)! (Z ;X

1

;X

2

);

r(X

1

)! (Y

1

);

r(X

2

)! (Y

2

);

ompose(Z;Y

1

;Y

2

)! Y :

[nonminimal℄

Figure 4.10: A generi fragment for the divide-and-onquer shema

Consider, for example, the rules in Figure 4.10 de�ning the divide-and-onquer shema

as useful for logi programming. We refer to [Smi85℄, where the synthesis of divide-and-

onquer algorithms is onsidered in the �eld of funtional programming. As far as meta-

programming is onerned, we an regard suh a generi fragment t as a funtion f

t

of the

following form:

f

t

: Symbol

?

� Symbol

?

� Sort

?

! Rules

f

t

(de�ned ; required ; sorts) is intended to derive a onrete spei�ation fragment from the

generi fragment, where de�ned are the atual symbols to be de�ned by the template (r

in Figure 4.10), required are the atual symbols required in the shema (isMinimal , solve,

: : : in Figure 4.10) and sorts enumerates the sorts to be used in the shema (X, Y, Z in

Figure 4.10). f

t

an be derived from t by a simple transformation; refer to Setion D.2 for

the funtion orresponding to Figure 4.10.

Consequently, program shemata an be represented as suh funtions, whereas pro-

gram transformation shemata an be regarded as parameterized meta-programs. In both

ases instantiation is simply funtional appliation. Our meta-programming framework

and the atual operator suite provide a detailed framework for reusable and exeutable

desriptions of program (transformation) shemata.

4.4.4 Spei�ation-building operators

Several approahes to modularity have been formalized in terms of operators on spei�-

ations. There are for example formal operators to model import and export onstruts,

e.g. the operations union, intersetion and enapsulation with a ompositional semantis

supporting modularity in logi programming [Bro93, BMPT94℄.

In this subsetion, we want to onsider a sophistiated approah to modularity in

algebrai spei�ation based on so-alled spei�ation-building operators [Wir86, ST88,

SST92, Wir94℄. The following haraterization has been taken from [SST92℄ to a great

extent.

4.4. PROGRAM DEVELOPMENT 143

Algebrai spei�ation is used to model (software) systems as algebras. The simplest

possible way to give a spei�ation of a system is to present a (very long, unstrutured

and hene unmanageable) list of axioms over a given signature. Thereby, the properties

an be desribed whih have to be satis�ed by the system. Spei�ation languages allow

spei�ations to be built in a strutured manner using a prede�ned set of spei�ation-

building operations. Consequently, �-spei�ations are onsidered instead of �-sentenes.

A �-spei�ation SP is expeted to determine a lass [[SP ℄℄ 2 P(Alg(�)) of �-algebras,

the models of SP . SP is onsistent if [[SP ℄℄ 6= ;.

Let us mention some typial operators; refer to Setion A.10 for formal details.

� impose � On SP to impose (further) axioms � on a spei�ation SP ,

� derive from SP by � and translate SP by � to apply signature morphisms in

various ways,

� [and + to ombine two spei�ations,

� minimal SP : : : to onsider minimal algebras only,

� iso� lose SP to take the losure under isomorphism.

At the semanti level, spei�ation-building operations are funtions mapping lasses of

algebras to lasses of algebras. Suh operations may also be regarded as funtions mapping

spei�ations to spei�ations, the operator impose, for example, syntatially merges two

sets of axioms.

We provide a omparison of the algebrai approah and our meta-programming ap-

proah to reusability. The arguments, whih are raised here, apply aordingly to several

other operator suites, e.g. those in [Bro93, BMPT94℄:

� The spei�ation building operators support programming in the large. Sets of ax-

ioms and the assoiated lass of algebras are the main subjets under onsideration.

This is in ontrast to our approah, as we an operate on any fragment of a spe-

i�ation, not only on rules but also on parameterized symbols and on parameters.

Higher-order funtional programs are used to ompute spei�ations, signatures and

fragments of them.

� Operators like derive and translate are abstrat forms of well-established onepts

for modularity, mainly parameterization (with renaming involved).

� Several operators are only meaningful as far as the assoiated models are onerned.

They annot be regarded as funtions from sets of axioms to sets of axioms, e.g. the

operators iso� lose and minimal.

� Indeed, the algebrai approah supposes model-theoreti operators (or in other words

semantis-oriented operators in [Bro93, BMPT94℄), whereas we take a rather synta-

tial approah, although we insist on ertain preservation properties.

Chapter 5

Conluding remarks

First, the main ahievements of the thesis are summarized in Setion 5.1. Seond, the

implementation of the framework and the operator suite for meta-programming is outlined

in Setion 5.2. We also omment on �rst experienes with this implementation. Finally,

topis for future work are indiated in Setion 5.3.

5.1 Ahievements

The results of the thesis have been disussed in an abstrat style in Setion 1.3. In this

Setion, we point out some partiular ontributions of our work reported in the thesis.

1. There are several suggestions for frameworks for meta-programming, e.g. the ap-

proah supported in the logi programming language G�odel [HL94℄. An important

ontribution of our work is its generality and its high level of abstration. We an deal

with reusability in attribute grammars and logi programming et. in muh the same

abstrat way. Generality is ahieved by the identi�ation of some ommon target

language kernel; refer to Chapter 2. Abstration is essentially ahieved by di�erent

layers of operators for meta-programming; refer to Figure 1.12.

2. A partiular emphasis of our meta-programming approah is to reate a fully-typed

framework, whih is in ontrast to several meta-level approahes in the Prolog ontext

and also in ontrast to the AsFix approah [Kli94℄|to mention an approah in the

ontext of algebrai spei�ation. To take into onsideration target types in meta-

programs obviously improves safety of meta-programming. More interestingly, we

have shown how types an e�etively be exploited to ontrol meta-programs, e.g. for

addressing parameter positions in target programs.

3. Atually, we are not only onerned with types, but also with modes. Modes are as

useful for safety of meta-programs and for the ontrol of meta-programs as types are.

The usefulness of modes has been reognized in the attribute grammar ommunity as

we an see in several works on related paradigm shifts suh as Duek's and Cormak's

145

146 CHAPTER 5. CONCLUDING REMARKS

modular attribute grammars [DC90℄ and Lido [KW94℄. On the other hand, modes

have been ignored in other related attempts, e.g. stepwise enhanement [Lak89, SS94,

JS94℄ in logi programming. Our shemata for omputations and propagation heavily

rely on modes showing the general usefulness of them for other instanes suh as

natural semantis, logi programming and algebrai spei�ation.

4. Semantis preservation is an important notion for reasoning about program trans-

formation. We have indiated several other (and in some ontexts more useful)

preservation properties of meta programs (Setion 2.6), e.g. extending transforma-

tions or reovery of well-de�nedness and fragment seletion properties and others

for target programs (Setion 2.3). In ontrast to other attempts suh as stepwise

re�nement [BvW98, KT93, Tr93℄, we ompiled an operator suite suitable for rather

meta-programming than formal reasoning.

5. Program shemata and program transformation shemata have been extensively in-

vestigated, for example, in the �eld of logi programming; refer e.g. to the surveys on

program synthesis [DL94℄ and program transformation [PP94℄ in logi programming

and the LOPSTR proeedings [Fu97, Gal97, Pro96℄. Our suite \unbundles" roles

whih are used in program transformation aiming, for example, at optimization, pro-

gram re�nement, program omposition, program synthesis and programming teh-

niques used for example in stepwise enhanement.

6. As a onsequene of generality and abstration, we an provide a reonstrution of

existing attempts. Conepts introdued for one target language, an be adopted for

other languages. First, suh a reonstrution provides an abstrat rigorous de�nition

of the onept. Seond, it may drastially improve the pragmatis of target languages,

where the extrated onept has not been onsidered so far. We onsidered, for

example, the reonstrution of remote aess spei� to attribute grammars, stepwise

enhanement spei� to logi programming. Now these onepts an be applied in

natural semantis and algebrai spei�ation as well.

7. There are some unique shemata for transformation and omposition:

� superimposition where ontration is involved; refer to Example 3.3.4;

� left-to-right propagation where a given propagation is extended in the sense

that the previous data ow is \resheduled"; refer to the introdutory example

of Subsetion 1.2.2;

� simultaneous renaming of sorts of parameter positions; refer to Subsetion 3.2.2;

� interpolation of omputational elements; refer to x3.4.3.5;

� hiding symbols for the inremental onstrution of premises; refer to x3.2.4.3;

� lifting as introdued as higher-order omposition on transformations and rules;

refer to Setion 3.5.

5.2. IMPLEMENTATION 147

5.2 Implementation

The general framework from Chapter 2 instantiated for natural semantis and GSFs has

been implemented in

�

�

�

[HLR97, LRH96, RL93, Rie92℄. A superset of the operator

suite presented in Chapter 3 has been spei�ed in the funtional alulus provided by

the implementation of the instantiated framework. Thereby, we an exploit the meta-

programming approah for formal spei�ation|espeially language de�nition|in the

spei�ation framework of

�

�

�

.

A Meta

nA 1
Meta I m

TargetI 1
Target

Module system

TargetO

Datatypes for
meta-programming

Evaluator
Analyser

+
Expander

Backend

MP

Interpreter for modular meta-programs

Type-
checker

Figure 5.1: Interpretation of modular meta-programs in

�

�

�

Figure 5.1 shows the overall struture of the implementation. A meta-program MP

is interpreted as follows. First, MP is analysed to obtain an intermediate representation.

MP possibly refers to target-level modules I

Target

i

or auxiliary meta-level modules A

Meta

j

;

refer to Subsetion 2.5.5 for modular meta-programming. These modules are obtained

from the

�

�

�

module system and expanded in the intermediate representation. A natural

semantis is used to hek stati semantis of the intermediate representation. Note that

a meta-program an be onsidered as a funtional program. Thus, there are no speial

problems with type heking. If type heking is suessful, the atual interpretation or

evaluation is performed whih is spei�ed by a reursive funtion de�nition in the style

of denotational semantis. Again, the evaluator is spei�ed in a standard way as om-

mon for the semantis of a funtional programming language. The evaluator makes use

of an ADT for the meta-programming data types introdued in Setion 2.1. The ADT

is obtained by all the axioms and inferene rules shown in Chapter 2 inluding them for

speial features related to the instanes natural semantis and GSFs. A suessful evalu-

ation of MP returns the abstrat representation of a target program whih is passed to

a bakend as ommon for

�

�

�

spei�ation formalisms. The bakend writes the target

program bak to the module systems, keeps trak of the dependenies between modules

in the module system to support make features, pretty-prints type information and target

ode and generates exeutable Prolog ode from the target program aording to

�

�

�

's

implementation strategy.

148 CHAPTER 5. CONCLUDING REMARKS

The urrent implementation has some shortomings we should omment on.

1. The meta-programming interpreter is very slow. Doing a omposition like the lan-

guage omposition in Setion D.1 takes several minutes on a SUN Ultra 5. The main

reason for that is that the interpreter is spei�ed in

�

�

�

's spei�ation framework

and

�

�

�

's implementation strategy is useful for prototyping but not for eÆient

language implementation. Sine the entire operator suite is implemented in the in-

terpreted alulus, huge environments holding all the operator de�nitions are passed

around during interpretation. That results in an unaeptable aess eÆieny due

to the naive environment implementation. The eÆieny of interpretation ould be

improved drastially by an implementation of the funtional alulus based on a state

of the art implementation of a funtional programming language like SML or Haskell.

2. There are some onits between the atual

�

�

�

spei�ation framework and the

ideal meta-programming framework developed in Chapter 2. There are for example

some

�

�

�

onstruts not overed by the implemented meta-programming frame-

work. There are di�erent representations used in the extended

�

�

�

system. E.g.

GSFs and types have been represented in another way in the previous system om-

pared to what is sensible for meta-programming. Altogether, the atual

�

�

�

system

should be reonstruted to support meta-programming in a lean way without re-

dundany so that an orthogonal spei�ation framework is ahieved.

3. There is no support for �nding type errors and debugging at the meta-level.

4. The urrent implementation of the framework is monolithi in the sense that a-

tually the instane of the framework is spei�ed, i.e. the basi framework and the

instantiation is not separated from eah other. We would like approah to a modular

approah to instantiation.

In spite of these limitations, we an onlude some positive remarks on the atual

integration of

�

�

�

and our meta-programming approah. The expressive power of meta-

programming allows us to deompose, ompose and adapt spei�ations in many ways

whih were not possible before in

�

�

�

. We an go stritly beyond the sope of modular

spei�ation as supported by

�

�

�

's spei�ation formalism PRA [HLR97, LRH96℄. The

modular language de�nition disussed in Setion D.1, for example, requires the reusable

spei�ation of semanti aspets, the omposition tehnique lifting and strutural adap-

tations. There is no other system to the best of our knowledge whih supports suh a

modular de�nition.

5.3 Future work

Further areas should be investigated in future.

1. We have tried to outline possible notions of preservation and other properties. We

should searh for further properties and we should try to develop a more omplete

programming methodology. The relation between the properties and the real pro-

gramming pratie should be analysed in more detail. An advantage of our approah

5.3. FUTURE WORK 149

to reuse is that the meta-programs are exeutable. A weakness is that many prop-

erties of operands and results of transformations an only be ensured by separate

proofs. We would like to over more properties, in the meta language itself in the

sense of a kind of type heking.

2. It is urrent limitation of the operator suite that the omputation and propagation

shemata are only appliable to instanes with a well-de�nedness notion meeting L-

attribution. In general terms, the state of the operator suite onerning ompleteness,

orthogonality and simpliity an ertainly be improved.

3. The meta-programming approah together with the atual operator suite requires

ase studies. We would like to demonstrate that the additional expressive power

gained by meta-programming really improves reusability in a pratial ontext. I

am working together with oauthors N.v. Ba and G. Riedewald on a language

onstrution set [LRBS℄, that is to say a library with spei�ation fragments for

language design supporting the derivation of prototype interpreters.

4. To atually write meta-programs is only one possible appliation of our work. For

many appliations, a program manipulation system an be more e�etive. The hal-

lenge of a work on providing suh tool support arises from the fat that in exist-

ing systems like Translog [Bru95℄ and Spes [ABFQ92℄ essentially fold/unfold-based

strategies are onsidered. A program manipulation system should not only support

the appliation of transformation rules and strategies. It should also guide the user

in showing dependenies and onits or inomplete aspets of a target program.

We possibly an adopt some onepts from Attali's, Pasual's and Roudet's environ-

ment for program transformation based on the rule-based language TrfL for program

transformations [APR97℄.

5. We should investigate onrete spei�ation frameworks and systems in order to �nd

out if they are useful for the implementation of our meta-programming approah

and if they ould take advantage from some onepts supplied by the framework

and the operator suite. We regard ompiler ompilers suh as Coktail [GE90℄ or

FNC-2 [JP91, JP90, Par88, JPJ

+

90℄ and spei�ation environments suh as Centaur

[BCD

+

88℄ or ASF+SDF [Kli93℄ as some possible andidates.

6. The general framework is tuned towards �rst-order spei�ation formalism with a

monomorphi type system. Due to the popularity of polymorphi higher-order fun-

tional programming, e.g. Haskell [Has97, Tho96℄ and SML [MTH90℄, we would like

to see how a similar approah an be taken for suh programming languages. Then

we need to model, for example, the following notions: anonymous funtions, poly-

morphism, urried funtions, type onstrution. Type onstrutors and assoiated

ombinators tend to be vital parts of funtional programs. Therefore, a orrespond-

ing meta-programming approah must address type onstrutors whih is out of the

sope of the urrent framework.

Appendix A

Bakground

A.1 Domain notation

We use the following domain onstrutors:

� Boolean = fTrue;Falseg

?

,

�
 for produts,

� � for oalesed sums,

�

?

for sequenes,

� ! for funtion spaes,

� P() for power sets,

� ? for the maybe onstrution, i.e. D? = D � f?g

?

.

�

D

i

denotes the i-th projetion in D = D

1

 � � �
D

n

. For d 2 D = D

0?

, �

D

i

(d) evaluates

to the element indexed by i in d. In

D

i

denotes the i-th injetion, Out

D

i

denotes the i-th

projetion, Is

D

i

denotes the test for D

i

in D = D

1

�� � ��D

n

. The i in �

D

i

, In

D

i

, Out

D

i

, Is

D

i

is replaed by D

i

if the D

i

are distinguishable. The D in supersripts is omitted if it an

be derived from the ontext. Sometimes we also use another notation for onstruting sum

domains whih failitates pattern mathing. D = injetion

1

(D

1

) � � � � � injetion

n

(D

n

),

where the injetion

i

denote user-de�ned names for the injetions.

A.2 Inferene rules

Rules of a natural semantis [Kah87℄ de�ne a logi and are used as proof-theoreti tool

to prove theorems within that logi, building proof trees in a reursive top-down strategy

applying axioms and rules and involving uni�ation. This proess is non-deterministi, i.e.

there an be several proof trees for the same fat.

A prominent example of an exeutable spei�ation formalism for natural semantis

is Typol [Des88℄ as integrated in the Centaur system [BCD

+

88, JRG92℄. One option to

151

152 APPENDIX A. BACKGROUND

exeute Typol is provided by a translation of the inferene rules into Prolog rules taking

advantage of the similarity of inferene rules and de�nite lauses.

The style of natural semantis is very suitable for de�ning stati semantis (or type

heking) and dynami semantis of languages. The general idea of a semanti de�nition

in natural semantis is to provide axioms and rules haraterizing semanti properties of

language onstruts. Thus, a semanti de�nition oinides with a logi and reasoning about

the language means proving theorems within that logi. Proofs are done using strutural

indution on abstrat syntax patterns. The initial goal to prove ontains a omplete

abstrat syntax term. The orresponding proof tree an be bigger than the given abstrat

syntax term and even in�nite. That is the reason for natural semantis to be suitable for

the desription of dynami semantis.

Let us onsider the Typol formalism slightly more in detail. Inferene rules indiate how

a onlusion I

0

` T

0

: S

0

may be dedued from ertain premises I

i

` T

i

: S

i

for i = 1; : : : ; n.

The I

j

are alled inherited positions, the T

j

are abstrat syntax patterns and the S

j

are

alled synthesized positions. A Typol rule is of the following form:

I

1

` T

1

: S

1

; : : : ; I

n

` T

n

: S

n

I

0

` T

0

: S

0

Besides premises, the numerator an also ontain prediates for auxiliary omputations of

the form:

pred(�

1

; : : : ; �

l

! �

1

; : : : ; �

m

)

Inherited and synthesized positions are (tuples of) variables. The set of input positions

of a rule is omposed from I

0

, S

1

, : : :, S

n

, �

1

, : : :, �

m

, whereas the omplementary set

orresponds to the set of output positions. Roughly, input positions are omputed by the

outer ontext and they are used in the rule to ompute the output positions whih are then

transmitted to the outer ontext.

For speifying any kind of judgements in this thesis we use a notational variant of

inferene rules similar to RML [Pet95, Pet94℄ suggested for natural semantis spei�ations.

� Alphanumeri identi�ers are used to name propositions. Subsripts and supersripts

are not parameters, but they qualify the name of the proposition (for readability or

to avoid overloading).

� Arguments and results are distinguished. If there are any results, they are separated

from the arguments by !.

� Premises are read from left to right. Atually, arguments of a premise are required

to our somewhere before on a result position of another premise or as an argument

of the onlusion.

We do not make use of unknowns.

A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 153

A.3 Grammars of Syntatial Funtions

GSFs (Grammars of Syntatial Funtions, [Rie91, RMD83, Rie72, Rie79℄) are a kind of

attribute grammars losely related to logi programs, and logial grammars. The GSF

formalism has been derived from two-level grammars during 1971{1972 with the aim to

obtain an exeutable and more readable form of two-level grammars. GSFs are also similar

to the more reent formalism RAG [CD84, DM85, DM93℄.

A GSF onsists of

� a GSF shema, i.e. a set of GSF rules, that is to say a parameterized ontext-free

grammar with relational formulae assoiated with the rules and

� a GSF interpretation providing arriers for the parameters and interpretations for

relational symbols in the relational formulae.

Conerning formal language de�nition, a GSF shema de�nes the syntax and the rough

struture of the semantis of a language. The GSF interpretation re�nes the GSF shema.

De�nition A.3.1

A GSF shema is a tuple GS = hB;R; V; �;PPi, where B = hN; T; P; si is a redued

ontext-free grammar (N set of nonterminals, T set of terminals, P set of prodution rules,

s 2 N start symbol)|the basi grammar of the GSF|, R and V are �nite sets of relational

symbols and variables, respetively. PP is a �nite set of prodution rule patterns, eah of

the form

f

0

(P

f

0

;1

; : : : ; P

f

0

;�(f

0

)

) :

f

1

(P

f

1

;1

; : : : ; P

f

1

;�(f

1

)

); : : : ; f

n

(P

f

n

;1

; : : : ; P

f

n

;�(f

n

)

); (A.1)

h

1

(P

h

1

;1

; : : : ; P

h

1

;�(h

1

)

); : : : ; h

m

(P

h

m

;1

; : : : ; P

h

m

;�(h

m

)

):

where f

0

2 N; f

1

; : : : ; f

n

2 N [T , h

1

; : : : ; h

m

2 R,

P

f

0

;1

; : : : ; P

h

m

;�(h

m

)

2 V and

f

0

! f

1

: : : f

n

2 P .

N , T and R are pairwise disjoint. The arity � maps eah symbol (element of N[T [R)

into N

0

(number of parameters of a funtion). Eah s(P

1

; : : : ; P

�(s)

) ourring on the left-

hand side of some prodution rule pattern is a start element of the GSF. }

We also use the term GSF rule instead of prodution rule pattern. Variables are the

only kind of parameters so far. It is possible to extend the basi formalism to ope with

onstants, tupels, terms and sequenes. We instrument a speial notation, where the

relational symbols are marked by the symbol &. Thereby, speial delarations of grammar

symbols and relational symbols are not required. GSF rules are usually labelled by a tag.

Example A.3.1

Consider the following GSF rules modelling syntax, stati semantis and AST onstrution

for sequenes of assignments as in an imperative programming language.

154 APPENDIX A. BACKGROUND

statements(ST;STM) : statement(ST;STM

1

);

statements(ST;STM

2

);

& onat(STM

1

;STM

2

;STM):

[onat℄

statements(ST;STM) : & skip(STM): [skip℄

statement(ST;STM) : identi�er(ID);

& lookup(ST; ID;T

LHS

);

expression(ST;T

RHS

;EXP);

& assignable(T

LHS

;T

RHS

);

& assign(ID;EXP;STM):

[assign℄

statements, statement , expression 2 N , identi�er 2 T , onat , skip, lookup, assignable,

assign 2 R, ST, STM, STM

1

, STM

2

, T

LHS

, T

RHS

, ID, EXP 2 V . The parameters onern

symbol table propagation (ST), types of identi�ers and expressions (T

LHS

, T

RHS

), termi-

nal attribution for identi�ers (ID), abstrat representations of expressions and statements

(STM, STM

1

, STM

2

, EXP). The relational formula & lookup(ST; ID; T

LHS

) models a sym-

bol table lookup to retrieve the type assoiated with the variable identi�er. The relational

formula & assignable(T

LHS

;T

RHS

) models a test if types of LHS and RHS of an assignment

are ompatible. All the other relational formulae are onerned with the onstrution of

ASTs. }

In many appliations it is omfortable to distinguish di�erent groups of relational sym-

bols. Thus, we use a form &

p

to pre�x relational formulae. p an be regarded as a kind of

quali�er in the sense of a module name, e.g. in the above example it makes sense to on-

sider one group of relational formulae related to stati semantis, whereas another group

onerns onstrutions of ASTs.

A GSF interpretation de�nes the domains of the parameter positions and assigns rela-

tions between these domains to the relational symbols.

De�nition A.3.2

Let GS = hB;R; V; �;PPi be a GSF shema. A GSF interpretation for GS is a tuple

IP = hD; Æ

p

; Æ

V

; �i, where

� D is a family of domains,

� Æ

p

is a funtion assigning to the i-th parameter position of a symbol f a domain

Æ

p

(f; i) 2 D,

� Æ

V

is a funtion assigning to eah variable v 2 V a domain Æ

V

(v) 2 D,

� � is a funtion assoiating with eah element f 2 R an �(f)-ary relation �(f) �

Æ

p

(f; 1)� � � � � Æ

p

(f; �(f)).

For all prodution rule patterns p 2 PP and all elements f(P

1

; : : : ; P

�(f)

) ourring in p

with P

1

; : : : ; P

�(f)

2 V the following onditions have to be satis�ed for i = 1; : : : ; �(f):

P

i

2 V) Æ

V

(P

i

) = Æ

p

(f; i). }

A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 155

Example A.3.2

We give an interpretation for the above GSF shema. ST is the domain of symbol tables,

T is the domain of types (i.e. type expressions), I is the domain of identi�ers. E , C are

the domains of abstrat representations of expressions and statements respetively. The

following tables de�ne Æ

p

and Æ

V

:

f �(f) Æ

p

(f; 1) Æ

p

(f; 2) Æ

p

(f; 3)

statements 2 ST C

statement 2 ST C

expression 3 ST T E

identi�er 1 I

skip 1 C

onat 3 C C C

lookup 3 ST I T

assignable 2 T T

assign 3 I E C

v Æ

V

(v)

ST ST

STM C

STM

1

C

STM

2

C

T

LHS

T

T

RHS

T

ID I

EXP E

Let us assume the following de�nition of the domain of symbol tables.

ST = I ! T

The relations assoiated with the relational symbols are de�ned as follows:

�(skip) = fskipg

�(onat) = f(

1

;

2

;

3

)j

i

2 C; for i = 1; 2; 3;

3

= onat(

1

;

2

)g

�(lookup) = f(st; i; t)jst 2 ST ; i 2 I; t 2 T ; t = st(i)g

�(assignable) = f(t; t)jt 2 T g

�(assign) = f(i; e;)ji 2 I; e 2 E ; 2 C; = assign(i; e)g

skip, onat and assign are interpreted as term onstrutors in the sense of a term algebra.

Thus, the domain C is regarded as a domain of terms, where skip, onat and assign are

the orresponding term onstrutors. The interpretation for lookup is suitable to lookup

the type of a variable in a symbol table. The interpretation of assignable is �xed in a way

that types of the LHS and the RHS in an assignment must be equal. }

De�nition A.3.3

A GSF is a pair G = hGS ; IPi, where GS is a GSF shema and IP is a GSF interpretation

for GS . }

To generate a word by means of ontext-free derivation, �rst the prodution rule pat-

terns have to be turned into ontext-free prodution rules. Eah variable ourring in a

prodution rule pattern is onsistently substituted by a value from its orresponding do-

main. This substitution proess is ontrolled by the relations ourring in the prodution

rule pattern.

156 APPENDIX A. BACKGROUND

De�nition A.3.4

Let G = hGS ; IPi be a GSF with GS = hB;R; V; �;PPi and IP = hD; Æ

p

; Æ

V

; �i.

I(f) = ff(d

1

; : : : ; d

�(f)

)jd

i

2 Æ

p

(f; i); i = 1; : : : ; �(f)g

is alled the set of instanes of the symbol f

1

.

I(A) =

[

f2A

I(f) where A � N [T [R

F

0

! F

1

: : : F

n

is a ontext-free prodution rule derived from p 2 PP of form (A.1) if

f

0

(d

f

0

;1

; : : : ; d

f

0

;�(f

0

)

) :

f

1

(d

f

1

;1

; : : : ; d

f

1

;�(f

1

)

); : : : ; f

n

(d

f

n

;1

; : : : ; d

f

n

;�(f

n

)

); (A.2)

h

1

(d

h

1

;1

; : : : ; d

h

1

;�(h

1

)

); : : : ; h

m

(d

h

m

;1

; : : : ; d

h

m

;�(h

m

)

):

� is the result of the onsistent substitution of eah variable v 2 V ourring in p by a

value from Æ

V

(v),

� hd

h

i

;1

; : : : ; d

h

i

;�(h

i

)

i 2 �(h

i

) for i = 1; : : : ; m and

� F

0

; : : : ; F

n

are the instanes f

0

(d

f

0

;1

; : : : ; d

f

0

;�(f

0

)

); : : : ; f

n

(d

f

n

;1

; : : : ; d

f

n

;�(f

n

)

) of the

symbols f

0

; : : : ; f

n

.

I

f

(p) is the set of ontext-free prodution rules derived from p 2 PP ; I

f

(PP) is the set

of ontext-free prodution rules derived from the prodution rule patterns in PP . }

De�nition A.3.5

Let G = hGS ; IPi be a GSF with GS = hB;R; V; �;PPi and IP = hD; Æ

p

; Æ

V

; �i. The

binary relation) on I(N [T)

�

is de�ned as follows:

uFw) uvw () F ! v 2 I

f

(PP)

where uw 2 I(N [T)

�

. The relation)

+

is the transitive losure of),)

�

is the reexive

losure of)

+

. Let be s the start symbol of the basi grammar of GS , t

�

2 I(T)

�

. t

�

is a

word generated by G, if

9F

0

2 I(s) : F

0

)

�

t

�

:

L(G) denotes the language generated by the GSF G. It ontains all the words generated

by G. }

Note that L(G) � L(B), i.e. the language generated by the GSF is usually some subset

of the language generated by the underlying ontext-free grammar.

Usually, there is an in�nite number of derived prodution rule patterns. Thus, for

the analysis of a given string of terminal symbols it is impratial to use a ontext-free

parsing tehnique with the derived ontext-free prodution rules. There are two general

1

In the ase of �(f) = 0 the parentheses are omitted, thus I(f) = ffg

A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 157

approahes to solve this problem. The �rst approah parses the program aording to

the basi ontext-free grammar and then alulates a variable substitution satisfying all

the orresponding relations. The seond approah inorporates the variable substitution

and the evaluation of the relations into the parsing proess based on a direted evaluation

shema. Thereby, semantis-direted parsing (or parsing direted by attribute values) an

be modelled.

The seond approah is more general beause in a tehnial sense it permits parsing to

depend on attribute values. The approah is formalized in the sequel. We start by re�ning

the de�nition of a GSF shema by dividing parameter positions into input and output

positions and requiring a ertain data ow riterion.

De�nition A.3.6

Let GS = hB;R; V; �;PPi be a GSF shema, � is a funtion de�ning diretions (also alled

modes) for GS , if �(f; i) 2 f#; "g for f 2 (N [T [R), i = 1; : : : ; �(f). If �(f; i) =#, i is

an input position of f , whereas for �(f; i) =", i is an output position. }

In the Knuthian terminology, input and output positions of terminals and nonterminals

an be alled inherited and synthesized positions respetively.

De�nition A.3.7

Let GS = hB;R; V; �;PPi be a GSF shema, � is a funtion de�ning diretions for GS .

Suppose that for eah f 2 (N [T [R), the partitioning of parameter positions by � is

written as follows: i(f; 1), : : :, i(f; i

f

) are the input positions of f , whereas o(f; 1), : : :,

o(f; o

f

) are the output positions of f .

Eah ourrene of a variable in a prodution rule pattern r of the form (A.1) is lassi�ed

either as applied or de�ning ourrene. The sets A

r

of applied ourrenes and D

r

of

de�ning ourrenes are de�ned as follows:

A

r

= (

n

[

k=1

fP

f

k

;i(f

k

;1)

; : : : ; P

f

k

;i(f

k

;i

f

k

)

g) [fP

f

0

;o(f

0

;1)

; : : : ; P

f

0

;o(f

0

;o

f

0

)

g

D

r

= fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g [(

n

[

k=1

fP

f

k

;o(f

k

;1)

; : : : ; P

f

k

;o(f

k

;o

f

k

)

g)

}

Applied ourrenes are expeted to be \omputed" in terms of de�ning positions.

These terms are used in muh the same way in extended attribute grammars [WM77℄. In

attribute grammars, notions like used and de�ned attribute ourrenes are de�ned. These

terms are tuned towards named attributes rather than a position-oriented framework as in

our ase.

De�nition A.3.8

Let GS = hB;R; V; �;PPi be a GSF shema, � is a funtion de�ning diretions for GS .

GS is a �-direted GSF shema, if the following property holds A

r

� D

r

, i.e. eah variable

158 APPENDIX A. BACKGROUND

ourring on an input position in the rule body or an output position in the rule head

ours on an output position in the rule body or an input position in the rule head. }

The notion of a �-direted GSF shema an be used for a deterministi evaluation

strategy in the following manner. If the interpretations of relational symbols allow out-

put positions to be omputed e�etively from the input positions, the appliation of the

interpretations is delayed until all input positions have been omputed.

Example A.3.3

The GSF shema from Example A.3.1 is a �-direted GSF shema with regard to the

following �.

f �(f; 1) �(f; 2) �(f; 3) i(f; 1); o(f; 1);

: : : ; : : : ;

i(f; i

f

) o(f; o

f

)

statements # " 1 2

statement # " 1 2

expression # " " 1 2,3

identi�er " 1

lookup # # " 1,2 3

assignable # # 1,2

skip " 1

onat # # " 1,2 3

assign # # " 1,2 3

}

The following de�nition aptures what is meant by \output positions of a parameterized

relational symbol an e�etively be omputed from the input positions by the interpretation

of the relational symbol".

De�nition A.3.9

A GSF G = hGS ; IPi is �-direted GSF, if GS is a �-GSF shema, and the following

property holds for the GSF interpretation IP : For eah r 2 R, �(r) an be desribed by a

�

!

(r) as follows:

8d

#

1

2 Æ

p

(r; i(r; 1)); : : : ; d

#

i

r

2 Æ

p

(r; i(r; i

r

)) :

�

!

(r)hd

#

1

; : : : ; d

#

i

r

i = hd

"

1;1

; : : : ; d

"

1;o

r

i; hd

"

2;1

; : : : ; d

"

2;o

r

i; : : : suh that

hd

1

; : : : ; d

�(r)

i 2 �(r) with d

i(r;1)

= d

#

1

; : : : ; d

i(r;i

r

)

= d

#

i

r

,

9k : d

o(r;1)

= d

"

k;1

; : : : ; d

o(r;o

r

)

= d

"

k;o

r

}

An even more restrited variant of � should be mentioned, that is to say the output positions

of a parameterized relational symbol are uniquely de�ned for given input parameters. That

is similar to the interpretation of semanti funtion symbols in an ordinary AG by funtions.

A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 159

This kind of GSF shemata has been suggested in [RL89℄ as funtional GSFs. A slightly

more general variant of � requires a �nite set of possible output substitutions. This form of

GSFs has been suggested in [Har97℄ (exeutable GSFs). The above de�nition opes with

an arbitrary number of output substitutions.

Instead of de�ning �, a notational variant for prodution rule patterns is suggested.

Assuming for eah f 2 (N [T [R) a (f) suh that �(f; 1) =#, : : :, �(f; (f)) =#,

�(f; (f) + 1) =", : : :, �(f; �(f)) =", then the (f) and thereby � an be obtained if the

prodution rule patterns are of the following form:

f

0

(P

f

0

;1

; : : : ; P

f

0

;(f

0

)

)! (P

f

0

;(f

0

)+1

; : : : ; P

f

0

;�(f

0

)

) :

f

1

(P

f

1

;1

; : : : ; P

f

1

;(f

1

)

)! (P

f

1

;(f

1

)+1

; : : : ; P

f

1

;�(f

1

)

); : : : ; (A.3)

f

n

(P

f

n

;1

; : : : ; P

f

n

;(f

n

)

)! (P

f

n

;(f

n

)+1

; : : : ; P

f

n

;�(f

n

)

);

h

1

(P

h

1

;1

; : : : ; P

h

1

;(h

1

)

)! (P

h

1

;(h

1

)+1

; : : : ; P

h

1

;�(h

1

)

); : : : ;

h

m

(P

h

m

;1

; : : : ; P

h

m

;(h

m

)

)! (P

h

m

;(h

m

)+1

; : : : ; P

h

m

;�(h

m

)

):

Thus, the ! is used to separate input and output positions.

Example A.3.4

Example A.3.1 is rewritten in the arrow notation. Moreover, we also use di�erent pre�xes

to point out the di�erent groups of relational symbols.

statements(ST) ! (STM) : statement(ST) ! (STM

1

);

statements(ST) ! (STM

2

);

&

ast

onat(STM

1

;STM

2

) ! (STM):

[onat℄

statements(ST) ! (STM) : &

ast

skip ! (STM): [skip℄

statement(ST) ! (STM) : identi�er ! (ID);

expression(ST) ! (T

RHS

;EXP);

&

stati

lookup(ST; ID) ! (T

LHS

);

&

stati

assignable(T

LHS

;T

RHS

);

&

ast

assign(ID;EXP) ! (STM):

[assign℄

}

There are various hoies for restriting the data ow aording to evaluation strategies.

A simple example are L-attributed AGs, where attibute evaluation oinides with a single

left-ro-right traversal of the syntax tree.

De�nition A.3.10

Let GS = hB;R; V; �;PPi be a GSF shema, � is a funtion de�ning diretions for GS .

GS is L-attributed, if there is some permutation g

1

, : : :, g

q

, q = n +m of f

1

, : : :, f

n

, h

1

,

: : :, h

m

suh that the relative order of f

1

, : : :, f

n

is preserved and the following properties

hold:

160 APPENDIX A. BACKGROUND

fP

g

s

;i(g

s

;1)

; : : : ; P

g

s

;i(g

s

;i

g

s

)

g �

s�1

[

k=1

fP

g

k

;o(g

k

;1)

; : : : ; P

g

k

;o(g

k

;o

g

k

)

g where s = 1; : : : ; q

[fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g

fP

f

0

;o(f

0

;1)

; : : : ; P

f

0

;o(f

0

;o

f

0

)

g �

q

[

k=1

fP

g

k

;o(g

k

;1)

; : : : ; P

g

k

;o(g

k

;o

g

k

)

g

[fP

f

0

;i(f

0

;1)

; : : : ; P

f

0

;i(f

0

;i

f

0

)

g

}

Using L-attributed GSF shemata, another notation of GSF rules making L-attribution

more expliit is straightforward. Parameterized grammar symbols and relational symbols

are no longer grouped, but parameterized relational symbols are inserted in suh positions

that a proper permutation in the sense of De�nition A.3.10 is made expliit. Suh GSF

shemata are all-orret in similarity to all-orretness of logi programs with modes

(w.r.t. the simple Prolog omputation rule for example) [Boy96a℄. A formal de�nition is

omitted. The data-ow in a all-orret rule is visualized in Figure A.1.

s

0

(: : :)! (: : :) : s

1

(: : :)! (: : :); s

2

(: : :)! (: : :); : : : ; s

n

(: : :)! (: : :)

� �

?

� �

?

� �

?

: : :

� �

6

- -

$

%

Figure A.1: Dependenies from the left to the right

Besides diretions, the usability of types will be disussed below. So far typing is only

onsidered at the level of the GSF interpretation. Parameter positions and variables are

assoiated with domains. We an also re�ne the notion of a GSF shema to ope with

types, e.g. many-sorted types.

De�nition A.3.11

A many-sorted GSF shema is a tuple GS = hB;R; V;D; �; �;PPi, where D is a set of

sorts (also alled names of domains), the funtion � : (N [T [R) ! D

�

assoiates a

type (also alled pro�le) with every funtion name, the funtion � : V ! D assoiates

a sort (also alled type) with every parameter, hB;R; V; �;PPi is a a GSF shema suh

that �(f) = j�(f)j for all f 2 (N [T [R), for all p 2 PP of form (A.1), for all f 2

ff

0

; f

1

; : : : ; f

n

; h

1

; : : : ; h

m

g the following soundness ondition must be satis�ed:

�(f) = h�(P

f;1

); : : : ; �(P

f;�(f)

)i

}

A.3. GRAMMARS OF SYNTACTICAL FUNCTIONS 161

GSF interpretations should be restrited for many-sorted GSF shemata in the same

way as �-algebras are ertain algebras satisfying �. We omit the orresponding de�nition.

Obviously, types and diretions may be ombined. Other onepts an be integrated

with the basi GSF formalism as well. The GS spei�ation formalism [LRH96℄ of

�

�

�

,

for example, supports a ombination of many-sorted types, diretions, tagged rules and

optional pre�xes (quali�er) for relational formulae, onstants and terms as further forms of

parameters and prede�ned relational symbols for the support of basi data types. There are

further possible extensions onerning overloading, polymorphism or higher-order features.

From a pratial point of view it is not so onvenient to delare expliitly pro�les of

symbols and sorts of variables (funtions � and �). Espeially, it an be deided if a suitable

� exists for a given � . On the other hand, we an also assume a kind of naming disipline

for variables, where the stems of the variables are supposed to represent sorts. Atually,

this kind of disipline is assumed in the spei�ation framework of

�

�

�

. Thus, neither �

nor � need to be de�ned expliitly.

Example A.3.5

Let us derive the signature assoiated with the direted GSF shema in Example A.3.4.

We use the stems of the variables as sorts.

statements : ST! STM

statement : ST! STM

expression : ST! T� EXP

identi�er : ! ID

&

ast

skip : ! STM

&

ast

onat : STM� STM! STM

&

stati

lookup : ST� ID! T

&

stati

assignable : T� T

&

ast

assign : ID� EXP! STM

}

To onlude the presentation of the GSF formalism, we want to reonstrut below a

famous example of Knuth's paper on Attribute Grammars [Knu68℄. The example onerns

the omputation of the deimal value of binary numbers.

Example A.3.6

The underlying ontext-free grammar of the below GSF shema desribes binary numbers

l

1

:l

2

, i.e. l

1

and l

2

are sequenes of 0's and 1's. The attribution models the omputation of

the (deimal) value of a binary number. Attributes of the sort VAL are omputed as the

value of (a part of) a binary number. Attributes of the sort LEN aumulate the length

of the parts l

1

and l

2

. Attributes of the sort SCALE are inherited to point out the valeny

of a position. There are the following GSF rules. Note that the same example is shown in

some standard notation in Example A.3.7.

162 APPENDIX A. BACKGROUND

z ! (VAL) : l(SCALE

1

) ! (LEN

1

;VAL

1

);

\.";

l(SCALE

2

) ! (LEN

2

;VAL

2

);

& add(VAL

1

;VAL

2

) ! (VAL);

& zero

SCALE

! (SCALE

1

);

& neg(LEN

2

) ! (SCALE

2

):

[p

1

℄

z ! (VAL) : l(SCALE) ! (LEN ;VAL);

& zero

SCALE

! (SCALE):

[p

2

℄

l(SCALE) ! (LEN

0

;VAL

0

) : l(SCALE

0

) ! (LEN ;VAL

1

);

b(SCALE) ! (VAL

2

);

& add(VAL

1

;VAL

2

) ! (VAL

0

);

& in

LEN

(LEN) ! (LEN

0

);

& in

SCALE

(SCALE) ! (SCALE

0

):

[p

3

℄

l(SCALE) ! (LEN ;VAL) : b(SCALE) ! (VAL);

& one ! (LEN):

[p

4

℄

b(SCALE) ! (VAL) : \1";

& power (SCALE) ! (VAL):

[p

5

℄

b(SCALE) ! (VAL) : \0";

& zero

VAL

! (VAL):

[p

6

℄

The GSF interpretation an be desribed as follows. First, we assoiate the sorts with

some suitable domains:

VAL = Q (rational numbers)

LEN = N

0

(natural numbers inluding zero)

SCALE = Z (integer numbers)

Seond, the relational symbols are assoiated with suitable relations:

hv

1

; v

2

; v

3

i 2 add , v

3

= v

1

+ v

2

s 2 zero

SCALE

, s = 0

hl; si 2 neg , s = �l

hl; l

0

i 2 in

LEN

, l

0

= l + 1

hs; s

0

i 2 in

SCALE

, s

0

= s + 1

l 2 one , l = 1

hs; vi 2 power , v = 2

s

v 2 zero

VAL

, v = 0

}

A.4. OBJECT-ORIENTED CLASS SYSTEMS 163

Example A.3.7

The below AG spei�ation developed in the ommon AG notation is intended to be

equivalent to the GSF from Example A.3.6.

[p

1

℄ : z ! l

1

:l

2

z:VAL := l

1

:VAL + l

2

:VAL

l

1

:SCALE := 0

l

2

:SCALE := �l

2

:LEN

[p

2

℄ : z ! l

z:VAL := l

1

:VAL

l:SCALE := 0

[p

3

℄ : l

0

! l

1

b

l

0

:VAL := l

1

:VAL + b:VAL

l

0

:LEN := l

1

:LEN + 1

l

1

:SCALE := l

0

:SCALE + 1

b:SCALE := l

0

:SCALE

[p

4

℄ : l! b

l:VAL := b:VAL

l:LEN := 0

b:SCALE := l:SCALE

[p

5

℄ : b! 1

b:VAL := 2

b:SCALE

[p

6

℄ : b! 0

b:VAL := 0

}

A.4 Objet-oriented lass systems

We establish some basi notions for dealing with lass hierarhies and inheritane. These

notions are needed for objet-oriented attribute grammars. B ! A reads as A is a sublass

of B or B is a superlass of A. (C;!) denotes a lass system, where C is a set of lasses. !

+

denotes the transitive losure of!, whereas !

?

denotes the reexive, transitive losure of

!. C !

+

A reads as A is a desendant lass of C or C is an anestor lass of A.

(C;!) is a yle-free lass system if A !

+

A holds for no A. Without any further re-

stritions, multiple inheritane (MI) is aptured. Single inheritane (SI) puts the following

restrition on the lass system: B ! A)69C 6= B with C ! A, i.e. ! orresponds to a

forest.

A.5 Objet-oriented ontext-free grammars

We de�ne various forms of objet-oriented ontext-free grammars [Kos91℄.

164 APPENDIX A. BACKGROUND

De�nition A.5.1

Let G be a CFG, i.e. a quadrupel hN; T; s; P i. N is the set of nonterminals, whereas T is

the set of terminals. N and T are �nite sets suh N [T = ;. s 2 N is the start symbol of

G. P is a �nite set of ontext-free produtions.

1. A CFG is pseudo-redued, if for all nonterminals A either s)

?

uAv)

?

w, or

A)

+

B and s)

?

uBv)

?

w, where u; v 2 (T [N)

?

and w 2 T

?

.

2. A pseudo-redued, yle-free CFG is MI-strutured, if for eah A 2 N (1) or (2)

holds:

(1) jfp 2 P j p = (A! v for some vgj = 1 and (A! v) 2 P implies v 2 (T [N)

?

(2) (A! v) 2 P implies v 2 N

3. An MI-strutured CFG is SI-strutured, if (A ! B) 2 P and (C ! B) 2 P implies

A = C.

4. An MI(SI)-strutured CFG is strongly MI(SI)-strutured if it is redued.

}

Example A.5.1

The following rules are part of a CFG for the syntax of a simple imperative language.

Statement ! Identi�er \ := " Expression

Statement ! Identi�er \("Expression\)"

Statement ! \While" Expression \Do" Statement

: : :

To obey the above mentioned properties for ontext-free grammars to be sensible from

the objet-oriented point of view, the rules have to be transformed as follows:

Statement ! AssignStatement

Statement ! ProedureCall

Statement ! WhileStatement

AssignStatement ! Identi�er \ := " Expression

ProedureCall ! Identi�er \("Expression\)"

WhileStatement ! \While" Expression \Do" Statement

: : :

}

A.6. OBJECT-ORIENTED ATTRIBUTE GRAMMARS 165

A.6 Objet-oriented attribute grammars

Here we want to present some examples of objet-oriented AGs. The omputation of some

forms of expressions serve as a running example.

Example A.6.1

The omputation of expressions is spei�ed in the Ag notation of Coktail.

Expr = [Value : INTEGER℄ fValue := 0g

<

Add = Lop : Expr \ + " Rop : Expr fValue := Lop : Value + Rop : Valueg:

Sub = Lop : Expr \� " Rop : Expr fValue := Lop : Value � Rop : Valueg:

Const = Integer fValue := Integer : Valueg:

>:

Integer : [Value : INTEGER℄:

The CFG is SI-strutured due to the nested notation of sublasses. Attribute de-

larations are enlosed in square brakets (the role of either an anestral or synthesized

attribute is derived from the ontext), whereas semanti rules are enlosed in braes. For

ompleteness, the underlying CFG is shown:

Expr ! Add j Sub j Const

Add ! Expr \ + " Expr

Sub ! Expr \� " Expr

Const ! Integer

The use of attribute inheritane is obvious. The synthesized attribute Value is delared

for Expr , only. It is inherited to Add , Sub, Const . That is not an impressive result beause

these nonterminals have been introdued to adhere to the style of objet-oriented ontext-

free grammar. Inheritane of semanti rules is shown only in the sense of a pedagogial

example: The omputed value of an expression is 0 by default. This de�nition has to be

overridden in all onrete sublasses. }

It is essential for objet-orientation in CFGs to distinguish nonterminals de�ned by

hain produtions and nonterminals de�ned by a strutural spei�ation. For ompleteness,

we mention the Mj6olner/Orm terminology for lass de�nitions using a �ner granularity:

� Abstrat lasses orrespond to superlass nonterminals.

� Strutured lasses orrespond to nonterminals with a strutural spei�ation.

� Case lasses are a speial feature supporting the inheritane of syntati patterns.

Strutured lasses are further divided into

� onstrution lasses spei�ed by a sequene of omponents,

� list lasses for lists of omponents of the same kind and

� lexeme lasses for lexial items.

166 APPENDIX A. BACKGROUND

Example A.6.2

Example A.6.1 is rewritten in the style of Mj6olner/Orm.

<Expr> ::= Abstrat

Syn Value : integer ;

Value := 0;

<Const> : <Expr> ::= Lexeme

Value := : : : integer value of the onstant : : : ;

<BinOp> : <Expr> ::= f<left : Expr> & <right : Expr>g

<Add> : <BinOp> ::= Case

Value := left :Value + right :Value;

<Sub> : <BinOp> ::= Case

Value := left :Value � right :Value;

Using ase lasses we obtain a CFG whih slightly di�ers from that in Example A.6.1.

Case lasse are useful to point out the ommon struture of binary addition and subtration.

Expr = BinOp j Const

BinOp = Add j Sub

Add = Expr Expr

Sub = Expr Expr

}

A.7 Ation semantis

The spei�ation of a simple imperative language SIMPL is presented below in order to

omplete the disussion of ation semantis in Subsetion 4.3.2. The spei�ation of SIMPL

has been taken from [Mos96℄.

module: Abstrat Syntax. grammar:

(*) Stmt = [[Id \:=" Expr℄℄

j [[\if" Expr \then" Stmts \else" Stmts℄℄

j [[\while" Expr \do" Stmts℄℄.

(*) Stmts = <Stmt <\;" Stmt >*>.

(*) Expr = Num j Id j [[Expr Op Expr ℄℄.

(*) Op = \+" j \/=".

(*) Num = [[digit+℄℄.

(*) Id = [[letter (letterjdigit)*℄℄.

endgrammar. losed. endmodule: Abstrat Syntax.

Figure A.2: Abstrat syntax of the SIMPL language

� Figure A.2 de�nes the abstrat syntax of SIMPL.

A.7. ACTION SEMANTICS 167

� Figure A.3 provides the equations de�ning the semantis of SIMPL.

� Figure A.4 speializes the ation notation for the ation semantis of SIMPL.

module: Semanti Funtions. needs: Abstrat Syntax, Semanti Entities.

introdues: exeute , evaluate , the result of .

variables: I:Id; N:Num; E,E1,E2:Expr; O:Op; S:Stmt; S1, S2:Stmts.

(*) exeute :: Stmts �> ation[ompletingjdivergingjstoring℄.

[1:℄ exeute [[I \:=" E℄℄ = evaluate E then

store the given number in the ell bound to I.

[2:℄ exeute [[\if" E \then" S1 \else" S2℄℄ = evaluate E then (

(hek the given truth-value and then exeute S1) or

(hek not the given truth-value and then exeute S2)).

[3:℄ exeute [[\while" E \do" S1℄℄ = unfolding (evaluate E then (

(hek the given truth-value and then exeute S1 and then unfold) or

(hek not the given truth-value))).

[4:℄ exeute <S \;" S2> = exeute S and then exeute S2.

(*) evaluate :: Expr �> ation[giving a value℄.

[5:℄ evaluate N = give deimal N.

[6:℄ evaluate I = give the number bound to I or

give the number stored in the ell bound to I.

[7:℄ evaluate [[E1 O E2℄℄ = (evaluate E1 and evaluate E2)

then give the result of O.

(*) the result of :: Op �> yielder[of a value℄ [using given (value, value)℄.

[8:℄ the result of \+" = the number yielded by the sum of

(the given number#1, the given number#2).

[9:℄ the result of \/=" = not (the given value#1 is the given value#2).

endmodule: Semanti Funtions.

Figure A.3: Ation semantis of the SIMPL language

module: Semanti Entities. inludes: Ation Notation.

introdues: value, number.

(*) token = string.

(*) bindable = ell j number.

(*) storable = number.

(*) value = number j truth-value.

(*) number =< integer.

endmodule: Semanti Entities.

Figure A.4: Speializing ation notation for SIMPL semantis

168 APPENDIX A. BACKGROUND

A.8 Extensible denotational semantis

In Subsetion 4.3.4 we ommented on the style of extensible denotational semantis [CF94℄.

Some more details onerning this style of semantis are provided in this setion. First let

us onsider the semanti framework. The meaning funtions P of a omplete program and

M of a program phrase have the following pro�les:

P : Prog ! ((V � E)
R)

M : Expr ! Env ! C

Thus, the interpretation of a program returns either a value (V) or an error (E) paired with

the �nal resoures (R). In general, the domain of value V is a sum of domains onstruted

from V and the domain of omputations C. This is indiated by the following notation:

V = �

1

(V; C)

For Pure Sheme, V ontains numbers, Boolean values, funtions from values to omputa-

tions and ? as the denotation of the diverging expression. The domain E of errors an be

assumed as follows:

E = ferrg

?

The domain of resoures R an be regarded as produt of domains onstruted from V , C

and others as indiated by the following notation:

R = �

1

(V; C; : : :)

Environments are funtions from variables to values. The domain of denotations for phrases

onsists of two disjoint piees: the sub-domain of value denotations V and the sub-domain

of e�et messages (e�ets):

C = inV (V)�

e�et messages

z }| {

inFX ((V ! C)

| {z }

handles

 A

|{z}

ations

)

The ation omponent A is a sum of domains built from V and C.

A = inE (E)� �

2

(V; C)

Here the error ation is inluded into A as the most basi e�et. The meaning of a omplete

program is spei�ed as follows:

P[[P ℄℄ = admin(M[[P ℄℄?; r

0

);

where ? denotes the empty environment and r

0

denotes the initial resoures. The basi

de�nition of the administrator onsists of the following lauses:

admin : C �R! ((C � E)
 R)

admin(?; r) = ?

admin(inV (v); r) = hv; ri

admin(inFX (k; inE (err)); r) = herr ; ri

A.8. EXTENSIBLE DENOTATIONAL SEMANTICS 169

The �rst lause onerns onverging programs. The seond lause desribes normal

termination, that is a value has been omputed. The third lause is applied if the evaluation

fails due to an error. Adding ations for extensions, new lauses will beome relevant. They

de�ne how ations are proessed aessing the resoures and that the handle possibly is

invoked to ontinue the omputation.

Semanti domains

V = inN (N

?

)� inB(ftrue; falseg

?

)� inP((V ! C))

Semanti funtions

M[[n℄℄� = inV (inN (n))

: : :

M[[x℄℄� = inV (�(x))

M[[�x:e℄℄� = inV (inP(�d : V:M[[e℄℄�[x=d℄))

M[[e

1

e

2

℄℄� = handler (M[[e

1

℄℄�)

(�f : V:handler (M[[e

2

℄℄�)

(�a : V:ase f of

[inP(g)) g(a)℄

[g) inAC (inE (err))℄)

: : :

Figure A.5: An extended diret semantis of Pure Sheme

We start with two basi onstruts
 denoting the diverging expressions and err to

signal an error. Their denotations are de�ned as follows:

M[[
℄℄� = inV (?)

M[[err ℄℄� = inAC (inE (err))

Here inAC (a) is an abbreviation for inFX (inV ; a).

Sub-phrases of omplex phrases are evaluated via reursive alls to the interpreter.

Sine the result of suh a reursive all is a omputation, it is neessary to inspet the tag

of the result. If it is a plain value, the value omponent an be onsumed loally. If it is

an e�et, however, it must be propagated to the entral administrator. To deal with this

situation uniformly, the funtion handler mapping a omputation and the onsumer of its

eventual value to omputations is introdued:

handler : C !

onsumer

z }| {

(V ! C) ! C

handler(?)f = ?

handler(inV (v))f = f(v)

handler(inFX (k; p))f = inFX (�v : V:handler(k(v))f); p)

170 APPENDIX A. BACKGROUND

Essentially, the de�nition makes sure that an e�et message is propagated from handler

to handler until it eventually reahes the administrator.

Refer to Figure A.5 for the semantis of Pure Sheme. To add, for example, referene

ells to Pure Sheme, essentially three new ations have to be introdued:

� inRef (V), whih represents an alloation message;

� inSet(L; V), whih represents an update message;

� inDer(L), whih represents a dereferening message.

Here L denotes the domain of loations. The meaning funtion M is straightforwardly

extended for the orresponding onstruts whih essentially delegate the interpretation to

the administrator (i.e. the funtion admin). The adminstrator also has to be extended to

perform the new ations on the resoures (the state). Construts for programming with

�rst-lass ontinuation objets are added in [CF94℄ in the same orthogonal manner. The

equations of the meaning funtionM need never to be hanged.

A.9 Stepwise re�nement

In Subsetion 4.4.1 we ommented on stepwise re�nement in logi programming. In this

setion, some more details are provided. Most of the following de�nitions and explanations

are taken from [Tr93℄.

The operators for stepwise re�nement of logi programs are de�ned as follows:

unfold Let P be a program, : A A

1

; : : : ; A

i�1

; A

i

; A

i+1

; : : : ; A

n

a lause in P . Let

j

; 1 � j � m be all the lauses in P where there exists �

j

= mgu(B

j

; A

i

),

j

: B

j

B

j

1

; : : : ; B

j

h

.

De�ne

0

j

: (A A

1

; : : : ; A

i�1

; B

j

1

; : : : ; B

j

h

; A

i+1

; : : : ; A

n

)�

j

.

Then unfold(P; ; A

i

) = (P � fg) [f

0

j

j1 � j � mg.

fold Let P be a program, : A B

1

; : : : ; B

i

; A

1

; : : : ; A

k

; B

i+1

; : : : ; B

n

and d : B

A

0

1

; : : : ; A

0

k

, k � 1, be lauses in P . Let � = mgu((A

1

; : : : ; A

k

); (A

0

1

; : : : ; A

0

k

)).

De�ne

0

: A B

1

; : : : ; B

i

; B�; B

i+1

; : : : ; B

n

.

Then fold(P; ; (A

1

; : : : ; A

k

)) = (P � fg) [f

0

g.

prune Let P be a program, a lause in P .

Then prune(P;) = P � fg.

add Let P be a program, a lause in P .

Then add(P;) = P [fg.

thin Let : A A

1

; : : : ; A

i�1

; A

i

; A

i+1

; : : : ; A

n

be a lause.

Then thin(; A

i

) = A A

1

; : : : ; A

i�1

; A

i+1

; : : : ; A

n

.

A.10. SPECIFICATION-BUILDING OPERATORS 171

fatten Let : A A

1

; : : : ; A

n

be a lause and B an atom.

Then fatten(; B) = A A

1

; : : : ; A

i

; B; A

i+1

; : : : ; A

n

.

restrit Let P be a program. Let p 2 preds(P). Let Q =

S

def

P

(q) for all q suh that

def

P

(q) \ P (p) = ;.

Then restrit(P; p) = (P �Q).

Here preds(P) denotes all prediate symbols in P , def

P

(q) all lauses of P de�ning q,

i.e. the lauses with q as the prediate symbol of the head. P (p) is the all-graph for

the prediate symbol p. It is the set of lauses obtained from P starting with def

P

(p)

and adding reursively all lauses de�ning prediate symbols ourring in bodies of

the omputed losure.

The operators preserve re�nement equivalene if the following appliability onditions

are satis�ed:

unfold A single unfolding step is always orret beause all MGUs of the atom and the

heads of other lauses are onsidered. If a lause is added in the next step, this

re�nement is not neessarily equivalent for the inverse order of steps.

fold Abbreviating a part of the body of a lause is orret, if the abbreviated lauses an

be unfolded to obtain the original lause again.

prune Pruning a lause is appliable if either the lause is redundant or if it annot be

used to derive an answer, i.e. the body of the lause an never be proven.

add A lause an be added, if it is implied already by the program or if it annot be used

to derive an answer.

restrit The all-graphs of the original and the restrited program are equal.

A.10 Spei�ation-building operators

In Subsetion 4.4.4 we ommented on spei�ation-building operators in algebrai spei�-

ation. In this setion, some more details are provided. The following details are mostly

taken from [SST92℄. We assume that the reader is familar with standard notions of alge-

brai spei�ation, partiularly:

� algebrai many-sorted signatures, usually denoted by �, �

0

,

� algebrai signature morphism � : �! �

0

,

� �-algebra, lass Alg(�) of �-algebras,

� �-homomorphism and �-isomorphism,

� �-equation, �rst-order �-sentene,

� satisfation relation between �-algebras and �-sentenes,

172 APPENDIX A. BACKGROUND

� the redut funtor j

�

: Alg(�)! Alg(�

0

) for a signature morphism � : �! �

0

.

A �-spei�ation SP is expeted to determine a lass [[SP ℄℄ 2 P(Alg(�)) of �-algebras,

the models of SP . SP is onsistent if SP 6= ;. There are the following spei�ation-building

operators:

� If � is a signature, then � is a �-spei�ation with the semantis:

[[�℄℄ = Alg(�)

� If SP is �-spei�ation and � is a set of �-sentenes, then impose � On SP is a

�-spei�ation with the semantis:

[[impose � On SP ℄℄ = fA 2 [[SP ℄℄jA j= �g

� If SP is a �-spei�ation and � : �

0

! � is a signature morphism, then derive from

SP by � is a �

0

-spei�ation with the semantis:

[[derive from SP by �℄℄ = fAj

�

jA 2 [[SP ℄℄g

� If SP is a �-spei�ation and � : � ! �

0

is a signature morphism, then translate

SP by � is a �

0

-spei�ation with the semantis:

[[translate SP by �℄℄ = fA

0

2 Alg(�

0

)jA

0

j

�

2 [[SP ℄℄g

� If SP and SP

0

are �-spei�ations, then SP [SP

0

is a �-spei�ation with the

semantis:

[[SP [SP

0

℄℄ = [[SP ℄℄ \ [[SP

0

℄℄

� If SP is a �-spei�ation and � : � ! �

0

is a signature morphism, then minimal

SP w:r:t: � is a �-spei�ation with the semantis:

[[minimal SP w:r:t: �℄℄ = fA 2 [[SP ℄℄jA is minimal in Alg(�) w.r.t. �g;

where a �-algebra is minimal w.r.t. � if it has no non-trivial subalgebra with an

isomorphi �-redut.

� If SP is a �-spei�ation, then iso� lose SP is a �-spei�ation with the semantis:

[[iso� lose SP ℄℄ = fA 2 Alg(�)jA is isomorphi to B for some B 2 [[SP ℄℄g

� If SP is a �-spei�ation and � : � ! �

0

is a signature morphism and �

0

is a

set of �

0

-sentenes, then abstrat SP w:r:t: �

0

via � is a �-spei�ation with the

semantis:

[[abstrat SP w:r:t: �

0

via �℄℄ = fA 2 Alg(�)jA �

�

�

0

B for some B 2 [[SP ℄℄g;

where A �

�

�

0

B means that A is observationally equivalent to B w.r.t. �

0

via �.

A.10. SPECIFICATION-BUILDING OPERATORS 173

� If SP is a �-spei�ation and If SP

0

is a �

0

-spei�ation, then SP +SP

0

is a (�[�

0

)-

spei�ation with the semantis:

[[SP + SP

0

℄℄ = fA 2 Alg(� [�

0

)jAj

�

2 [[SP ℄℄ and Aj

�

0

2 [[SP

0

℄℄g

This is expressible using [and translate as de�ned above.

� If SP is a �-spei�ation, S is a set of sort names,
 is a set of ranked operation

names suh that adding S and
 to � yields a well-formed signature �

0

and �

0

is a set

of �

0

-sentenes, then enrih SP by sorts S opns
 axioms �

0

is a �

0

-spei�ation

with the semantis:

[[enrih SP by sorts S opns
 axioms �

0

℄℄ =

fA 2 Alg(�

0

)jAj

�

2 [[SP ℄℄ and A j= �

0

g

This is expressible using translate and impose as de�ned above.

� If SP is a �-spei�ation and S is a set of sort names, then reahable SP on S is

a �-spei�ation with the semantis:

[[reahable SP on S℄℄ = fA 2 [[SP ℄℄jA is generated on Sg;

where A is said to be generated on S if it has no proper subalgebra having the same

arriers of sorts not in S. This is expressible using minimal as de�ned above.

Appendix B

Tehnial details of the framework

B.1 Deonstrution of sequenes of rules

Head Of : Rules! Rule

Tail Of : Rules! Rules

Nil? : Rules! Boolean

Head Of Rules From hr

1

; : : : ; r

n

i ! r

1

[Head Of ℄

Tail Of Rules From hr

1

; r

2

; : : : ; r

n

i ! hr

2

; : : : ; r

n

i [Tail Of ℄

Nil? Rules From hi ! True [Nil?:1℄

n � 1

Nil? Rules From hr

1

; : : : ; r

n

i ! False

[Nil?:2℄

B.2 Seletion of variables

The relations for the seletion of variables in elements are de�ned below. In meta-programs,

we refer to VARS

Parameter

?

by Variables In .

VARS

Parameter

(Variable From v Of Sort �)) fvg [VARS:1℄

VARS

Parameter

(p

1

)) V

1

^ : : :

^ VARS

Parameter

(p

m

)) V

m

VARS

Parameter

?

(hp

1

; : : : ; p

m

i)) V

1

[� � � [V

m

[VARS:2℄

VARS

Parameter

?

(h
p

#

1

; : : : ;
p

#

m

i)) V

#

VARS

#

Element

(hn; hp

#

1

; : : : ; p

#

m

i; hp

"

1

; : : : ; p

"

k

ii)) V

#

[VARS:3℄

175

176 APPENDIX B. TECHNICAL DETAILS OF THE FRAMEWORK

VARS

Parameter

?

(hp

"

1

; : : : ; p

"

k

i)) V

"

VARS

"

Element

(hn; hp

#

1

; : : : ; p

#

m

i; hp

"

1

; : : : ; p

"

k

ii)) V

"

[VARS:4℄

VARS

#

Element

(e)) V

#

^ VARS

"

Element

(e)) V

"

VARS

Element

(e)) V

#

[V

"

[VARS:5℄

B.3 Applied and de�ning ourrenes

VARS

#

Element

(e

0

)) V

0

^ VARS

"

Element

(e

1

)) V

1

^ : : :

^ VARS

"

Element

(e

n

)) V

n

Do In ht; e

0

; he

1

; : : : ; e

n

ii) V

0

[V

1

� � � [V

n

[DO℄

VARS

"

Element

(e

0

)) V

0

^ VARS

#

Element

(e

1

)) V

1

^ : : :

^ VARS

#

Element

(e

n

)) V

n

Ao In ht; e

0

; he

1

; : : : ; e

n

ii) V

0

[V

1

� � � [V

n

[AO℄

B.4 Left-to-right dependenies (WD)

To work out a ommon restrition of well-de�nedness (WD), left-to-right dependenies

are formalized here. Thereby, we obtain a very simple data ow riterion whih an be

understood, for example, as the property of L-attribution [Alb91℄ for attribute grammars or

all-orretness [Boy96a℄ for logi programs with diretional types. To fore this property,

the rule DF :1 (refer to Subsetion 2.3.3) has to be rejeted in favour of the rule DF :2

given below.

L2R(r

j

) for j = 1; : : : ; n

DF(hr

1

; : : : ; r

n

i; i)

[DF :2℄

VARS

#

Element

(e

1

) � VARS

#

Element

(e

0

)

^ VARS

#

Element

(e

2

) � VARS

#

Element

(e

0

) [VARS

"

Element

(e

1

)

^ : : :

^ VARS

#

Element

(e

n

) � VARS

#

Element

(e

0

) [

S

n�1

i=1

VARS

"

Element

(e

i

)

^ VARS

"

Element

(e

0

) � VARS

#

Element

(e

0

) [

S

n

i=1

VARS

"

Element

(e

i

)

L2R(ht; e

0

; he

1

; : : : ; e

n

ii)

[L2R℄

B.5. BASIC UNIFICATION 177

B.5 Basi uni�ation

The following de�nition of SOLVE only opes with variables as parameters. If instanes

of the general framework with ompound parameters (terms) are onsidered, the omplete

Robinson's uni�ation algorithm need to be instrumented; refer e.g. to [NM95, p. 39℄ for

a suitable presentation.

E is in solved form

SOLVE(E) ! E

[SOLVE :1℄

9p 2 Parameter :

hp; pi 2 E

^ SOLVE(E n fhp; pig) ! �

SOLVE(E) ! �

[SOLVE :2℄

9p; p

0

2 Parameter : p 6= p

0

^ hp; p

0

i 2 E

^ Variable Of p! v

^ p ours in E n fhp; p

0

ig

^ SOLVE(((E n fhp; p

0

ig) [v=p

0

℄) [fhp; p

0

ig) ! �

SOLVE(E) ! �

[SOLVE :3℄

B.6 Terms

Is

Term

(�

1

(p)) ! b

Term? p! b

[Term?℄

Construtor Of Term From f p

?

Of Sort � ! f [Construtor Of ℄

Subterms Of Term From f p

?

Of Sort � ! p

?

[Subterms Of ℄

Is

Name

(s) ! b

Name? s! b

[Name?℄

Is

Construtor

(s) ! b

Construtor? s! b

[Construtor?℄

Term? p! True

^ Construtor Of p! f

^ Subterms Of p! hp

1

; : : : ; p

n

i

^ Sort Of p! �

^ Substitute � In Parameter p

i

! p

0

i

for i = 1; : : : ; n

^ Term From f hp

0

1

; : : : ; p

0

n

i Of Sort � ! p

0

Substitute � In Parameter p! p

0

[SUBST :3℄

178 APPENDIX B. TECHNICAL DETAILS OF THE FRAMEWORK

B.7 Computational elements

Is

Element

(pre) ! b

Element? pre ! b

[Element?℄

Is

Computation

(pre) ! b

Computation? pre ! b

[Computation?℄

Symbol Of Premise From s p

?

#

! p

?

"

! s

[Symbol Of ℄

Parameters Input Of Premise From s p

?

#

! p

?

"

! p

?

#

[Parameters:3℄

Parameters Output Of Premise From s p

?

#

! p

?

"

! p

?

"

[Parameters:4℄

Is

Name

(s) ! b

Name? s ! s

[Name?℄

Is

Operation

(s) ! b

Operation? s ! s

[Operation?℄

Appendix C

Remainder of the operator suite

C.1 More auxiliary operators

We need to de�ne some other auxiliary operators used elsewhere.

C.1.1 Transformations on fragments

In this subsetion, trivial transformations on fragment types are presented. Many of them

an be regarded as lifting operators to apply transformations to more omplex fragment

types. The transformations are useful for the de�nition of several more elaborate operators,

e.g. for appliations of the operator Replae.

% identity for substituting onlusions

lhsIdentity :

� e : Conlusion . he, h i, h i, h ii.

% identity for substituting premises

rhsIdentity :

� e : Premise . hhei, h ii.

% substitute onlusions with a ertain symbol, only

lhsForSymbol :

� s : Symbol . �tLhs : LhsSubstitution . � e : Conlusion .

s = Symbol Of e ! tLhs On e, lhsIdentity On e.

% substitute premises with a ertain symbol, only

rhsForSymbol :

� s : Symbol . �tRhs : RhsSubstitution . � e : Premise .

s = Symbol Of e ! tRhs On e, rhsIdentity On e.

% oere transformation on elements to LhsSubstitution

tE2tLhs :

� tE : Element ! Element . � e : Conlusion .

htE On e, h i, h i, h ii.

% oere transformation on premises to RhsSubstitution

tP2tRhs :

� tP : Premise ! Premise . � e : Premise .

hhtP On ei, h ii.

179

180 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% transform elements with a ertain symbol, only

tEforSymbol :

� s : Symbol . � tE : Element ! Element . � e : Element .

Symbol Of e = s ! tE On e, e.

% transform premises with a ertain symbol, only

tPforSymbol :

� s : Symbol . � tP : Premise ! Premise . � e : Premise .

Symbol Of e = s ! tP On e, e.

% oere Element ! (Element x Substitution) to LhsSubstitution

tEandSubst2tLhs :

� tEandSubst : Element ! (Element � Substitution) . � e0 : Conlusion .

Let he1, substi = tEandSubst On e0 In he1, h i, h i, substi.

% oere Premise ! (Premise x Substitution) to RhsSubstitution

tPandSubst2tRhs :

� tPandSubst : Premise ! (Premise � Substitution) . � e0 : Premise .

Let he1, substi = tPandSubst On e0 In hhe1i, substi.

% oere Parameter* ! (Parameter* x Substitution) to LhsSubstitution

tPsAndSubst2tLhs :

� tPsAndSubst : Parameter* ! (Parameter* � Substitution) .

� io : Io .

� e0 : Element .

Let hps, substi = tPsAndSubst On Parameters io Of e0 In

io = Input !

hConlusion From Symbol Of e0 ps ! Parameters Output Of e0, h i, h i, substi,

hConlusion From Symbol Of e0 Parameters Input Of e0 ! ps, h i, h i, substi.

% oere Parameter* ! (Parameter* x Substitution) to RhsSubstitution

tPsAndSubst2tRhs :

� tPsAndSubst : Parameter* ! (Parameter* � Substitution) .

� io : Io .

� e0 : Premise .

Let hps, substi = tPsAndSubst On Parameters io Of e0 In

io = Input !

hhPremise From Symbol Of e0 ps ! Parameters Output Of e0i, substi,

hhPremise From Symbol Of e0 Parameters Input Of e0 ! psi, substi.

% oere transformation on Parameter* to Element

tPs2tE :

� io : Io . � tPs : Parameter* ! Parameter* . � e : Element .

Let f = � selet : Io .

Let ps = Parameters selet Of e In

selet = io ! tPs On ps, ps

In

Element From (Symbol Of e) (f On Input) ! (f On Output).

C.1. MORE AUXILIARY OPERATORS 181

% oere transformation on Parameter* to Premise

tPs2tP :

� io : Io . � tPs : Parameter* ! Parameter* . � e : Premise .

Let f = � selet : Io .

Let ps = Parameters selet Of e In

selet = io ! tPs On ps, ps

In

Premise From (Symbol Of e) (f On Input) ! (f On Output).

C.1.2 Inserting premises into rules

Given a rule and a premise, there are various possibilities how to de�ne the target position

of the premise. One way is to speify the exat position by an index. Another one is to

leave it unspei�ed, what is suitable if we assume that the atual position of omputa-

tional elements is meaningless. We prefer to adhere to the more restrited well-de�nedness

property, where an applied ourrene of a variable must not our before a de�ning o-

urrene. There are two extremes, that is to say to insert the premise either as early as

possible (insertEarly) or as late as possible (insertLate). For pragmati reasons, the �rst

extreme is suitable for premises that do not have an output position at all.

Insert Into : Premise� Rule! (Rule! Rule)

� e : Premise .

Nil? Parameters Output Of e !

insertEarly On e,

insertLate On e.

insertEarly :

� e : Premise . � r : Rule .

Let required = Variables In Parameters Input Of e In

Letre early : Premise* ! P(Variable) ! Premise* =

� es : Premise* . � vs : P(Variable) .

required � vs !

hei ++ es,

Let skip = Head Of es In

hskipi ++ (

early

On Tail Of es

On (vs [Variables In Parameters Output Of skip)

)

In

Rule From Tag Of r Conlusion Of r ((

early

On Premises Of r

On Variables In Parameters Input Of Conlusion Of r

).

182 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

insertLate :

� e : Premise . � r : Rule .

Let de�ned = Variables In Parameters Output Of e In

Letre late : Premise* ! Premise* = � es : Premise* .

Nil? es !

hei,

Let head = Head Of es In

Variables In Parameters Input Of head \ de�ned = ; !

hheadi ++ (late On Tail Of es),

hei ++ es

In

Rule From Tag Of r Conlusion Of r ((late On Premises Of r).

C.1.3 Skipping omputations in a sequene of premises

In our instane of the alulus skeleton elements and omputations are distinguished. In

several ases, iterations on the skeleton elements (exluding omputations) must be per-

formed, e.g. during folding and unfolding. The following funtion skips the heading om-

putations in a sequene of premises. Thus, a aller of the funtion reeives a pair ha; bi,

where a are the skipped omputations, whereas b is the remaining sequene of premises

starting with a skeleton element if there is any left.

skipComputations :

� es : Premise* .

Letre skipComputationsSlave : (Premise* � Premise*) ! (Premise* � Premise*) =

� sofar : Premise* � Premise* .

Let hskipped, todoi = sofar In

todo = h i !

sofar,

Let spot = Head Of todo In

Computation? spot !

skipComputationsSlave On hskipped ++ hspoti, Tail Of todoi,

sofar

In

skipComputationsSlave On hh i, esi.

C.1.4 Seletion of parameters

The seletion of parameters on de�ning and applied ourrenes follows a ommon shema

whih is presented below:

seletOurrenes :

� trl : Io . � r : Rule . � hio, sy, soi : Position .

% selet parameters of orresponding sort

Let seletPs = � ps : Parameter* .

Parameters Of Sort so In ps

In

io = trl !

C.2. PARAMETERIZATION SCHEMATA 183

% de�ning (applied) ourrenes on input (output) positions are found on LHS

Symbol Of Conlusion Of r = sy ! seletPs On Parameters io Of Conlusion Of r, h i,

% de�ning (applied) ourrenes on output (input) positions are found on RHS

Fold Left � sofar : Parameter* . � e : Premise .

sofar ++ (Symbol Of e = sy ! seletPs On Parameters io Of e, h i)

Neutral h i List Premises Of r.

The seletion of a de�ning ourrene an now be performed by applying the above

abstration to Input, i.e.:

seletDos :

seletOurrenes On Input.

Dually, the seletion of an applied ourrene an now be performed by applying the

above abstration to Output, i.e.:

seletAos :

seletOurrenes On Output.

In some ases we need unique ourrenes. Suh a restrition an be easily obtained

from the above shema seletOurrenes.

seletUniqueOurrene :

� io : Io . � r : Rule . � pos : Position .

Let fpg = seletOurrenes On io On r On pos In p.

The seletion of unique de�ning (applied) ourrenes is denoted by seletDo (seletAo).

C.2 Parameterization shemata

C.2.1 Addition, removal, ontration

We present the details of the following parameterization shemata:

Add : Position

?

! Trafo

Ensure : Position

?

! Trafo

Sub : Position

?

! Trafo

Contrat : Position

?

! Trafo

These operators an be spei�ed following the shema of element substitution, i.e. using

the operator Replae. Atually, the essential behaviour of these operators an be stated

as a transformation of the following pro�le:

Parameter

?

! (Parameter

?

 Substitution)

To lift suh transformations to LHS / RHS substitutions, and to iterate on the sequenes

of assoiations, the following more elaborate variant of Replae is assumed:

184 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

replaePositions :

� tPs : Sort ! Parameter* ! (Parameter* � Substitution) .

� poss : Position* .

� rs : Rules .

Fold Left

� sofar : Rules . � hio, sy, soi : Position .

Replae

(lhsForSymbol On sy On (tPsAndSubst2tLhs On (tPs On so) On io))

(rhsForSymbol On sy On (tPsAndSubst2tRhs On (tPs On so) On io))

On sofar

Neutral rs List poss.

Now the operators Add, Sub and Contrat an be diretly implemented by applying

replaePositions to the following expressions:

for Add:

� sort : Sort . � ps : Parameter* .

hps ++ hNew Variable Of Sort sorti, h ii.

for Sub:

� sort : Sort . � ps : Parameter* .

hFold Left � sofar : Parameter* . � p : Parameter .

sofar ++ ((Sort Of p) = sort ! h i, hpi)

Neutral h i List ps,

h i

i.

for Contrat:

� sort : Sort . � ps : Parameter* .

hps n Tail Of Parameters Of Sort sort In ps,

Let keep = Head Of Parameters Of Sort sort In ps In

Fold Left

� subst : Substitution . � p : Parameter .

subst ./ Unify Parameters keep And p

Neutral h i

List Tail Of Parameters Of Sort sort In ps

i.

C.2.2 Conditional addition

Sine the operator Ensure is intended to add only those positions whih do not exist yet,

it an be expressed via Add if we �rst rejet the assoiations orresponding to existing

positions by a simple traversal of the type of the input rules.

C.3. COMPUTATION SCHEMATA 185

� poss : Position* . � rs : Rules .

Let possToBeAdded =

Let sigma = Sigma Of rs In

Fold Left � sofar : Position* . � hio, sy, soi : Position .

Let prof = Pro�le Of sy In sigma In

prof = ? !

sofar,

so 2 Sorts io Of prof !

sofar,

sofar ++ hhio, sy, soii

Neutral h i List poss

In

Add possToBeAdded On rs.

C.2.3 Permutation

Permute : Pro�le! Trafo

% permute parameters aording to sorts

Let tPs = � ps : Parameter* . � ss : Sort* .

ps = # ss Æ!

Map � sort : Sort . Let hpi = Parameters Of Sort sort In ps In p List ss

In

� prof : Pro�le .

% permutation of a onlusion

Let tE = tEforSymbol On Symbol Of prof On

(� e : Element .

Element From Symbol Of e

(tPs On Parameters Input Of e On Sorts Input Of prof)

! (tPs On Parameters Output Of e On Sorts Output Of prof)

)

In

% permutation of a premise

Let tP = tPforSymbol On Symbol Of prof On

(� e : Premise .

Premise From Symbol Of e

(tPs On Parameters Input Of e On Sorts Input Of prof)

! (tPs On Parameters Output Of e On Sorts Output Of prof)

)

In

Replae (tE2tLhs On tE) (tP2tRhs On tP).

C.3 Computation shemata

C.3.1 Copies

Copy To : Position� Position! Trafo

186 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

� from : Position . � to : Position .

Let h�o, fsy, fsoi = from In

Let htio, tsy, tsoi = to In

fso = tso Æ!

(� rs : Rules .

Map � r : Rule .

Let pF = seletUniqueDo On r On from In

Let pT = seletUniqueAo On r On to In

: Variables In fpTg \ (Ao In r n Do In r) = ; Æ!

Substitute Unify Parameters pF And pT In Rule r

List rs

)

Æ Ensure hfrom, toi.

C.3.2 Constant omputations

De�ne By : Position� Symbol! Trafo

� pos : Position . � by : Symbol .

(� rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � p : Parameter .

Insert Premise From by h i ! hpi Into r

Neutral r0

List (Variables In (seletAos On r0 On pos) n Do In r0)

List rs

).

Default For By : Sort� Symbol! Trafo

� so : Sort . � by : Symbol . � rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � v : Variable .

Insert Premise From by h i ! hvi Into r

Neutral r0

List Variables Of Sort so In (Ao In r0 n Do In r0)

List rs.

C.3.3 Unary onditions

Use By : Position� Symbol! Trafo

� pos : Position . � by : Symbol .

(� rs : Rules .

Map � r0 : Rule .

Fold Left � r : Rule . � p : Parameter .

Insert Premise From by hpi ! h i Into r

Neutral r0

List Variables In (seletDos On r0 On pos)

List rs

C.3. COMPUTATION SCHEMATA 187

C.3.4 Nontrivial omputations

Compute ! : Symbol� Position

?

! Position

?

! Trafo

� sy : Symbol . � possI : Position* . � possO : Position* .

(� rs : Rules .

Map � r : Rule .

% ompute inputs of premise

Let psI =

Map � pos : Position .

Let p = seletUniqueDo On r On pos In p

List possI

In

% ompute outputs of premise

Let psO =

Map � pos : Position .

Let p = seletUniqueAo On r On pos In p

List possO

In

% ensure that the outputs are not yet de�ned

Variables In psO \ Do In r = ; Æ!

% insert premise

Insert Premise From sy psI ! psO Into r

List rs

)

Æ Ensure possO

Æ Ensure possI.

C.3.5 Compositional omputations

Relate : Io� Assoiation

?

� Pre�x! Trafo

� io : Io . � as : Assoiation* . � pfx : Pre�x .

% selet parameters aording to assoiations

Let parasToRelate = � e : Element .

Fold Right

� p : Parameter . � ps : Parameter* .

(Fold Right

� hsym, sorti : hSymbol, Sorti . � ps : Parameter* .

(((Symbol Of e) = sym) \ ((Sort Of p) = sort) ! hpi, h i) ++ ps

Neutral h i List as

) ++ ps

Neutral h i List Parameters io Of e

In

(� rs : Rules . Map � r : Rule .

188 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% aumulate relevant positions on LHS and RHS

Let lhs = parasToRelate On Conlusion Of r In

Let rhs =

Fold Right � e : Premise . � ps : Parameter* .

(Element? e ! (parasToRelate On e), h i) ++ ps

Neutral h i List Premises Of r

In

Let s = Operation From pfx Tag Of r In

io = Output !

% outputs from RHS are used to DEFINE outputs on LHS

Let defo = Variables In lhs In

(: defo = ;) And (defo � (Ao In r n Do In r)) !

Let e = Premise From s rhs ! lhs In

Rule From Tag Of r Conlusion Of r ((Premises Of r ++ hei),

r,

% inputs from LHS are used to DEFINE inputs on RHS

Let useo = Variables In lhs In

Let defo = Variables In rhs In

(: useo = ;) And (defo � (Ao In r n Do In r)) !

Let e = Premise From s lhs ! rhs In

Rule From Tag Of r Conlusion Of r ((hei ++ Premises Of r),

r

List rs) Æ Ensure Map � hsy, soi : Assoiation . hio, sy, soi List as.

C.3.6 Combining unused parameters

Redue By : Sort� Symbol! Trafo

� so : Sort . � by : Symbol . � rs : Rules .

Map

� r0 : Rule .

Let vs = Variables Of Sort so In (Do In r0 n Ao In r0) In

vs = ; !

r0,

Let hr1, unusedi =

Fold Left � hr, v1i : Rule � Variable . � v2 : Variable .

Let new = New Variable Of Sort so In

hInsert Premise From by hv1, v2i ! hnewi Into r, newi

Neutral hr0, Head Of vsi

List Tail Of vs

In r1

List rs.

C.4 Reahability

Derivable From In : P(Symbol)� Skeleton! P(Symbol)

C.5. SUPERIMPOSITION 189

� from : P(Symbol) . � sk : Skeleton .

Letre f : P(Symbol) ! P(Symbol) =

� ss0 : P(Symbol) .

Let ss1 =

ss0 [

Fold Right

� ht, l, ri : Shape . � syms : P(Symbol) .

l 2 (from [syms) ! syms [r, syms

Neutral ss0 List sk

In (ss0 � ss1) And (ss1 � ss0) ! ss0, f On ss1

In f On ;.

Derivable To In : P(Symbol)� Skeleton ! P(Symbol)

� to : P(Symbol) . � sk : Skeleton .

Letre f : P(Symbol) ! P(Symbol) =

� ss0 : P(Symbol) .

Let ss1 =

ss0 [

Fold Right

� ht, l, ri : Shape . � syms : P(Symbol) .

: ((to [syms) \ r) = ; ! syms [flg, syms

Neutral ss0 List sk

In (ss0 � ss1) And (ss1 � ss0) ! ss0, f On ss1

In f On ;.

From To In : P(Symbol)� P(Symbol)� Skeleton! P(Symbol)

� from : P(Symbol) . � to : P(Symbol) . � sk : Skeleton .

Derivable From from In sk \ Derivable To to In sk.

C.5 Superimposition

Superimpose And : Rules� Rules! Rules

Let superimposeEs = � e1 : Element . � e2 : Element .

Element From Symbol Of e1

(Parameters Input Of e1 ++ Parameters Input Of e2) !

(Parameters Output Of e1 ++ Parameters Output Of e2)

In

� rs1 : Rules . � rs2 : Rules .

% ensure soundness of superimposition

Skeleton Of rs1 = Skeleton Of (Order By Tags In rs1 On rs2) Æ!

% iterate the rules

Map � r1 : Rule .

Let hr2i = Selet Tags fTag Of r1g On rs2 In

190 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

% ensure disjoint variables

Let r2fresh = refreshRule On r2 In

Rule From Tag Of r1

% superimpose LHSs

superimposeEs On Conlusion Of r1 On Conlusion Of r2fresh

(

Let hrhs, resti =

% iterate RHSs for superimposition

Fold Left

� hsofar, r2ai : Premise* � Premise* . � e : Premise .

Computation? e !

hsofar ++ hei, r2ai,

Let hskipped, r2bi = skipComputations On r2a In

hsofar ++ skipped ++ hsuperimposeEs On e On Head Of r2bi, Tail Of r2bi

Neutral hh i, Premises Of r2freshi List Premises Of r1

In rhs ++ rest

List rs1.

C.6 Folding & unfolding

Fold By Into : Tag� Symbol?

?

� Tag! Trafo

� from : Tag . � syms : Symbol?* . � to : Tag . � rs : Rules .

Let hri = Selet Tags ffromg On rs In

%

% remove heading "?"

%

Letre aÆx

: hPremise*, Premise*, Symbol?*i ! hPremise*, Premise*, Symbol?*i =

� hes1, es2, ssi : hPremise*, Premise*, Symbol?*i .

Let hes3, es5i = skipComputations On es2 In

Let es4 = es1 ++ es3 In

Head Of ss = ? !

aÆx On h es4 ++ hHead Of es5i, Tail Of es5, Tail Of ss i,

hes4, es5, ssi

In

%

% split the rule in:

% before: premises mathing heading "?"

% after: premises mathing trailing "?"

% math: premises mathing the skeleton symbol

%

Let hbefore, rest, taili = aÆx On hh i, Premises Of r, symsi In

Let hai, mi, ssi = aÆx On hh i, Reverse rest, Reverse taili In

Let after = Reverse ai In

Let math = Reverse mi In

(: math = h i) Æ! Let hsi = ss In

C.6. FOLDING & UNFOLDING 191

% aumulate variables on input or output positions

Let ios = � io : Io .

Fold Left

� vs : P(Variable) . � e : Element .

vs [Variables In Parameters io Of e

Neutral ; List math

In

% onstrut bridge element for fold; onstrut rules

Let ins = ios On Input In

Let outs = ios On Output In

Let new = Element From s (ins n outs) ! (outs n ins) In

(Forget Tags ffromg On rs)

./ hRule From Tag Of r Conlusion Of r ((before ++ hnewi ++ after)i

./ hRule From to new (mathi.

Unfold By Into : Tag� Tag?

?

� Tag?! Trafo

� from : Tag . � ts : Tag* . � to : Tag? . � rs : Rules .

Let hri = Selet Tags ffromg On rs In

Let hlhs, rhsi =

Letre pumpRe

: Tag* ! Conlusion ! Premise* ! Premise* ! hConlusion, Premise*i =

� ts : Tag* . � lhs : Conlusion . � done : Premise* . � rest : Premise* .

ts = h i !

hlhs, done ++ resti,

Let spot = Head Of rest In

% skip omputations

Computation? spot !

pumpRe On ts On lhs On (done ++ hspoti) On Tail Of rest,

Head Of ts = ? !

% do not expand premise beause of tag "?"

pumpRe On Tail Of ts On lhs On (done ++ hHead Of resti) On Tail Of rest,

% expand premise aording to tag

Let hri = Selet Tags fHead Of tsg On rs In

Let fresh = (refreshRule On r) In

Let s = unifyElements On Head Of rest On Conlusion Of fresh In

pumpRe

On Tail Of ts

On (substituteInElement On s On lhs)

On (substituteInElements On s On (done ++ Premises Of fresh))

On (substituteInElements On s On Tail Of rest)

In

pumpRe On ts On Conlusion Of r On h i On Premises Of r

In

% modify input rule or add a opy with a new tag

to = ? !

Forget Tags ffromg On rs ./ hRule From Tag Of r lhs (rhsi,

rs ./ hRule From to lhs (rhsi.

192 APPENDIX C. REMAINDER OF THE OPERATOR SUITE

C.7 Deriving hain rules

Chain Rule (: Tag� Symbol� Symbol! Trafo

� tag : Tag . � lhs : Symbol . � rhs : Symbol . � rs : Rules .

rs ./

h

Let sorts2ps = � sorts : Sort* .

Map � sort : Sort . New Variable Of Sort sort List sorts

In

Let prof =

Let lhsProf = Pro�le Of lhs In Sigma Of rs In

Let rhsProf = Pro�le Of rhs In Sigma Of rs In

lhsProf = ? !

: rhsProf = ? Æ! rhsProf,

rhsProf = ? !

lhsProf,

(Sorts Input Of lhsProf = Sorts Input Of rhsProf) And

(Sorts Output Of lhsProf = Sorts Output Of rhsProf) Æ! rhsProf

In

Let psI = sorts2ps On Sorts Input Of prof In

Let psO = sorts2ps On Sorts Output Of prof In

Rule From tag

Conlusion From lhs psI ! psO

(hPremise From rhs psI ! psOi

i.

Appendix D

A olletion of meta-programs

The purpose of this Appendix Chapter is to provide some showases for nontrivial meta-

programs demonstrating the expressive power of the alulus.

D.1 Composition of a simple language de�nition

A language de�nition is omposed from modules speifying language onstruts. More

tehnially, we ompose an interpreter de�nition onsisting essentially of a frontend part

and a separate dynami semantis. We onsider a very simple imperative programming

language with the fundamental imperative onstruts (assignment, seletion, iteration,

sequene, input, output) and only basi data types for integer and Boolean values. The

omplete example has been heked with

�

�

�

[HLR97, LRH96, RL93, Rie92℄.

D.1.1 The struture of the interpreter de�nition

The PRA [LRH96℄ spei�ation below makes the struture of the interpreter de�nition

expliit. Interpretation onsists of two phases. First, the onrete input is analysed, ontext

onditions are heked and an abstrat syntatial representation is onstruted. Seond,

the intermediate representation is \interpreted" aording to the dynami semantis.

ls/examples/basi/main.pra

% modular omposition of a speifiation for analysing soure programs

frontend : Interpret In

Re�ne ./analyser By lib/sanner/trivial

&stati By (Interpret In ./stati &st By ls/adts/simpleSt)

&ast As Construtor.

% modular omposition of a speifiation interpreting abstrat programs

dynami : Interpret In ./dynami

&bops By ls/adts/bops

&memory By ls/adts/memory.

193

194 APPENDIX D. A COLLECTION OF META-PROGRAMS

% atual exeution of the language proessor

With SOURCE, IN Return OUT Do

% exeuting the frontend speifiation in a reading sope

Reading ./examples/SOURCE.basi Do

Run frontend ! PROG

End Reading;

% applying the interpreter speifiation to the abstrat representation

Run dynami(PROG, IN) ! OUT;

End.

Below we show how the main omponents of the interpreter de�nition, that is to say the

dynami semantis (./dynami; refer to Subsetion D.1.2), the GSF shema of the frontend

(./analyser ; refer to Subsetion D.1.3 and Subsetion D.1.5), the auxiliary prediates fa-

ilitating type heking in the above GSF shema (./stati; refer to Subsetion D.1.4), are

omposed from atomar spei�ation units. Some rather auxiliary modules are presented

in Subsetion D.1.6.

D.1.2 Composition of the dynami semantis

We are seeking for a natural semantis spei�ation for the dynami semantis of the

sample language. The �nal semantis desription is as follows.

ls/examples/basi/dynami.pp

[prog℄ &memory init ! MEM

4

,

initOUT ! OUT

4

,

exeute(STM, MEM

4

, IN

3

, OUT

4

) ! (MEM

5

, IN

5

, OUT

5

)

--

program(prog(STM), IN

3

) ! OUT

5

[initOUT℄ initOUT ! [℄nOUT

[assign℄ evaluate(EXP, MEM, IN

12

) ! (VAL, IN

15

),

&memory update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM, IN

12

, OUT

8

) ! (MEM', IN

15

, OUT

8

)

[skip℄ exeute(skip, MEM

14

, IN

26

, OUT

18

) ! (MEM

14

, IN

26

, OUT

18

)

[onat℄ exeute(STM

1

, MEM

16

, IN

28

, OUT

20

) ! (MEM

19

, IN

31

, OUT

23

),

exeute(STM

2

, MEM

19

, IN

31

, OUT

23

) ! (MEM

21

, IN

33

, OUT

25

)

exeute(onat(STM

1

, STM

2

), MEM

16

, IN

28

, OUT

20

) ! (MEM

21

, IN

33

, OUT

25

)

[if℄ evaluate(EXP, MEM

47

, IN

48

) ! (VAL, IN

51

),

ond(VAL, STM

1

, STM

2

, MEM

47

, IN

51

, OUT

38

) ! (MEM

51

, IN

53

, OUT

41

)

exeute(if(EXP, STM

1

, STM

2

), MEM

47

, IN

48

, OUT

38

) ! (MEM

51

, IN

53

, OUT

41

)

[while℄ onat(STM, while(EXP, STM)) = STM

unfold

,

exeute(if(EXP, STM

unfold

, skip), MEM

68

, IN

66

, OUT

54

) ! (MEM

71

, IN

69

, OUT

57

)

exeute(while(EXP, STM), MEM

68

, IN

66

, OUT

54

) ! (MEM

71

, IN

69

, OUT

57

)

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 195

[output℄ evaluate(EXP, MEM

95

, IN

106

) ! (VAL, IN

109

),

addOUT(OUT, VAL) ! OUT'

exeute(output(EXP), MEM

95

, IN

106

, OUT) ! (MEM

95

, IN

109

, OUT')

[var℄ &memory lookup(MEM, ID) ! VAL

evaluate(var(ID), MEM, IN

16

) ! (VAL, IN

16

)

[int℄ evaluate(onst(intC(INT)), MEM

80

, IN

86

) ! (intV(INT), IN

86

)

[true℄ evaluate(onst(boolC(true)), MEM

81

, IN

88

) ! (boolV(TruenBOOL), IN

88

)

[false℄ evaluate(onst(boolC(false)), MEM

82

, IN

90

) ! (boolV(FalsenBOOL), IN

90

)

[monadi℄ evaluate(EXP, MEM

83

, IN

92

) ! (VAL, IN

95

),

&bops evaluateMonadi(MOS, VAL) ! VAL'

evaluate(monadi(MOS, EXP), MEM

83

, IN

92

) ! (VAL', IN

95

)

[dyadi℄ evaluate(EXP, MEM

85

, IN

96

) ! (VAL, IN

99

),

evaluate(EXP', MEM

85

, IN

99

) ! (VAL', IN

101

),

&bops evaluateDyadi(DOS, VAL, VAL') ! VAL''

evaluate(dyadi(EXP, DOS, EXP'), MEM

85

, IN

96

) ! (VAL'', IN

101

)

[input℄ inputType(T, VAL)

evaluate(input(T), MEM

89

, [VALjVAL*℄nIN) ! (VAL, VAL*nIN)

[then℄ exeute(STM, MEM

52

, IN

54

, OUT

42

) ! (MEM

55

, IN

57

, OUT

45

)

--

ond(boolV(TruenBOOL), STM, STM

3

, MEM

52

, IN

54

, OUT

42

) ! (MEM

55

, IN

57

, OUT

45

)

[else℄ exeute(STM, MEM

56

, IN

58

, OUT

46

) ! (MEM

59

, IN

61

, OUT

49

)

--

ond(boolV(FalsenBOOL), STM

4

, STM, MEM

56

, IN

58

, OUT

46

) ! (MEM

59

, IN

61

, OUT

49

)

[addOUT℄ OUT ++ [VAL℄nOUT ! OUT'

addOUT(OUT, VAL) ! OUT'

[inputInt℄ VAL = intV(INT

0

)

inputType(intT, VAL)

[inputBool℄ VAL = boolV(BOOL

0

)

inputType(boolT, VAL)

The omposition is performed by means of lifting.

ls/examples/basi/dynami.sg

% aspets of omputational behaviour

mem : ls/transformers/memory.

in : ls/transformers/input.

out : ls/transformers/output.

Inferene Rules

Axiom Is program

196 APPENDIX D. A COLLECTION OF META-PROGRAMS

Lift

h

hhmem, in, outi, ls/fragments/program/dynamii,

hhin, outi, ls/fragments/variable/dynamii,

hhmem, in, outi, ls/fragments/ompound/natural/dynamii,

hhmem, in, outi, ls/fragments/seletion/if/deterministi/dynamii,

hhmem, in, outi, ls/fragments/iteration/while/dynamii,

hhmem, ini, ls/fragments/type/dynamii,

hhmemi, ls/fragments/input/dynamii,

hhmem, ini, ls/fragments/output/dynamii

i

There are three semanti aspets, that is to say memory propagation inluding initial-

ization (mem), inputs (in) and output (out). The orresponding transformers are shown

below.

ls/transformers/memory.fra

� sk : Skeleton .

Default For MEM By &memory init

Æ (Inherit MEM From fprogramg To fevaluateg On sk)

Æ (Aumulate MEM From fprogramg To fexeuteg On sk)

ls/transformers/input.fra

� sk : Skeleton .

Let losure = (From fprogramg To fevaluateg In sk) [fevaluateg In

Left To Right IN

Æ Ensure Positions Output For losure Of Sort IN

Æ Ensure Positions Input For losure [fprogramg Of Sort IN

ls/transformers/output.fra

� sk : Skeleton .

Let losure = (From fprogramg To fexeuteg In sk) [fexeuteg In

Default For OUT By initOUT

Æ Left To Right OUT

Æ Ensure Positions Output For losure [fprogramg Of Sort OUT

Æ Ensure Positions Input For losure Of Sort OUT

Now we present the modular semantis of the underlying language onstruts. Usually,

we give a short

�

�

�

interfae desription for the abstrat syntax (a module name ending

with as.if) and a fragment of natural semantis (a module name ending with dynami.ir)

to be regarded as rules at some level in the terminology of lifting.

Delarations are not regarded as relevant for the semantis de�nition. Thus, the fol-

lowing abstrat syntax for entire programs is appropriate.

ls/fragments/program/as.if

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 197

PROG = prog(STM)

To interprete a program, means to exeute the statements.

ls/fragments/program/dynami.ir

% abstrat syntax

Inlude ./as

% semanti funtions

program: PROG

exeute: STM

[prog℄ exeute(STM)

program(prog(STM))

The onept of the imperative variable provides a building blok for imperative lan-

guages. There are two important onstruts, that is to say assignment and variables (as

expressions) with the following abstrat syntatial representation.

ls/fragments/variable/as.if

STM = assign(ID, EXP)

EXP = var(ID)

The semantis of the above onstruts is easily de�ned. To evaluate a variable iden-

ti�er, the memory is observed. To exeute an assignment, the memory is updated. The

relational symbols pre�xed by &

memory

are onerned with memory aess. The module

ls/adts/memory.ir providing the orresponding interpretations is presented in Subse-

tion D.1.6.

ls/fragments/variable/dynami.ir

% abstrat syntax

Inlude ./as

% semanti funtions

exeute: STM � MEM ! MEM

evaluate: EXP � MEM ! VAL

% assignment

[assign℄ evaluate(EXP, MEM) ! VAL,

&memory update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM) ! MEM'

% variables as expressions

[var℄ &memory lookup(MEM, ID) ! VAL

evaluate(var(ID), MEM) ! VAL

198 APPENDIX D. A COLLECTION OF META-PROGRAMS

Statements an be omposed in the sense of statement sequenes. The following piee

of abstrat syntax introdues the empty statement and the ompound statement.

ls/fragments/ompound/as.if

STM = skip + onat(STM, STM)

The exeution of the empty statement is modelled by a simple axiom, whereas the

exeution of a ompound statement means sequened exeution.

ls/fragments/ompound/natural/dynami.ir

% abstrat syntax

Inlude ../as

% semanti funtions

exeute: STM � MEM ! MEM

% semantis of the empty statement (sequene)

[skip℄ exeute(skip, MEM) ! MEM

% semantis of a sequene of statements

[onat℄ exeute(STM

1

, MEM) ! MEM',

exeute(STM

2

, MEM') ! MEM''

exeute(onat(STM

1

, STM

2

), MEM) ! MEM''

If -statements are well-known representatives of the lass of statements serving for se-

letion. We assume the following abstrat syntatial representation.

ls/fragments/seletion/if/as.if

STM = if(EXP, STM, STM)

The semantis of an if -statement is de�ned below in a deterministi style, i.e. �rst the

ondition is evaluated and then an auxiliary relation ond is used to exeute either the

then-part or the else-part depending on the value of the ondition.

ls/fragments/seletion/if/deterministi/dynami.ir

% abstrat syntax

Inlude ../as

% values

VAL = boolV(BOOL)

BOOL = Boolean

% semanti funtions

exeute: STM

evaluate: EXP ! VAL

ond: VAL � STM � STM

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 199

% first evaluate ondition, then branh on value

[if℄ evaluate(EXP) ! VAL,

ond(VAL, STM

1

, STM

2

)

exeute(if(EXP, STM

1

, STM

2

))

% exeute the Then�path of an If�statement

[then℄ exeute(STM)

ond(boolV(True), STM, STM)

% exeute the Else�path of an If�statement

[else℄ exeute(STM)

ond(boolV(False), STM, STM)

While-loops are well-known representatives of the lass of statements serving for itera-

tion. We assume the following abstrat syntatial representation.

ls/fragments/iteration/while/as.if

STM = skip + onat(STM, STM) + if(EXP, STM, STM) + while(EXP, STM)

The semantis of a while-statement is de�ned below by a kind of unfolding, i.e. the

semantis is expressed in terms of an if -statement.

ls/fragments/iteration/while/dynami.ir

% abstrat syntax

Inlude ./as

% semanti funtions

exeute: STM

[while℄ onat(STM, while(EXP, STM)) = STM

unfold

,

exeute(if(EXP, STM

unfold

, skip))

exeute(while(EXP, STM))

To ope with simple forms of expressions aording to basi data types (onstants,

monadi and dyadi expressions), the following piee of abstrat syntax is needed.

ls/fragments/type/as.if

EXP = onst(C) + monadi(MOS, EXP) + dyadi(EXP, DOS, EXP)

C = intC(INT) + boolC(BC)

INT = Integer

BC = true + false

The evaluation of all the above kinds of onstants, monadi and dyadi expressions is

shown below.

ls/fragments/type/dynami.ir

200 APPENDIX D. A COLLECTION OF META-PROGRAMS

% abstrat syntax

Inlude ./as

% values

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

% semanti funtions

evaluate: EXP ! VAL

[int℄ evaluate(onst(intC(INT))) ! intV(INT)

[true℄ evaluate(onst(boolC(true))) ! boolV(True)

[false℄ evaluate(onst(boolC(false))) ! boolV(False)

[monadi℄ evaluate(EXP) ! VAL,

&bops evaluateMonadi(MOS, VAL) ! VAL'

evaluate(monadi(MOS, EXP)) ! VAL'

[dyadi℄ evaluate(EXP) ! VAL,

evaluate(EXP') ! VAL',

&bops evaluateDyadi(DOS, VAL, VAL') ! VAL''

evaluate(dyadi(EXP, DOS, EXP')) ! VAL''

The appliation of orresponding basi operations is modelled by the premises pre-

�xed by &

bops

. The module ls/adts/bops.ir providing the orresponding interpretations is

presented in Subsetion D.1.6.

To onsume an input value is regarded as a form of an expression. Thus, the following

abstrat representation for an input onstrut is appropriate.

ls/fragments/input/as.if

EXP = input(T)

T = intT + boolT

To evaluate an input expression means to onsume the head of the propagated input,

where the head is regarded at the same time as the value of the expression.

ls/fragments/input/dynami.ir

% abstrat syntax

Inlude ./as

% semanti domains

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

IN = VAL*

% semanti/auxiliary funtions

evaluate: EXP � IN ! VAL � IN

inputType: T � VAL

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 201

[input℄ inputType(T, VAL)

evaluate(input(T), [VALjVAL*℄) ! (VAL, VAL*)

[inputInt℄ VAL = intV(INT)) inputType(intT, VAL)

[inputBool℄ VAL = boolV(BOOL)) inputType(boolT, VAL)

Produing output is regarded as a side-e�et similar to an assignment. The following

abstrat syntatial representation is suggested.

ls/fragments/output/as.if

STM = output(EXP)

The semanti meaning of an output statement is modelled as follows. The value of the

expression to be written is appended with the propagated output.

ls/fragments/output/dynami.ir

% abstrat syntax

Inlude ./as

% semanti domain

VAL = intV(INT) + boolV(BOOL)

INT = Integer

BOOL = Boolean

OUT = VAL*

% semanti funtions

evaluate: EXP ! VAL

exeute: STM � OUT ! OUT

[output℄ evaluate(EXP) ! VAL,

addOUT(OUT, VAL) ! OUT'

exeute(output(EXP), OUT) ! OUT'

% return the empty output

initOUT: ! OUT

[initOUT℄ initOUT ! [℄

% extend the output onsumed already by a value

addOUT: OUT � VAL ! OUT

[addOUT℄ OUT ++ [VAL℄nOUT ! OUT'

addOUT(OUT, VAL) ! OUT'

202 APPENDIX D. A COLLECTION OF META-PROGRAMS

D.1.3 Composition of the frontend

We are seeking for a GSF shema de�ning the syntax, stati semantis and the onstrution

of an abstrat syntatial representation for our sample language. The �nal GSF shema

looks as follows.

ls/examples/basi/struture.pp

[prog℄ program ! PROG

0

:

&stati initST ! ST

41

,

delarations(ST

41

) ! ST

42

,

statements(ST

42

) ! STM

5

,

&ast prog(STM

5

) ! PROG

0

.

[des℄ delarations(ST

44

) ! ST

49

:

delaration(ST

44

) ! ST

47

,

delarations(ST

47

) ! ST

49

.

[nodes℄ delarations(ST

50

) ! ST

50

: .

[onat℄ statements(ST

58

) ! STM

6

:

statement(ST

58

) ! STM

12

,

statements(ST

58

) ! STM

7

,

&ast onat(STM

12

, STM

7

) ! STM

6

.

[skip℄ statements(ST

61

) ! STM

8

:

&ast skip ! STM

8

.

[vde℄ delaration(ST) ! ST'

:

id ! ID,

type ! T,

&stati addVar(ST, ID, T) ! ST'.

[if℄ statement(ST

62

) ! STM

13

:

expression(ST

62

) ! (T, EXP

6

),

&stati isBoolType(T),

statements(ST

62

) ! STM

10

,

statements(ST

62

) ! STM

9

,

&ast if(EXP

6

, STM

10

, STM

9

) ! STM

13

.

[while℄ statement(ST

66

) ! STM

14

:

expression(ST

66

) ! (T, EXP

7

),

&stati isBoolType(T),

statements(ST

66

) ! STM

11

,

&ast while(EXP

7

, STM

11

) ! STM

14

.

[output℄ statement(ST

70

) ! STM

15

:

expression(ST

70

) ! (T, EXP

9

),

&stati isOutputType(T),

&ast output(EXP

9

) ! STM

15

.

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 203

[assign℄ statement(ST) ! STM

16

:

id ! ID,

&stati isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

11

),

&stati assignable(T, T'),

&ast assign(ID, EXP

11

) ! STM

16

.

[intT℄ type ! intT : .

[boolT℄ type ! boolT : .

[onst℄ expression(ST

52

) ! (T, EXP

0

)

:

onstant ! (T, C

0

),

&ast onst(C

0

) ! EXP

0

.

[monadi℄ expression(ST

53

) ! (T, EXP

1

)

:

mos ! MOS,

expression(ST

53

) ! (T', EXP

2

),

&stati profileMonadi(MOS, T') ! T,

&ast monadi(MOS, EXP

2

) ! EXP

1

.

[dyadi℄ expression(ST

55

) ! (T, EXP

3

)

:

expression(ST

55

) ! (T

1

, EXP

5

),

dos ! DOS,

expression(ST

55

) ! (T

2

, EXP

4

),

&stati profileDyadi(DOS, T

1

, T

2

) ! T,

&ast dyadi(EXP

5

, DOS, EXP

4

) ! EXP

3

.

[input℄ expression(ST

69

) ! (T, EXP

8

)

:

type ! T,

&stati isInputType(T),

&ast input(T) ! EXP

8

.

[var℄ expression(ST) ! (T, EXP

10

)

:

id ! ID,

&stati isVar(ST, ID) ! T,

&ast var(ID) ! EXP

10

.

[boolC℄ onstant ! (boolT, C

1

)

:

boolean ! BC

0

,

&ast boolC(BC

0

) ! C

1

.

[intC℄ onstant ! (intT, C

2

)

:

nat ! INT

0

,

&ast intC(INT

0

) ! C

2

.

[neg℄ mos ! neg : .

[not℄ mos ! not : .

[plus℄ dos ! plus : .

[minus℄ dos ! minus : .

204 APPENDIX D. A COLLECTION OF META-PROGRAMS

[times℄ dos ! times : .

[div℄ dos ! div : .

[eq℄ dos ! eq : .

[neq℄ dos ! neq : .

[gt℄ dos ! gt : .

[lt℄ dos ! lt : .

[ge℄ dos ! ge : .

[le℄ dos ! le : .

[and℄ dos ! and : .

[or℄ dos ! or : .

[true℄ boolean ! BC

1

:

&ast true ! BC

1

.

[false℄ boolean ! BC

2

:

&ast false ! BC

2

.

We use two pre�xes for di�erent kinds of relational formulae. The pre�x &

ast

refers to

AST onstrution, whereas the pre�x &

stati

quali�es relational formulae modelling stati

semantis. The interpretation of the �rst kind of relational symbols is simply term on-

strution, whereas the relational formulae dealing with stati semantis are interpreted by

the relations disussed in Subsetion D.1.4.

The underlying ontext-free grammar of the above GSF shema spei�es a rather ab-

strat syntax. The more or less trivial adaptation to ope with a more onrete syntax is

the subjet of Subsetion D.1.5.

The omposition of the above GSF shema is performed by means of lifting.

ls/examples/basi/struture.sg

% aspets of omputational behaviour

st : ls/transformers/simpleSt.

as : ls/transformers/ast On ./dynami On Output On fdelarationsg On &ast.

Gsf Sheme

Axiom Is program

Lift

h

hhst, asi, ls/fragments/program/struture

./ ls/fragments/delarations/struture

./ ls/fragments/type/struture

./ ls/fragments/ompound/struture

./ ls/fragments/seletion/if/struture

./ ls/fragments/iteration/while/struture

./ ls/fragments/input/struture

./ ls/fragments/output/struture

i,

hhasi, ls/fragments/variable/struturei

i

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 205

There are two omputational aspets overed by transformers. The aspet st deals with

the initialization and the propagation of the symbol table, whereas the aspet as deals with

the onstrution of an abstrat syntatial representation. Remember that ASTs need to

be synthesized, beause they are interpreted in the seond phase of the interpreter, i.e. by

the dynami semantis. The de�nition of the transformer for the aspet st is shown below.

ls/transformers/simpleSt.fra

� sk : Skeleton .

(./defaultSt On sk)

Æ (./inheritSt On sk)

Æ (./aumulateSt On sk)

To have a more modular de�nition of the above transformer, the following three om-

ponents were identi�ed.

ls/transformers/defaultSt.fra

� sk : Skeleton . Default For ST By &stati initST

ls/transformers/inheritSt.fra

� sk : Skeleton . Inherit ST From fprogramg To fexpressiong On sk

ls/transformers/aumulateSt.fra

� sk : Skeleton . Aumulate ST From fprogramg To fdelarationg On sk

The transformer for the aspet as is not presented here, beause the atual de�nition

is not language-spei�. Its de�nition is onsidered in some depth in Setion D.7, beause

it is interesting on its own. We only want to omment on the underlying generi approah.

The transformer as ould be de�ned in terms of a Relate Output ... transformation, but

we also an ompute suh a transformation by unifying the skeleton to be lifted and the

signature of a \referene" spei�ation, where the dynami semantis spei�ation serves

for this purpose here. Tehnially, term onstrutors and sorts in the signature are uni�ed

with tags and symbols in the skeleton.

Now we present the rules (at some level) from whih the above GSF shema has been

omposed. We start with the overall struture of programs.

ls/fragments/program/struture.gs

[prog℄ program : delarations, statements.

Sequenes of delarations are de�ned as follows.

ls/fragments/delarations/struture.gs

206 APPENDIX D. A COLLECTION OF META-PROGRAMS

[des℄ delarations : delaration, delarations.

[nodes℄ delarations : .

The rules onerning type expressions, onstants, monadi and dyadi expressions a-

ording to basi data types are the following.

ls/fragments/type/struture.gs

[intT℄ type ! intT : .

[boolT℄ type ! boolT : .

[onst℄ expression ! T

:

onstant ! T.

[monadi℄ expression ! T

:

mos ! MOS,

expression ! T',

&stati profileMonadi(MOS, T') ! T.

[dyadi℄ expression ! T

:

expression ! T

1

,

dos ! DOS,

expression ! T

2

,

&stati profileDyadi(DOS, T

1

, T

2

) ! T.

[boolC℄ onstant ! boolT : boolean.

[intC℄ onstant ! intT : nat.

[true℄ boolean : .

[false℄ boolean : .

[neg℄ mos ! neg : .

[not℄ mos ! not : .

[plus℄ dos ! plus : .

[minus℄ dos ! minus : .

[times℄ dos ! times : .

[div℄ dos ! div : .

[eq℄ dos ! eq : .

[neq℄ dos ! neq : .

[gt℄ dos ! gt : .

[lt℄ dos ! lt : .

[ge℄ dos ! ge : .

[le℄ dos ! le : .

[and℄ dos ! and : .

[or℄ dos ! or : .

Statement sequenes are spei�ed by the following rules.

ls/fragments/ompound/struture.gs

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 207

[onat℄ statements

:

statement,

statements.

[skip℄ statements : .

The onept of an imperative variable e�ets several syntatial lasses. Variable de-

larations, assignments and variables as expressions need to be spei�ed.

ls/fragments/variable/struture.gs

[vde℄ delaration(ST) ! (ST')

:

id ! ID,

type ! T,

&stati addVar(ST, ID, T) ! ST'.

[var℄ expression(ST) ! T

:

id ! ID,

&stati isVar(ST, ID) ! T.

[assign℄ statement(ST)

:

id ! ID,

&stati isVar(ST, ID) ! T,

expression(ST) ! T',

&stati assignable(T, T').

If - and while-statements are spei�ed below. As far as stati semantis is onerned,

we want to ensure that onditions are Boolean expressions.

ls/fragments/seletion/if/struture.gs

[if℄ statement

:

expression ! T,

&stati isBoolType(T),

statements,

statements.

ls/fragments/iteration/while/struture.gs

[while℄ statement

:

expression ! T,

&stati isBoolType(T),

statements.

208 APPENDIX D. A COLLECTION OF META-PROGRAMS

Input expressions and output statements are spei�ed below. Possibly, the types legal

for input or output need to be restrited.

ls/fragments/input/struture.gs

[input℄ expression ! T

:

type ! T,

&stati isInputType(T).

ls/fragments/output/struture.gs

[output℄ statement

:

expression ! T,

&stati isOutputType(T).

D.1.4 Auxiliary relations for the stati semantis

We develop the module providing interpretations for relational symbols pre�xed by &

stati

in the GSF shema above.

ls/examples/basi/stati.pp

[initST℄ &st init ! ST

initST ! ST

[addVar℄ &st add(ST, ID, varEntry(T)) ! ST'

addVar(ST, ID, T) ! ST'

[isVar℄ &st lookup(ST, ID) ! varEntry(T)

isVar(ST, ID) ! T

[assignable℄ equalTypes(T

lhs

, T

rhs

)

assignable(T

lhs

, T

rhs

)

[isIntType℄ isIntType(intT)

[isBoolType℄ isBoolType(boolT)

[profile1℄ profileMonadi(neg, intT) ! intT

[profile2℄ profileMonadi(not, boolT) ! boolT

[profile3℄ profileDyadi(plus, intT, intT) ! intT

[profile4℄ profileDyadi(minus, intT, intT) ! intT

[profile5℄ profileDyadi(times, intT, intT) ! intT

[profile6℄ profileDyadi(div, intT, intT) ! intT

[profile7℄ profileDyadi(eq, intT, intT) ! boolT

[profile8℄ profileDyadi(neq, intT, intT) ! boolT

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 209

[profile9℄ profileDyadi(lt, intT, intT) ! boolT

[profileA℄ profileDyadi(gt, intT, intT) ! boolT

[profileB℄ profileDyadi(ge, intT, intT) ! boolT

[profileC℄ profileDyadi(le, intT, intT) ! boolT

[profileD℄ profileDyadi(eq, boolT, boolT) ! boolT

[profileE℄ profileDyadi(neq, boolT, boolT) ! boolT

[profileF℄ profileDyadi(lt, boolT, boolT) ! boolT

[profileG℄ profileDyadi(gt, boolT, boolT) ! boolT

[profileH℄ profileDyadi(ge, boolT, boolT) ! boolT

[profileI℄ profileDyadi(le, boolT, boolT) ! boolT

[profileJ℄ profileDyadi(and, boolT, boolT) ! boolT

[profileK℄ profileDyadi(or, boolT, boolT) ! boolT

[tEqT℄ equalTypes(T, T)

[inputInt℄ isIntType(T)

isInputType(T)

[inputBool℄ isBoolType(T)

isInputType(T)

[outputInt℄ isIntType(T)

isOutputType(T)

[outputBool℄ isBoolType(T)

isOutputType(T)

The above spei�ation is obtained by a simple onatenation of some rules.

ls/examples/basi/stati.sg

Inferene Rules

ls/fragments/program/stati

./ ls/fragments/variable/stati

./ ls/fragments/type/stati

./ ls/fragments/input/stati

./ ls/fragments/output/stati

The rules below are related to entire programs, onstruts for variables, basi data

types or I/O onstruts. The following modules are used in the above omposition.

ls/fragments/program/stati.ir

% return the empty symbol table

initST: ! ST

[initST℄ &st init ! ST

initST ! ST

210 APPENDIX D. A COLLECTION OF META-PROGRAMS

ls/fragments/variable/stati.ir

% symbol table entries

INFO = varEntry(T)

% add an entry for a variable to a symbol table

addVar: ST � ID � T ! ST

[addVar℄ &st add(ST, ID, varEntry(T)) ! ST'

addVar(ST, ID, T) ! ST'

% lookup an entry for a variable in a symbol table

[isVar℄ &st lookup(ST, ID) ! varEntry(T)

isVar(ST, ID) ! T

% hek two types to be ompatible for assignment

assignable: T � T

[assignable℄ equalTypes(T

lhs

, T

rhs

)

assignable(T

lhs

, T

rhs

)

ls/fragments/type/stati.ir

T = intT + boolT

MOS = neg + not

DOS = plus + minus + times + div

+ eq + neq + gt + lt + ge + le

+ and + or

isIntType: T

isBoolType: T

profileMonadi: MOS � T ! T

profileDyadi: DOS � T � T ! T

% test for integer/boolean type

[isIntType℄ isIntType(intT)

[isBoolType℄ isBoolType(boolT)

% ompute result type for unary operators

[profile1℄ profileMonadi(neg, intT) ! intT

[profile2℄ profileMonadi(not, boolT) ! boolT

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 211

% ompute result type for binary operators

[profile3℄ profileDyadi (plus, intT, intT) ! intT

[profile4℄ profileDyadi (minus, intT, intT) ! intT

[profile5℄ profileDyadi (times, intT, intT) ! intT

[profile6℄ profileDyadi (div, intT, intT) ! intT

[profile7℄ profileDyadi (eq, intT, intT) ! boolT

[profile8℄ profileDyadi (neq, intT, intT) ! boolT

[profile9℄ profileDyadi (lt, intT, intT) ! boolT

[profileA℄ profileDyadi (gt, intT, intT) ! boolT

[profileB℄ profileDyadi (ge, intT, intT) ! boolT

[profileC℄ profileDyadi (le, intT, intT) ! boolT

[profileD℄ profileDyadi (eq, boolT, boolT) ! boolT

[profileE℄ profileDyadi (neq, boolT, boolT) ! boolT

[profileF℄ profileDyadi (lt, boolT, boolT) ! boolT

[profileG℄ profileDyadi (gt, boolT, boolT) ! boolT

[profileH℄ profileDyadi (ge, boolT, boolT) ! boolT

[profileI℄ profileDyadi (le, boolT, boolT) ! boolT

[profileJ℄ profileDyadi (and, boolT, boolT) ! boolT

[profileK℄ profileDyadi (or, boolT, boolT) ! boolT

% equivalene of types

[tEqT℄ equalTypes(T, �T)

ls/fragments/input/stati.ir

isInputType: T

[inputInt℄ isIntType(T)) isInputType(T)

[inputBool℄ isBoolType(T)) isInputType(T)

ls/fragments/output/stati.ir

[outputInt℄ isIntType(T)) isOutputType(T)

[outputBool℄ isBoolType(T)) isOutputType(T)

D.1.5 The frontend oping with onrete syntax

It is shown how the GSF shema from Subsetion D.1.3 an be adapted to ope with a

rather onrete syntax. The transformational approah whih was taken here is rather

pragmati. We refer to [KW96℄ for a rather disiplined alternative. There, an approah is

presented whih simpli�es the design of the grammars representing onrete and abstrat

syntax as well as the mapping between them.

First, the �nal GSF shema is shown.

ls/examples/basi/analyser.pp

212 APPENDIX D. A COLLECTION OF META-PROGRAMS

[prog℄ program ! PROG

0

:

&stati initST ! ST

41

,

delarations(ST

41

) ! ST

42

,

\Begin",

statements(ST

42

) ! STM

5

,

\End ",

\. ",

&ast prog(STM

5

) ! PROG

0

.

[des℄ delarations(ST

44

) ! ST

49

:

delaration(ST

44

) ! ST

47

,

\; ",

delarations(ST

47

) ! ST

49

.

[nodes℄ delarations(ST

50

) ! ST

50

: .

[onat℄ statements(ST

58

) ! STM

6

:

statement(ST

58

) ! STM

12

,

\; ",

statements(ST

58

) ! STM

7

,

&ast onat(STM

12

, STM

7

) ! STM

6

.

[skip℄ statements(ST

61

) ! STM

8

:

&ast skip ! STM

8

.

[vde℄ delaration(ST) ! ST'

:

\Var ",

id ! ID,

\: ",

type ! T,

&stati addVar(ST, ID, T) ! ST'.

[while℄ statement(ST

66

) ! STM

14

:

\While",

expression(ST

66

) ! (T, EXP

7

),

\Do ",

&stati isBoolType(T),

statements(ST

66

) ! STM

11

,

\End ",

&ast while(EXP

7

, STM

11

) ! STM

14

.

[output℄ statement(ST

70

) ! STM

15

:

\Output",

expression(ST

70

) ! (T, EXP

9

),

&stati isOutputType(T),

&ast output(EXP

9

) ! STM

15

.

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 213

[assign℄ statement(ST) ! STM

16

:

id ! ID,

\:= ",

&stati isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

11

),

&stati assignable(T, T'),

&ast assign(ID, EXP

11

) ! STM

16

.

[if℄ statement(ST

62

) ! STM

13

:

\If ",

expression(ST

62

) ! (T, EXP

6

),

\Then",

&stati isBoolType(T),

statements(ST

62

) ! STM

10

,

else(ST

62

) ! STM

9

,

\End",

&ast if(EXP

6

, STM

10

, STM

9

) ! STM

13

.

[intT℄ type ! intT

:

\Integer".

[boolT℄ type ! boolT

:

\Boolean".

[onst℄ expression(ST

52

) ! (T, EXP

0

)

:

onstant ! (T, C

0

),

&ast onst(C

0

) ! EXP

0

.

[monadi℄ expression(ST

53

) ! (T, EXP

1

)

:

mos ! MOS,

expression(ST

53

) ! (T', EXP

2

),

&stati profileMonadi(MOS, T') ! T,

&ast monadi(MOS, EXP

2

) ! EXP

1

.

[dyadi℄ expression(ST

55

) ! (T, EXP

3

)

:

\(",

expression(ST

55

) ! (T

1

, EXP

5

),

dos ! DOS,

expression(ST

55

) ! (T

2

, EXP

4

),

\) ",

&stati profileDyadi(DOS, T

1

, T

2

) ! T,

&ast dyadi(EXP

5

, DOS, EXP

4

) ! EXP

3

.

[input℄ expression(ST

69

) ! (T, EXP

8

)

:

\Input",

type ! T,

&stati isInputType(T),

&ast input(T) ! EXP

8

.

214 APPENDIX D. A COLLECTION OF META-PROGRAMS

[var℄ expression(ST) ! (T, EXP

10

)

:

id ! ID,

&stati isVar(ST, ID) ! T,

&ast var(ID) ! EXP

10

.

[else℄ else(ST

62

) ! STM

9

:

\Else",

statements(ST

62

) ! STM

9

.

[noelse℄ else(ST

72

) ! STM

18

:

&ast skip ! STM

18

.

[boolC℄ onstant ! (boolT, C

1

)

:

boolean ! BC

0

,

&ast boolC(BC

0

) ! C

1

.

[intC℄ onstant ! (intT, C

2

)

:

nat ! INT

0

,

&ast intC(INT

0

) ! C

2

.

[neg℄ mos ! neg

:

\�".

[not℄ mos ! not

:

\Not ".

[plus℄ dos ! plus

:

\+".

[minus℄ dos ! minus

:

\�".

[times℄ dos ! times

:

* ".

[div℄ dos ! div

:

\Div ".

[eq℄ dos ! eq

:

\= ".

[neq℄ dos ! neq

:

\6=".

[gt℄ dos ! gt

:

\>".

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 215

[lt℄ dos ! lt

:

\<".

[ge℄ dos ! ge

:

\�".

[le℄ dos ! le

:

\�".

[and℄ dos ! and

:

\And ".

[or℄ dos ! or

:

\Or ".

[true℄ boolean ! BC

1

:

\True",

&ast true ! BC

1

.

[false℄ boolean ! BC

2

:

\False",

&ast false ! BC

2

.

The above GSF shema is obtained by transforming the GSF shema from Subse-

tion D.1.3 (./struture). Essentially, ertain keywords and separators are inserted (refer to

the appliation of the operator Conretize By) and the rule for if -statement is adapted

to ope with an optional else-part.

ls/examples/basi/analyser.sg

Gsf Sheme

Axiom Is program

Conretize By

(ls/fragments/program/onrete

++ ls/fragments/delarations/onrete

++ ls/fragments/type/onrete

++ ls/fragments/ompound/onrete

++ ls/fragments/seletion/if/optional/onrete

++ ls/fragments/iteration/while/onrete

++ ls/fragments/variable/onrete

++ ls/fragments/input/onrete

++ ls/fragments/output/onrete

)

On

(ls/tools/dyadiInBrakets

Æ (ls/tools/ifOptional On [skip℄)

On ./struture

)

216 APPENDIX D. A COLLECTION OF META-PROGRAMS

First, all the trivial fragments used in the appliation of the operator Conretize By

are presented.

ls/fragments/program/onrete.fra

hh[prog℄, h?, \Begin", ?, \End", \."iii

ls/fragments/delarations/onrete.fra

hh[des℄, h?, \;", ?iii

ls/fragments/type/onrete.fra

h

h[intT℄, h\Integer"ii,

h[boolT℄, h\Boolean"ii,

h[true℄, h\True"ii,

h[false℄, h\False"ii,

h[neg℄, h\n"ii,

h[not℄, h\Not"ii,

h[plus℄, h\+"ii,

h[minus℄, h\n"ii,

h[times℄, h*"ii,

h[div℄, h\Div"ii,

h[eq℄, h\="ii,

h[neq℄, h\h i"ii,

h[gt℄, h\i"ii,

h[lt℄, h\h"ii,

h[ge℄, h\�"ii,

h[le℄, h\�"ii,

h[and℄, h\And"ii,

h[or℄, h\Or"ii

i

ls/fragments/ompound/onrete.fra

hh[onat℄, h?, \;", ?iii

ls/fragments/seletion/if/optional/onrete.fra

h

h[if℄, h\If ", ?, \Then", ?, ?, \End"ii,

h[else℄, h\Else", ?ii

i

ls/fragments/iteration/while/onrete.fra

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 217

hh[while℄, h\While", ?, \Do", ?, \End"iii

ls/fragments/variable/onrete.fra

h

h[vde℄, h\Var", ?, \:", ?ii,

h[assign℄, h?, \:=", ?ii

i

ls/fragments/input/onrete.fra

hh[input℄, h\Input", ?iii

ls/fragments/output/onrete.fra

hh[output℄, h\Output", ?iii

The following transformation adapts the rule for dyadi expressions to fore enlosing

brakets. Thereby, priorities of operation symbols beome irrelevant.

ls/tools/dyadiInBrakets.fra

Conretize By hh[dyadi℄, h\(", ?, ?, ?, \)"iii

The following transformation installs an optional else-part for if -statements.

ls/tools/ifOptional.fra

� skip : Tag .

Unfold [else℄ By hskipi Into [noelse℄

Æ Fold [if℄ By h?, ?, elsei Into [else℄

Note that the above approah based on folding and unfolding has been desribed in

Example 3.3.5.

D.1.6 Auxiliary modules

For ompleteness, all the auxiliary modules used in the omposition of the sample language

are inluded below. First, a suitable sanner de�nition is shown (lib/sanner/trivial.lg).

Seond, a simple symbol table management module is presented (ls/adts/simpleSt.ir).

Third, the appliation of basi operations (of the sample language) is spei�ed in terms of

basi operations of

�

�

�

. Finally, an ADT for memories is inluded (ls/adts/memory.ir).

lib/sanner/trivial.lg

218 APPENDIX D. A COLLECTION OF META-PROGRAMS

Sets

letter = `A' .. `Z ' j `a ' .. `z '.

digit = `0' .. `9 '.

but eoln = Any � Eoln.

but star = Any � `* '.

but div star = Any � \/* ".

Classes

spaes = (Spae j Tab j Eoln)+.

id = letter (letter j digit)* : lib/onv hars2identifier.

nat = digit+ : lib/onv hars2integer.

end = Eof.

omment = `/ ' `* ' (but star j `*'+ but div star)* `* '+ `/ '

j `%' but eoln*.

Swithes

Skip spaes.

Skip omment.

ls/adts/simpleSt.ir

ST = ENTRY*

ENTRY = <ID, INFO>

% return the empty symbol table

init: ! ST

init ! [℄

% add an entry

add: ST � ID � INFO ! ST

[add℄ : ENTRY* = ++ [<�ID, >℄ ++

--

add(ENTRY*, ID, INFO) ! [<ID, INFO>jENTRY*℄

% lookup an entry

lookup: ST � ID ! INFO

[lookup℄ lookup(++ [<ID, INFO>℄ ++ , �ID) ! INFO

ls/adts/bops.ir

INT = Integer

BOOL = Boolean

VAL = intV(INT) + boolV(BOOL)

MOS = neg + not

DOS = plus + minus + times + div

+ eq + neq + gt + lt + ge + le

+ and + or

evaluateMonadi: MOS � VAL ! VAL

evaluateDyadi: DOS � VAL � VAL ! VAL

D.1. COMPOSITION OF A SIMPLE LANGUAGE DEFINITION 219

[neg℄ �INT ! INT'

evaluateMonadi(neg, intV(INT)) ! intV(INT')

[not1℄ evaluateMonadi(not, boolV(True)) ! boolV(False)

[not2℄ evaluateMonadi(not, boolV(False)) ! boolV(True)

[plus℄ INT

1

+ INT

2

! INT

evaluateDyadi(plus, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[minus℄ INT

1

� INT

2

! INT

--

evaluateDyadi(minus, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[times℄ INT

1

* INT

2

! INT

--

evaluateDyadi(times, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[div℄ INT

1

// INT

2

! INT

--

evaluateDyadi(div, intV(INT

1

), intV(INT

2

)) ! intV(INT)

[and℄ ? BOOL BOOL

1

^ BOOL

2

--

evaluateDyadi(and, boolV(BOOL

1

), boolV(BOOL

2

)) ! boolV(BOOL)

[or℄ ? BOOL BOOL

1

_ BOOL

2

evaluateDyadi(or, boolV(BOOL

1

), boolV(BOOL

2

)) ! boolV(BOOL)

[eq1℄ evaluateDyadi(eq, VAL, �VAL) ! boolV(True)

[eq1℄ VAL === VAL') evaluateDyadi(eq, VAL, VAL') ! boolV(False)

[neq℄ evaluateDyadi(eq, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi(not, VAL) ! VAL'

evaluateDyadi(neq, VAL

1

, VAL

2

) ! VAL'

[lt1℄ evaluateDyadi(lt, boolV(False), boolV(True)) ! boolV(True)

[lt2℄ evaluateDyadi(lt, boolV(False), boolV(False)) ! boolV(False)

[lt3℄ evaluateDyadi(lt, boolV(True), boolV(True)) ! boolV(False)

[lt4℄ ? BOOL INT

1

< INT

2

evaluateDyadi(lt, intV(INT

1

), intV(INT

2

)) ! boolV(BOOL)

[gt1℄ evaluateDyadi(gt, boolV(False), boolV(True)) ! boolV(False)

[gt2℄ evaluateDyadi(gt, boolV(False), boolV(False)) ! boolV(False)

[gt3℄ evaluateDyadi(gt, boolV(True), boolV(True)) ! boolV(True)

[gt4℄ ? BOOL INT

1

> INT

2

evaluateDyadi(gt, intV(INT

1

), intV(INT

2

)) ! boolV(BOOL)

[ge℄ evaluateDyadi(lt, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi(not, VAL) ! VAL'

evaluateDyadi(ge, VAL

1

, VAL

2

) ! VAL'

220 APPENDIX D. A COLLECTION OF META-PROGRAMS

[le℄ evaluateDyadi(gt, VAL

1

, VAL

2

) ! VAL,

evaluateMonadi(not, VAL) ! VAL'

evaluateDyadi(le, VAL

1

, VAL

2

) ! VAL'

ls/adts/memory.ir

% memories binding identifiers to values

MEM = <ID, VAL>*

% return the empty memory

init: ! MEM

[init℄ init ! [℄

% update the memory

update: MEM � ID � VAL ! MEM

[update1℄ update([℄, ID, VAL) ! [<ID, VAL>℄

[update2℄ update([<ID, VAL>jMEM℄, �ID, VAL) ! [<ID, VAL>jMEM℄

[update3℄ ID 6= ID',

update(MEM, ID', VAL') ! MEM'

--

update([<ID, VAL>jMEM℄, ID', VAL') ! [<ID, VAL>jMEM'℄

% lookup the memory

lookup: MEM � ID ! VAL

[lookup℄ lookup(MEM ++ [<ID, VAL>℄ ++ MEM, �ID) ! VAL

D.2 The divide-and-onquer shema

The program transformation below an be regarded as a representation of the divide-and-

onquer shema; refer also to Subsetion 4.4.3.

�hri : Symbol

?

:

�hisMinimal ; solve; isNonminimal ; deompose ; omposei : Symbol

?

:

�hx; y; zi : Sort

?

:

Let x

0

= New Variable Of Sort x In

Let y

0

= New Variable Of Sort y In

Let x

1

= New Variable Of Sort x In

Let y

1

= New Variable Of Sort y In

Let x

2

= New Variable Of Sort x In

Let y

2

= New Variable Of Sort y In

Let z

0

= New Variable Of Sort z In h

Rule From [minimal℄ r hxi ! hyi (h isMinimal hxi ! hi; solve hxi ! hyi i;

Rule From [nonminimal℄ r hxi ! hyi (h isNonminimal hxi ! hi;

deompose hxi ! hz ; x

1

; x

2

i;

r hx

1

i ! hy

1

i;

r hx

2

i ! hy

2

i;

ompose hz; y

1

; y

2

i ! hyi i

i

D.3. SYMBOL TABLES IN A BLOCK-STRUCTURED LANGUAGE 221

D.3 Symbol tables in a blok-strutured language

The following transformation desribes the aumulation of a symbol table in the delaration part,

the pervasive inheritane in the statement part and its proper initialization for a blok-strutured

language. Thus, it generalizes Example 4.2.2.

� sk : Skeleton .

Default For ST By &stati initST

Æ Left To Right ST

Æ (Let write = From fblokg To fdelarationg In sk In

Let read = From fblokg To fdelaration, expressiong In sk In

Ensure (

Positions Output For (write [fdelarationg) n fblokg Of Sort ST ++

Positions Input For read [fblok, delaration, expressiong Of Sort ST

)

)

The transformation is based on the following assumptions: The nonterminal expression models

expressions, whereas delaration models delarations. Both, program bloks and any other kind

of nested bloks (e.g. as a part of a funtion or a proedure delaration), are modelled by the

nonterminal blok . A blok onsists of a delaration and a statement part. All symbols on

paths between blok and delaration / expression inluding the symbols blok , delaration and

expression need at least reading aess to the symbol table (Positions Input). Sine, the

symbol table is aumulated in the delarations part, some more symbols need writing proess as

well (Positions Output). We have to take are that blok does not synthesize a symbol table

(: : : n fblokg) beause the symbol table entries of a nested blok should not be visible in the

enlosing blok.

D.4 The Constituents : : : With : : : onstrut

We derive a shema useful to establish a omputational behaviour simulating the Constituents

: : : With : : : onstrut for remote aess disussed in Subsetion 3.4.2. The pro�le of the shema

takes the following form:

Constituents : With ; ; ; For In :

Symbol� Sort� Sort� Symbol� Symbol� Symbol� Symbol�P(Tag) ! Trafo

Consider the following appliation of the shema:

Constituents s:� With �

0

; union ; unit ; zero For for In in;

The shema an be subdivided into several transformations to be performed subsequently:

1. For any ourrene of a parameter p of sort � on an output position of s a omputation

unit(p) ! (p

0

), where p

0

is a fresh variable of sort �

0

, will be inluded.

2. All symbols on paths between for and (inluding) the symbols de�ned by rules using s get

attahed an output position of sort �

0

.

222 APPENDIX D. A COLLECTION OF META-PROGRAMS

3. All unused ourrenes of parameters p

1

, : : :, p

n

of sort �

0

have to be omposed by a

sequene of omputations

union(p

1

; p

2

) ! p

0

1

; : : : ; union(p

0

n�2

; p

n

) ! p

0

n�1

where p

0

1

, : : :, p

0

n�1

are fresh variables of sort �

0

.

4. The added output positions (refer to step (2.)) are de�ned by taking the most reent

de�nition from the left.

5. The remaining unde�ned ourrenes p of sort �

0

are de�ned by inserting a omputation

zero ! p assuming zero as a left unit of union .

The atual spei�ation is the following:

� rsym : Symbol .

� rsort : Sort .

� aux : Sort .

� union : Symbol .

� unit : Symbol .

� zero : Symbol .

� for : Symbol .

� in : P(Tag) .

� rs : Rules .

Let sk = Skeleton Of rs In

Let l = (From fforg To frsymg In sk) [fforg In

% 5. insert onstant omputations

Default For aux By zero

% 4. opy aumulated value to the LHS

Æ From The Left aux

% 3. ombine de�ning ourrenes

Æ Forgetting Tags in Do

Redue aux By union

% 2. add positions for synthesis

Æ Add Positions Output For l Of Sort aux

% 1. add unary omputations

Æ Seleting Symbols l Do

Hiding unit Do (

Add hhOutput, unit, auxii

Æ Use hOutput, rsym, rsorti By unit

)

On rs.

To give an example, we start with a GSF shema for a part of an imperative language with

terminal attribution for identi�ers. For simpliity, no other attribution is onsidered here.

[prog℄ program : delarations, statements.

[des℄ delarations : delaration, delarations.

[node℄ delarations : .

[de℄ delaration : type, identifier ! ID.

D.4. THE CONSTITUENTS : : : WITH : : : CONSTRUCT 223

[int℄ type : .

[bool℄ type : .

[onat℄ statements : statement, statements.

[skip℄ statements : .

[assign℄ statement : variable, expression.

[var℄ expression : variable.

[varid℄ variable : identifier ! ID.

Similarly to the example in Subsetion 3.4.2, all ourrenes of identi�ers should be aumu-

lated separately for the delaration and the statement part. This is modelled by the following

appliation of the operator Constituents:

Let t = � s : Symbol .

Constituents identi�er.ID

With IDS, &ids union, &ids unit, &ids zero

For s

In f[prog℄g

In (t On delarations) Æ (t On statements).

The result of the transformation is the following:

[prog℄ program

:

delarations ! IDS

17

,

statements ! IDS

3

.

[des℄ delarations ! IDS

21

:

delaration ! IDS

15

,

delarations ! IDS

19

,

&ids union(IDS

15

, IDS

19

) ! IDS

21

.

[node℄ delarations ! IDS

20

:

&ids zero ! IDS

20

.

[onat℄ statements ! IDS

12

:

statement ! IDS

1

,

statements ! IDS

5

,

&ids union(IDS

1

, IDS

5

) ! IDS

12

.

[skip℄ statements ! IDS

6

:

&ids zero ! IDS

6

.

[de℄ delaration ! IDS

14

:

type,

identifier ! ID,

&ids unit(ID) ! IDS

14

.

[assign℄ statement ! IDS

13

:

variable ! IDS

7

,

expression ! IDS

10

,

&ids union(IDS

7

, IDS

10

) ! IDS

13

.

224 APPENDIX D. A COLLECTION OF META-PROGRAMS

[int℄ type : .

[bool℄ type : .

[varid℄ variable ! IDS

0

:

identifier ! ID,

&ids unit(ID) ! IDS

0

.

[var℄ expression ! IDS

8

:

variable ! IDS

8

.

The rule [prog℄ ould be extended to make use of the derived sets of identi�ers, e.g. to hek

that all delared identi�ers are also used.

D.5 Elimination of tail reursion

We demonstrate a simple elimination proedure for tail reursion. It is assumed that the rules

for the dediated symbol sym desribe a traversal of a data struture of ertain sort sort. Tail-

reursive alls of sym are then eliminated by returning the parameter of sort as a new output of

the onlusion.

Consider, for example, the following inferene rules of a big step semantis. There are tail

alls in [while℄, [then℄ and [else℄.

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM) ! MEM'

% first evaluate ondition, then branh on value

[if℄ evaluate(EXP, MEM) ! VAL,

ond(VAL, STM

1

, STM

2

, MEM) ! MEM'

exeute(if(EXP, STM

1

, STM

2

), MEM) ! MEM'

[while℄ onat(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM'',

exeute(STM'', MEM) ! MEM'

exeute(while(EXP, STM), MEM) ! MEM'

% exeute the Then�path of an If�statement

[then℄ exeute(STM, MEM) ! MEM'

ond(boolV(True), STM, STM, MEM) ! MEM'

% exeute the Else�path of an If�statement

[else℄ exeute(STM, MEM) ! MEM'

--

ond(boolV(False), STM, STM, MEM) ! MEM'

The following variant is the result of the transformation eliminating the tail alls. The param-

eter skip is used for rules without tail-reursive alls. Conerning styles of semantis de�nition,

D.6. ESTABLISHING CPS 225

we moved from a big step semantis (natural semantis) to a small step semantis (transitional

semantis).

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM) ! (MEM', skip)

[if℄ evaluate(EXP, MEM) ! VAL,

ond(VAL, STM

1

, STM

2

, MEM) ! (MEM', STM

5

)

--

exeute(if(EXP, STM

1

, STM

2

), MEM) ! (MEM', STM

5

)

[while℄ onat(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM''

exeute(while(EXP, STM), MEM) ! (MEM, STM'')

[then℄ ond(boolV(TruenBOOL), STM, STM

3

, MEM) ! (MEM, STM)

[else℄ ond(boolV(FalsenBOOL), STM

4

, STM, MEM) ! (MEM, STM)

There are ertain assumptions for the elimination proedure whih are skipped here. The

de�nition of the transformation is omitted here as well beause of its extent.

D.6 Establishing CPS

We demonstrate a transformation whih is suitable to establish the ontinuation passing style

for the rules of a dediated symbol sym. The ontinuations are of a ertain sort sort. There

is a funtor skip for the empty ontinuation and another funtor onat for the ombination of

ontinuations. To illustrate this transformation, we ontinue the example of the previous setion

by transforming the transitional semantis into a semantis in the ontinuation passing style.

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM, STM

6

) ! (MEM', STM

6

)

[if℄ evaluate(EXP, MEM) ! VAL,

ond(VAL, STM

1

, STM

2

, MEM) ! (MEM', STM

5

)

--

exeute(if(EXP, STM

1

, STM

2

), MEM, STM

7

) ! (MEM', onat(STM

5

, STM

7

))

[while℄ onat(STM, while(EXP, STM)) = STM',

if(EXP, STM', skip) = STM''

exeute(while(EXP, STM), MEM, STM

8

) ! (MEM, onat(STM'', STM

8

))

[then℄ ond(boolV(TruenBOOL), STM, STM

3

, MEM) ! (MEM, STM)

[else℄ ond(boolV(FalsenBOOL), STM

4

, STM, MEM) ! (MEM, STM)

There are ertain assumptions for the appliability of the transformation whih are skipped

here. The de�nition of the transformation is omitted here as well beause of its extent.

226 APPENDIX D. A COLLECTION OF META-PROGRAMS

D.7 Coupling

Modular spei�ations onsisting of several phases impliitly desribe ertain entral data stru-

tures more than one. In a language proessor, for example, the abstrat syntax is desribed

twie, one by the \frontend" performing AST onstrution among other subtask and one by

the dynami semantis de�nition performing essentially a traversal of the given AST.

In this setion we want to introdue a transformation whih sans a given spei�ation for term

onstrutors and then tries to math the skeleton of another spei�ation with these onstrutors.

The justi�ation for suh a mathing proess is the well-known orrespondene between signatures

(term onstrutors) and ontext-free grammars (skeletons).

Let us �rst onsider an example. The following rule de�nes the stati semantis of assignment

statement of a simple imperative language.

[assign℄ statement(ST)

:

id ! ID,

&stati isVar(ST, ID) ! T,

expression(ST) ! T',

&stati assignable(T, T').

The following rule de�nes the dynami semantis of the assignment statements. The abstrat

syntax is impliitly overed, sine a semantis de�nition is essentially a traversal of the abstrat

syntax.

exeute: STM � MEM ! MEM

evaluate: EXP � MEM ! VAL

[assign℄ evaluate(EXP, MEM) ! VAL,

update(MEM, ID, VAL) ! MEM'

exeute(assign(ID, EXP), MEM) ! MEM'

To ouple the two phases, the above GSF rules should onstrut terms aording to the term

onstrutors in the semantis de�nition. We �rst show the result we are interested in.

[assign℄ statement(ST) ! STM

0

:

id ! ID,

&stati isVar(ST, ID) ! T,

expression(ST) ! (T', EXP

0

),

&stati assignable(T, T'),

&ast assign(ID, EXP

0

) ! STM

0

.

The result an be obtained from the previous GSF rule whih does not over AST onstrution

by the transformation below. The meta-program takes two spei�ations as input. Furthermore,

a number of nonterminals whih do not ontribute to abstrat syntax an be enumerated. The

transformation �rst looks for assoiations of skeleton symbols and sorts by mathing the on-

strutor pro�les with skeleton rules based on onformane of onstrutor symbol and tag. The

aumulated assoiations are then used in a simple appliation of the operator Relate for adding

ompositional parameterization to onstrut (as in the example) or deonstrut terms aordingly.

ls/transformers/ast.fra

D.7. COUPLING 227

% add an assoiation preserving mapping ondition

Let extendMap = � as : P(Assoiation) . � sym : Symbol . � sort : Sort .

Let sofar =

Fold Left

� sort0 : Sort? . � hsym1, sort1i : Assoiation .

sym = sym1 ! sort1, sort0

Neutral ? List as

In sofar = ? ! as ++ hhsym, sortii, sofar = sort Æ! as

In

� at : Rules . � io : Io . � ignore : P(Symbol) . � pfx : Pre�x .

� sk : Skeleton .

% aumulate all onstrutors (auxiliary funtion)

Let onstrutors = onstrutorsInRules On at In

Let assoiations =

% iterate signature with onstrutors

Fold Left

� as : P(Assoiation) . � prof : Pro�le .

: Symbol Of prof 2 onstrutors !

as,

Let tag = Tag From Symbol Of prof In

Let maybe =

Fold Left � maybe : (Name � Name*)? . � ht, l, ri : Shape .

t = tag ! hl, ri, maybe

Neutral ? List sk

In

maybe = ? !

% no mathing rule found for urrent onstrutor pro�le

as,

Let hsym, symsi = maybe In

sym 2 ignore !

% LHS symbol to be ignored) ignore rule altogether

as,

Let htargeti = Sorts Output Of prof In

Let hsorts, asi =

% math LHS / RHS of rule with target / soure of onstrutor

Fold Left

� hrest, sofari : hSort*, P(Assoiation)i . � sym : Name .

sym 2 ignore !

hrest, sofari,

hTail Of rest, extendMap On sofar On sym On Head Of resti

Neutral hSorts Input Of prof, (extendMap On as On sym On target)i

List syms

In sorts = h i Æ! as

Neutral ; List Sigma Of at

In

% attah ompositional omputational behaviour

Seleting Symbols Symbols Assoiated In assoiations

Do Relate io assoiations pfx

Bibliography

[ABFQ92℄ Franis Alexandre, Khadel Bsaies, Jean Pierre Finane, and Alain Quere. Spes:

A System for Logi Program Transformation. In A. Voronkov, editor, Logi Pro-

gramming and Automated Reasoning, LPAR'92, volume 624 of LNCS, pages 445{447.

Springer-Verlag, 1992.

[AC90℄ Isabelle Attali and Jaques Chazarain. Funtional evaluation of strongly non-irular

typol spei�ations. In Pierre Deransart and Martin Jourdan, editors, Attribute

Grammars and their Appliations (WAGA), volume 461 of LNCS, pages 157{176.

Springer-Verlag, September 1990. Paris.

[ACG92℄ Isabelle Attali, Jaques Chazarain, and Serge Gilette. Inremental Evaluation of

Natural Semantis Spei�ations. In M. Bruynooghe and M.Wirsing, editors, Pro-

gramming Language Implementation and Logi Programming, volume 631 of Leture

Notes in Computer Siene, pages 87{99. Springer-Verlag, New York{Heidelberg{

Berlin, August 1992.

[Ada91℄ Stephen Robert Adams. Modular Grammars for Programming Language Prototyp-

ing. PhD thesis, University of Southampton, Faulty of Engineering, Department of

Eletronis and Computer Siene, Marh 1991.

[AFZ88℄ I. Attali and P. Franhi-Zannettai. Uni�ation-free exeution of TYPOL programs

by Semanti Attribute Evaluation. In Fifth International Conferene Symposium on

Logi Programming, Seattle, pages 166{177. Cambridge MIT Press, August 1988.

[Alb91℄ H. Alblas. Introdution to attribute grammars. In Alblas and Melihar [AM91℄,

pages 1{15.

[AM91℄ Henk Alblas and Bo�rivoj Melihar, editors. Attribute grammars, Appliations and

Systems, Proeedings of the In ternational Summer Shool SAGA, Prague, Czehoslo-

vakia, volume 545 of LNCS. Springer-Verlag, June 1991.

[AP91℄ Mart��n Abadi and Gordon D. Plotkin. A logial view of omposition and re�nement.

In Conferene Reord of the Eighteenth Annual ACM Symposium on Priniples of

Programming Languages, pages 323{332, Orlando, Florida, January 1991.

[AP94℄ I. Attali and D. Parigot. Integrating natural semantis and attribute grammars: the

minotaur system. Researh Report no. 2339, Inria, September 1994.

229

230 BIBLIOGRAPHY

[APR97℄ Isabelle Attali, Valrie Pasual, and Christophe Roudet. A language and an integrated

environment for program transformations. Rapport de reherhe 3313, INRIA, De-

ember 1997.

[Att89℄ I. Attali. Compiling TYPOL with Attribute Grammars. In Deransart et al. [DLM89℄,

pages 252{272.

[Bau98℄ Beate Baum. Modularisierung attributierter Grammatiken. PhD thesis, Department

of Comp. S., University Rostok, 1998.

[BCD

+

88℄ P. Borras, D. Clement, Th. Despeyroux, J. Inerpi, G. Kahn, B. Lang, and V. Pasual.

Centaur: the system. In Proeedings of SIGSOFT'88, Boston, USA, 1988.

[BD77℄ R. M. Burstall and John Darlington. A transformation system for developing reur-

sive programs. Journal of the ACM, 24(1):44{67, January 1977.

[BdM97℄ Rihard Bird and Oege de Moor. Algebra of Programming. Prentie Hall, 1997.

[BL92℄ Gilad Braha and Gary Lindstrom. Modularity Meets Inheritane. In Proeedings of

the IEEE International Conferene on Computer Languages, April 1992.

[BMPT94℄ A. Brogi, P. Manarella, D. Pedreshi, and F. Turini. Modular Logi Programming.

ACM Transations on Programming Languages and Systems, 16(3):225{237, 1994.

[Boy96a℄ Johan Boye. Diretional Types in Logi Programming. PhD thesis, University of

Link�oping, 1996.

[Boy96b℄ John Tang Boyland. Desriptional Composition of Compiler Components. PhD

thesis, University of California, Berkeley, September 1996. Available as tehnial

report UCB//CSD-96-916.

[Boy98℄ John Tang Boyland. Analyzing Diret Non-loal Dependenies. In Kai Koskimies,

editor, Compiler Constrution, 7th International Conferene, CC'98, volume 1383 of

LNCS, pages 31{49. Springer-Verlag, April 1998.

[BR94℄ E. B�orger and D. Rosenzweig. The WAM { De�nition and Compiler Corretness. In

C. Beierle and L. Pl�umer, editors, Logi Programming: Formal Methods and Pratial

Appliations, Studies in Computer Siene and Arti�ial Intelligene, hapter 2, pages

20{90. North-Holland, 1994.

[Bra92℄ Gilad Braha. The Programming Language Jigsaw: Mixins, Modularity and Multiple

Inheritane. PhD thesis, The University of Utah, Department of Computer Siene,

Marh 1992.

[Bro93℄ Antonio Brogi. Program Constrution in Computational Logi. PhD thesis, Univer-

sity of Pisa, 1993.

[Bru95℄ J.J. Brunekreef. Translog, an Interative Tool for Transformation of Logi Programs.

Tehnial Report P9512, University of Amsterdam, Programming Researh Group,

Deember 1995.

BIBLIOGRAPHY 231

[BS98℄ E. B�orger and W. Shulte. Programmer Friendly Modular De�nition of the Semantis

of Java. In J. Alves-Foss, editor, Formal Syntax and Semantis of Java, LNCS.

Springer-Verlag, 1998.

[BvW98℄ Ralph-Johan Bak and Joakim von Wright. Re�nement Calulus: A Systemati

Introdution. Graduate Texts in Computer Siene. Springer-Verlag, April 1998.

[CD84℄ Bruno Courelle and Pierre Deransart. Proofs of Partial Corretness for Attribute

Grammars with Appliation to Reursive Proedures and Logi Programming. Teh-

nial Report RR 332, INRIA Roquenourt, 1984.

[CDPR98℄ L. Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Symboli omposi-

tion. Tehnial Report 3348, INRIA, January 1998.

[CF94℄ Robert Cartwright and Matthias Felleisen. Extensible denotational language spe-

i�ations. In Masami Hagiya and John C. Mithell, editors, Theoretial Aspets of

Computer Software: International Symposium, volume 789, pages 244{272. Springer-

Verlag, April 1994.

[CFZ82a℄ Bruno Courelle and Paul Franhi-Zannettai. Attribute Grammars and Reursive

Program Shemes I. Theoretial Computer Siene, 17(2):163{191, February 1982.

[CFZ82b℄ Bruno Courelle and Paul Franhi-Zannettai. Attribute Grammars and Reursive

Program Shemes II. Theoretial Computer Siene, 17(3):235{257, Marh 1982.

[CI84℄ Robert D. Cameron and M. Robert Ito. Grammar-Based De�nition of Metapro-

gramming Systems. ACM Transations on Programming Languages and Systems,

6(1):20{54, 1984.

[Coa95℄ P. Coad. Objet Models: Strategies, Patterns and Appliations. Prentie Hall, 1995.

[DC90℄ G.D. Duek and G.V. Cormak. Modular Attribute Grammars. The Computer

Journal, 33(2):164{172, 1990.

[Des88℄ T. Despeyroux. Typol: A formalism to implement natural semantis. Tehnial

report 94, INRIA, Marh 1988.

[Dev90℄ Y. Deville. Logi Programming: Systemati Program Development. Addison Wesley,

1990.

[Dij76℄ E.W. Dijkstra. A Disipline of Programming. Prentie Hall International, 1976.

[DL94℄ Yves Deville and Kung-Kiu Lau. Logi Program Synthesis. The Journal of Logi

Programming 19, pages 321{350, 1994.

[DLM89℄ P. Deransart, B. Lorho, and J. Maluszy�nski, editors. Programming Languages Im-

plementation and Logi Programming, Proeedings of the International Workshop

PLILP '88, Orleans, Frane, number 348 in LNCS. Springer-Verlag, May 1989.

[DM85℄ Pierre Deransart and Jan Ma luszy�nski. Relating Logi Programs and Attribute

Grammars. Journal of Logi Programming, 2(2):119{155, 1985.

232 BIBLIOGRAPHY

[DM93℄ Pierre Deransart and Jan Maluszy�nski. A Grammatial View of Logi Programming.

The MIT Press, 1993.

[DPRJ96℄ Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Attribute gram-

mars and folds: Generi ontrol operators. Rapport de reherhe 2957, INRIA,

August 1996.

[DPRJ97℄ Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Struture-

direted generiity in funtional programming and attribute grammars. Rapport

de Reherhe 3105, INRIA, February 1997.

[DS96℄ Domini Duggan and Constantinos Sourelis. Mixin modules. In Proeedings of the

1996 ACM SIGPLAN International Conferene on Funtional Programming, pages

262{273, Philadelphia, Pennsylvania, 24{26 May 1996.

[Esp95℄ David A. Espinosa. Semanti Lego. PhD thesis, Graduate Shool of Arts and Sienes,

Columbia University, 1995.

[FFG91℄ Limor Fix, Nissim Franez, and Orna Grumberg. Program omposition and mod-

ular veri�ation. In Javier Leah Albert, Burkhard Monien, and Mario Rodr��guez-

Artalejo, editors, Automata, Languages and Programming, 18th International Collo-

quium, volume 510 of LNCS, pages 93{114, Madrid, Spain, 8{12 July 1991. Springer-

Verlag.

[FLO97℄ P. Flener, K.-K. Lau, and M. Ornaghi. On Corret Program Shemas. In Fuhs

[Fu97℄. Report CW 253, Katholieke Universiteit Leuven, Department Of Computing

Siene.

[FMY92℄ R. Farrow, T.J. Marlowe, and D.M. Yellin. Composable Attribute Grammars. In

Proeedings of 19th ACM Symposium on Priniples of Programming Languages (Al-

buquerque, NM), pages 223{234, January 1992.

[Fu97℄ Norbert E. Fuhs, editor. Proeedings LOPSTR'97, Leuven, Belgium. July 10{12,

1997, 1997. Report CW 253, Katholieke Universiteit Leuven, Department Of Com-

puting Siene.

[Gal97℄ John (John P.) Gallagher, editor. Logi program synthesis and transformation: 6th

International Workshop, LOPSTR'96, Stokholm, Sweden, August 28{30, 1996: pro-

eedings, volume 1207 of LNCS, New York, NY, USA, 1997. Springer-Verlag In.

[Gan83℄ Harald Ganzinger. Inreasing Modularity and Language Independeny in Automat-

ially Generated Compilers, 1983.

[GE90℄ Josef Grosh and Helmut Emmelmann. A Tool Box for Compiler Constrution. In

Proeedings of CC'90, 1990.

[GHL

+

92℄ R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A Complete,

Flexible Compiler Constrution System. Communiations of the ACM 35, pages 121{

131, February 1992.

BIBLIOGRAPHY 233

[Gie88℄ R. Giegerih. Composition and Evaluation of Attribute Coupled Grammars. Ata

Informatia 25, pages 355{423, 1988.

[Gur95℄ Y. Gurevih. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Spei�a-

tion and Validation Methods, pages 9{36. Oxford University Press, 1995.

[Har97℄ J�org Harm. Automati Test Program Generation from Formal Language Spe i�a-

tions. In RIB [RIB97℄. 24 pages, to appear.

[Has97℄ Haskell 1.4|A Non-strit, Purely Funtional Language, April 1997. Yale University,

University of St. Andrews.

[Hed89℄ G�orel Hedin. An objet-oriented notation for attribute grammars. In S. Cook, ed-

itor, Proeedings of the 3rd European Conferene on Objet-Oriented Programming

(ECOOP'89), BCS Workshop Series, pages 329{345. Cambridge University Press,

July 1989.

[Hed91℄ G�orel Hedin. Inremental stati-semantis analysis for objet-oriented languages us-

ing door attribute grammars. In Alblas and Melihar [AM91℄, pages 374{379.

[Hed92℄ G�orel Hedin. Inremental Semanti Analysis. Ph.D. thesis, Lund University, Lund,

Sweden, 1992. LUTEDX/(TECS-1003)/1-276/(1992).

[Hed94℄ G�orel Hedin. An Overview of Door Attribute Grammars. In P.A. Fritzson, editor,

Proeedings of Compiler Constrution CC'94, 5th International Conferene, CC'94,

Edinburgh, U.K., number 786 in LNCS, pages 31{51, 1994.

[Heh93℄ E.C.R. Hehner. A Pratial Theory of Programming. Springer-Verlag, 1993.

[HL89℄ Ivo Van Horebeek and Johan Lewi. Algebrai Spei�ations in Software Engineering.

Springer-Verlag, 1989.

[HL94℄ P.M. Hill and J.W. Lloyd. The G�odel Programming Language. MIT Press, 1994.

[HLR97℄ J�org Harm, Ralf L�ammel, and G�unter Riedewald. The Language Development Lab-

oratory (

�

�

�

). In Magne Haveraaen and Olaf Owe, editors, Seleted papers from

the 8th Nordi Workshop on Programming Theory, Deember 4{6, Oslo, Norway,

Researh Report 248, ISBN 82-7368-163-7, pages 77{86, May 1997.

[HN95℄ A. Hamfelt and J.F. Nilsson. Towards a Logi Programming Methodology based on

Higher-order Prediates. 23 pages, 1995.

[HN96℄ A. Hamfelt and J.F. Nilsson. Delarative Logi Programming with Primitive Reur-

sive Relations on Lists. In P. Maher, editor, Proeedings of the Joint International

Conferene and Symposium on Logi Programming, MIT Press, pages 230{243, 1996.

[Hud96℄ Paul Hudak. Building Domain-Spei� Embedded Languages, Deember 1996.

[Jai95℄ Ashish Jain. Projetions of Logi Programs using Symbol Mappings. In Leon Sterling,

editor, Logi Programming, Proeedings of the Twelfth International Conferene on

Logi Programming, June 13-16, 1995, Tokyo, Japan. MIT Press, June 1995.

234 BIBLIOGRAPHY

[JC94℄ C.B. Jay and J.R.B. Cokett. Shapely types and shape polymorphism. In Donald

Sannella, editor, Proeedings Programming Languages and Systems-ESOP'94, volume

788 of LNCS, pages 302{316. Springer-Verlag, 1994.

[JD93℄ Mark P. Jones and Lu Duponheel. Composing monads. Tehnial Report

YALEU/DCS/RR-1004, Yale University, Deember 1993.

[Jeu95℄ J. Jeuring. Polytypi pattern mathing. In Conferene Reord of FPCA '95,

SIGPLAN-SIGARCH-WG2.8 Conferene on Funtional Programming Languages

and Computer Arhiteture, pages 238{248, 1995.

[JF85℄ Gregory F. Johnson and Charles N. Fisher. A meta-language and system for nonloal

inremental attribute evaluation in language-based editors. In Conferene Reord of

the Twelfth Annual ACM Symposium on Priniples of Programming Languages, pages

141{151, New Orleans, Louisiana, January 1985.

[JJ96℄ J. Jeuring and P. Jansson. Polytypi programming. In J. Launhbury, E. Meijer, and

T. Sheard, editors, Advaned Funtional Programming, Seond International Shool,

volume 1129 of LNCS, pages 68{114. Springer-Verlag, 1996.

[JJ97℄ P. Jansson and J. Jeuring. PolyP - a polytypi programming language extension.

In POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Priniples of Pro-

gramming Languages, pages 470{482. ACM Press, 1997.

[JKS94℄ Ashish Jain, Mar Kirshenbaum, and Leon Sterling. Construting provably orret

logi programs. Tehnial Report CES-94-04, Department of Computer Engineering

and Siene, Case Western Reserve University, Marh 1994.

[JP90℄ Martin Jourdan and Didier Parigot. Appliation Development with the FNC-2 At-

tribute Grammar System. In Dieter Hammer and Mihael Albinus, editors, Compiler

Compilers '90, volume 477 of LNCS, pages 11{25. Springer-Verlag, Shwerin, 1990.

[JP91℄ Martin Jourdan and Didier Parigot. Internals and Externals of the FNC-2 Attribute

Grammar System. In Alblas and Melihar [AM91℄, pages 485{504.

[JPJ

+

90℄ Martin Jourdan, Didier Parigot, Catherine Juli�e, Olivier Durin, and Carole Le Belle.

Design, implementation and evaluation of the FNC-2 attribute grammar system. In

Conf. on Programming Languages Design and Implementation, pages 209{222, White

Plains, NY, June 1990. Published as ACM SIGPLAN Noties, 25(6).

[JRG92℄ Ian Jaobs and Laurene Rideau-Gallot. A Centaur Tutorial. Rapport de reherhe

2881, INRIA Sophia-Antipolis, July 1992.

[JS94℄ Ashish Jain and Leon Sterling. A methodology for program onstrution by stepwise

strutural enhanement. Tehnial Report CES-94-10, Department of Computer

Engineering and Siene, Case Western Reserve University, June 1994.

[Kah87℄ Gilles Kahn. Natural semantis. In 4th Annual Symposium on Theoretial Aspets

of Computer Siene, volume 247 of LNCS, pages 22{39, Passau, Germany, 19{

21 February 1987. Springer-Verlag.

BIBLIOGRAPHY 235

[Kan91℄ Max I. Kanovih. EÆient program synthesis: Semantis, logi, omplexity. In

T. Ito and A. R. Meyer, editors, Theoretial Aspets of Computer Software, volume

526, pages 615{632. Springer-Verlag, September 1991.

[Kas76℄ Uwe Kastens. Ein

�

Ubersetzer-erzeugendes System auf der Basis Attributierter Gram-

matiken. interner Beriht 10, Fakult�at f�ur Informatik, University Karlsruhe, Septem-

ber 1976.

[Kas91℄ Uwe Kastens. Attribute Grammars in a Compiler Constrution Environment. In

Alblas and Melihar [AM91℄, pages 380{400.

[Kli93℄ Paul Klint. A meta-environment for generating programming environments. ACM

Transations on Software Engineering and Methodology, 2(2), pages 176{201, 1993.

[Kli94℄ Paul Klint. Writing meta-level spei�ations in ASF+SDF. Draft, November 1994.

[KLM

+

97℄ Gregor Kizales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Mar Loingtier, and John Irwin. Aspet-oriented programming. In Mehmet

Aksit and Satoshi Matsuoka, editors, ECOOP'97|Objet-Oriented Programming,

11th European Conferene, volume 1241 of LNCS, pages 220{242, Jyv�askyl�a, Finland,

9{13 June 1997. Springer-Verlag.

[KLMM93℄ J. Lindskov Knudsen, M. L�ofgren, O. Lehrmann Madsen, and B. Magnusson, editors.

Objet-Oriented Environments: The Mjo=lner Approah. Prentie Hall, 1993.

[KMS96℄ M. Kirshenbaum, S. Mihaylov, and L.S. Sterling. Skeletons and Tehniques as a

Normative Approah to Program Development in Logi-Based Languages. In Proeed-

ings ACSC'96, Australian Computer Siene Communiations, 18(1), pages 516{524,

1996.

[Knu68℄ D.E. Knuth. Semantis of ontext-free languages. Math. Syst. Theory, 2:127{145,

1968. Corretions in 5:95-96, 1971.

[Kos91℄ Kai Koskimies. Objet Orientation in Attribute Grammars. In Alblas and Melihar

[AM91℄, pages 297{329.

[KSJ93℄ M. Kirshenbaum, L.S. Sterling, and A. Jain. Relating logi programs via program

maps. In Annals of Mathematis and Arti�al Intelligene, 8(III-IV), pages 229{246,

1993.

[KT93℄ J. Komorowski and S. Trek. Towards Re�nement of De�nite Logi Programs. In

ERCIM Workshop on Development and Transformation of Logi Programs, Frane,

1993.

[KW94℄ Uwe Kastens and W.M. Waite. Modularity and reusability in attribute grammars.

Ata Informatia 31, pages 601{627, 1994.

[KW96℄ Basim M. Kadhim and William M. Waite. Maptool | Supporting Modular Syntax

Development. In Tibor Gyim�othy, editor, Compiler Constrution, 6th International

Conferene, CC'96, volume 1060 of LNCS, pages 268{280. Springer-Verlag, April

1996.

236 BIBLIOGRAPHY

[Lak89℄ A. Lakhotia. A Workbenh for Developing Logi Programs by Stepwise Enhanement.

PhD thesis, Case Western Reserve University, 1989.

[L�am97℄ Ralf L�ammel. Composition based on Meta-Programming. In Antonio Brogi and

Patriia Hill, editors, Proeedings of LOCOS'97, LOGIC-BASED COMPOSITION

OF SOFTWARE, Post Conferene Workshop for the International Conferene on

Logi Programming, Leuven, Belgium, July 8-11th, 1997, pages 49{58, July 1997.

[Lar97℄ Craig Larman. Applying UML and Patterns. Prentie Hall, 1997.

[Le 89℄ Carole Le Belle. Sp�ei�ation de r�egles s�emantiques manquantes. rapport de DEA,

D�ept. d'Informatique, University d'Orl�eans, September 1989.

[Le 93℄ Carole Le Belle. La g�en�eriit�e et les grammaires attribu�ees. PhD thesis, D�ept.

d'Informatique, University d'Orl�eans, 1993.

[LEW96℄ Jaques Loekx, Hans-Dieter Ehrih, and Markus Wolf. Spei�ation of Abstrat

Data Types. Wiley and Teubner, 1996.

[LH96℄ S. Liang and P. Hudak. Modular Denotational Semantis for Compiler Constrution.

In Nielson [Nie96℄, pages 219{234.

[LHJ95℄ Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and modular

interpreters. In Conferene Reord of POPL '95: 22nd ACM SIGPLAN-SIGACT

Symposium on Priniples of Programming Languages, pages 333{343, San Franiso,

California, January 1995.

[Lie95℄ Karl J. Lieberherr. Adaptive Objet-Oriented Software | The Demeter Method. PWS

Publishing Company, 1995.

[LJPR93℄ Carole Le Belle, Martin Jourdan, Didier Parigot, and Gilles Roussel. Spei�ation

and Implementation of Grammar Coupling Using Attribute Grammars. In Mau-

rie Bruynooghe and Jaan Penjam, editors, Programming Language Implementation

and Logi Programming (PLILP '93), volume 714 of LNCS, pages 123{136, Tallinn,

August 1993. Springer-Verlag.

[LNC91℄ Algebrai Methods II: Theory, Tools and Appliations. In Jan A. Bergstra and

Loe M.G. Feijs, editors, Algebrai Methods II: Theory, Tools and Appliations, volume

490. Springer-Verlag, 1991.

[Lor77℄ Bernard Lorho. Semanti attributes proessing in the system DELTA. In A. Ershov

and Cornelius H. A. Koster., editors, Methods of Algorithmi Language Implementa-

tion, volume 47 of LNCS, pages 21{40. Springer-Verlag, 1977.

[LR96℄ Ralf L�ammel and G�unter Riedewald. A alulus for modular and extensible language

de�nition. April 1996. Proeedings (Tehnial Report) of ALEL Workshop at CC'96,

Link�oping, Sweden, April 26, 1996.

[LR97℄ Ralf L�ammel and G�unter Riedewald. Operations on fragments of formal language

de�nitions towards semanti extensibility. In RIB [RIB97℄. 19 pages.

BIBLIOGRAPHY 237

[LRBS℄ Ralf L�ammel, G�unter Riedewald, Nguyen Van Ba, and Susanne Stash. A language

onstrution set. in preparation.

[LRH96℄ Ralf L�ammel, G�unter Riedewald, and J�org Harm. Spei�ation formalisms in

�

�

�

.

Preprint CS-08-96, University of Rostok, Department of Computer Siene, Deem-

ber 1996. 100 pages.

[Mog89℄ Eugenio Moggi. An abstrat view of programming languages. Tehnial Report

ECS-LFCS-90-113, University of Edinburgh, 1989.

[Mog91℄ Eugenio Moggi. Notions of omputation and monads. Information and Computation,

93(1):55{92, July 1991.

[Mos83℄ Peter D. Mosses. Abstrat semanti algebras! In Formal Desription of Programming

Conepts II, Pro. IFIP TC2 Working Conferene, Garmish-Partenkirhen, 1982,

pages 45{71. North-Holland, 1983.

[Mos88℄ Peter D. Mosses. Ation semantis. Cubus, 1(4):9{13, 1988. Published by Dansk

Datamatik Center, Lyngby, Denmark.

[Mos92℄ Peter D. Mosses. Ation Semantis. Number 26 in Cambridge Trats in Theoretial

Computer Siene. Cambridge University Press, 1992.

[Mos96℄ Peter D. Mosses. Theory and pratie of ation semantis. In MFCS '96, Pro. 21st

Int. Symp. on Mathematial Foundations of Computer Siene (Craow, Poland,

Sept. 1996), volume 1113 of LNCS, pages 37{61. Springer-Verlag, 1996.

[Mos97℄ Peter D. Mosses. CoFI: The Common Framework Initiative for Algebrai Spei�a-

tion and Development. In TAPSOFT'97, volume 1214. Springer-Verlag, 1997.

[MTH90℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. The MIT Press,

1990.

[Nai96℄ Lee Naish. Higher Order Logi Programming in Prolog. In Pro. Workshop on

Multi-Paradigm Logi Programming, JICSLP'96, Bonn, 1996.

[NH95℄ J.F. Nilsson and A. Hamfelt. Construting Logi Programs with Higher Order Pred-

iates. In M. Alpuente and M. Sessa, editors, Proeedings of GULP-PRODE'95,

the Joint Conferene on Delarative Programming 1995, Universita' Degli Studi di

Salerno, Salerno, pages 307{312, 1995.

[Nie96℄ Hanne Riis Nielson, editor. 6th European Symposium on Programming, Link�oping,

Sweden, April 1996, Proeedings of ESOP'96, volume 1058. Springer-Verlag, April

1996.

[NM95℄ U. Nilsson and J. Maluszynski. Logi Programming and Prolog (2 ed). John Wiley,

1995.

[NN92℄ F. Nielson and H. R. Nielson. Two-Level Funtional Languages. Cambridge Trats

in Theoretial Computer Siene vol. 34. Cambridge University Press, 1992.

238 BIBLIOGRAPHY

[NS97℄ Lee Naish and Leon Sterling. A Higher Order Reonstrution of Stepwise Enhane-

ment. In Fuhs [Fu97℄. Report CW 253, Katholieke Universiteit Leuven, Department

Of Computing Siene.

[Paa91℄ Jukka Paakki. Paradigms for Attribute-grammar-based Language Implementation.

Ph.D. thesis, Department of Comp. S., University of Helsinki, February 1991.

[Paa95℄ Jukka Paakki. Attribute grammar paradigms | A high-level methodology in lan-

guage implementation. ACM Computing Surveys, 27(2):196{255, June 1995.

[Par88℄ Didier Parigot. Transformations,

�

Evaluation Inrmentale et Optimisations des Gram-

maires Attribus: Le Systme FNC-2. PhD thesis, Universit de Paris-Sud, Orsay, 1988.

[Pet94℄ Mikael Pettersson. RML { a new language and implementation for natural se-

mantis. In M. Hermenegildo and J. Penjam, editors, Proeedings of the 6th In-

ternational Symposium on Programming Language Implementation and Logi Pro-

gramming, PLILP'94, volume 844 of LNCS, pages 117{131. Springer-Verlag, 1994.

[Pet95℄ Mikael Pettersson. Compiling Natural Semantis. PhD thesis, Department of Com-

puter and Information Siene, Link�oping University, Deember 1995.

[PP94℄ Alberto Pettorossi and Maurizio Proietti. Transformation of Logi Programs: Foun-

dations and Tehniques. The Journal of Logi Programming 19, 20, pages 261{320,

1994.

[PPSL96℄ Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approah to ompiling

adaptive programs. In Nielson [Nie96℄, pages 280{295.

[PRJD96a℄ Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dynami At-

tribute Grammars. In Herbert Kuhen and S. Doaitse Swierstra, editors, Int. Symp.

on Progr. Languages, Implementations, Logis and Programs (PLILP'96), volume

1140 of LNCS, pages 122{136, Aahen, September 1996. Springer-Verlag.

[PRJD96b℄ Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dy-

nami Attribute Grammars. Rapport de reherhe 2881, INRIA, May 1996.

ftp://ftp.inria.fr/INRIA/publiation/RR/RR-2881.ps.gz.

[Pro96℄ Maurizio Proietti, editor. Logi program synthesis and transformation: 5th Interna-

tional Workshop, LOPSTR'95, Utreht, The Netherlands, September 20{22, 1995:

proeedings, volume 1048 of LNCS, New York, NY, USA, 1996. Springer-Verlag In.

[PW80℄ Fernando C. N. Pereira and David H. D. Warren. De�nite Clause Grammars for

Language Analysis|A Survey of the Formalism and a Comparison with Augmented

Transition Networks. Arti�ial Intelligene, 13(3):231{278, 1980.

[RIB97℄ Rostoker Informatik-Berihte, volume 20. Universit�at Rostok, 1997.

[Rie72℄ G�unter Riedewald. Syntaktishe Analyse von ALGOL68-Programmen. Dissertation

A, Universit�at Rostok, Sektion Mathematik, 1972.

BIBLIOGRAPHY 239

[Rie79℄ G�unter Riedewald. Compilerkonstruktion und Grammatiken syntaktisher Funktio-

nen. Dissertation B, Rehenzentrum der Universit�at Rostok, 1979.

[Rie91℄ G�unter Riedewald. Prototyping by Using an Attribute Grammar as a Logi Program.

In Alblas and Melihar [AM91℄, pages 401{437.

[Rie92℄ G�unter Riedewald. The LDL { Language Development Laboratory. In U. Kastens

and P. Pfahler, editors, Compiler Constrution, 4th International Conferene, CC'92,

Paderborn, Germany, number 641 in LNCS, pages 88{94, Otober 1992.

[RL89℄ G�unter Riedewald and Uwe L�ammel. Using an attribute grammar as a logi program.

In Deransart et al. [DLM89℄, pages 161{179.

[RL93℄ G�unter Riedewald and Ralf L�ammel. Provable orretness of prototype interpreters

in LDL. Preprint CS-09-93, University of Rostok, Department of Computer Siene,

1993.

[RMD83℄ G. Riedewald, J. Maluszy�nski, and P. Dembinski. Formale Beshreibung von Pro-

grammiersprahen, Eine Einf�uhrung in die Semantik. Oldenbourg-Verlag, M�unhen,

Wien and Akademie-Verlag, Berlin, 1983.

[Rou94℄ Gilles Roussel. Algorithmes de base pour la modularit et la rutilisabilit des grammaires

attribues. PhD thesis, D�epartement d'Informatique, Universit�e de Paris 6, Marh

1994.

[RPJ94℄ Gilles Roussel, Didier Parigot, and Martin Jourdan. Coupling Evaluators for At-

tribute Coupled Grammars. In Peter A. Fritzson, editor, 5th Int. Conf. on Compiler

Constrution (CC' 94), volume 786 of LNCS, pages 52{67, Edinburgh, April 1994.

Springer-Verlag.

[SA97℄ Wolfram Shulte and Klaus Ahatz. Funtional Objet-oriented Programming with

Objet-Gofer. In Herbert Kuhen, editor, Proeedings Arbeitstagung Programmier-

sprahen, Aahen, 22.-23. September, 1997, GI-Jahrestagung'97, 12 pages, Septem-

ber 1997. 9 pages.

[SHLG94℄ Viggo Stoltenberg-Hansen, Ingrid Lindstr�om, and Edward R. Gri�or. Mathemati-

al Theory of Domains. Number 22 in Cambridge Trats in Theoretial Computer

Siene. Cambridge University Press, 1994.

[SJ94℄ Guy L. Steele Jr. Building interpreters by omposing monads. In Conferene Reord

of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Priniples of Pro-

gramming Languages, pages 472{492, Portland, Oregon, January 1994.

[SJK93℄ Leon Sterling, Ashish Jain, and Mar Kirshenbaum. Composition based on skele-

tons and tehniques. In ILPS '93 post onferene workshop on Methodologies for

Composing Logi Programs, Vanouver, Otober 1993.

[Smi85℄ D.R. Smith. Top-down synthesis of divide-and-onquer algorithms. Arti�ial Intelli-

gene, 27(1):43{96, 1985.

240 BIBLIOGRAPHY

[SS94℄ L.S. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press, 1994. 2nd edition.

[SST92℄ Donald Sannella, Stefan Sokolowski, and Andrzej Tarleki. Toward formal devel-

opment of programs from algebrai spei�ations: Parameterisation revisited. Ata

Informatia, 29(8):689{736, 1992.

[ST88℄ Donald Sannella and Andrzej Tarleki. Spei�ations in an arbitrary institution.

Information and Computation, 76(2/3):165{210, February/Marh 1988.

[Sta97℄ Susanne Stash. Fallstudie f�ur Sprahde�nitionen aus wiederverwendbaren

Bausteinen auf der Basis des Semanti Grammar Calulus. Master's thesis, Uni-

versity of Rostok, Department of Computer Siene, 1997.

[Sto77℄ Joseph E. Stoy. Denotational Semantis: The Sott-Strahey Approah to Pro-

gramming Language Theory. The MIT Press, 1977.

[SV91℄ Doaitse Swierstra and Harald Vogt. Higher Order Attribute Grammars. In Alblas

and Melihar [AM91℄, pages 256{296.

[Tho96℄ Simon Thompson. Haskell, The Craft of Funtional Programming. Addison-Wesley,

1996.

[Tr93℄ S. Trek. A ontribution to re�nement of logi programs. Studienarbeit, 1993.

[TS97℄ Walid Taha and Tim Sheard. Multi-Stage Programming with Expliit Annotations.

In PEPM '97, Amsterdam, June 1997, 1997.

[TWW81℄ James W. Thather, Eri G. Wagner, and Jesse B. Wright. More an advie on stru-

turing ompilers and proving them orret. Theoretial Computer Siene, 15:223{

249, 1981.

[Wad92℄ Philip Wadler. The essene of funtional programming. In Conferene Reord of

the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Priniples of Pro-

gramming Languages, pages 1{14, Albequerque, New Mexio, January 1992.

[War93℄ D.H.D Warren. An Abstrat Prolog Instrution Set. Tehnial report, 1993. Tehnial

Note 309, Arti�al Intelligene Center, SRI International.

[Wat75℄ David A. Watt. Modular Desription of Programming Languages. Tehnial Report

A-81-734, University of California, Berkeley, 1975.

[WH97℄ Keith Wansbrough and John Hamer. A modular monadi ation semantis. In

Conferene on Domain-Spei� Languages, pages 157{170. The USENIX Assoiation,

1997.

[Wil90℄ Reinhard Wilhelm. Tree transformations, funtional languages, and attribute gram-

mars. In Pierre Deransart and Martin Jourdan, editors, Attribute Grammars and

their Appliations (WAGA), volume 461 of Leture Notes in Computer Siene, pages

116{129. Springer-Verlag, New York{Heidelberg{Berlin, September 1990. Paris.

BIBLIOGRAPHY 241

[Wir74℄ Niklaus Wirth. On the omposition of well-strutured programs. ACM Computing

Surveys, 6(4):247{259, Deember 1974.

[Wir86℄ Martin Wirsing. Strutured algebrai spei�ations: A kernel language. Theoretial

Computer Siene, 42(2):123{249, August 1986.

[Wir94℄ M. Wirsing. Algebrai spei�ation languages: An overview. In E. Astesiano, G. Reg-

gio, and A. Tarleki, editors, Reent Trends in Data Type Spei�ation, 10th Work-

shop on Spei�ation of Abstrat Data Types, Joint with the 5th COMPASS Work-

shop, S. Margherita, Italy, May/June 1994, Seleted Papers, volume 906 of LNCS,

pages 81{115. Springer-Verlag, 1994.

[WM77℄ D.A. Watt and O.L. Madsen. Extended attribute grammars. Tehnial Report no.

10, University of Glasgow, July 1977.

Index

++, 24

Æ!, 49

?, 49

./, 24, 33, 92

Æ, 34, 48

!, 48

>, 49

?, 52

abstrat state mahine, 136

Aumulate : : :, 82

aumulation, 82

ACG, 120

ation semantis, 126

adaptability, 1

Add : : :, 6, 73, 80

addressing fragments, 35

AG, 47

adaptation, 73

omposable, 121

inremental development, 73

modular, 121

objet-orientation, 110

partitioned, 124

algebrai spei�ation, 41

�-property, 57

anestral attribute, 112

Ao In : : :, 31

appliation, 48

appliative alulus, 48

applied position, see position

applied variable ourrene, see ourrene

arranging rules, 69

ASF+SDF, 22, 43, 149

aspet, 109

omputational, 96

semanti, 97

aspet-oriented programming, 109

Assoiation, 20

attribute grammar, see AG

attribute inheritane, 112

attribution lass, 123

Axiom Is : : :, 50

basi shema, see shema

CAG, 121

all-orretness, 22, 31

Centaur, 4, 41

Chain : : :, 92, 95

hain rule, 95

lihe, 141

losure, 67

Coktail, 122, 149

oerion, 50

ombinator, 70

ombining de�nitions, 86

omplete program, 96

ompleteness, 99

omponent, 109

omposition, 92, 140

ompositional omputation, see omputation

ompositionality, 124

Computation, 45

omputation, 45, 83

ompositional, 85

interpolating, 87

Computation? : : :, 47

omputational aspet, see aspet

omputational behaviour, 62

omputational element, see omputation

omputational model, see model

Compute : : :, 83, 85

Conlusion, 19, 21, 22

Conlusion From : : :, 8

Conlusion Of : : :, 8, 23

243

244 INDEX

Conretize : : :, 92, 94

Condition : : :, 83, 85

onditional, 48

partial, 49

onditional rewrite rule, 43

onformane, 31

onservative extension, 137

onsisteny, 99

Constrution : : :, 83, 90

onstrutive algebrai spei�ation, see alge-

brai spei�ation

Construtor? : : :, 39

Construtor From : : :, 40

Construtor Of : : :, 39

ontext, 25

Contrat : : :, 73, 78, 80

ontration, 74, 99

ontribution, 99

Copy : : :, 11, 75, 80

opy, 33, 75

opy rule, 6, 48

oupling, 120

Deonstrution : : :, 90

Default : : :, 11, 83, 85

default value, 112

De�ne : : :, 76, 83

de�ned symbol, see symbol

de�ning ourrene, see ourrene

de�ning position, see position

de�ning variable ourrene, see ourrene

de�nition, 33

adding, 76

Demeter, 109

denotational semantis, see semantis

Derivable : : :, 67

desriptional omposition, 120

design patterns, 2

diretional type, 41

Do In : : :, 31

domain onstrutor, 50

elaborate shema, see shema

Element, 19, 21, 22, 25

element substitution, 70

Element? : : :, 47

Element From : : :, 25

Eli, 122

embedding, 50

empty sequene, see sequene

empty set, see set

enhanment, 140

Ensure : : :, 80

error, 125

error element, 49

error spei�ation, 49

evolving algebra, 136

export, 53

extensibility, 1, 124

extension, 140

False : : :, 48

�rst-order funtions, 44

attening RHS, 42

FNC-2, 112, 122, 149

Fold : : :, 77, 78

Fold Left : : :, 8, 20, 50

Fold Right : : :, 20, 50

folding, 78

Forget : : :, 66

Forgetting : : :, 71

formal language de�nition, 17

fragment seletion, 35

From : : :, 67

From The Left : : :, 80, 86

funtional omposition, 48

funtional program, 44

GSF, 44, 153

GSF interpretation, 45

GSF shema, 45

Haskell, 149

Head Of : : :, 20, 30, 50

Hiding : : :, 72, 90

higher-order funtion, 44

higher-order logi programming, 109

i/o-orretness, 22, 31

Id, 19

idempotene, 61

losed under : : :, 61

identity, 61

INDEX 245

losed under : : :, 61

IMPLEMENT S, 31

import, 53

inremental onstrution of premises, 72, 90

Inherit : : :, 82

inheritane, 82

injetion, 66

inserting keywords, 94

instane, 38

Interfae, 24

interfae, 24

Interfae From : : :, 25

interpolation, 87

Io, 20, 26

irrelevane, 98

iteration, 50

L-attribution, 39

�-abstration, 48

�-alulus, 48

layer, see level

�

�

�

, 46, 147, 193

left-to-right dependenies, 80

Left To Right : : :, 7, 81

Let : : :, 20, 49

Letre : : :, 20, 49

level, 97

LhsSubstitution, 70

Lift : : :, 92, 100

lifting, 17, 96, 100, 134

Map : : :, 8, 20, 50

Map Union : : :, 52

maybe type, 52

Merge : : :, 12, 92

merging, 8, 92

meta-programming, 1

meta-variable, 27

minimal semantis, 9

mixin, 110

Mj6olner/Orm, 112

model

omputational, 97

semanti, 97

modular interpreter, 129

modular meta-programming, 52

modularity, 124

module, 52

module quali�er, 46

monad, 129

multi-stage programming, 110

Name, 19, 21, 28

Name? : : :, 39, 47

Name From : : :, 26, 40

Name Of : : :, 25

natural semantis, 4

Negative, 44

negative equations, 44

NEW

Name

, 26, 50

New Name : : :, 50

NEW

Operation

, 47, 50

New Operation : : :, 50

NEW

Variable

, 27, 50

New Variable : : :, 8, 50

Nil? : : :, 20, 30, 50

non-empty sequene, see sequene

non-empty set, see set

normalization, 42

ourrene

applied, 31

de�ning, 31

OLGA, see FNC-2

On : : :, 20, 48

OO CFG, 111

OOAG, 110

Operation, 45

Operation? : : :, 47

Operation From : : :, 47

operational semantis, see semantis

Order : : :, 69

orthogonality, 90

overlapping skeleton rules, 102

Override : : :, 92, 94

Parameter, 19, 21, 25, 26, 39

parameterization, 73, 79

Parameters : : :, 8, 25, 47, 66

part, 100

partial onditional, see onditional

partial dedution, 138

246 INDEX

partial evaluation, 138

pass, 122

pattern, 121

Permute : : :, 73

phase, 123

polytypism, 108

Position, 20, 37

position, 73, 79

applied, 31

de�ning, 31

Positions : : :, 67

Positive, 44

positive equations, 44

postomputation, 89

preomputation, 88

Preompute : : :, 83, 87

Pre�x, 45

pre�x, 46

Pre�xed : : :, 66

Premise, 19, 21, 22

Premise From : : :, 8, 46

Premises Of : : :, 8, 23

preservation

semantis, 62

skeleton, see skeleton

type, see type

well-de�nedness, see well-de�nedness

produt, 50

Pro�le, 20, 28

Pro�le From : : :, 28

Pro�le Of : : :, 52

Program, 19, 21, 24, 53

program map, 62

Program From : : :, 25

Projet : : :, 80

projetion, 50, 59, 66, 80

propagation, 80

propagation pattern, 109

property

of meta-program, 54

quali�er, 46

RAG, 45

reahability, 67

rearranging rules, 69

reursion shema, 50

Redue : : :, 12, 83, 86

reduedness, 32

re�nement, 63, 137

stepwise, 138

Relate : : :, 83, 85

relational formula, 45

relational symbol, 45

Remote : : :, 82

remote aess, 82

Rename : : :, 11, 68

renaming, 68

Replae : : :, 71

required symbol, see symbol

reusability, 1, 124

reuse, 21, 107

Reverse : : :, 50

RhsSubstitution, 70

RML, 4, 22, 31, 39, 152

Rule, 19{22

rule at level, 98

Rule From : : :, 8, 23

Rules, 19{21, 23, 50

Rules From : : :, 24

shema, 2, 141

basi, 73

omposition, 92

omputation, 83

elaborate, 79

parameterization, 73, 79

position, 73, 79

Selet : : :, 66

seletAo, 183

seletAos, 183

seletDo, 183

seletDos, 183

Seleting : : :, 71

seletion, 66

seletive transformation, see transformation

seletor, 35

semanti aspet, see aspet

semanti model, see model

semanti rule, 48

semantis, 124

denotational, 125

INDEX 247

operational, 125

semantis preservation, see preservation

separate ompilation, 121

sequene, 50

empty, 50

non-empty, 50

set, 51

empty, 51

non-empty, 51

Shape, 55

shape, 108

SIGMA, 28

Sigma, 20, 27, 28, 50

Sigma Of : : :, 30

signature, 23

Skeleton, 55

skeleton, 55, 98, 139

preservation, 55

SML, 50, 149

SOLVE , 35, 40

Sort, 20, 28

Sort Of : : :, 27, 30

sorting rules, 69

stepwise enhanement, 78, 139

stritness, 49

Sub : : :, 73, 80

Substitute In : : :, 34, 40

Substitution, 20, 33, 50

substitution, 33

Subterms Of : : :, 39

Superimpose : : :, 77

superimposition, 47, 77, 99

Symbol, 19, 28

symbol

de�ned, 22

required, 24

used, 22

Symbol Of : : :, 8, 30, 47

Symbols : : :, 66

syntatial rule, 48

Tag, 19, 21, 23

Tag From : : :, 26, 40, 47

Tag Of : : :, 8, 23

Tags : : :, 66

Tail Of : : :, 20, 30, 50

tehnique, 139

template, 121, 123, 141

Term, 39

term onstrution, 41, 90

term deonstrution, see term onstrution

Term? : : :, 39

Term From : : :, 39

To : : :, 67

totality, 56

Trafo, 20

transformation

ontrating, 60

extending, 60, 62

loal, 62

rule, 62

seletive, 71

struture, 62

type-extending, 58

transformer, 99

True : : :, 48

tuple, 50

type

dereasing, 58

extension, 58

inreasing, 58

preservation, 58

type onstrutor, 129

T YPE

Parameter

, 26, 40

Typol, 4, 41

unde�ned variable, see variable

Unde�ned! : : :, 77

Unfold : : :, 77, 78

unfolding, 78

uni�ation, 33

Unify Element : : :, 35

Unify Parameters : : :, 34

unique seletor

for a de�ning position, 37

for a position, 37

for a premise, 36

for an applied position, 37

unique sortedness, 37

Unpre�xed : : :, 66

unused variable, see variable

Unused! : : :, 77

248 INDEX

Use : : :, 76

use, 33

adding, 76

used symbol, see symbol

Variable, 19, 26

variable

unde�ned, 32

unused, 32, 86

Variable? : : :, 27

Variable From : : :, 27

Variable Of : : :, 27

Variables : : :, 66

Variables In : : :, 27

WD, see well-de�nedness

weaving, 109

well-de�nedness, 6, 20, 31

preservation, 57

reovery, 57

well-formedness, 20, 27

well-typedness, 6, 20, 28

WF , see well-formedness

WT , see well-typedness

