CSCI 520 Computer Animation and Simulation

Quaternions and Rotations

Jernej Barbic
University of Southern California

Rotations

- Very important in computer animation and robotics
- Joint angles, rigid body orientations, camera parameters
- 2D or 3D

Rotations in Three Dimensions

- Orthogonal matrices:

$$
\begin{aligned}
& R R^{\top}=R^{\top} R=I \\
& \operatorname{det}(R)=1
\end{aligned}
$$

$$
R=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
$$

Representing Rotations in 3D

- Rotations in 3D have essentially three parameters
- Axis + angle (2 DOFs + 1DOFs)
- How to represent the axis?

Longitude / lattitude have singularities

- 3×3 matrix
- 9 entries (redundant)

Representing Rotations in 3D

- Euler angles
- roll, pitch, yaw
- no redundancy (good)
- gimbal lock singularities
- Quaternions

Source: Wikipedia

- generally considered the "best" representation
- redundant (4 values), but only by one DOF (not severe)
- stable interpolations of rotations possible

Euler Angles

1. Yaw
rotate around y-axis
2. Pitch rotate around (rotated) x-axis
3. Roll rotate around (rotated) y-axis

Gimbal Lock

When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three, and is in gimbal lock.

Gimbal Lock

When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three, and is in gimbal lock.

Choice of rotation axis sequence for Euler Angles

- 12 choices:

XYX, XYZ, XZX, XZY, YXY, YXZ, YZX, YZY, ZXY, ZXZ, ZYX, ZYZ

- Each choice can use static axes, or rotated axes, so we have a total of 24 Euler Angle versions!

Example: XYZ Euler Angles

- First rotate around X by angle θ_{1}, then around Y by angle θ_{2}, then around Z by angle θ_{3}.
- Used in CMU Motion Capture Database AMC files

- Rotation matrix is:
$R=\left[\begin{array}{ccc}\cos \left(\theta_{3}\right) & -\sin \left(\theta_{3}\right) & 0 \\ \sin \left(\theta_{3}\right) & \cos \left(\theta_{3}\right) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \left(\theta_{2}\right) & 0 & \sin \left(\theta_{2}\right) \\ 0 & 1 & 0 \\ -\sin \left(\theta_{2}\right) & 0 & \cos \left(\theta_{2}\right)\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \left(\theta_{1}\right) & -\sin \left(\theta_{1}\right) \\ 0 & \sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)\end{array}\right]$

Outline

- Rotations
- Quaternions
- Quaternion Interpolation

Quaternions

- Generalization of complex numbers
- Three imaginary numbers: $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$

$$
\begin{aligned}
& \imath^{2}=-1, j^{2}=-1, k^{2}=-1 \\
& i j=k, j k=i, k i=j, j i=-k, k j=-i, j k=-j
\end{aligned}
$$

- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}, \quad s, x, y, z$ are scalars

Quaternions

- Invented by Hamilton in 1843 in Dublin, Ireland
- Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

Source: Wikipedia
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{i} \mathrm{j} k=-1$
\& cut it on a stone of this bridge.

Quaternions

- Quaternions are not commutative!
$q_{1} q_{2} \neq q_{2} q_{1}$
- However, the following hold:
$\left(q_{1} q_{2}\right) q_{3}=q_{1}\left(q_{2} q_{3}\right)$
$\left(q_{1}+q_{2}\right) q_{3}=q_{1} q_{3}+q_{2} q_{3}$
$q_{1}\left(q_{2}+q_{3}\right)=q_{1} q_{2}+q_{1} q_{3}$
$\alpha\left(q_{1}+q_{2}\right)=\alpha q_{1}+\alpha q_{2} \quad$ (α is scalar)
$\left(\alpha q_{1}\right) q_{2}=\alpha\left(q_{1} q_{2}\right)=q_{1}\left(\alpha q_{2}\right) \quad(\alpha$ is scalar)
- I.e., all usual manipulations are valid, except cannot reverse multiplication order.

Quaternions

- Exercise: multiply two quaternions
$(2-i+j+3 k)(-1+i+4 j-2 k)=\ldots$

Quaternion Properties

- $\mathrm{q}=\mathrm{s}+\mathrm{x} \boldsymbol{i}+\mathrm{y} \boldsymbol{j}+\mathrm{z} \boldsymbol{k}$
- Norm: $|q|^{2}=s^{2}+x^{2}+y^{2}+z^{2}$
- Conjugate quaternion: $\bar{q}=s-x \boldsymbol{i}-y \boldsymbol{j}-\mathrm{z} \boldsymbol{k}$
- Inverse quaternion: $q^{-1}=\bar{q} /|q|^{2}$
- Unit quaternion: $|q|=1$
- Inverse of unit quaternion: $\mathrm{q}^{-1}=\overline{\mathrm{q}}$

Quaternions and Rotations

- Rotations are represented by unit quaternions
- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
$s^{2}+x^{2}+y^{2}+z^{2}=1$
- Unit quaternion sphere (unit sphere in 4D)

Source:
Wolfram Research
unit sphere in 4D

Rotations to Unit Quaternions

- Let (unit) rotation axis be $\left[\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right.$, and angle θ
- Corresponding quaternion is

$$
\begin{aligned}
\mathrm{q}= & \cos (\theta / 2)+ \\
& \sin (\theta / 2) \mathrm{u}_{\mathrm{x}} i+\sin (\theta / 2) \mathrm{u}_{\mathrm{y}} j+\sin (\theta / 2) \mathrm{u}_{\mathrm{z}} \boldsymbol{k}
\end{aligned}
$$

- Composition of rotations q_{1} and q_{2} equals $\mathrm{q}=\mathrm{q}_{2} \mathrm{q}_{1}$
- 3D rotations do not commute!

Unit Quaternions to Rotations

- Let v be a (3-dim) vector and let q be a unit quaternion
- Then, the corresponding rotation transforms vector v to $\mathrm{q} \boldsymbol{v} \mathrm{q}^{-1}$
(\boldsymbol{v} is a quaternion with scalar part equaling 0 , and vector part equaling v)

$$
\text { For } \mathrm{q}=\mathrm{a}+\mathrm{b} \boldsymbol{i}+\mathrm{c} \boldsymbol{j}+\mathrm{d} \boldsymbol{k}
$$

$$
R=\left(\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2 b c-2 a d & 2 b d+2 a c \\
2 b c+2 a d & a^{2}-b^{2}+c^{2}-d^{2} & 2 c d-2 a b \\
2 b d-2 a c & 2 c d+2 a b & a^{2}-b^{2}-c^{2}+d^{2}
\end{array}\right)
$$

Quaternions

- Quaternions q and -q give the same rotation!
- Other than this, the relationship between rotations and quaternions is unique

Outline

- Rotations
- Quaternions
- Quaternion Interpolation

Quaternion Interpolation

- Better results than Euler angles
- A quaternion is a point on the 4-D unit sphere
- Interpolating rotations corresponds to curves on the 4-D sphere

Source:
Wolfram Research

Spherical Linear intERPolation (SLERPing)

- Interpolate along the great circle on the 4-D unit sphere
- Move with constant angular velocity along the great circle between the two points

San Francisco to London

- Any rotation is given by two quaternions, so there are two SLERP choices; pick the shortest

SLERP

$$
\operatorname{Slerp}\left(q_{1}, q_{2}, u\right)=\frac{\sin ((1-u) \theta)}{\sin (\theta)} q_{1}+\frac{\sin (u \theta)}{\sin (\theta)} q_{2}
$$

$\cos (\theta)=q_{1} \cdot q_{2}=$
$=s_{1} s_{2}+x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

- u varies from 0 to 1
- $\mathrm{q}_{\mathrm{m}}=\mathrm{s}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}} \boldsymbol{i}+\mathrm{y}_{\mathrm{m}} \boldsymbol{j}+\mathrm{z}_{\mathrm{m}} \boldsymbol{k}$, for $\mathrm{m}=1,2$
- The above formula does not produce a unit quaternion and must be normalized; replace q by q / |q|

Interpolating more than two rotations

- Simplest approach: connect consecutive quaternions using SLERP
- Continuous rotations
- Angular velocity not smooth at the joints

Interpolation with smooth velocities

- Use splines on the unit quaternion sphere
- Reference: Ken Shoemake in the SIGGRAPH '85 proceedings (Computer Graphics, V. 19, No. 3, P. 245)

Bezier Spline

- Four control points
- points P1 and P4 are on the curve
- points P2 and P3 are off the curve; they give curve tangents at beginning and end

Bezier Spline

- $p(0)=P 1, p(1)=P 4$,
- $p^{\prime}(0)=3(P 2-P 1)$
- $p^{\prime}(1)=3(P 4-P 3)$
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor "3" is chosen to
 make "velocity" approximately constant

The Bezier Spline Formula

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right]
$$

- $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ is point on spline corresponding to u
- u varies from 0 to 1
- $\mathrm{P} 1=\left[\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}\right]$
$P 2=\left[x_{2} y_{2} z_{2}\right]$
- P3 $=\left[\begin{array}{lll}x_{3} & y_{3} & z_{3}\end{array}\right]$
$\mathrm{P} 4=\left[\mathrm{x}_{4} \mathrm{y}_{4} \mathrm{z}_{4}\right]$

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

DeCasteljau on Quaternion Sphere

Given t, apply DeCasteljau construction:
$\mathrm{Q}_{0}=\operatorname{SLerp}\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{t}\right) \quad \mathrm{Q}_{1}=\operatorname{Serp}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{t}\right)$
$\mathrm{Q}_{2}=\operatorname{Slerp}\left(\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{t}\right) \quad \mathrm{R}_{0}=\operatorname{Slerp}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{t}\right)$
$R_{1}=\operatorname{Slerp}\left(Q_{1}, Q_{2}, t\right) \quad P(t)=\operatorname{Slerp}\left(R_{0}, R_{1}, t\right)$

Bezier Control Points for Quaternions

- Given quaternions $\mathrm{q}_{\mathrm{n}-1}, \mathrm{q}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}+1}$, form:

$$
\begin{aligned}
& \overline{a_{n}}=\operatorname{Slerp}\left(\operatorname{Sierp}\left(q_{n-1}, q_{n}, 2.0\right), q_{n+1}, 0.5\right) \\
& a_{n}=\operatorname{SLerp}\left(q_{n}, \frac{\bar{a}_{n}}{}, 1.0 / 3\right) \\
& b_{n}=\operatorname{Serp}\left(q_{n}, \bar{a}_{n},-1.0 / 3\right)
\end{aligned}
$$

Interpolating Many Rotations on
 Quaternion Sphere

- Given quaternions $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}$, form Bezier spline control points (previous slide)
- Spline 1: $\mathrm{q}_{1}, \mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{q}_{2}$
- Spline 2: $q_{2}, a_{2}, b_{3}, q_{3}$ etc.
- Need a_{1} and b_{N}; can set $\mathrm{a}_{1}=\operatorname{Slerp}\left(\mathrm{q}_{1}, \operatorname{Slerp}\left(\mathrm{q}_{3}, \mathrm{q}_{2}, 2.0\right), 1.0 / 3\right)$ $b_{N}=\operatorname{Slerp}\left(q_{N}, \operatorname{Serp}\left(q_{N-2}, q_{N-1}, 2.0\right), 1.0 / 3\right)$
- To evaluate a spline at any t, use DeCasteljau construction

