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Preface

In 1997 the American Geophysical Union's (AGU) Committee on Global Environmental Change proposed that AGU d~velop a position statement
on climate change. Over the next year, an AGU panel crafted a statement, while considering comments from members responding to a draft posted
on AGU's Web site in early 1998. The AGU Council discussed, modified, and adopted a final statement in December of 1998. AGU published the
statement, Climate Change and Greenhouse Gases, in Eos on February 2, 1999.

AGU position statemenlS are intended primarily for nontechnical audiences. They are necessarily brief and lack references to the publishedscien·
tific literature. The authors of this statement felt that a thorough review of the peer-reviewed scientific literature of climate change and greenhouse
gases would help scientists and nonscientists understand the scientific basis [or assertions made in the statement. Their article, which was itself rigor­
ously peer reviewed, was published in Eos on September 28, 1999. This reprint also includes AGU's policy on advocacy of public issues, procedures
for developing position statements, and the position statement itself. The full text of this reprint, with its list of references (not included in the printed
version of Eos, due tospace limitations) may also be found on theAGU Website: hllp:/Iwww.agu.org/eos_elecl99148e.html.

Climate Change
and Greenhouse Gases

Infrared (IR) active gases, principally water
vapor (H20), carbon dioxide (CO,), and
ozone (03). naturally present in the Earth's at­
mosphere, absorb thermallR radiation emit­
ted by the Earth's surface and atmosphere. The
atmosphere is warmed by this mechanism
and, in turn, emits IR radiation, with a signifi­
cant portion of this energy acting to warm the
surface and the lower atmosphere. As a conse­
Quence the average surface air temperature 01
the Earth is about 30DC higher than it would be
without atmospheric absorption and reradia­
tion of IR energy [Henderson.5e/lers and Robin­
son, 1986; Kellogg, 1996; PeixOlO and Oorl,
1992].

This phenomenon is popularly known as the
"greenhouse effect," and the IR active gases re­
sponsible for the effect are likewise referred to
as "greenhouse gases." The rapid increase in
concentrations of greenhouse gases since the in­
dustrial period began has given rise to concern
over potential resultant climate changes.

The AGU Council approved a position state­
ment on Climate Change and Greenhouse
Gases in December 1998. The statement and a
short summary of the procedures that were fol­
lowed in its preparation, review, and adoption
were published in the February 2,1999. issue
of Eos (p. 49) [AGU, 1999, also at AGU'sWeb
site]. The present article reviews scientific un­
derstanding of this issue, as presented in peer­
reviewed publicalions. This understanding
serves as the underlying basis of the position
statement.

Greenhouse Gases and the
Earth-Abnosphere Energy Balance

The principal greenhouse gas concentrations
that have increased over the industrial period
are carbon dioxide (C02), methane (CH4), ni­
trous oxide (N20), and chlorofluorocarbons
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CFC-l1 (CCI3F) and CFC-12 (CCI2F,) [Hansen
el 01., 1998; Schimel el 01., 1996J. The observed
increase of C02 in the atmosphere from about
280 ppm in the preindustrial era to about 364
ppm in 1997 (Figure I) [Friedli el 01.,1986; Han­
sen elal., 1998; Keeling and Whorl, 1998] has
come largely from fossil fuel combustion and
cement production.

These sources amounled to approximately
6.5 Pg Clyr (I Pg= 1015 g) in 1996 [Marland et
ai., 1999]. Land use changes produce a non­
negligible but more uncertain contribution 01
aboutl.6 ±l.0 Pg Clyr [Fan elal., 1998; Schimel
et al., 1996]. These anthropogenic sources of
C02 exceed the estimated uptake of C02 by
the atmosphere and oceans, implying a signifi­
cant but as yet unidentified terrestrial sink [Ent­
ing and Peannan, 1987J.

The atmospheric concentration of CH4 has in­
creased from about 700 ppb in preindustrial
times to ahoutl721 ppb in 1994 (Figure 1)
[Houghlon el 01., 1996]. Fossil·fuel related
sources of CH4 amount to approximately 70­
120Tg CH,lyr (I Tg= 10" g). fncreases in CH.
sources resulting from rice cultivation, animal
husbandry, biomass burning, and landlills con­
tribute about20()'350 Tg CH,lyr [Schimel el 01.,
1996].

The atmospheric concentration of N20 has in­
creased from about 275 ppb in preindustrial
times to about 312 ppb in 1994 (Figure I)
[Hougllton el 01., 1996J. Estimated anthropo­
genic emissions of N20 for the 1980s range
from 3 to 8 Tg Nlyr [Houghlon el 01.,1996]. The
main anthropogenic sources are from
agriculture and industrial sources including
adipic acid and nitric acid production
[Schimel el 01., 1996].

Chlorofluorocarbons CFC-J2 and CFC-II are
manmade compounds that were not apprecia­
bly present in the atmosphere before 1950 (Fig­
ure 1). These compounds have been widely
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used as refrigerants and in spray propellants
and foam blowing. Because of their role in
catalyzing decomposition of stratospheric
ozone, production of these compounds has
been dramatically reduced in response to the
Montreal Protocols and subsequent interna­
tional agreements. Atmospheric concentra­
tions of these compounds are expected to
diminish substantially during the next century
[Pmlher el 01., 1996J.

Prediction 01 the future persistence of anthro­
pogenic greenhouse gases in the atmosphere
is based on mathematical models that simu­
late future additions and removals. The green­
house gas concentrations predicted by these
models are subject to large uncertainties in the
effects of both natural processes and human
activities.

For some greenhouse gases persistence can
be estimated from "mean residence times,"
which are obtained with simple linear models
and represent the time that would be required
for removal of 63% of the anthro- pogenic ex­
cess of the material in the atmosphere, if an­
thropogenic sources were abruptly diminished
to zero [Lasaga and Berner, 1998J. This ap­
proach yields a TOugh measure of the persist­
ence in the atmosphere of anthropogenic
additions of CH4 with an estimated mean resi­
dence time 01 10 years [Prolher, 1996, 1998];
N,O, 100years, [Prolher, 1996, 1998]; and CFC­
II and CFC-12, 50 and 102 years, respectivefy
[Prot/'er el 01., 1995J.

The persistence of anthropogenic C02 in the
atmosphere cannot be estimated with such a
simple model because exchange with the
ocean and sediments leads to a more complex
behavior. Model simulations of oceanic C02
uptake provide response times associated with
C02 gas exchange at the ocean surface of ap­
proximately 10 years rUss and Merlioot, 1986;
Toggweileretal., 1989] and downward mixing
of surface waters on the order of decades to
centuries [Maier-Reimer and Hasselmann,
1987; Sal171ienlo el 01., 1992]. But even when
these oceanic C02 removal processes are al­
lowed suHicient time in the models to reach
their maximum capacity. they can remove
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Greenhouse Gas Mixing Ratios

Fig. J. Concentrations o(pn"ncipa{ anthropogenic greenhouse gases in the industrial era IHansen el
01., /998; Hansen and Salo, 1999J Black curves denote measurements ofin situ atmospheric sam­
ples collected in recent years (NOM. 19990, b, c; Houghton et al., /9951 Points denote concentra·
lions determined from air bubbles trapped in polar ice sheets using ice cores obtained in Antarctica
(blue) or Greenland (Jellow); red curues denole fils 10 these poinls {Etheridge el 01.. 1996. 1998;
Mochido el 01., 1995]. Data (orCFCs are from in silu samples since 1977 {NOM, 1999d]. Mixing ra­
liDS ofCFC-J I and eFe·}2 pn"or 10 the first in situ atmosphen"c measurements were estimated from
industn"aJ production data and assumed atmospheric life/imes of50 and 100years, respectively
(AFEAS, 1993; Hansen et 01., 1998; Hansen and 5010, 1999/.

Climate Change and Carhon Dioxide

stantial fraction of the excess C02 in the atmos­
phere will remain in the atmosphere for dec­
ades to centuries, and about 15-30% will remain
for thousands of years.

The additional anthropogenic greenhouse
gases that have been introduced into the at­
mosphere increase the IR energy absorbed by
the atmosphere, thereby exerting a warming in­
fluence on the lower atmosphere and the sur­
race, and a cooling influence on the
stratosphere [Peixoto and Oorl, 1992;
Ramanathan et 01., 1985].

The radiative influence resulting from a
given incremental increase in greenhouse gas
concentration can be quantified and com­
pared as the change in downward IR flux at
the tropopause, a quantily known as the radia­
tive forcing. Climate model calculations indi­
cate that to good approximation the global
warming inrJuence of the several greenhouse
gases is equal forequal forcing [Wang elal.,
1991, 1992], lending support 10 Ihe ulility 01
the concept of climate forcing and response.

Of the several anthropogenic greenhouse
gases, C02 is the most important agent of po­
tential future climate warming because 01 its
large current greenhouse rorcing. its substan­
tial projected future forcing [Hough/on el al..
1996], and its long persistence in the atmos­
phere (see above). Understanding climate re­
sponse to a specified forcing is one of the
major challenges facing the climate research
community. The equilibrium response of the
nonlinear climate system depends in complex
ways on various feedbacks, such as changes in
water vapor concentration and cloudiness
that can augment or diminish climate re­
sponse from that which would occur in the abo
sence of such feedbacks .

In principle, empirical inferences of climate
sensitivity would be of great value. but devel­
opment of such inferences is confounded by
the natural variability of the climate system
[Sonier el 01.. 1996J, by local or regional ef­
fects that can be different from the global ef­
fects, and by the simultaneous working of
multiple transient forcings and responses. For
these reasons a principal means for under­
standing climate system response to forcing is
by use of computer models of the Earth's cli­
male system.

The most commonly considered indicator of
climate change is the surface air temperature.
Extensive efforts have been made to examine
the trends in global and regional mean tem­
peratures over time [Ghil and Vautard, 1991;
Hasselmann, 1993; North and Kim, 1995; North
el 01., 1995; Schlesinger and Ramankully, 1994J
and in the global patterns of temperature
change [Hegerl et 01., 1997; Hegerl et 01., 1996;
Jones and Hegerl, 1998; Santerel 01.. 1995J.
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to thousands of years [Harden el 01., 1992;
Schlesinger, 1990;Slallard, 1998J. Removing
some of the anthropogenic C02 by this mecha­
nism may require reactions with carbonate sedi­
ments in the deep sea that occur on timescales
of thousands of years [Archer el 01., 1998; Boyle,
1983; Sundquist, 1990). On Ihe basis 01 such
analyses, it is now generally believed that a sub-
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only about 70 to 85% of the anthropogenic C02
added to the atmosphere [Archeretal., 1998;
Broecker and Peng. 1982; Sarmiento et al.,
1992].

Additional C02 might be removed by burial
in soils or deep sea sediments through mecha­
nisms that, although poorly understood. are
generally believed to require times extending
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climatic conditions were sometimes warmer
and sometimes cooler than at present [Dahl­
Jensen el 01., 1998; Feng and Epslein, t994;
Prenlice el 01,. t998J.

There is also evidence of large and abrupt cli­
mate changes that exceed recent experience
[Band el al., t997; Denlan and Karlen. 1973;
Gosse and Vancampa, 1994; Lairrl el 01.. 1996;
Petitmaire and Guo, 1996; von Grofenstein et
01., 1998]. These climatic variations occurred
during a time when variations in atmospheric
C02 were minimal [Bamola el 01.,1995: lnder­
mahleetal., 1999].

It is clear from these records, and from many
other studies of paleoclimate evidence
throughout the geologic record, that the global
climate system has been influenced by many
factors in addition to greenhouse gases [see,
lor exampte, BeJgerand Crowell, 1982J. To
evaluate geologic evidence ror the influence
of greenhouse gases, one must focus on re­
cords from periods when changes in atmos­
pheric C02 were much larger than those that
occurred during the millennia immediately
preceding the recent increase in anthropo­
genic C02 production.

Larger natural variations in atmospheric C02
have been inferred Irom the geologic record of
the more distant past [foran overview, see
Sundquisl and Broecker, 1985]. Variations of 80­
100 ppm, observed in analyses of gas bubbles
trapped in glacier-ice cores, are correlated
with the glacial Cice age") and interglacial c1i·
matic oscillations of the latest Pleistocene and
Holocene Epochs (Figure 3; [Bamola et al.,
1987: Bemerel 01.. 1980; Jouzel el 01., 1993; Wa·
hlen et al., 1998]). Glacial periods are associ­
ated with low C02 concentrations, and
interglacial periods with high C02 concentra·
tions. Ice core methane profiles show a similar
correlation with climate [Chappellaz el al.,
t990: Delmalle el aI., 1998; Jouzel el 01., 1993:
Siauffer el 01., 1988J.

Still larger past variations in atmospheric
C02, including increases to concentrations sev­
eral times higher than recent levels, have been
estimated using geochemical models con­
strained by the sediment record [Berner, 1994,
1997: Bemerel 01., 1983; Budyko and Ronov.
1979; France·Lanarri and DeIT)', t997; Francais
and Godderis. 1998; Raymo el 01., t988J. During
the last several hundred million years, these
larger and slower C02 changes can be corre­
lated with general features of climale change
[Bel7ler, 1990; Crawley and Narlh, t991; Fis·
cher, 198 t).

Paleoclimate model simulations (using mod­
elssimilar in many ways to the models used in
modem climate projections) support the im­
portance of C02 in explaining global mean
temperatures in the geologic past [Bergeret
01., 1998; Bush and Philander, t997; Kasling
andAckennan, 1986; Ollabliesner, 1996; Tara­
sou and Peltier, 1997; Weaver et 01., 1998].

completely independent estimate [Pollack et
01., 1998], based on analysis of subsurface
(borehole) temperature measurements, sup­
ports the unusual character of the recent
global wanning in the context of the last 5
centuries.

Glaciers are present on every continent ex·
cept Australia; they are thus excellent geo­
graphically dispersed regional indicators of
climate change. The Earth's valley glaciers, ice
caps, and ice fields and their associated ouUet
glaciers have generally been shrinking and re­
ceding during the last century [Haeberli, 1990;
Meier, 1984; Oerlemans, 1994]. Studies in North
America [Hall el 01., 1992; Marcus el 01., 1995;
Rabus et al., 1995; WiJliams and Fe"igno, in
press). South America [Thampsan elal.. 1995;
Williams and Ferrigno, 1998). Europe [Wi/·
Iiams and Ferrigna, t993; Bayr et 01., 1994; Hoe·
berli and Haelzle. t995).Iceiand [Johannessan
and Sigvrasson. 1998). Africa [Hastenral",
1989; Williams and Ferrigno, 1991], and Asia
[Thampson el 01.• 1989, 1993, t998J have
shown substantial recession of many of the ice
caps and nontidewater. nonsurge-type glaciers
[DywgelOv and Meier, 1997] since the early nine­
teenth century.

The record of the past few thousand years is
more difficult to piece together than the more
recent record because fewer data are avail­
able. There is evidence from this period that
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Fig. 2. Reconstmclion ofNorthern Hemisphere temperature anomaly trend from 1000 A.D. to pre­
sent/Mann el 01., 1999; see a/so Mann el aI., 199B) from dendroclimatic, coral, and ice-core proxy
records as calibrated by instrumentarmeasurements [Jones and Briffa, 1992j. 771;n curves give re­
construction and raw data from 1000-/998 A.D. Smoothed version (thick solid), linear trend from
100010 1850 A.D. (long dashed). and two standard error limilS (shaded) are also shown.

Worldwide temperature measurements, care­
fully screened for instrumental and measure­
ment artifacts, such as effects of urbanization,
have been used to estimate that global mean
annual surface temperatures have increased
belween 0.3 and 0.6·C during the last 150years
[Hansen and Lebedefl, 1987; Jones el 01.,1997;
Nicholls el af., 1996]. However, it must be
stressed that the increase has not been mono­
tonic, with interannual fluctuations in the
global annual mean temperature equal to an
appreciable fraction of the overall rise over
this time period. No single explanation can ac·
count for this variability.

Although temperature is usually the first vari­
able considered in assessments of global cli­
mate change, it is important to consider other
data that integrate the slate of the climate sys­
tem over space and time. These include tem­
perature proxy data (such as tree ring
records), borehole temperature measure­
ments in soil, permafrost, and ice sheets, and
measurements of the mass balance of valley
glaciers and ice caps. Several recent proxy tem­
perature reconstructions have suggested that
the wanning during the twentieth century is
greater than any seen in the last 400 to 600
years [Bliffa el 01., 1998;}anes el al.. 1998;
Mann el 01.• 1998; OvelPeck el 01.. 1997J and
perhaps the lasl 1200 to 1500 years (Figure 2)
[OvelPeck, 1998; Thompson elal., 1993J. A
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Fig. 3. Carbon dioxide concentration (top), proxy temperature (middle), and methane
concentration from analyses ofice cores from Vostok, Antarctica /Jouze{ et 01.• J993j.

tionship between C02 and climate implies that
the geologic' record is not likely to reveal ana­
logs of simple climate forcing byanthropo­
genic CO, emissions [Crowley, 1997; Hay el 01.,
1997; Sundquisl, 1986J . There is no known geo­
logic precedent for large increases of atmos­
pheric C02 without simultaneous changes in
other components of the carbon cycle and cli­
mate system.

Predicted Climate Change from
Increased Greenhouse Gases

Some of the predicted responses to increases
in greenhouse gases include increases in
mean surface air temperature, increases in
global mean rates of precipitation and evapo­
ralion, rising sea level, and changes in the bio­
sphere. Many of these predictions are based
largely on computer models that simulate fun­
damental geophysical processes.

Most model simulations of Earth's climate in­
dicate that an increase in the atmospheric con·
cent ration of a greenhouse gas will lead to an
increase in the average surface air tempera­
lure ollhe Earth [Kat/enberg el 01.,1996, lable
6.3]. For example, the 18 model runs (using 7
independenl models) quoled by Kattenberg et
aJ. predict an equilibrium temperature in­
crease of 2.0 ±O.GDC for simulations using dou­
ble the current level of atmospheric C02.

An increase in surface air temperature would
cause an increase in evaporation and gener­
ally higher levels of atmospheric water vapor.
The positive feedback associated with this
leads to the expectation that an increase in sur­
face air temperatures would lead to a more in­
tense hydrological cycle, with more frequent
heavy precipitation events [Houghton et al.,
1992; Kat/enberg el 01., 1996]. However, be­
cause of the coarse spatial resolution of pre­
sent general circulation models, simulations
of the regional and seasonal distribution of pre­
cipitation are poor [Kallenberg et al., 1996].

Another possible consequence 01 green­
house-gas-induced climate change is elevated
sea level. The main factors that contribute to
sea level rise are thermal expansion of ocean
water and the melting of glaciers, both of
which are in response to higher air tempera­
tures. Allhough it has been well established
that meltwater from the world's small glaciers
has contributed to sea level rise during the last
cenlury [Dyurgerov and Meier, 1997; Meier,
1984], the mass balance of lhe ice sheets in
Greenland and Antarctica is unknown. How­
ever, recent geodetic airborne laser altimeter
measurements indicate that between 1993 and
1998 the southeastern part of the Greenland
ice sheet thinned overall, with a thickening at
a rate of 0.5 ±0.7 cm/yrat elevations above
2000 m (not corrected for crustal motion) and
a thinning at the low elevations at rates up to I
mlyr [Krabill el 01., 1999].

200

200150

involved a combination of changes in global
carbon cycling that were probably driven by
some aspect of climate change [Boyle, 1988;
Broecker, 1982; Broecker and Henderson, 1998;
Crowley, 1995; Heinze el 01., 1991;Sliacklelon,
1977;Sundqulsl, 1993J. Likewise, lor limes­
cales of millions of years and longer, atmos­
pheric C02 appears to have been affected by
the influence of climate on weathering and
erosion rales [Berner, 1990, 1994; Bemerelal.,
1983; Walkerelal., 1981].

Thus current interpretation of the geologic re­
cord suggests that greenhouse gases both re­
spond and contribute to climate change.
Atmospheric C02 is viewed as one of many
components of the climate system that interact
in complex ways over a wide range of times­
cales. A change in one of these interactive
components is likely to affect other aspects of
the global climate system. This interactive rela·
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Model simulations have also shown the impor­
tance of changes in other climate controls. for
example the conliguration of Earth's orbit [Ber­
gerand Loulre, 1997; Kutzbacli el 01.,1988] and
the geographical distribution and elevation of
continental areas [Barron, 1985; Kutzbach et
01., 1989J.

Significant gaps remain in understanding the
relationships among these diverse climatic in­
fluences. However, the prevailing paradigm in
paleoclimate research treats the radiative ef­
fects of atmospheric C02 as an integral compo­
nent in a complex system of many variables
and interactive influences on global climate.

The complexity 01 the long·term coupling of
C02 and climate is enhanced by the extent to
which climate variability is hypothesized to
have influenced past atmospheric C02 concen­
trations. Glacial/interglacial C02 variations dur­
ing the Pleistocene epoch appear to have
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Worldwide measurements from tidal gauges
during the last 100 years indicate that mean
sea level has risen between IOand 25 cm (18
cm mean) [Douglas, 1991, 1992; Gornilz, 1995;
Wanick el 01., 1996J. This rale is grealerthan
would be expected from the archaeological
and geological record of sea level from the last
two millennia [Wanick el 01., 1996]. Mosl mod­
elingstudies, including simulations of the com­
bined effects of increasing greenhouse gases
and aerosols, predict that the trend in rising
sea level will continue in the future [Titus and
Narrayanan, 1995; Warrick and Oerlemans,
1990; Wanick et 01.. 1996; Wigley and Raper,
1992,1993].

A possible biological effect may be seen in
evidence that there has been an increase in
the active growing season at high latitudes in
Ihe Northern Hemisphere [Keeling el 01., 1996;
Myneni elal., 1997J.

Predictive Capabilities
and Uncertainties

The models that have been used to study cli­
mate change are necessarily simplified repre­
sentations of the climate system. Despite the
inevitable limitations, climate model simula­
tions accuralely reproduce the large-scale sea­
sonal distributions of pressure and
temperature. In addition, the large-scale struc­
ture of precipitation and ocean surface heat
flux also closely resembles the observed esti­
males [Gates el 01., 1998].

Confidence in models is also gained from
their emerging predictive capability. An exam­
ple of this capability is the development of a hi­
erarchy of models 10 sludy Ihe EI
Nino-Southern Oscillation (ENSO) phenom­
ena [Neelin and Latif, 1998J. These models are
becoming capable of predicting sea surface
temperature anomalies in the tropical Pacific 6
to 12 monlhs in advance [Latifet 01.. 1998J.
The models cannot predict specific storms re­
lated to ENSO, but they can predict the lower
frequency responses of the climate system,
such as anomalies in monthly and seasonal av­
erages of the sea surface temperatures in the
tropical Pacific [Neelin and Latif, 1998J.

Despite these gains there are a number of fea­
tures of the climate system that are still rather
crudely represented in climate models. The
coarse resolution of these models (typically 3°
or roughly 300 km) restricts Lheir ability to ac­
curately represent terrain effects and to simu­
late processes that occur on smaller scales.
Other shortcomings occur in the repre­
sentation of aerosols, precipitation, and
clouds and changes in solar irradiance. For
these and other reasons there remain substan·
tial scientific uncertainties in model predic­
tions, including uncertainties in the
predictions of local effects of climate change,
occurrence of extreme weather events, effects
of aerosols, changes in clouds, shifts in the in-

tensity and distribution of precipilalion, and
changes in oceanic circulation {Hansen el al.,
1998; Houghlon elal., 1996; Mahlman, 1997J.

A principal source of uncertainty in model­
ing climate change dUring the industrial pe­
riod arises from uncertainties in the represen­
tation of the influence of anthropogenic aero­
sols. Aerosols scalter and absorb short wave
(solar) radialion and modify the reflectiVity 01
clouds. Both effects are thought to decrease
the absorption of short wave radiation by the
Earth, exerting a cooling influence on climate,
despite the fact that tropospheric aerosols are
short lived in the atmosphere (a few days)
[Charlson et 01.,1992; Kaufman and Fraser,
1997; Twomey el 01., 1984; Haywood el 01.,
1999J.

Recent climate modeling studies which in­
clude the effects of aerosols [Hasselmann,
1997; Hegerl et 01.,1997; Haughton etal., 1995;
Kaltenberg et 01., 1996; Mitchell el 01., 1995;
Roeckneretal., 1996] show improved compari­
sons between the simulated and observed
global temperature trends dUring the industrial
period. However, given the present large un­
certainties in aerosol forcing, such improve­
ment may only be fortuitous.

An additional uncertain contribution to ra­
diative forcing of climate change during the in­
dustrial period arises from possible changes in
solar irradiance. Based on reconstructions of
solar irradiance and climate response in the
preindustrial era, together with instrumental re­
cords and solar observations during the indus­
trial period, Lean and Rind (1998] estimale
that solar forcing may have contributed about
half of the observed surface warming since 1900.

Uncertainties regarding clouds and the hy­
drological cycle and their representation in cli­
mate models also introduce uncertainty into
present understanding of the response of the
climate system to increases in atmospheric
greenhouse gases. It has been indicated in
model calculations that warming in the lower
atmosphere as a result of greenhouse gases
would increase the abundance of water vapor
in the atmosphere and intensify the hydrologic
cycle [Gates et 01., 1992; Kaltenberg el 01., 1996J.

These changes might be expected to lead to
an enhancement of cloudiness. Clouds reduce
the net absorbed short wave radialion in the
climate system because of their high reflectiv­
ity (a cooling influence); however, they also ra­
diate energy back down to the surface and
lower atmosphere (a warming influence). The
overall effect of these opposing influences is a
nel cooling [Ramanalhan et 01., 1989J al­
though this varies regionally, with cloud type,
and with geography. The question of whether
average cloudiness would be increased or de­
creased in a greenhouse-enhanced world is
not yet established. Issues such as these con­
tribute to the present uncertainty in climate
sensitivity.
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Snmmary

In summary,the atmospheric concentrations
of the principal anthropogenic greenhouse
gases (C02, CH" N20, CFC-Il, and CFC-12)
have increased significantly during the indus­
trial period. Elevated concentralions are pre­
dicted to persist in the atmosphere for times
ranging to thousands of years. The increased at­
mospheric levels of these gases, especially
C02, increase the IR energy absorbed by the at­
mosphere, thereby producing a warming influ­
ence at the Earth's surface.

Global mean temperatures have increased
belween 0.3 and 0.6°C during Ihe lasl 150
years. This change has not been monotonic,
but it is unusual in the context of the last few
centuries. On the timescale of the last few thou­
sand years there have been larger climatic vari­
ation dUring limes when variations in C02
have been relatively low. It is clear that atmos­
pheric C02 is not the only influence on global
climate. However, there have been large natu­
ral variations of C02 in the geologic past, and
these changes are correlated with general fea·
tures of climate change. There is no known
geologic precedent for large increases of at·
mospheric C02 without simultaneous changes
in other components of the carbon cycle and c1i­
mate system.

Changes in the climate system that are confi­
dently predicted in response to increases in
greenhouse gases include increases in mean
surface air temperature, increases in global
mean rates of precipitation and evaporation,
rising sea level, and changes in the biosphere.
Substantial uncertainties remain in the magni·
tudes and geographical distribution of these
changes and in the rates at which they may be
expected to occur. The significant recent pro­
gress in the scientific understanding of climate
change and the uncertainties in predictions of
climate change are documented in the peer·re­
viewed literature. Peer-reviewed scientific re­
search provides the scientific basis for the AGU
position statement on Climate Change and
Greenhouse Gases and must continue to be
utilized in informed decision making on this
issue.

The complete listing ofreferences, along with
the ankle and figures, may be obloined at Web
site: htlp:/lwww.agu.orgleos_elecl
99148e.hlml.
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