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Preface

In 1997 the American Geophysical Union's (AGU) Committee on Global Environmental Change proposed that AGU d=velop a position statement
on climate change. Over the next year, an AGU panel craited a statement, while considering comments from members responding to a dralt posted
on AGU's Web site in early 1998. The AGU Council discussed, modified, and adopted a final statement in December of 1998. AGU published the
statement, Climate Change and Greenhouse Gases, in £Eos on February 2, 1999.

AGU position statements are intended primarily for nontechnical audiences. They are necessarily brief and lack references to the published scien-
tific literature. The authors of this statement felt that a thorough review of the peer-reviewed scientific literature of climate change and greenhouse
gases would help scientists and nonscientists understand the scientific basis for assertions made in the statement. Their article, which was itself rigor-
ously peer reviewed, was published in Eos on September 28, 1999. This reprint also includes AGU’s policy on advocacy of public issues, procedures
for developing position statements, and the position statement itself. The full text of this reprint, with its list of references (not included in the printed
version of Eos, due o space limitations) may also be found on the AGU Web site: http://www.agu.org/eos_elec/99148e.html.

Climate Change

and Greenhouse Gases

Infrared (IR) active gases, principally water
vapor (H20), carbon dioxide (COg2), and
ozone (03), naturally present in the Earth’s at-
mosphere, absorb thermal IR radiation emit-
ted by the Earth’s surface and atmosphere. The
atmosphere is warmed by this mechanism
and, in turn, emits IR radiation, with a signifi-
cant portion of this energy acting to warm the
surface and the lower atmosphere. As a conse-
quence the average surface air temperature of
the Earth is about 30°C higher than it would be
without atmospheric absorption and reradia-
tion of IR energy [Henderson-Sellers and Robin-
son, 1986; Kellogg, 1996; Peixoto and Qort,
1992].

This phenomenon is popularly known asthe
“greenhouse effect,” and the IR active gases re-
sponsible forthe effect are likewise referred to
as “greenhouse gases.” The rapid increase in
concentrations of greenhouse gases since the in-
dustrial period began has given rise to concem
over potential resultant climate changes.

The AGU Council approved a position state-
ment on Climate Change and Greenhouse
Gases in December 1998. The statement and a
short summary of the procedures that were fol-
lowed in its preparation, review, and adoption
were published in the February 2, 1999, issue
of Eos (p. 49) [AGU, 1999, also at AGU's Web
site]. The present article reviews scientific un-
derstanding of this issue, as presented in peer-
reviewed publications. This understanding
serves as the underlying basis of the position
statement.

Greenhouse Gases and the
Earth-Atmosphere Energy Balance

The principal greenhouse gas concentrations
that have increased aver the industrial period
are carbon dioxide (COz), methane (CH4), ni-
trous oxide (N20), and chloroiluorocarbons
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CFC-11 (CClsF) and CFC-12 (CClzF2) [Hansen
et al., 1998; Schimel et al., 1996]. The observed
increase of COz in the atmosphere from about
280 ppm in the preindustrial era to about 364
ppm in 1997 (Figure 1) [Friedli et al., 1986; Han-
sen et al., 1998; Keeling and Whorf, 1998] has
come largely from fossil fuel combustion and
cement production,

These sources amounted to approximately
6.5 Pg C/yr (1 Pg=10" g) in 1996 [Marland et
al., 1999]. Land use changes produce a non-
negligible but more uncertain contribution of
about 1.6 +1.0 Pg C/yr [Fan et al., 1998; Schimel
et al., 1996]. These anthropogenic sources of
CO2 exceed the estimated uptake of CO2 by
the atmosphere and oceans, implying a signifi-
cant but as yet unidentified terrestrial sink [Ent-
ing and Pearman, 1987].

The atmospheric concentration of CH4 has in-
creased from about 700 ppb in preindustrial
times to about 1721 ppb in 1994 (Figure 1)
[Houghton et al., 1996]. Fossil-fuel related
sources of CH4 amount to approximately 70-
120 Tg CHa/yr (1 Tg=10"2 g). Increases in CHa
sources resulting from rice cultivation, animal
husbandry, biomass burning, and landfills con-
tribute about 200-350 Tg CHa/yr [Schimel et al.,
1996].

The atmospheric concentration of N20 has in-
creased from about 275 ppb in preindustrial
times to about 312 ppb in 1994 (Figure 1)
[Houghton et al., 1996]). Estimated anthropo-
genic emissions of N2O for the 1980s range
from 3 to 8 Tg N/yr [Houghton et al., 1996]. The
main anthropogenic sources are from
agriculture and industrial sources including
adipic acid and nitric acid production
[Schimel et al., 1996].

Chlorofluorocarbons CFC-12 and CFC-11 are
manmade compounds that were not apprecia-
bly present in the atmosphere before 1950 (Fig-
ure 1). These compounds have been widely
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used as refrigerants and in spray propellants
and foam blowing. Because of their role in
catalyzing decomposition of stratospheric
ozone, production of these compounds has
been dramatically reduced in response to the
Montreal Protocols and subsequent interna-
tional agreements. Atmospheric concentra-
tions of these compounds are expected to
diminish substantially during the next century
[Prather et al., 1996].

Prediction of the future persistence of anthro-
pogenic greenhouse gases in the atmosphere
is based on mathematical models that simu-
late future additions and removals. The green-
house gas concentrations predicted by these
models are subject to large uncertainties in the
effects of both natural processes and human
activities.

Forsome greenhouse gases persistence can
be estimated from “mean residence times,”
which are obtained with simple linear models
and represent the time that would be required
for removal of 63% of the anthro- pogenic ex-
cess of the material in the atmosphere, if an-
thropogenic sources were abruptly diminished
to zero [Lasaga and Berner, 1998]. This ap-
proach yields a rough measure of the persist-
ence in the atmosphere of anthropogenic
additions of CH4 with an estimated mean resi-
dence time of 10 years [Prather, 1996, 1998];
N20, 100 years, [Prather, 1996, 1998]; and CFC-
11and CFC-12, 50 and 102 years, respectively
(Prather et al., 1995].

The persistence of anthropogenic COzin the
atmosphere cannot be estimated with such a
simple model because exchange with the
ocean and sediments leads to a more complex
behavior. Model simulations of oceanic CO2
uptake provide response times associated with
CO;z gas exchange at the ocean surface of ap-
proximately 10 years [Liss and Merlivat, 1986,
Toggweiler et al., 1989] and downward mixing
of surface waters on the order of decades to
centuries [Maier-Reimer and Hasselmann,
1987; Sarmiento et al., 1992)]. But even when
these oceanic COz removal processes are al-
lowed sufficient time in the models to reach
their maximum capacity, they can remove
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Fig. 1. Concentrations of principal anthropogenic greenhouse gases in the industrial era {Hansen et
al., 1998; Hansen and Sato, 1999] Black curves denote measurements of in situ atmospheric sam-
ples collected in recent years [NOAA, 1999a, b, c; Houghton et al., 1995]. Points denote concentra-
tions determined from air bubbles trapped in polar ice sheets using ice cores obtained in Antarctica
(blue) or Greenland (yellow); red curves denote fits to these points [Etheridge et al., 1996, 1998;
Machida et al., 1995]. Data for CFCs are from in situ samples since 1977 [NOAA, 1999d]. Mixing ra-
tios of CFC-11 and CFC-12 prior to the first in situ atmospheric measurements were estimated from
industrial production data and assumed atmospheric lifetimes of 50 and 100 years, respectively
[AFEAS, 1993; Hansen et al., 1998; Hansen and Sato, 1999].

only about 70 to 85% of the anthropogenic CO2
added to the atmosphere [Archeret al., 1998;
Broecker and Peng, 1982; Sarmiento et al.,
1992].

Additional CO2 might be removed by burial
in soils or deep sea sediments through mecha-
nisms that, although poorly understood, are
generally believed to require times extending

to thousands of years [Harden et al., 1992;
Schlesinger, 1990; Stallard, 1998]. Removing
some of the anthropogenic COz by this mecha-
nism may require reactions with carbonate sedi-
ments in the deep sea that occur on timescales
of thousands of years [Archer et al., 1998; Boyle,
1983; Sundquist, 1990]. On the basis of such
analyses, it is now generally believed that a sub-
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stantial fraction of the excess COzin the atmos-
phere will remain in the atmosphere for dec-
ades to centuries, and about 15-30% will remain
forthousands of years.

The additional anthropogenic greenhouse
gases that have been introduced into the at-
mosphere increase the IR energy absorbed by
the atmosphere, thereby exerting a warming in-
fluence on the lower atmosphere and the sur-
face, and a cooling influence on the
stratosphere [Peixoto and Qort, 1992;
Ramanathan et al., 1985].

The radiative influence resulting from a
given incremental increase in greenhouse gas
concentration can be quantified and com-
pared as the change in downward IR flux at
the tropopause, a quantity known as the radia-
tive forcing. Climate model calculations indi-
cate that to good approximation the global
warming influence of the several greenhouse
gases is equal for equal forcing [Wang et al.,
1991, 1992], lending support to the utility of
the concept of climate forcing and response.

Of the several anthropogenic greenhouse
gases, COz is the most important agent of po-
tential future climate warming because of its
large current greenhouse forcing, its substan-
tial projected future forcing [Houghton et al.,
1996], and its long persistence in the atmos-
phere (see above). Understanding climate re-
sponse to a specified forcing is one of the
major challenges facing the climate research
community. The equilibrium response of the
nonlinear climate system depends in complex
ways on various feedbacks, such as changes in
water vapor concentration and cloudiness
that can augment or diminish climate re-
sponse from that which would occur in the ab-
sence of such feedbacks.

In principle, empirical inferences of climate
sensitivity would be of great value, but devel-
opment of such inferences is confounded by
the natural variability of the climate system
[Santer et al., 1996], by local or regional ef-
fects that can be different from the global ef-
fects, and by the simultaneous working of
multiple transient forcings and responses. For
these reasons a principal means for under-
standing climate system response to forcing is
by use of computer models of the Earth’s cli-
mate system.

Climate Change and Carbon Dioxide

The most commonly considered indicator of
climate change is the surface air temperature.
Extensive efforts have been made to examine
the trends in global and regional mean tem-
peratures over time [Ghil and Vautard, 1991;
Hasselmann, 1993; North and Kim, 1995; North
et al., 1995; Schlesinger and Ramankutty, 1994)]
and in the global patterns of temperature
change [Hegerl et al., 1997; Hegerl et al., 1996;
Jones and Hegerl, 1998; Santer et al., 1995].
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Fig. 2. Reconstruction of Northern Hemisphere temperature anomaly trend from 1000 A.D. to pre-
sent [Mann et al., 1999; see also Mann et al., 1998] from dendroclimatic, coral, and ice-core proxy
records as calibrated by instrumental measurements [Jones and Briffa, 1992]. Thin curves give re-
construction and raw data from 1000-1998 A.D. Smoothed version (thick solid), linear trend from
1000 to 1850 A.D. (long dashed), and two standard error limits (shaded) are also shown.

Worldwide temperature measurements, care-
fully screened for instrumental and measure-
ment artifacts, such as effects of urbanization,
have been used to estimate that global mean
annual surface temperatures have increased
between 0.3 and 0.6°C during the last 150 years
[Hansen and Lebedeff, 1987; Jones et al., 1997,
Nicholis et al., 1996]. However, it must be
stressed that the increase has not been mono-
tonic, with interannual fluctuations in the
global annual mean temperature equal to an
appreciable fraction of the overall rise over
this time period. No single explanation can ac-
count for this variability.

Although temperature is usually the first vari-
able considered in assessments of global cli-
mate change, it is important to consider other
data that integrate the state of the climate sys-
tem over space and time. These include tem-
perature proxy data (such as tree ring
records), borehole temperature measure-
ments in soil, permafrost, and ice sheets, and
measurements of the mass balance of valley

glaciers and ice caps. Several recent proxy tem-

perature reconstructions have suggested that
the warming during the twentieth century is
greaterthan any seen in the last 400 to 600
years [Briffa et al., 1998; Jones et al., 1998,
Mann et al., 1998; Overpeck et al., 1997] and
perhaps the last 1200 to 1500 years (Figure 2)
[Overpeck, 1998; Thompson et al., 1993]. A

completely independent estimate [Pollack et
al., 1998], based on analysis of subsurface
(borehole) temperature measurements, sup-
ports the unusual character of the recent
global warming in the context of the last 5
centuries.

Glaciers are present on every continent ex-
cept Australia; they are thus excellent geo-
graphically dispersed regional indicators of
climate change. The Earth's valley glaciers, ice
caps, and ice fields and their associated outlet
glaciers have generally been shrinking and re-
ceding during the last century [Haeberli, 1990;
Meier, 1984; Oerlemans, 1994]. Studies in North
America [Hall et al., 1992; Marcus et al., 1995;
Rabus et al., 1955; Wiiliams and Ferrigno, in
press|, South America [Thompson et al., 1995;
Williams and Ferrigno, 1998], Europe [ Wil-
liams and Ferrigno, 1993; Bayr et al., 1994; Hae-
berli and Hoelzle, 1995], Iceland [Johannesson
and Sigurdsson, 1998], Africa [Hastenrath,
1989; Williams and Ferrigno, 1991], and Asia
[Thompson et al., 1989, 1993, 1998] have
shown substantial recession of many of the ice
caps and nontidewater, nonsurge-type glaciers
[Dyurgerou and Meier, 1997] since the early nine-
teenth century.

The record of the past few thousand years is
more difficult to piece together than the more
recent record because fewer data are avail-
able. There is evidence from this period that
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climatic conditions were sometimes warmer
and sometimes cooler than at present [Dahl-
Jensen et al., 1998; Feng and Epstein, 1994;
Prentice et al., 1998].

There is also evidence of large and abrupt cli-
mate changes that exceed recent experience
[Bond et al., 1997; Denton and Karlen, 1973;
Gasse and Vancampo, 1994; Laird et al., 1996;
Petitmaire and Guo, 1996; von Grafenstein et
al., 1998]. These climatic variations occurred
during a time when variations in atmospheric
CO3z were minimal [Barmola et al., 1995; Inder-
muhle et al., 1999].

It is clear from these records, and from many
other studies of paleoclimate evidence
throughout the geologic record, that the global
climate system has been influenced by many
factors in addition to greenhouse gases [see,
for example, Berger and Crowell, 1982]. To
evaluate geologic evidence forthe influence
of greenhouse gases, one must focus on re-
cords from periods when changes in atmos-
pheric CO2 were much larger than those that
occurred during the millennia immediately
preceding the recent increase in anthropo-
genic COz production.

Larger natural variations in atmospheric CO2
have been inferred from the geologic record of
the more distant past [foran overview, see
Sundquist and Broecker, 1985]. Variations of 80-
100 ppm, observed in analyses of gas bubbles
trapped in glacier-ice cores, are correlated
with the glacial ("ice age™) and interglacial cli-
matic oscillations of the latest Pleistocene and
Holocene Epochs (Figure 3; [Barnola et al.,
1987, Bemer et al., 1980; Jouzel et al., 1993; Wa-
hien et al., 1998]). Glacial periods are associ-
ated with low COz concentrations, and
interglacial periods with high COz concentra-
tions. Ice core methane profiles show a similar
correlation with climate [Chappellaz et al.,
1990; Delmotte et al., 1998; Jouzel et al., 1993;
Stauffer et al., 1988].

Still larger past variations in atmospheric
COg, including increases to concentrations sev-
eral times higher than recent levels, have been
estimated using geochemical models con-
strained by the sediment record [Bemer, 1994,
1997; Bemner et al., 1983; Budyko and Ronov,
1979; France-Lanord and Derry, 1997; Francois
and Godderis, 1998; Raymo et al., 1988]. During
the last several hundred million years, these
larger and slower COz2 changes can be corre-
lated with general features of climate change
[Berner, 1990; Crowley and North, 1991; Fis-
cher, 1981].

Paleoclimate model simulations (using mod-
elssimilarin many ways to the models used in
modern climate projections) support the im-
portance of COz in explaining global mean
temperatures in the geologic past [Bergeret
al., 1998; Bush and Philander, 1997; Kasting
and Ackerman, 1986; Ottobliesner, 1996; Tara-
souv and Peltier, 1997; Weaver et al., 1998].
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Fig. 3. Carbon dioxide concentration (top), proxy temperature (middle), and methane
concentration from analyses of ice cores from Vostok, Antarclica [Jouzel et al., 1993].

Model simulations have also shown the impor-
tance of changes in other climate controls, for
example the configuration of Earth’s orbit [Ber-
ger and Loutre, 1997; Kutzbach et al., 1988] and
the geographical distribution and elevation of
continental areas [Barron, 1985; Kutzbach et
al., 1989].

Significant gaps remain in understanding the
relationships among these diverse climatic in-
fluences. However, the prevailing paradigm in
paleoclimate research treats the radiative ef-
fects of atmospheric CO2 as an integral compo-
nent in a complex system of many variables
and interactive influences on global climate.

The complexity of the long-term coupling of
COz and climate is enhanced by the extent to
which climate variability is hypothesized to
have influenced past atmospheric COz concen-
trations. Glacial/interglacial CO2 variations dur-
ing the Pleistocene epoch appear to have

involved a combination of changes in global
carbon cycling that were probably driven by
some aspect of climate change [Boyle, 1988;
Broecker, 1982; Broecker and Henderson, 1998;
Crowley, 1995; Heinze et al., 1991; Shackleton,
1977; Sundquist, 1993]. Likewise, for times-
cales of millions of years and longer, atmos-
pheric CO2 appears to have been affected by
the influence of climate on weathering and
erosion rates [Berner, 1990, 1994; Berneret al.,
1983; Walkeret al., 1981].

Thus current interpretation of the geologic re-
cord suggesls that greenhouse gases both re-
spond and contribute to climate change.
Atmospheric COz is viewed as one of many
components of the climate system that interact
in complex ways over a wide range of times-
cales. A change in one of these interactive
components is likely to affect other aspects of
the global climate system. This interactive rela-
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tionship between COz and climate implies that
the geologic record is not likely to reveal ana-
logs of simple climate forcing by anthropo-
genic COz emissions [Crowley, 1997; Hay et al.,
1997, Sundquist, 1986]. There is no known geo-
logic precedent for large increases of atmos-
pheric COz2 without simultaneous changes in
other components of the carbon cycle and cli-
mate system.

Predicted Climate Change from
Increased Greenhouse Gases

Some of the predicted responses to increases
in greenhouse gases include increases in
mean surface air temperature, increases in
global mean rates of precipitation and evapo-
ration, rising sea level, and changes in the bio-
sphere. Many of these predictions are based
largely on computer models that simulate fun-
damental geophysical processes.

Most model simulations of Earth’s climate in-
dicate that an increase in the atmospheric con-
centration of a greenhouse gas will lead to an
increase in the average surface air tempera-
ture of the Earth [Kattenberg et al., 1996, table
6.3]. For example, the 18 model runs (using 7
independent models) quoted by Kattenberg et
al. predict an equilibrium temperature in-
crease of 2.0 +0.6°C for simulations using dou-
ble the current level of atmospheric CO2.

An increase in surface air temperature would
cause an increase in evaporation and gener-
ally higher levels of atmospheric water vapor.
The positive feedback associated with this
leads to the expectation that an increase in sur-
face air temperatures would lead to a more in-
tense hydrological cycle, with more frequent
heavy precipitation events [Houghton et al.,
1992; Kattenberg et al., 1996]. However, be-
cause of the coarse spatial resolution of pre-
sent general circulation models, simulations
of the regional and seasonal distribution of pre-
cipitation are poor [Kattenberg et al., 1996].

Another possible consequence of green-
house-gas-induced climate change is elevated
sea level. The main factors that contribute to
sea level rise are thermal expansion of ocean
walter and the melting of glaciers, both of
which are in response to higher air tempera-
tures. Although it has been well established
that meltwater from the world's small glaciers
has contributed to sea level rise during the last
century [Dyurgerov and Meier, 1997; Meier,
1984], the mass balance of the ice sheets in
Greenland and Antarctica is unknown. How-
ever, recent geodetic airborne laser altimeter
measurements indicate that between 1993 and
1998 the southeastern part of the Greenland
ice sheet thinned overall, with a thickening at
arate 0f 0.5+ 0.7 cm/yr at elevations above
2000 m (not corrected for crustal motion) and
a thinning at the low elevations at rates up to 1
m/yr [Krabill et al., 1999].



Worldwide measurements from tidal gauges
during the last 100 years indicate that mean
sea level has risen between 10 and 25 cm (18
cm mean) [Douglas, 1991, 1992; Gornitz, 1995;
Warrick et al., 1996]. This rate is greater than
would be expected from the archaeological
and geological record of sea level from the last
two millennia [Warick et al., 1996]. Most mod-
eling studies, including simulations of the com-
bined effects of increasing greenhouse gases
and aerosols, predict that the trend in rising
sea level will continue in the future [Titus and
Narrayanan, 1995; Warrick and Oerlemans,
1990; Warrick et al., 1996; Wigley and Raper,
1992, 1993].

A possible biological effect may be seen in
evidence that there has been an increase in
the active growing season at high latitudes in
the Northern Hemisphere [Keeling et al., 1996;
Mynenietal., 1997].

Predictive Capabilities
and Uncertainties

The models that have been used to study cli-
mate change are necessarily simplified repre-
sentations of the climate system. Despite the
inevitable limitations, climate model simula-
tions accurately reproduce the large-scale sea-
sonal distributions of pressure and
temperature, In addition, the large-scale struc-
ture of precipitation and ocean surface heat
flux also closely resembles the observed esti-
mates [Gates et al., 1998].

Confidence in modelsis also gained from
their emerging predictive capability. An exam-
ple of this capability is the development of a hi-
erarchy of models Lo study the El
Nifio-Southern Oscillation (ENSO) phenom-
ena [Neelin and Latif, 1998]. These models are
becoming capable of predicting sea surface
temperature anomalies in the tropical Pacific 6
to 12 months in advance [Latifet al., 1998].
The models cannot predict specific storms re-
lated to ENSO, but they can predict the lower
frequency responses of the climate system,
such as anomalies in monthly and seasonal av-
erages of the sea surface lemperatures in the
tropical Pacific [Neelin and Latif, 1998].

Despite these gains there are a number of fea-
tures of the climate system that are still rather
crudely represented in climate models. The
coarse resolution of these models (typically 3°
or roughly 300 km) restricts their ability to ac-
curately represent terrain effects and to simu-
late processes that occur on smaller scales.
Other shortcomings occur in the repre-
sentation of aerosols, precipitation, and
clouds and changes in solar irradiance. For
these and other reasons there remain substan-
tial scientific uncertainties in model predic-
tions, including uncertainties in the
predictions of local efiects of climate change,
occurrence of extreme weather events, effects
of aerosols, changes in clouds, shifls in the in-

tensity and distribution of precipitation, and
changes in oceanic circulation [Hansen et al.,
1938; Houghton et al., 1996; Mahlman, 1997].

A principal source of uncertainty in model-
ing climate change during the industrial pe-
riod arises from uncertainties in the represen-
tation of the influence of anthropogenic aero-
sols. Aerosols scatter and absorb short wave
(solar) radiation and modify the reflectivity of
clouds. Both effecls are thought to decrease
the absorption of short wave radiation by the
Earth, exerting a cooling influence on climate,
despite the fact that tropospheric aerosols are
short lived in the atmosphere (a few days)
[Charlson et al., 1992; Kaufnan and Fraser,
1997, Twomey et al., 1984; Haywood et al.,
1559].

Recent climate modeling studies which in-
clude the effects of aerosols [Hasselmann,
1997; Hegerl et al., 1997; Houghton et al., 1995;
Kattenberg et al., 1996; Mitchell et al., 1995;
Roeckner et al., 1996] show improved compari-
sons between the simulated and observed
global temperature trends during the industrial
period. However, given the present large un-
certainties in aerosol forcing, such improve-
ment may only be fortuitous.

An additional uncertain contribution to ra-
diative forcing of climate change during the in-
dustrial period arises from possible changes in
solarirradiance. Based on reconstructions of
solar irradiance and climate response in the
preindustrial era, together with instrumental re-
cords and solar observations during the indus-
trial period, Lean and Rind [1998] estimate
that solar forcing may have contributed about
hali of the observed surface warming since 1500.

Uncertainties regarding clouds and the hy-
drological cycle and their representation in cli-
mate models also introduce uncertainty into
present understanding of the response of the
climate system to increases in atmospheric
greenhouse gases. [t has been indicated in
model calculations that warming in the lower
atmosphere as a result of greenhouse gases
would increase the abundance of water vapor
in the atmosphere and intensify the hydrologic
cycle [Gates et al., 1992; Kattenberg et al., 1996].

These changes might be expected to lead to
an enhancement of cloudiness. Clouds reduce
the net absorbed short wave radiation in the
climate system because of their high reflectiv-
ity (a cooling influence); however, they also ra-
diate energy back down to the surface and
lower atmosphere (a warming influence). The
overall effect of these opposing influences isa
net cooling [Ramanathan et al., 1989] al-
though this varies regionally, with cloud type,
and with geography. The question of whether
average cloudiness would be increased or de-
creased in a greenhouse-enhanced world is
not yet established. Issues such as these con-
tribute to the present uncertainty in climate
sensilivity.
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Summary

In summary, the atmospheric concentrations
of the principal anthropogenic greenhouse
gases (COg, CH4, N20, CFC-11, and CFC-12)
have increased significantly during the indus-
trial period. Elevated concentrations are pre-
dicted lo persist in the atmosphere for times
ranging to thousands of years. The increased al-
mospheric levels of these gases, especially
CO2, increase the IR energy absorbed by the at-
mosphere, thereby producing a warming influ-
ence at the Earth's surface.

Global mean temperatures have increased
between 0.3 and 0.6°C during the last 150
years. This change has not been monotonic,
but it is unusual in the context of the last few
centuries. On the timescale of the last few thou-
sand years there have been larger climatic vari-
ation during times when variations in CO2
have been relatively low. It is clear that atmos-
pheric COzis not the only influence on global
climate. However, there have been large natu-
ral variations of COz in the geologic past, and
these changes are correlated with general fea-
tures of climate change. There is no known
geologic precedent for large increases of at-
mospheric COz without simultaneous changes
in other components of the carbon cycle and cli-
mate system.

Changes in the climate system that are confi-
dently predicted in response to increases in
greenhouse gases include increases in mean
surface air temperature, increases in global
mean rates of precipitation and evaporation,
rising sea level, and changes in the biosphere.
Substantial uncertainties remain in the magni-
tudes and geographical distribution of these
changes and in the rates at which they may be
expected to occur. The significant recent pro-
gress in the scientific understanding of climate
change and the uncertainties in predictions of
climate change are documented in the peer-re-
viewed literature. Peer-reviewed scientific re-
search provides the scientific basis forthe AGU
position statement on Climate Change and
Greenhouse Gases and must continue to be
utilized in informed decision making on this
issue.

The complete listing of references, along with
the article and figures, may be obtained at Web
site: hitp://www.agu.org/eos_elec/
99148e.html.
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