
PowersetPowerset

HBase: structured storage

of sparse data for

Hadoop

Jim Kellerman

Powerset, Inc.

jim@powerset.com jimk@apache.org

PowersetPowerset

Topics

– Introduction, brief history

– Concepts

– Architecture

– Client API

– Tools

– Project Status

– Questions And Answers

PowersetPowerset

Brief History

– 6/06 Mike Cafarella posts on Hadoop mailing lists

– 10-11/06 Powerset interest in Bigtable, recruit
others, some design documents

– 01-02/07

• Powerset resumes work

• Mike Cafarella provides initial code base

– 04/07 Michael Stack joins Powerset

– 10/07 First usable version of HBase in Hadoop
0.15.0 release

PowersetPowerset

Concepts

– Data addressed by row/column/version key

•Version can be a specified by client

– default is System.currentTimeMillis

•Data is stored column-oriented rather than
row-oriented

– More space efficient – nulls are free

– Better compression – data is similar

– Updates lock entire row

•Don't need to update every column

• Locks never span rows

PowersetPowerset

Concepts (contd.)

Columns (aka column families):

– Values are byte[]

– Most options on per-column basis:

•# of versions, compression, bloom filters,
maximum value length

– Fixed at table creation

•Can be added/dropped if table is off-line

• Family members can be created/deleted at
any time

 PowersetPowerset

Concepts (contd.)

Example: Web Crawl data

 PowersetPowerset

Concepts (contd.)

– Tables are stored in regions

•A region is a row range for the table
[start-key:end-key)

•When regions get “too big” they are split

– The two new regions get ½ the row range of
the parent region

» One gets lower half of row range

» One gets upper half of row range

– Splits are instantaneous

• Each column family is stored in an HStore

– Each region has one HStore per column family

 PowersetPowerset

Concepts (contd.)

– When a write occurs:

• It is written to a write ahead log

• It is cached in memory

• Periodically, the cache is written to disk,
creating a new file in each HStore for the
columns being flushed

– A compaction occurs when the number of files
in an HStore exceeds a threshold

» Compactions are done in the background

• Periodically, the log file is closed and a new
one created

– Old log files are garbage collected

 PowersetPowerset

Concepts (contd.)

1) write 2) redo
log

3) cache persisted
data t0

persisted
data t1

cache
flush

compaction Merged
persisted

data

roll
log

old
redo
log

new
redo
log

 PowersetPowerset

Concepts (contd.)

– When a read occurs:

1)Check for data in cache

2)Look for data in persisted data, from newest
to oldest.

Concepts (contd.)

read

1) cache

persisted
data t0

persisted
data t1

2
cache
miss?

3
found?

y n

 PowersetPowerset

Concepts (contd.)

– The location of all user regions is stored in
the META region

• Each META row maps one user region

• Each META region can map about 64K regions

– All the META regions are mapped by one
ROOT region

•ROOT and META can map about 8 x 109 user
regions

•With current region size of 64MB, about 1018
bytes of data can be stored

 PowersetPowerset

Concepts (contd.)

Root Region

Meta Region1

Meta Region2

User Region1

User Region2

User RegionN

meta region1 key

meta region2 key

 - - -

user region1 key

user region2 key

 - - -

- - -

user regionN key

 - - -

user row1

user row2

 - - -

 PowersetPowerset

Architecture

– There are three major components:

•Master server

• Region server

•Client API

 PowersetPowerset

Architecture: Master Server

– Assigns regions to region servers

•The ROOT region is assigned first

– Scans ROOT region to find META regions,
assigns them to region servers

– Scans META regions to find user regions,
assigns them to region servers

– Reassigns regions for load balancing or if
region server fails

– Tells client where ROOT region is located

 PowersetPowerset

Architecture: Region Server

– Server threads handle client requests

– Main thread is master heart beat loop

– Other threads:

• Process long running operations resulting
from master heart beat response

•Check to see if regions need to be split

• Check to see if cache needs to be flushed

•Check to see if log needs to be rolled

•One thread per client request (leases)

 PowersetPowerset

Architecture: HRegion

– One HRegion per table fragment (row range)

• In memory cache of recent writes

•One HStore object per column

– Finds and reads data from HDFS

– May manage many files (one is created per
cache flush)

– Performs compaction if too many files

– Performs split operation for a single column

 PowersetPowerset

Client API

– Create new HTable object to open a table

•Client locates ROOT region from master

• Client reads (and caches) ROOT region to
locate META servers

•Client reads (and caches) META information
for the table being opened

– Client requests are sent directly to region
servers. Master is not involved

– Administrative functions to manipulate
tables and columns

 PowersetPowerset

Client API (contd.)

– Read

• Specific row/column pair, specific row – all
columns

– Most recent version

– Specific version

– N versions

– All versions

• Scan multiple rows

– Write

•All row mutations are atomic

•Can write multiple columns in single update

 PowersetPowerset

Client API Examples

// Open table

HTable table = new HTable(conf, tableName);

// Storing data

long writeid = table.startUpdate(row);

table.put(writeid, columnName1, bytes);

table.put(writeid, columnName2, bytes);

table.delete(writeid, columnName3);

table.commit(writeid);

// Reading data

byte[] data = table.get(row, columnName1);

 PowersetPowerset

Client API Examples (contd.)

// Open scanner

HScannerInterface scanner = table.obtainScanner(col s, new Text());

try {

 SortedMap<Text, byte[]> values = new TreeMap<Text , byte[]>();

 HStoreKey currentKey = new HStoreKey();

 while (scanner.next(currentKey, values)) {

 // row: currentKey.getRow(), version: currentKe y.getTimestamp()

 for (Map.Entry<Text, byte[]> e: values.entrySet ()) {

 // columnName: e.getKey(), value: e.getValue()

 }

 }

} finally {

 scanner.close();

}

 PowersetPowerset

Tools

– HBase shell

– Web Interface

 PowersetPowerset

Tools: HBase Shell

durruti$./bin/hbase shell

Hbase Shell, 0.0.2 version.

Copyright (c) 2007 by udanax, licensed to Apache So ftware Foundation.

Type 'help;' for usage.

Hbase> create table 'test' ('test');

Hbase> insert into 'test' ('test:test') values ('so me old value')
where row="test_row";

Hbase> select * from 'test';

+----------+--------------+------------------------ -+

| Row | Column | Cell |

+----------+--------------+------------------------ -+

| test_row | test:test | some old value |

+----------+--------------+------------------------ -+

Hbase>

 PowersetPowerset

Tools: Web Interface

 PowersetPowerset

Tools: Web Interface (contd.)

 PowersetPowerset

Tools: Web Interface (contd.)

 PowersetPowerset

Project Status

– First “usable” release of HBase included in
Hadoop-0.15.0

•However data loss possible without Hadoop
“append” support.

– To do:

• Build community: users, contributors

•Documentation and ease-of-use features

• Performance analysis

• ZooKeeper integration

•More Monitoring

 PowersetPowerset

Project Status (contd.)

– Several key contributions to date.

•Map/Reduce connector

•HBase shell

– Relational operators (in progress)

•Restructure so applications can access
multiple tables simultaneously.

Interested?

– Get involved!

•Contributions welcome!

• Follow email lists and Jira

 PowersetPowerset

Questions? And Answers!

References:

“Bigtable: A Distributed Storage System for Structured Data”

http://labs.google.com/papers/bigtable.html

The HBase Wiki at Apache.org

http://wiki.apache.org/lucene-hadoop/Hbase

The #hbase IRC chat room at freenode.net

The Hadoop mailing lists

