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Brief History

– 6/06 Mike Cafarella posts on Hadoop mailing lists

– 10-11/06 Powerset interest in Bigtable, recruit 
others, some design documents

– 01-02/07

• Powerset resumes work

• Mike Cafarella provides initial code base

– 04/07 Michael Stack joins Powerset

– 10/07 First usable version of HBase in Hadoop 
0.15.0 release
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Concepts

– Data addressed by row/column/version key

•Version can be a specified by client

– default is System.currentTimeMillis

•Data is stored column-oriented rather than 
row-oriented

– More space efficient – nulls are free

– Better compression – data is similar

– Updates lock entire row

•Don't need to update every column

• Locks never span rows
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Concepts (contd.)

Columns (aka column families):

– Values are byte[]

– Most options on per-column basis:

•# of versions, compression, bloom filters, 
maximum value length

– Fixed at table creation

•Can be added/dropped if table is off-line

• Family members can be created/deleted at 
any time
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Concepts (contd.)

Example: Web Crawl data
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Concepts (contd.)

– Tables are stored in regions

•A region is a row range for the table
[start-key:end-key)

•When regions get “too big” they are split

– The two new regions get ½ the row range of 
the parent region

» One gets lower half of row range

» One gets upper half of row range

– Splits are instantaneous

• Each column family is stored in an HStore

– Each region has one HStore per column family
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Concepts (contd.)

– When a write occurs:

• It is written to a write ahead log

• It is cached in memory

• Periodically, the cache is written to disk, 
creating a new file in each HStore for the 
columns being flushed

– A compaction occurs when the number of files 
in an HStore exceeds a threshold

» Compactions are done in the background

• Periodically, the log file is closed and a new 
one created

– Old log files are garbage collected
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Concepts (contd.)
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Concepts (contd.)

– When a read occurs:

1)Check for data in cache

2)Look for data in persisted data, from newest 
to oldest.

Concepts (contd.)
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Concepts (contd.)

– The location of all user regions is stored in 
the META region

• Each META row maps one user region

• Each META region can map about 64K regions

– All the META regions are mapped by one 
ROOT region

•ROOT and META can map about 8 x 109 user 
regions

•With current region size of 64MB, about 1018 
bytes of data can be stored
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Concepts (contd.)
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Architecture

– There are three major components:

•Master server

• Region server

•Client API
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Architecture: Master Server

– Assigns regions to region servers

•The ROOT region is assigned first

– Scans ROOT region to find META regions, 
assigns them to region servers

– Scans META regions to find user regions, 
assigns them to region servers

– Reassigns regions for load balancing or if 
region server fails

– Tells client where ROOT region is located
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Architecture: Region Server

– Server threads handle client requests

– Main thread is master heart beat loop

– Other threads:

• Process long running operations resulting 
from master heart beat response

•Check to see if regions need to be split

• Check to see if cache needs to be flushed

•Check to see if log needs to be rolled

•One thread per client request (leases)
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Architecture: HRegion

– One HRegion per table fragment (row range)

• In memory cache of recent writes

•One HStore object per column

– Finds and reads data from HDFS

– May manage many files (one is created per 
cache flush)

– Performs compaction if too many files

– Performs split operation for a single column
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Client API

– Create new HTable object to open a table

•Client locates ROOT region from master

• Client reads (and caches) ROOT region to 
locate META servers

•Client reads (and caches) META information 
for the table being opened

– Client requests are sent directly to region 
servers. Master is not involved

– Administrative functions to manipulate 
tables and columns
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Client API (contd.)

– Read

• Specific row/column pair, specific row – all 
columns

– Most recent version

– Specific version

– N versions

– All versions

• Scan multiple rows

– Write

•All row mutations are atomic

•Can write multiple columns in single update
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Client API Examples

// Open table

HTable table = new HTable(conf, tableName);

// Storing data

long writeid = table.startUpdate(row);

table.put(writeid, columnName1, bytes);

table.put(writeid, columnName2, bytes);

table.delete(writeid, columnName3);

table.commit(writeid);

// Reading data

byte[] data = table.get(row, columnName1);
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Client API Examples (contd.)

// Open scanner

HScannerInterface scanner = table.obtainScanner(col s, new Text());

try {

  SortedMap<Text, byte[]> values = new TreeMap<Text , byte[]>();

  HStoreKey currentKey = new HStoreKey();

  while (scanner.next(currentKey, values)) {

    // row: currentKey.getRow(), version: currentKe y.getTimestamp()

    for (Map.Entry<Text, byte[]> e: values.entrySet ()) {

      // columnName: e.getKey(), value: e.getValue( )

    }

  }

} finally {

  scanner.close();

}
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Tools

– HBase shell

– Web Interface
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Tools: HBase Shell

durruti$ ./bin/hbase shell

Hbase Shell, 0.0.2 version.

Copyright (c) 2007 by udanax, licensed to Apache So ftware Foundation.

Type 'help;' for usage.

Hbase> create table 'test' ('test');

Hbase> insert into 'test' ('test:test') values ('so me old value') 
where row="test_row";

Hbase> select * from 'test';

+----------+--------------+------------------------ -+

| Row      | Column       | Cell                    |

+----------+--------------+------------------------ -+

| test_row | test:test    | some old value          |

+----------+--------------+------------------------ -+

Hbase>
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Tools: Web Interface
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Tools: Web Interface (contd.)
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Tools: Web Interface (contd.)
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Project Status

– First “usable” release of HBase included in 
Hadoop-0.15.0

•However data loss possible without Hadoop 
“append” support.

– To do:

• Build community: users, contributors

•Documentation and ease-of-use features

• Performance analysis

• ZooKeeper integration

•More Monitoring
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Project Status (contd.)

– Several key contributions to date.

•Map/Reduce connector

•HBase shell

– Relational operators (in progress)

•Restructure so applications can access 
multiple tables simultaneously.

Interested?

– Get involved!

•Contributions welcome!

• Follow email lists and Jira
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Questions? And Answers!

References:

“Bigtable: A Distributed Storage System for Structured Data”

http://labs.google.com/papers/bigtable.html

The HBase Wiki at Apache.org

http://wiki.apache.org/lucene-hadoop/Hbase

The #hbase IRC chat room at freenode.net

The Hadoop mailing lists


