The IO Programming Language

An Introduction

Tom Van Cutsem

To is..

* A small prototype-based language
* A server-side scripting language
* Inspired by:

Self
Smal Italk NewtonScript

Actl
Delegation

Everything is an object

Code is a runtime

inspectable/modifyable Small. Embeddable
tree |

LISP Lua

To: Some Facts

Steve Dekorte, 2002 (www.iolanguage.com)
Open Source, all platforms (even Symbian!)

Intepreted, Virtual Machine is

— ANSI C compatible (except for coroutines)

— Very compact (~10K lines of code)

— Incremental GC comparable to mark-and-sweep GC
— Reasonably fast (cfr. Python, Perl, Ruby)

Concurrency based on actors and implemented
through coroutines

C bindings

« Easy embedding within a C program
« Multi-state embedding

« Bindings with C libraries easily incorporated:

— Sockets
— XML/HTML parsing

— Regular expressions, encryption, compression
— SQLite embedded transactional database

— OpenGL bindings

— Multimedia support

Simplicity!

* Tries to be the éS of programming languages:
things should “just work”™

apDle access

Sample Code: Basics

“Hell W 1d “ int
ello World\n” prin factorial := method(n,

if (n ==1,
return 1,

return n * factorial(n - 1))
Control Flow v1

for(a,1,10,

write (a)) Control Flow v3

block (a>0) whileTrue (

a:=a-1 print)
Control Flow v2

10 repeatTimes (
write (Yhello”))

Sample Code: Data structures

* Built-in Maps, Lists and Linked lists

| List Exarnple

1l := List clone

1 add(2 sqgrt)

1 push(“foo”)

1l foreach(k,v,writeln(k,“->",v))
=>

l1->foo .
list (2 sqrt, “foo”)
1l atPut (0, “Hello ”

Sample Code: Objects
=y

Account := Object clone
Account balance := 0
Account deposit := method(v, balance := balance + v)
Account withdraw := method (v, balance := balance - V)
Account show := method(
write ("Account balance: ", balance, "\n")
)
myAccount := Account clone
myAccount deposit(10)
myAccount show

Extending primitives

Number double := method(self * 2)
1 double
=> 2

| Sngcton

MyObject clone := method(return self) s

MyObject := Object clone

Delegation

Shallow copies

Person := Object clone
Person name := “John Doe”
Person init := method (write (“new person created”))

jan := Person clone
jan name := “Jan” // leaves Person’s name unchanged!

jan instance-of Person is-a

Super sends

Person := Object clone
Person name := “Jane Doe”
Person title := method(write (name))

Doctor := Person clone
Doctor title := method(write(“Dr. ”),; resend)

"Comb"” Inheritance

lo’s multiple inheritance Typical multiple inheritance

6 4
Q@
4 b

* - Proto slot links

—p : Parent slot links

Assignment

* Assignment is achieved through message
passing

. o x := v IS translated t0 o setslot(“x”,v)
- o x = v IS translated t0 o updatesilot (“x”,v)

First-class methods

» Selecting a method slot automatically
activates it (cfr. Self)

« getSlot returns first-class reference to a
method/block:

dogSpeakMethod := Dog getSlot(“speak”)

* Methods do not encapsulate a scope: they
can simply be introduced in other objects

BarkingBird speak := getSlot (“dogSpeakMethod”)

13

OO Method Activation

Similar to Self

Upon method activation, a “locals” object is
created with ao. the following slots:

— proto: the message receiver

— self: the message receiver
— sender: locals object of the caller
— thisMessage: reification of processed message

Receiverless message sends are sent to the
“locals™ object (allows access to local variables)

OO Method Activation (2)

Person printOn (stream)

Person

Locals

Blocks

 |dentical to methods, but lexically scoped
:= 3.14159

addPiTo := block (v, v+Pi)

list(1l,2,3) translate(idx,val,addPiTo(val))

* The scope of a block always points to the
“locals™ object in which it was created

* Methods are just blocks whose scope is
assignable: its scope is always re-set to
the message receiver upon invocation

Blocks vs Methods

5 Test := Object clone do (
block (v, v + x) x =1,
method (v, v + x) accept := method(f, £(2))

)
b (2)

b activation Lobby

=> 7
Test accept(getSlot(“b”))

=> 7
m(2)

=> 7
Test accept(getSlot(“m”))

=> 3

OO Exception Mechanism

BarError, e,
barLogger log(e))

Catching exceptions

a-UserError

gui showDialog
catch (UserError, e,

gui showDialog(e))

Concurrency: Coroutines

| Coroutines

ol := Object clone

ol test := method(for(n, 1, 3, n print; yield))
02 := ol clone

ol @test; o2 @test // @ = async message send
while (activeCoroCount > 1, yield)

=>

112233

Transparent Futures

result := o @msg // returns a future
result := o Q@msg // returns Nil

Metaprogramming

firstClassMessage := message(putPixel (x,y,color))
Screen doMessage (firstClassMessage)
firstClassMessage argAt(0) asString

=> \\x//

Objects as dictionaries

Person := Object clone do(

name := “Jan”;

age := 18

)

Person foreach(slotNam, slotVval,
writeln(slotNam, “ - ”, slotVal))

=>

age - 18

name - Jan

“proto” - Object(...)

Method Arity

 Actuals without corresponding formals are
not evaluated

* Formals without corresponding actuals
are set to Nil

Method Arity

test := method(“body”)
test(1/0)

=> “body”

identity := method(x, x);
identity

=> Nil

Reifying a message

- thisMessage denotes reification of
message that triggered the current method

Variable argument lists

myAdd := method (
args := thisMessage argsEvaluatedIn (sender) ;
count := 0;
args foreach(k,v, count += v);

count)
Lazy argument evaluation!

myif := method (
if (sender doMessage (thisMessage argAt(0)),
sender doMessage (thisMessage argAt(l)),
sender doMessage (thisMessage argAt(2)))

)
myif(l == 1, “ok”, 1/0)

Conclusions

Simple pure prototype-based language

Syntax: everything is a message,
semantics: everything is an object

Subclassing and object instantiation
replaced by cloning

Metaprogramming facilities allow for
language extensions

Lots of libraries thanks to simple C
binding mechanism

Namespaces

proto -3 —~, MyObject

Protos —» Protos proto

Lobby proto |
loVM 1

— 7~ ¥

——» Object

proto
6

loDesktop —————» loDesktop
proto
Image

- the Lobby is the root of the lo namespace
- The black arrows show the order of a slot lookup starting in an instance of the Object prototype
- lookups ignore already traversed paths

