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Abstract

Phylogenetic analysis is becoming an increasingly im-

portant tool for biological research. Applications in-

clude epidemiological studies, drug development, and

evolutionary analysis. Phylogenetic search is a known

NP-Hard problem. The size of the data sets which

can be analyzed is limited by the exponential growth

in the number of trees that must be considered as

the problem size increases. A better understanding

of the problem space could lead to better methods,

which in turn could lead to the feasible analysis of

more data sets. We present a definition of phyloge-

netic tree space and a visualization of this space that

shows significant exploitable structure. This struc-

ture can be used to develop search methods capable

of handling much larger datasets.

1 Introduction

Phylogenetic analysis has become an integral part of

many biological research programs. These include

such diverse areas as human epidemiology (Clark

et al., 1998; Sing et al., 1992), viral transmission

(Crandall, 1996; Herring et al., 2007), and biogeog-

raphy (DeSalle, 1995). With the advent of new auto-

mated sequencing technologies, the ability to gener-

ate data for inferring evolutionary histories (phyloge-

nies) for a great diversity of organisms has increased

dramatically. Researchers are now commonly gener-

ating many sequences from many individuals. How-

ever, our ability to analyze the data has not kept pace

with data generation.

Phylogenetic search is a difficult problem. When

parsimony is used as the optimality criterion the

problem is known to be NP-complete (Day et al.,

1986). The search problem itself, independent of scor-

ing, is known to be NP-Hard (Chor and Tuller, 2005).

This means that optimal phylogenetic searches on

even hundreds of taxa will take years to complete

and heuristic searches for near optimal trees must be

used.

A variety of heuristic search methods have been

used to find optimal trees within a treespace. The

most common method is to search treespace us-

ing tree rearrangements (Stamatakis, 2006; Meier

and Ali, 2005; Swofford, 2003; Guindon and Gas-
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cuel, 2003). Other methods such as those based

on Bayesian inference (Ronquist and Huelsenbeck,

2003), or genetic algorithms (Zwickl, 2006) also ex-

ist. However all of these methods rely only on local

information to guide the phylogenetic search. This

limitation arises because no global exploitable struc-

tures have been previously observed in treespace.

Greater understanding of the problem space may

allow more sophisticated search techniques to be ap-

plied, with a consequent improvement in the effec-

tiveness of the search. One technique that can be

used to better understand the space of phylogenetic

search, and the behavior of search algorithms within

this space is visualization. This includes two sepa-

rate activities; first, defining the search space of phy-

logenetic trees, or treespace, and second, developing

methods to display treespace in a way that is ex-

ploitable in search techniques.

This visualization must have the following proper-

ties to be useful.

• Each tree should map to a single deterministic

position. Otherwise the method is restricted to

post-processing, and can not be used to guide a

search.

• Distance between trees should be easy to calcu-

late. If it is not the visualization will not be able

to be used in real time to guide a search.

• The visualization should reveal exploitable struc-

ture. This is important because if a visualization

shows no structure it provides no guidance for a

search.

• This mapping should be reversible, meaning that

there should be a method of turning a position

into a tree. This is necessary as structure sug-

gests a space where good trees might be found,

to be useful in searching it must be possible to

quickly find trees in the suggested space.

This work presents an elegant linear projection of

trees. This projection can be computed much faster

than current alternatives and is better at preserv-

ing structural continuity between trees after the pro-

jection. Furthermore this projection is determinis-

tic, allowing it to be used as an inline rather than

a post-process analysis. This property coupled with

the structural preservation allows the consideration

of novel search strategies in the new projected space.

Section 3 presents a definition of treespace and sec-

tion 3.3 presents an elegant projection of that space

that has all four of these desirable properties. This

projection is then used to visualize the treespace and

expose structure that can be exploited to guide the

searches of common, but computationally expensive,

methods.

2 Related Work

Treespace consists of all of the possible phylogenetic

trees for a given set of taxa and their relationships

with each other. This space is the domain of whatever

search strategy is employed. Previous search strate-

gies have not explicitly defined this domain, and the

treespace that implicitly arises from these strategies

is very cumbersome to work with. Treespaces have

also been explicitly defined without designing algo-
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2.1 Subtree Transfer Induced Spaces 2 RELATED WORK

rithms to take advantage of these spaces. This is pri-

marily due to a lack of exploitable structure in these

explicitly defined treespaces. Figure 1 contains a vi-

sual comparison of three treespaces that have been

used previously and are discussed in the following

sections.
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Figure 1: A visual comparison of three treespaces pre-
viously used. The graph structure induced by TBR
moves is highly connected, in this five taxa exam-
ple every possible tree is connected to all but two
of the other trees. The geodesic structure consists
of tiles of Euclidean space (orthants) each consisting
of one topology with all its possible branch lengths.
These tiles are joined together along their edges in
accordance with valid p-ECR moves. Finally Mul-
tidimensional Scaling (MDS) plots trees in locations
that preserves some distance metric. A typical search
is shown where a long tail of trees is followed by a
larger group of topologically similar trees.

2.1 Subtree Transfer Induced Spaces

The most common treespaces used in phylogenetic

search are the spaces implicitly defined by the subtree

transfer operations, such as TBR or SPR, used dur-

ing the search. These operations in turn induce dis-

tances between trees (Allen and Steel, 2001). These

treespaces take the form of graphs where each node

is a specific tree. Each pair of trees that can reach

each other with a single subtree transfer operation is

connected with an edge of the graph.

This type of space is very amenable to hill climb-

ing, a search strategy in which the search moves from

a tree to its best neighboring tree until no neigh-

bor trees are better than the current tree. The typ-

ical phylogenetic search begins at some node in this

graph of treespace corresponding to an initial tree.

This tree is typically either selected randomly, de-

termined by the user, or is built using a heuristic.

Common choices for this heuristic include UPGMA

and stepwise maximum parsimony. The tree is then

modified using a subtree transfer operation such as

Nearest Neighbor Interchange (NNI), Subtree Prune

and Regraph (SPR), Tree Bisection and Reconnec-

tion (TBR), or p-Edge Contraction and Refinement

(p-ECR) (Ganapathy et al., 2003). The new best

node becomes the starting node and the process is

repeated until convergence. This is also the space

used by Keith et al. (Keith et al., 2005) to build

their generalized Gibbs sampler.

Unfortunately, though this space has been com-

monly used for searching, it is not easily visual-

ized. For example using TBR, a very popular sub-

tree transfer operation, the graph that represents this

treespace has O(n!!) nodes and each node is degree

O(n3). Displaying this graph is clearly not practical

for any problem of significant size. Worse, as this

treespace is essentially a graph, there is no signifi-

cant meaning to position, violating the first two cri-

teria for a useful visualization. Also, distance can

be extremely difficult to compute. Calculating TBR

distance is NP-Hard (Allen and Steel, 2001). These

difficulties violate the third criterion. Finally this

graph structure shown in Figure 1a does not exhibit
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exploitable structure, the fourth criterion, as trees of

similar score are not grouped together. As shown

in Figure 2, the quality of trees that are within 1

TBR rearrangement of a given tree varies wildly over

the range of possible scores. Furthermore, due to the

graph structure of the space there is no way to distin-

guish one such tree from another, without performing

the rearrangement and examining the resulting tree.
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Figure 2: The frequency of various parsimony scores
for trees found within 1 TBR rearrangement of a tree
with a score of 16218, the best known score on the
Zilla dataset. Note the wide spread of scores and that
most neighbor trees are significantly worse than the
initial tree.

2.2 Geodesic Tree Space

Billera et al. (Billera et al., 2001) introduced a new

description of treespace, which has been further re-

fined by Hultman (Hultman, 2007). Under this de-

scription, each fully resolved (bifurcating) topology is

given its own orthant, the higher dimensional analog

of a graph quadrant. Each dimension of the orthant

corresponds to one of the branches in the topology,

and the value associated with that dimension is the

length of that branch. Within each orthant, distance

is a simple Euclidean distance. At the edges of the

orthant, where at least one coordinate becomes zero,

the tree becomes an unresolved (multifricating) tree.

This unresolved tree has a corresponding point on

each of the orthants that represent a potential reso-

lution of this tree. The distance between these points

on separate orthants is defined to be zero thus form-

ing a geodesic space. These connections between or-

thants are directly related to p-ECR rearrangements.

The structure of this space can be seen in Figure 1b.

This space is unlike the treespace induced by sub-

tree transfer operations. The branch lengths of

the trees are included and this treespace is contin-

uous. However, because it is a geodesic, it can be

difficult to calculate distances, though Amenta et

al.(Amenta et al., 2007) do provide a linear time up-

per and lower bound that can be used to estimate

the distances. Unfortunately, like the subtree trans-

fer induced spaces used during phylogenetic search,

Billera’s geodesic space is not easily visualized due

both to the high dimensionality of each orthant and

the complex connections between orthants. These

connections are based on a subtree transfer operation,

p-ECR, and so like the treespace defined by TBR

there is no significant meaning to position between

orthants. Thus, like the TBR induced treespace, this

treespace defined by Billera does not meet the criteria

for a good visualization. While position and trees are

tightly connected, distance is difficult to compute and

it is not clear that there is any exploitable structure.
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2.3 Multidimensional Scaling

Multidimensional Scaling (MDS) has also been used

to visualize treespace (Amenta and Klingner, 2002;

Hillis et al., 2005). This method does not directly

define a treespace, rather it uses the space induced

by the distance metric used for the MDS. In the work

of Hillis et al. (Hillis et al., 2005) Robinson-Foulds

distance was used. MDS is a highly non-linear projec-

tion, as it moves points around to minimize the sum

of the squared differences of the distances between

points before and after the projection.

Using this method Hillis et al. (Hillis et al., 2005)

were able to show some important characteristics of

phylogenetic search. The most notable characteristic

visualized was the presence of plateaus, large groups

of closely related trees, that tend to slow down the

search.

There are however some significant limitations to

the use of MDS. First, MDS is strictly a post-

processing step. All of the points to be projected

must be known beforehand, which limits the method

to analysis of a search. Secondly there is no meaning

to the space between points. It is not possible under

MDS to determine a tree that would map to a spe-

cific point. Third, the axes of the new space have no

consistent meaning. The only thing that MDS tries

to preserve is some sense of distance, direction does

not have any meaning after MDS is performed. As a

result of these limitations, while MDS is a good visu-

alization technique it does not meet the criteria of this

work. This is primarily due to the highly non-linear

and irreversible nature of the MDS transformation.

MDS can be a very descriptive visualization, but it is

a poor predictive visualization.

3 The Hypersphere of Trees in

Split Space

Another treespace is one defined in terms of parti-

tions of taxa. A projection can be defined from this

space which both deterministically maps trees to sin-

gle points and is reversible. These properties give us

the first three criteria for a good treespace and vi-

sualization. In the results section we show that this

space also displays exploitable structure.

3.1 Split Space

There are several varieties of trees that can be used

in phylogenetics. Since only one specific set of n taxa

will be considered at any time we constrain treespace

to contain only trees of exactly those n taxa. Both

candidate scoring metrics (likelihood and parsimony)

work with unrooted trees so the space is further con-

strained to contain only unrooted and fully resolved

trees.

Definition 3.1. An n-tree is a graph in which all

vertices have degree one or three, with exactly n ver-

tices of degree one.

Every branch in an n-tree divides the taxa on the

tree into two sets, one on each side of the branch.

Thus every branch can be thought of as a partition

of the taxa. Some of these branches, those that con-

nect to the leaves, are common to all n-trees. These
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branches are not useful in discriminating between dif-

ferent tree topologies and so are called trivial.

Definition 3.2. A trivial branch is a branch that

connects a leaf node with an internal node.

Given n taxa there are
bn

2 c∑
i=2

(
n
i

)
possible nontrivial

partitions of those taxa. We define a space, called

split space, where every possible nontrivial partition

is associated with a unique dimension. We denote the

split space associated with trees of n taxa as Tn.

The location of a given tree in Tn is a vector, where

each element of the vector is 0 if the corresponding

partition is not part of the tree and 1 if the partition

is present in the tree. There is a one-to-one mapping

between vectors in split space and n-trees.

The mapping from an n-tree to a vector in Tn is

simple. Initially, every element of the vector is set to

0. A non-trivial branch is selected and the associated

partition is created by putting all taxa on one side

of the branch into the first group in the partition

and all other taxa in the second. The element in

the vector associated with this partition is set to 1.

This process is repeated for each non-trivial branch.

This mapping is one-to-one but not onto, as there are

more possible vectors than n-trees. This is because

there exist conflicting partitions which can not both

be in one tree, however there are vectors which would

include these conflicts.

Building an n-tree from a vector in Tn is also pos-

sible. However given a vector that does correspond

to a valid tree, that tree can be reconstructed in the

following manner. First, all of the trivial branches

are added to the tree. Next, all non-trivial partitions

where the smaller group contains two taxa are con-

sidered. Each of the two taxa in the smaller group

are joined at a new internal node and a new branch is

added to that node. Next, partitions with incremen-

tally larger small groups are considered, and their

subclades which have already been built are joined

at new internal nodes. After all non-trivial partitions

have been considered, there will remain three clades.

These three subtrees are joined together at the final

internal node and the tree has been reconstructed.

Figure 3 graphically shows this reconstruction. As

there is a mapping from an n-tree to a vector in Tn

and the reverse mapping also exists, these trees and

vectors are equivalent.

{1|23456} {2|13456}
{3|12456} {4|12356}
{5|12346} {6|12345}

1 2 3 4 5 6

Begin with trivial branches

1 2 3 4 5 6 {12|3456} {56|1234}

Add branches for partitions of size 2

1 2 3 4 5 6 {123|456}

Add branches for partitions of size 3

1 2 3 4 5 6

Join remaining three branches

Figure 3: Converting a six taxa partition set to an
unrooted tree structure

3.2 The Hypersphere of Trees

A hypersphere consists of the set of all points which

are equidistant from a given center point. It is the

higher dimensional analog of circles and spheres. The

set of all vectors in Tn which correspond to valid n-

trees has this structure as shown in theorem 3.4.

Lemma 3.3. All n-trees have 2n−3 branches, n−3

of these are nontrivial.

Proof. By inspection all trees of n taxa have n trivial
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branches, one for each taxa.

branchest(n) = n

A n+1 taxa tree can be constructed from a n taxa tree

by inserting a new trivial branch. After this insertion

the tree has one more nontrival branch.

branchesnt(n+ 1) = branchesnt(n)

By inspection it is clear that a 3 taxa tree has no

nontrivial branches.

branchesnt(3) = 0

The formula which satisfies both of these conditions

is

branchesnt(n) = n− 3

And finally:

branches(n) = branchesnt(n) + branchest(n)

= 2n− 3

Theorem 3.4. All n-trees lie on a hypersphere in

Tn.

Proof. By Definition 3.1, n-trees are fully resolved.

All fully resolved trees on n taxa have n − 3 non-

trivial branches by Lemma 3.3. As each such branch

corresponds to exactly one of the possible partitions,

an arbitrary n-tree in Tn will have exactly n− 3 axes

along which the coordinate of the tree will be 1 and

all other axes will have a coordinate of 0. The Eu-

clidean distance to this point from the origin of Tn

will therefore be
√
n− 3, which is the same for all

n-trees. As all n-trees are equidistant from the origin

they lie on a hypersphere.

3.3 Projecting the Sphere

Directly visualizing the hypersphere model is clearly

infeasible as the number of dimensions that would

need to be included quickly exceeds the number of di-

mensions that we can conveniently visualize. There-

fore some form of dimension reduction is needed.

3.4 Sphere to Plane Projections

Cartographic projections are particularly apt at

sphere to plane transformations. The basic carto-

graphic projection takes a hypersphere in n dimen-

sions and projects it onto a hyperplane of n−1 dimen-

sions. This is done by selecting n−1 vectors, typically

chosen from a basis set. Figure 4 shows how this re-

duction can project three dimensional data onto two

dimensions. The inner product of each point on the

hypersphere to be projected with each of the selected

vectors is computed. These inner products become

the coordinates of the projected point on a hyper-

plane of n− 1 dimensions.

This cartographic projection can be extended to a

new projection that reduces the dimensionality of the

space more than the basic cartographic projection.

Reducing the n dimensional space by one dimension

when n grows as the number of possible partition sets

is not significant. Therefore, rather than choosing n−
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i
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i   x

j    x

j longitude
latitude

x

Figure 4: Cartographic projection of a sphere onto
a plane, the most familiar of which is used in map
making. Two vectors are selected, indicated as i and
j. For any given point x on the sphere the inner
products i • x and j • x are computed. These two
quantities become the new coordinates of the point
on the map.

1 vectors which results in a n− 1 dimensional space,

three vectors are used, yielding a three dimensional

space. Three dimensions are used because it is well

known how to display 3-D data, and the use of three

dimensions preserves more structure than if the data

were reduced to two dimensions.

The spherical structure of trees in Tn shown in

theorem 3.4, permits the use of cartographic projec-

tions. As this class of projections is deterministic,

the position of a tree after cartographic projection is

deterministic and depends only on the tree in ques-

tion, thus satisfying the first visualization criterion.

Furthermore the space both before and after the pro-

jection is a simple Euclidean space where distance is

easily calculated satisfying the second criterion. Sec-

tion 4 shows the exploitable structure revealed by the

projection which satisfies the third criterion. The

projection is also reversible which satisfies the final

criterion.

Thus, the hypersphere structure and the use of car-

tographic projections allow us to represent phyloge-

netic search in a manner consistent with the original

visualization criteria.

For example, consider all trees of five taxa num-

bered 1-5 respectively. Every non-trivial branch has

two taxa on one side and three on the other. There

are ten such partitions, yielding a ten dimensional

space. To project this space onto a two dimen-

sional plane, two reference vectors are required. The

vectors chosen, along with the projected positions

of all 5 taxa trees are shown in Figure 5 The tree

((1,2),3,(4,5)) is mapped in the following manner.

The partition (1,2) has an x value of 1.0 and a y

value of 0.9. Likewise the partition (4,5) has an x

value of −0.3 and a y value of 0.6. These values are

added together to give the final location of the tree

((1,2),3,(4,5)) at the point (0.7,1.5).

1,3
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Figure 5: A 2-D cartographic projection of all 5 taxa
trees, with reference vectors. The vector for the tree
((1,2),3,(4,5)) is also shown. The point corresponding
to this tree is highlighted in the graph.

3.5 Implementation Details

The extremely high dimensionality of Tn makes ex-

plicit storage of the three reference vectors needed for

the cartographic projection infeasible. Likewise, due
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to the size of these vectors the typical calculations

used for computing inner products require infeasible

amounts of time. A näıve implementation of carto-

graphic projections is adequate for very small num-

bers of taxa, but more sophisticated techniques are

required for most data sets.

3.6 Hash Table Vector Representa-

tions

The memory usage of a straightforward implemen-

tation of cartographic projections is exponential in

the number of taxa. Rather than explicitly storing

the very large reference vectors a hash table repre-

sentation is chosen. This representation has a fixed

memory size, which can be arbitrarily chosen inde-

pendently of the number of taxa.

To construct this table, a hash function and three

representative vectors of a feasible dimensionality,

one for each reference vector, are chosen. The hash

function chosen must have a range equal to the set

of natural numbers up to the dimensionality of the

reference vectors and a domain equal to the set of

natural numbers up to the dimensionality of the rep-

resentative vectors.

Together these representative vectors and the hash

function are used to compute the elements of the ref-

erence vectors as needed. The ith element of each

reference vector is defined to be the element of the

corresponding representative vector with the hashed

value of i as follows:

Xi ← X ′h(i)

This representation allows a fixed amount of mem-

ory to be adequate for data sets of any number of

taxa. This bound on memory usage is critical for the

visualization of large data sets.

3.7 Orthogonality and Normalization

of the Reference Vectors

It is desirable that the three reference vectors be or-

thogonal to each other and also that they be normal-

ized, so that we have an orthonormal basis for vi-

sualization. As the dimension of the three reference

vectors is very large it is not practical to directly en-

force either of these constraints. An additional com-

plication is that each reference vector is not explicitly

stored, but is instead implicitly defined by its repre-

sentative vector and the hash function. Yet, with

these constraints it is still possible to make the refer-

ence vectors mutually linearly independent and give

bounds on their normality and orthogonality. These

bounds and their proofs are given in appendix A.

If the representative vectors are made to be or-

thogonal then regardless of the choice of hash func-

tion, the true reference vectors are linearly indepen-

dent by theorem A.5. The quality of the orthogonal-

ity property of the reference vectors is dependent on

the quality of the hash function as shown in theorem

A.6. Given the size of the representative vectors used

(65535 elements) and only 20 taxa the reference vec-

tors must be within 7.32×10−5 degrees of orthogonal.

As the number of taxa increases this bound becomes

even tighter.

Normalizing the reference vectors is more difficult.

TR BYU CSL-2009-1 9
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Due to the finite precision arithmetic of computers,

it is not possible to normalize the reference vectors

to unit length. As the vectors have a very high di-

mensionality, normalization tends to make each indi-

vidual element too small to be represented, which in

turn results in all of the reference vectors becoming

the zero vector. As an alternative, each representa-

tive vector is made to have the same length as the

others, without constraining this length to be one.

Again the normalization can only be performed on

the representative vectors in the hash table. However

Theorem A.7 shows that the reference vectors are also

normal if the hash function is perfectly even and gives

a bound on how far off of normal the vectors can be

in every other case.

The bounds given do not depend on the hash func-

tion, so any good hash function should be adequate.

Bob Jenkins’ one at a time hash function (Jenkins,

1997) was used for the results in section 4.

3.8 Calculating the Inner Product

The näıve method of calculating an inner product

grows linearly with the dimension of the two vec-

tors involved. Unfortunately, in this case the size of

those vectors grows as the combinations of taxa. This

method therefore gives worse than exponential per-

formance with respect to number of taxa. However,

for any given tree of n taxa, the vector representing

that tree will have exactly n−3 non-zero components

by lemma 3.3. Furthermore, each of these will be ex-

actly one by the definition of trees in Tn. These two

properties can be exploited to give an algorithm that

computes the needed inner products in time O(n),

where n is the number of taxa.

This method begins with a hash table. Each el-

ement of the hash table contains one element from

each of the reference vectors. The keys into the hash

table are partition sets. The mapping of a tree is

accomplished with the following steps.

1. A list of the n− 3 partition sets is built : O(n)

2. Each partition is used to lookup a set of x,y, and

z values in the hash table : O(1) ∗O(n)

3. The n − 3 values are summed giving the final

mapping : O(n)

These steps give an overall runtime execution ofO(n).
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Figure 6: A 2-D cartographic projection of all 5 taxa
trees, with reference vectors represented through a
simple modulo 3 hash. Under this poor hash there
are only 5 locations which correspond to valid trees.
The vector for the tree ((1,2),3,(4,5)) is also shown.
The point corresponding to this tree is highlighted in
the graph.

For example, consider all trees of five taxa num-

bered 1-5 respectively. Every non-trivial branch has

two taxa on one side and three on the other. The

hash function will be computed as follows; add the

taxa numbers of the two taxa on one side, then di-
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vide this sum by three and take the remander as the

value of the hash function. There are three possible

values for this hash function 0,1, and 2. Figure 6

shows the full reference vectors. A reference vector is

assigned to each of these values. The reference vec-

tors will be axis-aligned unit vectors, the value of 0

will correspond to the vector (1.0,0.9), 1 to the vector

(-0.9,0.9) and 2 to the vector (-0.8,-0.8).

This scheme gives six possible locations for each of

the fifteen possible trees to map onto, one of which

does not respond to any valid trees. These locations

are all shown in Figure 6. In this example the tree

((1,2),3,(4,5)) maps to the point (2.0,1.8). The par-

tition (1,2) as well as the partition (4,5) both map to

the vector (1.0,0.9), these results are added together

to obtain the final location of the tree.

This method has two main advantages. First the

time needed to compute the inner product scales with

the number of taxa rather than with the dimension-

ality of split space. Secondly only a fixed amount

of storage for the hash table is required, regardless

of the number of taxa in the tree. This upper bound

on necessary storage makes the visualization of larger

data sets feasible.

4 Results

The definitions of Tn and the cartographic projection

are deterministic, reversible and have an easily calcu-

lated distance metric, fulfilling three of the four cri-

teria for a useful visualization. The fourth criterion,

exploitable structure, is the most important. The car-

tographic projection places similarly scored trees to-

gether in the data sets examined. This creates a gra-

dient, an exploitable structure, which allows future

work to develop a gradient descent strategy, which

would be an improvement over current hill climbing

techniques.

4.1 Locality of Structure

To have any exploitable structure there must be

some correlation between position in the projected

space and the topology of the trees near that posi-

tion. Three methods will be considered: first, the

method of Cartographic Projections, second, Multi-

dimensional Scaling in two dimensions as in Tree Set

Vis (Hillis et al., 2005), and finally Multidimensional

Scaling in three dimensions to account for any affects

from the extra degree of freedom. The test case will

be the exaustive set of all trees of 7 taxa, with each

method run 100 times as they all have random ele-

ments. Once each projection is calculated, the near-

est n neighbors for every tree are found, with n rang-

ing from 0 to 25. A majority rule consensus tree

is then constructed for each of these neighborhoods.

The resolution of these trees is reported, with a value

of 1 indicating that the tree was fully resolved and

a value of 0 indicating that the tree was fully unre-

solved.

Figure 7 shows the results of this test. The points

are plotted with the minimum, average and maximum

values for the resolution. Note that cartographic pro-

jections are superior to both two and three dimen-

sional MDS in every case. Not only are close trees

more structurally similar, but also the neigborhoods
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over which some degree of topological similarity is

found are much larger. It is thus concluded that car-

tographic projections produce, in terms of topology,

a smoother mapping of treespace. Further this supe-

riority is not due to the added flexibility of projecting

onto three dimensions rather than two.
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Figure 7: The average degree of consensus across
near neighbors among all trees with 7 taxa, note that
higher values are better. As both cartographic pro-
jections and MDS have a random component each
point consists of 100 projections with the average,
minimum and maximum values for the consensus
across all neighborhoods of the given size plotted.
MDS was run both in the two dimensional case as
in TreeSetVis and in a three dimensional case as the
chosen cartographic projection resulted in a three di-
mensional result.

4.2 Results from Nine Taxa Set Ex-

haustive Searches

To explore the inherent structure of the maximum

parsimony problem, several nine taxa data sets were

fully analyzed. The size of nine taxa was selected be-

cause with only 135, 135 possible solution trees, it was

very feasible to exhaustively enumerate all solutions

for many different data sets of this size and to plot

all of the points. Each set was exhaustively enumer-

ated and scored using PAUP* (Swofford, 2003). The

three reference points for the projection were chosen

at random. Under this projection each of the possi-

ble trees mapped to a unique point in the new three

dimensional space. The same projection was used for

all of the data sets. These points were then colored

according to the parsimony score of the correspond-

ing tree, with white indicating a poor score and black

indicating a good score.

In all of the data sets, there is significant ex-

ploitable structure. In some, such as that shown on

the right in Figure 8, a clear nearly linear gradient

was visible throughout the entire cloud of possible

trees. While in others such as that shown on the left

in Figure 8, clustering of scores is clear. Even though

the gradient was much more complex, it would still

be possible to use gradient descent.

Figure 8: Two distinct 9 taxa datasets under carto-
graphic projection. Dark points represent trees with
better scores. The set on the left shows clear cluster-
ing with good trees near the center of the cloud. The
set on the right shows a gradient, with good trees at
the upper point of the cloud.
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5 FUTURE WORK

4.3 Visualizing an Exhaustive Search

with MDS

The tool Tree Set Viz was used to produce a visu-

alization of a complete data set for comparison with

our cartographic projections. Due to the very high

memory requirements of multi-dimensional scaling,

it was not possible to use a nine taxa data set. An

eight taxa subset was used instead. The program was

run overnight to allow the program adequate time to

converge to the mapping shown in figure 9.

A few features are noteworthy. First, the circular

shape, which is a result of the hyperspherical nature

of treespace. As all of the trees lie on the surface of a

specific sphere, the best MDS solutions are circular.

Also the MDS clustering, like the cartographic pro-

jection, has a large concentration of good trees. Un-

like the cartographic projection, however, the MDS

formed two separate clusters and also has a scatter-

ing of good trees throughout a large portion of the

visualization. Although it is not clear that the clus-

tering of scores caused by MDS is inferior to that

of cartographic projections, it is crucial to note that

MDS is a post process step and can not be used to

guide a search. Therefore any structure is inherently

not exploitable structure.

4.4 Results from Large Data Set

Searches

It is not practical to exhaustively search the tree

space associated with a large data set. Instead the

phylogenetic search program PSODA (Carroll et al.,

2007) was modified to output every tree that it was

Figure 9: A multi-dimensional scaling (MDS) visu-
alization of an exhaustive search of 8 Taxa. Dark
points represent trees with better scores. Note that
there is some clustering of good trees but that they
can be found throughout the visualized set.

going to perform a TBR rearrangement on, and ev-

ery 100th rearrangement so produced. This gives not

only the path of best trees found by the search as it

progressed, but also a sampling of the trees that were

rejected.

Figure 10 shows a projection of a TBR search

with the Zilla data set (Chase et al., 1993) us-

ing cartographic projections. Again, a clustering of

scores is apparent among the trees considered by the

search, revealing exploitable structure in this difficult

dataset.

5 Future Work

The cartographic projection from the hypersphere of

trees has revealed significant structure to the problem

of phylogenetic search. Further contributions can be

made in improving our understanding of the revealed
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Figure 10: Projection of a search through the Zilla
500 taxa dataset.

structure. More importantly new search techniques

can be developed that can exploit this structure.

5.1 Axis Optimization

The current projection from split space to the 3-D

visualization is based on the random selection of the

points in split space. These points are guaranteed to

result in linearly independent reference vectors and

are very likely to result in vectors which are orthonor-

mal as well. Although the initial random selection

provides encouraging results, a more intelligent se-

lection of basis vectors could improve the quality of

the visualization.

5.2 Improved Phylogenetic Searches

There are two directions in which to take this work

with respect to improving phylogenetic searches by

utilizing the structure seen in the visualization. The

first is to create a human guided search. As the pro-

jection from split space to the visualization is a simple

linear transformation, it is possible to select a point

in the visualized space and calculate the subspace of

split space that corresponds to that point. A tree

or trees in that subspace would then be generated

and added to the list of trees used in a typical TBR

based search, thereby restarting the search from the

desired location. The second approach is to calculate

and directly use the apparent gradient seen in the

visualization to find better trees.

6 Conclusions

This cartographic projection from Tn fulfills all de-

fined criteria for a good visualization. First the map-

ping from n-trees to Tn is one-to-one and further the

cartographic projection for Tnto R3 is linear. This

means that each tree maps to exactly one point, and

this point is not affected by any outside influences.

Also because the mapping is linear, it is reversible,

which meets the second criterion. Euclidean distance

in Tn is easy to calculate. Robinson-Foulds distance

is also closely related to Tn as both definitions are

based on the partition sets of trees. Either of these

distance metrics are easily calculated and meet our

third criterion.

More importantly, the use of a cartographic in-

spired projection has revealed significant structure to

the problem of phylogenetic search. The visualization

shows a general clustering of trees with similar scores,

and in some data sets a clear gradient structure is ob-

served. This promises to be useful in furthering our

understanding of the problem of phylogenetic search

and for informing the development of new methods in

the field. These new methods will expand our ability

to perform phylogenetic analysis which has implica-

tions for many biological fields.
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A.2 Theorems A PROOFS

A Proofs

As givens in all of the following proofs are two vec-

tors X and Y , each of dimension d. These vectors

are arbitrarily chosen orthogonal vectors. They are

also used to construct two vectors X ′ and Y ′, each of

dimension d′, using a hash function h.

This paper used three vectors of dimension 65535,

with elements chosen randomly with a uniform dis-

tribution from [−1, 1]. Using the Gram-Schmidt

method these vectors were all made to be orthogo-

nal to each other. Finally they were each modified to

make their magnitudes equal to the magnitude of the

first vector.

A.1 Definitions

Definition A.1. h is a function with the following

properties:

range(h) ⊂ {N < d}

{N < d′} ⊂ domain(h)

Such a function is easily constructed. One such

function when d < d′ is h(x) = xmod d.

Definition A.2. X ′ and Y ′ are two vectors con-

structed from X,Y , and h as follows:

X ′i ← Xh(i)

Y ′i ← Yh(i)

Definition A.3. The frequency with which h maps

any number j onto a given number i is

fi =

d′∑
j=1

 1 h(j) = i

0 h(j) 6= i

d′

Note that fi has the following bounds:

∀i, 1
d′
≤ fi ≤

d′ − d+ 1
d′

Definition A.4. The quality of the function h, ξ is

a measure of how evenly the elements of X ′ and Y ′

are mapped by h onto X and Y

∃ξ∀i, d
d′

+ ξ ≥ fi

Note that due to the bounds on all fi, xi has the

following bounds:

0 ≤ ξ ≤ d′ − 2d+ 1
d′

A.2 Theorems

Theorem A.5. Given two orthogonal vectors X and

Y , two arbitrarily larger vectors X ′ and Y ′ can be

constructed such that they are linearly independent.

Proof. As X and Y are orthogonal, they are also lin-

early independent. That is to say:

∀s, sX 6= Y

∀s∀i ∈ {N < d} , sXi 6= Yi

∀k∃j,X ′k = Xh(j) Definition A.2

∀k∃j, Y ′k = Yh(j)
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Thus all equations of the form

sXj 6= Yj : j ∈ range(h)

can be rewritten as

sX ′k 6= Y ′k : k ∈ domain(h)

In this fashion

∀s∀i ∈ {N < d} , sXi 6= Yi

∀s∀j ∈ {N < d′} , sX ′j 6= Y ′j

∀s, sX ′ 6= Y ′

From which it is clear that X ′ and Y ′ are linearly

independent.

Theorem A.6. Given two orthogonal vectors X and

Y , two arbitrarily larger vectors X ′ and Y ′ can be

constructed such that they are orthogonal within a

given bound.

Proof. Using Definition A.3 the inner product

〈X ′|Y ′〉 can be written in terms of X and Y .

〈X ′|Y ′〉 =
d′∑

i=1

X ′iY
′
i

= d′
d∑

j=1

fjXjYj

As X and Y are orthogonal their inner product

〈X|Y 〉 = 0, therefor either

∀i,XiYi = 0

and clearly

∀ξ, 〈X ′|Y ′〉 = 0

or

∃i,XiYi > 0

∃j,XjYj < 0

In this second case it may not be true that X ′

and Y ′ are orthogonal. Even so there are bounds on

〈X ′|Y ′〉. The largest possible magnitude of 〈X ′|Y ′〉

occurs when h maps each member of {N < d} to one

member of {N < d′} with the exception of one ele-

ment of {N < d} which maps to the remaning ele-

ments of {N < d′}. Furthermore, that sole exception

corresponds with the largest magnitude of XiYi. In

this case the inner product is given by

〈X ′|Y ′〉 =
d′ − d
d′

d∑
i=1

1
d′
XiYi +

ξ

d′
argmaxj XjYj

=
d′ − d
dd′

d∑
i=1

XiYi +
ξ

d′
argmaxj XjYj

= 0 +
ξ

d′
argmaxj XjYj

〈X ′|Y ′〉 ≤ d′ − 2d+ 1
d′2

argmaxj XjYj

The angle θ between X ′ and Y ′ is given by

cos θ =
〈X ′|Y ′〉
|X ′| |Y ′|

Applying the bound on 〈X ′|Y ′〉, and the bounds

on the magnitudes of X ′ and Y ′ from Theorem A.7

cos θ ≤
d′−2d+1

d′2 argmaxj XjYj

|X| |Y |
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As X and Y are arbitrary but constant expressions,

note that

lim
d′→∞

cos θ = 0

Therefore as the number of taxa increases the vectors

in question approach orthogonality.

Theorem A.7. Given two vectors of equal magni-

tude X and Y , two arbitrarily larger vectors X ′ and

Y ′ can be constructed such that they are also of equal

magnitude within a given bound.

Proof. As X and Y are of equal magnitude it is the

case that √√√√ d∑
i=1

X2
i =

√√√√ d∑
i=1

Y 2
i

The magnitude of X ′ is bounded above by

|X ′| =

√√√√ d′∑
i=1

X ′
2
i

=

√√√√d′
d∑

i=1

fiX
2
i

≤

√√√√d′
d∑

i=1

(
d

d′
+ ξ

)
X2

i

≤
√
d+ d′ξ |X|

As the range of h is in {N < d} every element of X

is also an element of X ′. Therefore

|X| ≤ |X ′|

The magnitude of Y ′ is bounded in the same fashion.

The ratio of the two magnitudes is bounded as follows

1√
d+ d′ξ

≤ |X
′|

|Y ′|
≤
√
d+ d′ξ

Additionally, if ξ = 0 then

|X ′| =

√√√√d

d∑
i=1

X2
i

=
√
d |X|

|Y ′| =

√√√√d

d∑
i=1

Y 2
i

=
√
d |Y |

and the two vectors have equal magnitude
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