LECTURE 6: INTERIOR POINT METHOD

- 1. Motivation
- 2. Basic concepts
- 3. Primal affine scaling algorithm
- 4. Dual affine scaling algorithm

Motivation

- Simplex method works well in general, but suffers from exponential-time computational complexity.
- Klee-Minty example shows simplex method may have to visit every vertex to reach the optimal one.
- Total complexity of an iterative algorithm
 - = # of iterations x # of operations in each iteration
- Simplex method
 - Simple operations: Only check adjacent extreme points
 - May take many iterations: Klee-Minty example

Question: any fix?

Complexity of the simplex method

- Total # of elementary operations
 = (# of elementary operations at each iteration) × (# of iterations).
- # of elementary operations at each iteration of the revised simplex method O(mn).
- From practical experience, the simplex method takes about (αm) iterations where $e^{\alpha} < \log_2(2 + n/m)$. Hence it is of $O(m^2 n)$.
- From the worst-case analysis, Klee and Minty [1972] showed a class of examples (in the d-dimensional space) which 2^d - 1 iterations for the simplex method.

Worst case performance of the simplex method

- Klee-Minty Example:
- Victor Klee, George J. Minty, "How good is the simplex algorithm?" in (O. Shisha edited) Inequalities, Vol. III (1972), pp. 159-175.

Klee-Minty Example

Klee-Minty Example

 $(d \dim)$ \min $-x_d$ Hence, in theory, the simplex method is not a s. t. $x_1 \ge 0$ polynomial-time algorithm. It is an *exponential* $x_1 \leq 1$ time algorithm! $x_2 \ge \epsilon x_1$ $x_2 \leq 1 - \epsilon x_1$ exponential time cubic : quadratic $x_d \geq \epsilon x_{d-1}$ linear $x_d \leq 1 - \epsilon x_{d-1}$ (n, m, L) $x_i \geq 0$ $2^d - 1$ iterations

Karmarkar's (interior point) approach

 Basic idea: approach optimal solutions from the interior of the feasible domain

- Take more complicated operations in each iteration to find a better moving direction
- Require much fewer iterations

General scheme of an interior point method

 An iterative method that moves in the interior of the feasible domain

Step 1: Start with an interior solution.

- Step 2: If current solution is good enough, STOP. Otherwise,
- Step 3: Check all directions for improvement and move to a better interior solution. Go to Step 2.

Interior movement (iteration)

• Given a current interior feasible solution \mathbf{x}^k , we have $\begin{aligned} \mathbf{A}\mathbf{x}^k &= \mathbf{b} \\ \mathbf{x}^k &> \mathbf{0} \end{aligned}$

An interior movement has a general format

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}_{\mathbf{x}}^k$$
$$\begin{cases} \alpha \ge 0 : \text{ Step } - \text{ length} \\ \mathbf{d}_{\mathbf{x}}^k \in \mathbb{R}^n : \text{ moving direction} \end{cases}$$

Key knowledge

- 1. Who is in the interior?
 - Initial solution
- 2. How do we know a current solution is optimal?
 Optimality condition
- 3. How to move to a new solution?
 - Which direction to move? (good feasible direction)
 - How far to go? (step-length)

Q1 - Who is in the interior?

Standard for LP

 $\begin{aligned} \text{Min } \mathbf{c}^T \mathbf{x} \\ \text{(LP)} \qquad \text{s. t. } \mathbf{A} \mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{aligned}$

- Who is at the vertex?
- Who is on the edge?
- Who is on the boundary?
- Who is in the interior?

What have learned before

Learning from example

What's special?

• Vertices $v^1 = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix}, v^2 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix}, v^3 = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \\ 0 \end{pmatrix}, v^4 = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \\ 20 \end{pmatrix}.$

• Edge Interior

$$v^5 = \begin{pmatrix} 20\\0\\20\\20 \end{pmatrix}$$
 \leftarrow one zero x_i $v^6 = \begin{pmatrix} 15\\15\\10\\15 \end{pmatrix}$ \leftarrow no zero x_i
 $n = 4, m = 2, n = m = 2$

Who is in the interior?

- Two criteria for a point **x** to be an interior feasible solution:
 - Ax = b (every linear constraint is satisfied)
 x > 0 (every component is positive)
- Comments:
 - 1. On a hyperplane $H = \{\mathbf{x} \in \mathbf{R}^n | \mathbf{a}^T \mathbf{x} = \beta\}$, every point is interior relative to H.
 - 2. For the first orthant $K = \{x \in \mathbb{R}^n | x \ge 0\}$ only those x > 0 are interior relative to K.

Example

How to find an initial interior solution?

- Like the simplex method, we have
 - Big M method
 - Two-phase method

(to be discussed later!)

Key knowledge

- 1. Who is in the interior?
 - Initial solution
- 2. How do we know a current solution is optimal?
 Optimality condition
- 3. How to move to a new solution?
 - Which direction to move? (good feasible direction)
 - How far to go? (step-length)

Q2 - How do we know a current solution is optimal?

• Basic concept of optimality:

A current feasible solution is optimal if and only if "no feasible direction at this point is a good direction."

 In other words, "every feasible direction is not a good direction to move!"

Feasible direction

- In an interior-point method, a feasible direction at a current solution is a direction that allows it to take a small movement while staying to be interior feasible.
- Observations:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}_{\mathbf{x}}^k \qquad \mathbf{A} \mathbf{x}^k = \mathbf{b} \\ \mathbf{x}^k > \mathbf{0}$$

- There is no problem to stay interior if the step-length is small enough.
- To maintain feasibility, we need

$$\begin{array}{rcl} \underline{\mathbf{A}}\mathbf{x}^{k+1} &=& \mathbf{b} \\ \mathbf{A}\mathbf{x}^{k} + \alpha \mathbf{A}\mathbf{d}_{\mathbf{x}}^{k} &=& \mathbf{b} \\ && & i.e. \ \mathbf{d}_{\mathbf{x}}^{k} \in \mathcal{N}(\mathbf{A}) \text{ null space of } \mathbf{A}. \end{array}$$

Good direction

- In an interior-point method, a good direction at a current solution is a direction that leads it to a new solution with a lower objective value.
- Observations:

$$\frac{\mathbf{c}^T \mathbf{x}^{k+1}}{\mathbf{c}^T \mathbf{x}^k + \alpha \mathbf{c}^T \mathbf{d}_{\mathbf{x}}^k} \stackrel{\leq \mathbf{c}^T \mathbf{x}^k}{\leq \mathbf{c}^T \mathbf{x}^k} \implies \mathbf{c}^T \mathbf{d}_{\mathbf{x}}^k \leq 0$$

Optimality check

• Principle:

"no feasible direction at this point is a good direction."

At a current solution, we check that

No $\mathbf{d}_{\mathbf{x}}^k \in \mathbb{R}^n$ with $\mathbf{A}\mathbf{d}_{\mathbf{x}}^k = 0$

can make

 $\mathbf{c}^T \mathbf{d}_{\mathbf{x}}^k < \mathbf{0}$

Key knowledge

- 1. Who is in the interior?
 - Initial solution
- 2. How do we know a current solution is optimal?
 Optimality condition
- 3. How to move to a new solution?
 - Which direction to move? (good feasible direction)
 - How far to go? (step-length)

Q3 – How to move to a new solution?

- 1. Which direction to move?
 - a good, feasible direction "Good" requires $\mathbf{c}^T \mathbf{d}^k_{\mathbf{x}} \leq 0$

"Feasible" requires

$$\mathbf{A}\mathbf{d}_{\mathbf{x}}^{k} = 0$$
$$\mathbf{d}_{\mathbf{x}}^{k} \in \mathcal{N}(\mathbf{A}) : \text{ null space of } \mathbf{A}$$

Question: any suggestion?

A good feasible direction

Reduce the objective value

 $\mathbf{c}^T \mathbf{d}_{\mathbf{x}}^k \leq 0 \qquad \underline{\mathbf{Candidate}}: \quad \mathbf{d}_{\mathbf{x}}^k = -\mathbf{c}$ (negative gradient)
(Steepest descent)

Maintain feasibility

$$\begin{aligned} \mathbf{A}\mathbf{d}_{\mathbf{x}}^{k} &= 0 \end{aligned} \qquad \begin{aligned} & \frac{\mathbf{Candidate}}{\mathbf{d}_{\mathbf{x}}^{k}} &= 0 \\ & \mathbf{d}_{\mathbf{x}}^{k} &= (I - \mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\mathbf{A})(-\mathbf{c}) \end{aligned}$$

Projection mapping

 A projection mapping projects the negative gradient vector –c into the null space of matrix A

Formula for projection: $v = v_p + v_q$

Q3 – How to move to a new solution?

- 2. How far to go?
 - To satisfy every linear constraint

Since $\mathbf{Ad}_{\mathbf{x}}^{k} = 0$ $\mathbf{d}_{\mathbf{x}}^{k} \in \mathcal{N}(\mathbf{A})$: null space of \mathbf{A} $\underline{\mathbf{Ax}^{k+1}} = \mathbf{Ax}^{k} + \alpha \mathbf{Ad}_{\mathbf{x}}^{k} = \mathbf{b}$ the step-length can be real number.

- To stay to be an interior solution, we need

$$\mathbf{x}^{k+1} > 0.$$

How to choose step-length?

- One easy approach
 - in order to keep

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}^k_{\mathbf{x}} > \mathbf{0}$$

we may use the "minimum ratio test" to determine the step-length.

Observation:

- when \mathbf{x}^k is close to the boundary, the step-length may be very small.
- Question: then what?

 If a current solution is near the center of the feasible domain (polyhedral set), in average we can make a decently long move.

 If a current solution is not near the center, we need to re-scale its coordinates to transform it to become "near the center".

Question: but how?

Where is the center?

We need to know where is the "center" of the non-negative/first orthant {x ∈ Rⁿ | x ≥ 0}.
 Concept of equal distance to the boundary

 $e = (1, 1, \dots, 1)$

If $\mathbf{x}^k = e$, then

(1) \mathbf{x}^k is one-unit away from the boundary Question: If not, (2) As long as $\alpha < 1$, $\mathbf{x}^{k+1} > 0$ what to do?

Concept of scaling

- Scale \mathbf{x}^k to be e
- Define a diagonal scaling matrix

$$X_k = \operatorname{diag}(\mathbf{x}^k) = \begin{pmatrix} \mathbf{x}_1^k & & \\ & \mathbf{x}_2^k & 0 \\ 0 & \ddots & \\ & & & \mathbf{x}_n^k \end{pmatrix}$$

then $X_k^{-1}\mathbf{x}^k = e$

Transformation – affine scaling

Affine scaling transformation

- The transformation is
- 1. one-to-one
- 2. onto
- 3. Invertible

4. boundary to boundary5. interior to interior

 $\dot{\mathbf{d}}_{\mathbf{x}}^{k} = -X_{k} [I - X_{k} \mathbf{A}^{T} (\mathbf{A} X_{k}^{2} \mathbf{A}^{T})^{-1} \mathbf{A} X_{k}] X_{k} \mathbf{c}$

Step-length in the transformed space

Minimum ratio test in the y-space

In order to make sure that $\mathbf{y}^{k+1} > 0$ we need

$$\begin{aligned} \mathbf{y}^{k} + \alpha_{k} \mathbf{d}_{\mathbf{y}}^{k} &> 0 \\ \| \\ e & \underline{\mathbf{Case 1}}: \ \mathbf{d}_{\mathbf{y}}^{k} \geq 0 \text{ then } \alpha_{k} \in (0, \infty) \\ \\ & \underline{\mathbf{Case 2}}: \ (\mathbf{d}_{\mathbf{y}}^{k})_{i} < 0 \quad \text{for some } i \\ & \alpha_{k} = \min_{i} \{ \frac{1}{-(\mathbf{d}_{\mathbf{y}}^{k})_{i}} \mid (\mathbf{d}_{\mathbf{y}}^{k})_{i} < 0 \} \\ & \text{or} \\ & \alpha_{k} = \min_{i} \{ \frac{\alpha}{-(\mathbf{d}_{\mathbf{y}}^{k})_{i}} \mid (\mathbf{d}_{\mathbf{y}}^{k})_{i} < 0 \} \text{ for some } \\ & \alpha \in (0, 1) \end{aligned}$$

• Iteration in the x-space

$$\mathbf{x}^{k+1} = X_k \mathbf{y}^{k+1}$$

$$= X_k (e + \alpha_k \mathbf{d}_{\mathbf{y}}^k)$$

$$= \mathbf{x}^k + \alpha_k X_k \mathbf{d}_{\mathbf{y}}^k$$

$$= \mathbf{x}^k + \alpha_k X_k (-P_k X_k \mathbf{c})$$

$$= \mathbf{x}^k + \alpha_k [-X_k [I - X_k \mathbf{A}^T (\mathbf{A} X_k^2 \mathbf{A}^T)^{-1} \mathbf{A} X_k] X_k \mathbf{c}]$$

$$= \mathbf{x}^k + \alpha_k [-X_k^2 [\mathbf{c} - \mathbf{A}^T (\mathbf{A} X_k^2 \mathbf{A}^T)^{-1} \mathbf{A} X_k^2 \mathbf{c}]]$$

$$= \mathbf{x}^k + \alpha_k [-X_k^2 [\mathbf{c} - \mathbf{A}^T \mathbf{w}^k]]$$

$$= \mathbf{x}^k + \alpha_k [-X_k^2 [\mathbf{c} - \mathbf{A}^T \mathbf{w}^k]]$$

• Feasible direction in x-space

$$\mathbf{x}^{k+1} = X_k \mathbf{y}^{k+1}$$
$$= X_k \mathbf{y}^k + \alpha_k X_k \frac{\mathbf{d}_{\mathbf{y}}^k}{\|\mathbf{d}_{\mathbf{y}}^k\|}$$
$$= \mathbf{x}^k + \frac{\alpha_k}{\|\mathbf{d}_{\mathbf{y}}^k\|} \mathbf{d}_{\mathbf{x}}^k$$
Since $\mathbf{d}_{\mathbf{y}}^k = P_k(-X_k \mathbf{c})$
$$\therefore \mathbf{A} X_k \mathbf{d}_{\mathbf{y}}^k = 0 \text{ and } \mathbf{A} \mathbf{d}_{\mathbf{x}}^k = 0$$

i.e. $\mathbf{d}_{\mathbf{x}}^k \in \mathcal{N}(\mathbf{A})$ null space of \mathbf{A} .

Good direction in x-space

$$\mathbf{c}^{T} \mathbf{x}^{k+1} = \mathbf{c}^{T} (\mathbf{x}^{k} + \alpha_{k} X_{k} \mathbf{d}_{\mathbf{y}}^{k}) - X_{k} \mathbf{c}$$

$$= \mathbf{c}^{T} \mathbf{x}^{k} + \alpha_{k} \mathbf{c}^{T} X_{k} (-P_{k} X_{k} \mathbf{c})$$

$$= \mathbf{c}^{T} \mathbf{x}^{k} - \alpha_{k} \| - P_{k} X_{k} \mathbf{c} \|^{2}$$

$$= \mathbf{c}^{T} \mathbf{x}^{k} - \alpha_{k} \| \mathbf{d}_{\mathbf{y}}^{k} \|^{2}$$

1

Hence, $\mathbf{c}^T \mathbf{x}^{k+1} \leq \mathbf{c}^T \mathbf{x}^k$ and $\mathbf{c}^T \mathbf{x}^{k+1} < \mathbf{c}^T \mathbf{x}^k$ if $\mathbf{d}_{\mathbf{y}}^k \neq 0$ **Lemma 7.1** If $\exists \mathbf{x}^k \in P, \ \mathbf{x}^k > 0$ with $\mathbf{d}_{\mathbf{y}}^k > 0$, then the standard LP is unbounded below.

• Optimality check (Lemma 7.2)

For $\mathbf{x}^k \in P^0 = {\mathbf{x} \in R^n | \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} > 0}$ if $\mathbf{d}_{\mathbf{y}}^k = -P_k X_k \mathbf{c} = 0$ then $X_k \mathbf{c}$ falls in the orthogonal space of $N(AX_k)$, *i.e.*

 $X_k \mathbf{c} \in \text{row space of } (\mathbf{A}X_k)$ $\Rightarrow \exists u^k \text{ s.t. } (\mathbf{A}X_k)^T u^k = X_k \mathbf{c}$ or $(u^k)^T \mathbf{A}X_k = \mathbf{c}^T X_k$ $\Rightarrow (u^k)^T A = \mathbf{c}^T$

For any $\mathbf{x} \in P$ $\mathbf{c}^T \mathbf{x} = (u^k)^T \mathbf{A} \mathbf{x} = (u^k)^T \mathbf{b}$ (constant) \therefore Any feasible solution is optimal !! In particular, \mathbf{x}^k is optimal !

• Well-defined iteration sequence (Lemma 7.3)

From properties 3 and 4, if the standard form LP is bounded below and $\mathbf{c}^T \mathbf{x}$ is not a constant, then the sequence $\{\mathbf{c}^T \mathbf{x}^k \mid k = 1, 2, \cdots\}$ is well-defined and strictly decreasing.

Dual estimate, reduced cost and stopping rule
 We may define

$$\mathbf{w}^{k} \equiv (\mathbf{A}X_{k}^{2}\mathbf{A}^{T})^{-1}AX_{k}^{2}\mathbf{c} \text{ dual estimate}$$
$$\mathbf{r}^{k} \equiv \mathbf{c} - A^{T}\mathbf{w}^{k} \text{ reduced cost}$$

If
$$\mathbf{r}^k \ge 0$$
, then \mathbf{w}^k is dual feasible
and $(\mathbf{x}^k)^T \mathbf{r}^k = e^T X_k \mathbf{r}^k$ becomes the duality gap, *i.e.*,
Therefore, if $\underline{\mathbf{r}^k \ge 0}$ and $e^T X_k \mathbf{r}^k = 0$
(Stopping rule) \nearrow
then $\mathbf{x}^k \leftarrow \mathbf{x}^*$, $\mathbf{w}^k \leftarrow \mathbf{w}^*$

Moving direction and reduced cost

$$\begin{aligned} \mathbf{d}_{\mathbf{y}}^{k} &= [I - X_{k} \mathbf{A}^{T} (\mathbf{A} X_{k}^{2} \mathbf{A}^{T})^{-1} \mathbf{A} X_{k}] (-X_{k} \mathbf{c}) \\ &= -X_{k} (\mathbf{c} - \mathbf{A}^{T} (\mathbf{A} X_{k}^{2} \mathbf{A}^{T})^{-1} \mathbf{A} X_{k}^{2} \mathbf{c}) \\ &= -X_{k} (\mathbf{c} - \mathbf{A}^{T} \mathbf{w}^{k}) \\ &= -X_{k} (\mathbf{r} - \mathbf{A}^{T} \mathbf{w}^{k}) \end{aligned}$$

Primal affine scaling algorithm

- <u>Step1</u> Set $k \leftarrow 0, \varepsilon > 0, 0 < \alpha < 1$ find $\mathbf{x}^0 > 0$ and $A\mathbf{x}^0 = \mathbf{b}$
- $\begin{array}{l} \underline{\operatorname{Step2}} & \operatorname{Compute} \\ \mathbf{w}^{k} = (\mathbf{A}X_{k}^{2}\mathbf{A}^{T})^{-1}\mathbf{A}X_{k}^{2}\mathbf{c} \\ \mathbf{r}^{k} = \mathbf{c} \mathbf{A}^{T}\mathbf{w}^{k} \\ \operatorname{If} \mathbf{r}^{k} \geq 0, \text{ and } e^{T}X_{k}\mathbf{r}^{k} \leq \varepsilon \\ \operatorname{then} \operatorname{STOP!} \ \mathbf{x}^{*} \leftarrow \mathbf{x}^{k}, \ \mathbf{w}^{*} \leftarrow \mathbf{w}^{k} \\ \operatorname{Otherwise}, \end{array}$

Step3 Compute
$$\mathbf{d}_{\mathbf{y}}^{k} = -X_{k}\mathbf{r}^{k}$$

If $\mathbf{d}_{\mathbf{y}}^{k} \neq 0$, then STOP! Unbounded
If $\mathbf{d}_{\mathbf{y}}^{k} = 0$, then STOP! $\mathbf{x}^{*} \leftarrow \mathbf{x}^{k}$
Otherwise,

 $\begin{array}{l} \underline{\operatorname{Step4}} \ \ \operatorname{Find} \\ \alpha_k = \min_i \{ \frac{\alpha}{-(\mathbf{d}_{\mathbf{y}}^k)_i} \mid (\mathbf{d}_{\mathbf{y}}^k)_i < 0 \} \\ \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k X_k \mathbf{d}_{\mathbf{y}}^k \\ k \leftarrow k+1 \\ \text{Go to Step 2.} \end{array}$

Example

Example

$$\mathbf{X}_{0} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} \text{ and } \mathbf{w}^{0} = (\mathbf{A}\mathbf{X}_{0}^{2}\mathbf{A}^{T})^{-1}\mathbf{A}\mathbf{X}_{0}^{2}\mathbf{c} = [-1.33353 - 0.00771]^{T}$$

Moreover,

$$\mathbf{r}^0 = \mathbf{c} - \mathbf{A}^T \mathbf{w}^0 = [-0.66647 - 0.32582 \ 1.33535 - 0.00771]^T$$

Since some components of r^0 are negative and $e^T X_0 r^0 = 2.1187$, we know that the current solution is nonoptimal. Therefore we proceed to synthesize the direction of translation with

$$d_{\chi}^{0} = -X_{0}r^{0} = [6.6647 \quad 0.6516 \quad -9.3475 \quad 0.1002]^{T}$$

Suppose that $\alpha = 0.99$ is chosen, then the step-length

$$a_0 = \frac{0.99}{9.3475} = 0.1059$$

Therefore, the new solution is

$$x^{I} = x^{0} + \omega_{0}X_{0}d_{y}^{0} = [17.06822 \ 2.13822 \ 0.07000 \ 12.86178]^{T}$$

Notice that the objective function value has been improved from -18 to -31.99822. The reader may continue the iterations further and verify that the iterative process converges to the optimal solution $x^* = [30 \quad 15 \quad 0 \quad 0]^T$ with optimal value -45.

How to find an initial interior feasible solution?

Big-M method

Idea: add an artificial variable with a big penalty

$$(LP) \begin{cases} \min \mathbf{c}^T \mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases} \quad (\mathsf{big-M}) \begin{cases} \min \mathbf{c}^T \mathbf{x} + Mx^a \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} + (\mathbf{b} - \mathbf{A}e)x^a = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0}, \ x^a \ge \mathbf{0} \end{cases}$$

Objective

to make
$$e = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 be feasible, i.e., $\mathbf{A}e = \mathbf{b}?$

Properties of (big-M) problem

(1) It is a standard form LP with *n*+1 variables and *m* constraints.

(2) e is an interior feasible solution of (big-M).

(3) If x^{a*} > 0 in (x*, x^{a*}) then (LP) is infeasible. Otherwise, either (LP) is unbounded or x* is optimal to (LP).

Two-phase method

$$(LP) \begin{cases} \min \mathbf{c}^T \mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

Choose any $\mathbf{x}^0 > 0$, calculate $\mathbf{v} = \mathbf{b} - \mathbf{A}\mathbf{x}^0$ If $\mathbf{v} = 0$, then \mathbf{x}^0 is interior feasible. Otherwise, consider

$$(Phase - I)$$

$$\begin{cases}
\min & u \\
\text{s.t.} & \mathbf{A}\mathbf{x} + \mathbf{v}u = \mathbf{b} \\
& \mathbf{x} \ge 0, \ u \ge 0
\end{cases}$$

Properties of (Phase-I) problem

 (Phase-I) is a standard form LP with n + 1 variables and m constraints.

(2)
$$\hat{\mathbf{x}}^0 = \begin{pmatrix} \mathbf{x}^0 \\ u^0 \end{pmatrix} = \begin{pmatrix} \mathbf{x}^0 \\ 1 \end{pmatrix}$$
 is interior feasible for (Phase-I).

- (3) (Phase-I) is bounded below by 0.
- (4) Apply primal-affine scaling to (Phase-I) will generate \$\begin{pmatrix} {f x^*} \\ u^* \$\end{pmatrix}\$ for (Phase-I).
 If \$u^* > 0\$, (LP) is infeasible.
 Otherwise, \$\bf x^* > 0\$ for (Phase-II) as an initial feasible solution.

Facts of the primal affine scaling algorithm

The convergence proof, i.e.,

 $\{\mathbf{x}^k\} \to \mathbf{x}^*$

under Non-degeneracy assumption (Theorem 7.2) is given by Vanderbei/Meketon/ Freedman in (1985).

- Convergence proof without Non-degeneracy assumption,
 - T. Tsuchiya (1991)
 - P. Tseng/ Z. Luo (1992)

(3) The computational bottleneck is to find

 $(AX_{k}^{2}A^{T})^{-1}$

- (4) No polynomial-time proof
 - J. Lagarias showed primal affine scaling is only of super-linear rate.
 - N. Megiddo/ M. Shub showed that primal affine scaling might visit all vertices if it moves too close to the boundary.

More facts

(5) In practice, VMF reported

	# iterations
Simplex	$0.7159 \ m^{0.9522} \ n^{0.3109}$
Affline Scaling	7.3385 $m^{-0.0187}$ $n^{0.1694}$

- (6) It may lose primal feasibility due to machine accuracy (Phase-I again).
- (7) May be sensitive to primal degeneracy.

Improving performance – potential push

- Idea: (Potential push method)
 - Stay away from the boundary by adding a potential push. Consider

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} > 0$ $\mathbf{c}^T \mathbf{x} = \mathbf{c}^T \mathbf{x}^k$

Use

 $(\mathbf{x}^k)'$ to replace \mathbf{x}^k

Improving performance – logarithmic barrier

 Idea: (Logarithmic barrier function method) Consider

min
$$\mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log_e x_j$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} > 0$$

Properties:

(1) $\{\mathbf{x}^*(\mu) \mid \mu > 0\} \longrightarrow \mathbf{x}^*$

(3) Polynomial-time proof, i.e., terminates in O(√nL) iterations.

(2)
$$\mathbf{d}_{\mu}^{k} = X_{k}[I - X_{k}\mathbf{A}^{T}(\mathbf{A}X_{k}^{2}\mathbf{A}^{T})^{-1}\mathbf{A}X_{k}](-X_{k}\mathbf{c} + \mu e)$$
$$= X_{k}P_{k}(-X_{k}\mathbf{c}) + \mu X_{k}P_{k}e$$
$$= \mathbf{d}_{\mathbf{x}}^{k} + \underbrace{\mu X_{k}P_{k}e}_{\text{centering force}}$$
C. Gonzaga
C. Roos/ J.
- Total composition

C. Gonzaga (1989) (Problems in Proof !!)
C. Roos/ J. Vial (1990)
- Total complexity O(n³L)!

Dual affine scaling algorithm

Affine scaling method applied to the dual LP

 $\begin{array}{ll} \max & \mathbf{b}^T \mathbf{w} \\ (D) & \text{s.t.} & \mathbf{A}^T \mathbf{w} + \mathbf{s} = \mathbf{c} \\ & \mathbf{s} \geq 0 \end{array}$

dea: Given (w^k, s^k) dual interior feasible, *i.e.*,

$$\mathbf{A}^T \mathbf{w}^k + \mathbf{s}^k = \mathbf{c}$$

 $\mathbf{s}^k > 0$

Objective find $(\mathbf{d}_{\mathbf{w}}^{k}, \mathbf{d}_{s}^{k})$ and $\beta_{k} > 0$ such that

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \beta_k \mathbf{d}^k_{\mathbf{w}}$$
$$\mathbf{s}^{k+1} = \mathbf{s}^k + \beta_k \mathbf{d}^k_{\mathbf{s}}$$

is still dual interior feasible, and

$$\mathbf{b}^T \mathbf{w}^{k+1} \ge \mathbf{b}^T \mathbf{w}^k$$

Key knowledge

- Dual scaling (centering)
- Dual feasible direction
- Dual good direction increase the dual objective value
- Dual step-length
- Primal estimate for stopping rule

Dual scaling (centering)

• Dual feasibility (feasible direction)

$$\underbrace{\mathbf{A}^T \mathbf{w}^{k+1} + \mathbf{s}^{k+1}}_{\mathbf{c}} = \mathbf{A}^T (\mathbf{w}^k + \beta_k \mathbf{d}_{\mathbf{w}}^k) + (\mathbf{s}^k + \beta_k \mathbf{d}_{\mathbf{s}}^k)$$
$$= \underbrace{(\mathbf{A}^T \mathbf{w}^k + \mathbf{s}^k)}_{\mathbf{c}}$$
$$+ \underbrace{\beta_k}_{>0} (\mathbf{A}^T \mathbf{d}_{\mathbf{w}}^k + \mathbf{d}_{\mathbf{s}}^k)$$

$$\Rightarrow \mathbf{A}^T \mathbf{d}_{\mathbf{w}}^k + \mathbf{d}_{\mathbf{s}}^k = 0 \text{ is required } !$$

$$\Leftrightarrow S_k^{-1} \mathbf{A}^T \mathbf{d}_{\mathbf{w}}^k + \underbrace{S_k^{-1} \mathbf{d}_{\mathbf{s}}^k}_{\mathbf{d}_{\mathbf{u}}^k} = 0$$

$$\Leftrightarrow \mathbf{A} S_k^{-1} (S_k^{-1} \mathbf{A}^T \mathbf{d}_{\mathbf{w}}^k + \mathbf{d}_{\mathbf{u}}^k) = 0$$

$$\Leftrightarrow \quad (\mathbf{A}S_k^{-2}\mathbf{A}^T)\mathbf{d}_{\mathbf{w}}^k + \mathbf{A}S_k^{-1}\mathbf{d}_{\mathbf{u}}^k = 0$$

$$\Leftrightarrow \mathbf{d}_{\mathbf{w}}^{k} = -\underbrace{(\mathbf{A}S_{k}^{-2}\mathbf{A}^{T})^{-1}\mathbf{A}S_{k}^{-1}}_{Q}\mathbf{d}_{\mathbf{u}}^{k}$$

Increase dual objective function (good direction)

 $\mathbf{b}^{T}\mathbf{w}^{k+1} = \mathbf{b}^{T}\mathbf{w}^{k} + \beta_{k}\mathbf{b}^{T}\mathbf{d}_{\mathbf{w}}^{k} \ge \mathbf{b}^{T}\mathbf{w}^{k} \qquad \text{Thus}$ $\mathbf{d}_{\mathbf{w}}^{k} = -Q\mathbf{d}_{\mathbf{u}}^{k}$ $= QQ^{T}\mathbf{b}$ $= \underbrace{(\mathbf{A}S_{k}^{-2}\mathbf{A}^{T})^{-1}\mathbf{A}S_{k}^{-1}}_{Q}\underbrace{S_{k}^{-1}\mathbf{A}^{T}(\mathbf{A}S_{k}^{-2}\mathbf{A}^{T})^{-1}}_{Q^{T}}\mathbf{b}$ $= (\mathbf{A}S_{k}^{-2}\mathbf{A}^{T})^{-1}\mathbf{b}$

then $\mathbf{b}^T \mathbf{d}_{\mathbf{w}}^k = \mathbf{b}^T Q Q^T \mathbf{b} = \|Q^T \mathbf{b}\|^2 \ge 0 \, !!$ and $\mathbf{d}_{\mathbf{s}}^k = -\mathbf{A}^T \mathbf{d}_{\mathbf{w}}^k = -\mathbf{A}^T (\mathbf{A} S_k^{-2} \mathbf{A}^T)^{-1} \mathbf{b}$

Dual step-length

$$\mathbf{s}^{k+1} = \underbrace{\mathbf{s}^k}_{>0} + \beta_k \mathbf{d}^k_{\mathbf{s}} > 0$$

(i) $\mathbf{d}_{\mathbf{s}}^{k} = 0$, problem (D) has a constant (iii) some $(\mathbf{d}_{\mathbf{s}}^{k})_{i} < 0$ objective value and $(\mathbf{w}^k, \mathbf{s}^k)$ optimal.

(ii) $\mathbf{d}_{\mathbf{s}}^{k} \stackrel{>}{\neq} 0, \ \beta_{k} \in (0,\infty)$ problem (D) is unbounded

$$\beta_k = \min_i \{ \frac{\alpha s_i^k}{-(d_s^k)_i} | (d_s^k)_i < 0 \}$$
 for $\alpha \in (0,1)$

Primal estimate

We define

$$\mathbf{x}^{k} \stackrel{ riangle}{=} -S_{k}^{-2} \mathbf{d}_{s}^{k}$$

then

 $\mathbf{w}^k \leftarrow \mathbf{w}^*$

 $\mathbf{s}^k \leftarrow \mathbf{s}^*$

Hence \mathbf{x}^k is a primal estimate,

once $\mathbf{x}^k \ge 0$, then \mathbf{x}^k is primal feasible

Dual affine scaling algorithm

 $\begin{array}{l} \underline{\operatorname{Step 1:}} & \operatorname{Set} k = 0 \ \text{and find} \ (\mathbf{w}^{0}, \mathbf{s}^{0}) \ \text{s.t.} \\ & \mathbf{A}^{T} \mathbf{w}^{0} + \mathbf{s}^{0} = \mathbf{c}, \ \mathbf{s}^{0} > 0 \\ \\ \underline{\operatorname{Step 2:}} & \operatorname{Set} \ S_{k} = \operatorname{diag} \ (\mathbf{s}^{k}) \\ & \operatorname{Compute} \quad \mathbf{d}_{\mathbf{w}}^{k} = (\mathbf{A} S_{k}^{-2} \mathbf{A}^{T})^{-1} \mathbf{b} \\ & \mathbf{d}_{\mathbf{s}}^{k} = -\mathbf{A}^{T} \mathbf{d}_{\mathbf{w}}^{k} \\ \\ \\ \underline{\operatorname{Step 3:}} & \operatorname{If} \ \mathbf{d}_{\mathbf{s}}^{k} = 0, \ \operatorname{STOP!} \ \mathbf{w}^{k} \leftarrow \mathbf{w}^{*}, \ \mathbf{s}^{k} \leftarrow \mathbf{s}^{*} \\ & \operatorname{If} \ \ \mathbf{d}_{\mathbf{s}}^{k} \stackrel{\geq}{\neq} 0, \ \operatorname{STOP !} \ (\mathrm{D}) \ \text{is unbounded} \end{array}$

Step 4: Compute $\mathbf{x}^k = -S_k^{-2} \mathbf{d}_s^k$ If $\mathbf{x}^k \ge 0$ and $\mathbf{c}^T \mathbf{x}^k - \mathbf{b}^T \mathbf{w}^k \le \varepsilon$ STOP ! $\mathbf{w}^k \leftarrow \mathbf{w}^*, \ \mathbf{s}^k \leftarrow \mathbf{s}^*, \mathbf{x}^k \leftarrow \mathbf{x}^*$

Step 5: Compute

$$\beta_k = \min_i \{ \frac{\alpha s_i^k}{-(\mathbf{d}_s^k)_i} | (\mathbf{d}_s^k)_i < 0 \}$$

Step 6:
$$\mathbf{w}^{k+1} = \mathbf{w}^k + \beta_k \mathbf{d}_{\mathbf{w}}^k$$

 $\mathbf{s}^{k+1} = \mathbf{s}^k + \beta_k \mathbf{d}_{\mathbf{s}}^k$
Set $k \leftarrow k+1$ Go to Step 2.

Find an initial interior feasible solution Find (w^0, s^0) s.t.

$$\mathbf{A}^T \mathbf{w}^0 + \mathbf{s}^0 = \mathbf{c}$$
$$\mathbf{s}^0 > 0$$

If $\mathbf{c} > 0$, then $\mathbf{w}^0 = 0$, $\mathbf{s}^0 = \mathbf{c}$ will do.

(Big - M Method)

Define
$$\mathbf{p} \in \mathbb{R}^n$$
, $p_i = \begin{cases} 1 & \text{if } c_i \leq 0 \\ 0 & \text{if } c_i > 0 \end{cases}$

Consider, for a large M > 0,

(Big-M Problem)

 $\begin{array}{ll} \max \quad \mathbf{b}^T \mathbf{w} + M w^a \\ \text{s.t.} \quad \mathbf{A}^T \mathbf{w} + \mathbf{p} w^a + \mathbf{s} = \mathbf{c} \\ \mathbf{w}, w^a \quad \text{unrestricted} \\ \mathbf{s} \geq 0 \end{array}$

Properties of (big-M) problem

- (a) (Big-M) is a standard LP with n constraints and m + 1 + n variables.
- (b) Define $\bar{c} = \max_i |c_i|$ and $\theta > 1$ then

$$\begin{split} \mathbf{w} &= 0 \\ w^a &= -\theta \bar{\mathbf{c}} \\ \mathbf{s} &= \mathbf{c} + \theta \bar{\mathbf{c}} \mathbf{p} > 0 \end{split}$$

is an initial interior feasible solution for problem (D).

(c) (w^a)⁰ = -θc̄ < 0
Since M > 0 is large
(w^a)^k ≥ 0 as k ≥ +∞
if (w^a)^k does not approach or cross zero, then problem (D) is infeasible.

Performance of dual affine scaling

- No polynomial-time proof !
- Computational bottleneck

 $(AS_k^{-2}A^T)^{-1}$

- Less sensitive to primal degeneracy and numerical errors, but sensitive to dual degeneracy.
- Improves dual objective value very fast, but attains primal feasibility slowly.

Improving performance

1. Logarithmic barrier function method $(\mu > 0)$

$$\begin{cases} \max \mathbf{b}^T \mathbf{w} + \mu \sum_{j=1}^n \ln[c_j - \mathbf{A}_j^T \mathbf{w}] \\ \text{s.t.} \quad \mathbf{A}^T \mathbf{w} < \mathbf{c} \end{cases}$$
$$\triangle \mathbf{w} = \frac{1}{\mu} \underbrace{(\mathbf{A}S_K^{-2}\mathbf{A}^T)^{-1}\mathbf{b}}_{\mathbf{d}_{\mathbf{w}}^k} \quad \underbrace{-(\mathbf{A}S_K^{-2}\mathbf{A}^T)\mathbf{A}S_k^{-1}e}_{\text{centering force}}$$
as $\mu \to 0$, $\mathbf{w}^k(\mu) \to \mathbf{w}^*$
Polynomial-time proof J. Renegar $O(n^{3.5}L)$
P. Vaidya $O(n^3L)$
C. Roos/ J. Vial $O(n^3L)$

Improving performance

- Power series method
 - Basic idea: following a higher order trajectory

D.D.E.
$$\begin{cases} \frac{d \mathbf{w}(\beta)}{d \beta} &= \lim_{\beta_k \to 0} \frac{\mathbf{w}^{k+1} - \mathbf{w}^k}{\beta_k} \\ &= [\mathbf{A}S(\beta)^{-2}\mathbf{A}^T]^{-1}\mathbf{b} \\ \frac{d \mathbf{s}(\beta)}{d \beta} &= -\mathbf{A}^T \frac{d \mathbf{w}(\beta)}{d \beta} \end{cases}$$

Initial condition

$$w(0) = w^0, s(0) = s^0$$

where

$$S(\beta) = \operatorname{diag}(\mathbf{s}^0 + \beta \mathbf{d}_s)$$

Power series expansion

$$\mathbf{w}(\beta) = \mathbf{w}^{0} + \sum_{i=1}^{\infty} \beta^{j} \left[\frac{1}{j!}\right] \left[\frac{d^{j} \mathbf{w}(\beta)}{d \beta^{j}}\right]_{\beta=0}$$

$$\mathbf{s}(\beta) = \mathbf{s}^{0} + \sum_{i=1}^{\infty} \beta^{j} \left[\frac{1}{j!}\right] \left[\frac{d^{j} \mathbf{s}(\beta)}{d \beta^{j}}\right]_{\beta=0}$$

- (a) As long as [^{d^j}/_{d β^j}]_{β=0} and [^{d^j/_{s(β)}}/_{d β^j}]_{β=0}, j = 1, 2, · · · n are known, w(β), s(β) are known.
- (b) Dual Affine Scaling is the case of first-order approximation

$$\mathbf{w}(eta) = \mathbf{w}^0 + eta[rac{d \ \mathbf{w}(eta)}{d \ eta}]_{eta=0}$$

$$\mathbf{s}(eta) = \mathbf{s}^0 + eta[rac{d \ \mathbf{s}(eta)}{d \ eta}]_{eta=0}$$

(c) A power-series approximation of order 4 or 5 cuts total # of iterations by 1/2.