LECTURE 6: INTERIOR
POINT METHOD

1. Motivation

2. Basic concepts

3. Primal affine scaling algorithm
4. Dual affine scaling algorithm



Motivation

- Simplex method works well in general, but suffers from
exponential-time computational complexity.

- Klee-Minty example shows simplex method may have to
Visit every vertex to reach the optimal one.

- Total complexity of an iterative algorithm
= # of iterations x # of operations in each iteration
- Simplex method
- Simple operations: Only check adjacent extreme points
- May take many iterations: Klee-Minty example

Question: any fix?



Complexity of the simplex method

e Total # of elementary operations
= (# of elementary operations at each

iteration) x (# of iterations).

e # of elementary operations at each iteration

of the revised simplex method O(mn).

e From practical experience. the simplex
method takes about (am) iterations where
e” < logs(2 + nn/m). Hence it is of O(m?n).

e From the worst-case analysis. Klee and Minty
[1972] showed a class of examples ( in the
d-dimensional space) which 29 — 1 iterations

for the simplex method.



Worst case performance of the simplex method

Klee-Minty Example:

- Victor Klee, George J. Minty, “How good is the simplex
algorithm?” in (O. Shisha edited) Inequalities, Vol. Il
(1972), pp. 159-175.
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-
Klee-Minty Example
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-
Klee-Minty Example
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Karmarkar’s (interior point) approach

- Basic idea: approach optimal solutions from the interior of
the feasible domain

- Take more complicated operations in each iteration to find
a better moving direction

- Require much fewer iterations



General scheme of an interior point method

- An Iterative method that moves In
the interior of the feasible domain  x*

Step 1: Start with an interior solution.

Step 2: If current solution is good enough. STOP.

Otherwise.

Step 3: Check all directions for improvement and

move to a better interior solution.
Go to Step 2.



Interior movement (iteration)

- Glven a current interior feasible solution x* , we have
AxF = b
Xk > 0
An interior movement has a general format
xFHt = xF 4 adf;

a > 0: Step — length

d: € R™ : moving direction



I
Key knowledge

« 1. Who is In the interior?
- Initial solution

- 2. How do we know a current solution is optimal?
- Optimality condition

- 3. How to move to a new solution?
- Which direction to move? (good feasible direction)

- How far to go? (step-length)



- 00000
Q1 - Who Is In the Interior?

- Standard for LP
Min ¢!x
(LP) s.t.Ax=Db
x>0

- Who Is at the vertex?

- Who is on the edge?

- Who iIs on the boundary?
- Who is In the interior?



What have learned before
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Who Is In the Iinterior?

- Two criteria for a point x to be an interior feasible solution:

1. AX = b (every linear constraint is satisfied)
2. X >0 (every component is positive)

- Comments:
1.Onahyperplane H = {x € R"|a’x =3} ,
every point is interior relative to H.
2. For the first orthant K = {x € R"| x = 0}
only those x > 0 are Interior relative to K.



Example

min —Qiﬂl + Iy

st. T1-19 <1

L9 S 15 Xy /
15

r,19 20 o
;
X1 =0

\
X3:0
2t




How to find an initial interior solution?

- Like the simplex method, we have

- Big M method
- Two-phase method

(to be discussed later!)



I
Key knowledge

- 1. Who is In the interior?
- Initial solution

- 2. How do we know a current solution is optimal?
- Optimality condition

- 3. How to move to a new solution?
- Which direction to move? (good feasible direction)

- How far to go? (step-length)



Q2 - How do we know a current solution is optimal?

- Basic concept of optimality:
A current feasible solution is optimal if and only if
“no feasible direction at this point is a good direction.”

- In other words, “every feasible direction is not a good
direction to move!”



Feasible direction

- In an interior-point method, a feasible direction at a
current solution is a direction that allows it to take a
small movement while staying to be interior feasible.

- Observations: Axk -
Xk+1 — Xk + Oédi xe > 0

- There is no problem to stay interior if the step-length is

small enough.
- To maintain feasibility, we need
k+1 _
AX = b — Ad* =0
AxF +aAdk = b
i.e. d¥ € N(A) null space of A.




Good direction

- In an interior-point method, a good direction at a
current solution is a direction that leads it to
a new solution with a lower objective value.

- Observations:
CTxk+1 S CTxk

T 1k
] _ —c'dI <0
clIxk 4 achi < clxk *



I
Optimality check

- Principle:
“no feasible direction at this point is a good direction.”

- At a current solution, we check that
No qgkepr with Adk =9

can make

c'dt < 0



I
Key knowledge

- 1. Who is In the interior?
- Initial solution

- 2. How do we know a current solution is optimal?
- Optimality condition

- 3. How to move to a new solution?
- Which direction to move? (good feasible direction)

- How far to go? (step-length)



Q3 — How to move to a new solution?

1. Which direction to move?
- a good, feasible direction

“Good” requires
- cl'dk <o

“Feasible” requires

Adt =0
dX € N(A) : null space of A

Question: any suggestion?



A good feasible direction

- Reduce the objective value

cdE<0 Candidate: df = —c
(negative gradient)

(Steepest descent)
- Maintain feasibility

Candidate: projected negative gradient

AdF =0
8 di = (I - AT(AA")"1A)(—c)



Projection mapping

- A projection mapping projects the negative gradient vector
—C Into the null space of matrix A

Formula for projection: v = v, + v,

N(M) = Null space of matrix M dk — (I — AT(AAT)—IA)(_C)
N(M) ={x|Mx=0)
v, =[I-MT(MMT)"M o
vy = MT(MMT)" My



Q3 — How to move to a new solution?

2. How far to go?
- To satisfy every linear constraint

Since Adk =0
dX € N(A) : null space of A
AxH¥! — AxkF+aAd: = b

the step-length can be real number.

- To stay to be an interior solution, we need

xktl > 0.



How to choose step-length?

- One easy approach
- In order to keep
xttl=xk 4 adi >0
we may use the “minimum ratio test” to determine the
step-length.

Observation:

-when x" is close to the boundary, the step-length
may be very small.

Question: then what?



Observations

- If a current solution is near the center of the feasible
domain (polyhedral set), in average we can make a

decently long move.

- If a current solution Is not near the center, we need to
re-scale its coordinates to transform it to become “near

the center".

Question: but how?



Where Is the center?

- We need to know where is the “center” of the
non-negative/first orthant {x € R" | x > 0} .
-Concept of equal distance
to the boundary

\

e=(CL 1,---.1)

If x* = e, then

(1) x* is one-unit away from the boundary  Question: If not,

(2) Aslongas a <1, x>0 what to do?



Concept of scaling

- Scale x" to be e
- Define a diagonal scaling matrix

k
(Xl

Xk :diag(xk) -

then Xk—lxk —e



Transformation — affine scaling

- Affine scaling transformation

X
X Ty
R: RY
x=Xky\——/Y
o Xk
- The transformation Is .
1. one-to-one X, X" =e
2. onto
3. Invertible 4. boundary to boundary

5. Interior to interior



Transformed LP

X=XV

/‘\‘
NMin cr X e cI'Xg v \
s.t. Ax—D 5. €. AX yvy=D0>b
x=0 | k vy =0
xk > () yk — -
E T 2 AT\—1 —
dt =[I - X, AT(AX?AT) A X;](—Xjc)
k
k+1 k+1 A ! d
dk
= Xpy* + ap Xi 15t Y
Idy |l

ar =0.99 (say) O0<ap<1
_ k
= X" + gty dx

- dk = X[ - XpAT(AXZAT) 1A X} ] X e




Step-length In the transformed space

- Minimum ratio test in the y-space

k+1

In order to make sure that y*™* > 0 we need

y¥ + adt >0
[

. Case 1: d;“, > 0 then a € (0,00)

Case 2: (d;“,)z < 0 for some 7
1

. k
o = n11n,;{_(d§)i | (dy): < 0}
or
o = min;{ —(3’%‘)- | (d;‘j)z < 0} for some
y/t

a e (0,1)



e
Property 1

- Iteration in the x-space
xk+1 — Xkyk'H
= Xr(e + akds)
= xF + akadf,
= x* + ar Xp(—Pr Xxc)
= x* + ap[-Xk[I — X AT (AXZAT) 1A X};] Xc]

= xF + o[- X?[c— AT (AXZAT)"TAX]C]]
wk
= x* + ap [-XZ[c — ATwF]]
dkE

x

= x* -+ akdﬁ



e
Property 2

- Feasible direction in x-space

xk+1 — Xkyk+1

dk
= Xky + o Xp ¥y ||dk||

Since d;c, = Pk(—-XkC)

- AXpdE =0and Adj =0

i.e. d* € N(A) null space of A.



Property 3

- Good direction in x-space

cI'x 1 =ef'(x* + ap Xidy)
= cI'xk + achXk(—Pkac)
= cI'x* — || — P Xic|?

= Tk — o df

Hence, ¢/ xF+1 < ¢I'xF

and ¢! xF+1 < ef'xF if d;‘; #£ 0
Lemma 7.1 If 3x* € P, x¥ > 0 with df, p- 3 | !
then the standard LP is unbounded below.




e
Property 4

- Optimality check (Lemma 7.2)

For x*e P°={xe R"|Ax=b, x>0}
if d;‘} = — P X.c =0 then X;.c falls in the
orthogonal space of N(AX}), i.e.

Xj.c € row space of (AX})
= Jufst. (AXp) " =X Forany xe P

or (uF)TAXy = Xy, c'x = (uF)TAx = (u*)"b (constant)
= (W)fA=c"

. Any feasible solution is optimal !!

k

In particular. x% 1is optimal !



e
Property 5

- Well-defined iteration sequence (Lemma 7.3)

From properties 3 and 4, if the standard form LP
IS bounded below and ¢?'x is not a constant, then
the sequence {c¢'x* |k =1,2,---}

Is well-defined and strictly decreasing.



e
Property 6

- Dual estimate, reduced cost and stopping rule
We may define
wh = (AXZAT)"1AX?2c dual estimate
r* =c¢ — ATw”* reduced cost

If r* > 0, then w” is dual feasible
and ()ck)Tr‘lC = eI X,.r* becomes the duality gap, t.e.,
Therefore, if r* > 0 and e’ Xpr* =0

(Stopping rule)

k<—W*

k

then x" «— x*, w



e
Property 7/

- Moving direction and reduced cost

dk:
y
— I — X, AT(AX2AT) 1A X,](— Xc)
— _Xi(c — AT(AX2AT)"1AX2c)
= —Xi(c — ATwF)

— -Xkrk



Primal affine scaling algorithm

Stepl Set k«—0.e>0,0<a <1 Step4 Find
find X >0 and Ax" =b

(8}
—(d);
X’H'1 = Xk -+ Oékadf,

v = min;{

| (dﬁ)z‘ < 0}
Step2 Compute
wk = (AXZAT)"1AXZc

r* —ie— AT w® kektl
Ifrk >0, and €T Xr* < e Go to Step 2.
then STOP! x* — x* w* — wF

Otherwise,

Step3 Compute d;“, = — X, r*

>
If df, # (.then STOP! Unbounded.
It df, =0, then STOP! x* « x*

Otherwise,




Example

min —2.'!:1 + Iy & p '}‘=0 4
15 f T
s.t. Ty —To <15
T <15 /
Iy, T2 :_> 0 r I
v
X1 =0
Reformulate to standard form ) /
min ~ —21 + I3 S>>0 J %
\
st. Xy—-Ta+23 =15 50
Ta+1y =15 {10\ 10 i |
2 2
Ty,T9, 23,2y 20 = is feasible Xo=
= = 7 0 7
-2 13
\ 13 : :
) =1 4@ 15
A= . b = c= "
el 0
— 0 -




Example

Xo = and W' = (AXAT) A e = 1-1.33353  — 000771

— NN
(- -
S-S
-9

Moreover,
P == ATW = [-066647 022582 133535 —0oo77)”

Simce some components of " are negative and ¢ Xor" = 21187, we know that
the current solulion is nonoptimal. Therefore we prcecd 1o synthesize the direction of
runslation with

d? = —Xor" = 166647 006516 93475 0.0002)" .

Suppose that o = 0.99 is chosen, then the sep-lengih
099
= g3a7s ~ 10

Therefore, the new soletion is gl

x' ="+ enXod) = (1706822 213822 007000 12.86178)"

Notice that the objective function value has been improved from - 18 to - 3199822,
The reader may continue the ilerations funher and verify that the iseralive process comverges
10 the optimal sobution x* =30 15 0 0]7 with optimal value 45,



How to find an initial interior feasible solution?

- Big-M method ldea: add an artificial
variable with a big penalty

min c’x min c’x+ Mz°®
(LP){ st. Ax=b (big-M) { st Ax+ (b— Ae)z” =D
x>0 x>0 >0
- Objective
(1)
1
tomake e=| | be feasible,ie, A€ = b?

\ 1)



I
Properties of (big-M) problem

(1) Itis a standard form LP with n+1 variables and m
constraints.

(2) e is an interior feasible solution of (big-M).

(3) If z* >0in (x*,2%) then (LP) is infeasible.
Otherwise, either (LP) is unbounded
or x* is optimal to (LP).



Two-phase method

min ¢’ x

(LP) st. Ax=Db
x>0

Choose any x° > 0, calculate If v=0, then x"” is interior feasible.

. Otherwise, consider
v=b- Ax

min u
(Phase — I) st. Ax+vu=D>b
x>0, u>=0



Properties of (Phase-Il) problem

(1) (Phase-I) is a standard form LP with n + 1
variables and m constraints.

5 x*
[2) 2= = is interior feasible
u? 1

for (Phase-I).
(3) (Phase-I) is bounded below by 0.
(4) Apply primal-affine scaling to (Phase-I) will

*

X
generate ( ) for (Phase-I).
u‘

If u* >0, (LP) is infeasible.
Otherwise, x* > 0 for (Phase-II) as an
initial feasible solution.



Facts of the primal affine scaling algorithm

(1) The convergence proof, i.e., (3) The computational bottleneck is to find
k * =
{x7} - x (AxAT)!

under Non-degeneracy assumption (Theorem

7.2) is given by Vanderbei/Meketon/ (4) No polynomial-time proof

- J. Lagarias showed primal affine scaling is

Freedman in (1985).

2) Co f without Nond only of super-linear rate.
oo | ORIEEE N Megiddo/ M. Shub showed that prinal
T. Tsuchiya (1991) affine scaling might visit all vertices if it

P. Tseng/ Z. Luo (1992) moves too close to the boundary.



More facts

(5) In practice, VMF reported
# iterations

Simplex 0.7159 m?-9522 ,0.3100

Affline Scaling | 7.3385 m ™" 0187 pf1694

(6) It may lose primal feasibility due to machine
accuracy (Phase-I again).

(7) May be sensitive to primal degeneracy.



Improving performance — potential push

- ldea: (Potential push method)
- Stay away from the boundary by adding a
potential push. Consider
min -} 7, log, x;
st. Ax=Db, x>0

ci'x =cl'x*

Use

(x*)" to replace x*




Improving performance — logarithmic barrier

- ldea: (Logarithmic barrier function method)

Consider
min ¢'x—pd T | log, T;
st. Ax=Db
x>0
Properties: (3) Polynomial-time proof, i.e.,
(1) {x*(p) |p >0} — x* terminates in O(y/nL) iterations.

(2) df = Xi[I - XxAT(AXZAT) P AX)(—Xye + pe)

= XiP(-Xye) + pX . Pre C. Gonzaga (1989) (Problems in Proof !!)
=df + pXiPee C. Roos/ J. Vial (1990)
W

- Total complexity O(n*L)!

centering force



Dual affine scaling algorithm

- Affine scaling method applied to the dual LP
max b'w
(D) st. ATw4+s=c
s >0
. |dea: Given (w*,s*) dual interior feasible, i.e.,
ATwk + sk =c¢
s* >0
Objective find (d% . d¥) and 5, > 0 such that

whtl = wk 4+ Gedf
T a1 o - o ﬁkdf

is still dual interior feasible, and

b'w**! = p"w*



I
Key knowledge

- Dual scaling (centering)

- Dual feasible direction

- Dual good direction — increase the dual objective value
- Dual step-length

- Primal estimate for stopping rule



Observation 1

- Dual scaling (centering)

w* € R™ no scaling needed

: [ sk |
s* >0scaletoe=| . .
; 59 0 ) k
Sk = . = diag (s")
3 0 .
sk//——\ Sk
. 1 n
\u“=e{') \1 | )
\//~ il u=8's dy=S5;'d,
Sk S=Skll d, — Skd“




Observation 2

- Dual feasibility (feasible direction)
ATW‘H'" +Sk+1 S AT(W’c—i—ﬁkdﬁ,) +(Sk+ﬁkd§)

——

C

= (ATw* + s*)

-

"

+ Br (ATAL + df)
-0

= ATAdE + df = 0 is required !

< S;UATAE +s'ak=0
ay

< AS' (S;'ATa: +adk)=o0
<= (AS_2AT)dk + As_'dk =0

< daf =-—(ASPAT)'AS T4
Q




Observation 3

- Increase dual objective function (good direction)

bTw*! =bTw* + §,b7d: > b wh Thus

4, =-qd}
- T
b'dy = -b'Qdy > 0 Bk
= (AS;2AT)-1AS ' S-1AT(AS2AT)1b
We can choose : L -
N — — —
Q QT
dt = -0 = (AS2AT)"'b

then bTd%, =b"QQ"b = QT[> > 0! andd=-ATd: = ~AT(AS;?AT)"'b



Observation 4

- Dual step-length

k41 _ Gk k
s*F —\S/'f'ﬁkd')(]
>0

(i) df =0, problem (D) has a constant ~(iii) some (d*); < 0
objective value and (w*,s*) optimal. o
(d¥); < 0}

= mm{

v k > k
(ll) da #03 ﬂk € (0100) (d )t
problem (D) is unbounded for a € (0,1)



Observation 5

- Primal estimate
We define

A -2 3k

then
Ax* = -AS*(-ATdE)
= AS;*ATd®
= (AS.°AT)(AS.2AT)"'b _
(AS,"A")(AS5,"A7) If c"x* — b"w* =0, then
=5
x* +—x*
k . . .
Hence x® is a primal estimate, wr — w*

once x* > 0, then x* is primal feasibl sk  g*



Dual affine scaling algorithm

Step 1: Set k& =0 and find (w”,s") s.t.
ATw' +s°=¢,8">0
Step 2: Set Sy = diag (s*)
Compute d¥ = (AS_*AT)"'b
= -ATdL
Step 3: If d¥ = 0, STOP! w* — w*, s* — s*
>
If d*#0,STOP ! (D) is unbounded

Step 4: Compute

= —5, d;

If x>0 and ¢'x* —bTwk <¢
STOP !
we—w, sf—s8*' xF—x*

Step 5: Compute

k

_(d,,) (d5): <0}

Br = mlll{

Step 6: wkt! = wk 4+ GidX
sk+l = gk 4 g, dk
Set kK« k+1 Go to Step 2.




-
Find an initial interior feasible solution

Find (w?,.s) s.t.
ATw? +8°=c
s >0

If ¢>0,then w" =0, s’ =¢ will do.
(Big - M Method)

1 if e < 0
Define pe R", p; =

0 ife >0

max b'w+ Muw®
st. ATw+pu®+s=c
(Big-M Problem) w,w?® unrestricted

s >0

Consider, for a large M > 0,



I
Properties of (big-M) problem

(a) (Big-M) is a standard LP with n constraints
and m + 1 + n variables.

(b) Define ¢ = max; |¢;| and @ > 1 then

w=0
w?® = —6¢

s=c+60cp>0

is an intial interior feasible solution for
problem (D).
() (w®)? = -0 <0
Since M > 0 is large
(w®)* /0ask / +o0
if (w®)* does not approach or cross zero, then
problem (D) is infeasible.



Performance of dual affine scaling

- No polynomial-time proof !
- Computational bottleneck

(AS’:QAT)—-I

- Less sensitive to primal degeneracy and numerical errors,
but sensitive to dual degeneracy.

- Improves dual objective value very fast, but attains primal
feasibility slowly.



Improving performance

1. Logarithmic barrier function method
(n > 0)

max b'w+pud 7 Inje; — ATw]
st. ATw<e

Aw= L(AS*AT)7'b —(ASEAT)AS e

a centering force
as pu— 0, wF(u)— w*

Polynomial-time proof  J. Renegar O(n*®L)
P. Vaidva O(n’L)
C. Roos/ J. Vial O(n’L)



Improving performance

- Power series method
- Basic idea: following a higher order trajectory

d wi(g) — lim P whtl _wk
—_—s _—

d 3 B

O.D.E. = [AS(3)*AT]" b
ds(f) _ _ardw(s)
d g d g

Initial condition

w(0) = w", s(0) ="

where
S(B8) = diag(s” + 5d,)



Power series expansion

w(g) =w'+3 2, [ 1 ] [djdv:ig?)]ﬁﬂ
S(8) =+ %, B | 1]["’ S("’lg_o

(a) As long as
[dJ w(ﬁ)]ﬁ=0 and [ﬁ@]ﬁ —0, 7 =1,2, -n
are known, w(3), s(3) are known.

(b) Dual Affine Scaling is the case of first-order
approximation

wi(F) = w° + 3|

dw(ﬁ)] .

s(8) = s° + B[4 M50

(c) A power-series approximation of order 4 or 5
cuts total # of iterations by 1/2.



