Classifications of parabolic germs and fractal properties of orbits

Maja Resman

University of Zagreb, Croatia
BIRS Workshop
April 2, 2015

Thesis supervisors:
Pavao Mardešić, Université de Bourgogne, France
Vesna Županović, University of Zagreb, Croatia

The problem considered

Germs of analytic parabolic diffeomorphisms $f:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$:
$f(z)=z+a_{1} z^{k+1}+a_{2} z^{k+2}+\ldots+a_{k} z^{2 k+1}+o\left(z^{2 k+1}\right), a_{1} \neq 0, k \geq 1$.
$\star k \ldots$ the multiplicity of fixed point 0

* Leau-Fatou flower theorem (1987):
- k attracting directions: $\left(-a_{1}\right)^{-\frac{1}{k}} ; k$ repelling directions: $a_{1}^{-\frac{1}{k}}$

Figure: $f(z)=z+z^{4}+o\left(z^{4}\right)$

The problem considered

Can we recognize a germ using fractal properties of only one orbit?

* formal class of a germ
* analytic class of a germ

Fractal properties of a set $U \subset \mathbb{C}\left(\mathbb{R}^{2}\right)$

THE BOX DIMENSION OF A SET (fractal dimension)
■ $U \subset \mathbb{R}^{2}$ bounded
■ $\varepsilon>0,\left|U_{\varepsilon}\right|$ the area of the ε-neighborhood

- For $s \in[0,2]$, we consider

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left|U_{\varepsilon}\right|}{\varepsilon^{N-s}} \in[0, \infty]
$$

and draw:

Figure: $s \mapsto \lim _{\varepsilon \rightarrow 0} \frac{\left|U_{\varepsilon}\right|}{\varepsilon^{2}-s}, s \in[0,2]$.

■ the moment of jump $s_{0} \equiv$ the box dimension, $\operatorname{dim}_{B}(U)=s_{0}$.
■ the value at $s_{0} \equiv$ Minkowski content, $\mathcal{M}(U)$.
■ if $\left|U_{\varepsilon}\right| \sim C \varepsilon^{2-s} \Rightarrow \operatorname{dim}_{B}(U)=s, \mathcal{M}(U)=C$.

Motivation: dynamical systems

Box dimension of spiral trajectory locally around singular point reveals complexity in bifurcations of singular point!

- polynomial vector field, focus point at the origin

$$
\left\{\begin{aligned}
\dot{x} & =-y+p(x, y) \\
\dot{y} & =x+q(x, y)
\end{aligned}\right.
$$

- The Poincaré map $P(s)=s-s^{2 k+1}+o\left(s^{2 k+1}\right), k \in \mathbb{N}_{0}$; focus of order k
- cyclicity in generic bifurcations: k
- $\operatorname{dim}_{B}\left(S\left(x_{0}\right)\right)=\frac{4 k}{2 k+1}$
(Zubrinić, Županović, Fractal analysis of spiral trajectories of some planar vector fields (2005))

Definition (The DIRECTED area of the ε-neighborhood, R)

$$
A^{\mathbb{C}}\left(U_{\varepsilon}\right)=\left|U_{\varepsilon}\right| \cdot t\left(U_{\varepsilon}\right) \in \mathbb{C},
$$

$t\left(U_{\varepsilon}\right) \in \mathbb{C}$ the center of mass of U_{ε}.

Formal classification of parabolic diffeomorphisms

(Birkhoff, Ècalle, Kimura, ~1950)
\star formal changes of variables:

1. $\phi_{1}(z)=c_{1} z$,
2. $\phi_{i}(z)=z+c_{i} z^{i}, c_{i} \in \mathbb{C}, \quad i=2,3, \ldots$

$$
\widehat{\phi}(z)=\ldots \circ \phi_{2}^{-1} \circ \phi_{1}^{-1}(z)=\sum_{l=1}^{\infty} d_{k} z^{k} \quad \text { (formal series) }
$$

\Rightarrow formal normal form

$$
\begin{aligned}
& f_{0}(z)=\widehat{\phi} \circ f \circ \widehat{\phi}^{-1}(z)=\operatorname{Exp}\left(\frac{z^{k+1}}{1+\frac{\lambda}{2 \pi i} z^{k}} \frac{d}{d z}\right), \quad \lambda \in \mathbb{C} \\
& \widetilde{f}_{0}(z)=z+z^{k+1}+\left(\frac{k+1}{2}-\frac{\lambda}{2 \pi i}\right) z^{2 k+1}
\end{aligned}
$$

\star formal type: $(k, \lambda), k \in \mathbb{N}, \lambda \in \mathbb{C}$.

Asymptotic expansion of the directed area

$z_{0} \in V_{+}$(attracting petal);
Theorem (R, 2013)

$$
\begin{align*}
& A^{\mathbb{C}}\left(\varepsilon, z_{0}\right)=K_{1} \varepsilon^{1+\frac{2}{k+1}}+K_{2} \varepsilon^{1+\frac{3}{k+1}}+\ldots+K_{k-1} \varepsilon^{1+\frac{k}{k+1}}+ \\
& +H^{f}\left(z_{0}\right) \varepsilon^{2}+K_{k} \varepsilon^{2+\frac{1}{k+1}} \log \varepsilon+R\left(z_{0}, \varepsilon\right) \tag{1}\\
& R\left(z_{0}, \varepsilon\right)=o\left(\varepsilon^{2+\frac{1}{k+1}} \log \varepsilon\right), \varepsilon \rightarrow 0
\end{align*}
$$

$K_{i} \in \mathbb{C}, i=1, \ldots, k+1$, independent of $z_{0} ; H^{f}\left(z_{0}\right) \in \mathbb{C}$.
Sketch of the proof...

Theorem (R, 2013)

Formal type (k, λ) explicitely from $\left(k ; K_{1}, K_{k}\right)$ in finite expansion of ANY orbit!

Toward analytic classification

Proposition (R)

The mapping

$$
f \longmapsto\left(\varepsilon \mapsto A^{\mathbb{C}}\left(\varepsilon, z_{0}\right), \varepsilon \in\left(0, \varepsilon_{0}\right)\right)
$$

is injective on the set of germs with z_{0} in their attracting basin.

BUT

Proposition (R)
No asymptotic expansion of $R\left(z_{0}, \varepsilon\right)$, as $\varepsilon \rightarrow 0$, in power-log scale!
The reason. The critical index n_{ε} a jump function.

The simplest formal class

\star model formal class $(k=1, \lambda=0) ; f_{0}=\operatorname{Exp}\left(z^{2} \frac{d}{d z}\right)=\frac{z}{1-z}$
\star prenormalized ($a_{1}=1$)
$\star f(z)=z+z^{2}+z^{3}+o\left(z^{3}\right)$

Fatou coordinates and moduli of analytic classification

$\Psi(f(z))-\Psi(z)=1 \quad$ (Abel equation)
Fatou, 1919:

- unique (to a constant) formal solution $\widehat{\Psi}(z) \in-1 / z+z \mathbb{C}[[z]]$,
- analytic solutions $\Psi_{ \pm}(z)$ on $V_{ \pm}$; Gevrey 1-expansion $\widehat{\Psi}(z)$
\rightarrow Fatou coordinates, sectorial trivialisations

Ecalle-Voronin moduli of analytic classification

On $V^{u p}, V^{l o w}$:

$$
\Psi_{+}(f(z))-\Psi_{-}(f(z))=\Psi_{+}(z)-\Psi_{-}(z)
$$

$\Rightarrow \Psi_{+}-\Psi_{-}$well-defined on space of (closed) orbits of $V^{u p}, V^{\text {low }}$
\rightarrow lifts to poles of spaces of orbits of V_{+}
(spheres, $t=e^{2 \pi i \Psi_{+}}$, orbits \leftrightarrow points):

$$
\left\{\begin{array}{l}
\Psi_{+}(z)-\Psi_{-}(z)=g_{\infty}\left(e^{2 \pi i \Psi_{+}(z)}\right), \quad z \in V^{u p} \\
\Psi_{-}(z)-\Psi_{+}(z)=g_{0}\left(e^{-2 \pi i \Psi_{+}(z)}\right), \quad z \in V^{\text {low }}
\end{array}\right.
$$

\rightarrow a pair of analytic germs extended to 0 ,

$$
t \rightarrow\left(g_{\infty}(t), g_{0}(t)\right)
$$

\rightarrow property $g_{0}(0)+g_{\infty}(0)=0$.

Ecalle-Voronin moduli of analytic classification

Ecalle-Voronin modulus of $f:\left(g_{\infty}, g_{0}\right)$, up to identifications:

$$
(\star) \begin{cases}\left(g_{1}(t), g_{2}(t)\right) \quad \equiv\left(g_{3}(t), g_{4}(t)\right) \Leftrightarrow \\ & g_{3}(t)=g_{1}(t)+a, g_{4}(t)=g_{2}(t)-a, \\ & g_{3}(t)=g_{1}(b t), g_{4}(t)=g_{2}(t / b), a \in \mathbb{C}, b \in \mathbb{C}^{*}\end{cases}
$$

Theorem (Ecalle-Voronin)

analytic classes of germs of the model formal type \downarrow
all pairs of analytic germs at $t=0$,

$$
\left(g_{1}(t), g_{2}(t)\right), g_{1}(0)+g_{2}(0)=0
$$

up to identifications (\star).
\star analytic class of f_{0} trivial: $(0,0)$

Definition

$$
\begin{aligned}
& \text { ■ } z \mapsto H^{f(z), z \in V_{+},} \\
& \text {the principal initial point dependent part for } f, \\
& \text { - } z \mapsto H^{f^{-1}(z), z \in V_{-},} \\
& \text {the principal initial point dependent part for } f^{-1} .
\end{aligned}
$$

$$
\begin{aligned}
A^{\mathbb{C}}(\varepsilon, z) & =A^{\mathbb{C}}(\varepsilon, f(z))+z \cdot \varepsilon^{2} \pi, \varepsilon \text { small, } \\
\stackrel{\text { expansion }}{\Longrightarrow} H^{f}(z) & =H^{f}(f(z))+z \pi
\end{aligned}
$$

* a cohomological equation similar to the Abel equation for f * Stokes phenomenon: sectorially analytic solutions?

Cohomological equations

- A cohomological equation for f :

$$
H(f(z))-H(z)=g(z), g(z) \in \mathbb{C}\{z\}, g \not \equiv 0
$$

Sectorial solutions of cohomological equations (Fatou, Loray) $g(z)=\alpha_{0}+\alpha_{1} z+O\left(z^{2}\right)$

- a unique formal solution $\widehat{H}(z) \in-\frac{\alpha_{0}}{z}+\alpha_{1} \log (z)+z \mathbb{C}[[z]]$ (without the constant term),
■ unique sectorially analytic solutions $H_{ \pm}(z)$ on $V_{ \pm}$, with expansion $\widehat{H}(z), z \rightarrow 0$
Proof constructive!!!

Sectorial analyticity of principal parts

1-Abel equation for $f: H(f(z))-H(z)=-z$
\rightarrow the sectorial solutions H_{+}, H_{-}

Theorem (R)

- the principal parts $H^{f}(z)$ i $H^{f^{-1}}(z)$ analytic on $V_{ \pm}$
- explicitely related to solutions $H_{ \pm}(z)$ of $1-A b e l$ equation:

$$
\begin{array}{ll}
\pi H_{+}(z)-\frac{\pi}{4}+i \pi^{2}=H^{f}(z), & z \in V_{+} \\
\pi H_{-}(z)-\frac{\pi}{4}=z-H^{f^{-1}}(z), & z \in V_{-}
\end{array}
$$

'Global' principal parts

Existence of global analytic solution H of cohomological equation

$$
\leftrightarrow H_{+}-H_{-} \equiv 0(2 \pi i) \text { on } V^{u p, l o w}
$$

1 global analytic solution of Abel equation

$$
\Leftrightarrow f=\varphi^{-1} \circ f_{0} \circ \varphi, \quad \varphi \in z+z^{2} \mathbb{C}\{z\} .
$$

Theorem (R)

The 1-Abel equation has a global analytic solution $H(z)$

$$
\Leftrightarrow f(z)=\varphi^{-1}\left(e^{z} \cdot \varphi(z)\right), \quad \varphi(z) \in z+z^{2} \mathbb{C}\{z\} .
$$

Germs with global solution to Abel and to 1-Abel equation

■ $\mathcal{S}=\left\{f \mid f=\varphi^{-1}\left(e^{z} \cdot \varphi(z)\right), \varphi \in z+z^{2} \mathbb{C}\{z\}\right\}$
■ $\mathcal{C}_{0}=\left\{f \mid f=\varphi^{-1} \circ f_{0} \circ \varphi, \varphi \in z+z^{2} \mathbb{C}\{z\}\right\}$

Example

$1 f_{0}(z)=\frac{z}{1-z} \in \mathcal{C}_{0} \backslash \mathcal{S}$,

$$
\begin{aligned}
& H_{+}(z)-H_{-}(z)=2 \pi i f_{0}\left(e^{-2 \pi i \frac{1}{z}}\right), z \in V^{u p} \\
& H_{-}(z)-H_{+}(z)=-2 \pi i+2 \pi i f_{0}\left(e^{2 \pi i \cdot \frac{1}{z}}\right), z \in V^{l o w}
\end{aligned}
$$

$2 f(z)=z e^{z} \in \mathcal{S} \backslash \mathcal{C}_{0}$,
3 $f(z)=-\log \left(2-e^{z}\right) \in \mathcal{S} \cap \mathcal{C}_{0}$.
The sets \mathcal{S} and \mathcal{C}_{0} in general position \Rightarrow the differences of sectorial solutions on petal intersections insufficient for determining the analytic class

Example 1 computed using Borel-Laplace transform

- Substitute $\widehat{H}(z)=-\log z+\widehat{R}(z), \widehat{R} \in z \mathbb{C}[[z]]$ in eqn:

$$
\widehat{R}\left(f_{0}(z)\right)-\widehat{R}(z)=-z+\log \frac{f_{0}(z)}{z}
$$

- change of variables $w=-1 / z$:

$$
\begin{aligned}
\widehat{\widetilde{R}}(w+1)-\widehat{\widetilde{R}}(w)=w^{-1}-\log \left(1+w^{-1}\right)= & \sum_{k=2}^{\infty}(-1)^{k} \frac{w^{-k}}{k} \\
& \in w^{-2} \mathbb{C}\left\{w^{-1}\right\}
\end{aligned}
$$

- $b(w)=\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k} w^{-k}$.
- The formal Borel transform $\left(\mathcal{B}\left(w^{-k-1}\right)=\frac{\xi^{k}}{k!}\right)$:

$$
\mathcal{B} \widehat{\widetilde{R}}(\xi)=\frac{\mathcal{B} b(\xi)}{e^{-\xi}-1}, \quad \mathcal{B} b(\xi)=\frac{e^{-\xi}+\xi-1}{\xi} .
$$

The Laplace transform

- $f(\xi)$ analytic and \exp bdd in direction θ :

$$
\left|f\left(r e^{i \theta}\right)\right| \leq C e^{A r}, r>0, A>0
$$

- The Laplace transform of f in direction θ :

$$
\mathcal{L}^{\theta} f(z)=\int_{0}^{\infty \cdot e^{i \theta}} f(\xi) e^{-z \xi} d \xi
$$

- $\mathcal{L}^{\theta} f(z)$ an analytic function on the half-plane $\operatorname{Re}\left(z e^{i \theta}\right)>A$:

Figure: The direction θ and the corresponding half-plane $R e\left(z e^{i \theta}\right)>A$.

..and back by Laplace transform

- $\xi \mapsto \mathcal{B} \widehat{\widetilde{R}}(\xi)$ has 1 -poles at $2 i \pi \mathbb{Z}^{*}$ in directions $\pm i$,

■ exponentially bounded by $B>0$ and analytic in other directions

- Laplace transform recovers two analytic solutions:

$$
\begin{aligned}
& \widetilde{R}^{+} \text {on } W_{+}=\left\{w \mid \operatorname{Re}\left(w e^{i \theta}\right)>B, \theta \in(-\pi / 2, \pi / 2)\right\}, \\
& \widetilde{R}^{-} \text {on } W_{-}=\left\{w \mid \operatorname{Re}\left(w e^{i \theta}\right)>B, \theta \in(\pi / 2,3 \pi / 2)\right\} .
\end{aligned}
$$

- The Residue theorem: for $w \in W^{u p}=\{w \mid \operatorname{Im}(w)>B\}$

$$
\begin{aligned}
\widetilde{R}^{+}(w) & -\widetilde{R}^{-}(w)=\int_{0}^{\infty \cdot e^{i \theta_{1}}} \frac{e^{-\xi w} \mathcal{B} b(\xi)}{e^{-\xi}-1} d \xi-\int_{0}^{\infty \cdot e^{i \theta_{2}}} \frac{e^{-\xi w} \mathcal{B} b(\xi)}{e^{-\xi}-1} d \xi= \\
& =-2 \pi i \cdot \sum_{k=1}^{\infty} \operatorname{Res}\left(\frac{e^{-\xi w} \mathcal{B} b(\xi)}{e^{-\xi}-1}, \xi=-2 \pi i k\right)=2 \pi i \frac{e^{2 \pi i \cdot w}}{1-e^{2 \pi i \cdot w}}
\end{aligned}
$$

$\theta_{1} \in(-\pi / 2, \pi / 2)$ and $\theta_{2} \in(\pi / 2,3 \pi / 2)$ close to $-\pi / 2$.

■ For $w \in W^{\text {low }}=\{w \mid \operatorname{Im}(w)<-B\}$, we get

$$
\widetilde{R}^{+}(w)-\widetilde{R}^{-}(w)=-2 \pi i \frac{e^{-2 \pi i \cdot w}}{1-e^{-2 \pi i \cdot w}}
$$

■ Returning to $z=-1 / w$ and to $H(z)$, we get

$$
\begin{aligned}
& H_{+}(z)-H_{-}(z)=2 \pi i \frac{e^{-2 \pi i \frac{1}{z}}}{1-e^{-2 \pi i \frac{1}{z}}}=2 \pi i f_{0}\left(e^{-2 \pi i \frac{1}{z}}\right), z \in V^{u p} \\
& H_{-}(z)-H_{+}(z)=2 \pi i+2 \pi i \frac{e^{2 \pi i \cdot \frac{1}{z}}}{1-e^{2 \pi i \cdot \frac{1}{z}}}=2 \pi i+2 \pi i f_{0}\left(e^{2 \pi i \cdot \frac{1}{z}}\right), z \in V^{l o w}
\end{aligned}
$$

Classifications of germs with respect to 1-Abel equation

$$
\begin{gathered}
\qquad H(f(z))-H(z)=-z \\
\Rightarrow\left(H_{+}-H_{-}\right)(z)=\left(H_{+}-H_{-}\right)(f(z)), z \in V^{u p} \cup V^{\text {low }} \\
\Rightarrow H_{+}-H_{-} \text {constant along orbits } \\
H_{+}-H_{-}=g_{\infty}\left(e^{2 \pi i \Psi_{+}(z)}\right), z \in V^{u p} \\
H_{-}-H_{+}=-2 \pi i+g_{0}\left(e^{-2 \pi i \Psi_{+}(z)}\right), z \in V^{\text {low }} . \\
\Rightarrow\left(g_{\infty}(t), g_{0}(t)\right), g_{\infty}(0)+g_{0}(0)=0 \text { a pair of analytic germs }
\end{gathered}
$$

Definition (R)

- The 1-moment of f : the pair $\left(g_{\infty}, g_{0}\right)$, up to identifications
- 1-conjugacy class of $f:[f]_{1}$

1-conjugacy classes vs. analytic classes

Theorem (Realization of 1-moments. Transversality.)

$\left(g_{0}, g_{\infty}\right)$ a pair of analytic germs s.t. $g_{0}(0)+g_{\infty}(0)=0$. Then:

- There exists a germ in the model formal class such that the given pair is its 1-moment.
- Moreover, such germ exists inside ANY analytic class.

Thank you for the attention!

