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ABSTRACT
Many websites have large collections of pages generated dy-
namically from an underlying structured source like a database.
The data of a category are typically encoded into similar
pages by a common script or template. In recent years,
some value-added services, such as comparison shopping and
vertical search in a specific domain, have motivated the re-
search of extraction technologies with high accuracy. Almost
all previous works assume that input pages of a wrapper in-
duction system conform to a common template and they can
be easily identified in terms of a common schema of URL.
However, we observed that it is hard to distinguish different
templates using dynamic URLs today. Moreover, since ex-
traction accuracy heavily depends on how consistent input
pages are, we argue that it is risky to determine whether
pages share a common template solely based on URLs. In-
stead, we propose a new approach that utilizes similarity
between pages to detect templates. Our approach sepa-
rates pages with notable inner differences and then generates
wrappers, respectively. Experimental results show that our
proposed approach is feasible and effective for improving ex-
traction accuracy.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous—Data Extraction, Wrapper Generation, Web

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Websites like Amazon.com are data-intensive, and infor-

mation on them comes from structured sources. Often the
data are encoded into semi-structured HTML pages that
employ templates for rendering. Some value-added services,
such as comparison shopping, are emerging to query or ma-
nipulate the data, such as products and reviews, from sev-
eral websites. To achieve high accuracy, the task of extract-
ing structured information from Web pages is usually im-
plemented by programs called wrappers. Manually writing
wrappers for Web sources [9] is a tedious, time-consuming,
and error-prone job, thus the study of automatic wrapper
induction using machine learning techniques has been a sub-
ject of research in recent years [12, 11, 17, 16, 3, 6, 5, 18, 4,
21, 10]. This paper also focuses on wrapping Web sources
in an automatic manner.

Although different wrapper induction systems employ var-
ious techniques and strategies to generate wrappers, they all
separate template detection from learning wrappers. The
detection groups training pages into several clusters or classes,
based on cues like URLs. For example, [7] assumes that
pages belonging to the same template are located at the
same sub-directory of a website. Thus, pages are considered
to share a common template if their URLs fit a common
schema. Grouped pages are then fed into an induction mod-
ule. The module generally assumes that a group of pages
conforms to a common template, and generates a wrapper
per class.

The separated template detection strategy has at least
two limitations:

1. With the popularity of dynamic URLs, it is no longer
as effective to detect templates by URLs as before,
especially for some large-scale websites. Figure 1 lists
four sample pages collected from Amazon.com. From
their appearances, it is easy to tell that Figure 1(a) and
Figure 1(b) share a common template, and Figure 1(c)
and Figure 1(d) share another template. Comparing
their URLs, we find there are no cues to allow correct
grouping of the pages.

2. Even if URLs can group pages that share a template,
such a method is sometimes far from optimal to gen-
erate only one wrapper for a complex template. For
example, by looking closely at page (c) and (d) in
Figure 1, we observe that page (d) is different from
page (c) in some aspects. Page (d) has an additional
attribute named Color, and it lists some also-viewed



(a) http://www.amazon.com/gp/product/B000BNLGJA/ (b) http://www.amazon.com/gp/product/B00007J8SC/

(c) http://www.amazon.com/gp/product/B0000DD95R/ (d) http://www.amazon.com/gp/product/B0000A1AT9/

Figure 1: Sample pages from www.amazon.com

items in a column whereas page (c) lists some you-
may-also-like items in a row. Building two wrappers
for such a complex template may achieve better ex-
traction accuracy.

To solve the problems above, we propose detecting tem-
plate solely based on the similarity among page represen-
tations that are also used in wrapper generation. In our
system, tree structures are used as representations for pages
and wrappers. Based on a distance metric between a page
and a wrapper, a clustering algorithm is employed to clus-
ter similar enough pages into a class and induces a central
wrapper for the class at the same time. Such a joint ap-
proach makes it possible to optimize the final performance
of extraction by involving template detection in the training
process.

Compared with prior works, our approach has two advan-
tages:

1. Our approach is more stable because it does not rely
on URLs or any other external features to detect tem-
plates. Instead, we attempt to detect templates based
on inner structure similarity of pages, which is consis-
tent with the principle of wrapper induction.

2. Given a set of pages, the number of wrappers is de-
termined by how similar they are. This number can
be optimized under the criterion of overall extraction
accuracy of generated wrapper set.

The rest of this paper is organized as follows. We ex-
plain our main idea by clarifying two concepts on template
in Section 2. Section 3 provides the basic representations.
Section 4 formally states the addressed problem and briefly

overviews our solution. In Section 5, we describe wrapper
induction algorithm that is implemented in our system, and
propose a new wrapper-oriented page clustering algorithm
that joins template detection with wrapper generation to-
gether. Section 6 reports some experimental results, while
Section 7 describes related works. Section 8 concludes the
paper with directions for future work.

2. GROUND-TRUTH TEMPLATES AND
SIMILARITY-BASED TEMPLATES

Before going to the details of our approach, in this section
we will first describe the main idea of this paper.

What’s a ground-truth template? In previous related
work, the concept of template has been presented by var-
ious descriptive definitions. Most of them associate a tem-
plate with a script that encodes the data of a category into
a group of HTML pages, called a page class. For example,
we can guess that both page (a) and page (b) in Figure 1
are generated dynamically by a script for the category of
computer while page (c) and page (d) generated by another
script for the category of cap. This kind of templates does
exist and it is indispensable for wrapper induction systems
to generate effective wrappers in reverse. We call these kind
of templates Ground-Truth Templates because they denote
the original relations among pages of a website. The corre-
sponding page classes are called Ground-truth Page Classes.

However, the ultimate purpose of template detection is
not to guess which pages are encoded by a ground-truth tem-
plate, but to generate more effective wrappers that can cor-
rectly extract data. What we propose is to cluster pages into
several groups based on how similar they are. In general, a



page is less different from the pages in the same group than
those pages in other groups. Each group is corresponded to
a template that is called Similarity-based Template and the
group itself is a Similarity-based Page Class.

For a particular page set P , since the ground-truth tem-
plates are invisible to us, it is difficult and not necessary to
ensure that detected similarity-based templates are exactly
same to ground-truth templates. For example, for pages
like page (c) and page (d) in Figure 1, a ground-truth page
class may be divided into two similarity-based page classes
because the color attribute is optional so that some pages
like page (d) have such attributes while others like page (c)
do not. It is very likely that extracted results by using two
similarity-based templates are good and even better than
those by inducing one ground-truth template because the
complexity of these templates becomes lower than that of
one ground-truth template.

In addition, we found that the definition of similarity is
highly related to alignment in the stage of wrapper induc-
tion. We propose to use consistent representations in both
template detection and wrapper generation and jointly op-
timize these two stages to achieve better extraction perfor-
mance. In our system, tree-structures are used as represen-
tations for pages and wrappers, although the representation
is not restricted to tree-structure.

3. DATA REPRESENTATIONS
We describe the representations of a Web page and a

wrapper in this section.

3.1 DOM (Document Object Model) Tree
DOM tree is the representation of a HTML page in our

system. Each DOM node of a DOM tree represents an
HTML tag pair (e.g., <TABLE> and </TABLE>). The nested
structure of HTML tags corresponds to the parent-child re-
lationship among DOM nodes. Thus, a DOM tree is formed
naturally. More information about DOM specification can
be found at [1].

In our experiments, DOM trees used for wrapper gener-
ation are manually labeled so that the generated wrappers
can extract values and assign labels in one step. Labels are
only assigned to leaf nodes of a DOM tree. DOM nodes with
different labels are considered different no matter whether
they have the same tag or not. In the rest of this paper, for
a given DOM node σ, we use T (σ) and L(σ) to denote its
tag and label.

3.2 Wrapper
In our system, a wrapper is also presented in tree structure

that can be regarded as extended DOM trees with Sign for
each node.

Definition 1. (Node Sign) Given a wrapper node σ, its
sign S(σ) indicates its matching rule in the alignment be-
tween its owner wrapper and a DOM tree. S(σ) can be 1
or an integer N(N ≥ 2) or one of the following wildcards:
?, +, ∗.

Rule 1. Given a wrapper node σ,

• S(σ) = 1 means σ can only match one DOM node.

• S(σ) = N(N ≥ 2) means σ can match consecutive N

DOM nodes.

• S(σ) =? means σ can match one DOM node or no
DOM node at all.

• S(σ) = + means σ can match consecutive N DOM
nodes (N ≥ 1).

• S(σ) = ∗ means σ can match consecutive N DOM
nodes (N ≥ 1) or no DOM node at all.

Such wrapper node signs are similar to the wildcards used
in other works like [6, 18].

Another difference between a wrapper and a DOM trees
is that a wrapper may have a kind of special nodes that act
like pairs of parentheses, called Parentheses Nodes. These
nodes have no corresponding tags and must be inner nodes
with at least one child. For the sake of convenience, we call
other DOM nodes or wrapper nodes as Tag Nodes.

4. PROBLEM DEFINITION AND SYSTEM
OVERVIEW

In this section we formally define the extraction problem
and briefly overview our solution.

4.1 Problem Definition
We define the problem as follows:

Given a set of labeled DOM trees D parsed from pages of
a particular website, a group of wrappers (w1, w1, ..., wn)
should be learned from D. And the target is to maximize
the overall extraction accuracy P when generated wrappers

are tested on another DOM-tree set D
′

that comes from the
same website.

In this paper, we use manually labeled training data to
explain and verify our ideas. Although the idea of joint op-
timization of wrapper induction and template detection is
not constrained to labeled data, we do so for several reasons.
First, our main focus is not on the algorithm of wrapper
induction but on how to detect similarity-based templates
and how the detection influences extraction performance.
Labeled data can simplify the evaluation of extraction re-
sults. Second, using labeled data to generate wrappers is
commonly used in some scenarios such as comparison shop-
ping. As the accuracy of price is required to be close to 100
percent, automatic attributes labeling methods cannot meet
the requirement. Furthermore, inducing wrappers based on
labeling data is selectively used for only a few of head sites.
For each site, as few as tens of pages are enough to train a
robust wrapper set. Thus, the cost of labeling is acceptable.

4.2 System Overview
A flowchart of our system is shown in Figure 2.
To begin with, training pages are parsed into DOM trees

before they are processed by our system. We will not discuss
the HTML parsing technique since it is beyond the scope of
this paper.

Second, the DOM trees will be fed to the wrapper-oriented
page clustering module that combines template detection
and wrapper generation into one step and outputs a set
of wrappers. A by-product in the step is that the train-
ing DOM trees are also clustered into similarity-based page
classes.
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Figure 2: System overview

When a new Web page is introduced, it will be parsed into
a DOM tree first. Then, our system can automatically select
a wrapper from the generated wrapper set, which makes a
best match with the DOM tree. At last, data is extracted
and saved in a structured format like a relational database.

5. JOINT OPTIMIZATION OF WRAPPER
GENERATION AND TEMPLATE
DETECTION

In this section, we present the idea of joint optimization
of wrapper generation and template detection in detail. We
first introduce the wrapper generation algorithm that is im-
plemented in our system. We then describe how template
detection is combined with wrapper generation by a pro-
posed algorithm called wrapper-oriented page clustering.

5.1 Wrapper Generation
In Section 5.1.1, we describe how to convert a DOM tree

to a wrapper tree. This is the first step for a page before
it is evolved in wrapper generation in our system. In Sec-
tion 5.1.2 and Section 5.1.3, we implement a cost-driven al-
gorithm to perform wrapper induction. This algorithm syn-
thesizes several state-of-the-art techniques [6, 4, 18], e.g.,
regular expression inference.

5.1.1 Convert a DOM tree to a Wrapper
Given a source DOM tree Td, supposing that the con-

verted wrapper is Tw, we use Td → Tw to indicate this con-
version.

In Td → Tw, we need to perform a repeat pattern combi-
nation algorithm to make Tw more compact than Td. This
combination algorithm is similar to the work in [15]. If
N(N ≥ 2) identical consecutive sub-trees are detected in
Td, they will be merged as one sub-tree rooted at a tag node
σ in Tw, where S(σ) = N . If N(N ≥ 2) identical consecutive
sub-forests are detected in Td, they will be merged as one

sub-forest rooted under a parentheses node p in Tw, where
S(p) = N . Node labels are considered in the algorithm. Fig-
ure 3 illustrates this procedure, where letters indicate nodes’
tags and subscripts indicate nodes’ labels.

A

B C

D1 D1 D2

B C

D1 D1 D2

A

B C

D1 D2

2

2

( )

Figure 3: Repeat pattern combination

5.1.2 Cost-Driven Tree Alignment
Tree alignment is a frequently used algorithm in our sys-

tem. There are two types of tree-alignment algorithms: one
is for aligning two different wrappers, called WW-alignment,
and the other is for aligning a wrapper and a DOM tree,
called WD-alignment. We employ cost-driven dynamic pro-
gramming for both algorithms.

In the tree-alignment algorithm, DOM nodes and wrapper
nodes are the basic units for matching. Mismatched nodes
will cause cost in the alignment. To calculate the cost, we
need to assign weight to each node before aligning.

Definition 2. (DOM-Node Weight) Given a DOM node
σ, its weight W(σ) equals the number of nodes in the sub-tree
rooted at σ, including itself.

Definition 3. (Wrapper-Node Weight) Given a wrapper
node σ, its weight W(σ) can be calculated as follows:

• If σ is a leaf tag node and S(σ) = 1, then W(σ) = 1.

• If σ is a inner tag node, and S(σ) = 1, then W(σ) =
1+ sum of its child nodes’ weight.



• If σ is a parentheses node and S(σ) = 1, then W(σ) =
sum of its child nodes’ weight.

• If S(σ) =? or S(σ) = ∗, then W(σ) = 0.

• If S(σ) = +, then W(σ) = W(σ′), where σ′ is the
same to σ except for S(σ′) = 1.

• If S(σ) = N , then W(σ) = N ∗W(σ′), where σ′ is the
same to σ except for S(σ′) = 1.

The reason we set a wrapper node σ’s weight as 0 if S(σ) =
? or S(σ) = ∗ is that this kind of wrapper node is allowed
to be mismatched without causing any cost.

In this sub-section, we only describe WW-alignment and
leave WD-alignment to Section 5.2.2.

Given two wrappers Tw1
and Tw2

, the basic procedure of
WW-alignment is to align two forests: A(Fw1

, Fw2
). It is

performed in a top-down order layer by layer. Only nodes
at the same layer of Tw1

and Tw2
can be aligned with each

other.

Rule 2. Given two wrapper nodes σw1
and σw2

, we say
σw1

matches σw2
, iff all the following rules are satisfied,

1. σw1
and σw2

are either both inner nodes or both leaf
nodes

2. T (σw1
) = T (σw2

)

3. If σw2
and σw2

are both leaf nodes, L(σw1
) = L(σw2

)

At each layer, A(Fw1
, Fw2

) performs a sequence alignment
between the array of Fw1

’s root nodes and that of Fw2
’s. Dy-

namic programming is adopted here to minimize the cost.
All mismatched root nodes in Fw1

and Fw2
contribute their

weight as cost to A(Fw1
, Fw2

). For a pair of matched nodes
σw1

and σw2
that are inner nodes, A(childFw1

, childFw2
)

will be invoked recursively, where childFw1
and childFw2

are the sub-forests consisting of sub-trees rooted at the child
nodes of σw1

and σw2
. The cost caused by A(childFw1

, childFw2
)

will be counted in the cost calculation of A(Fw1
, Fw2

). Be-
cause our WW-alignment algorithm works in such a top-
down recursive way, it attempts to align nodes in two wrap-
pers only if their parent nodes are aligned with each other.
Such a mechanism saves some unnecessary alignment.

Figure 4 shows an example of WW-alignment. In this ex-
ample, label difference is ignored for statement convenience.
The alignment algorithm works as follows. First, A(A, A)
recursively invokes A

(

B(C3
DE

∗)?, BC3
E
)

. Then, according to

the matching rule of wildcards ? (Rule 1), A
(

B(C3
DE

∗)?, BC3
E
)

seeks a better solution between A(BC3
DE

∗, BC3
E) and A(B, BC3

E).
Obviously, the former one costs less by now. Then, A(F2, FG+)
is invoked recursively by both A(BC3

DE
∗, BC3

E) and A(B, BC3
E)

to calculate the cost of these two solutions. In this exam-
ple, WW-alignment algorithm can find an optimal result as
Figure 4 shown with the cost of 2.

5.1.3 Wrapper Induction
After WW-alignment obtains an optimal result between

two wrappers, a new wrapper can be constructed according
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( )
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G
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*

*

?

Tw1 Tw2

Tw3

D

D

(Gray nodes are mismatched nodes.)

Figure 4: Wrapper induction

to the sign-inference function I:

I(1, NULL) = ? I(?, N) = ∗
I(?, NULL) = ? I(?, +) = ∗
I(n, NULL) = ∗ I(1, ∗) = ∗
I(+, NULL) = ∗ I(N, ∗) = ∗
I(∗, NULL) = ∗ I(?, ∗) = ∗
I(1, 1) = 1 I(+, ∗) = ∗
I(N, N) = N I(1, N) = +
I(+, +) = + I(N, +) = +
I(?, ?) = ? I(1, +) = +
I(∗, ∗) = ∗ I(N1, N2) = +
I(1, ?) = ?

where NULL represents a mismatch of a wrapper node. For
example, I(1, NULL) is applied for D node because D has the
sign 1 in Tw1

while it is mismatched in Tw2
.

Given two source wrappers Tw1
and Tw2

, supposing that
the generated wrapper is Tw3

, we use Tw1
+ Tw2

→ Tw3
to

denote this induction procedure. Figure 4 also illustrates
how to construct a new wrapper based on the alignment
result.

5.2 Combine Wrapper Generation with
Template Detection

In Section 5.2.1, we describe the clustering algorithm that
combines template detection and wrapper generation to achieve
joint optimization. For clustering, a distance metric is de-
fined in Section 5.2.2.

5.2.1 Wrapper-Oriented Page Clustering Algorithm
Wrapper-oriented page clustering (WPC) is the most novel

part of our system. Given a set of DOM trees D, our WPC
algorithm clusters DOM trees in D and generates a wrapper
for each cluster. Actually, templates are detected one by one
in WPC. After a template’s clustering process is completed,
all clustered DOM trees of this template will be removed and
then clustering for another template will start. The cycles
will stop when no DOM tree is left.

Here, we use Figure 5 to illustrate the clustering process
of one template. In Figure 5, “W” represents a wrapper for
this template, and positive points represent DOM trees that
belong to the same template as the centered wrapper. Each
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Figure 5: Wrapper-oriented page clustering for one template

gray point represents a chosen DOM tree that will be used
to refine the centered wrapper.

In the WPC algorithm, we use Wrapper Level to indicate
a wrapper’s complexity and generality. It is defined as the
number of training DOM trees used to learn this wrapper.

First, a level-1 wrapper Tw is converted from a randomly
chosen DOM tree and taken as the center for this template
(Figure 5(a)). DOM trees whose distance to Tw is less than
a given threshold ε (dashed circle in Figure 5) are considered
belonging to the same template of Tw and will be used to
refine Tw. Refining Tw with a DOM tree Td includes three

steps: converting Td to a level-1 wrapper T
′

w; generating a

new wrapper from Tw and T
′

w; and replacing Tw with the
new wrapper.

After Tw is refined, it is upgraded by one level and be-
comes more general. Actually, for any DOM tree Td, the
recalculated distance between Tw and Td is expected to de-
crease. For the DOM trees that match the wrapper perfectly
(e.g., central DOM tree in Figure 5(c)), we will not use them
to refine the centered wrapper because they will not bring
any changes to it. For those DOM trees whose distance to
the centered wrapper is less than threshold ε, Td will be
employed to refine Tw (Figure 5(a) and Figure 5(b)).

Finally, the WPC algorithm stops for one template when
no DOM tree is within the given threshold (Figure 5(d)).

The full algorithm of WPC is listed in Figure 6.
Our proposed WPC algorithm has only one parameter,

i.e., the distance threshold. Fortunately, there is a wide
threshold to assure high performance. Please refer to exper-
imental results shown in Section 6.

5.2.2 Distance Metric
In our system, instead of measuring the similarity between

two DOM trees directly, we derive a Wrapper-DOM Distance
(WD-Distance) to measure the distance between a wrapper
and a DOM tree. This distance is used in both the wrapper-
oriented page clustering module and the wrapper selection
module.

WD-Distance is calculated based on the WD-alignment’s
cost. WD-alignment algorithm is similar to WW-alignment.
Thus, we will not describe it in detail but only present
the difference between them. In WW-alignment, nodes are
aligned in a one-to-one manner; while in WD-alignment a
wrapper node whose sign is +, * or N can be aligned with
multiple DOM nodes (Figure 7).

For WD-alignment between a wrapper Tw and a DOM
tree Td, we use Cw(Tw, Td) to denote the total cost caused
by mismatched wrapper nodes and use Cd(Tw, Td) to denote
the total cost caused by mismatched DOM nodes. When

Algorithm: WPC(D: DOM tree set, ε: threshold)
1. begin

2. R := page cluster set;
3. W := wrapper set;
4. while D is not empty
5. create a new page cluster C;
6. select a DOM tree Td1

from D randomly;
7. Td1

→ Tw1
;

8. move Td1
from D to C;

9. for each Td in D

10. if Ψ(Tw1
, Td) = 0

11. move Td from D to C;
12. endif

13. endfor

14. while ∃Td2
∈ D : Ψ(Tw1

, Td2
) < ε

15. Td2
→ Tw2

;
16. Tw1

+ Tw2
→ Tw3

;
17. Tw1

:= Tw3
;

18. move Td2
from D to C;

19. for each Td in D

20. if Ψ(Tw1
, Td) = 0

21. move Td from D to C;
22. endif

23. endfor

24. endwhile

25. add C to R, add Tw1
to W;

26. endwhile

27. return R and W;
28. end

Figure 6: Wrapper-oriented page clustering algo-

rithm

calculating the WD-Distance, it is necessary to normalize
the cost Cw(Tw, Td) and Cd(Tw, Td) by the weight of a whole
tree because the larger the number of nodes in the tree, the
greater is the likelihood of the tree having nodes that are
mismatched. Thus, Wrapper-DOM Distance is defined as
follows:

Definition 4. (Wrapper-DOM Distance) Given a wrap-
per Tw and a DOM tree Td, the wrapper-DOM distance

Ψ(Tw, Td) =
(Cw(Tw, Td)

W(Tw)
+

Cd(Tw, Td)

W(Td)

)/

2

Here, weight of a DOM tree and weight of a wrapper are
defined as below:

Definition 5. (DOM-Tree Weight) Given a DOM tree
Td whose root node is τ , then W(Td) = W(τ )
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Definition 6. (Wrapper Weight) Given a wrapper Tw

whose root node is σ, then W(Tw) = W(σ)

According to Definition 4, WD-distance is the arithmetic
mean of the normalized cost caused by the wrapper side and
that caused by the DOM-tree side. Thus, values are normal-
ized in the range between 0 and 1. Ψ(Tw, Td) = 0 means Tw

perfectly matches Td without any cost, and Ψ(Tw, Td) = 1
means none of the nodes in Tw and Td match in the align-
ment.

6. EXPERIMENTS
We test the performance of our approach through exper-

iments.

6.1 Experiment Set-up
We use a dataset of 1,700 product pages from Amazon.com

and a dataset of mixed 1,000 pages from 10 shopping web-
sites. We call the former dataset Amazon and the latter
M10 hereinafter. The reason we choose these datasets is
that they are real-life large-scale Web sites and their Web
pages are relatively more complex than datasets used in ear-
lier works. Although we can also gain very good results on
simple datasets, i.e., all pages are similar of each site, us-
ing complex real-life datasets is a better choice to show the
effectiveness of our joint approach.

In each page, product records and their three attributes,
namely product name, product image, and product price,
are manually labeled. For each website, twofold cross val-
idation is conducted. We use precision, recall, and F1 as
measures in evaluation of data extraction results. These
measures are calculated based on whether a labeled node is
correctly extracted.

All experiments were run on a PC, with a 3.06 GHz Pen-
tium 4 processor and 3.87 GB RAM.

6.2 Experimental Results

Experiment I: Effectiveness Test
On the Amazon data, our joint optimization approach achieves
as high F1 as 94.88% by setting the threshold as 0.3 (Fig-
ure 8) with 44 wrappers generated. For comparison, we im-
plement the separated template detection strategy based on
URLs. For specific, training pages are divided into several
templates by their URLs. Then, each template generates
a wrapper using the same wrapper induction technique as
that used in our WPC algorithm. The experimental result
shows that these wrappers can only achieve 78% accuracy
in terms of F1. Therefore, our approach outperforms the
traditional method by about 17 points.

To further evaluate the performance of the WPC algo-
rithm, we run the experiment on M10 data. Table 1 shows
the evaluation results for each site. As we see, the average
F1 is as high as 97.2%. For seven sites out of 10, the pro-
posed WPC algorithm achieves F1 higher than 98%. The
lowest F1 is got on pages from ftd.com. By case study, we
find that the number of templates are unbalanced between
the training set and the test set. When some templates
are unseen in the stage of training, the generated wrappers
reject those pages and extract nothing in testing. But for
those seen templates, the wrappers can handle them well.
That is why we get high precision and low recall.

Table 1: Results on 10 shopping websites

Website Wra. # Pre. Rec. F1

ashford.com 1 1.0000 1.0000 1.0000
circuitcity.com 2 1.0000 1.0000 1.0000
costco.com 23 0.9667 0.9153 0.9403
diamond.com 1 0.9875 0.9975 0.9925
ebags.com 2 0.9976 1.0000 0.9988
ftd.com 2 0.9833 0.7528 0.8527
officedepot.com 1 0.9850 1.0000 0.9924
overstock.com 6 0.9224 0.9979 0.9587
pricegrabber.com 1 0.9970 0.9773 0.9870
sears.com 3 0.9960 1.0000 0.9980

Average 4.2 0.9835 0.9640 0.9720

We notice that pages in site Costco.com are clustered into
23 similarity-based templates. It is surprising because in the
viewpoint of a human, training pages of this site share only
one template. Then, we use all training pages of this site to
generate one wrapper. The wrapper can only achieve 87%
accuracy in terms of F1, which is lower than the 23 wrappers
generated by our approach.

Experiment II: WPC with Different Thresholds
We evaluate the performance of WPC algorithm as the thresh-
old changing on Amazon data. We run WPC 18 times under
different thresholds: from 0 to 0.85 with a 0.05 interval. Fig-
ure 8 shows three curves on performance when the thresh-
old increases from 0 to 0.85. There is no result with greater
thresholds because pages chosen are too diverse to learn a
wrapper.
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Figure 8: WPC performance under different thresh-

olds



When the threshold is set as 0, only exactly matched pages
can be absorbed by the wrapper. Thus, we got the highest
precision while the recall is the lowest. It means that a
generated wrapper is specific for the small number of pages
although the wrapper is precise in its scope.

As we increase the threshold, the precision drops down
and the recall goes up. In terms of F1, the peak value
of 94.88% is achieved by setting the threshold to 0.3. Af-
ter that, F1 stays above 94% and becomes stable until the
threshold is set to 0.85. The stable range, from 0.3 to 0.8 in-
dicates that it is not hard to set an appropriate fixed thresh-
old in the approach.

We also list comparison of the number of wrappers gen-
erated with different thresholds in Figure 9. The number
of wrappers or similarity-based templates decreases quickly
from 832 to 44 as the threshold increases from 0 to 0.3.
Then the wrapper number decreases slowly. There is an ob-
vious drop if the threshold is set to 0.85. All training pages
are clustered into just four. Such wrappers can cover more
pages by sacrificing the effectiveness of extraction.
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Figure 9: Template detection under different thresh-

olds

The impact of different thresholds is also presented by the
runtime of our algorithm in the wrapper generation process.
When the threshold is set to 0, it takes 13,197 seconds (3.67
hours) to generate 832 wrappers. Then it drops to 1,424
(0.40 hours) seconds when the threshold increase to 0.15
and keeps stable around 2,000 seconds (0.56 hours) until the
threshold reaches 0.8. After that, the runtime increases dra-
matically to 24,666 seconds (6.85 hours) when the threshold
is set to 0.85. The runtime gets too much to tolerate when
the threshold is greater. So we treat the situations as if they
fail to learn a wrapper.

Experiment III: Stability Test
Since our algorithm chooses the initial DOM tree for clus-
tering in a random way, we evaluate how the initial choice
impacts performance of our approach in the experiment. We
conducted WPC algorithm five times with the threshold set
to 0.2 on Amazon dataset. Table 2 lists the number of tem-
plate, extraction precision and recall of each run.

As Table 2 shows, in terms of F1, the mean is 94% while
the standard variance is smaller than 4E-5. It indicates that
our proposed approach is quite stable with the random strat-
egy to select an initial DOM tree.

Table 2: Stability test result

Template # Precision Recall F1

1 99 0.9683 0.9249 0.9461
2 116 0.9460 0.9254 0.9356
3 111 0.9606 0.9238 0.9418
4 113 0.9510 0.9138 0.9320
5 111 0.9664 0.9236 0.9445

Experiment IV: Labeling Cost
As stated earlier, our approach requires manually labeling
for wrapper generation. This experiment was designed to
show how many training pages are required for learning
wrappers to achieve an accuracy higher than 95% in terms
of F1. Table 3 shows the results for all sites in M10. Actu-
ally, most websites only need a handful of labeled pages to
meet the demand of accuracy. That proves that the cost of
manually labeling in our approach is acceptable.

Table 3: Labeling test result

Website Page # Website Page #

ashford.com 12 circuitcity.com 19
costco.com 31 diamond.com 12
ebags.com 19 ftd.com N/A

officedepot.com 19 overstock.com 16
pricegrabber.com 7 sears.com 27

7. RELATED WORK
Our work is in the area of Web Information Extraction.

It is highly related to previous works on wrapper induc-
tion. Several automatic or semi-automatic wrapper learning
methods have been proposed. For example, WIEN [12] is the
earliest method as we know on automatic wrapper induc-
tion. Other representative ones are SoftMeley [11], Stalker
[17], RoadRunner [6], EXALG [2], TTAG [4], works in [18]
and ViNTs [21]. Here, we only discuss RoadRunner, TTAG,
and works in [18] and refer the reader to two surveys [13, 8]
and two tutorials [19, 14] for more studies related to infor-
mation extraction and wrapper induction.

In previous work, page clustering for wrapper induction
is considered a trivial task in most previous wrapper induc-
tion systems. Among them, only RoadRunner [6, 7] and [18]
proposed automatic approaches to implement page cluster-
ing for wrapper generation. Other methods all manually
collect training pages, template by template.

In [7], page clustering for RoadRunner system is discussed.
They use four types of page features to calculate the similar-
ity between two pages: (1) distance from the home page; (2)
url similarity; (3) tag probability; (4) tag periodicity. Based
on page similarity, they adopt a popular non-supervised
clustering algorithm MiniMax to conduct the page cluster-
ing process. This process is isolated from the wrapper gen-
eration process, which is the primary difference compared
with our WPC algorithm. Wrapper selection problem is
also discussed in [7].

In [18], tree edit distance is used to measure the distance
between two pages. They use traditional hierarchical clus-
tering techniques [20] in which the distance measured is
the output of a restricted top-down tree mapping algorithm



(RTDM). The RTDM algorithm does not distinguish node
tag and it is designed only for finding the main contents in
news pages. This restricts that method from being applied
to general information extraction problems. Similar to our
system, works in [18] can also derive a similarity between
a wrapper (called extraction patterns) and a page when se-
lecting a proper wrapper for extracting data from a new
page. However, template detection is still isolated from the
wrapper generation process.

We need to mention TTAG because wrappers in TTAG
are also presented as a tree structure with wildcards. The
authors also employ a top-down layer-by-layer alignment,
but the alignment in any layer is isolated from that in other
layers. As a result, child nodes can still be aligned even
when their parent nodes do not match. That is a differ-
ent strategy from ours. Moreover, like most other previous
systems, template detection is not discussed in TTAG.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel wrapper induction sys-

tem that expresses a different opinion regarding the relation
between template detection and wrapper generation. Our
system takes a miscellaneous training set as input and con-
ducts template detection and wrapper generation in a single
step. By the criterion of generated wrappers’ extraction
accuracy, our approach can achieve a joint optimization of
template detection and wrapper generation. Experimental
results on real-life shopping websites prove the feasibility
and effectiveness of our approach. The preliminary compar-
ison demonstrates that our approach significantly outper-
forms the separated template detection strategy.

Our wrapper induction algorithm only leverages the HTML
tag-tree structure and does not involve any content. As fu-
ture work, we will try to extend the approach to handle the
templates that contain some content strings.
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