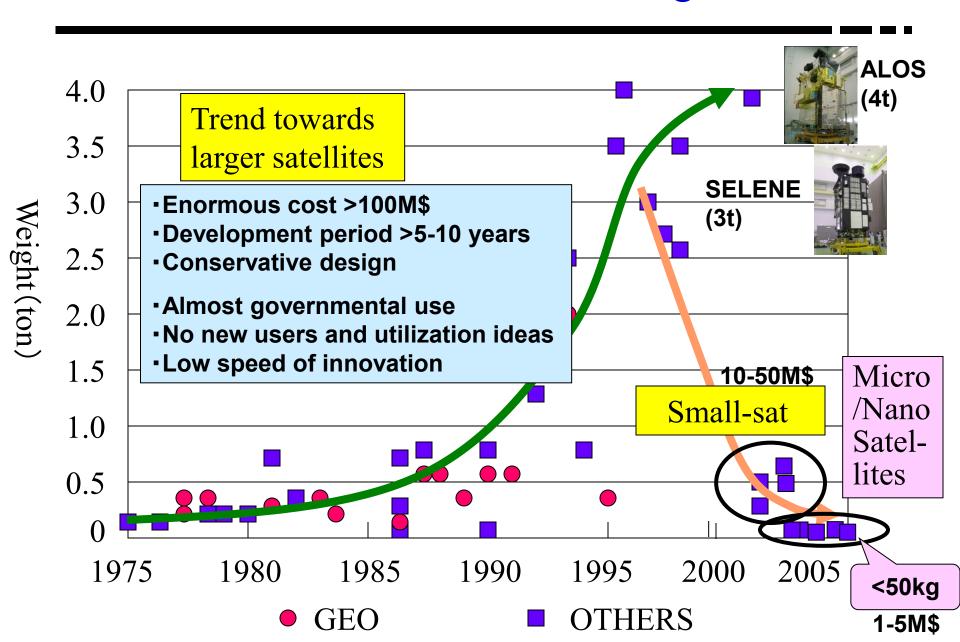

Welcome Address

- Welcome to the Nano-satellite Symposium, co-hosted by:
 - United Nation Office for Outer Space Affairs
 - University of Tokyo, Japan
- Main symposium in "Hodoyoshi-Project," Japanese nationwide project for creating new paradigm of space development and utilization by Micro/nano-satellites (already had symposiums 3 times since 2010)
- Main Theme: "Paradigm Shift Changing Architecture, Technologies and Players"
- Presentations/discussions on technologies including satellite architecture, advanced components, ground tests and standardization, legal matters, education and utilizations primarily for/using micro/nano-satellites
- Community building and friendship enhancement is another important theme

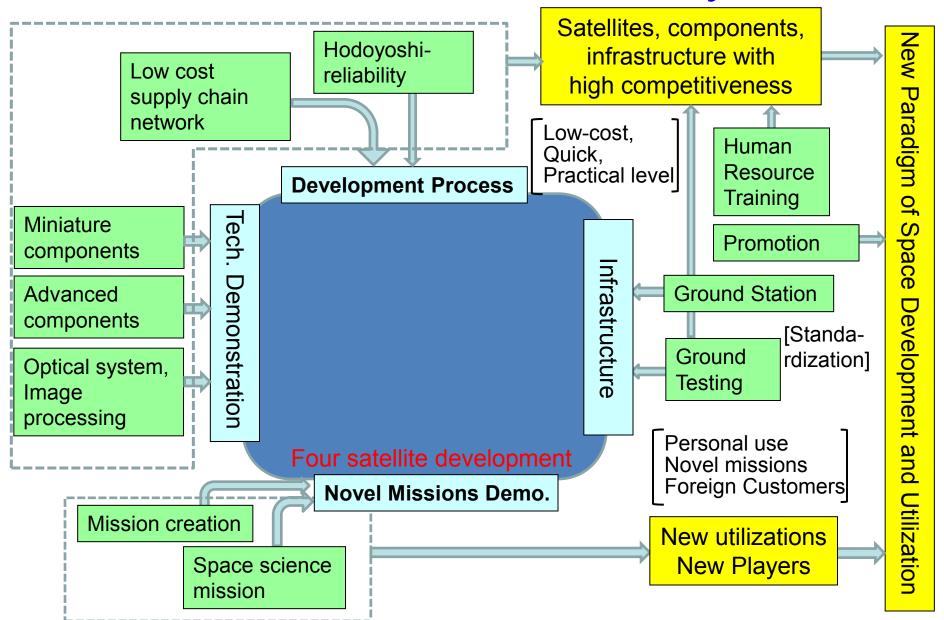
Introduction of Micro/Nano/Pico-satellites in Japan and "Hodoyoshi-Project"

New Space Development and Utilization Paradigm by Nano-satellites Introducing Japan-oriented "Reasonable Reliable Systems (Hodoyoshi) Engineering" (2010-2014)

Satellites Developed by Japanese Universities (June.2003~May.2012)

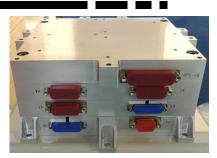

Significances of Micro/Nano/Pico-Satellite Projects

- Initial phase contributions: Education
 - Practical Training of Whole Cycle of Space Project
 - Feedbacks from the real world to evaluate design, test, etc.
 - Learning from failures (while project cost is small)
 - Training for project management
 - International cooperation, negotiation, mutual understanding
 - Also contribute to other technology areas!
- Create a new paradigm of space development and utilizations with low cost and quick development
 - Will introduce new players(individual, company, local government, research institute, etc.) seeking for their own use
 - Will create novel ways of space utilizations
 - Will lead to participations of more nations


Governmental "First" Program "Hodoyoshi-project" (2010-2014)

- Reliability concept for micro/nano/pico-satellites
 - "So-so and not expensive (Hodoyoshi)" reliability
 (compromise between cost (workload) vs. reliability)
- Component technology development
 - Should solve "size and power problem"
- Development process innovation
 - Software architecture
 - Ground test, etc.
- Novel applications and user communities
 - Non-government users as individuals, companies, local government, research institute can seek for their interest

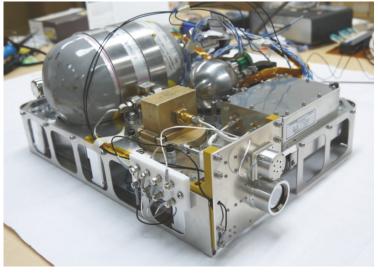
Motivation: Problem of Mid-large Satellites



Overall R&D Structure of Hodoyoshi-PJ

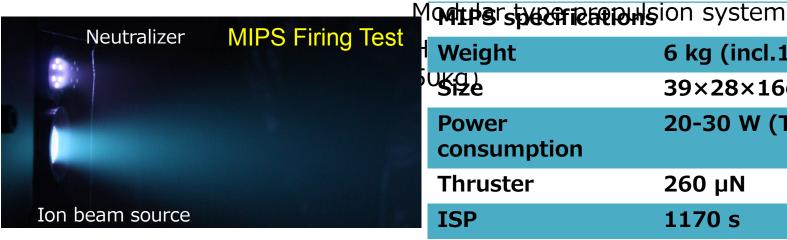
Components under development (example)

- Radiation-hardened SOI-SoC onboard computer
- Software architecture (SDK, HILS, etc.)
- Optical camera with 2.5 200m GSD
- Li-Ion battery and power control unit
- Low-shock lock/release & deployable mechanism
- High speed and versatile data handling unit
- High speed, low power RF transmitter (>100Mbps)
- Electric propulsion system (Ion thruster)
- Attitude control system for micro/nano-satellite
 - Fiber optical gyro, Reaction wheel, CMG, etc.
- Debris mitigation device (deployable membrane)
- Optical communication system (with NICT)



Miniature Ion-Propulsion System (MIPS)

MIPS Engineering Model


KEY TECHNOLOGIES

- ✓ Low power (1 W) plasma generation by
- ✓ microwave
- ✓ High efficiency Ion beam through miniature grid

Optimization of neutralizer

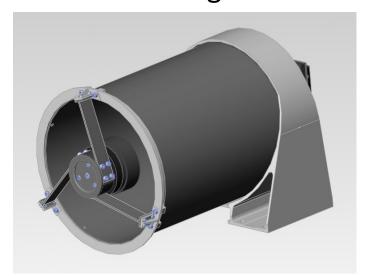
REMARKS

World first Ion-thruster system for microsatellites

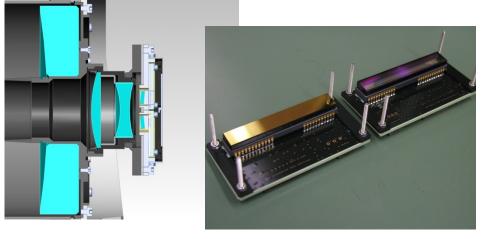
	,
Weight	6 kg (incl.1kg Xe)
oukg)	39×28×16cm
Power	20-30 W (TBD)
consumption	

Thruster 260 µN **ISP** 1170 s

Total impulses 12 kNs

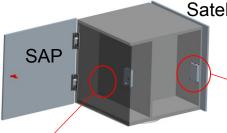

Total **DV** 240 m/s (50kg S/C)

High Resolution Camera


✓ Aperture: 15cm, weight: 3.5kg GSD: 5m suitable for micro-sat

✓ 4 bands: R,G,B, NIR

✓ Scalable design extension for 2.5m GSD advanced camera

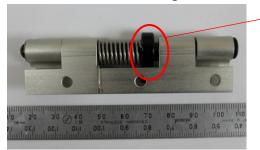

Item	Specification	
GSD	5∼7m	
Swath	20~28km	
Style	Push-bloom	
Focal length	1000mm	
F-value	6.7	

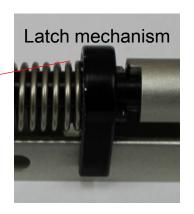
Deployable Structure

Simple and reliable devices for deployable structure

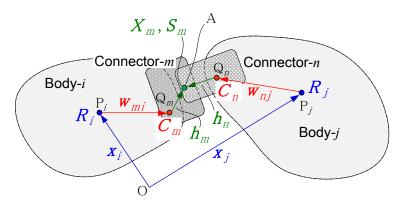
- Simple and reliable hold-release mechanism
- ➤ Latchable hinge
- ➤ Will be verified in space by "HODOYOSHI" #3 and #4 satellite

Satellite main structure





HRM (wire-cut type)


Latchable hinge

Theoretical estimation of performance of deployable structure

- ➤ Estimation of shape accuracy after deployment (for high-precision deployable structure)
- > Estimation of smooth deployment

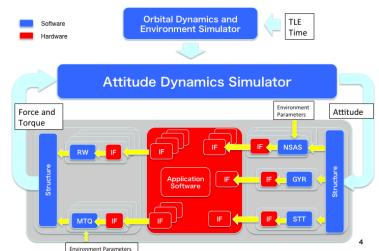
Constraint condition for each joint (position and attitude)

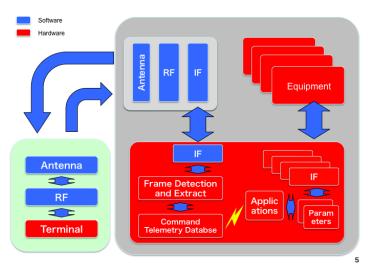
$$f_{mn}$$
 · x R y T z .

· x · R · y · T · z . 0
 g_{mn} · R · T_{mn} · Q_{mn} · R · T_{mn} · Q_{mn} · Q_{mn}

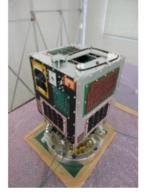
Relation between deviation of design parameter **u** and state vector ξ

$$H \cdot u \cdot L \cdot \cdot$$


Estimation of performance


Software: Hardware in the Loop and Verification System

- Software verification is essential to achieve software reliability.
- We developed hardware in a loop OBC software verification system.
- In the verification system, the performance and interface of the peripheral equipment is simulated by the PC simulator, and closed-loop simulation using a real OBC can be realized.




Ground Testing

Concentration of Nano-satellite environment tests

Test Center at Kyushu Institute of Technology

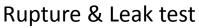
HORYU2

FITSAT

QSAT-EOS

STARS-II

UNIFORM


Outreach

(15 tests of components manufactured by small business)

Development of new test method

Single-event test

International Standardization

(Spin-out of test standardization project)

International standardization workshop

Telescope for nanosatellite

HODOYOSHI-1

Mission: Earth Remote Sensing (6.7m GSD, 4 bands: RGB & NIR)

<u>Developer</u>: AXELSPACE, University of Tokyo, NESTRA

Launch: DNEPR in 2012

Size 50 [cm-cubic]

Weight 50 [kg]

OBC FPGA

Communication UHF, X (max 20 Mbps)

Mission life 2 [year]

Attitude control 3-axis stabilization with

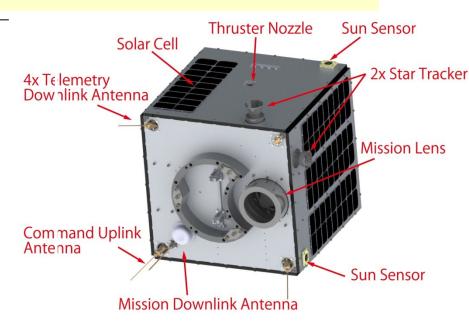
STT, SAS, Magnetometer, Gyros,

RW, Magnetic torquers

- stability 0.1 deg/sec

- pointing accuracy 5 arcmin

- determination 10 arcsec


Optical sensor: 15kg, 6.7m GSD (500km alt.)

- Focal length 740mm (F# 7)

- IFOV 24.3 x 16.2 km (500km alt.)

- Bands(SNR) B(103), G(119), R(84), NIR(63)

- Onboard storage 8GB (~100 compressed images)

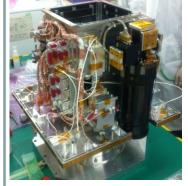
Optical Camera (6.7m@500km) developed by Genesia Corporation

HODOYOSHI-2(RISESAT)

International Space Science Missions

Size: 50cm 55kg

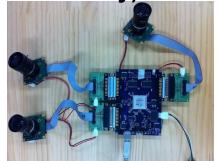
Comm:

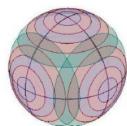

S-band 38.4kbps

X-band 2Mbps

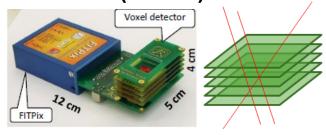
Power: 100W

ACS: <0.1°

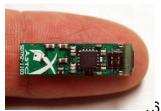

Rocket: 2013, CYC LONE-4 High Precision Meteor counter
Telescope- HPT - DOTCam
(Taiwan/Vietnam) (Taiwan(NCKU))


Ocean Observation Camera - OOC (Tohoku University)

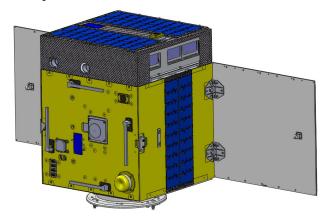
Camera Instruments



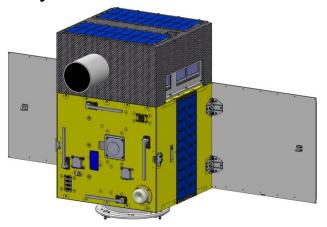
TriTel – 3D Dosimeter (Hungary)



TIMEPIX – Particle counter (Czech)


SDTM – MEMS Magnetometer (Sweden)

Sensor Instruments


HODOYOSHI-3 & 4

Hodoyoshi-3

Hodoyoshi-4

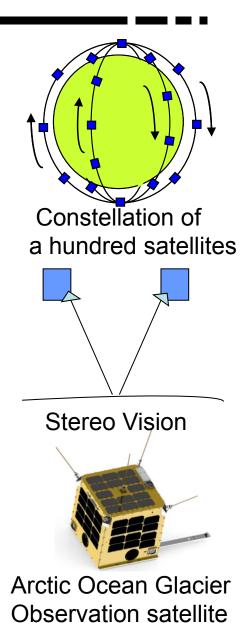
Based on a Standard bus

	Hodoyoshi-3	Hodoyoshi-4		
Size	0.5 × 0.5 × H0.65m	0.5 × 0.6 × H0.7m		
Weight	60kg	66kg		
Orbit	SSO. 600km, LTAN 10am~11am			
ACS	Earth pointing, 3 axis stabilization			
Power	Power generation: max 100W			
	Power consumption: average 50 W			
	Bus voltage:	28V, 5V		
	Battery:	5.8AH Li-lon		
Commu-	H/K and Command: S-band			
nication	uplink:4 kbps, downlink:4/32/64 kbps			
	Mission data downlink: X-band 10Mbps			
	(100Mbps to be tested on Hodoyoshi-4)			
Orbit	H ₂ O ₂ propulsion	Ion-thruster		
control		(lsp: 1100s)		
Missions	Mid-resolution	High-resolution		
	optical camera	optical camera		
	GSD: 40m & 200m	GSD:5m		
	Store & Forward Hosted payloads (10cm cube x 2) Hetero-constellation experiment			

Rocket: DNEPR launch in 2013

Missions Creation for Micro/Nano-satellites

Low-cost and small size realize satellite constellation


More frequent (ex. semi-daily)
 observation of the same areas

Formation flight

 Many scientific applications such as interferometer, multi-site observation, stereo vision

"Personal Satellite" "My Satellite"

- Novel ways of utilization including entertainment, education, contents, etc
- Just like "PC and internet" innovation which has changed the world

International Contribution (1)

- CanSat Leader Training Program (CLTP) -

CLTP started in 2011 to contribute to capacity building in space technology and to improve teaching methods in space engineering education.

- A one month course gives training through whole cycle of CanSat development including sub-orbital launch experiments
- Participants are expected to teach their students CanSat program in their countries
- Aiming at "international CanSat education network"

http://www.cltp.info

CLTP Participants

CLTP1 (Wakayama Univ. in Feb-March, 2011)

12 participants from 10 countries, namely Algeria, Australia, Egypt, Guatemala, Mexico, Nigeria, Peru, Sri Lanka, Turkey, Vietnam.

CLTP2 (Nihon Univ. in Nov-Dec, 2011)

10 participants from 10 countries, namely Indonesia, Malaysia, Nigeria, Vietnam, Ghana, Peru, Singapore, Mongolia, Thailand, Turkey.

CLTP3 (Tokyo Metropolitan Univ. in July-August, 2012)

10 participants from 9 countries, namely Egypt, Nigeria, Namibia, Turkey, Lithuania, Mongolia, Israel, Philippines, Brazil

International Contribution (2)

- Mission Idea Contest (MIC) -

 Objective: Encourage innovative exploitation of micro/nano-satellites to provide useful capabilities, services or data.

- Requirement:
 - category1: mission idea and satellite design
 - category 2: mission idea and business model using micro/nano satellite weighing less than 50kg.
- Regional coordinators: 33 regions
- 72 applications from 31 countries.
- Oct 10, 2012 Final Presentation

http://www.spacemic.net

Global network through Mission Idea Contest and CanSat Leader Training Program (MIC:33, CLTP: 21 countries) 38 countries in total

: CLTP participant

Micro/nano-satellites and future

- Large educational effect not only for space, but also for many technological areas
- New paradigm of space development and utilizations with low-cost and quick development
- More effort will be required in order for micro/nano-satellites to contribute more to the society, industry and human welfare
- Important international network using micro/nano-satellites for technologies, process, missions and educations

Structure of the Symposium

•	2 nd Mission Idea Contest	(10 th Wed)
•	Technical Sessions	
	 Satellite Architecture/technologies 	(11 th AM)
	Development Process	(11 th PM)
	 Space Utilizations/applications 	$(12^{th} AM)$
	 Standardization and Regulatory Issues 	(12 th PM)
	 Strategies for Capacity Building 	(12 th PM)
	Poster Session (10th	and 11 th FM)
•	UN Space Education Curriculum	(13 th)
•	Panel Discussions	
	 How to keep good quality without too much cos 	st (11 th AM)
	 International Space Education 	(11 th PM)
	Space Debris	(12 th AM)

- Reception (10th), UNISEC gathering(11th) and Gala Dinner (12th)

Social Events