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Brain-based device (BBD) behavior is guided by a simulated nervous system modeled on the anatomy
and physiology of the mammalian nervous system but, obviously, with far fewer neurons. The simulation
consists of a number of areas labeled according to the analogous neocortical, hippocampal and subcor-
tical brain regions. Each area contains neuronal units that can be either excitatory or inhibitory, and
each neuronal unit represents a local field potential generated by a population of approximately 100 neu-
rons firing over a period of roughly 200 milliseconds. To distinguish modeled areas from corresponding
regions in the mammalian nervous system, the simulated areas are indicated in italics (e.g., I7).

During each simulation cycle sensory input is processed, the states of all neuronal units are com-
puted, the connection strengths of all plastic connections are determined, and motor output is generated.
In our experiments, execution of each simulation cycle required about 200 ms of real time. The neural
simulation was run on a Beowulf cluster of up to 12 Pentium IV computers running the Linux oper-
ating system. All sensory input from the brain-based device and motor commands to the device were
communicated through wireless links between the device and one of cluster’s workstations. During each
simulation cycle, all neuronal activities were saved on a hard disk, and behavioral measurements were
recorded.

This supplemental text covers two very different models, Darwin VII (investigating the acquisition
of conditioned responses) and Darwin X (investigating spatial memory). Darwin VII’s simulation in-
cluded models of visual, auditory, inferotemporal, and motor cortices along with the value system and
the colliculus. Darwin VII had 20,000 neuronal units in 18 areas and a half million synaptic connections.
Darwin X’s simulation included models of visual, inferotemporal, parietal, and motor cortices, along
with the value system, basal forebrain, anterior thalamic nucleus and the medial temporal lobe. Darwin
X had 100,000 neuronal units in 50 areas and one and a half million synaptic connections.

The following two sections describe the particular behavioral and neuroanatomical traits of Darwin
VII and Darwin X. The final section addresses the detailed algorithms for neural simulation which un-
derly both models, but omits the long tables that describe each of these models in great detail. Those
who are interested in these parameters can find them in the original publications (/-3).



1 Darwin VII

1.1 Behavior

The acquisition of conditioned responses in Darwin VII was assessed through a task that required dif-
ferentiating between different types of visual or auditory patterns in order to obtain appetitive and avoid
aversive “taste” stimuli. Darwin VII operated in an enclosed area with black cloth-covered walls and a
floor covered with opaque black plastic panels, on which we distributed stimulus blocks (6 cm metallic
cubes; Figure 1). The top surfaces of these blocks were covered with removable black and white patterns.
All other surfaces of the cubes were featureless and black. All experiments reported in this paper were
carried out with block stimulus exemplars of two basic designs: blobs (several white patches 2-3 cm in
diameter) and stripes (width 0.6 cm, evenly spaced). Stripes, when picked up with Darwin VII’s gripper,
could be viewed either in a horizontal or vertical orientation, yielding a total of three stimulus classes
(blob, horizontal and vertical) of visual patterns to be discriminated. A flashlight aligned with the CCD
camera, caused the blocks, which contained photodetectors, to emit a tone when Darwin VII was in the
general area. The sides of the stimulus blocks were metallic and could be rendered either strongly or
weakly conductive. In the experiments described in this paper, negative value blocks had weakly con-
ductive “taste” with a blob visual pattern and a 3.3 kHz tone, whereas positive value blocks had strongly
conductive “taste” with a striped visual pattern and a 3.9 kHz tone.

Figure 1: Darwin VII in its environment.



Darwin VII's body consisted of a mobile robotic base (16 inches in diameter) equipped with several
sensors and effectors, and was capable of communicating wirelessly with a neural simulation running
on a remote computer. The device had wheels that permitted independent translational and rotational
motion, pan/tilt movement for its camera and microphones, and object gripping with a one degree-of-
freedom manipulator (see Figure 1).

Darwin VII had three built-in behaviors. It moved forward by default. If it encountered the bound-
aries of the environment (detected by eight infrared (IR) sensors mounted at 45-degree intervals around
the mobile platform) it backed away. If a block entered the gripper (detected by IR sensors in the grip-
per) then the gripper closed, the object was picked up, and conductivity was measured across its exposed
contacts.

The neural simulation activity (described below) determined whether Darwin VII would approach or
back away from a block once one entered the camera’s visual field. Once a block was approached and in
the gripper Darwin VII would “taste” the block’s conductivity. The “taste” of the block triggered activity
in the value system of the simulated nervous system (see Action selection subsection, below). Initially
Darwin VII picked up blocks of positive and negative value equally and randomly, but after experience
and the changes induced in synapses by value system activity Darwin X learned to discriminate the
blocks based on visual and auditory cues and reliably made the appropriate responses.

Training was repeated with seven different Darwin VII subjects. Each subject consisted of the same
physical device and gross anatomical structure, but each possessed a unique micro-circuitry as a con-
sequence of random initialization of the simulation and each had a separate history of interaction with
the environment. The group of Darwin VII subjects demonstrated greater than 90% correct responses
to positive and negative value blocks after training for 10 presentations of positive value blocks and 10
presentations of negative value blocks.

1.2 Sensory input

Visual images from the camera were clipped, such that only the center square of the image remained,
and spatially averaged to produce a 64x64 pixel image with each pixel normalized between 0 (black)
and 1 (white), and mapped directly to neuronal units of area R (analogous to retinal output) in the neural
simulation. For visual tracking, the image was mapped directly to area C in a similar fashion as area R,
but without clipping, such that C had a wide-angle view (see Figure 2).

The activity of neuronal units in the primary visual areas, V' A,,, were selective for blob-like features,
short horizontal, or vertical line segments. Activity of neurons in V' A, were calculated by performing a
2- dimensional convolution on area R, the convolution kernel differing according to whether a particular
neuronal unit was sensitive to horizontal lines, vertical lines, or blobs. Neuronal units within V' A,
were retinotopic, i.e. topographically mapped to the visual image, and projected non-topographically
via activity-dependent plastic connections to a secondary visual area, analogous to the inferotemporal
cortex (IT). IT contained local excitatory and inhibitory interactions producing activity patterns that
were characterized by focal regions of excitation surrounded by inhibition.

The frequency and amplitude information captured by Darwin VIIs microphones was relayed to a
simulated cochlea area (LCoch, RCoch). LCoch and RCoch each had 64 neuronal units and each cochlear
neuronal unit had a cosine tuning curve with a tuning width of 1 kHz and a preferred frequency which
over the ensemble of units ranged from 2.9 kHz to 4.2 kHz. Activity of a cochlear neuronal unit was
obtained by multiplying the value from the cosine tuning curve with the amplitude of the microphone
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Figure 2: Schematic of the anatomy of Darwin VII’s nervous system. The neural areas and the number
of neuronal units in each neural area are given in the shaded boxes in the figure. R1 and R2 corre-

spond to appetitive and aversive behavioral responses, and R3 corresponds to a visual tracking response.
Inhibitory connections are omitted for clarity.



signal. Cochlear neuronal units projected tonotopically (i.e., were frequency mapped) to neuronal units
in neural area A/. Similar to area IT, Al contained local excitatory and inhibitory interactions.

1.3 Action selection

Two neuronal areas were capable of triggering appetitive (Mapp) or aversive (Mave) behaviors. The
behavioral responses were triggered if the difference in instantaneous activity between motor areas Mapp
and Mave exceeded a behavioral threshold (G = 0.3). The taste system consisted of two kinds of sensory
units responsive to either strong conductivity (Tapp) or weak conductivity (Tave). The taste system sent
non-plastic projections to the motor areas (Mapp, Mave) and the value system (S). A/ and IT sent plastic
projections to the motor areas (Mapp, Mave) and the value system (S). Initially, only the taste system was
strong enough to elicit a motor behavior. Area S projected diffusely, with long-lasting value-dependent
activity to the auditory, visual and motor behavior neurons. The visual tracking system, which controlled
the approach to objects identified by brightness contrast with respect to the background, was achieved
by connections from the retinal area R to area C (colliculus), which in turn sent motor commands to the
device’s wheels. The connection strengths to achieve tracking behavior were fixed based on learning
experiments in a previous study.

Activation of the value system (see Area S and value dependent projects in Figure 2) signaled the
occurrence of salient sensory events and contributed to the modulation of connection strengths of all
synapses in the affected pathways. For example, tasting a block is a salient event with the consequence
that, at that time, behavior should be reinforced or weakened through synaptic change. Area S thus is
analogous to an ascending neuromodulatory system in that its units show uniform phasic responses when
activated and its output acts diffusely over multiple pathways by modulating synaptic change (4).

Value, V', was calculated at every time step of the simulation according to

S+V(d—1)x (d—1)

V(d) =1+ f(d) -

)

where d is the delay of the value term and is incremented every simulation cycle after the onset of area S
activity with a range of 1 through 9, S is the average activity in area S at this time point, and V' (d — 1)
is the value of V at time d — 1. f is a convolution function that scales the activity over the delay period
with values of 0.1, 0.1, 0.3, 0.7, 1.0, 1.0, 0.7, 0.3 and 0.1 for the 9 delay increments. The effect of this
convolution is to delay onset of the value system activity and spread the activity over time.

2 Darwin X

2.1 Behavior

Spatial memory in Darwin X was assessed in a dry variant of the Morris water maze task (5) in which
the BBD is rewarded by finding a hidden platform. Successful performance of this task is reflected by
the BBD navigating to the hidden platform from any starting position by using only visual landmarks
and self-movement cues. Darwin X was allowed to explore an enclosure in which there were visual
landmarks on the walls and a circular “hidden platform” of reflective black paper (see Figure 3). The
platform could not be detected by the visual system of Darwin X, but was detectable at close range by
an infrared (IR) sensor on the front of the device. This IR sensor triggered activity in the value system



of the simulated nervous system (see Action selection subsection, below). Initially Darwin X found the
platform through random exploration of the environment but, after experience and the changes induced
in synapses by value system activity, Darwin X learned to repeatably and directly approach the hidden
platform.

Darwin X began a trial from one of four starting locations (see Figure 3 A) and explored the enclosure
until it encountered the hidden platform or until a time limit of 1,000 s was reached. A training block was
defined as a set of four trials from each of four starting locations. Four blocks (16 trials) were completed
by the device during training. Training was repeated with nine different Darwin X subjects. Each subject
consisted of the same physical device and gross anatomical structure, but each possessed a unique micro-
circuitry as a consequence of random initialization in the simulation and each had a separate history of
interaction with the environment.

The group of Darwin X subjects showed significant improvement in the hidden platform task, as
measured by the time to find the hidden platform (search time), as training progressed. The median
search times of the last four trials were significantly shorter than the first four trials (223.5 s in trials
1316 and 532.1s in trials 14, p < 0.01, Wilcoxon sign rank test). In general, after the second block (trials
916), Darwin X traversed directly to the hidden platform from multiple starting points.
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Figure 3: Layout of the enclosure used for the hidden platform task. A: Schematic of the environment.
Enclosure is 16 feet by 14 feet with black walls and flooring. Pieces of differently colored paper of
varying widths were hung on each of the walls. A hidden circular platform, 24 inches in diameter and
made of reflective black paper, was placed in the center of a quadrant in the enclosure. Each trial began
in one of four starting locations (see numbers 1 4 in the diagram). B: Snapshot of Darwin X in its
environment.
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Figure 4: Schematic of the regional and functional neuroanatomy of Darwin X. Gray ellipses denote
different neural areas. Arrows denote projections from one area to another. A: Diagram of cortical-
hippocampal connectivity. Input to the neural simulation comes from a camera, wheel odometry, and IR
sensors for wall and platform detection. The simulation contains neural areas analogous to visual cortex
(V1, V2), inferotemporal cortex (IT), parietal cortex (Pr), head direction units (HD), anterior thalamic
nuclei (ATN), motor areas for egocentric heading (Mg pg), a value system (S), and positive and negative
reward areas (textitR+, R-). The hippocampus is connected with the three major sensor input streams (/7,
Pr, ATN), the motor system (Mg pg), and the value system (S). The hippocampus receives rhythmic inhi-
bition from a simulated basal forebrain region (BF). B: Diagram of connectivity within the hippocampal
region. The modeled hippocampus contains areas analogous to entorhinal cortex (ECIN, ECOUT), den-
tate gyrus (DG), and the CA3 and CA1 subfields (CA3, CAI). These areas contain interneurons that
implement feedback inhibition (e.g., CA3 — CA3FB — CA3) and feed-forward inhibition (e.g., DG —
CA3FF — CA3)



2.2 Sensory input
Vision

Visual images from Darwin X’s CCD camera were filtered for color and edges. The filtered output
directly affected neural activity in area V1, which is composed of functionally segregated sub-areas for
color and shape. The CCD camera produced an 80x60 pixel RGB image. Different sized Gabor filters
(2x2, 4x14, 16x16, and 32x32) were used to detect vertical edges of varying widths. The output of the
Gabor function mapped directly onto the neuronal units of the corresponding VI sub-area (VI-width2,
VIi-width4, VI-widthl6, and VI-width32). Different color filters (red, green, yellow, and blue) were
applied to the image. The outputs of the color filters were mapped directly onto the neuronal units of
Vl-red, VI-green, VI-blue, and VI-yellow. VI color neuronal units projected to corresponding V2/4 units
and then non-topologically to inferotemporal cortex I7. VI edge units projected to corresponding V2/4
units and then retinotopically to parietal cortex Pr.

Head direction

A head direction system was modeled after areas of the rodent nervous system (e.g. anterior thalamic
nuclei) that respond selectively to the animal’s heading (6, 7). Neurons in these areas are often called
head direction cells. Odometer information obtained from Darwin X’s wheels was used to estimate
current heading. This information was input into the head direction neural area (HD). Each of the 360
HD neuronal units had a cosine tuning curve, which responded maximally to a preferred heading with a
tuning width of 7 radians:

(cos(HD; — curr_heading))® (2)

where HD; is a head direction cell with a preferred direction of (%277) and i ranges from O to 359.
The head direction cells projected topographically to an area analogous to the anterior thalamic
nucleus ( HD—ATN) and to a motor area (HD—M g pc) used for selecting a new heading (see below).

2.3 Hippocampus

The architecture of the simulated hippocampal formation was based on the known literature about the
gross connectivity and micro-architecture of rodent neuroanatomy. This approach is distinct from other
robotic navigation models of hippocampal function (8—10) in that it focusses on the how a large-scale
model of this anatomy can produce known single-unit phenomena with experience-dependent plasticity.
In this model, the anatomical connectivity is fixed, as are synaptic strengths in the sensory input streams,
but there are plastic connections within the hippocampus and between the hippocampus and the neural
areas responsible for action selection.

The input streams into the hippocampus are from the input areas of the simulation (ATN—ECyy,
IT—EC;n, PR—ECjy). Parameter values for the neuronal units and connections in these areas were
tuned such that each cortical area (ATN, PR, and IT) had an equivalent synaptic influence on ECyy.
The relative numbers of neuronal units in each area, and the intrinsic and extrinsic of connectivity of
the hippocampus were implemented based on known anatomical measurements (//—13). The perforant
path projects mainly from entorhinal cortex to the dentate gyrus but also to the CA3 and CA1 sub-
fields (EC;y—DG EC;ny—CA3, EC;y—CA3). The mossy fibers (DG— CA3), Schaffer collaterals
(CA3—CAl), and divergent projections from the hippocampus back to cortex (CAI—ECoy7—ATN,IT,PR)



were also reflected in the neural simulation. Moreover, the prevalent local reentrant connectivity found
in the hippocampal formation was included in the model (EC;y—ECoyT, DG—DG, and CA3—CA3).
There are distinct patterns of intrinsic and extrinsic, feedback and feedforward inhibitory connections
in the hippocampal circuitry (12, 14). Feedback inhibitory connections (EC—ECrp—EC, DG—DGFrp—DG,
CA3—CA3pp—CA3, and CA1—CAlrp—CAI) and feedforward inhibitory connections ( EC—DGpr— DG,
DG—CA3pp—CA3,and CA3—CAIlpp—CAl) were included in the model. These connections were
important for separating inputs and maintaining network stability.
A simplified model of the basal forebrain provided an extrinsic theta rhythm for the neural simulation.
The function of the simulated basal forebrain area was to gate input into the hippocampus and keep
activity levels stable. The BF area had a rhythmic activity over 13 simulation cycles:

BF(t) = theta(tmod13) 3)

where theta = {0.01,0.165, 0.33, 0.495, 0.66, 0.825, 1.00, 0.825, 0.66, 0.495, 0.33,0.165,0.01 }. BF
projected to all hippocampal areas with inhibitory connections (BF—ECyy, ECoyr, DG, CA3, CAl).
This theta rhythm was spread over 13 simulation cycles in order to ensure that the smoothness of the
discretized sine wave and also to allow sufficient time for new input to propagate through the network.
Owing to computational limitations, the duration of the cycle was not comparable to that of real nervous
systems. The level of inhibition, which was adaptive, kept the activity in hippocampal regions within
specific ranges:

Asfr(t) = (s, (t) — tgt,)
BF,(t) = BF(t) + sf;(t)

where r denotes the region (i.e. ECry, ECoyr, DG, CA3, CAl), sf.(t) is the scale factor at time
t, sy(t) is the percentage of active neuronal units in region r at time ¢, tg¢, is the desired percentage of

active units in area r (EC;n=10%, ECoyr=10%, DG=20%, CA3=5%, and CAI=10%), and BF (1) is
the pre-synaptic neuronal unit activity for a connection from BF to hippocampus region r.

4)

2.4 Action selection

Activity in the simulated value system (Area S, Figure 4) signals the occurrence of salient sensory events
and this activity contributes to the modulation of value-dependent connection strengths in synaptic path-
ways (CAI—S and CAI—-Mpgpg). The projection from our simulated CA/ to the value and goal de-
cision areas is consistent with the connectivity between CA1 and nucleus accumbens and frontal ar-
eas (15, 16). Initially, S is activated by the hidden platform IR detector (RT—S), causing potentiation of
value-dependent connections. S is also activated by collision with the arena walls (R~ — ), causing
depression of value-dependent connections. After experience, the value system could be activated by
CAl. The magnitude of potentiation or depression is based on a neural implementation of a temporal
difference (TD) learning rule (/7, 18). The TD rule applied in this model is:

RTY(t)-S({t—-71), Rt >0
TD(t)=4 S{t—7)— R (t), R~ >0 (5)
S(t)—S({t—7), otherwise,




where S(t) is the average activity of the value system at time #, 7 is one theta cycle (13 simulation
cycles), R™ is positive reward and equal to 1 if the BBD is over the hidden platform. The basic idea
of the temporal difference rule is that learning is based on the difference between temporally successive
predictions of rewards. The goal of learning is to make the learner’s current prediction of expected reward
match more closely the actual expected reward at the next time interval ( 7). If the expected reward value
increases over 7, TD is positive and affected synaptic connections are potentiated, and if the change in
value decreases, TD is negative and affected synaptic connections are depressed. Further details on how
the temporal difference is applied to individual synaptic connections are given in the Neuronal Dynamics
section below.

Darwin X selected a new heading every three theta cycles (39 simulation cycles). The device stopped
moving forward, turned 60° counterclockwise, waited for three seconds, then turned clockwise 60°,
waited for three seconds, and finally turned clockwise another 60°, and waited three seconds. The
average activity of M pg on each heading was calculated during the wait periods. A softmax algorithm
was used to create a probability distribution for choosing a new heading:

exp (40Mpy pG(newhdg))

> exp (40Mypa(h))
he{hdg—90, hdg+90}

p(newhdg) = (6)

where newhdg is a possible new heading for Darwin X, My pc(newhdg) is the average activity of
M pg at a possible new heading, idg is the current heading, and % has three positions (current heading,
current less 60° , and current plus 60°).

3 Neuronal Dynamics and Synaptic Plasticity

Here we describe the algorithmic details of the neural simulation that are common to both Darwin VII
and Darwin X.

A neuronal unit is simulated by a mean firing rate model, in which the mean firing rate variable
of each unit corresponds to the average activity of a group of roughly 100 real neurons during a time
period of approximately 200 milliseconds. Synaptic connections between neural units, both within and
between neuronal areas, are set to be either voltage-independent or voltage-dependent, and either plastic
or non-plastic. Voltage-independent connections provide synaptic input regardless of post-synaptic state.
Voltage-dependent connections represent the contribution of receptor types (e.g. NMDA receptors) that
require post-synaptic depolarization to be activated.

The mean firing rate (s) of each neuronal unit ranges continuously from O (quiescent) to 1 (maximal
firing). The state of a neuronal unit is updated as a function of its current state and contributions from
voltage-independent and voltage-dependent inputs. The voltage-independent input to unit i from unit j
is:

AL () = cijs;(t) (7)

where s;(#) is the activity of unit j, and ¢;; is the connection strength from unit j to unit i. The
voltage-independent post-synaptic influence, POS TiVI , on unit i is calculated by summing over all the
inputs onto unit i:

10



M N
POSTY!(t) = o(POST (t = 1)) + (1 — ) (D> A (1)) )
=1 j=1
where M is the number of different anatomically defined connection types, N; is the number of
connections of type M projecting to unit i, and ¢ is the persistence of synaptic input.
The voltage-dependent input to unit i from unit j is:

vdep
AVP(t) = ®(POSTY ! (t))cijs;(t), where @ G
i (@) (POST; " (t))cijsj(t), where ®(z) r otherwise )

d
and o, “?

no effect.
The voltage-dependent post-synaptic influence on unit i, POSTZ-VD , is given by:

is a threshold for the post-synaptic activity below which voltage-dependent connections have

M N
POSTP(t) = p(POSTP(t = 1)) + (1 = 9)(}_ > ALP (1)) (10)
=1 j=1
The total post-synaptic influence on neuronal unit i is given by:
Nvyr Nvp
POST; =Y POST)(t)+ Y POSTYP (11)
j=1 k=1

although it should be noted that Darwin VII possessed no voltage-dependent connections and therefore,
for that model, that term was always zero.
The new activity of a neuronal unit ¢ is determined by the following activation function:

0 z<ol™
si(t+ 1) = ¢| tanh (g; POST; + w si(t)) |, where ¢(x) . otherévise (12)

where g; is a scaling constant and w is a persistence constant for a given neuronal unit.

Synaptic strengths are subject to modification according to a synaptic rule that depends on the pre-
and post-synaptic neuronal unit activities. Plastic synaptic connections are either value-independent
(ECin—DG,CA3,CAl; DG—CA3; CA3—CAI; CAl—-ECoyr) or value-dependent (CAI—S, CAI—M g pg).
Both of these rules are based on a modified BCM learning rule (/9), which has been shown to be equiva-
lent to spike-timing dependent plasticity under certain conditions (20). Synapses between neuronal units
with strongly correlated firing phases are potentiated and synapses between neuronal units with weakly
correlated phases are depressed; the magnitude of change is determined as well by pre- and post-synaptic
activities.

Value-independent synaptic changes in ¢;; are given by:

Acij(t—i— 1) :nsi(t) Sj(t) BCM(SZ) (13)

where s;(7) and s(1) are activities of post- and pre-synaptic units, respectively, and 7 is a fixed learn-
ing rate. The function BCM is implemented as a piecewise linear function, taking post-synaptic activity

11



as input, which is defined by a sliding threshold, 6, two inclinations (k1, k2) and a saturation parameter p
(p = 6 throughout):

—kis s <
BOM(s) ={ ki(s—0) f<s<9 (14)
%2 tanh p(s — 0) otherwise

N

The threshold is adjusted based on the post-synaptic activity:
Al = 0.25(s* — 0) (15)

Value-independent plasticity was subject to weight normalization to prevent unbounded potentiation:
Cij

Cij = 7[( 5
\/ P Clj

where c;; is a particular connection, and K is the total number of connections onto unit j.
The rule for value-dependent plasticity differs from the value-independent rule in that synaptic

(16)

change is governed by the pre-synaptic activity, post-synaptic activity, and temporal difference derived
from the value system. The synaptic change for Darwin VII value-dependent synaptic plasticity is given
by:

Acij(t + 1) = V(t)(n si(t) BOM(si) — €(ciz(t) — ¢i5(0))) (17)

and for Darwin X is given by:

Acij(t +1) = nsi(t) TD(t) BOM(s;) — e(cij(t) — ¢i5(0)) (18)

where € is a constant dictating how synaptic weights that are unpotentiated decay back towards their

original value.
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