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Executive Summary

NESSIE security report
(NESSIE Deliverable D20)

The NESSIE project is a three year project (2000-2003) that is funded by the Eu-
ropean Union’s Fifth Framework Programme. The main objective of the NESSIE
project is to put forward a portfolio of strong cryptographic primitives of various
types. An open call in March 2000 led to the submission of forty cryptographic
primitives to the NESSIE project. The NESSIE project is evaluating (with some
external assistance) these submitted primitives from both a security and per-
formance perspective. This document gives the collective view of the NESSIE
partners about the submissions from a security perspective.

The NESSIE evaluation process is an open process. Thus as part of the eval-
uation process, the NESSIE project welcomes comments about the submitted
primitives and the evaluation process, including this report. To facilitate the open
evaluation process, there are to be four NESSIE workshops. The first workshop
was dedicated to the presentation of the submitted primitives and the second
workshop was dedicated to early results concerning the primitives. The third
workshop was dedicated to new results and also to the discussion of version 1.0
of this report. The fourth NESSIE workshop takes place at the end of the project
and disseminates the results.

This document forms deliverable D20 of the NESSIE project. Version 1.0 was
published to be available for comments before the Third NESSIE Workshop and
version 2.0 is the final security report.

i



ii



Table of Contents

Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 NESSIE project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Security evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Evaluation criteria in NESSIE call . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Methodological issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 The submissions received by NESSIE . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Some mathematical notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Block Cipher — A Formal Definition . . . . . . . . . . . . . . . . . . 8
2.2 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The Block Cipher as a Pseudorandom Permutation . . . . . . 11
2.2.3 Classification of attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Assessment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Overview of the common designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Feistel ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Substitution-Permutation Networks (SPNs) . . . . . . . . . . . . . 27
2.3.3 Resistance against differential and linear cryptanalysis . . . 27
2.3.4 Mini-ciphers and reduced rounds . . . . . . . . . . . . . . . . . . . . . . 28
2.3.5 Simple as opposed to complicated designs . . . . . . . . . . . . . . 29
2.3.6 A separate key-schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.7 The use or otherwise of S-boxes . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.8 Ciphers which are developed from well-studied precursors 29
2.3.9 Making encryption and decryption identical . . . . . . . . . . . . 30
2.3.10 Hash functions as block ciphers . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.11 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.12 Block cipher primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 64-bit block ciphers considered during Phase II . . . . . . . . . . . . . . . . 32
2.4.1 IDEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



2.4.2 Khazad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 MISTY1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.4 SAFER++64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.5 Triple-DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 128-bit block ciphers considered during Phase II . . . . . . . . . . . . . . . 54
2.5.1 Camellia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.2 RC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5.3 AES (Rijndael) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.4 SAFER++128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.6 Large block ciphers considered during Phase II . . . . . . . . . . . . . . . . 72
2.6.1 RC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.2 AES Variant (Rijndael-256) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.3 SHACAL-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.6.4 SHACAL-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.7 64-bit block ciphers not selected for Phase II . . . . . . . . . . . . . . . . . . 77
2.7.1 CS-cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.7.2 Hierocrypt-L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7.3 Nimbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.7.4 Nush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.8 128-bit block ciphers not selected for Phase II . . . . . . . . . . . . . . . . . 82
2.8.1 Anubis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.8.2 Grand Cru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.8.3 Hierocrypt-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.8.4 Noekeon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.8.5 Nush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8.6 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8.7 SC2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.9 Comparison of studied block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.9.1 64-bit block ciphers considered during Phase II . . . . . . . . . . 88
2.9.2 128-bit block ciphers considered during Phase II . . . . . . . . . 89
2.9.3 Large block ciphers considered during Phase II . . . . . . . . . . 89
2.9.4 64-bit block ciphers not selected for Phase II . . . . . . . . . . . . 89
2.9.5 128-bit block ciphers not selected for Phase II . . . . . . . . . . . 89

3. Stream ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.2 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.1 Classification of attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.2 Assessment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Overview of the common designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3.1 Stream ciphers based on feedback shift registers . . . . . . . . . 108
3.3.2 Stream ciphers based on block ciphers . . . . . . . . . . . . . . . . . 109
3.3.3 Pseudorandom number generators based on modular arith-

metic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.4 Other stream ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.5 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

iv



3.4 Stream cipher primitives considered during Phase II . . . . . . . . . . . 110
3.4.1 BMGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4.2 SNOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.3 SOBER-t16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.4 SOBER-t32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.5 Stream cipher primitives not selected for Phase II . . . . . . . . . . . . . 119
3.5.1 LEVIATHAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.2 LILI-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.5.3 RC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4. Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.2 Classification of attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.3 Assessment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Overview of the common designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.1 Hash functions based on block ciphers . . . . . . . . . . . . . . . . . 129
4.3.2 Hash functions based on modular arithmetic . . . . . . . . . . . . 130
4.3.3 Dedicated hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.4 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Hash functions considered during Phase II . . . . . . . . . . . . . . . . . . . . 132
4.4.1 Whirlpool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.2 SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4.3 SHA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5. Message authentication codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.1 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 Classification of attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.3 Assessment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Overview of the common designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.1 MACs based on block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.2 MACs based on hash functions . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.3 MACs based on universal hashing . . . . . . . . . . . . . . . . . . . . . 152
5.3.4 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 MAC primitives considered during Phase II . . . . . . . . . . . . . . . . . . . 153
5.4.1 Two-Track-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4.2 UMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4.3 CBC-constructions: EMAC and RMAC . . . . . . . . . . . . . . . . 160
5.4.4 HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Comparison of studied MAC primitives . . . . . . . . . . . . . . . . . . . . . . . 163

v



6. Asymmetric encryption schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.2 The Security Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.3 Trusted cryptographic problems . . . . . . . . . . . . . . . . . . . . . . . 172
6.2.4 The Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.2.5 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.2.6 Side-channel attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.7 Assessment criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 KEM-DEM cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.1 Hybrid encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.2 KEM Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.3 Key derivation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3.4 DEM Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.3.5 Hybrid Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3.6 Assessment criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.4 Asymmetric encryption primitives considered during Phase II . . . 186
6.4.1 ACE-KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.4.2 ECIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.4.3 ECIES-KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.4.4 EPOC-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.4.5 PSEC-KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.4.6 RSA-KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.5 Asymmetric encryption primitives not selected for Phase II . . . . . 201
6.5.1 EPOC-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.5.2 EPOC-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.5.3 PSEC-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.4 PSEC-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.5.5 RSA-OAEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7. Digital signature schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.2.1 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.2.2 Intractability assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.2.3 Proven security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.2.4 Proofs in an idealised world . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.2.5 Assessment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.3 Overview of the common designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.3.1 Schemes based on trapdoor one-way functions . . . . . . . . . . . 226
7.3.2 Schemes based on the Discrete Logarithm Problem . . . . . . 234
7.3.3 Schemes with security proven in the “real world” . . . . . . . . 248
7.3.4 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.4 Digital signature schemes considered during Phase II . . . . . . . . . . . 254
7.4.1 ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

vi



7.4.2 ESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7.4.3 SFLASHv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.4.4 QUARTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.4.5 RSA-PSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

7.5 Digital signature schemes not selected for Phase II . . . . . . . . . . . . . 265
7.5.1 ACE-Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.5.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.5.3 SFLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

8. Digital identification schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.1.1 Identification through Password . . . . . . . . . . . . . . . . . . . . . . . 269
8.1.2 Lamport’s Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.2 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.2.1 Passive Attacks and Interactive Proofs . . . . . . . . . . . . . . . . . 270
8.2.2 Trusted Hard Mathematical Problems . . . . . . . . . . . . . . . . . . 271
8.2.3 Protection against Active Attacks . . . . . . . . . . . . . . . . . . . . . 272
8.2.4 Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.2.5 Witness Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.2.6 Resettable Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . 278
8.2.7 Classification of Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.2.8 Assessment Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8.3 Overview of Common Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8.3.1 Interactive 3-round Identification Protocols . . . . . . . . . . . . . 280
8.3.2 Current standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.4 Digital identification schemes considered during Phase II . . . . . . . 281
8.4.1 Fiat-Shamir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.4.2 Schnorr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.4.3 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.4.4 GQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A. Side-channel attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.1 Passive Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A.1.1 Types of Information Leakage . . . . . . . . . . . . . . . . . . . . . . . . . 290
A.1.2 Simple Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 291
A.1.3 Differential Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . 293
A.1.4 Error Message Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
A.1.5 Consideration of Hash-function, MACs and Stream Ciphers295

A.2 Active Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
A.2.1 Fault Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
A.2.2 Chosen Modulus Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A.2.3 Preventing fault attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

vii



1. Introduction

1.1 NESSIE project

The NESSIE project is a three year project (2000-2002) that is funded by the Eu-
ropean Union’s Fifth Framework Programme. The main objective of the NESSIE
project is to put forward a portfolio of strong cryptographic primitives of various
types. Further details about the NESSIE project can be found at the NESSIE
website http://www.cryptonessie.org/.

The start of the NESSIE project was an open call [396] for the submission of
cryptographic primitives as well as for evaluation methodologies for these primi-
tives. This call includes a request for the submission of block ciphers (as for the
AES call), but also of other cryptographic primitives including hash functions,
stream ciphers, and digital signature algorithms. The call also asked for evalu-
ation methodologies for these primitives. The scope of the call was defined in
conjunction with the project industry board, and was published in March 2000.
This call resulted in forty submissions. The NESSIE project aims to assess these
submissions with the goal of producing a portfolio of cryptographic primitives
for use in different environments. The NESSIE project proposes to disseminate
the project results widely and to build consensus based on these results by using
the appropriate bodies: a project industry board, NESSIE workshops, the 5th
Framework programme, and various standardisation bodies.

The NESSIE project has been divided into two phases. In the first phase of
the security evaluation, these submissions were analysed by the NESSIE partners.
The NESSIE partners have also received external comments for some submissions.
The outcome of the first phase was a preliminary assessment of all submissions:
a security evaluation [399] and a performance evaluation [398]. This was used to
decide which of the submissions are to be considered in the second phase [397].
In the second phase, the remaining submissions were subject to more detailed
scrutiny to produce the portfolio. This report summarises all the security eval-
uation of the submissions and is the conclusion of the second phase of security
evaluation. The NESSIE project also compiles a performance evaluation of the
submissions. This security report together with the performance report form the
basis of the decision as to which primitives should be part of the NESSIE port-
folio.

The NESSIE evaluation process is an open process. Thus as part of the eval-
uation process, the NESSIE project welcomes comments about the submitted
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primitives and the evaluation process, including this report. To facilitate the open
evaluation process, there are to be four NESSIE workshops. The first NESSIE
workshop took place on 13-14 November 2000 at Katholieke Universiteit Leuven
(Belgium) in which the submitted primitives were presented. The second NESSIE
workshop took place on 12-13 September 2001 at Royal Holloway, University of
London (UK) in which early results concerning the primitives were presented. The
third NESSIE workshop took place on 6-7 November 2002 at Siemens AG, Mu-
nich (Germany) in which new results concerning the primitives were presented.
The fourth NESSIE workshop takes place on 26 February 2003 in Lund (Sweden)
and disseminates the results of the project.

1.2 Security evaluation methodology

The NESSIE project has attempted to define a high–level methodology to com-
pare in a fair and acceptable way the submitted primitives. This methodology
may evolve according to technical advances, remarks of the NESSIE members, In-
dustry Board or cryptographic experts, and with problems encountered. However
it should be noted that it is impossible to produce a definitive security methodol-
ogy. Cryptographic primitives with completely inadequate security can often be
identified. However, for other cryptographic primitives, the situation is nothing
like as clear-cut. There is neither an automatic method of assessing the security
of such a primitive nor a general consensus on the relative importance of differ-
ent security criteria. The few previous initiatives that have undertaken a similar
task to the NESSIE project, such as AES, have been more limited in scope and
have reached a subjective judgement by experts on the security of such primi-
tives. We first give the evaluation criteria specified in the NESSIE call [396] and
then a list of important issues that NESSIE has considered in making its security
evaluations of a submitted primitive. This list is extensive but not complete.

1.2.1 Evaluation criteria in NESSIE call

1. An attack should be at least as difficult as the generic attacks against the
type of primitive (exhaustive search, birthday attack etc.).

2. Primitives will be evaluated against the security claims of the submitter.
An attack requiring lower computing resources than claimed would usually
disqualify the submission.

3. Primitives will be evaluated within the stated environment. Thus, consid-
eration of vulnerability to side channel attacks (e.g. timing attacks, power
analysis) may be appropriate.

1.2.2 Methodological issues

Resistance to cryptanalysis. Clearly, any submission should be resistant at
the relevant security level to cryptanalytic attacks. Indeed, in the NESSIE call
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for submissions [396], it is stressed that failure to be resistant to such an attack
would usually disqualify a submission. However, when assessing the relevance of a
cryptanalytic attack, other factors such as the volume and type of data required
to mount the attack will be considered.

Design philosophy and transparency. An important consideration when as-
sessing the security of a cryptographic primitive is the design philosophy and
transparency of the design of that primitive. It is easier to have confidence in the
assessment of the security of a primitive if the design is clear and straightforward,
and is based on well-understood mathematical and cryptographic principles. This
is particularly relevant when making relative comparisons between primitives (see
below).

Strength of modified primitives. One common technique used to assess the
strength of a primitive is to assess a modified primitive, for example by changing
or removing a component or reducing the number of rounds. Conclusions about
the original primitive based on an assessment of the modified primitives have to
be carefully considered as the inference may or may not be straightforward.

Relative security. When assessing primitives designed to operate to the same
security level in similar environments, it is natural to wish to compare their
security. However, care has to be taken when making such comparisons. One
measure that has been suggested for primitives based on an iterative algorithm
is the security margin, which measures the gap between the maximum number of
broken rounds and the total number of rounds, but there is no general consensus
about its definition or use. Furthermore, whilst the NESSIE project tries to ensure
that each submitted primitive receives equivalent cryptanalysis, it is the case that
some designs are easier to analyse than others (as discussed above). However, it
is felt that there should be some security margin to protect against cryptanalytic
advances.

Cryptographic environment. In certain cryptographic environments, a cryp-
tographic primitive may have been designed to possess intrinsic security advan-
tages or disadvantages. An example would be a primitive that is resistant to
power or timing attacks when implemented on a smart card. Such properties
would be considered when assessing the security of a primitive.

Statistical testing. The NESSIE project is carrying out statistical testing of
submitted primitives (where relevant). The purpose of this statistical testing
is to highlight anomalies in the operation of the primitive that may indicate
cryptographic weakness and require further investigation.

1.3 Structure of the Report

This report is split into distinct chapters for distinct categories of primitives. For
a reader with some knowledge in cryptology, each chapter is intended to be self-
contained. However, this report is not a course on cryptology; the reader should
refer to textbooks [498, 366, 222, 226]. Each chapter has the following sections:
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1. Introduction.
The introduction defines what is the category of primitives that is considered.

2. Security requirements.
The security model and common attacks are explained. The assessment pro-
cess by NESSIE is described.

3. Overview of the common designs.
Common designs are described, and how the primitives submitted to NESSIE
fit in these. Current standards are reviewed.

4. Analysis of all primitives submitted to NESSIE.
The analysis of each primitive submitted to NESSIE is summarised. Primi-
tives that were not selected for Phase II have a shorter review than the ones
that were studied during the whole NESSIE process.

5. Conclusion.
Recommendations are made for a choice of primitives that should be part of
NESSIE portfolio.

The categories of primitives considered in this report are slightly different from
the categories defined in the call. This is more consistent with the list of what
has been submitted to NESSIE and with the way these primitives were analysed.
They are:

Ch. 2. Block ciphers
Ch. 3. Stream ciphers and pseudo-random numbers generators
Ch. 4. Hash functions
Ch. 5. Message authentication codes
Ch. 6. Asymmetric encryption
Ch. 7. Digital signature schemes
Ch. 8. Digital identification schemes

An appendix on side-channel attacks and the bibliography conclude this report.

1.4 The submissions received by NESSIE

– Block ciphers
– Anubis. [29]
– Camellia. [19]
– CS-cipher. [198]
– Grand Cru. [100]
– Hierocrypt. [412] – Hierocrypt-L1 and Hierocrypt-3
– IDEA. [325]
– Khazad. [30]
– MISTY1. [355]
– Nimbus. [344]
– Noekeon. [149]
– Nush. [329]
– Q. [360]
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– RC6. [273]
– Safer++. [353]
– SC2000. [475]
– SHACAL. [237] – SHACAL-1 and SHACAL-2.

– Stream ciphers and pseudo-random numbers generators
– BMGL. [241]
– SNOW. [180]
– SOBER. [245] – SOBER-t16 and SOBER-t32
– LEVIATHAN. [361]
– LILI-128. [154]

– Hash functions
– Whirlpool. [31]

– Message authentication codes
– UMAC. [317]
– Two-Track-MAC. [507]

– Asymmetric encryption
– ACE-KEM. [469] – Upgrade of ACE-Encrypt
– EPOC. [203] – EPOC-1, EPOC-2 and EPOC-3
– ECIES. [269]
– PSEC. [202] – PSEC-1, PSEC-2, PSEC-3 and PSEC-KEM
– RSA-OAEP. [274] – Revised to RSA-KEM [489]

– Digital signature schemes
– ACE Sign. [469]
– ECDSA. [268]
– ESIGN. [207]
– FLASH family. [428] – FLASH, SFLASH and SFLASHv2
– QUARTZ. [136]
– RSA-PSS. [275]

– Digital identification schemes
– GPS. [437]

– Evaluation methodologies
– General Next Bit Predictor [249]

This evaluation methodology appeared to be useless [167], it will not be
further mentioned in this report.
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1.5 Some mathematical notations

Z the set of integers
Z/nZ the set of integers modulo n
(Z/nZ)∗ the non-zero elements of Z/nZ
(Z/nZ)× the invertible elements of Z/nZ,

which form a multiplicative group with φ(n) elements
QRn the squares in (Z/nZ)× (quadratic residues)
Fq the finite field with q elements
(Fp)n the n-dimensional vector space on Fp
〈G〉 the cyclic group generated by G
1λ a bitstring of length λ of all 1, used as a security parameter

NB: if p is prime then Fp = Z/pZ and (Z/pZ)∗ = (Z/pZ)×.
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2. Block ciphers

2.1 Introduction

Block cipher encryption provides confidentiality by transforming a plaintext mes-
sage into a secure ciphertext message, where the precise function implemented by
the block cipher is determined by a secret key. This secret key, or series of keys,
is only known by legitimate users of the block cipher. Whereas a stream cipher
contains a memory, embodied in its current state, a block cipher is memoryless
outside its current block and therefore has no current state. A mode of operation
of a block cipher partitions a plaintext message into a series of blocks which are
then encrypted one block at a time, although a block cipher can be used as a
component in a stream cipher, and also for pseudorandom number generators,
MACs, hash functions, and signature schemes. Block cipher encryption is the
most well-known form of symmetric-key encryption — the word symmetric im-
plies that both transmitter and receiver of the ciphertext have knowledge of the
secret key. Block ciphers have been around in one form or another for a very long
time, for instance the substitution cipher, and the transposition cipher. However,
many of the ideas that permeate modern block cipher design were inspired by
the work of Shannon [473] around 1949. He first elucidated the concepts of con-
fusion and diffusion that are still primary design criteria for any state-of-the-art
block cipher. The rate at which cryptographic and information theory have de-
veloped has accelerated over the last thirty years or so, with the result that many
rules for block cipher design are now well-accepted amongst the majority of cryp-
tographers [297]. However, it remains the case that no practical block cipher is
provably secure and, consequently, new design criteria are still being discovered,
these often as a response to emerging novel attacks on block ciphers. Typically,
a block cipher design is proposed according to well-accepted and well-founded
rules, and this inevitably forces the cryptanalyst to attempt to attack the cipher
in some unforeseen way. These unforeseen attacks, if successful, lead in turn to
the extending of the canon of design criteria — and so the discipline progresses.
It should therefore come as no surprise that, during the three-year lifespan of
NESSIE, new designs and new attack methods have been proposed, and new
questions raised. To some extent, some of the block cipher designs submitted
to NESSIE have been influenced by the knowledge gained from the search for
the new Advanced Encryption Standard (AES), immediately prior to NESSIE.

0 Coordinator for this chapter: UiB — Matthew Parker
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In particular the inclusion of high-diffusion ciphers in both AES and NESSIE
has encouraged the development of algebraic and non-statistical attacks on block
ciphers. It should be emphasised that most of the block ciphers submitted to the
NESSIE project appear to be secure, acceptably efficient, and practical for use in
real systems. The criteria for selection for the NESSIE portfolio therefore rests,
to some extent, on secondary considerations, in particular on the identification
of potential weaknesses and expected performance on different platforms. In this
chapter, attacks on the various block ciphers submitted will be described, and
potential security weaknesses of the candidates identified.

It should also be noted that there are four usual modes of operation for
a block cipher. The most common mode is called Electronic Codebook Mode
(ECB) which takes disjoint plaintexts and outputs disjoint ciphertexts. There
is also Cipher Block Chaining (CBC) mode, where the encryption of a block
depends on the encryptions of previous blocks. Then there is Cipher Feedback
(CFB) mode which is the first of the two stream cipher modes, where one m-
bit character at a time is encrypted. Finally there is Output Feedback (OFB)
mode where, in contrast to CFB mode, the stream bits are not dependent on the
previous plaintexts, i.e. only the stream bits are fed back, not the ciphertext as
in CFB mode. NIST has now published a new standard for block cipher modes
[385], and Counter Mode (CTR) has been added.

2.1.1 Block Cipher — A Formal Definition

Before discussing security aspects we first give a more precise definition of a block
cipher [226]. A block cipher is a function E : {0, 1}K × {0, 1}N → {0, 1}N that
takes two inputs, a K-bit key k and an N -bit plaintext P , to return an N -bit
ciphertext C = E(k, P ). For any block cipher, and any key k, the function Ek
is a permutation on {0, 1}N . This means that it is a bijection, i.e. a one-to-one
function of {0, 1}N to {0, 1}N . Accordingly, it has an inverse, E−1k . Both the
cipher and its inverse E−1 should be easily computable, meaning that given k, P
we can compute E(k, P ), and given k,C we can compute E−1(k,C).

2.2 Security requirements

Block cipher encryption is a method to transform a plaintext message of block-
length N bits by encrypting it to a ciphertext message of blocklength N bits,
where the encryption operation is determined by a secret key string of length K
bits, where the key is often chosen uniformly at random. The inverse operation,
block cipher decryption, takes the N -bit ciphertext and decrypts it back to the
N -bit plaintext using the same secret key string of length K bits. The aim is
to make it practically impossible to retrieve the plaintext from the ciphertext
without knowledge of the K-bit secret key. Decryption is only possible if the en-
cryption function is invertible (i.e. if it is a bijection) and this restricts the choice
of possible N -bit block ciphers to one of (2N )! block ciphers. However, parame-
terisation by a secret key of length K bits further restricts the set of block ciphers
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realised by a particular design to a maximum of 2K block ciphers (which, for any
reasonable N and K, is an infinitesimally small fraction of the complete space of
(2N )! block ciphers). The problem of block cipher design is to determine which set
of 2K block ciphers to choose such that, for an unknown fixed key, it is virtually
impossible to say anything about the ciphertext resulting from a known or cho-
sen plaintext, or to say anything about the fixed key, given prior knowledge of a
few plaintext/ciphertext pairs. Note that, if the plaintext contains exploitable re-
dundancy, then one may be able to attack the cipher using ciphertext only. Any
effective block cipher scheme must be realised efficiently in time and space, with
as little implementation cost as possible. The practical trade-off is therefore to
design a block cipher which is both sufficiently secure, and satisfactorily efficient
in terms of hardware/software space and time resources. It should be empha-
sised that the complete design of the block cipher, along with all ciphertexts,
is considered public knowledge, with only the secret key remaining unknown to
attackers of the system. Clearly, knowledge of the secret key implies knowledge
of the plaintexts that were encrypted using that secret key. A block cipher with
a secret key is considered perfect if, for all plaintexts, P , and ciphertexts, C, it
holds that Pr(P ) =Pr(P |C) [473]. If, for a fixed K-bit key, an N -bit block cipher
is used to encrypt bKN c plaintexts, then the cipher can always be chosen to be
the one-time pad so that, in this special case, the encryption is provably secure
and the block cipher perfect — a one-time pad is a symmetric key block cipher
where K key bits are used, only once, to encrypt K plaintext bits, where the
K corresponding ciphertext bits are the XOR of the plaintext bits with the key
bits. In such a situation the ciphertext and plaintext are statistically indepen-
dent. However, in most situations the one-time pad is impractical as far too many
secret keys must be used. Therefore it is highly desirable to securely encrypt T
plaintexts using the same, fixed K-bit secret key, where T À bKN c. Most modern
block ciphers seek to maximise T , whilst still achieving an acceptable security,
via a combination of confusion, which makes the relationship between key and
ciphertext as complicated as possible, and diffusion which seeks to eliminate any
redundancy in the plaintext. Diffusion also makes it difficult for any attacker to
partially approximate the cipher.

Theoretically the ideal block cipher, from a security viewpoint, would involve
one very large, well-chosen N -bit Substitution Box (S-Box), keyed by K key
bits and, ideally, it would be impossible to decompose this S-box into smaller
sub-units. However this immediately implies a huge implementation complexity,
so any practical block cipher will, instead, combine relatively small sub-units to
confuse (e.g. S-boxes) and diffuse (e.g. linear transformation layers) the plain-
text. Moreover, these sub-units will be applied iteratively as keyed rounds, pa-
rameterised by sub-keys which are derived from the master K-bit key. This de-
composition into practical sub-units constitutes a trade-off between security and
acceptable complexity. All the block ciphers submitted to NESSIE are iterated
over multiple rounds, and all of them utilise a key-schedule to derive round keys
from a master key. It is this decomposition into sub-processes that provides the
cryptanalyst with ammunition for an attack. In spite of the above compromises,
it is an accepted design principle that encryption using a block cipher, selected
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via a randomly-chosen key, should look like encryption by a randomly-chosen
invertible function over N bits.

2.2.1 Security model

It is the nature of scientific discovery that the initial models are, to a large extent,
heuristic — intended security against well-known attacks. These heuristics later
give way to formal proof of security versus resources needed. What is certain is
that, with respect to practical block cipher security, very little can (yet) be proved
to any high-degree of accuracy — hence the existence of NESSIE. However, there
exist a number of accepted security models which can tell us something about
the block cipher under consideration:

– Unconditional Security (Perfect Secrecy). Shannon assumed that an ad-
versary has unlimited computational resources. In his model, secure encryption
only exists if the size of the key is as large as the number of secret bits to be
exchanged remotely using the encryption system. Perfect secrecy is possible
only if no more than bKN c plaintexts are enciphered using a fixed key (e.g. the
one-time pad), so unconditional security is not a useful model for practical
block ciphers.

– Security Against Polynomial Attack. In contrast to Uncondition Secu-
rity, modern cryptography assumes the adversary’s computation is resource-
bounded. Specifically, it is assumed that the adversary is a probabilistic al-
gorithm which runs in polynomial time, and security is claimed with respect
to the feasibility of breaking the cryptosystem. This model arises out of com-
plexity theory considerations where adversaries are assumed to possess only
polynomial computational resources — polynomial in the size of the input to
the cipher in bits. The model typically conducts worst-case and asymptotic
analyses to determine whether polynomial attacks on a cipher exist. Even if
they do exist, it is not guaranteed that such attacks are practical. This secu-
rity model tends to provide an understanding as to the type (class) of problem
embodied by a block cipher, without providing exact figures.

– “Provable” Security. Typically this can mean one of two things. Firstly, if it
can be shown that breaking a block cipher is as difficult as solving some well-
known hard problem (e.g. discrete log or factoring) then the cipher is considered
provably secure. This is, of course, misleading as the hard problem on which it
is based is usually not provably hard. This relates to a very fundamental open
question in computer science as to whether these hard problems are in P or in
NP. In fact, provable security requires a proof that P 6= NP, and the existence
of one-way functions which are hard on the average, but which can be solved
quickly given some extra information [224] (pages 27-28). Note that these are
asymptotic complexity measures — one is assessing the level of complexity
as the input size, in bits, asymptotes to infinity. The strategy of mapping
cryptosystems to hard problems is very useful for practical analysis of the
cipher, although this model is more often applied to public-key cryptosystems.
Secondly, a block cipher may be shown to be provably secure against a known
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sub-class of attacks. One example of this is the provable security against linear
and differential cryptanalysis used, for example, by the designers of MISTY1.
It should be emphasised however that this obviously does not mean that the
cipher is secure against all attacks.

– Practical Security. In this model a block cipher is considered computation-
ally secure if the best-known attack requires too much resource by an accept-
able margin. This is a very practical model as one can test the cipher with
different known attacks, probing for weakness, and then give an assessment
of the cipher’s strength against such attacks in terms of time/space resources
needed. This model tends to provide the most answers, and most of the anal-
ysis in NESSIE was of this type. However, it says nothing about the security
level with respect to yet unknown attacks.

– Historical Security. It is quite useful to assess the security level of a block
cipher according to how much cryptanalytic attention the cipher has attracted
over the years. For example, both Cipher A and Cipher B could be consid-
ered excellent cipher designs. But Cipher A may be ten years older and has
therefore been under scrutiny for many more years than Cipher B without any
serious security flaws found in it. This inevitably inspires a certain confidence
in the older cipher and suggests that the time-scale over which projects such
as NESSIE and AES operate is only sufficient to draw preliminary conclusions
as to the security of a completely new cipher. However, it should also be noted
that the effort spent on breaking a cipher cannot always be measured reliably
from the time passed.

2.2.2 The Block Cipher as a Pseudorandom Permutation

It is natural to consider a block cipher as a set of permutations. In this context
we can consider a distinguisher which differentiates between a randomly-selected
pseudorandom permutation and a permutation which is randomly selected from
the set of permutations generated by the block cipher. This section investigates
this approach in more detail, considering the asymptotic limit as the size of
the input and output to and from the block cipher approaches infinity. (We
here summarise and paraphrase some of the definitions given by Goldwasser and
Bellare [226] and others [222].)
Definition: Let UN denote a random variable uniformly distributed over
{0, 1}N . A pseudorandom function is one of an infinite set of functions with
increasing input sizes, {f(UN ,K)}, N = 1, . . . ,∞, with the property that the
input-output behaviour of a random instance of the set is computationally indis-
tinguishable from that of a random function. Pseudorandom permutations can be
described similarly.

A block cipher, E(k, P ), can be considered as a set of 2K permutations on
the message space, each instance, Ek(P ), of the set being a distinct permutation
and obtained by fixing the key k. In this setting one can model the following
attacks on the cipher. Let g be a function drawn at random from the set of all
N -bit permutations, as N →∞. The adversary gets an oracle for g, and can also
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get an oracle for g−1, these relating to chosen plaintext and chosen ciphertext
attacks, respectively.
Definition: A one-way function, f : {0, 1}∗ → {0, 1}∗, is a function which
is easy to compute but hard to invert. By easy we mean that f can be computed
by a deterministic polynomial time algorithm, and by hard we mean that any
probabilistic polynomial time algorithm attempting to invert f will succeed with
negligible average probability (where the average probability is taken over the
elements in the domain of the function f). More formally, for every probabilistic
polynomial time algorithm, A′, every polynomial p(·), and all sufficiently large
N ’s,

Pr(A′(f(UN ), 1N ) ∈ f−1f(UN )) <
1

p(N)

where UN denotes a random variable uniformly distributed over {0, 1}N , and 1N

is some auxiliary input to the algorithm A′.
The block cipher can be considered secure if it can be shown to be equivalent,

asymptotically, to a set of pseudorandom functions or pseudorandom permuta-
tions. In other words, we cannot distinguish the output ciphertext bits from ran-
dom output. This allows us to relate block ciphers to one-way functions as follows.
Given an N -bit plaintext message, P , and a K-bit key, k, the block cipher func-
tion, E, produces an N -bit ciphertext output message, C, where C = E(k, P ).
Then, for P fixed to p, we can define f such that f(k) = E(k, P = p). Luby and
Rackoff show how to build a pseudorandom permutation from a pseudorandom
function using a few rounds of a Feistel construction [338], and in [339] they prove
that, asymptotically, f is a one-way function on the assumption that E is a set
of pseudorandom functions. Therefore, retrieving the key, k, using k = f−1, is
proven to be hard. However, the notion of a one-way function is weaker than the
notion of a secure block cipher. For example, a one-way function may leak half
of its input and still be one-way (non-invertible). This demonstrates the need to
introduce the idea of ’hard-core’ bits of a function. Given an efficient algorithm
to predict the value of a hard-core bit, one can construct an algorithm inverting
the one-way function. For a secure block cipher all bits have to be hard-core bits.

Distinguishing Attacks. By viewing a block cipher as a set of permutations
we can develop a distinguisher which compares and differentiates between the
block cipher and the ‘ideal’ set of random permutations. This is done as follows.

Let g be a function drawn at random from the set, D, of all N -bit permuta-
tions. Let g′ be a function drawn at random from the set of N -bit permutations,
E(k, P ). In practice this is achieved by drawing a K-bit key, k, at random from
the set of all 2K K-bit keys. The adversary, A, is a given a series of N -bit per-
mutations, g′′, and its job is to determine whether its series of g′′ are a series of
permutations, g, or a series of permutations, g′. To achieve this the adversary
uses an algorithm Ag

′′

that takes a function, g′′, as input, and returns a bit, d.
The advantage of the adversary who uses algorithm Ag

′′

is given by,

advantageE,A = |Pr(Ag = 1)− Pr(Ag
′

= 1)|
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and this advantage measures the ability of algorithm Ag
′′

to distinguish between
a function g taken at random from D and a function g′ taken at random from the
set of N -bit permutations, E(k, P ). If we now consider the set of all algorithms
{Ag′′}t,q,µ having time complexity at most t, making at most q oracle queries,
such that the sum of the lengths of these queries is at most µ bits, then we can
define the pseudorandom permutation advantage (prpadvantage) of E as follows,

prpadvantageE(t, q, µ) = max
{Ag′′}t,q,µ

{advantageE,A}

where the maximum is over the set {Ag′′}t,q,µ. We can say that a set, E(k, P ),
which represents a block cipher, is a secure pseudorandom function if
prpadvantageE(t, q, µ) is small for practical values of the resource parameters,
t, q, µ.

In this section we have defined the security of a block cipher in terms of a
secure pseudorandom function. The scenario is that of a chosen-plaintext attack
where the attacker is assumed to have control over the input plaintext, P . A
similar scenario can be developed for a chosen-ciphertext attack, and in [226],
the chosen-ciphertext attack is also assumed to give the adversary more power:
not only can it query g, but it can directly query g−1. In the above we have
assumed that an ideal block cipher is a set of permutations (more generally, func-
tions) with the property that the input-output behaviour of a random instance
of the family is, asymptotically, computationally indistinguishable from that of a
random permutation (function). This is a much stronger assumption than just
assuming the block cipher is secure against key recovery. However, distinguishing
attacks typically use a distinguisher similar to that defined above to recover a
subset of key bits. But there could exist better attacks that break the cipher
as a pseudorandom permutation (function) without recovering the key, although
no such attacks are currently known. Conversely, [226] proves that any function
family that is insecure under key-recovery is also insecure as a pseudorandom
permutation (function).

2.2.3 Classification of attacks

As stated previously, most of the analysis done by NESSIE falls into the Practical
Security model. The success-level of an attack is usually measured according to
time, memory, and data complexities needed:

– Time complexity needed for an attack on a block cipher is the number of
steps required for the attack algorithm. This often reduces to the number
of decryptions. However this unit is not always appropriate, for instance the
Gaussian elimination used to solve a system of equations describing the cipher
will use very different units of time complexity.

– Memory complexity needed for an attack on a block cipher is typically mea-
sured in terms of the amount of storage required for the attack algorithm.

– Data complexity is the number of texts the attacker gets from the encryption
oracle.
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Typically, Memory is much more expensive than Time, for example an attack
that requires 264 Memory is very expensive in comparison to 264 steps of an
algorithm. Data is also considered expensive and should be minimised. Various
tradeoffs are possible, and the complexity of the attack is usually taken as the
max(Time,Data). For more practical attacks it may be useful to trade Data
for Time. An attack is considered successful in theory, and the block cipher
considered broken if the Time complexity required is of order < 2K , where K is
the number of key bits used to parameterise the cipher. In this case one says that
the block cipher is broken if the K key bits can be guessed in time faster than
exhaustive key search, and partially broken if some of the plaintext bits can be
discovered in time faster than exhaustive key search. Also, for a fixed key, the
complete cipher can be characterised if all 2N different plaintexts are encrypted.
This puts an upper bound on the Data Complexity required to mount an attack
to 2N . A block cipher is considered secure if no attack requires both Time and
Data complexity significantly less than 2K and 2N , respectively. Very often it
is difficult to mount an attack on the complete R-round cipher so many (most)
attacks break reduced-round versions of the cipher. Therefore another way to
assess the security of a cipher is to quote the maximum number of rounds of
the cipher that have currently been broken. It is the aim of the block cipher
designer to make the cipher look as much like a random bijection as possible.
Therefore any process which can, for a fixed key, distinguish the cipher from
a random cipher, constitutes an attack on the cipher. Such attacks are called
Distinguishing attacks, which encompass many of the most effective attacks used
today.

The types of attack that can be performed depend on what resources are
available to the adversary. They can be classified as follows:

– Ciphertext-only attacks. The adversary has access to a set of ciphertexts and
also knows something about the nature of the plaintext.

– Known plaintext attack. The adversary has access to a set of plaintext-
ciphertext pairs.

– Chosen plaintext attack. The adversary is able to choose a series of plaintexts
and has access to the resultant ciphertexts.

– Adaptively chosen plaintext attack. The adversary is able to choose a series of
plaintexts, where the choice of each new plaintext is influenced by the cipher-
texts obtained from the previous plaintexts.

– Chosen ciphertext attacks. Similar to chosen and adaptively chosen plaintext
attacks, but with the roles of plaintext and ciphertext reversed.

– Combined chosen plaintext/ciphertext attacks. In this case the adversary is
able to choose both plaintexts and ciphertexts. The Boomerang attack is an
example of such an attack.

The chosen text attacks are always the most powerful attacks but, of course, are
often less realistic in a practical context. Ideally the designer or analyst should
try to prove that the cipher is secure against adaptively chosen attacks.

Because of the birthday attack on, for instance, Cipher Block Chaining, and
Accumulated Block Chaining modes, it is recommended that a single key is used
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to encrypt at most 2N/2 ciphertexts [297]. This is because one only requires about
2N/2 ciphertexts to obtain a matching pair of ciphertexts with probability > 1

2 .
It should be noted that this restriction is independent of key size.

Attacks typically fall into two main groups, firstly those that are statistical
in nature, and secondly those that are largely non-statistical. However we do not
distinguish these two types of attacks here as most attack strategies that work
with probability one can also be envisaged in a scenario with probability strictly
less than one. We now briefly describe the best-known attacks.

2.2.3.1 Exhaustive Key Search

Applicable to all ciphers, the attack only needs a few known plaintext-ciphertext
pairs. The adversary tries all keys one by one to check whether the given plaintext
encrypts to the given ciphertext. The attack requires only approximately dKN e
pairs to determine the key.

2.2.3.2 Differential Cryptanalysis

This chosen plaintext attack was first applied to DES by Biham and Shamir
[69]. It was the first attack which could (theoretically) recover DES keys in time
less than exhaustive search. Typically, pairs of chosen plaintexts, (P0, P1) with
a fixed difference, ∆ = P0 − P1 are chosen, where the difference operation “−”
is usually chosen to be the group operation that is used to add the fixed round
key. Thus ∆ = (P0 + k) − (P1 + k), so the important point is that the differ-
ence, ∆, is independent of the key, k, chosen. Moreover, the difference is chosen
so that with some acceptably high probability, this difference, ∆, propagates to
an output difference ∆′ at the output of the round. If one can propagate differ-
ences through all rounds with sufficiently high probability, then this allows one
to devise a key-invariant approximation to the core (central) rounds of the cipher
which can establish a non-random difference relationship between bits specified
by the mask, I, near to the input, and bits specified by the mask, O, near to
the output of the cipher. This in turn enables the adversary to guess round key
bits of the first and last round, and compute the differences at bits specified by I
and O according to this guess. If the guess is correct then the differences at pair
(I,O) will agree with the guess for the differences at (I,O) with probability p. If
p is large enough then choosing enough plaintext-ciphertext pairs will enable the
adversary to determine whether the guess was correct. In this way the adversary
can determine the round key bits of outer layers of the cipher and work inwards.
The processing complexity of a differential attack is approximately c

p , where c is a
small constant. For many block ciphers the round key is added using XOR. In this
case the notion of difference between plaintexts also uses XOR, thereby ensuring
key-independence for the approximation. However, other notions of difference can
also be useful. One should distinguish between a characteristic and a differential.
Whereas a characteristic specifies one particular evolution of differences through
the cipher, a differential takes into account all possible paths through the cipher
that would yield the same output difference and sums their combined probabil-
ities [326]. Therefore Differential Cryptanalysis using differentials as opposed to
just characteristics always achieves higher probabilities. However, the gain is not
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always significant. Maximum Average Differential Probability is also sometimes
used to assess the goodness of Differential Cryptanalysis. Differential Cryptanal-
ysis typically uses the concept of a Markov Cipher [326] where the characteristic
probability is independent of the actual round inputs and is computed over all
possible choices of the round key. Moreover, it was shown by Lai et al. [326] that,
if the round keys are independent, then so are the characteristic probabilities, and
this allows these probabilities to be combined relatively simply. However, typi-
cally the attacker gets multiple encryptions under the same key, which means the
round keys may appear dependent. Fortunately the Markov assumption can be
shown to hold approximately for virtually all keys [321].

2.2.3.3 Truncated Differential Cryptanalysis

Instead of trying to propagate a complete difference through every cipher round,
one can aim to propagate only part of the difference — hence truncated differ-
entials [294]. The advantage here is that the partial difference propagations may
occur with much higher probability than full difference propagations.

2.2.3.4 Impossible Differential Cryptanalysis

Here the aim is to find a differential that occurs with zero probability over a
number of rounds of the cipher. Then by key guessing outside the core approx-
imated rounds one can rule out certain key guesses if they allow the forbidden
differential to occur. Such attacks have been applied by Knudsen [296], and by
Biham et al. [57]. One particularly useful fact in [296, 57] is that any Feistel ci-
pher with bijective round functions has an impossible differential after 5 rounds
(see Sect. 2.3.1 for a definition of Feistel).

2.2.3.5 Higher Order Differential Cryptanalysis

This is a recursive extension of differential cryptanalysis where one looks to es-
tablish probabilistic nested differences across rounds of the cipher [323]. Thus an
s-th order differential requires sets of 2s chosen plaintexts with fixed pairwise dif-
ference between members of the set [294, 322]. It follows that an (s+1)-th order
differential of a function of nonlinear order d is zero. This attack was successfully
applied by Nyberg and Knudsen against the cipher of [407] which is provably
secure against differential attack. The boomerang attack of Wagner [514] can
be viewed as a special type of second-order differential attack, and is suited to
ciphers where one first-order differential applies to the first half of the cipher,
and another first-order differential applies to the second half of the cipher.

2.2.3.6 Linear Cryptanalysis

This known plaintext attack was first applied to FEAL by Matsui and Yamagishi
[356] and to DES by Matsui [354]. It is conceptually similar to differential crypt-
analysis as the aim is to establish essentially key-invariant approximations. This
follows because if the linear relationship x = y holds with probability 1

2 + δ, then
x = y+ k holds with probability 1

2 ± δ. Thus the bias of the approximation away
from 1

2 is still δ and is unaffected by key change. One approximates sub-units of
the cipher by linear approximations which hold with some probability different
from 1

2 . If these approximations can be connected up over all core rounds of the
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cipher then one can establish linear relationships between bits specified by the
mask, I, near the input, and bits specified by the mask, O, near the output of
the cipher. This in turn enables the adversary to guess round key bits of the first
and last round, and compute bits at I and O according to this guess. If the guess
is correct then the pair (I,O) will agree with the guess at (I,O) with probability
1
2 ± b. If the bias, b, is large enough then choosing enough plaintext-ciphertext
pairs will enable the adversary to determine whether the guess was correct. In
this way the adversary can determine the round key bits of outer layers of the
cipher and work inwards. The complexity of a linear attack is approximately
c · 1
|b|2 for some constant, c, where b is called the bias. Linear hulls are an exten-

sion of the above technique [406] and exploit the fact that there may be more
than one linear characteristic (propagation route) through a cipher that begins
and ends at the same place. This allows one to sum up the individual biases
for each characteristic, although it is possible that the individual characteristics
can cancel each other out. The Maximum Average Linear Hull Probability is
also sometimes used as a metric to assess the goodness of linear cryptanalysis.
A similar development of linear cryptanalysis is to re-use the data one already
possesses in different ways, by applying different linear approximations and pool-
ing the information one receives about the key. This technique is referred to as
Multiple Linear Approximations [282, 121]. The technique is particularly useful if
two or more of the best linear approximations have comparable biases. A further
generalisation of linear cryptanalysis looks for nonlinear approximations through
parts of the cipher. Although these nonlinear approximations typically exist with
higher probability than linear approximations they do not usually preserve key-
invariance, so are typically used at either end of the cipher to positively enhance
linear biases [310, 303].

2.2.3.7 Differential-Linear Cryptanalysis

Many attack techniques can be combined to form a hybrid attack on a cipher.
An example of this is Differential-Linear cryptanalysis. In [327] a differential is
established through part of the cipher and used to create a linear approximation
with probability 1. This technique is also used in [62, 67] where the differential
part is used to create linear approximations which have probability strictly less
than 1.

2.2.3.8 Boomerang Attacks

This attack is based on differential techniques and was first described by Wag-
ner [514]. Boomerang attacks allow for a more extensive use of structures than
is available in conventional differential attacks. More specifically, the boomerang
attack is a differential attack that attempts to generate a quartet structure at
an intermediate value halfway through the cipher. This quartet structure is illus-
trated in Fig 2.1.

The aim, as shown in Fig 2.1, is to cover the plaintext pair P, P ′ with the
differential characteristic for E0, and to cover the plaintext pairs P,Q and P ′, Q′

with the differential characteristic for E−11 . In this case it can be shown that
the plaintext pair Q,Q′ is perfectly set up to use the differential characteristic
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Fig. 2.1: A Typical Boomerang Attack

∆∗ → ∆ for E−10 . We can summarise this scenario as follows:

E0(Q)⊕ E0(Q
′)

= E0(P )⊕ E0(P
′)⊕ E0(P )⊕ E0(Q)⊕ E0(P

′)⊕ E0(Q
′)

= E0(P )⊕ E0(P
′)⊕ E−11 (C)⊕ E−11 (D)⊕ E−11 (C ′)⊕ E−11 (D′)

= ∆∗ ⊕∇∗ ⊕∇∗
= ∆∗

Thus one will have the same difference in the plaintexts Q,Q′ as found in the
original plaintexts, P, P ′, which is why the attack is called the boomerang attack.
To set up this quartet one can generate P ′ = P ⊕∆, then obtain the encryptions
C,C ′ of P, P ′ with two chosen-plaintext queries. Then one generates D,D′ as
D = C⊕∇ and D′ = C ′⊕∇. Finally D,D′ are decrypted to obtain the plaintexts
Q,Q′ with two adaptive chosen-ciphertext queries.

2.2.3.9 Mod n Cryptanalysis

This attack by Kelsey et al. [289] is a generalisation of a linear attack, and uses
the property that some bit groupings (words) within the cipher may be biased
modulo n, where n is typically some small integer. It has been shown that ciphers
that use only bitwise rotations and additions, mod 232 are particularly vulnerable
to such attacks.

2.2.3.10 Weak-Key Classes

A weak-key class refers to any subset of size 2s of the key space such that, for
this class, an attack is known requiring fewer key guesses than exhaustive search,
where exhaustive search here means 2s−1 key guesses. For instance, for some
block ciphers the round key is added using integer addition or even multiplication
of some form. And some block ciphers use even more general keyed nonlinear
components. In these cases, differential and linear cryptanalysis may benefit from
a consideration of a sub-class of the complete space of keyed block ciphers for
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this particular design — a weak-key class. Typically this class will be defined
by fixing a well-chosen subset of the key bits so that the residual cipher is then
open to attack. This is a useful way of assessing whether the cipher is secure for
all possible keys. Block ciphers which add the key using XOR are more immune
to weak-key class attacks than block ciphers which add some or all of the key
nonlinearly [376]. A stronger form of the attack demands that the attacker can
identify whether the key used is in the weak-key class. This is known as the
key-class membership test, and a practical attack should use a low complexity
membership test. For instance, Wagner [514] uses a boomerang attack as a weak-
key class identifier.

2.2.3.11 Related-Key Attacks

There are several variants of this attack depending on the privileges of the adver-
sary. Either the adversary obtains encryptions under one fixed key, or he obtains
encryptions under several keys where there is either a known or a chosen relation
between the keys. The fixed key variant was first used by Knudsen in [293] to
establish a chosen plaintext attack, reducing an exhaustive key search by four
times. The version using several keys was developed in [51, 295, 288]. It is noted
by Biham [51] that the related-key attacks discussed in that paper are completely
independent of the number of rounds of the cipher. Slide attacks can be a variant
of related-key attacks, and these are discussed later.

2.2.3.12 Interpolation Attack

The interpolation attack was proposed by Jakobsen and Knudsen in [266, 267].
This attack is interesting in that one need not recover the key to break the cipher
as the attack seeks to construct a polynomial relationship between plaintext
and ciphertext given a set of known plaintext-ciphertext pairs. The attack is
often easier if components of the cipher have a straightforward mathematical
description or if the polynomial to be approximated is of relatively low degree
and with relatively few non-zero coefficients. The number of plaintext-ciphertext
pairs required depends directly on the degree of the constructed polynomial — the
lower the better. The technique of choice is Lagrange Interpolation. The attack
also enables the recovery of round keys once the polynomial is constructed. For
instance, although an interpolation attack can predict the ciphertext from the
plaintext without knowledge of the key, it can also be used to predict the output
from the last but one round of the cipher and this, in turn, allows recovery of the
last round key. Meet-in-the-middle techniques can be used to reduce the degree
of the polynomial to be interpolated [266].

A probabilistic version of the interpolation attack has also been proposed
by Jakobsen [265], which views the attack as a problem in coding theory and
applies Sudan’s algorithm for decoding Reed-Solomon codes [499]. The paper
[524] further investigates ways of minimising the degree of the polynomial to be
interpolated by changing the irreducible polynomial over which the S-boxes of
the block cipher are described.

It is shown by Kurosawa et al. [320] how to use Rabin’s root finding algorithm
in conjunction with the Interpolation Attack so as to find all the possible last
round keys that satisfy the interpolated polynomial.
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2.2.3.13 Non-Surjective Attack

This attack [450] is applicable to Feistel ciphers where the round function is non-
surjective. (See Sect. 2.3.1 for a definition of Feistel). It uses the possibility that
the F-function of the Feistel cipher may be non-bijective. This is true for DES,
and this attack breaks DES faster than exhaustive search [153, 56].

2.2.3.14 Slide Attack

Slide attacks [80] developed out of related-key attacks [51, 293] and exploit a
weakness in ciphers that use identical or periodic round functions. These attacks
are, in many cases, independent of the number of rounds of a cipher, and indepen-
dent of the exact properties of the iterated round function. Let Fr ◦Fr−1 ◦ . . .◦F1
denote an r-round iterated cipher, where the Fis are identical or periodically re-
lated through the rounds. The adversary looks for pairs of plaintexts P, P ∗ and
their corresponding ciphertexts C,C∗ such that F1(P ) = P ∗ and Fr(C) = C∗.
This gives an adversary two input-output pairs of one round of the cipher. One
can expect, by the birthday paradox, to find such pairs of texts after about 2N/2

plaintexts. But, for Feistel ciphers, where the round function modifies only half
the block, there is also a chosen-plaintext variant which can often cut the com-
plexity down to 2N/4 plaintexts. The basic slide attack is shown in Fig 2.2.
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Fig. 2.2: A Typical Slide Attack

For the slide attack to work, Fi should be very weak against known-plaintext
attack with two plaintext-ciphertext pairs. Some ciphers include the addition
of randomised constants into the key schedule and/or round irregularities, and
these protect, to some extent, against a slide attack. For instance, a slide attack by
Biryukov and Wagner on MISTY1 is prevented by the inclusion of the nonlinear
FL layers after every six rounds of MISTY1 [80].

2.2.3.15 Integral/Multiset Cryptanalysis

There are, in fact, a number of different attack techniques which fall under the
umbrella of Integral or Multiset attacks, these being Square attacks [147, 148], In-
tegral attacks [311], Multiset attacks [79], and Saturation attacks [342]. They also
appeared in the birthday cryptanalysis of Ladder-DES [53]. Saturation attacks
assume only permutations are used, and Multiset attacks cover both Saturation
and Integral attacks. In fact, Gilbert-Minier’s collision attack is an example of a
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Multiset attack [219]. Whereas in differential cryptanalysis one considers differ-
ences of pairs of plaintexts, in integral cryptanalysis [311] one considers sums of
plaintexts (integrals) to exploit the degree of balance of the output. The Square
attack, which was first applied to the Square cipher by Daemen et al. [147, 148]
and then to Rijndael [150], is an example of integral cryptanalysis. Integrals are
particularly suited to the analysis of ciphers with mainly bijective components.
Until now, most integrals that have been developed have probability one, and
probabilistic integrals have not been examined in depth. Typically, integral at-
tacks set up a path through the cipher where at any position in the path the
collection of texts produces either a set of words which are all different (A), or all
the same (C), or such that the sum of the words is S (where S = 0 is common),
or indeterminate (?). One can then follow interacting paths of A, C, S, and ?
through the cipher and predict the form of the set of words after as many rounds
as possible. It is interesting to note that [311] successfully combines integral at-
tacks with interpolation attacks, where one half of the cipher is covered by an
integral, and the other half is approximated by a low-degree polynomial. In [79],
Multiset attacks were used by Biryukov and Shamir to structurally cryptanalyse
a block cipher. In this context, one does not exploit the weaknesses of a particular
cipher, (such as bad differentials) but, instead, studies the security of cryptosys-
tems described by generic block diagrams. Such attacks are therefore applicable
to a large class of cryptosystems, and multiset strategies are particulary suited
to such attacks.

2.2.3.16 χ2 Attack

The χ2 attack quantifies the statistical significance of certain input-output de-
pendencies for a certain cipher approximation. It was probably first suggested
in the context of a statistical cryptanalysis of DES by Vaudenay [509]. The idea
has been developed as an extension of linear cryptanalysis with a more sensi-
tive distinguisher at the output, where quantification is achieved by means of
a χ2 analysis [306, 34, 301]. If the block cipher is truly random then no set of
plaintext-ciphertext pairs will produce any significant deviation from a random
relationship between plaintext and ciphertext. Conversely, any deviation from
random acts as a distinguisher that can then form the basis for an attack on the
cipher.

2.2.3.17 Attacks Using Exact Systems of Multivariate Equations

Recent block cipher designs have discouraged the application of linear and differ-
ential cryptanalysis by deliberately designing against them. This has prompted
cryptanalysts to look elsewhere for effective attack methods. One interesting new
direction is also one of the most direct. Every component of a cipher can be de-
scribed by means of a set of algebraic equations. These component descriptions
can then be collected together to form a large system of equations which define
the complete cipher. If this system of equations can be solved faster than exhaus-
tive search then the cipher is broken. Clearly an arbitrary construction of the
system will be impossible to solve as it will contain far too many variables and
equations of too high a degree. However, by careful search one can find systems of



22 2. Block ciphers

low degree equations in relatively few variables. In particular, the critical compo-
nent for many ciphers is the S-box, and careful search of state-of-the-art S-boxes
has found that the S-box can be exactly represented by surprisingly few low-
degree equations, and recent research has led to constructions of sparse systems
of quadratic equations. Whereas, say, linear cryptanalysis uses approximations
with relatively low probability, the equation system holds with probability one.
These algebraic attacks differ in several respects from the standard statistical
approaches to cryptanalysis. In particular, these new attacks require only a few
known-plaintext queries and, also, the attack complexity does not seem to grow
exponentially with the number of rounds of the cipher. It has further been found
that well-chosen, sparse, overdefined systems are often easier to solve than criti-
cally defined systems. Cryptanalytic methods have been developed by using such
systems of equations, where nonlinear terms are treated as independent linear
variables in a process called relinearisation [472] (by Shamir and Kipnis — a
development from linearisation), and Extended Linearisation (XL) by Courtois
et al. [137]. These methods, and a variant of XL called Extended Sparse Lin-
earisation (XSL) may perhaps lead to a successful attack on Rijndael (amongst
others) — in theory at least, although this is by no means clear at the moment
[138, 373]. The main strategy relating to these developing techniques appears to
be to find as many equations in as few variables as possible, and of as low degree
as possible [74]. The aim is to minimise the number of free terms, where a set
of free terms is a set of monomials of any degree that are linearly independent.
The number of free terms is given as the number of distinct terms minus the
number of equations — a term in an equation can be of any degree, in particu-
lar for quadratic multivariate equation systems, a term is of degree one or two.
Recently, Murphy and Robshaw [375] have embedded Rijndael in a large cipher
called the Big Encryption System (BES), which expands Rijndael by its conju-
gates. The work of Murphy and Robshaw [375, 377] found a system of equations
from BES that is simpler than the one developed by Courtois and Pieprzyk [138]
for Rijndael, and this suggests that the technique of embedding a cipher in a
larger cipher can sometimes lead to simpler equation systems. The paper [138]
has also observed that, for the block ciphers they analysed, it is possible that the
security of these ciphers does not grow exponentially with the number of rounds.
However, it should be noted that some experts do not consider this to be possible.

2.2.3.18 Exploiting Relations Between the Bit-Functions of S-Boxes

A very recent paper by Fuller and Millan [208] has observed that all output
bits of the Rijndael S-box, written as Boolean functions of the input bits, can
be transformed to one another by means of an affine transformation of the input
bits. In other words, let bi and bj be two distinct output functions of the Rijndael
S-box. Then we can always find a Boolean matrix, A, and a Boolean vector, B,
such that,

bi(x) = bj(Ax+B)

This surprising result means that the Rijndael block cipher only uses one S-box
from eight bits to one bit (used 128 times in each round). At the time of writing
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this symmetry has not led to an attack on Rijndael but we include this observa-
tion in this section as it is possible that it may lead to attacks in the future. Note
however that, if this symmetry does not lead to an attack, then it could in fact
be beneficial, leading to more efficient software and hardware implementations of
the cipher. Since [208] was posted, Youssef and Tavares [525] proved this result
by making use of dual bases over GF(2n) and trace functions, and generalised
the observation to include all S-boxes that utilise bijective monomials. They also
extended the result to show that all coordinate (bit) functions of the Rijndael
round function are equivalent under affine transformation of the input to the
round function. Further to this, Biham [54] has shown that such bit-affine rela-
tions exist for many of the S-boxes of the block ciphers submitted to NESSIE. In
particular, for the S-box, S9, of MISTY1, the rotation of the input by any num-
ber of bits does not affect the least significant bit of the output. Tables which
summarise these results can be found in Sect. 2.9.

2.2.3.19 Exploiting the Permutation Cycle Structure of a Cipher

This cannot yet be considered an attack technique on a cipher. However, it sug-
gests that one may be able to use the cycle structure of the permutation that
defines part or all of the cipher to distinguish the cipher from a cipher chosen at
random. In [73] Biryukov and Preneel show that such a technique is particularly
suited to ciphers which utilise many involutional elements. The observation was
motivated by the submission to NESSIE of Khazad. Khazad is built entirely from
involutions which means that one can choose to replace a constituent permutation
by its inverse, so allowing the conjugation of some permutations, where conjuga-
tion preserves isomorphism of permutations and, therefore, the cycle structure of
a permutation. This conjugation can be used to determine sections of the cipher
over which the permutation cycle structure is invariant. It follows that a signifi-
cant number of rounds of the cipher can take on the same cycle structure as the
linearly keyed S-box, and, in the future, it may be possible to use this fact to
distinguish the cipher from a random cipher.

2.2.3.20 Side-Channel Attacks

Side-channel attacks are a major thread for all implementations of cryptographic
algorithms. Annex A is devoted to this subject and addresses the application of
side-channel attacks and their countermeasures for block ciphers. Summarizing
annex A and [425], algorithms such as Rijndael, Khazad and Camellia seem to
be the most suited for implementations resistant to side-channel attacks.

2.2.4 Assessment process

The block cipher submissions were assessed with reference to the above generic
common block cipher attacks. Clearly, although some of these attacks are univer-
sal, some of them have more relevance to certain block ciphers than others. Thus
the block ciphers were assessed against the attacks that seemed most relevant.
Furthermore, some block ciphers were analysed using techniques specific to that
primitive.
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Local statistical testing was applied to components of the block ciphers in
order to demonstrate that they have good statistical properties. Global statistical
testing was applied to the input-output of the block cipher submissions to show
that the data demonstrated good statistical properties. In addition, these tests
were also applied on reduced round versions of the block ciphers in order to
determine the number of rounds needed to achieve good statistical properties.
Further details can be found in [400]. None of the block ciphers tested exhibited
any anomalous behaviour. We now summarise the two toolboxes developed by
NESSIE.

2.2.4.1 The NESSIE statistical toolbox for block ciphers

This toolbox is part of the general NESSIE test suite for the evaluation of statis-
tical properties of the submissions. We summarise the available tests as follows:

NESSIE Stream Cipher Tests. The block cipher can be used in OFB Mode
or Counter Mode. In such cases it produces a stream output and can be viewed
as a stream cipher. In these modes it can therefore be tested using the NESSIE
stream cipher tests. In both modes the following tests are applied:

– Frequency Test. Splits up the bit sequence into disjoint m-tuples whose distri-
butions are then evaluated statistically.

– Collision Test. The collision test splits up the bit sequence into blocks of a
fixed size. A collision occurs if the same block appears more than once. The
test statistically evaluates the number of collisions.

– Overlapping m-tuple Test. Shifted windows of m-tuples of words of fixed
wordlength are examined and statistically tested along with cyclic shifts of
the original sequence.

– Gap Test. Splits up the bit sequence into disjoint m-tuples which are then
interpreted as binary integer representations. The length of gaps, where the
numbers are not within a numerical range given as a parameter of the test, are
evaluated statistically. This test is also applied to cyclic shifts of the original
sequence.

– Run Test. Splits up the bit sequence into disjoint m-tuples which are then
interpreted as binary integer representations. The lengths of subsequences of
consecutive, strictly increasing numbers are evaluated statistically.

– Coupon Collector’s Test. Splits up the bit sequence into disjoint m-tuples. The
number of subsequence m-tuples it takes until all possible 2m m-tuples have
appeared, is evaluated statistically. The test is also applied to cyclic shifts of
the original sequence.

– Universal Maurer Test. Splits up the bit sequence into disjoint m-tuples and
evaluates statistically how many m-tuples later an m-tuple re-appears in the
sequence. The result of this test is closely related to the entropy of the bit
sequence.

– Poker Test. Splits up the bit sequence into disjoint m-tuples, and this sequence
of m-tuples is then split up into subsequent disjoint k-tuples of m-tuples. The
poker test statistically evaluates how many of the m-tuples in a k-tuple are
equal. The test is also applied to cyclic shifts of the original sequence.
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– Fast Spectral Test. Applies the fast Walsh transform to the given sequence and
uses the spectral results to assess the randomness of the sequence.

– Correlation Test. Determines in how many places the original sequence and
the sequence shifted by n bits have the same value for shifts up to the length
of the original sequence.

– Rank Test. Sequence bits are used to fill square matrices and the rank of the
matrices over GF(2) is evaluated statistically.

– Linear Complexity Test. The Berlekamp Massey algorithm is used to determine
the length of the shortest linear feedback shift register which can produce the
given bit sequence. For the linear complexity profile, this is done for the first
1,2,3.. bits of the sequence.

– Maximum Order Complexity (MOC) Test. Determines the length of the short-
est possibly non-linear feedback shift register which can produce the given
bit sequence For the MOC profile, this is done for the first 1,2,3.. bits of the
sequence.

– Ziv Lempel Complexity Test. Measures how well a bit sequence can be recon-
structed from earlier parts of the bit sequence.

– Dyadic Complexity Test. The Dyadic Complexity Test is an implementation of
the complexity measure suggested by Goresky and Klapper [291] for sequences
of bits. It determine the length of the shortest feedback shift register with carry
which can produce the given bit sequence.

– The Percolation Test is the simulation of a forest fire. The bit sequence to be
tested determines where trees are standing in the simulated forest. The test
evaluates statistically how fast a fire propagates in the simulated forest.

– Constant Runs Test. For the constant runs test, the sequence of bits is subdi-
vided into runs, that is maximal disjoint subsequences of consecutive 0s and 1s.
The frequencies of these runs of the various lengths are evaluated statistically.

These stream cipher tests were applied to the block cipher submissions, and
none of the block ciphers exhibited any anomalous behaviour. The detailed results
of the statistical tests are available as NESSIE public reports.

NESSIE Block Cipher Tests. NESSIE has also developed a test suite to
test the block ciphers as block ciphers. Details can be found in [400, 471]. The
following tests are applied:

– Dependence Test. Evaluates the dependence matrix and the distance matrix
of the cipher. The degree of completeness, the avalanche effect, and the Strict
Avalanche Criterion (SAC) are also computed. We now define these criteria:
– A function is complete if each output bit depends on each input bit.
– The avalanche effect occurs when, on average, approximately one half of the

output bits change whenever a single input bit is complemented.
– The SAC is satisfied if each output bit changes with probability one half

whenever a single bit is complemented.
– Linear Factors Test. Used to determine whether there are any linear combina-

tions of output bits which, for all keys and plaintexts, are independent of one
or more key or plaintext bits. Such a combination is called a linear factor. It
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is impossible to do this for all keys and plaintexts, so the test is only applied
to a sufficiently large number of pairs of random keys and plaintexts.

The above block cipher tests were applied to the full cipher, and then to reduced-
round versions to determine the minimum number of rounds for which the various
criteria were all satisfied.

These block cipher tests were applied to the block cipher submissions, and
none of the block ciphers exhibited any anomalous behaviour. The detailed results
of the statistical tests are available as NESSIE public reports.

2.2.4.2 The NESSIE toolbox for differential and linear cryptanalysis

NESSIE has developed a software toolbox to aid in the analysis of block ciphers.
This is described in detail in [49]. The system currently examines the block cipher
on three levels.

1. Statistical properties of the basic building blocks are found.
2. Properties of complete rounds are found.
3. Properties are found over several rounds.

It is intended to extend the system to include aspects of cryptanalysis of the full
cipher at a later date. We now describe the analysis for each of the above three
categories.

Building Blocks. Any re-arrangement mapping and any nonlinear S-box map-
ping between an input vector of bits and an output vector of bits can be analysed,
where the input and output vectors need not be of the same size. The mapping
can be validated for one-to-one mapping, tested for the period of inherent per-
mutation cycles and the existence or otherwise of fixed-points in any inherent
permutations, and checked for output balance/distribution.

The system also provides difference distribution tables and linear approxima-
tion tables for the inherent S-boxes, for use in differential and linear cryptanalysis,
respectively.

One Round. The system identifies dependencies between the output bits of
round i and the output bits of round i + 1, and provides an example for linear
and differential one-round characteristics and their probability.

Several Rounds. The system identifies the most important 3-round charac-
teristics, and suggestions for good 5-round characteristics, with corresponding
probabilities.

2.3 Overview of the common designs

Modern-day ciphers are designed to withstand known cryptanalytic attacks. How-
ever there is not complete agreement as to the best design philosophy to use,
hence the variety of designs submitted to NESSIE. We now summarise some of
the most important of these design philosophies, where any given cipher may
utilise one or more of these philosophies.
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2.3.1 Feistel ciphers

A basic Feistel cipher takes 2t plaintext bits, and is a permutation, F , which uses
m round permutations, Fi, so that,

F = F0 ◦ F1 ◦ . . . ◦ Fm−1

where ’◦’ means composition.
Round i acts on half the input bits, the t bits, R, by means of the keyed

function, fi, and XORs the result with the other half of the bits, the t bits, L. It
then swaps the left and right halves. Thus we have,

[L′, R′] = Fi[L,R] = [R,L⊕ fi(R)]

where [L′R′] becomes the new input [LR] to round i + 1. Although F and
the Fi must be permutations, the fi need not be. It takes two rounds before all
plaintext bits have been acted on in a nonlinear way. DES, MISTY1, and Camellia
are all essentially Feistel ciphers. The Feistel structure allows decryption to be
accomplished using the same process, but with the sub-keys used in reverse order.
Sometimes the Feistel structure may be nested such that individual components
also have a Feistel structure. This is the case for MISTY1.

2.3.2 Substitution-Permutation Networks (SPNs)

A substitution-permutation network (SPN) separates the role of confusion (sub-
stitution) and diffusion (permutation) in the cipher. As with most ciphers, the
cipher is decomposed into iterative rounds where each round comprises a layer of
S-boxes, followed by a permutation/diffusion layer. The S-box layer provides the
nonlinearity (confusion), and the permutation layer provides the rapid diffusion.
In fact, the SPN has more recently come to include ciphers where the diffusion
layer is not a permutation (re-wiring) but is a linear or affine transformation.
Moreover these linear transformations are often derived fromMaximum-Distance-
Separable (MDS) error-correcting codes, where the high minimum distance of the
code implies a high diffusion rate. The separating of the tasks of confusion and
diffusion allows the designer to maximise nonlinearity for the S-box, and max-
imise information spread for the diffusion layer. Rijndael, Khazad, Hierocrypt,
and SAFER++ are all examples of SPNs. In fact a Feistel cipher is also a type
of SPN. Sometimes the SPN structure may be nested, such that the individual
S-boxes are themselves SPNs. Hierocrypt is an example of such a cipher, and
Rijndael can also be described in this way [33]. In fact, one can always compose
a large S-box as a number of layers of smaller S-boxes — and this is the case for
the S-boxes of Khazad and Anubis.

2.3.3 Resistance against differential and linear cryptanalysis

Many recent block cipher designs have attempted to maximise the resistance of
the cipher to differential and linear attack. This is usually achieved in two ways:
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– Firstly, the elemental S-boxes are designed to be highly nonlinear, i.e. so that
they can only be poorly approximated by linear equations, and so that dif-
ferential characteristics can only be propagated through the S-box with small
probability. These design criteria are evident in the parameters of low linear
bias and low differential probability associated with the cipher.

– Secondly, the diffusion components are designed to spread the information
to the whole cipher block as rapidly as possible. This rapidity is sometimes
measured in terms of the branch number or minimum distance of the diffu-
sion layer. The resilience of the component functions of the S-box is also a
measure of the diffusion properties of the S-box, where Resilience t indicates
that the component function is completely independent of any t or fewer of
its constituent variables. The result of rapid diffusion is that, in any linear or
differential attack, which essentially uses elemental approximations, too many
of the elements of the block cipher must be approximated, thereby rendering
the attack useless.

For some recent ciphers, e.g. Khazad, the emphasis on extremely rapid dif-
fusion has reduced the perceived need for optimal nonlinearity of the S-box —
reasonably good nonlinearity is considered good enough. This has enabled the
S-box to be chosen randomly from a suitable subspace of the set of S-boxes, un-
like, for instance, the S-boxes of Rijndael, Camellia, or MISTY1, which optimise
nonlinearity at the price of, in the case of Rijndael and Camellia, a non-random,
algebraic S-box which may lay itself open to algebraic attack.

2.3.4 Mini-ciphers and reduced rounds

Although the attacks on block ciphers described in this chapter provide a means
of assessing the security of a cipher, it is still the case that cryptanalysis of a
real cipher is an extremely big task. As an aid to analysis, some cipher designs
naturally allow the description of mini-versions of their cipher over a reduced
wordsize and reduced plaintext and key blocksize. One can then analyse these
small versions of the cipher and extrapolate the conclusions to the larger real
cipher. Ciphers which naturally support mini-versions include RC6, SAFER++,
IDEA, Khazad, Rijndael, and numerous others. In fact, most ciphers already
incorporate this philosophy in the sense that they decompose the cipher into
iterated round functions. This leads to attacks on reduced rounds which can
then be extrapolated to the full-round cipher. Recently, [299] has suggested a
very rough rule-of-thumb computation for the minimum number of rounds, R,
required to make a block cipher secure, given by R ≥ dN

w where w is the minimum
word size input to a confusion stage in the cipher (for instance this could be the
size of the smallest S-box used), d is the maximum number of rounds it takes for
one word to be input to a confusion stage (for a Feistel cipher, d = 2), and N is
the size of the plaintext input to the cipher, in bits.
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2.3.5 Simple as opposed to complicated designs

Some ciphers are deliberately very difficult to analyse. Others are deliberately
relatively simple to analyse, being built out of conceptually simple primitives. For
example, ciphers that add in the key via XOR are often easier to analyse than
ciphers that use nonlinear key input. The security of ciphers that use nonlinear
keying can often be far more key-dependent than the security of ciphers that use
linear keying. This makes them harder to analyse but also makes it more likely
that there are weak keys for which the enciphering function is weak [376]. The
current trend is towards ciphers that are simple to describe and analyse, as a
cipher that cannot be analysed cannot be declared secure. Of course there are
different notions of simplicity, for instance, although RC6 and Khazad are both
simple designs, they are not simple in the same way.

2.3.6 A separate key-schedule

Virtually all modern block cipher designs separate the key-schedule from the
enciphering/deciphering process. Typically the cipher will take in a master key
and, from this key, generate round keys which will then be used to key the rounds
of the encryption process. Thus there are usually two parallel processes in a block
cipher. One encrypts, whilst the other generates the key-schedule.

2.3.7 The use or otherwise of S-boxes

The use of S-boxes in block ciphers is mainly as a means of introducing nonlin-
earity. They are usually envisaged as large look-up tables, substituting one value
for another. Examples of the type of cipher that uses S-boxes are DES, MISTY1,
Rijndael, Camellia. In contrast, some ciphers do not use explicit S-boxes but
introduce nonlinearity by means of well-known algebraic operations such as in-
teger addition, integer multiplication, log, or exponentiation. Examples of these
ciphers are RC6, IDEA, and SAFER++. However, this distinction is a bit tenuous
as, for example, a log function or a multiplication can be viewed as an S-box, and
the S-box used by Rijndael and Camellia is essentially x−1 over GF(28). A more
significant distinction is between key-dependent and non-key-dependent S-boxes
— for instance, whereas multiplication by a constant can be implemented using
a fixed look-up table, multiplication by a key cannot. Another useful design dis-
tinction is that some ciphers use large S-boxes (e.g. 8 by 8 or bigger), and some
ciphers use smaller S-boxes (e.g. 4 by 4). It has recently been argued that the
use of S-boxes that are too small is not a good idea [138].

2.3.8 Ciphers which are developed from well-studied precursors

It is an accepted fact that block ciphers need many years of analysis before they
can be labelled secure. It is therefore common for block cipher designers to in-
crementally improve their own previous designs and/or incorporate aspects of
previous block cipher designs. This is a cautious strategy which seeks to add to
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the perceived security of the new design. For instance, an attack on the key-
schedule of a previous version of SAFER [295, 298], and an improved diffusion
layer, have led to upgrades which have been incorporated in SAFER++. (Note,
however, that it could be argued that the designers have made drastic changes
in designing SAFER++ from previous designs which, to some extent, invalidate
previous analysis — for instance they completely changed and reduced the com-
plexity of the mixing layers). As another example, RC6 uses exactly the same
key schedule as RC5.

2.3.9 Making encryption and decryption identical

It is clearly desirable for the encryption and decryption processes of a cipher to
be identical in as many ways as possible, as this enables the re-use of hardware or
software resources. Feistel ciphers are designed in this way. Moreover, any cipher
component which is an involution will be, by definition, the same in reverse.
Khazad uses only involutions so encryption and decryption are identical for such
a cipher (apart from the order of the sub-keys). In contrast, Rijndael uses different
encryption and decryption operations, although the encryption and decryption
speeds for Rijndael are virtually identical in software, differing only slightly for
8-bit machines. In hardware, the speed of both operations for Rijndael is the
same, decryption requiring just a little bit more hardware.

2.3.10 Hash functions as block ciphers

A hash function is usually not intended to be used as a block cipher, but it can
be. The hash function will take a K-bit message and hash an initial N -bit value
to a final N -bit value which is called the hash of the message. The hash function
is designed so that it is impossible to ascertain the K-bit message from the N -bit
hash. K is always bigger than N . If we redefine the K-bit message as a K-bit
key, and the N -bit initial value as the input plaintext, then the output hash
becomes the N -bit output ciphertext. For example, SHACAL-1 and SHACAL-2
are block cipher submissions to NESSIE and are block ciphers built from the hash
functions, SHA-1 and SHA-2, respectively. A secure hash function should ideally
minimise the number of (inevitable) N -bit output hash collisions for different
initial K-bit messages, given that the initial N -bit value is fixed. This is called
collision-resistance. Transferring this criterion to the block cipher regime implies
that, given a fixed input plaintext, a secure block cipher should seek to minimise
the number of ciphertext collisions for different key inputs. However, it is not at all
clear at present whether weaknesses in collision-resistance for the hash function
translate into attacks on the associated block cipher. It is an open problem.

2.3.11 Current standards

The Data Encryption Standard, DES, is now considered to have too small a key
space for today’s security requirements. Triple-DES (DES encryption, followed
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by DES decryption, followed by DES encryption) uses a 3×56 = 168-bit key and
is considered to be a practical solution to the security weakness of DES. Triple-
DES has been included in the NESSIE evaluation as a benchmark cipher with
which to compare the other block cipher submissions, although it is somewhat
inefficient in comparison.

The new Advanced Encryption Standard, AES [391], also known as Rijndael,
has also been included in the NESSIE evaluation, both Rijndael-128 and Rijndael-
256, once again to act as a benchmark with which to compare the other block
cipher submissions. Note also that RC6, one of the five AES finalists, has also
been submitted to NESSIE, as has SAFER++ which is a modified version of
SAFER+ which was in the AES.

Currently there is an ongoing assessment of new cryptographic primitives
to be adopted as the new ISO standard. The block ciphers being considered
are as follows: For 64-bit plaintext, TDEA (Triple-DES) — 128 or 192-bit key,
MISTY1 — 128-bit key, and Khazad — 128-bit key. For 128-bit plaintext, the
AES (Rijndael) — 128, 192, or 256-bit key, Camellia — 128, 192, or 256-bit key,
SEED — 128-bit key, RC6 — 16 - 256-byte key, and CAST-128.

2.3.12 Block cipher primitives

The deadline for submissions to the NESSIE project was September 29, 2000,
just before NIST’s announcement that the AES block cipher was to be Rijndael.
Nevertheless, there were 17 block ciphers submitted to NESSIE.

The NESSIE call for primitives specified the following security levels for block
ciphers.

– High. Key length of at least 256 bits. Block length at least 128 bits.
– Normal. Key length of at least 128 bits. Block length at least 128 bits.
– Normal-Legacy. Key length of at least 128 bits. Block length 64 bits.

There have been two phases to the evaluation process, Phase I and Phase II.
In total, 8 ciphers were selected for Phase II, with SAFER++ and RC6 both being
selected for two security levels.

The submissions are classified in the table below according to the security
levels specified in the NESSIE call, and those selected for Phase II of NESSIE
are indicated.
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Name of cipher Block Size (bits) High Normal Normal-Legacy Phase II
CS-Cipher 64 X
Hierocrypt-L1 64 X
IDEA 64 X

√
Khazad 64 X

√
MISTY1 64 X

√
Nimbus 64 X
NUSH 64 128 256 X X X
SAFER++ 64 128 X X X

√ √
Grand Cru 128 X
Noekeon 128 X
Hierocrypt-3 128 X X
Q 128 X X
RC6 128 X X

√ √
SC2000 128 X X
Anubis 128 X
Camellia 128 X

√
SHACAL-1 160 X

√
SHACAL-2 256 X

√

Notes

– NUSH was designed with three different block sizes: 64 bits, 128 bits, and 256
bits.

– RC6 has a variable block length 4w bits, where w ≥ 32 is recommended by the
designers.

– SAFER++ has two variants, one with 64-bit blocks and one with 128-bit blocks.

2.4 64-bit block ciphers considered during Phase II

The 64-bit block ciphers selected for Phase II of NESSIE were IDEA,
KHAZAD, MISTY1, SAFER++64, and Triple-DES. None of these ciphers has
been broken so the following security evaluation identifies weaknesses that occur
in reduced-round versions of the ciphers, and identifies weaknesses that may lead
to more effective attacks in the future. We first describe each cipher in some de-
tail, along with the most important attacks known on each cipher. Note that the
algorithms given here are not complete specifications, but references are given
to complete specifications which may be found on the NESSIE website. After
discussing each cipher we summarise and compare some of the distinguishing fea-
tures of the ciphers, identifying potential weaknesses and noting the best-known
attacks, as shown in Tables 2.14 and 2.15 of Sect. 2.9.1.

2.4.1 IDEA

2.4.1.1 The design

IDEA [325] operates on 64-bit blocks of plaintext and ciphertext and is controlled
by a 128-bit key. It is specified to require 8.5 encryption rounds to achieve an
acceptable security margin. It claims to achieve high security by concatenated
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use of three arithmetic operations from two dissimilar algebraic groups (two of
the groups are isomorphic), namely:

– Addition mod 216.
– Multiplication mod 216 + 1 (where the all 0 bit word is interpreted as 216).
– Bitwise exclusive OR.

Note that (since 216 + 1 is prime) the multiplication operation is isomorphic to
the addition operation. The combined use of these operations is used to achieve
high nonlinearity and completely replace the more conventional use of S-boxes
for this task. This can often result in relatively efficient implementations, in
software because many processors have special-purpose multiplication operators,
and in certain hardware scenarios where memory is at a premium, as S-boxes
usually require large look-up tables. Although the software realisation of modular
multiplication can be optimised [55], hardware implementation of multiplication
will always cost many gates, and this means that hardware implementations of
IDEA are not compact. The cipher is designed so that encryption and decryption
are identical apart from key input. The encryption operation is shown in Fig. 2.3,
and comprises 8 identical steps (rounds) followed by an output transformation.
Round 1 is shown in detail in Fig. 2.3.

First
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16−bit16−bit16−bit16−bit

16−bit16−bit16−bit16−bit

Z
(1) Z
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(1)

Bitwise XOR of two
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Ciphertext (64 bit)
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}

}
7 More Rounds

1

1

2

2

3

3

4

4

6

5
Addition mod 2^16 of
two 16−bit integers

zeroes corresponds to 2^16

Fig. 2.3: The IDEA Block Cipher

The 64 bits of plaintext are partitioned into four 16-bit subblocks and all
encryption operations take 16-bit inputs and produce 16-bit outputs. The Z’s of
Fig. 2.3 refer to six 16-bit key subblocks per round (with four 16-bit key subblocks
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for the subsequent output transformation). A total of 8 · 6 + 4 = 52 different 16-
bit subblocks are generated from the 128-bit key. We describe this key schedule
below.

It should be noted from Fig. 2.3 that after each round the 16-bit partitions
are re-ordered before commencing the next round. The process of round one is
repeated for 7 more rounds, and after 8 rounds the output transformation is
combined with the final four of the key subblocks, as shown in Fig. 2.3.

A fundamental design criterion is the following:
At no point during the encryption process is the same algebraic group operation
used contiguously.

It has been shown by Wernsdorf [517] that the multiply-addition box at the
centre of the round of IDEA generates the alternating group on {0, 1}32 and [517]
conjectures that the alternating group is also generated by the complete round
of IDEA. These large groups exclude the possibility of several types of regularity
for IDEA.

The key schedule takes a 128-bit key and turns it into 52 16-bit key subblocks,
as follows:

– First, the 128-bit key is partitioned into eight 16-bit subblocks and these form
the first eight key subblocks.

– The 128-bit key is then cyclically shifted to the left by 25 positions, after which
the resulting 128-bit block is once again partitioned into eight 16-bit subblocks
and these form the next eight key subblocks.

– The above process is then repeated until all required 52 16-bit key subblocks
have been generated.

Decryption is identical to encryption apart from the use of different key sub-
blocks, where these 52 16-bit key subblocks are as follows: each subblock used for
decryption is the inverse of the key subblock that was used for encryption, where
the inverse is taken with respect to the algebraic group operation associated with
that particular key subblock. Moreover, these key subblocks must be applied in
reverse order to the order in which they were used for encryption.

2.4.1.2 Security analysis

IDEA has been widely studied for over a decade and few security flaws have been
found. In fact, no attack against 5 or more of its 8.5 rounds has been found.
However, IDEA does exhibit weak key classes of substantial size, and it can be
argued that a flawless cipher should have no weak keys at all. IDEA has been
included in the popular cryptographic package, PGP, although not for some time,
and is one of the best known and most widely used ciphers. The following attacks
are some of those that have been applied to IDEA prior to and during NESSIE.
Meier proposed a differential attack on 2.5 rounds [362], where it was observed
that, if a + b < 216, then a + b mod 216 = a + b mod 216 + 1, and this in turn
implies that that multiply-addition part of IDEA is linear about 1

4 of the time.
The paper of Borst et al. [101] developed a truncated differential attack on 3.5
rounds, and a miss-in-the-middle attack on 4.5 rounds was proposed by Biham
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et al. [58]. Moreover, it has been shown [321, 146, 244, 77] that certain weak-
key classes exist for IDEA. For instance, [146] exploited the observation that −x
mod 216 + 1 = x ⊕ 11 . . . 101 whenever x1, the second least significant bit of x,
is 1. In fact, attacks which exploit potential weaknesses in the modular multipli-
cation, mod 216 + 1, are of particular interest for IDEA, for instance, Harpes et
al. [239] attack IDEA by applying a quadratic residue homomorphism between
(Z/nZ)∗ and Z/2Z, where n = 216 + 1, and a recent paper by Borisov et al.
[99] further exploits homomorphisms between modular multiplication and XOR
to identify large weak key classes for certain variants of IDEA where addition
has been replaced with XOR. They show that for 2112 of the keys there exists
a multiplicative differential characteristic over 8 rounds that holds with proba-
bility 2−32. Recently, Raddum [448] has demonstrated a better attack on this
variant of IDEA, called IDEA-X, using a similar technique, but this time using
XOR-differentials. The advantages of the attack in [448] are that it works for
all keys, and it is only necessary to change the first two additions in each round
to XORs. In [448] a differential characteristic has been found that holds with
probability 2−30 over 8 rounds and exploits the fact that Z216 and GF(216 + 1)∗

are both cyclic groups, and therefore isomorphic. Essentially, each element a in
GF(216 + 1)∗ can be written uniquely as,

a = gx15
15 · gx14

14 · . . . gx15
0

where · means field multiplication, xi ∈ {0, 1}, g0 is a primitive element of
GF(216 + 1), and gi = g2i−1. We write this as a = gx. Then φ(a) = x is an
isomorphism, mapping multiplication, mod 216 + 1, for a to addition, mod 216,
for x. For a, b ∈ GF(216 + 1), ab = φ−1(φ(a) + φ(b)). The above isomorphism is
then used to pass an input XOR difference through the mod 216 + 1 multiplier,
then unchanged through a subsequent (integer) additive key bit, and finally back
to an XOR difference. The complete XOR to XOR difference holds with probabil-
ity 1

4 . This characteristic is used to attack IDEA-X as defined by [99]. However,
the attack of [448] in fact requires fewer of the integer additions to be changed to
XORs so the cipher it attacks is closer to the real IDEA than the cipher of [99].

Until the commencement of NESSIE the best attack on IDEA was by Biham
et al. [58] on 4.5 out of 8.5 rounds of IDEA.

Nakahara et al. [380] report on variants of the SQUARE attack applied to
reduced-round versions of the PES and IDEA block ciphers (PES is a forerunner
of IDEA). Attacks on 2.5 rounds of IDEA require 3 · 216 chosen-plaintexts and
recover 78 key bits. A SQUARE related-key attack is applied on 2.5 rounds of
IDEA and recovers 32 key bits, with 2 chosen-plaintexts and 217 related keys.
Implementations of the attacks on 32-bit block mini-versions of both ciphers
confirmed the expected computational complexity. Although the attacks do not
improve on previous approaches, this report shows new variants of the SQUARE
attack on word-oriented block ciphers like IDEA and PES.

Biryukov et al. [77] present a large collection of new weak-key classes on the
full 8.5 round IDEA cipher proposed, using the property that some multiplica-
tive keys which are 0 or 1 turn modular multiplication into a linear operation.
The weak-key classes in this paper contain 253 - 264 weak keys. The novelty
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of the approach is in the use of the boomerang distinguisher for the weak-key
class membership test, as developed by Wagner [514]. Large weak-key classes for
reduced-round versions of IDEA are also shown. It appears that the existence of
relatively large weak key classes for IDEA is due to the use of modular multipli-
cation as the main nonlinear part of the cipher, and because the key schedule is
also a linear process. The results suggest a redesign of the key schedule of IDEA.

Finally, statistical evaluation of IDEA [447], following the recommendations
of the NESSIE statistical evaluation process for block cipher submissions, does
not indicate a deviation from random behaviour.

Table 2.1. Comparison of attack requirements on reduced-round IDEA

Attack Type Year Reference #Attacked Data † Time
Rounds Complexity Complexity

Differential 1993 [362] 2 210 242

Improved-Square 2002 [158] 2 23 264

Differential 1993 [145] 2.5 210 232

Differential 1993 [362] 2.5 210 2106

Square attack 2000 [380] 2.5 3 · 216 258

Square attack 2000 [380] 2.5 232 259

Square 2000 [380] 2.5 248 279

Related-Key Square 2001 [380] 2.5 2 233

Improved-Square 2002 [158] 2.5 55 281

Differential-Linear 1996 [101] 3 229 0.75 · 244

Improved-Square 2002 [158] 3 71 271

Improved-Square 2002 [158] 3 233 282

Truncated

Differential 1997 [309] 3.5 256 267

Miss-in-the-middle 1999 [58] 3.5 238.5 253

Improved-Square 2002 [158] 3.5 103 2103

Improved-Square 2002 [158] 3.5 234 282

Miss-in-the-middle 1999 [58] 4 238 270

Related-Key ‡

Differential-Linear 1998 [244] 4 38.3 38
Improved-Square 2002 [158] 4 234 2114

Miss-in-the-Middle 1999 [58] 4.5 264 2112

† number of chosen texts.
‡ the differential-linear attack requires two related keys.

In view of the comparatively large amount of cryptanalysis undertaken on
IDEA, Tables 2.1 and 2.2 summarise many of the known chosen-plaintext and
weak-key attacks on IDEA, respectively. The most effective of these attacks are
then included in the summary table, Table 2.14, in Sect. 2.9.1 at the end of this
chapter.
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Table 2.2. Comparison of attack requirements on IDEA for weak-key classes.

Attack Type Year Reference #Attacked Weak-key Data † Time
Rounds Class Size Complexity Complexity

Differential 1993 [146] 8.5 251 2 212

Differential-Linear 1998 [244] 8.5 263 20 4
Boomerang 2002 [77] 4.5 2101 218 218

Boomerang 2002 [77] 5 297 210 210

Boomerang 2002 [77] 5 295 4 4
Boomerang 2002 [77] 8.5 253 4 4
Boomerang 2002 [77] 8.5 257 211 211

Boomerang 2002 [77] 8.5 264 216 216

† number of chosen texts.

2.4.2 Khazad

2.4.2.1 The design

Khazad [30] is a 64-bit Substitution-Permutation (SPN) block cipher with a 128-
bit key and is designed to operate over 8 rounds. Khazad has many similarities to
Rijndael, but works on 64-bit plaintext blocks. A primary selling-point of Khazad
is that all components of the algorithm use involutions. This involutional struc-
ture is important for implementations and to make encryption and decryption
equivalent operations apart from the order of the key schedule. This also implies
equal security for encryption and decryption. These involutions include the S-
box, S, (i.e. S[S[x]] = x), and the 64-bit linear diffusion mapping, based on an
MDS code and represented by a matrix H, (i.e. H2 = I). The matrix H that
realises this diffusion is also chosen to have lowest possible Hamming Weight and,
for smart-card implementation, lowest possible integer weight over 8-bit words.
The cipher also emphasises the Wide-Trail Design Strategy [144] as the linear
diffusion layer is based on a Maximum-Distance-Separable (MDS) code with a
high branch number of 9. This ensures that there is full mixing after a single
round. This, in combination with a reasonably nonlinear S-box ensures strong
resistance to linear and differential attacks, and to related-key attacks. In the
original submission the 8 × 8-bit S-box was randomly chosen to avoid any ob-
vious internal structure. However, this made the S-box costly to implement in
hardware so the authors have modified the submission by replacing this S-box
with another S-box which is more amenable to hardware implementation. This
replacement was also made in order to correct a small security flaw where the
maximum bias of a linear characteristic through the S-box was slightly under-
estimated (this did not lead to any security failure, as the high diffusion of the
round more than compensates for this). The S-box has also been chosen to have
no fixed point and is made out of six 4× 4-bit smaller S-boxes, P and Q, which
are involutions with optimal nonlinearity characteristics, as shown in Fig. 2.4.
The designers expect that the hardware required to implement this S-box should
be around 1

5 of that for the Rijndael S-box, which is also an 8× 8-bit S-box. Es-
sentially, this potential reduction in implementation cost is bought at the price of
slightly weaker nonlinear characteristics. However it should be noted that, unlike
in Camellia or Rijndael, the avoidance of an S-box using x−1 may increase the
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minimal size of any potential set of sparse quadratic equations on which to base
an attack of the form proposed by Courtois and Pieprzyk in [138] or by Murphy
and Robshaw in [375]. Preliminary evidence for this claim is given by Biryukov
and de Cannière [74], where a description of the 8× 8 Khazad S-box requires 28
quadratic equations, but a description of the 8× 8 Rijndael S-box only requires
23 quadratic equations
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Fig. 2.4: Structure of the Khazad S-box. Both P and Q are pseudo-randomly
generated involutions; the output from the upper and middle nonlinear layers
are mixed through a simple linear shuffling.

Key addition is achieved via XOR (which is also an involution). This has
the advantage that no weak keys exist as the nonlinearity operations are key-
independent. The Khazad key schedule uses a 9-round 128-bit Feistel scheme
with an internal F -function being a round of Khazad with constants used as
the 64-bit key. The user-specified 128-bit key is used as a plaintext and the
intermediate 64-bit values after each round become the subkeys of Khazad. The
key schedule expands the 128-bit key into 64-bit round keys, K0,K1, . . . ,KR,
plus two initial round keys K−2 and K−1, and these round keys are generated
as follows:

Kr = ρ[cr](Kr−1)⊕Kr−2 0 ≤ r ≤ R
where ρ[cr](K) is the round function of Khazad which takes as input parameters
the pre-chosen constant cr and round key input, K.

Running R rounds of the complete cipher apply the operation αR[K
0 . . . KR]

to the plaintext, where,
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αR[K
0 . . . KR] = σ[KR] ◦ γ ◦ (©r=R−1

1 ρ[Kr]) ◦ σ[K0]

where σ, γ, and ρ are the operations of key addition, nonlinear substitution and
the full round function, respectively.

2.4.2.2 Security analysis

The designers [30] state that, for Khazad, there is no 2-round differential char-
acteristic with probability higher than 2−45 and no 2-round linear approxima-
tion with bias of more than approximately 2−20.7. Related-key attacks were also
claimed to be infeasible. A SQUARE attack on 3 rounds of Khazad is described
by Barreto and Rijmen in [30], requiring 28 key guesses × 28 chosen plaintexts
= 216 S-box look-ups to recover one key-byte. A variant on this requires 29 chosen
plaintexts, 216 S-box look-ups, and 64-bit key guessing, which can be extended to
an attack on 4 rounds requiring 280 S-box look-ups. An extension of the Biham-
Keller impossible differential attack on 5 rounds of Rijndael [66] can be applied
to 3 rounds of Khazad, requiring 213 chosen plaintexts and 264 encryptions. The
designers [30] also claim security against truncated differential attacks after 4
rounds, and against Interpolation attacks and Boomerang attacks. Analysis by
Biham et al. [59] supports these claims. However, further analysis reveals 4 linear
characteristics with bias ' 17

256 , whereas [30] originally claimed a maximal abso-
lute bias of 13

256 . This resulted in the tweak to the S-box mentioned earlier. The
Gilbert-Minier collision attack, which works better than the SQUARE attack on
Rijndael, will not work for Khazad since it requires full 64-bit collisions, whereas
Rijndael only requires 4-byte collisions owing to slower mixing (diffusion).

Generalised linear characteristics for Khazad with maximum and minimum
bias are also found by Parker in [426]. It is found that Khazad already has a mod-
erately low-bias characteristic with Peak-to-Average Power Ratio = 16.0 with
respect to the Walsh-Hadamard Transform, and this confirms the bias quoted
by the designers. But, as with all S-boxes, this bias increases significantly when
approximated by more general linear expressions, where a more general linear
expression is here meant to mean ωf(x), where ω is an rth complex root of 1,
and f(x) is a linear expression in the variables, xi, mod r. For r À 2 this set
of linear expressions is much larger than for binary linear expressions, so much
closer approximations can be found.

One advantage that Khazad may have over Rijndael is that the S-box of
Khazad does not depend on a simple mathematical function, namely x−1, which
is potentially open to attack. However, the nonlinearity of the Rijndael S-box is
stronger. Moreover, although the S-box of Khazad is claimed by the designers to
be implementable with about 1

5 of the hardware of that needed for Rijndael, a
recent paper by Fuller and Millan [208] shows that the output functions of Rijn-
dael are all affine transformations of the same function. This suggests a potential
extra hardware saving for the Rijndael S-box, although this simplification may
perhaps later be exploited as a security weakness, as all the output bits of the
S-box are simply affine relations of one another. In contrast, the Khazad S-box
is relatively unstructured and therefore less of a candidate for potential algebraic
attacks. Furthermore, Biham [54] has shown that no such affine relationships
exist for the Khazad S-box (see Sect. 2.9.1).
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One of the major hindrances to cryptanalysis of Khazad is the extremely high
rate of diffusion for the cipher and it may be that new attacks on such ciphers have
to exploit more global iterative properties of the cipher, such as its permutation
structure. Recently some new techniques which analyse the permutation cycle
structure of Khazad have been proposed by Biryukov and Preneel [73], suggesting
promising avenues for future attacks on such ciphers. The techniques exploit the
involution structure of Khazad by showing that the involutions maintain the
permutation cycle structure through successive rounds of Khazad. We can write
5-round Khazad as follows:

k0SMk1SMk2SMk3SMk4Sk5

where the ki are the key XORs, S is the nonlinear S-box layer, andM is the MDS
linear diffusion layer. By passing the k through M we can rewrite the above as

k0Sk
′
1[MSM ]k2Sk

′
3[MSM ]k4Sk5.

[73] first investigates the permutation cycle structure of MSM , noting that, as
M = M−1 (an involution), MSM = MSM−1 = A, where A is a permutation
isomorphic to S. Secondly, [73] shows that the permutation cycle structure of
k1Sk2, for arbitrary k1 and k2, depends only on the difference ∆k1k2 = k1 ⊕ k2.
Moreover each cycle length appears in the permutation k1Sk2 an even number of
times. It follows that k1Sk2 consists of more than 28

∏

i li cycles, where 2li is the
number of cycles of the ith permutation of the eight parallel 8-bit permutations
which comprise the k1Sk2 layer. Using these results it can be shown that, for two
randomly chosen points x = (x1, x2, . . . , x8) and y = (y1, y2, . . . , y8), the GCD of
the cycle sizes has a good chance of being big (unlike a random permutation).
The probability that the xis and yis will belong to the same cycle or to two
different cycles of the same size is more than 2li

256 . By collecting and factoring
cycle lengths we can obtain information about ∆k1k2 . Next, [73] shows that,

[MSM ]k1Sk2[MSM ] = Ak1Sk2A = B (covering 3.5 rounds)

Because of the involutional structure of Khazad, B is an isomorphic permutation
of A, so it has the same cycle structure as discussed earlier. In particular, it has
the same cycle structure as k1Sk2. Therefore it is enough to study the fixed points
of S(x) ⊕∆k1k2 . It follows that, for a randomly chosen k1, k2, Ak1Sk2A has no
fixed points with probability greater than 1 − 2−8. However, if it has a single
fixed point then it must have more than 28 fixed points. Finally, [73] examines

kSk[MSM ]kSk[MSM ]ksk 5 rounds.

It is possible to show that,

(KH5(x)⊕∆k)
n = k0SM(KH3)

nMSk5

where ∆k = k0 ⊕ k5 and KHj(x) means j rounds of Khazad. In other words
we have a very strong relationship, due to the involutional structure, between
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3 rounds and 5 rounds of Khazad. It follows that if one can detect peculiarities
in the cycle structure of 3-round Khazad in less than 264 steps, then this will
provide a distinguishing attack on 5-round Khazad faster than exhaustive key
search.

The paper by Biryukov and de Cannière [74] compares minimal systems of
multivariate polynomials which completely define certain block ciphers, including
Khazad. The work is motivated by the recent papers [138] and [375, 377] which
propose attacks on block ciphers using overdefined systems of linear, quadratic
and low degree equations. For Khazad the P S-box consists of 4 quadratic equa-
tions in 16 terms, and the Q S-box consists of 6 equations in 18 terms. These
equations are used to define 30 equations in 32 linear and 28 quadratic terms for
the 8-bit S-box of Khazad and, along with a set of linear equations to define the
linear layers, the whole of the block cipher can be described by 2496 equations in
2048 variables using 3840 linear and quadratic terms. Similarly, the key sched-
ule can be described by 2672 equations in 2638 variables using 4384 linear and
quadratic terms. As the cipher takes a 64-bit plaintext input and a 128-bit key, 2
plaintext/ciphertext pairs are required to solve the system, implying a doubling
of the number of state equations, variables, and terms for the cipher. However
the number of equations for the key schedule remains unchanged, as the same
schedule is used for both encryptions. In total [74] estimates that 7664 equations
in 6464 variables using 12064 linear and quadratic terms are required. Roughly
speaking it is desirable to keep the number of free terms as low as possible so as
to maximise the solution speed for such a system (see Sect. 2.2.3.17). For Khazad
there are 4400 free terms. It is found that twice as many free terms are required
for MISTY1, suggesting that MISTY1 is more secure than Khazad [74]. However,
this is perhaps misleading because, as [74] points out, they restrict themselves
to quadratic equations for their count whereas S-box S7 of MISTY1 has a much
more concise representation using cubic equations. If cubic equations are included
in the count then MISTY1 may appear less secure than Khazad.

2.4.3 MISTY1

2.4.3.1 The design

MISTY1 was first published in 1996, is a Feistel network based on a 32-bit non-
linear function, takes 64-bit plaintext and a 128-bit key, and is recommended for
8 rounds (more generally a multiple of 4 rounds). Moreover, each pair of rounds
is separated by a layer of two 32-bit FL-blocks. MISTY1 can be implemented in
situations where resources are heavily constrained, and the constituent lookup
tables are optimised for hardware performance. The entire algorithm is built
from recursive components such that at each level the structure is again a secure
Feistel-like structure. The recursive design adds a lot of complexity to the cipher,
making analysis hard. The additional FL or FL−1 functions every odd round,
for encryption or decryption respectively, take 32-bit input and output as well
as taking a 32-bit subkey as input. The FL layers are added to avoid attacks
other than differential and linear cryptanalysis. The modified Feistel structure
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uses an FO function which has 32-bit input and output as well as taking a 64-
bit subkey and another 48-bit subkey. This FO function contains an FI function
which has 16-bit input and output as well as taking a 16-bit subkey. The FI
function contains 7 × 7-bit, and 9 × 9-bit S-boxes. This encryption structure is
shown in Fig. 2.5, where the 64-bit plaintext is first split into two 32-bit left and
right parts, and then converted to ciphertext via bitwise XOR, FO and FL/FL−1

operations.
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Fig. 2.5: Encryption for MISTY1

The rounds are summarised algebraically as follows:

odd rounds Ri = FLi(Li−1,KLi) Li = FLi+1(Ri−1,KLi+1)⊕ FOi(Ri,KOi,KIi)
even rounds Ri = Li−1 Li = Ri−1 ⊕ FOi(Ri,KOi,KIi)

with a final FL operation after the last round, to ensure that decryption is like
encryption apart from a reverse of the subkey order and the interchange of FL
and FL−1. The KL’s, KO’s and KI’s in the above round expressions are subkeys
which are derived from the 128-bit key by using the following key schedule. We
first partition the 128-bit key into eight consecutive 16-bit key values K1, . . . ,K8.
We then generate K ′i subkeys by using the FI function as follows,

K ′i = FI(Ki,Ki+1)

where the indices are taken cyclically. Then using these subkeys we can derive
the subkeys used in the round functions by applying the subkey mapping table of
Table 2.3:
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Table 2.3. Subkey Mapping Table

Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KIiL KIiR
Actual Ki Ki+2 Ki+7 Ki+4 K′

i+5 K′
i+1 K′

i+3 Ki+1
2

odd i K′
i+1
2

+6
odd i

K′
i
2
+2

even i K i
2
+4

even i

The subkeys of Table 2.3 are then used in the functions FL, FO, and FI, as
shown in Figs 2.6, 2.7, and 2.8 (the FL−1 function is similar to the FL function).
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Fig. 2.6: FL function for MISTY1

The input to the FL function comprises a 32-bit data input X(32) and a 32-bit
subkey KLi(32). Note that ∩ means bitwise AND, and ∪ means bitwise OR. The
input data is split into two 16-bit halves, XL(16) and XR(16) where,

X(32) = XL(16)|XR(16)

The subkey is split into two 16-bit subkeys, KLiL(16) and KLiR(16) where,

KLi(32) = KLiL(16)|KLiR(16)
The FL function is then defined as,

YR(16) = (XL(16) ∩KLiL(16))⊕XR(16)

YL(16) = (YR(16) ∪KLiR(16))⊕XL(16)

where the output is Y(32) = YL(16)|YR(16).
The input to the FO function comprises a 32-bit data input X(32) and two

sets of subkeys, a 64-bit subkey KOi(64) and a 48-bit subkey KIi(48). The input
data is split into two 16-bit halves, L0 and R0 where,

Xi(32) = L0(16)|R0(16)

The subkeys are divided into 16-bit subkeys where
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Fig. 2.7: FO function for MISTY1
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KOi(64) = KOi1(16)|KOi2(16)|KOi3(16)|KOi4(16)
KIi(48) = KIi1(16)|KIi2(16)|KIi3(16)

Then for each integer j with 1 ≤ j ≤ 3 we define:

Rj = FIij(Lj−1 ⊕KOij ,KIij)⊕Rj−1
Lj = Rj−1

Finally, L3(16) is XORed with KOi4 and concatenated with R3(16). The function
returns Yi(32) = (L3(16) ⊕KOi4)|R3(16).
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The function FIj takes a 16-bit data inputXj(16) and a 16-bit subkeyKIij(16).
The input data is split into two unequal components, a 9-bit left half L0(9) and
a 7-bit right half R0(7) where Xj(16) = L0(9)|R0(7). The key KIij(16) is similarly
split into two unequal components. FI uses two S-boxes, S7 and S9, mapping
7 bits to 7 bits, and 9 bits to 9 bits respectively. FI also uses two additional
functions ZE() and TR(). These are defined as follows,

y(9) = ZE(x(7)) ZE takes the 7-bit x(7) and converts it to a 9-bit value y(9)
by adding two zero bits to the most significant end.

y(7) = TR(x9) TR takes the 9-bit x(9) and converts it to a 7-bit value y(7)
by discarding the two leftmost bits.

Then FI is defined by the following operations.

L1(7) = R0(7) R1(9) = S9(L0(9))⊕ ZE(R0(7))
L2(9) = R1(9) ⊕KIijR(9) R2(7) = S7(L1(7))⊕ TR(R1(9))⊕KIijL(7)
L3(7) = R2(7) R3(9) = S9(L2(9))⊕ ZE(R2(7))

Finally, L3(7) and R3(9) are concatenated to give Y(16) = L3(7)|R3(9).
The S-boxes which are contained in the FI function are designed to be effi-

cient for both combinational logic and look-up table implementations, owing to
the relatively small numbers of terms in the Algebraic Normal Forms (ANFs) of
the constituent functions of the S-boxes. This results in small hardware imple-
mentation cost and short delay time.

Both 7 and 9-bit S-boxes are chosen to optimise the provable security of
MISTY1 against differential and linear cryptanalysis, and both S-boxes achieve
the minimum possible differential and linear biases for S-boxes of their size.

2.4.3.2 Security analysis

MISTY1 [355] has been widely studied for five years and no serious security flaws
have been found. It should be noted that a variant of MISTY1, namely KASUMI,
has been chosen for the 3GPP standard. Therefore many attacks on MISTY1 may
also be relevant to KASUMI, and vice versa. Both MISTY1 and KASUMI use
nonlinear invertible FL functions to introduce AND and OR operations to the
cipher. However, unlike MISTY1, KASUMI is a pure 8-round Feistel cipher, where
in the odd rounds we first apply FO then FL, and in the even rounds we first
apply FL then FO. Moreover, unlike KASUMI, in MISTY1 after the final swap
there is an additional XOR with the subkey on the left-hand side. The S7 and
S9 S-boxes of MISTY1 and KASUMI are not identical but are very similar and
both exhibit affine relationships between the bit outputs [54] (see Sect. 2.9.1). In
particular, for the S-box, S9, of MISTY1, the rotation of the input by any number
of bits does not affect the least significant bit of the output (see Sect. 2.9.1) —
this is, perhaps, a surprising result. It is considered that KASUMI has a weaker
key schedule than MISTY1, as the key schedule of MISTY1 is nonlinear whereas
that of KASUMI is linear. Further details of the differences between MISTY1
and KASUMI can be found in [176]. There is also a block cipher called MISTY2
by the same designers. MISTY2 is also a 64-bit block cipher using 128-bit key.
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This cipher has a newer structure than MISTY1 and recommends the use of 12
rounds as opposed to 8 rounds for MISTY1.

Attacks on MISTY1 without the FL operations have been accomplished up to
five rounds. The low algebraic degree of the constituent functions of the MISTY1
S-boxes has invited higher order differential attacks by Lai [323] and Knudsen
[294] on MISTY1 without FL functions. A higher order differential attack on
MISTY1 without FL functions has also been presented by Tanaka et al. [502].
However, it appears that the key action in the FL function can significantly mod-
ify the algebraic degree of MISTY1. The Slide attack has been proposed against
MISTY1 by Biryukov and Wagner [80] where the same subkey is applied to every
nth round, and this is appropriate to MISTY1 because of its simple key sched-
ule. It turns out that without the FL functions, the slide attack works when one
of 65536 keys is used. However, MISTY1 maintains some resistance to slide at-
tacks, and this is because one of the design criteria for MISTY1 was resistance
to related-key attacks. It has been shown by Biham et al. [57] and Knudsen [296]
that any Feistel cipher with a bijective round function has impossible differentials
in 5 rounds, and MISTY1 without FL layers falls into this category. However,
Impossible differential attacks appear to be inappropriate for MISTY1 as the FL
functions add extra dependency on the particular key at each round. MISTY1 is
designed to have provable security against differential and linear cryptanalysis,
and this proof is achieved by bounding the average differential/linear probabilities
for the recursive layers of MISTY1; if the average differential/linear probability
of each layer is p then the complete cipher has probability upper-bounded by p4.
It is claimed by the designers that the unequal division of the S-boxes into 7 bits
and 9 bits has an advantage against differential and linear cryptanalysis, as the
probability bound can be made lower for S-boxes that use odd as opposed to even
numbers of bits. But there are hardware and software penalties resulting from
this asymmetry. Knudsen and Moen have recently applied Integral Cryptanaly-
sis [311, 372] to MISTY1 including FL functions. This includes 4 round and 5
round attacks. The integral attacks exploit the Sakurai-Zheng property that was
initially applied to MISTY2. This property is as follows. Let F (x, y) denote the
left half and right half of the output after three rounds of MISTY2 on plaintext
< x, y >. Then F (x, y) = f(x)⊕ g(y) where f and g are key-dependent bijective
mappings. Therefore, for any two arbitrary sets of 32-bit values, S and T, we
have,

∑

<x,y>∈S×T F (x, y) = 0. This is a three-round integral for MISTY2. This
property can also be applied to MISTY1. The 5-round attack by Knudsen and
Wagner in [311] uses the Sakurai-Zheng property once, and the 4-round attack
uses the property twice. It requires a data complexity of 234 and a time/memory
complexity of 248. Also a new attack, the Slicing Attack by Kuhn [319, 318] has
been applied to the 4-round version of MISTY1, making use of the special struc-
ture and position of the key-dependent linear FL functions. These FL functions
present a subtle weakness in the 4-round version of the cipher. Both this attack
and that of [311] are particularly interesting as they include the FL layers, unlike
many other attacks which ignore the FL layer.

Generalised linear characteristics through both the 7-bit and 9-bit S-boxes of
MISTY1 with maximum and minimum bias are searched for in [426]. It is found
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that, although both S-Boxes have an optimally low bias relative to the Walsh-
Hadamard Transform (WHT), with PAR = 2.0, the bias increases significantly
with respect to many generalised linear approximations, in particular those cov-
ered by theHI transform, where the PAR = 16.0 and 32.0 for 7 and 9-bit S-boxes
respectively. This suggests that, whereas the odd-length S-box width (7 and 9)
minimises the possible linear characteristic with respect to the WHT, the odd-
length restriction in fact weakens the S-box with respect to certain generalised
linear approximations, to give a PAR of 2d

n
2 e, where n = 7 or 9. This is a counter-

argument to the argument proposed by the designer for using odd-length S-boxes
— more general linear approximations suggest that even-length S-boxes may be
better (although such generalised linear approximations have not yet led to an
attack).

As discussed in the security analysis for Khazad, Biryukov and De Cannière
[74] compare minimal systems of multivariate polynomials which completely de-
fine certain block ciphers, including MISTY1. For MISTY1 S9 is designed as a
system of 9 quadratic equations in 54 terms. S7 is designed as a system of 7
cubic equations in 65 terms, but can also be defined by 11 quadratic equations
in 93 terms. The quadratic representations are utilised and, along with a set of
linear equations to define the linear layers, the whole of the block cipher can be
described by 1824 equations in 1664 variables using 5848 linear and quadratic
terms [74]. Similarly, the key schedule can be described by 432 equations in 528
variables using 1848 linear and quadratic terms. Two plaintext/ciphertext pairs
are required to solve the system, implying a doubling of the cipher count, but not
for the key schedule. In total [74] estimates that 4080 equations in 3856 variables
using 13544 linear and quadratic terms are required. This gives the number of free
terms as the number of terms minus the number of equations (see Sect. 2.2.3.17).
For MISTY1 this is 9464 free terms. When compared with Khazad this seems
large, but the count may decrease significantly if cubic representations are con-
sidered for S7 of MISTY1.

The main advantage of MISTY1 is its provable security against differential
and linear cryptanalysis.

2.4.4 SAFER++64

2.4.4.1 The design

SAFER++64 [353] is a development from the existing SAFER family of ciphers
and uses a combination of substitution and linear transformation to achieve con-
fusion and diffusion, respectively. Recently, the 128-bit plaintext version has been
adopted for use in the authentication scheme in Bluetooth, the wireless com-
munication protocol. We consider here the legacy version which takes in 64-bit
plaintext and 128-bit key, and outputs 64-bit ciphertext. The designers recom-
mend this version be used with 8 rounds to achieve sufficient security. SAFER+
was a submission to the AES, and it is claimed that SAFER++ is simpler and
faster than SAFER+, and at least as strong, cryptographically. The main new
feature in SAFER++, as compared to all earlier versions of SAFER (including
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SAFER+), is the use of a 4-point Pseudo-Hadamard Transform (PHT), instead
of the 2-point PHT. SAFER++ uses the 4-point PHT to achieve fast, rapid diffu-
sion at low complexity. One 16-byte subkey is used with each round, along with
one post-cipher output transformation which is a final 8-byte subkey addition.
Another aspect of the cipher is its use of two incompatible group additions to
achieve key addition, namely bitwise XOR (mod 2), and bytewise addition, mod
256. Moreover, the S-boxes are exponential and logarithmic functions, mod 257,
which are combined with the two addition operations in such a way as to thwart
potential homomorphisms. One round of the encryption is shown in Fig. 2.9, and
an alternative view of the encryption round is given in Fig. 2.10. The decryp-
tion round is similar; however even if one does not consider the key schedule,
decryption is not identical to encryption for SAFER++64.

4−PHT 4−PHT 4−PHT 4−PHT

4−PHT 4−PHT 4−PHT 4−PHT

Pre−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Mid−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Round Input (8 bytes)

Round Output (8 bytes)
1   2     3     4      5    6     7    8

1,2,...8

Ki

Spread to Upper Half Bytes with Lower Half Bytes All−Zero
 1    2    3      4      5        6      7      8      9      10     11    12    13   14   15   16

Select Bytes
9,10,....16

Select Bytes

1     2     3     4     5     6     7     8

1    2     3       4       5      6       7      8

Drop Lower Half Bytes and Merge to Form Bytes

xor  add      add     xor       xor      add       add     xor

exp  log      log      exp      exp      log       log     exp

add   xor     xor     add        add     xor       xor     add

Fig. 2.9: Encryption Round for SAFER++64

Key addition for a round is bytewise and uses two different (incompatible)
group operations, where subkey bytes 1,4,5,8 are added using bitwise XOR, and
subkey bytes 2,3,6,7 are added using bytewise addition, mod 256. After 8 rounds
of Fig. 2.9 there is a final 8-byte key addition whose operations are identical to the
first addition in each round. The decryption process follows the same structure
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Fig. 2.10: Alternative View of Encryption Round for SAFER++64

as encryption with the round keys used in reverse order, the PHT replaced with
the inverse PHT, the shuffle replaced with the inverse shuffle, addition replaced
with subtraction, and exp (log) replaced with log (exp). The 4-PHT matrix, H4,
which is used to achieve linear diffusion is as follows,

H4 =







2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 1







mod 256

where each element of the matrix represents an 8-bit byte, and H4 acts on a
vector with 8-bit byte entries, mod 256. This PHT matrix can be implemented
efficiently, as H4 is a matrix of low weight. The shuffle permutation has also
been chosen to maximise diffusion in conjunction with the PHT. H4 is not an
involution and the inverse of H4, which is used for decryption to implement the
inverse PHT, is as follows,

H4 =







1 0 0 −1
0 1 0 −1
0 0 1 −1
−1 −1 −1 4







mod 256
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H−14 is also easy to implement, as it also has low weight. The advantage of the
PHT method of diffusion is that a linear diffusion matrix, M , of dimensions
16 × 16 bytes is implemented by means of smaller, simpler 4 × 4 byte 4-PHT
matrices. Moreover, the designers argue that because each row of M contains at
least ten 1’s, the diffusion of the cipher is wide and fast.

The nonlinear layer of the cipher is achieved by means of two S-boxes, exp
and log. exp realises the function y = 45x mod 257 for bytes 1,4,5,8, and log
realises the function y = log45(x) mod 257 for bytes 2,3,6,7, where log45(0) =
128 by convention. The exp operation is juxtaposed with XOR, and these two
operations do not admit a homomorphism, explicity 45x1⊕x2 6= 45x145x2 . This
incompatibility between exp and XOR enhances the security of the system. A
similar incompatibility exists between log and add, which are also juxtaposed in
the cipher. One reason for choosing S-boxes based on exp and log is that their
associated ANF (Algebraic Normal Form - i.e. boolean expression) descriptions
relating input and output look random, are of high degree, and contain many
terms. This is a different philosophy than that used to design the S-boxes for
MISTY1, where the ANF functions contain relatively few terms so as to simplify
implementation complexity.

The key schedule for SAFER++64 uses 9 16-byte bias words in order to ran-
domize the produced subkeys so as to help to avoid weak keys. These bias words,
Bj , are determined by,

Bi,j = 45(45
17i+j mod 257) mod 257

where Bi,j is the ith byte of Bj .
The odd-index 16-byte subkeys are generated using the method outlined in

Fig. 2.11, and given in detail in Fig. 2.12. A similar strategy holds for the even-
index subkeys.

For SAFER++64, only subkeys K1, . . . ,K9 are used. Another interesting as-
pect of SAFER++ is that it is possible to develop mini-versions of the cipher with,
e.g. 4-bit nibble wordlengths, which still retain the main features of the cipher,
and this enables the thorough testing of different attack strategies before extrap-
olating them to the larger, real cipher. Also one should note that the spreading
of 64 bits to 128 bits, and the subsequent dropping of 128 bits down to 64 bits
is an unusual feature of SAFER++ which distinguishes it from many other block
ciphers.

2.4.4.2 Security analysis

No security flaws have been found with SAFER++64 [353] and it has many simi-
larities to SAFER++128. One weakness found in previous versions of the SAFER
family by Knudsen was in the key-schedules [295, 298], but these weaknesses have
been dealt with in SAFER++64. Other pre-NESSIE attacks on the SAFER family
include truncated differentials by Knudsen and Berson [304], and Murphy [374]
identifies a potential algebraic weakness regarding the existence of invariant Z-
modules within the PHT layer. These modules and their cosets are not diffused
by the PHT layer, and so provide a way to cope with diffusion in SAFER, regard-
less of the key schedule. One attack in [374] which used this property enabled a
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Fig. 2.11: Generation of Odd-Index Subkeys in the SAFER++ Key Schedules.
∑

denotes bytewise summation, mod 256

projection of the message/ciphertext space onto a 4-byte Z-submodule so that
the probability of any message projection giving any ciphertext projection is in-
dependent of 1

4 of the key bytes. This result, along with the results of [295] led
to a change in the SAFER key schedule. The designers recommend 8 rounds to
ensure security for the cipher and not fewer than 7 rounds, and they claim that
one of the main reasons for the security of the cipher against differential and
linear cryptanalysis is the high diffusion PHT layer. The designers conclude that
SAFER++ with six or more rounds is secure against differential cryptanalysis,
and with two and a half or more rounds is secure against linear cryptanalysis.
However, recently Nakahara et al. [382] applied techniques that were first used
to more generally attack the SAFER family in [381], and [382] showed that three
and a half rounds of SAFER++64 can be attacked requiring 233 known plaintexts.
The reason for this discrepancy between the two and a half rounds claimed by
the designers and the three to four rounds claimed by [382] is largely because
the designers restricted themselves to homomorphic attacks, whereas [382] ap-
plies strictly non-homomorphic attacks where some key bits are assumed fixed.
Therefore the results of [382] must be seen in the context of a weak-key class.
Table 2.4 gives a summary of the complexity of linear attacks on SAFER++ [382].
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Fig. 2.12: Detailed Generation of Odd-Index Subkeys in the SAFER++ Key Sched-
ules

Table 2.4. Complexity of Linear Attacks on SAFER++

# Rounds Linear # Known # Subkey Bits Attack Fraction of
Attacked Relation Plaintexts Explored Complexity Keys

2 (1) 25 37 242 ♣

3.5 (3) 233 88 2121 ♣ 2−6

♣ The attack applies to all key sizes defined for SAFER++.

One important point to note with regard to the linear attack of [382] is that it
identifies a surprisingly small byte and bit branch number for the PHT diffusion
layer. Whereas the designers of SAFER++ use the fact that the lowest row weight
of the matrix M is 10, implying a high diffusion, a more detailed examination of
the matrix reveals a byte branch number ≤ 7 and a bit branch number ≤ 5. More-
over the S-box defined by y = 45x mod 257 contains a linear relationship which
holds with probability 1. In other words, we can write y0 = f(x0, x1, . . . , x6)+x7,
where y0 is one of the output bits of the S-box, and depends linearly on the input,
x7. This moderated diffusion combined with a high linear characteristic is what
enables this linear attack on three to four rounds of SAFER++.

It is also interesting to note that affine relationships exist between the bit
outputs of the S-box, both for exp45 and log45 [54] (see Sect. 2.9.1).
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2.4.5 Triple-DES

2.4.5.1 The design

One variant of Triple-DES which is in widespread use is called two-key Triple-
DES. It takes a 64-bit plaintext and a 2×56 = 112-bit key. It occurs as a natural
extension of the existing standard DES, where security has been increased, in
particular the key input size, by repeating the cipher three times and the key
twice. Note that double-DES is not an option due to a meet-in-the-middle at-
tack which renders double-DES with no greater security than single DES. To
allow for backwards-compatibility, two-key Triple-DES was suggested in the form
encrypt-decrypt-encrypt although, in fact, the form encrypt-encrypt-encrypt can
also revert to single DES encryption by using the all-zero key in the first two
encryptions, and a single-DES key in the third encryption (the all-zero key being
self-dual). There is also three-key Triple-DES (3DES), which takes 64-bit plain-
texts and a 168-bit key, and this is also in widespread use. It is considered to be a
lot more secure than two-key Triple-DES and can also be made backwards com-
patible with DES by making all three keys the same in encrypt-decrypt-encrypt
mode. One should also mention DESX which also takes three keys but is rela-
tively efficient compared to Triple-DES, requiring only a single DES encryption
preceded by XOR with another key, and completed by XOR with a third key.

A round of DES is summarised in Fig. 2.13. DES is a Feistel cipher. L and
R are the left and right splittings of the 64-bit plaintext, and C and D are the
left and right splittings of the 56-bit key. The key is input linearly via XOR and
there are 8 6-bit in, 4-bit out S-boxes which are applied in parallel to the 48-bit
input to give 32-bit output.

R DL C

R DL C

XOR

XOR

Left Shift(s) Left Shift(s)

32 bits 32 bits 28 bits 28 bits

i−1 i−1 i−1 i−1

i i i i

Permutation
(P)
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Ki

F 48

32

32

48

48

Fig. 2.13: A Round of DES
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Essentially the DES standard recommends 16 rounds, and three-key Triple
DES is simply a concatenation of three instances of DES, where a different key
is input for each instance of DES to give a total key input of 3× 56 = 168 bits.

2.4.5.2 Security analysis

The security of Triple-DES is significantly less than the 128 bits required for
this cipher category and its performance on workstations is rather bad. However
Triple-DES will still be considered as a benchmark for other algorithms. It has
been shown by Merkle and Hellman in [367] that two-key triple encryption can
be broken using 256 chosen plaintexts, and 2112 single encryptions. The standard
way to attack triple-DES is to use the meet-in-the-middle attack [366], requiring
3 plaintext/ciphertext pairs, and 2112 single encryptions. Advanced meet-in-the-
middle attacks for two-key triple encryption have been proposed by Van Oorschot
and Wiener in [506]. Two-key Triple-DES is generally considered weaker than
three-key Triple-DES.

Clearly, any attack on DES is relevant to an attack on Triple-DES and in fact
the best attacks on reduced variants of Triple DES are the attacks on DES. A well-
known weakness of DES is the complementation property. Specifically, let p and
k be plaintext and key inputs to DES, respectively. Then the complementation
property is summarised as follows:

DESk(p) = DESk(p)

where ∗ denotes the complement of the bit-string, ∗. However, this evident devi-
ation from a random cipher does not comprise the cipher to any great extent. It
has been shown that differential cryptanalysis can cover as many as 18 rounds
of DES, and it is suspected that this may also be so for linear cryptanalysis.
Moreover, due to the no-swap between rounds 16 and 17, it may be possible to
gain one more round. It is also interesting to note that affine relationships exist
between the bit outputs of the S-box, for the first seven S-boxes of DES [54] (see
Sect. 2.9.1).

Kelsey et al. used related-key techniques [288] to attack three-key triple-DES,
and Biham [52] encrypts the same plaintext 228 times using Triple-DES under 228

different keys, allowing the attacker to recover one of the 228 keys using 284 steps
and 284 single encryptions. In [340] a more efficient meet-in-the-middle attack is
presented by Lucks which can break three-key triple DES with about 1.3× 2104

single encryption steps, and 232 known plaintext/ciphertext pairs. The attack
works by saving single encryption steps and exploiting known and/or chosen
plaintext/ciphertext pairs, the complementation property weakness of DES and
a certain number of weak keys.

2.5 128-bit block ciphers considered during Phase II

The 128-bit block ciphers selected for phase II of NESSIE were Camellia, RC6,
and SAFER++128. We also continued to study the AES, in order to compare the
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submitted ciphers with a current standard. None of the ciphers considered have
been broken so the following security evaluation identifies weaknesses that occur
in reduced-round versions of the ciphers, and weaknesses that may lead to more
effective attacks in the future. We first describe each cipher in some detail, along
with the most important attacks known on each cipher. Note that the algorithms
given here are not complete specifications, but references are given to complete
specifications which may be found on the NESSIE website. After discussing each
cipher we summarise and compare some of the distinguishing features of the
ciphers, identifying potential weaknesses and noting the best-known attacks, as
shown in Tables 2.16 and 2.17 of Sect. 2.9.2.

2.5.1 Camellia

2.5.1.1 The design

Camellia [19] is an 18-round 128-bit block cipher which supports 128-, 192-, and
256-bit key lengths, with two layers of two 64-bit FL-blocks after the 6th and 12th
rounds. It is a byte-oriented 18-round Feistel cipher with a particular emphasis on
low-cost hardware applications, and is designed to be resistant to differential and
linear cryptanalysis with linear bias and differential probabilities both ≤ 2−128.
Camellia uses four 8×8-bit S-boxes with input and output affine transformations
and logical operations. However there is no 32-bit integer addition, so as to avoid
the possibility of a long critical path (longest inherent sequential computation)
due to the carry propagation associated with addition. The diffusion layer uses
a linear transformation based on a Maximum-Distance-Separable code with a
branch number of 5 (activity on t input bytes to the linear transformation layer
will diffuse to activity on at least 5−t output bytes from the linear transformation
layer). Camellia also uses FL and FL−1 functions which are inserted every 6
rounds so as to enhance irregularity of the cipher. The FL functions are similar
to those of MISTY, except that Camellia also uses a 1-bit rotation so as to
make bytewise cryptanalysis harder. The entire structure of Camellia is given in
Fig. 2.14. The FL and FL−1 functions are shown in Fig. 2.15.

The design of Camellia is based on E2 which was a previous block cipher
by the same designers and was a submission to the AES. The main difference
between E2 and Camellia is the adoption, for Camellia, of the 1-round SPN,
not the 2-round SPN of E2, leading to an expected improvement in speed for
Camellia. The design of the F-function of Camellia follows that of E2. The F-
function transforms a 64-bit input, X64, to a 64-bit output, Y64, using a 64-bit
subkey k64, given by Y64 = F (X64, k64). More specifically, the F function is
described by,

F : L× L→ L
(X64, k64)→ Y64 = P (S(X64 ⊕ k64))

where L denotes a vector-space of 64 bits, P is a byte-linear transformation,
and S operates in parallel on 8-bit segments of the 64-bit input, with each 8-bit
segment being subject to an 8×8 S-box transformation (one of 4 S-boxes, so that
S is given by s1, s2, s3, s4, s2, s3, s4, s1). Each of the 8×8-bit S-boxes, s1, s2, s3, s4
is affine equivalent to x−1 over GF(28) — which is similar to the Rijndael design.
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Fig. 2.14: Camellia

The P transformation is designed to have an optimal branch number and can be
represented as follows,
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The key schedule of Camellia makes use of the F-function of the encryption
module, and is the same for encryption and decryption. The user key is encrypted
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by means of the F-function using pre-fixed constants, where these constants,
∑

i, are defined as continuous values from the hexadecimal representation of the
square root of the ith prime. The subkeys are then generated partly from rotated
values of the user-input key, K (where K = KL(128), K = KL(128)||KRL(64), or
K = KL(128)||KR(128), for a 128-bit, 192-bit, or 256-bit key, K, respectively), and
partly from rotated values of the encrypted keys, KA and KB . Fig. 2.16 shows
how to generate these encrypted keys.
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Fig. 2.16: Key Schedule for Camellia

We refer the reader to the documentation of Camellia [19] for a more detailed
description.

2.5.1.2 Security analysis

No security flaws have been found for Camellia and it has an interesting design.
The designers [20] claim that for Camellia no differential/linear characteristics ex-
ist with linear bias and differential probabilities > 2−128 over 12 rounds and 2−132
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over 15 rounds. This claim is due to the use of four S-boxes which are affine trans-
formations of x−1 over GF(28). This particular mathematical function ensures
optimal differential and linear characteristics through the S-box (irrespective of
the affine transformation) of 2−6. Another reason for the strong resistance of the
cipher to differential and linear cryptanalysis is the use of a linear transformation
for the diffusion layer with a high branch number of 5. The affine transforma-
tions which modify the input and output to the S-boxes are designed to provide
resistance to interpolation attacks by making each S-box less algebraic in charac-
ter. The designers also claim that 10 rounds is indistinguishable from a random
permutation with respect to truncated differential and linear cryptanalysis. As
with all Feistel ciphers with bijective F -function, an impossible differential attack
exists over 5 rounds of Camellia [296], but the designers have not found any other
attacks of this type. The designers also claim security against interpolation, linear
sum, and Square attacks. Iterated ciphers with identical rounds are susceptible
to the Slide attack, and this is one reason why the FL functions are inserted in
the cipher every 6 rounds, so as to introduce irregularity and resistance to Slide
attacks.

The security of Camellia against the Square attack is discussed by Yeom et al.
in [523]. A 4-round distinguisher allows for a Square attack (see Sect. 2.2.3.15),
and four-round Camellia can be attacked by guessing a one byte subkey and using
216 chosen plaintexts. This attack may be extended up to 9 rounds including the
first FL/FL−1 layer by considering the key schedule. In [484] Shirai et al. discuss
the security of Camellia against differential and linear attack, and the security is
evaluated against the upper bounds of maximum differential characteristic prob-
ability (MDCP) and maximum linear characteristic probability (MLCP), calcu-
lated by determining the least numbers of active S-boxes, found by search. An
evaluation method for truncated differential and linear paths is used to discard
wrong paths. Using the above techniques, tighter upper bounds on MDCP and
MLCP were found for reduced-round Camellia. Consequently, 10-round Camellia
without FL/FL−1 has no differential and linear characteristic with probability
higher than 2−128. Shirai developed these attacks further in [483], proposing dif-
ferential and linear attacks on Camellia without FL/FL−1 layers, and boomerang
and rectangle attacks on Camellia with FL/FL−1 layers. The search complexity
for the attacks of [483] is reduced by distinguishing between dependent and inde-
pendent variables in the multi-round characteristics. Shirai obtains a differential
attack on 11 rounds without FL/FL−1 layers using an 8-round characteristic,
and a linear attack on 12 rounds without FL/FL−1 layers using a 9-round linear
approximation. The boomerang and rectangle attacks are on 10-round Camellia
with FL/FL−1 layers, and use a technique developed by Biham et al. [60, 61],
where a cipher is described as Ef ◦ E1 ◦ E0 ◦ Eb, such that the FL/FL−1 layer
occurs between E1 and E0. Truncated and impossible differential cryptanalysis
of Camellia (without FL/FL−1 functions) is described by Sugita et al. in [501],
improving on the best known truncated and impossible differential cryptanaly-
sis. A 9-round bytewise characteristic is shown that may lead to an attack on
reduced-round Camellia without FL/FL−1 in a chosen plaintext scenario. A 7-
round impossible differential is also shown by [501] on Camellia without FL/FL−1
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functions. However, the designers of Camellia suspect that the FL and FL−1 func-
tions will make attacking Camellia using impossible differentials difficult, since
the functions change differential paths depending on key values. A Square attack
on Camellia is proposed by He and Qing in [248], requiring 2112 encryptions and
13 × 28 plaintexts, over 6 rounds. The designers propose an 18-round cipher,
but claim that even a 10-round variant is secure. However, they do not describe
attacks on reduced variants of Camellia. A 3-round iterative differential charac-
teristic with probability 2−52 has been found by Biham et al. in [59], which can
be iterated to further rounds. They also found 5 additional 7-round characteris-
tics with probability 2−104. A 9-round variant of Camellia (without FL layers)
was attacked using 2105 chosen plaintexts. Also, a one-round truncated iterative
differential was found which over 7 rounds has probability 2−112 (assuming no FL
layer). This can be extended to 8 rounds with probability 2−112. This differential
has the added advantage that it passes through the FL/FL−1 layers with proba-
bility 2−8. Linear cryptanalysis of Camellia did not produce any efficient results
— the best linear approximation of the S-boxes being 1

2 ± 1
16 . A higher-order

differential attack on 10 rounds of 256-bit key Camellia without FL rounds is
performed by Kawabata and Kaneko in [284]. This also leads to an attack on 9
rounds for a 192-bit key and an attack on 8 rounds for a 128-bit key.

A recent embedding by Murphy and Robshaw of the AES, Rijndael, in a
larger block cipher, the Big Encryption System (BES) [375, 377] has led to ques-
tions regarding future potential attacks on the AES. Camellia uses the same x−1

function for the S-box as Rijndael, and hence is open to the same form of at-
tack. However, Camellia also inserts FL and FL−1 layers every six rounds, and
an initial estimate of the extra complexity needed to overcome these layers for
a BES-style redescription is about 216. In short, if an attack using BES and
a system of overdefined quadratic equations was ever successful on AES, then
it might also be quite successful on Camellia. BES is discussed further in the
section on Rijndael-128 of this report. As discussed in the security analyses for
Khazad and MISTY1, Biryukov and De Cannière [74] compare minimal systems
of multivariate polynomials which completely define certain block ciphers, in-
cluding Camellia. As pointed out in [138], the Camellia (and Rijndael) S-box
can be described by a system of 23 quadratic equations in 80 terms. Quadratic
representations are utilised in [74] and, along with a set of linear equations to
define the linear layers, the whole of the block cipher can be described by 5104
equations in 2816 variables using 14592 linear and quadratic terms. Similarly,
the key schedule can be described by 1120 equations in 768 variables using 3328
linear and quadratic terms. In total [74] estimates that 6224 equations in 3584
variables using 17920 linear and quadratic terms are required. This gives the
number of free terms as the number of terms minus the number of equations (See
Sect. 2.2.3.17). For Camellia this is 11696 free terms. Roughly the same figures
occur for Rijndael.

Finally, Fuller and Millan [208] recently observed that the bit-output func-
tions of the S-box which is x−1 over GF(28) are all affine transformations of the
same function. This observation was given in relation to the Rijndael S-box, but
Camellia uses essentially the same S-box. This observation of [208] suggests a
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potential extra hardware saving for the Camellia S-box, although this may later
also be seen as a security weakness (see Sect. 2.9.2).

2.5.2 RC6

2.5.2.1 The design

We consider here the version of RC6 [273] which takes 128-bit plaintext and key-
lengths from 0 to 256 bytes, although the most useful variants may be versions
with 16, 24, or 32-byte keys. 20 rounds are recommended. RC6 is quite a simple
cipher to describe and it is a natural progression from the cipher RC5 which
has undergone cryptanalysis for around 8 years without serious breaks or major
security weaknesses being identified (although it is interesting to note that a key
was recently found for 64-bit RC5 using a distributed internet exhaustive key
search (see Sect. 2.2.3.1) involving over 300000 people over 5 years — the aim
of a distributed internet search is to partition the exhaustive key search problem
into many small subproblems which are then solved independently by participants
in the search). However, RC5 was broken in a series of three papers which each
improved the previous paper’s result by a factor of about 1000 [305, 283, 76].
These attacks are generally based on the fact that the rotation amounts in RC5
do not depend on all the bits in a register. These attacks led to a redesign of RC5
into RC6 prior to submission of RC6 to the AES. The designers [273] claim that
RC6 is an improvement on RC5, because of the introduction of fixed rotations
and an extra quadratic function to enhance diffusion and resistance to differential
and linear cryptanalysis. The key schedule is inherited from RC5, is quite involved
and is considered strong. The cipher is fully-parameterised so that mini-versions
(e.g. 4-bit, 8-bit, 16-bit) can be implemented and analysed, and this helps for
the security analysis of the full 128-bit cipher. For a 128-bit block size, it is
recommended to use a word size of w = 32 bits, and r = 20 rounds. RC6 uses a
32-bit multiplication, mod 2w, to enhance security, and therefore benefits greatly
from software/hardware implementations with optimised multiplication. A round
in RC6 is a bit like a round in DES, where half of the data is updated by the
other half, and then the two halves are swapped. In fact, [474] reconfigures RC6
as a Feistel-like cipher by swapping the B and C registers. The full encryption
procedure is as follows:

Input: Plaintext in A,B,C,D
Output: Ciphertext in A,B,C,D
Key: S[0, 1, . . . , 2r + 3], r rounds
Procedure:
B = B + S[0] + is addition mod 2w

D = D + S[1]
for i = 1 to r do
{
t = (B × (2B + 1)) <<< log2(w) × is mult. mod 2w

u = (D × (2D + 1)) <<< log2(w) <<< is rotate left
A = ((A⊕ t) <<< u) + S[2i] ⊕ is bitwise addition mod 2
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C = ((C ⊕ u) <<< t) + S[2i+ 1]
(A,B,C,D) = (B,C,D,A)

}
A = A+ S[2r + 2]
C = C + S[2r + 3]

Decryption is similar to encryption, but not the same — for instance addition
is replaced with subtraction, and rotate right operations are used.

Two constants are added into the key schedule. The constants are Pw and
Qw, which are binary expansions of e− 2 and φ− 1, respectively, where e is the
natural logarithm, and φ is the Golden Ratio. The key schedule is as follows:

Input: User-supplied b byte key preloaded into the c-word
Array L[0, . . . , c− 1]
Number r of rounds

Output: w-bit round keys S[0, . . . , 2r + 3]
Procedure:
S[0] = Pw
for i = 1 to 2r + 3 do
S[i] = S[i− 1] +Qw

A = B = i = j = 0
v = 3×max{c, 2r + 4}
for s = 1 to v do
{
A = S[i] = (S[i] +A+B) <<< 3
B = L[j] = (L[j] +A+B) <<< (A+B)
i = (i+ 1) mod (2r + 4)
j = (j + 1) mod c

}

2.5.2.2 Security analysis

No security flaws have been found for RC6 and it has resisted cryptanalysis
during and after the AES process. It is specified over 20 rounds although the fact
that 15 of the 20 rounds were broken meant that NIST did not consider that 20
rounds gave a sufficient security margin.

The designers performed extensive differential and linear cryptanalysis of RC6
in [121] and conclude that RC6 is highly resistant to both attacks. Table 2.5 shows
non-exhaustive estimates for the numbers of plaintexts necessary to attack RC6
as quoted in [121], although some of the figures on the right-hand side of the
table exceed 2128 which is the total number of possible plaintexts.

The two most obvious notions of difference for RC6 are XOR and subtraction,
mod 2w, and [121] claims that difference using subtraction gives a more effective
attack. An aim of this type of attack will be to try to use differences that do not
provide different rotation amounts, thereby minimising the avalanche effect. The
purpose of the introduction of the quadratic function f(x) = x(2x + 1) in RC6,



62 2. Block ciphers

Table 2.5. Differential/Linear Cryptanalysis of RC6 [121]

#Rnds
attack 8 12 16 20 24
diff. crypt. 256 2117 2190 2238 2299

lin. crypt. 247 283 2119 2155 2191

a feature not in RC5, is to increase dependency of the data-dependent rotations,
and to speed-up diffusion. Both these effects improve the resistance of the cipher
to differential and linear cryptanalysis. The most manageable differential and lin-
ear attacks use one-bit characteristics as, although multiple-bit characteristics do
exist with higher probability, it is difficult to connect them up into a differential
or linear trail. The most effective type of linear approximation appears to exploit
approximation across the data-dependent rotations. The paper of [121] identifies
such approximations of the form A · Γa = B · Γb ⊕C · Γc for the data-dependent
rotation, A = B <<< C, where single-bit masks work best across the integer
addition and the quadratic functions. Moreover, the best approximation across
y = (f(x) <<< 5) is y[5] = x[0] with probability 1. In order to further protect
against the theoretical risk of multiple linear approximations and linear hull at-
tacks, the designers propose a minimum number of 20 rounds for RC6. Table 2.6
provides figures for the estimated number of plaintexts needed for a potential
multiple linear approximation attack, with or without linear hulls [121].

Table 2.6. Multiple Linear Cryptanalysis of RC6 [121]

#Rnds
attack 8 12 16 20 24
basic linear attack 262 2102 2142 2182 2222

+ mult. linear approx. 251 291 2131 2171 2211

+ mult. linear approx. + linear hulls 247 283 2119 2155 2191

Jonsson and Kaliski construct 6-round characteristics for RC6 [273], so as
to attack 8 rounds, and this leads to 276 chosen plaintext pairs for differential
cryptanalysis of 8 rounds, and 260 known plaintexts for linear cryptanalysis of
8 rounds. Shimoyama et al. [474] develop further the multiple linear attack ap-
proach for RC6 with a 256-bit key, where they generalise the Piling-Up Lemma
using a certain Matrix Representation. They achieve a 14-round key recovery at-
tack using 2120 known plaintexts and 2186 round computations. They also achieve
an 18-round key recovery attack on a weak key set of a fraction of 2−90 of the
keys with 2127 known plaintexts, 264 memory, and 2193 round computations.

As mentioned previously, the key schedule for RC6 is the same as that for RC5.
No weak keys or related-key attacks have been found for RC5, perhaps owing to
the key schedule being quite complicated — the design of the key schedule is
somewhat incompatible with the encryption structure of RC5 or RC6.
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One of the most effective attacks on RC6 is by Knudsen and Meier [306]
showing that, by means of a chosen-plaintext attack, RC6 can be distinguished
from a random permutation with up to 15 rounds, and for 1 in 280 keys up to
17 rounds can be distinguished. Moreover, key-recovery attacks can be mounted
on RC6 with up to 15 rounds faster than exhaustive search for the key. To do
this, [306] considers two round iterations of a form quite different from [121].
Instead of exploiting bitwise linear approximations, input-output dependencies
are considered by fixing the least-significant 5 bits in the first and third words of
the input block, A and C. The correlations of the corresponding two 5-bit integer
values at the output every two rounds later can then be effectively measured by
χ2 tests. This gives a considerable improvement over the basic linear attack. The
attack of [306] has similarities to that considered by Baudron et al. [34], and by
Gilbert et al. [218]. The approach of [306] is motivated by the fact that the least
significant log(w) = 5 bits in A and C are not changed by the XOR and data-
dependent rotation, if both rotation amounts are zero. Small negative rotation
events (e.g. <<< 30, or <<< 31) are also exploited in [306]. The paper [306]
also analyses mini-versions of RC6 to verify the experimental evidence, and the
15-17 round attacks are extrapolated from experimental evidence computed on
up to 6 rounds of RC6, where it is estimated that 214 more plaintexts are needed
in going from s to s + 2 rounds. Furthermore weak key classes are exploited
for RC6 in [306], and these exist because RC6 uses addition mod 232, which
introduces carry propagation into the cipher. The results of these χ2 attacks on
RC6 provide further evidence for the strength of RC6, as the results suggest that
the χ2 attacks tend to attain the same level of complexity as previous differential
and linear attacks [102], and other attacks [289].

In summary, the attacks currently known on RC6 suggest that 20 rounds is
secure, although the security margin may be somewhat narrow.

2.5.3 AES (Rijndael)

2.5.3.1 The design

We here consider 128-bit plaintext block Rijndael, with a 128, 192, or 256-bit key
over 10, 12, or 14 rounds, respectively. Rijndael [150] has recently been selected
as the Advanced Encryption Standard AES and has therefore been subject to
intensive study in the last few years. Rijndael is a variant of the Square block
cipher [147]. The cipher is non-Feistel, and emphasises a combination of optimal
diffusion [151] with optimal nonlinearity for the S-box. The key is added linearly
via XOR. Encryption is similar but not identical to decryption. In software, de-
cryption has exactly the same speed as encryption, except on 8-bit machines
when decryption is slightly slower. In hardware the speed of encryption and de-
cryption operations is the same, but decryption requires slightly more hardware.
A round of Rijndael can be written as follows,
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Round(State,RoundKey)
{
. ByteSub(State)
. ShiftRow(State)
. MixColumn(State)
. AddRoundKey(State,RoundKey)
}

ByteSub is the optimally nonlinear 8×8-bit S-box operation, which is x−1 over
GF(28), followed by an affine transformation. ShiftRow is a bytewise permutation
over GF(28)4, MixColumn is a 4-byte bytewise affine transform over GF(2)32, in
fact an MDS code, and AddRoundKey is the XOR of the key onto the output of
the round. The diffusion layer is a linear transformation and comprises ShiftRow
and MixColumn, and it can be shown that this diffusion has an optimum branch
number of 5, and activates at least 25 bytes over 4 rounds.

The key schedule of 128-bit Rijndael over 10 rounds takes in a 128-bit key
and generates 128× 11 = 1408 round key bits in the form of 11 128-bit subkeys,
one for each round, and one at the beginning [391]. The initial subkey is set to
the key, and the remainder of the subkeys are generated iteratively using the
following Key Expansion algorithm for a 128-bit key,

for i = 0 to 3
W [i] = Key[i]

for j = 4 to 40 (in steps of 4)
{
W [j] =W [j − 4]⊕ SubWord(Rotl(W [j − 1])) ⊕ Rcon[j/4]
for i = 1 to 3
W [i+ j] =W [i+ j − 4]⊕W [i+ j − 1]

}

where ’Rotl’ means rotate left, ’Rcon’ means round constant, W [0, 1, . . . , 10] is
an array of 32-bit subkeys, and SubWord() is a function that takes a four-byte
input word and applies the AES S-box to each of the four input bytes to produce
the output word. Note that the key-schedule uses the S-box of the enciphering
process.

2.5.3.2 Security analysis

Rijndael has been selected by the NIST as the new AES. No security flaws have
been found. It has been chosen for Phase II of NESSIE as a benchmark against
which to evaluate other submissions.

Rijndael attracted much public attention after it became the AES [191, 219,
341, 287, 414, 66, 147, 311, 518, 359, 208, 192, 375, 377, 137, 138, 133, 124, 373,
307, 74]. However, this is also because the cipher is particularly elegant and easy
to describe, using highly algebraic components — its simplicity invites analysis,
and this was one of the philosophies on which Rijndael was based. The use of
optimal nonlinearity followed by optimal diffusion using an MDS-based linear
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transformation helps to give high resistance to differential and linear attacks for
Rijndael.

One of the most successful attacks against Rijndael is the Square attack [150],
which is a form of integral cryptanalysis [311] originally used by Daemen et al.
to attack the Square block cipher [147]. The Square attack exploits the rela-
tively slow avalanche of the sparse affine mapping (linear mixing along rows and
columns of some matrix followed by subkey addition). It is a chosen plaintext
attack of up to 6 rounds on key sizes 128, 192, and 256, which makes use of a
distinguisher on 3 Rijndael rounds. For this distinguisher some input bytes are
chosen to take all 256 values over 256 input chosen plaintexts so that one can
predict the bytes which will take all 256 values (active bytes), the bytes which
are constant (passive bytes), and the bytes which are balanced (⊕ sum is zero) in
future rounds. The Square attack requires 232 plaintexts, 272 cipher encryptions,
and 232 memory. Primarily, the Square attack follows the balance of certain data
bytes as they progress through the cipher.

No attack is known on more than 7-8 rounds of Rijndael [191, 219, 341], the
best attack being the collision attack by Gilbert and Minier which breaks up to
7 rounds [219] for key sizes 128, 192, and 256. This attack requires 232 chosen
plaintexts and, for key sizes 192 and 256, requires a time complexity of about
2140. For key size 128 the complexity required is marginally less than exhaustive
search. The attack makes use of a 4-round distinguisher which exploits, by means
of the birthday paradox, the existence of collisions between some partial functions
introduced by the cipher. The attack by Lucks [341] extends the Square attack
to Rijndael variants with 192 and 256-bit keys, and achieves an attack on seven
rounds by simply guessing the 16 bytes of the last round key and exploiting minor
weaknesses in the key schedule. The attack requires 232 chosen plaintexts and 2176

or 2192 encryptions for 192 and 256-bit keys, respectively. The attacks of Ferguson
et al. [191] include a 6-round improved Square attack with time complexity about
244 which is an improvement on the original 272, at the price of about 6 · 232
plaintexts. The improvement makes use of a partial-sum technique to reduce the
workfactor over the original Square attack. There is also an improvement on the
7-round attack of [341] in [191] which requires 2155 or 2172 encryptions for 192
or 256-bit keys, respectively. There is also an alternative extension to 7 rounds
by Ferguson et al. [191] that can break all key sizes with encryption complexity
2120 but which requires virtually the entire codebook of plaintexts (2119 − 2128

plaintexts). Moreover, one may even break 8 rounds of Rijndael with 2119 − 2128

plaintexts, requiring 2188 or 2204 encryptions for 192 or 256-bit keys, respectively
[191].

After two rounds, Rijndael provides full diffusion, i.e. every state bit depends
on all state bits two rounds ago. This is due to the uniform structure of Rijndael,
and the high diffusion. The designers [150] claim that no 4-round differential
characteristic exists with probability greater than 2−150, and no 4-round linear
characteristic exists with a correlation greater than 2−75. An analysis of the
propagation of activity patterns in [150] leads to the conclusion that any linear
or differential characteristic over 4 rounds must activate at least 25 bytes. Im-
proved upper bounds are given by Keliher et al. on the maximum average linear
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hull probability for Rijndael by noting that the linear hull effect for Rijndael is
significant [287]. An upper bound on the probability is given, namely 2−75 for 7
rounds. In a subsequent paper the same authors improve on this result by taking
into account more details of the linear characteristics of the Rijndael S-box. They
improve their upper bound on maximum average linear hull probability to 2−92

for 9 rounds. Related work by Ohkuma et al. [414] upper bounds the maximum
average differential and linear hull probabilities by 2−96 for 4 rounds of Rijndael.
In [414] it is also shown how to represent Rijndael as a two-level nested Sub-
stitution Permutation Network (SPN) where each level uses an MDS layer for
diffusion. There is also an impossible differential attack on 5 rounds by Biham
and Keller, requiring 229.5 plaintext-ciphertext pairs and 231 time [66], and an
extension to 6 rounds has been presented by Cheon et al. [118].

In [518] Wernsdorf shows that the round functions of Rijndael generate the
alternating group over the set {0, 1}128, eliminating some potential weaknesses of
Rijndael, e.g. non-trivial factor groups (the alternating group is a large, simple,
primitive and (2128 − 2)-transitive group).

With respect to the key schedule of Rijndael, Ferguson et al. [191] exploit
weaknesses in the expanded key of Rijndael by proposing a related-key attack
on 9 rounds which is a variant of the Square attack and use 256 related keys
that differ in a single byte in the fourth round key. Plaintext differences are used
to cancel out earlier round key differences, resulting in three bytes at the end
of round 6 that sum to zero when taken over the 256 encryptions. Key bytes of
the last three rounds are then guessed and used to compute backwards from the
ciphertext to detect this property. This 9-round attack on Rijndael with 256-bit
keys requires 277 plaintexts under 256 related keys, and 2224 encryptions.

May et al. [359] provide a modified key-schedule for Rijndael with improved
diffusion and nonlinearity, whilst keeping a reasonably fast speed for the key-
schedule. More generally, the key schedule has a much slower diffusion than the
cipher and contains relatively few nonlinear elements.

It has recently been observed by Fuller and Millan [208] that the output
functions of the Rijndael S-box are all affine transformations of the same function.
This observation suggests a potential extra hardware saving for the Rijndael S-
box, although, perhaps more importantly, this may later also be seen as a security
weakness (see Sect. 2.9.2). In other words, let bi and bj be two distinct output
bit functions of the Rijndael S-box. Then we can always find a Boolean matrix,
A, and a Boolean vector, B, such that,

bi(x) = bj(Ax+B)

This surprising result means that the Rijndael block cipher only uses one Boolean
function from eight bits to one bit (used 128 times in each round). Since [208] was
posted, Youssef and Tavares [525] have proved this result by making use of dual
bases over GF(2n) and trace functions, and showed that the result holds for any
S-box based on a bijective monomial. They also extended the result to show that
all coordinate (bit) functions of the Rijndael round function are equivalent under
affine transformation of the input to the round function. Following on from [208],
Biham [54] has shown that affine relationships exist between the output bits of
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many S-boxes, not just the Rijndael S-box (see Sect. 2.9.2). Another simplified
algebraic formulation for Rijndael was presented by Ferguson et al. in [192]. This
paper argues that the security of Rijndael is based on a new hardness assumption
for the solution of an algebraic formulation of the type derived in [192].

A recent redefinition of Rijndael has raised many questions regarding the
security of the cipher. The Big Encryption System (BES) has been defined by
Murphy and Robshaw in [375], where the AES can be regarded as being identical
to the BES with a restricted message space and key space. Whereas the AES uses
operations over GF(28) and GF(2), the BES only uses operations over GF(28)
and this raises the question of algebraic attacks on AES. The key idea for BES
is to map every GF(28) byte, a of AES to (a2

0

, a2
1

, . . . , a2
7

) for BES, where this
vector comprises a and its conjugates over GF(28). The central application of
this mapping is to convert the GF(2) linear operation in the S-box of AES (an
8 × 8 binary matrix) to an 8 × 8 matrix mapping over GF(28) which linearly
operates on a and its conjugates. This ensures that all operations of BES occur
in GF(28), and one can write the ith round function of BES as:

RoundB(b ki) =MB(b
(−1)) + ki

where b is the input to the round,MB is a matrix with elements from GF(28) and
ki is the ith round key in BES. It should be noted that the key schedule can also be
written completely over GF(28).MB can always be converted to its Jordan Form,
RB , where RB = P−1B ·MB ·PB is a particularly well-structured representation for
an AES round. The paper [375] identifies Related-Key and Differential attacks on
BES which exhibit characteristics with probability one through a round, in spite
of the high diffusion. But these attacks are not directly applicable to AES as they
do not preserve the conjugacy relation which is necessary for the inverse mapping
back to AES. One of the most interesting future lines of inquiry for BES is to
combine it with the techniques of the type suggested by Courtois and Pieprzyk
[137, 138, 133] for solving the type of multivariate quadratic systems that arise
from block ciphers. A preliminary analysis [375, 377] of the complexity of an
attack based on the estimates of Courtois and Pieprzyk [138] suggests an attack
considerably faster than exhaustive key search. However, there are inaccuracies in
these estimates [124, 377, 123] It has been noted by Knudsen and Raddum [307]
that its mathematical elegance makes Rijndael more vulnerable to a devastating
attack as there are no random-looking elements in the cipher.

As discussed in the security analyses for Khazad, MISTY1, and Camellia,
Biryukov and De Cannière [74] compare minimal systems of multivariate poly-
nomials which completely define certain block ciphers, including Rijndael-128.
As pointed out in [138], the Rijndael S-box can be described by a system of 23
quadratic equations in 80 terms. It is estimated in [74] that the block cipher and
key schedule can be described by 6296 equations in 3296 variables using 19296
linear and quadratic terms. For Rijndael-128 this means that there are 13000
free terms (see Sect. 2.2.3.17). Roughly the same figures occur for Camellia-128.
Note that there are 37 quadratic equations in total for the AES S-box, whereas
a randomly-chosen 8-bit S-box would expect to have zero quadratic equations
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associated with it. However, it should be noted that this system of equations is
far larger than the multivariate quadratic system provided with BES.

Recent work by Barkan and Biham [28] has developed the concept of the
Dual Cipher. Specifically, let the ciphertext, C, be the result of encrypting the
plaintext, P , using the cipher, E, where E is dependent on the secret key, k.
We write this as C = Ek(P ). Then [28] has stated that, given any invertible
functions, f , g, and h, E′ is a dual cipher to E if

∀P, k f(Ek(P )) = E′g(k)(h(P )).

The dual cipher, E′, is equivalent to the original cipher, E, in all aspects. One
can therefore analyse and attack the dual cipher instead of the original cipher.
Moreover, one can actually implement the dual cipher instead of the original
cipher. For Rijndael, [28] demonstrates the existence of Square-Dual ciphers in
the sense that every component of the original Rijndael cipher has been squared
(or conjugated). Thus Rijndael has 7 dual ciphers of this form. Moreover, one
can replace the irreducible polynomial used by Rijndael with another one, and
this too leads to another set of dual ciphers — 240 in total. Also, the components
of Rijndael can be replaced with their logs to give a set of Log-Dual ciphers, 128
in total. Finally, [28] shows that by straightforward modifications of Rijndael,
one can create Self-Dual ciphers which exhibit cryptographic weakness although
this does not imply weakness in Rijndael itself. It should be noted that this dual
cipher analysis also holds for Khazad, and Anubis, and can also be applied to
Camellia and SAFER++.

2.5.4 SAFER++128

2.5.4.1 The design

SAFER++128 [353] is a development from the existing SAFER family of ciphers
and uses a combination of substitution and linear transformation to achieve con-
fusion and diffusion, respectively. We here consider the normal and high versions
which take in 128-bit plaintexts and require 128-bit or 256-bit keys, respectively.
The designers recommend 7 rounds for the 128-bit key version, and 10 rounds
for the 256-bit key version.

Figure. 2.17 shows an encryption round for SAFER++128. This figure should
be compared with Fig. 2.9 for SAFER++64. It is evident that, whereas SAFER++64

requires zero-padding and merging of the round input, prior to and following the
linear transformation, SAFER++128 does not require this, as the round input is
already of size 128 bits. For a more detailed discussion, please refer to the section
commenting on SAFER++64. Its design has many interesting properties.

2.5.4.2 Security Analysis

No security flaws have been found with SAFER++128 [353] and it has many sim-
ilarities to SAFER++64. One weakness found in previous versions of the SAFER
family by Knudsen was in the key-schedules [295, 298], but these weaknesses
have been dealt with in SAFER++128. Other pre-NESSIE attacks on the SAFER
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Pre−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

4−PHT 4−PHT 4−PHT 4−PHT

4−PHT 4−PHT 4−PHT 4−PHT

Mid−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Round Input (16 bytes)
1     2       3       4      5        6       7     8    9     10   11     12     13     14     15    16

xor  add add   xor    xor    add     add   xor   xor    add    add    xor    xor  add   add   xor K2i−1

exp  log  log  exp    exp    log     log    exp   exp    log    log    exp    exp   log   log   exp

add  xor  xor  add   add     xor    xor    add   add    xor    xor    add    add  xor   xor   add K2i

Input to Invertible Linear Transformation (16 bytes)
1     2       3       4      5        6       7     8    9     10   11     12     13     14     15    16

Round Output (16 bytes)
1     2       3       4      5        6       7     8    9     10   11     12     13     14     15    16

Fig. 2.17: Encryption Round for SAFER++128

family include truncated differentials by Knudsen and Berson [304], and Murphy
[374] identifies a potential algebraic weakness regarding the existence of invariant
Z-modules within the PHT layer. These modules and their cosets are not diffused
by the PHT layer, and so provide a way to cope with diffusion in SAFER, regard-
less of the key schedule. One attack in [374] which used this property enabled a
projection of the message/ciphertext space onto a 4-byte Z-submodule so that
the probability of any message projection giving any ciphertext projection is in-
dependent of 1

4 of the key bytes. This result, along with the results of [295] led
to a change in the SAFER key schedule. The designer claim that one of the main
reasons for the security of the cipher against differential and linear cryptanalysis
is the high diffusion PHT layer. The designers conclude that SAFER++ with six or
more rounds is secure against differential cryptanalysis, and with two and a half
or more rounds is secure against linear cryptanalysis. However, recently Naka-
hara et al. [382] applied techniques that were first used to more generally attack
the SAFER family in [381], and [382] showed that, for the 256-bit key version,
up to four rounds can be attacked by linear cryptanalysis, with less effort than
exhaustive search, requiring 281 known plaintexts. The reason for this discrep-
ancy between the two and a half rounds claimed by the designers and the three
to four rounds claimed by [382] is largely because the designers restricted them-
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selves to homomorphic attacks, whereas [382] applies strictly non-homomorphic
attacks where some key bits are assumed fixed. Therefore the results of [382]
must be seen in the context of a weak-key class. Table 2.7 gives a summary of
the complexity of linear attacks on SAFER++ [382]. One important point to note
with regard to the linear attack of [382] is that it identifies a surprisingly small
byte and bit branch number for the PHT diffusion layer. Whereas the designers
of SAFER++ use the fact that the lowest row weight of the matrix M is 10, im-
plying a high diffusion, a more detailed examination of the matrix reveals a byte
branch number ≤ 7 and a bit branch number ≤ 5. Moreover the S-box defined
by y = 45x mod 257 contains a linear relationship which holds with probability
1. In other words, we can write y0 = f(x0, x1, . . . , x6)+x7, where y0 is one of the
output bits of the S-box, and depends linearly on the input, x7. This moderated
diffusion combined with a high linear characteristic is what enables this linear
attack on three to four rounds of SAFER++. Table 2.7 supplements Table 2.4 by
stating the complexity of linear attacks on SAFER++ that apply to 256-bit key
input only.

Table 2.7. Complexity of Linear Attacks on SAFER++

# Rounds Linear # Known # Subkey Bits Attack Fraction of
Attacked Relation Plaintexts Explored Complexity Keys

2 (1) 25 37 242 ♣

3.5 (3) 233 88 2121 ♣ 2−6

4 (4) 281 97 2178 ♠ 2−13

(5) 291 76 2167 ♠ 2−11

♣ The attack applies to all key sizes defined for SAFER++.
♠ This attack applies to 256-bit keys only.

It is also interesting to note that affine relationships exist between the bit
outputs, both for exp45 and log45 [54] (see Sect. 2.9.1).

Impossible Differential and Square attacks have also been demonstrated on
SAFER++128 by Nakahara et al. [383], and Nakahara [379], respectively, over
2.75 to 3.25 rounds. Table 2.8 details these attacks along with further attacks on
similar ciphers from the SAFER family.

SAFER++128 is a Substitution-Permutation Network (SPN), and five-layer
SPN’s are susceptible to structural analysis leading to integral or multiset at-
tacks. Piret [433] describes a (classical) integral distinguisher over 2 rounds of
SAFER++ (in the encryption direction). This allows a practical attack against
3 rounds of SAFER++128, as well as attacks on 4 rounds of SAFER++128 and
SAFER++256 (always without the last key addition layer), under the chosen-
plaintext hypothesis. As a side result, Piret proves that the byte-branch number
of the linear transform of SAFER++ is precisely 5. Concrete figures for these
attacks are given in Table 2.9.

Even stronger multiset attacks have recently been presented by Biryukov et
al. [75]. The general method can be applied to any SPN network with incom-
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Table 2.8. Attacks by Nakahara et al. for SAFER++128 and Similar Designs

Cipher Attack #Rounds Data Memory Time Ref
SAFER++128 Imp. Diff. 2.75 264 CP 297 260 [383]

Square 3.25 29.6 CP 29.6 270 [379]
Linear 3.25 281 KP 281 2103 [382]

SAFER SK128 Imp. Diff. 2.75 239 CP 258 264 [383]
Square 3.25 210.3 CP 210.3 238 [379]
Linear 4.75 263 KP 263 290 [381]

SAFER+128 Imp. Diff. 2.75 264 CP 297 260 [383]
Square 3.25 29.6 CP 29.6 270 [379]

SAFER+192 Linear 3.25 2100 KP 2100 2137 [382]
SAFER+256 Linear 3.75 281 KP 281 2176 [382]

KP: known plaintext, CP: chosen plaintext

Table 2.9. Piret’s Integral Attacks on SAFER++128

Key Size #Rounds #Plaintexts Time Compl. Space Compl.
128 3 216 216 216

128 4 264 2112 264

128 4 264 2120 216 (different tradeoff)
256 4 264 2144 264

plete diffusion, and the method of [75] is also a collision attack, inspired by the
attacks of Gilbert and Minier on Rijndael [219]. The multiset attacks of [75] can
break up to 4.5 rounds of SAFER++128 in 248 chosen plaintexts and 294 steps.
Biryukov et al. [75] also present a Boomerang attack on SAFER++128 which
exploits the incomplete diffusion of SAFER++128 and also certain special prop-
erties of the SAFER S-boxes. In this way they have constructed a 5 round attack
on SAFER++128 using 275 chosen plaintexts/ adaptive chosen plaintexts and
275 time complexity. The attack completely recovers the 128-bit secret key of the
cipher and has a 86% probability of success. The attack can be extended to 5.5
rounds by guessing 46 bits of the secret key. The attacks of [75] are summarised
in Table 2.10.

Table 2.10. Multiset and Boomerang Attacks on SAFER++128 by Biryukov et al.

Attack Key Size #Rounds Data Workload Memory
Multiset 128 4 248 270 248

Multiset 128 4.5 248 294 248

Boomerang 128 4 241 241 241

Boomerang 128 5 275 275 248

Boomerang 128 5.5 2121 2121 248

Workload expressed in equivalent number of encryptions.
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2.6 Large block ciphers considered during Phase II

The large block ciphers selected for phase II of NESSIE were RC6, Rijndael,
SHACAL-1, and SHACAL-2. None of these ciphers has been broken so the follow-
ing security evaluation identifies weaknesses that occur in reduced-round versions
of the ciphers, and identifies weaknesses that may lead to more effective attacks
in the future. We first describe each cipher in some detail, along with the most
important attacks known on each cipher. Note that the algorithms given here
are not complete specifications, but references are given to complete specifica-
tions which may be found on the NESSIE website. After discussing each cipher
we summarise and compare some of the distinguishing features of the ciphers,
identifying potential weaknesses and noting the best-known attacks, as shown in
Table 2.18 of Sect. 2.9.3.

2.6.1 RC6

2.6.1.1 The design

We consider here the version of RC6 [273] which takes 256-bit plaintexts and
key-lengths from 128 to 256 bytes. For the 128-bit plaintext version the designers
recommended 20 rounds, but for the 256-bit plaintext version, the recommended
number of rounds is not specified. A detailed discussion of RC6 is given in the
section on 128-bit block ciphers.

2.6.1.2 Security analysis

Until very recently, no security flaws have been found in RC6, and the 128-bit
block variant of RC6 on which the 256-bit variant is based has been well studied.

Recently, Knudsen has detected correlations in 256-bit block RC6 using the
χ2-attack method [301]. From tests on RC6 with 256-bit blocks and three rounds
together with other test results, [301] is able to extrapolate an estimated require-
ment for the number of plaintexts needed for this attack up to 25 rounds. It is
estimated that for 3 + 2s rounds a χ2 test would distinguish 256-bit block RC6
from random using 216+20s plaintexts. This constitutes a successful attack up to
25 rounds where it is expected that the χ2 attack will require only 2236 plaintexts.
The attack exploits the least significant five bits in the words A and C of the
input of one round, and investigates the statistics of the 10-bit integer obtained
by concatenating the least significant five bits in the words A′′ and C ′′ every two
rounds later. This is motivated by the fact that the least significant five bits in A
and C are not changed by the XOR and data dependent rotation if both rotation
amounts are zero. More generally, one can expect a bias for amounts smaller than
five, and these strong biases can be iterated over many rounds in the same way
as linear approximations.

2.6.2 AES Variant (Rijndael-256)

2.6.2.1 The design

We here consider a variant of the NIST AES standard, 256-bit plaintext block
Rijndael, with a 256-bit key over 14 rounds. Whereas 128-bit Rijndael uses 16
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8-bit S-boxes per round, 256-bit Rijndael uses 32 8-bit S-boxes per round. A
detailed discussion of Rijndael is given in the section on 128-bit block ciphers.

2.6.2.2 Security analysis

No security flaws have been found, and the 128-bit block variant on which it is
based was selected as the AES and has been well-studied. Although similar in
structure to the 128-bit block Rijndael, the 256-bit block variant still warrants a
separate analysis as the byte alignments of this variant are different from those
of the 128-bit block variant.

2.6.3 SHACAL-1

2.6.3.1 The design

SHACAL [237] is a 160-bit (20-byte) block cipher using a 512-bit (64-byte) key
that is based on the well-known Hash Function FIPS standard, SHA (or SHA-0).
SHACAL-1 is based on SHA-1, a more recent FIPS standard, which is a minor
modification of SHA-0 in the message expansion. It is considered to have very
fast implementations. In hash function mode, SHA takes a 512-bit message with
a 128-bit initial value. In encryption mode (block cipher), the message becomes
the key, and the initial value is replaced by the plaintext. SHA mixes group
operations, + mod 232 and XOR, with nonlinear logical functions. SHACAL-
1 places the 160-bit plaintext in 5 concatenated 32-bit variables, A,B,C,D,E,
and updates these five variables on each of 80 consecutive steps, so that the final
ciphertext is contained in A,B,C,D,E after 80 steps. In the process, the 512-bit
key is expanded to 2560 bits. SHACAL-1 is shown in Fig. 2.18, where ROL means
rotate left, + means addition mod 232, and f is a different linear or nonlinear
function for steps bi/20c.

ROL

ROL

... 80 blocks of 32 bits.....

expansion

Master key (512 bits)

30

5

Kf

+
A

B

C

D

E

ith block at ith iteration

Fig. 2.18: Encryption for SHACAL-1



74 2. Block ciphers

The encryption algorithm for SHACAL-1 is as follows.

Put the 160-bit plaintext in 32-bit variables ABC DE.
For 80 steps do
Ai+1 =W i +ROL5(A

i) + f i(Bi CiDi) + Ei +Ki.
Bi+1 = Ai.
Ci+1 = ROL30(B

i).
Di+1 = Ci.
Ei+1 = Di.

where the W i are 32-bit step keys, the Ki are round-dependent constants, and
fi(X Y Z) is one of three functions defined below, where the function chosen is
dependent on the round.

fif = (X AND Y ) OR (X̄ AND Z) 0 ≤ i < 20
fxor = (X ⊕ Y ⊕ Z) 20 ≤ i < 40, 60 ≤ i < 80
fmaj = ((X AND Y ) OR (X AND Z) OR (Y AND Z)) 40 ≤ i < 60

where ⊕ is bitwise XOR, AND and OR are both bitwise logical operations, and
∗̄ is complement. Each set of 20 steps, r ≤ i < r + 20 constitutes a round of the
cipher. In order for SHACAL-1 to be invertible the final addition of the initial
value, which occurs in the hash mode of SHA-1, is omitted.

The message expansion is different for SHA-0 and SHA-1. For SHACAL-1 the
key schedule (message expansion) is linear, it expands the 512-bit key (Master
Key) to 2560 bits, and can be described as follows,

– The Master key is a concatenation of 16 32-bit words: [W 0|W 1| . . . |W 15].
– W i = ROL1(W

i−3 ⊕W i−8 ⊕W i−14 ⊕W i−16), 16 ≤ i < 80.

Keys shorter than 512 bits may be accomodated by padding the key input up to
512 bits.

2.6.3.2 Security analysis

No security flaws have been found in SHACAL-1. NESSIE considers that the
security margins of SHACAL-1 are very large. It also has the interesting property
of being able to share most of the code of the SHA-1 hash function. The best
attack known on SHA-0 is that of Chabaud and Joux [117] who obtain collisions
using 261 encryptions by tracking perturbations through the hash function in
combination with differential masks. However, it was found by the authors of
[117] that they could not extend the attack to SHA-1 because SHA-1 interleaves
bits in the message expansion so that it is not possible to split the expansion into
32 little expansions. The idea of the attack was to study the propagation of local
perturbations in a linear variation of SHA-0 in order to discriminate between
the role of the bare architecture and that of the elementary building blocks. The
attack then looks for differential characteristic masks that can be added to the
input word with non-trivial probability of keeping the output of the compression
function unchanged. One first proposes a variant of SHA-0 called SHI1 which
keeps all the rotations on blocks but replaces ADD with XOR, and makes the fi
functions XOR. Single bit errors or perturbations are then introduced to the input
of SHI1 and the perturbation is traced through the cipher. These perturbations
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are made to disappear by introducing five other perturbations. This allows an
attack on SHI1 via differential masking. A second variant on SHA-0, SHI2 is then
analysed, where SHI2 replaces ADD with XOR but this time keeps the nonlinear
fi. However we can still view fi as acting like ⊕ with some probability, and the
probability of a successful perturbation attack can be computed. A third variant
of SHA-0, SHI3, is then analysed, where SHI3 uses ADD as in SHA-0, but uses
XOR instead of the nonlinear fi. In this case the addition mod 232 causes the
perturbations to spread out due to carry propagation. However one is still able
to devise a perturbation attack on SHI3 with probability 2−44. Finally SHA-0
itself is analysed by taking into account the analyses of SHI2 and SHI3, and this
leads to a perturbation based attack on SHA-0 requiring 261 plaintexts. It should
be emphasised that, although SHA-1 and SHA-0 are so similar, this attack does
not carry over to SHA-1 or, consequently, SHACAL-1.

Ad-hoc linear and differential cryptanalysis of SHA-1 by Handscuh et al. has
suggested that such attacks will not be effective against SHACAL-1 [236, 237].
Both attacks are complicated by the integer addition and the fi functions of
SHACAL. It is noted [236, 237] that Z = A + S can be written bitwise as
zj = aj + sj + σj−1 and σj = ajsj + ajσj−1 + sjσj−1, where σj−1 is the carry
bit, and σ−1 = 0. This bitwise way of expressing addition is used extensively
in the analysis of [236, 237]. Linear cryptanalysis mostly uses single-bit approx-
imations as heavier linear approximations are difficult to connect together. The
cyclic structure of SHACAL means that in all four rounds we can readily iden-
tify a family of linear approximations that always hold over four steps. A perfect
(probability 1) linear approximation exists over both 4 and 7 steps. There is
a 10-step linear approximation for rounds 2 and 4 which is valid over 40 steps
with an estimated bias of 2−21, and from these characteristics it is estimated
that at least 280 known plaintexts are required, although this cannot be con-
sidered a break as it is a very loose lower bound. For differential cryptanalysis
there exists a 5-step characteristic over any 5 steps with probability 1, and it is
conjectured that over 80 steps, the full cipher, the best differential characteristic
has probability around 2−116. It is emphasised in [236, 237] that their estima-
tions are over-favourable to the cryptanalyst as it would be impossible to connect
up all the constituent characteristics so as to achieve these biases. Neither is it
expected that the more refined techniques involving linear hulls, multiple linear
approximations, differentials, . . . will make much difference.

van den Bogaert and Rijmen [504] search for optimal differential characteris-
tics for reduced round SHACAL. The search is performed under the requirement
that the Hamming Weight of every 32-bit word of the input is upper bounded by
2. It is found that there are two 10-step characteristics for fif with probability
2−12 (this is a factor of 2 better than [237]), a 10-step characteristics for fxor
with best case probability 2−12, and a 20-step characteristic for fif and fmaj
with probabilities 2−42 and 2−41 respectively (these figures agree with [237]).

Recently Saarinen [458, 460] has noted that a slide attack can be mounted
on SHA-1 with about 232 effort. This attack is described in detail in Chapter 4
on Hash Functions in this report, with respect to a security analysis of SHA-1.
The analysis demonstrates an unexpected property of the compression function of
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SHA-1, namely that the procedure for message expansion can be slid. However, it
is not clear that this weakness can be exploited in the context of SHACAL-1. Also,
in [460], Saarinen shows that the slide attack on SHA-1 points to a weakness in
the key schedule of SHACAL-1, and this can be exploited in a related-key attack.
Given access to two SHACAL-1 encryption oracles whose keys are “slid” (in the
same way that the message expansion can be slid for the hash function) the cipher
can be distinguished from a randomly chosen 160-bit permutation. This requires
about 2128 chosen plaintexts. When certain properties hold for the (related) keys,
the complexity can be further reduced to about 296 chosen plaintexts. Differential
cryptanalysis including boomerang attacks [290] and rectangle attacks [68] have
also been applied to SHACAL-1. The best known attack works for 49 steps of
the compression function with a data complexity of 2151.9 chosen plaintexts and
a time complexity of 2508.5 [68].

2.6.4 SHACAL-2

2.6.4.1 The design

SHACAL-2 is based on SHA-2, which was introduced by NIST in 2000 [390, 393].
In spite of similarity in name to SHACAL-1, SHACAL-2 is a completely different
function. It is a 256-bit block cipher with a 512-bit key, although it can also be
configured to take 512-bit blocks. SHA-2 operates in a similar way to SHA-1 but
with some notable differences.

The encryption algorithm for SHACAL-2 is as follows.

– Put the 256-bit plaintext in eight 32-bit variables ABC DE F GH .
– For 64 steps do
– T1 = H +

∑

1(E) + Ch(E F G) +Ki +W i .
– T2 =

∑

0(A) +Maj(ABC) .
– Hi+1 = Gi .
– Gi+1 = F i .
– F i+1 = Ei .
– Ei+1 = Di + T1 .
– Di+1 = Ci .
– Ci+1 = Bi .
– Bi+1 = Ai .
– Ai+1 = T1 + T2 .

where the W i are 32-bit step keys, the Ki are constants, different in each step,
and

Ch(X Y Z) = (X AND Y )⊕ (X̄ AND Z)
Maj(X Y Z) = (X AND Y )⊕ (X AND Z)⊕ (Y AND Z)
∑

0(X) = S2(X)⊕ S13(X)⊕ S22(X)
∑

1(X) = S6(X)⊕ S11(X)⊕ S25(X)

where Si means right rotation by i bits.
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In order for SHACAL-2 to be invertible the final addition of the initial value,
which occurs in hash mode for SHA-2, is omitted.

For SHACAL-2 the key schedule (message expansion) expands the 512-bit
key (Master Key) to 2048 bits, and is as follows,

– The Master Key is a concatenation of 16 32-bit words: [W 0|W 1| . . . |W 15] .
– W i = σ1(W

i−2) +W i−7 + σ0(W
i−15) +W i−16 16 ≤ i < 64 .

where σ0 and σ1 are defined as:

σ0(x) = S7(x)⊕ S18(x)⊕R3(x)
σ1(x) = S17(x)⊕ S19(x)⊕R10(x)

where Ri means right shift by i bits. Keys shorter than 512 bits may be accomo-
dated by padding the key input up to 512 bits.

2.6.4.2 Security analysis

No security flaws have been found in SHACAL-2. It also has the interesting
property of being able to share most of the code of the SHA-2 hash function.
Saarinen [460] has noted that the Slide attack on SHA-1 does not carry over
to SHA-2, and hence does not consitute a threat for SHACAL-2. SHA-2 is a
recently designed primitive, so more time is needed to perform a careful and
thorough security evaluation of both SHA-2 and, consequently, SHACAL-2.

2.7 64-bit block ciphers not selected for Phase II

The 64-bit block ciphers not selected for phase II of NESSIE were CS-Cipher,
Hierocrypt-L1, Nimbus, and Nush. After discussing each cipher briefly we sum-
marise and compare some of the distinguishing features of the ciphers, identifying
potential weaknesses and noting the best-known attacks, as shown in Table 2.19
of Sect. 2.9.4. Note that the algorithms given here are not complete specifications,
but references are given to complete specifications which may be found on the
NESSIE website.

2.7.1 CS-cipher

2.7.1.1 The design

CS-Cipher is a 64-bit block, 128-bit key SPN cipher over 8 rounds [198]. Each
round starts with a subkey XOR, followed by a layer of four 16-bit non-linear
mixing transformations, M , and a byte permutation which is based on the Fast
Fourier Transform (FFT) graph. This is repeated twice more in each round, but
with constants used instead of the subkey in the initial XOR. There is a final key
XOR after the last round. Whereas many ciphers use separate nonlinear (confu-
sion) layers and linear (diffusion) layers, CS-Cipher also uses a nonlinear diffusion
primitive within the nonlinear layer. The encryption process is summarised as,
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k8 ⊕ E(k7 ⊕ . . . E(k1 ⊕ E(k0 ⊕m)) . . .)

where ki are the subkeys, m is the plaintext, and E is the round encryption
function. The key schedule generates 9 subkeys of 64 bits each, is Feistel, and is
summarised by,

ki = ki−2 ⊕ Fci(ki−1) Fci(x) = T (P (x⊕ ci))

where T is transposition, P is permutation, and the ci are constants. Further
design details may be found in [198].

2.7.1.2 Security analysis

Two successive applications of an FFT graph have been shown to give very good
diffusion properties. TheM transformation implements a multi-permutation [467]
which here means that fixing either of the two 8-bit inputs arbitrarily makes
both 8-bit outputs permutations of each other. This makes E a mixing function
so that, if we arbitrarily fix seven of the eight 8-bit inputs, all outputs become
permutations of the remaining free input. This gives good diffusion. Also each
byte in the output of one round depends on all eight input bytes to that round.
The non-linear transformation of the encryption takes two bytes of input, and
has the following property: if one takes 256 inputs that are constant in one byte
and take on all values once in the other byte, then each byte value occurs once in
each of the two output bytes. This nonlinear transformation includes reasonably
nonlinear involutions, P , and the designers show that at least five P boxes must
be active per round, and this implies a satisfactory resistance to differential or
linear cryptanalysis.

In [511] the designers prove, by counting the number of active S-boxes, that
a modified version of CS-cipher with all constants and round keys replaced by
independent random values is secure against linear and differential cryptanalysis.
The designers [511] claim that these results carry over to the real CS-cipher and
that 5 13 rounds of CS-cipher is therefore secure against linear and differential
cryptanalysis.

No weaknesses or attacks have been reported on CS-cipher.

2.7.2 Hierocrypt-L1

Attacks on Hierocrypt-L1 significantly reducing the security margin have been
found that the submitters were not aware of [33].

2.7.2.1 The design

Hierocrypt-LI (HC-L1) is a 64-bit block, 128-bit key SPN block cipher over 6
rounds [412]. It is hierarchical in structure with an SPN structure itself built
of smaller SPN structures. Each round consists of a layer with two parallel XS-
boxes each operating on a 32-bit input, followed (except in the last round) by a
linear diffusion layer with a 64-bit input based on a bytewise MDS matrix. An
XS-box consists of an upper subkey mixing layer, an upper S-box layer, a linear
MDS-based diffusion layer (with a 32-bit input), a lower subkey mixing layer, and
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a lower S-box layer. The subkeys are XORed in, and the S-box used has 8-bit
inputs and outputs. After the last round an output transformation introduces
another subkey.

The key-schedule consists of two processes, namely the intermediate-key-
generation and the round-key generation. The former generates intermediate keys
out of the secret key, while the latter generates a round key out of each interme-
diate key. There are two ways to generate round keys; one is for a certain number
of rounds close to the plaintext, and the other is for the remaining rounds nearer
to the ciphertext. Most intermediate keys are used to generate one plaintext-
side and one ciphertext-side round key. The schedule algorithms adopt a Feistel
structure with a linear key scheduling in order to update intermediate keys, so
that intermediate keys are supposed to be partially randomised in a non-linear
manner.

For further details of the design refer to [412].

2.7.2.2 Security analysis

In the submission [412] the designers give a plausible argument that 6 rounds of
Hierocrypt-L1 is secure against differential and linear cryptanalysis. They claim
integral attacks for consistency work only up to 5 S-box layers (2.5 rounds)
and that truncated differential attacks work only up to 5 rounds. During the
2nd NESSIE workshop the designers gave bounds not just on the best differen-
tial/linear characteristic, but also on the best differential and linear hull [414].
For 4-round Hierocrypt-L1, the upper bound on the probability of both is 2−48.

Improved integral attacks for consistency on Hierocrypt-L1, for 6 or 7 S-
box layers (3 or 3.5 rounds) have been found. This is not a real threat to the
security of the cipher, but it is a better attack than the designers claimed exists.
During the NESSIE assessment phase, an integral attack for consistency on 3.5
rounds was found by Barreto et al. [33]. Another such attack was also found
by the designers. However, although a Gilbert-Minier distinguisher-type attack
was successfully applied to 7 rounds of Rijndael by Gilbert and Minier [219],
the alternation of upper and lower MDS diffusion layers effectively prohibits the
construction of a 5-round Gilbert-Minier-type distinguisher on Hierocrypt.

It is also interesting to note that, as Hierocrypt uses essentially the same S-
box as Rijndael, affine relationships exist between the bit outputs of the S-box
[208, 54] (see Sect. 2.9.5).

Further to this, Furuya and Rijmen [210] discovered linear relationships be-
tween the master key and several of the round subkeys. These flaws are common
to key scheduling of all members of the Hierocrypt family. The attack of [210]
exploits the fact that all intermediate keys of the key schedule are used to gen-
erate round keys, whereas the randomising effect of a Feistel structure requires
that only half the intermediate keys are used. This flaw results in simple linear
relations between intermediate keys. Also it turns out that the right halves of
certain intermediate keys can be calculated from the right half of the padded se-
cret key. Finally, because the Hierocrypt key schedule is similar to that of DES,
it exhibits significant deterministic iterative differentials.
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A summary of the designers’ known attack requirements compared to the
attack requirements found by NESSIE is given in Table 2.11.

Table 2.11. Attack Requirements for Hierocrypt-3 and Hierocrypt-L1

Attack #S-box Layers #Chosen-Plaintexts #Subkey-Guesses
HC-3
Designers 5 213 2168

NESSIE 6 6× 232 240

NESSIE 7 22× 232 2168

HC-L1
Designers 5 232 272

NESSIE 6 6× 232 240

NESSIE 7 14× 232 2104

2.7.3 Nimbus

There is a very practical attack on Nimbus by Biham and Furman [63].

2.7.3.1 The design

Nimbus is a 64-bit block cipher with a key of at least 128 bits over 5 rounds
[344]. It is not an SPN. Each round consists of a subkey XOR, multiplication by
another subkey, mod 264, and then bit-reversal of the data word. An encryption
round is given by,

Yi = Kodd
i · g(Yi−1 ⊕Ki)

where Ki and K
odd
i are subkeys (Kodd

i is always odd), ⊕ is XOR, g is the bit-
reversal function, and · is multiplication mod 264. Y0 is the plaintext, and Y5 is
the ciphertext.

The key schedule generates ten 64-bit subkeys, with two new subkeys used in
each round. These ten subkeys are generated from the user input key, which is
at least 128 bits, by means of nested Nimbus encryption operations on successive
64-bit blocks of the user input key, with the encryption key being a constant
derived from π.

For further details of the design please refer to [344].

2.7.3.2 Security analysis

The designer claims that Nimbus is secure against differential and linear crypt-
analysis, interpolation attacks, impossible differential attacks, saturation attacks
and related key attacks, and also claims that there is no effective attack on more
than 4 rounds. Two new iterative differentials for multiplication operations with
probability about 1

2 have been found. By applying one of these differentials to
Nimbus, a 1-round iterative differential characteristic with probability 1

2 can be
obtained. Iterating this to the full 5-round cipher, a differential characteristic
with probability 2−5 is obtained. This characteristic was used by Furman [209]
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to devise an attack on full Nimbus using 256 chosen plaintexts and 210 com-
plexity. Recently, Borisov et al. [99] summarised the attack of [209] using the
language of multiplicative differentials, redefining the differential pairs of [209] as
(x, x∗) where x∗ = −x mod 263 but x∗ 6= −x mod 264, a property that survives
multiplication by the relevant key bits.

2.7.4 Nush

2.7.4.1 The design

We here consider the version of Nush which is a 64-bit block cipher, with a 128,
192, or 256-bit key over 9 rounds [329]. 128-bit and 256-bit block sizes were also
submitted to NESSIE. Each round consists of four iterations. In each iteration
two of four variables are updated using a subkey, while the other two are changed
in a non-linear manner. Then the four registers are cycled round (byte-wise) in a
Feistel way. Nush does not use S-boxes and, to introduce nonlinearity, there are
four different kinds of operations, using XOR, OR, AND, and bit rotations. Like
IDEA, Nush depends on the mixing of non-commutative operations for confusion
and diffusion. The cipher also has a pre-whitening step and a post-whitening step
where a subkey is added via XOR.

The key schedule of Nush simply takes the user input key and partitions this
key into different subkeys for use in the encryption algorithm. No nonlinearity is
used in the key schedule. For further details of the design please refer to [329].

2.7.4.2 Security analysis

In the submission [329], the designers mention resistance against differential and
linear cryptanalysis, weak key and related key attacks as well as other attacks,
but do not include any details of their analysis.

A linear attack with complexity less than that of exhaustive key search for
the different variants of NUSH has been reported by Wenling and Dengguo [516].
NESSIE has confirmed that the linear approximation used in the attack is correct.
This approximation is effective over the full cipher and holds with probability 1

4
or 3

4 depending on whether AND or OR is chosen in the iteration. Specifically,
the linear approximation is of the form,

Ai[0]⊕Bi[0]⊕Di[0] ' Ai−1[0]⊕Bi−1[0]⊕Di−1[0]

where A,B,C,D are 16-bit partitions of the input/output block. But NESSIE
has found some flaws in the further analysis. NESSIE has devised attacks on
NUSH with 64-bit or 128-bit block size based on this linear approximation. These
attacks are slightly faster than exhaustive search (by a factor of 2) for all key
sizes. Furthermore, removing the first two rounds leaves all nine variants of NUSH
vulnerable to a linear attack, suggesting a very limited security margin for the
cipher.
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2.8 128-bit block ciphers not selected for Phase II

The 128-bit block ciphers not selected for phase II of NESSIE were Anubis,
Grand-Cru, Hierocrypt-3, Noekeon, Nush, Q, and SC2000. After discussing each
cipher briefly we summarise and compare some of the distinguishing features
of the ciphers, identifying potential weaknesses and noting the best-known at-
tacks, as shown in Tables 2.20 and 2.21 of Sect. 2.9.5. Note that the algorithms
given here are not complete specifications, but references are given to complete
specifications which may be found on the NESSIE website.

2.8.1 Anubis

No security flaws have been found in the tweaked version of Anubis, and it is
very similar to Rijndael.

2.8.1.1 The design

Anubis is a 128-bit SPN block cipher which accepts keys of length 32N bits (a
minimum of 128 bits) and uses 8 + N rounds depending on the key size — a
minimum of 12 rounds [29]. Each round consists of a subkey addition, 16 S-boxes
(8-bit to 8-bit) and a linear transformation (presented as a matrix transpose
operation). As in Khazad, all round components were chosen to be involutions
in order to guarantee that encryption and decryption are identical but with the
order of the subkeys reversed. Confusion and diffusion layers are kept separate,
with the diffusion layer realised as a matrix transposition followed by a linear
transformation designed to be an MDS code. In the original submission the S-
boxes were randomly generated to avoid any internal structure. This tended to
have a high cost in hardware, hence the tweaked submission used an S-box which
could be decomposed into 3 layers of 4 × 4 mini-S-boxes, the same S-box as for
Khazad (see Fig. 2.4 for Khazad), which has a complexity estimated to be one
fifth of that for Rijndael [32].

The key schedule of Anubis is complicated and appears to be quite strong. It
expands the cipher key into a series of round subkeys and uses a two-stage key-
evolution and key-selection function. The schedule makes use of the encryption
S-box combined with permutation, linear transformations based on MDS codes,
and the addition of constants. For further details of the design refer to [29].

2.8.1.2 Security analysis

The designers claim [29] that no 4-round differential characteristic with probabil-
ity higher than 2−125 exists and that no 4-round linear approximation with bias
of more than 2−57.5 exists. They claim that related key attacks, interpolation
attacks and boomerang attacks are infeasible, that truncated differential attacks
only work up to 6 rounds and that saturation attacks work only up to 6 rounds.
Such a saturation attack requires 6 × 232 chosen-plaintexts, 224 bits of storage
(in addition to the memory required for storing the plaintext-ciphertext pairs)
and time equivalent to 6× 248 S-box lookups. Extending the attack to 7 rounds
requires almost the entire code book, 264 bits of additional storage and analysis
time equivalent to about 2120 encryptions. For 8 rounds, 2104 storage bits and
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analysis time of 2204 encryptions is required (with the same data complexity).
The designers claim [29] that the Gilbert-Minier attack can break 7 rounds us-
ing 232 chosen -plaintexts and about 2140 S-box lookups. The designers claim
[29] that the best impossible differential attack is on 5 rounds and uses 229.5

chosen-plaintexts and 231 analysis time.
Other than a small error in the calculation of linear approximation biases (the
maximal bias is 17/256 instead of 13/256) that seems to have no effect on the
overall security, no weaknesses or attacks have been reported. Apart from this
mistake,it seems that the rest of the claims are correct, and that even the linear
weakness cannot be exploited.

A summary of the known attacks according to the designers is given in Ta-
ble 2.12.

Table 2.12. Designers Claims of Security — Known Attacks

Attack Rounds Key Size Complexity
Data Memory Time

Saturation 6 all 6.232 CP 224 bits 6.248

7 all 2128 − 2119 CP 264 bits 2104

8 > 204 2128 − 2119 CP 2104 bits 2204

Gilbert-Minier 7 > 140 232 2140

Imp. Diff. 5 all 229.5 231

2.8.2 Grand Cru

2.8.2.1 The design

Grand Cru is a 128-bit block SPN block cipher over 10 rounds, requiring a key
of at least 128 bits [100]. Grand Cru can be viewed as an enhanced version of
Rijndael [150]. Rijndael encryption for a 128-bit key, K0, can be described by,

σK0
10
◦ π ◦ γ ◦ σK0

9
◦

0∏

i=8

(θ ◦ π ◦ γ ◦ σK0
i
)

where σ is round key addition, γ is nonlinear substitution, π is a byte permuta-
tion, and θ is a linear transformation on a subset of the bytes. Grand Cru adds
three keyed operations to give a four layered cipher (comprising four subciphers):

ψK3
1
◦ ν−1 ◦ σK0

10
◦ βK2

9
◦ πK1

9
◦ γ ◦ σK0

9
◦

0∏

i=8

(βK2
i
◦ θ ◦ πK1

i
◦ γ ◦ σK0

i
) ◦ ν ◦ ψK3

0

where πK1 is now a keyed permutation, where the round subkey K1
i can take on

(4!)5 possible values, βK2 is a keyed byte-wise rotation, where K2
i can take on 248

values, and two outer round key additions, ψK3 , are appended, using addition
mod 28. ν is an extra diffusion layer. Note that the S-box is identical to that used
in [150], as is the 4× 4 matrix over GF(28) described by θ.
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The cipher requires four 128-bit keys to derive the subkeys for the different
keyed operations. When the user-selected key is shorter than 512 bits, these four
keys are derived using a one-way function. All round subkeys are derived using
the Rijndael key schedule. Further details of the design can be found in [100].

2.8.2.2 Security analysis

Grand Cru is a cipher that implements multiple layered security. The idea behind
this is to mix several ciphers in such a way that if all but one of them are broken,
one is still left with a secure cipher. The designer shows that introducing the
keyed operations not found in Rijndael does not reduce the security compared to
Rijndael [100]. There is also a short analysis of the different ciphers that emerge
when all but one set of the subkeys are known or chosen. It should be noted that
Rijndael is very close to being one of these ciphers. Hence the designer claims that
any attack that breaks Grand Cru also breaks Rijndael. Only in the case of weak
keys for the permutation subcipher, π, and the rotation subcipher, β, may Grand
Cru be weaker than Rijndael. The effectiveness of the different subciphers can be
examined by assuming that the other subcipher keys are known or chosen. The
designer shows that for the permutation subcipher there is a meet-in-the-middle
attack requiring 2110 operations and storage (faster than exhaustive search).

No attacks or weaknesses have been reported by NESSIE on Grand Cru.

2.8.3 Hierocrypt-3

Attacks on Hierocrypt-3 significantly reducing the security margin have been
found by Barreto et al. that the submitters were not aware of [33].

2.8.3.1 The design

Hierocrypt-3 (HC-3) is a 128-bit block SPN cipher taking 128-bit, 192-bit, or
256-bit keys, and operating over 6, 7, or 8 rounds, depending on the key size
[412]. Like HC-L1, HC-3 has a hierarchical structure. At the highest level, an
HC-3 round consists of, in order:

– A layer of four simultaneous applications of 32×32-bit keyed substitution boxes
(XS-boxes).

– A diffusion layer consisting of a bytewise linear transform defined by the MDSH
matrix.

Within each round a similar structure exists. A 32-bit XS-box consists of, in
order:

– An upper subkey mixing layer which XORs 32-bit input data with four subkey
bytes.

– An upper (key-independent and nonlinear) S-box layer composed of the parallel
application of four 8× 8-bit S-boxes.

– A diffusion layer consisting of a bytewise linear transform defined by the MDSL
matrix.

– A lower subkey mixing layer.
– A lower S-box layer.
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The output transformation is composed of an XS-box layer followed by an
XOR layer with the last 128-bit subkey. The key schedule for Hierocrypt-3 follows
the same algorithm as for Hierocrypt-L1, which is discussed under 64-bit block
ciphers. More details of the design can be found in [412].

2.8.3.2 Security analysis

In the submission [412], the designers show that Hierocrypt-3 is secure against
differential and linear cryptanalysis using conservative estimates. They also stud-
ied integral (Square) attacks for consistency and claim they work only up to 4
S-box layers (2 rounds) for a 128-bit key and up to 5 S-box layers (2.5 rounds)
for a 192-bit or 256-bit key. They claim that 5 rounds is secure against truncated
differentials. During the 2nd NESSIE workshop the designers gave bounds not
just on the best differential and linear characteristics, but also on the best dif-
ferential and linear hull [414]. For 4-round Hierocrypt-3, the upper bound on the
probability of either is 2−96.

During the NESSIE assessment phase, an integral attack for consistency was
found on 7 S-box layers (3.5 rounds) by Barreto et al. [33]. Another such attack
was also found by the designers. The attack requirements are summarised in
Table 2.11 which is located in the subsection related to Hierocrypt-L1, Sect. 2.7.2,
along with further comments regarding the security of Hierocrypt-3.

2.8.4 Noekeon

Both key schedules of Noekeon were found, by Knudsen and Raddum [308], to
be susceptible to related key attacks.

2.8.4.1 The design

Noekeon is a 128-bit block, 128-bit key SPN cipher over 16 rounds [149]. Each
round operates on four 32-bit words, a0, a1, a2, a3 and starts with the addition of
a round constant to a0. Then a0 and a2 are XORed together to make the word w,
and two copies of w are made. One of the copies is rotated 8 bits to the left, and
the other is rotated 8 bits to the right. These rotated copies are then XORed back
onto w, and w is XORed onto a1 and a3. After this the 128-bit working key (see
below) is added to the four words. Then a1 and a3 are used to create a temporary
w in the same way as described above, and this word is XORed onto a0 and a2.
The words a1, a2 and a3 are then rotated 1, 5, and 2 bits, respectively, to the left.
Then, for all 32 positions in a word, the bits that are in the same position in the
different words are passed through a 4-bit S-box (32 parallel S-boxes in total).
Finally, the round ends with the words a1, a2, a3 being rotated 1, 5 and 2 bits,
respectively, to the right. After the last round, the linear operations described
before the rotations of a1, a2, a3 are repeated one more time. The encryption and
decryption routines are very similar.

Noekeon has two key schedules, one for applications where related-key attacks
are not considered dangerous and one for applications where related-key attacks
can be mounted. The stronger key schedule consists of taking the user selected
key and encrypting it once with the all zero key. The ciphertext is then used as
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the so-called working key. The simpler key schedule simply uses the user selected
key as the working key.

More details of the design can be found in [149].

2.8.4.2 Security analysis

The designers [149] claim resistance against linear and differential cryptanalysis.
For linear attacks they claim that no 4-round linear characteristic with correlation
coefficient higher than 2−24 exists. For differential attacks, the designers give a
plausible argument that no 4-round differential with probability higher than 2−48

exists. The bounds are sufficient to conclude resistance against both attacks.
The designers’ reasoning that Noekeon is not vulnerable to attacks based on
truncated differentials and to the interpolation attack also seems to be correct.
Note, however, that the constituent functions of the S-box include the identity
function on four of the sixteen different inputs.

In [308] Knudsen and Raddum show that there exist many related keys for
which plaintexts of certain differences result in ciphertexts of certain differences
with high probabilities independent of the key schedule used. It is also shown in
[308] that for six of seven S-boxes which satisfy the design criteria of the Noekeon
designers, the resulting block ciphers are vulnerable to either a differential attack,
a linear attack or both. It is concluded that Noekeon is not designed according
to an optimal diffusion strategy [308].

2.8.5 Nush

2.8.5.1 The design

This version of Nush is a 128-bit block cipher, with a 128, 192, or 256-bit key over
9 rounds [329]. 64-bit and 256-bit block sizes were also submitted to NESSIE.

More details of the design can be found in [329].

2.8.5.2 Security analysis

Nush has a very limited security margin [398]. Details of the algorithm and
security analysis can be found in Sect. 2.7.4 which describes the 64-bit version of
Nush.

2.8.6 Q

There are attacks on Q by Biham et al. and Keliher et al. both faster than
exhaustive search [65, 286].

2.8.6.1 The design

Q is a 128-bit block cipher with a key size of 128, 192, or 256 bits over 8 rounds
for ’low security’ and over 9 rounds for ’high security’ [360]. It was designed to be
faster than Serpent and also to be immune to differential and linear cryptanalysis.
The data is divided into sixteen 8-bit words (a 4 × 4 matrix of bytes). At the
beginning of each round, a subkey word is XORed in, then an 8 × 8 S-box is
applied 16 times (for each of the 16 data bytes) and an additional subkey XOR
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is performed. A 4 × 4 S-box is then applied 32 times, the round key is XORed
in, a byte permutation is performed, and the 4× 4 S-box is again used 32 times.
After the last round, there is additional subkey XOR, an 8 × 8 S-box layer, a
subkey XOR and an additional subkey XOR (post-whitening). Two of the three
subkeys used in each round are the same, and are equal for all rounds and also
for the last half round.

The key schedule applies an operation similar to encryption to the low order
half of a 256-bit key (which may be a zero-padded 128-bit key. It includes an XOR
with a round counter and an XOR with a constant derived from the Golden Ratio.

More details of the design can be found in [360].

2.8.6.2 Security analysis

The designers have claimed [360] that there are no differentials with probability
larger than 2−120 after 7 rounds, and that there is no differential attack on the full
Q. An equivalent claim is made regarding linear cryptanalysis. The designers also
claim security against key-related attacks, slide attacks, Davies-Murphy attacks,
boomerang attacks, approximation attacks and impossible differential attacks.

During the NESSIE assessment phase, a differential with higher probability
than the upper limit claimed by the designers was found by Biham and Furman
and used to break the full Q. These results were presented at FSE 2001 [64]. A
paper performing linear cryptanalysis of the full Q, with a significantly better
attack than this differential attack, was presented by Keliher et al. at the 2nd
NESSIE workshop [286]. The differential attack on full Q with 128-bit keys re-
quires 2105 chosen plaintexts and has a time complexity of 277 encryptions. The
best attack on the full Q with larger key sizes requires 2125 chosen ciphertexts,
and has a time complexity of 296 for 192-bit keys, and 2128 for 256-bit keys. Table
2.13 summarizes these results.

Table 2.13. Data/Time Complexity of Attacks on Q for Different Key Sizes

Key Size Round Chosen Complexity
(bits) Number Plaintexts (encryptions)
128 8 2105 277

192 9 2125 296

256 9 2125 2128

2.8.7 SC2000

2.8.7.1 The design

SC2000 is a 128-bit block cipher taking a 128, 192, or 256-bit key over 6.5 or 7.5
rounds [475]. It is a mixture of a Feistel cipher and an SPN. The round function
of SC2000 consists of a layer of 32 parallel 4-bit S-boxes followed by two rounds
of a Feistel network. The round keys are XORed with the cipher block before and
after the application of the S-boxes. The last half round consists of key additions
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and S-box look-ups. The F -function in the Feistel network consists of a layer of
four 6-bit S-boxes and eight 5-bit S-boxes, multiplication by a fixed 32 × 32 bit
matrix and a final mixing of the words with each other using the AND operation
with a constant and XOR. This produces two words of output from the function
in the Feistel network. This two-round Feistel structure is the last operation on
one round of SC2000. The key schedule is a complex transformation of the key
selected by the user, in such a way that every 32-bit word of the round keys
depends on the whole key.

More details of the design can be found in [475].

2.8.7.2 Security analysis

The designers [475] have studied the efficiency of the key avalanche and conclude
that the complexity is that of exhaustive search if one tries to bypass one round
in the beginning and end by guessing some of the key bits. A differential attack
on 4.5 rounds has been reported by the designers. This attack finds 28 bits in
the first and last round key. The key schedule in SC2000 appears to be very
strong. The knowledge of one round key doesn’t seem to leak any information
about any of the other round keys or the key selected by the user, so the key
schedule prevents the attacker from searching exhaustively for the remaining key
bits. However, the success of this attack raises some questions about the design
of SC2000. In [476] the designers present differential characteristics with higher
probabilities than those found in their submission to NESSIE.

Raddum and Knudsen [449] and Dunkelman and Keller [177] both report
attacks on SC2000 when the number of rounds is reduced to 3.5 or 4.5 from
the original 6.5. In [449] two different 3.5-round differential characteristics with
probabilities 2−106 and 2−107 are given. These characteristics have higher prob-
abilities than those reported in [380]. The characteristics can be used to extract
up to 32 bits of the first and last round keys in a 4.5-round variant of SC2000.
In [177] distinguishers for 2.5 and 3 rounds are found and used to attack a 3.5
round variant of the cipher. These results on SC2000 were presented at the 2nd
NESSIE workshop.

It is also interesting to note that affine relationships exist between the bit
outputs of the S-box, for all three S-boxes, S4, S5, and S6 [54] (see Sect. 2.9.5).

2.9 Comparison of studied block ciphers

2.9.1 64-bit block ciphers considered during Phase II

Table 2.14 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.
MISTY2 and KASUMI are not part of NESSIE but are included for comparison
with MISTY1.
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Table 2.15 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form,

bi(x) = bj(Ax+B) + c

for the vector of S-box input bits, x, a Boolean matrixA, a Boolean vector B, and
a constant, c ∈ {0, 1}. The submatrices of A which are permutation or rotation
matrices are also enumerated [54].

2.9.2 128-bit block ciphers considered during Phase II

Table 2.16 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.

Table 2.17 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form,

bi(x) = bj(Ax+B) + c

for the vector of S-box input bits, x, a Boolean matrixA, a Boolean vector B, and
a constant, c ∈ {0, 1}. The submatrices of A which are permutation or rotation
matrices are also enumerated [54].

2.9.3 Large block ciphers considered during Phase II

Table 2.18 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.

2.9.4 64-bit block ciphers not selected for Phase II

Table 2.19 highlights the best attacks known on the block ciphers considered
in this section, identifying the number of rounds over which they operate, some
unusual features of the cipher, some potential weaknesses of the cipher, and a
list of the best attacks, including the number of rounds broken, data and time
complexities, and references for the attacks.

2.9.5 128-bit block ciphers not selected for Phase II

Table 2.20 highlights the best attacks known on the block ciphers considered
in this section, identifying the number of rounds over which they operate, some
unusual features of the cipher, some potential weaknesses of the cipher, and a
list of the best attacks, including the number of rounds broken, data and time
complexities, and references for the attacks.
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Table 2.14. A summary of each 64-bit block cipher selected for Phase II

Cipher RndsUnusual Features Potential Best Attacks
Weaknesses RndsTechnique Time DataRef.

IDEA 8.5 Juxtaposition of 3 Homomorphisms from2 Diff 242 210 [362]
dissimilar algebraic groups, × mod 216 + 1 2 Square 23 264 [158]
+ mod 216, × mod 216 + 1to + mod 216 or 2.5 Square 258 3.216 [380]
and ⊕ mod 2. ⊕ mod 2 (partial) 2.5 Square 279 248 [380]
No S-boxes Linear Key Schedule 3 Diff-Lin 3 · 242229 [77]
Encryption ' Decryption (weak) 3.5 Miss-in-the-middle 253 238.5[58]
Widely studied for over a Relatively large 3.5 Square 282 234 [158]
decade — few security flawsweak-key classes 4 Miss-in-the-middle 270 238 [58]

4 Diff-Lin (related-key)38 38.3 [244]
4 Square 234 2114 [158]
4.5 Miss-in-the-middle 2112 264 [58]
4.5 Boomerang 218 218 [77]

2101 weak keys
5 Boomerang 4 4 [77]

295 weak keys
8.5 Boomerang 4 4 [77]

253 weak keys
8.5 Boomerang 216 216 [77]

264 weak keys
Khazad 8 All components involutions Slightly weak 3 Square 216 28 [30]

Efficient Diffusion S-box nonlinearity 3 Imp. Diff. 264 213 [66]
Very high diffusion branch 4 Square 280 29 [30]
by use of linear
transformation (MDS code)
S-box does not depend
on simple mathematical
function.
Encryption = Decryption
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Table 2.14. (continued) A summary of each 64-bit block cipher selected for Phase II

Cipher RndsUnusual Features Potential Best Attacks
Weaknesses RndsTechnique TimeData Ref.

MISTY1 8 Entire algorithm built fromLow algebraic degree4 Slicing/Diff (FL) 281.6 227 [319]
recursive components. Hardof S-boxes. 4 Collision (FL) 289 220 [318]
to analyse. Additional FL Simple key schedule. 4 (FL) 290.4 223 -
layers. S-boxes have Hardware/software 4 (FL) 262 238 -
irregular 7/9 splitting. penalty through 4 (FL) 289 220 -
Simple ANF for S-boxes 7/9 S-box splitting. 4 (FL) 276 228 -
S-boxes have optimal Generalised linear 4 (FL) 248 234 -
nonlinearity. approx. 5 High Diff (No FL) 217 11 · 27 [502]
Key schedule uses S-boxes Characteristics 5 High Diff (No FL) 238 26 [500]
Provable security against not optimal. 6 Diff (No FL) 2106 239 [318]
diff/lin. crypt. Complicated. 6 (No FL) 261 254 -
Encryption ' Decryption 6 Integral (FL) 271 234 [311]

MISTY2 - 5 High Diff (No FL) 239 27 [500]
(not part 5 Diff (FL) 262 238 [318]
of NESSIE) 5 Collision (FL) 276 228 [318]

6 Integral (FL) 271 234 [311]
KASUMI - 4 Diff (No FL) 222 210 [503]
(not part 5 Square (FL) 280 238 3GPP
of NESSIE) 5 Lin. (FL) 295 258 3GPP

6 Rel Key (FL) 2112 3 · 217 [91]
6 Imp Diff (Rnds 2-7,FL)2100 255 [318]
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Table 2.14. (continued) A summary of each 64-bit block cipher selected for Phase II

Cipher RndsUnusual Features Potential Best Attacks
Weaknesses RndsTechnique Time Data Ref.

SAFER++64 8 4-point PHT for diffusionNon-homomorphic 2 Lin 242 25 [382]
Two incompatible group linear approx. 3 Lin 2121 233 [382]
operations, ⊕ and Rather small bit weak key frac: 2−6

+, mod 256. and byte branch
S-boxes use exp and log. numbers for diffusion
Key addition uses both ⊕layer.
and + mod 256. S-box using 45x

Mini versions possible exhibits linear
for analysis. relationship with
Use of bias words for prob. 1
key schedule

Triple-DES 48 DES analysed for many S-boxes are not 228 related-keys 284 228 [52]
(three key) years with no significant optimally nonlinear. Improved m.i.t.m. 1.3 · 2104232 [340]

security flaws. Lin. Crypt. 8 Diff-Lin [327]
Extension of DES. Inefficient. 8 Diff-Lin 214.8 214.8 [62]
Backwards compatible 9 Diff-Lin 229.17 215.75 [62]
with DES. 10 Diff-Lin 250 220 [62]

Related-key [288]
Meet-in-the-middle2112 3 [366]

(two key) Chosen plaintext 256 256 [367]
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Table 2.21 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form, bi(x) = bj(Ax + B) + c for the vector of
S-box input bits, x, a Boolean matrix A, a Boolean vector B, and a constant,
c ∈ {0, 1}. The submatrices of A which are permutation or rotation matrices are
also enumerated [54].
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Table 2.15. Affine relations for the S-boxes of some Phase II 64-bit block ciphers

Sbox Inverse Sbox
Cipher Sbox Size # Aff. Eqns Perm Rot Total Perm Rot
Khazad-tweak 8× 8 - - - - - -
Khazad-orig 8× 8 - - - - - -
MISTY1 S7 7× 7 > 2000 - - > 2000 - -

S9 9× 9 > 100000 20 32 720 - -
Safer++ exp45 8× 8 256 - - (log45) 7 - -
DES S1 6× 4 1 - - not invertible

S2 6× 4 3 - - not invertible
S3 6× 4 4 - - not invertible
S4 6× 4 28 - - not invertible
S5 6× 4 3 - - not invertible
S6 6× 4 3 - - not invertible
S7 6× 4 6 1 - not invertible
S8 6× 4 - - - not invertible
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Table 2.16. A summary of each 128-bit block cipher selected for Phase II

Cipher RndsUnusual Features Potential Weaknesses Best Attacks
RndsTechnique TimeDataRef.

Camellia 18 Byte-Oriented, Feistel x−1 S-box function 5 Imp Diff [57]
Use of x−1 for S-box potentially open to 6 Square (FL) 216 [523]
FL/FL−1 layers algebraic attacks e.g. 6 Square (No FL) 2112 211.7 [248]
with 1-bit rot. quadratic expressions, 7 Imp Diff (No FL) [501]

and affine relationship 8 Trunc Diff (No FL) 255.6 283.6 [330]
between S-box o/ps 9 Square+key (FL) 2202 260 [523]
Identical rounds lead 9 Diff Crypt (No FL) 2105 [59]
to Slide attacks 9 Boomerang (FL) 2170 2124 [483]

10 Rectangle (FL) 2241 2127 [483]
11 Diff (No FL) 2232 2104 [483]
11 High Diff (No FL) 2255 221 [243]
11 High Diff (FL) 2256 293 [243]
12 Lin (No FL) 2247 2119 [483]

RC6 20 Very simple description Vulnerable via approx.16 Diff. Crypt. 2128 [121]
Progression from RC5 across data-dep. rots. 16 Lin. Crypt. 2119 [121]
Data-dependent rots. Small safety margin 8 Lin. Crypt. 247 [273]
Quadratic function for 14 mult. lin. crypt. 2186 2120 [474]
diffusion. 18 mult. lin. crypt. 2193 2127 [474]
Strong, complex key- with 2−90 weak key fraction
schedule. 15 χ2 (stat.) attack [306]
Mini-versions possible. by fixing 5 lsbs in A,C
Uses 32-bit mult. mod 232 17 χ2 (stat.) attack [306]
Feistel-like for 2−80 keys
Encryption 6= Decryption Extrapolated

experimentally
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Table 2.16. (continued) A summary of each 128-bit block cipher selected for Phase II

Cipher Rnds Unusual Features Potential Weaknesses Best Attacks
RndsTechnique TimeData Ref.

Rijndael 10,12,14Very high Small safety margin 5 Imp Diff 231 229.5 [66]
diffusion Potentially open to 6 Square 272 232 [150]
Use of x−1 for S-box algebraic attacks 7 Collision (192,256) 2140 232 [219]
Encryption 6= Decryption e.g. quadratic 7 Collision (128-bit key) 2128 232 [219]
Diffusion via MDS trans. expressions, and 7 Square (192-bit key) 2176 232 [341]
Highly elegant affine relationship 7 Square (256-bit key) 2192 232 [341]
Provable resistance to between S-box o/ps 6 Square 244 232 [191]
Diff/Lin. Crypt. Unnecessarily weak 7 Square (192-bit key) 2155 232 [191]
Implicit Nested SPN key-schedule. 7 Square (256-bit key) 2172 232 [191]
structure Description using BES7 Square 2120 2128 [191]

Too elegant to be 8 Square (192-bit key) 2188 2119 − 2128 [191]
random? 8 Square (256-bit key) 2204 2119 − 2128 [191]

9 Related-key/Square 2224 277 [191]
256 related keys
(256-bit keys)

SAFER++128 8 4-point PHT for diffusionNon-homomorphic 2.75 Imp. Diff. 260 264 [383]
Two incompatible group linear approx. 3.25 Square 270 29.6 [379]
operations, ⊕ and Rather small bit 3.25 Lin. Crypt. 2103 281 [382]
+, mod 256. and byte branch 4 (256-bit key) 2178 281 [382]
S-boxes use exp and log. numbers for diffusion weak key frac: 2−13

Key addition uses both ⊕layer. Lin (256-bit key) 2167 291 [382]
and + mod 256. S-box using 45x weak key frac: 2−11

Mini versions possible exhibits linear 4 Integral (128-bit key) 2112 264 [433]
for analysis. relationship with 4 Integral (128-bit key) 2120 264 [433]
Use of bias words for prob. 1 (less memory)
key schedule Decryption diffusion 4 Integral (256-bit key) 2144 264 [433]

weak 4 Boomerang (128-bit key)241 241 [75]
5 Boomerang (128-bit key)275 275 [75]
5.5 Boomerang (128-bit key)2121 2121 [75]
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Table 2.17. Affine relations for the S-boxes of some Phase II 128-bit block ciphers

Sbox Inverse Sbox
Cipher Sbox Size # Aff. Eqns Perm Rot Total Perm Rot
Camellia 8× 8 504 - - 504 - -
AES-Rijndael 8× 8 504 - - 504 - -
Safer++ exp45 8× 8 256 - - (log45) 7 - -
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Table 2.18. A summary of each large block cipher selected for Phase II

Cipher Rnds Unusual Features Potential Weaknesses Best Attacks
Rnds Technique TimeData Ref.

RC6 20 Very simple description Vulnerable via approx. 3 + 2sχ2 (stat.) attack 216+20s [301]
Progression from RC5 across data-dep. rots. Extrapolated
Data-dependent rots. Small safety margin experimentally
Quadratic function for
diffusion.
Strong, complex key-
schedule.
Mini-versions possible.
Uses 32-bit mult. mod 232

Feistel-like
Encryption 6= Decryption

Rijndael 14 Wide-Trail Strategy Small safety margin
Use of x−1 for S-box Potentially open to
Encryption 6= Decryption algebraic attacks e.g.
Diffusion via MDS trans. quadratic expressions,
Highly elegant and affine relationship
Provable resistance to between S-box o/ps
Diff/Lin. Crypt. Unnecessarily weak
Implicit Nested SPN key-schedule.
structure Description using BES

Too elegant to be
random?

SHACAL-180 (steps)SHA well studied. Potentially weak 41 Diff. 2491 2141 [290]
Derived from hash fn. key-schedule (slide property)47 Amp. Boomerang2508.42158.5 [290]
uses + mod 232, 49 Rectangle 2508.52151.9 [68]
AND, OR, and data rots.

SHACAL-264 (steps)Derived from hash fn.
uses + mod 232,
AND, OR, and data rots.
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Table 2.19. A summary of each 64-bit block cipher not selected for Phase II

Cipher RndsUnusual Features Potential Weaknesses Best Attacks
RndsTechnique TimeData Ref.

CS-Cipher 8 SPN, nonlinear diff - 5.5 Lin/Diff - - [198]
FFT-based Diffusion

Hierocrypt-L1 6 Hierarchical SPN Weak key-schedule 2.5 Integral 272 232 [412]
MDS Diffusion 3 Integral 240 6× 232 [412]
Feistel key schedule 3.5 Integral 2104 14× 232 [33]

5 Trunc Diff [412]
Key-schedule [210]

Nimbus 5 Not SPN, High prob. Diff. 5 Diff 210 28 [63]
Mult, mod 264

Nush 9 Four iterations/roundHigh lin. bias - Lin 2K−1- [516]
Feistel-like, No S-box
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Table 2.20. A summary of 128-bit block ciphers not selected for Phase II

Cipher Rnds Unusual Features Potential Weaknesses Best Attacks
RndsTechnique Time Data Ref.

Anubis 8 +N Like Khazad/Rijndael 5 Imp Diff 231 229.5 [29]
Uses involutions 6 Saturation (all keys)6× 2486× 232 [29]
Diffusion uses 7 Saturation (all keys)2120 2128 [29]
matrix transposition 7 Gilbert-Minier 2140 232 [29]

(key-size > 140)
8 Saturation 2204 2128 [29]

(key size > 204)
Grand Cru 10 Enhanced Rijndael

Multi-layered security
Hierocrypt-3 6-8 Hierarchical SPN Weak key-schedule 2.5 Integral 2168 213 [412]

MDS Diffusion 3 Integral 240 6× 232 [412]
Feistel key schedule 3.5 Integral 2168 22× 232 [33]

Noekeon 16 four 32-bit words S-box includes Diff/Lin [308]
Two key schedules identity funcs

many related keys

Nush Four iterations/round High lin. bias - Lin 2K−1 - [516]
Feistel-like, No S-box

Q 8 4× 4-bit data blocks High Diff/Lin prob. 8 Diff [64]
8 Lin (128-bit key) 277 2105 [286]
9 Lin (192-bit key) 296 2125 [286]
9 Lin (256-bit key) 2128 2125 [286]

SC2000 6.5 - 7.5Feistel/SPN High Diff Prob. 3.5 Diff [177]
4× 4, 5× 5, 6× 6 S-boxes 4.5 Diff [475]
Strong key-schedule 4.5 Diff [449]
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Table 2.21. Affine relations for the S-boxes of some 128-bit block ciphers not selected
for Phase II

Sbox Inverse Sbox
Cipher Sbox Size # Aff. Eqns Perm Rot Total Perm Rot
Hierocrypt 8× 8 504 - - 504 - -
SC2000 S4 4× 4 > 1000 7 - > 1000 7 -

S5 5× 5 > 1000 - > 3000 8 -
S6 6× 6 210 - 210 8 -

Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
— Qualitative statements on performance and selection criteria have been

removed.
— Some of the tables at the end of the chapter rotated and split so as to be

enlarged but still fit on the page.
§2.2.2 Added a few paragraphs to more formally define a block cipher, and to

describe distinguishing attacks on block ciphers when viewed as pseudo-
random functions.

§2.2.3.17 Included amendment by Courtois to say that the security PROBABLY
does not grow exponentially with the number of rounds. Also included
Bart Preneel and Lars Knudsen’s view that less-than-exponential growth
is probably not possible.

§2.3.11 ISO standard now includes Khazad and CAST-128, as pointed out by Bar-
reto.

§2.5.1.2 Mention is made of Shirai’s paper on Camellia from Munich, 2002, and
some of his results on Camellia added to the table at the end.

§2.5.3.2 Reference made to 6-round impossible differential attack on Rijndael by
Cheon et al. . Pointed out by Raphael Chung-Wei Phan.

§2.5.3.2 Correction to text wrt Rijndael and the alternating group, as suggested by
Wernsdorf.

§2.2.3.14 A few comments added on the Slide attack.
§2.5.4.2 Text from the SAFER++64 security analysis section which is also rele-

vant for the SAFER++128 security analysis section has been copied across,
largely verbatim, to the SAFER++128 security analysis section.

§2.5.4.2 Added Alex Biryukov’s SASAS comment about SAFER++128 to the Secu-
rity Analysis section.

§2.5.4.2 Added a table to the SAFER++128 security analysis section with Jorge
Nakahara’s attack results.
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3. Stream ciphers

3.1 Introduction

A stream cipher is an algorithm for encrypting a sequence of elements or char-
acters from a plaintext alphabet, usually the binary alphabet {0, 1}. Stream ci-
phers are commonly classified as being synchronous or self-synchronising. In a
synchronous stream cipher the keystream is generated independently of the plain-
text and ciphertext, so the keystream depends only on the key. In contrast, the
keystream of a self-synchronising stream cipher depends on the key and a fixed
amount of the previously generated ciphertext. Most stream ciphers can be classi-
fied as additive stream ciphers. An additive stream cipher is a synchronous cipher
in which the ciphertext is the XOR of the plaintext and the keystream. None of
the submissions is a self-synchronising stream cipher, therefore only synchronous
stream ciphers are considered.

In specific applications, stream ciphers are more appropriate than block ci-
phers:

– Stream ciphers are generally faster than block ciphers, especially in hardware.
– Stream ciphers have less hardware complexity.
– Stream ciphers process the plaintext character by character, so no buffering is

required to accumulate a full plaintext block (unlike block ciphers).
– Synchronous stream ciphers have no error propagation.

Most stream ciphers are based on simple devices that are easy to implement
and run efficiently. A common example of such a device is the linear feedback shift
register (LFSR) [457]. Such simple devices produce predictable output given some
previous output. Thus, the output of such devices is typically used as the input
to a function that produces the keystream. Keystreams can also be produced by
using certain modes of operation of a block cipher.

Many of the common uses of stream ciphers require frequent key reinitializa-
tion or rekeying. A full definition of a stream cipher intended for such uses should
give details of how the cipher should be rekeyed. The original NESSIE call for
primitives did not require stream ciphers to be accompanied by a rekeying sched-
ule. Only the two SOBER stream ciphers provided a rekeying schedule with the
original schedule, though rekeying schedules have subsequently been provided for
the other submissions.

0 Coordinator for this chapter: SAG — Marcus Schafheutle, Stefan Pyka



104 3. Stream ciphers and PRNG

3.2 Security requirements

The techniques used to analyse stream ciphers use mathematical and statistical
properties of the generator or approximations to it. In particular, the keystream
generator should produce a memoryless balanced sequence of bits, which are
modelled as a sequence of independent identically distributed Bernoulli random
variables with parameter 0.5 (fair coin tosses). Stream cipher analysis is essen-
tially concerned with analysing the keystream generator to find deviations from
this statistical model. It is customary when analysing stream ciphers to consider
known plaintext attacks. This essentially means assuming that a large amount of
keystream is known. The statistical deviations are exploited to give methods for
attacking the stream cipher based on the known keystream. Such methods are
usually classified in one of the following three ways:

1. Distinguishing Attack.
A method for distinguishing output from the keystream generator from a
‘random’ sequence of the same length.

2. Prediction.
A method for predicting output from the keystream generator more accu-
rately than guessing

3. Key Recovery.
A method for recovering the key from the output of the keystream generator.

Key recovery is clearly the most powerful of these three methods as it enables
both prediction and a distinguishing attack. Prediction also clearly enables a
distinguishing attack. However, a distinguishing attack can be thought of as a
type of prediction. This is because a distinguishing attack makes statements that
certain sequences from a keystream generator are more or less likely to occur
than they would if produced ‘at random’, thus making predictions about the
keystream sequence that are more accurate than guessing.

3.2.1 Classification of attacks

Stream ciphers tend not to use iterated functions in the same way as block
ciphers, so the classification of attack techniques is more difficult. However, the
most common techniques are discussed below.

Exhaustive key search

This attack is the most general type of attack that can be applied to any stream ci-
pher. Given a keystream sequence generated by an unknown key, an attacker sim-
ply tries all possible keys and checks whether the generated keystream matches
the given keystream sequence. For exhaustive key search for stream ciphers there
exist very efficient time-memory tradeoff techniques as described in [78]. In a
time-memory tradeoff attack, some key-output relations are precomputed and
stored in memory. In the real-time phase of the attack, the given output data is
searched until a stored output pattern is found. The attacker has then found the
corresponding key. The time complexity for exhaustive key search is split into a
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time and a memory complexity. The name ‘time-memory tradeoff’ results from
this idea.

Periodic and Statistical Attacks

If the period of a keystream generator is too small, then the keystream will repeat
itself, so enabling easy prediction. The period must be large enough to ensure
that the keystream is not repeated. More generally, if the keystream deviates in
an obvious way from the memoryless Bernoulli distribution discussed above, then
there is an obvious prediction technique available.

Linear Complexity

The linear complexity of a sequence is the length of the shortest LFSR that can
produce that sequence. The linear complexity of a sequence is easily calculated
using the Berlekamp-Massey algorithm [352]. If this linear complexity is too small,
then an attacker can reproduce the sequence on an LFSR.

Maximum Order Complexity

The Maximum Order Complexity (MOC) Test determines the length of the short-
est possibly non-linear feedback shift register which can produce the given bit
sequence For the MOC profile, this is done for the first 1,2,3.. bits of the sequence.

Correlation Attacks

Correlation attacks are the most important general attacks on LFSR-based
stream ciphers. In a correlation attack, the output of a keystream generator
is correlated in some manner with the output of a much simpler device, such as a
component LFSR of the generator. This correlation can sometimes be exploited to
determine the key. The first ideas were described by Thomas Siegenthaler [490].
Meier and Staffelbach [363] and others subsequently improved these ideas by
developing fast correlation attacks.

Higher Order Correlation attacks

Many stream ciphers are built of a linear sequence generator and a non-linear
output function f . Correlation attacks try to find a linear approximation of f .
Equivalenty higher order approximations are possible. With the aid of the ap-
proximations an overdefined system of multivariate equations can be defined. The
XL method [137] can be adapted to solve these equations. This kind of attack is
not well examined, but a more detailed description can be found in [130].

Divide-and-Conquer Attacks

In such attacks a portion of the key (or of the internal state) is guessed. The
constraints now placed on the keystream may allow the determination of the
remainder of the key faster than searching this remainder exhaustively.

Rekeying Attacks

There are many applications in which a stream cipher is frequently rekeyed. It is
sometimes possible to exploit this rekeying in order to find the key.
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Sidechannel attacks

Using sidechannel attacks one exploits the behaviour of primitives in use, for
example different performances or different power consumption for different keys
or internal states. For a complete description of sidechannel attacks see the annex.

3.2.2 Assessment process

The stream cipher submissions were assessed with reference to the above generic
common stream cipher attack techniques. Furthermore, some stream cipher sub-
missions were analysed using techniques specific to that primitive.

Statistical testing is a vital part of stream cipher analysis in order to pro-
vide assurance that the generator possesses the required statistical properties.
The NESSIE toolbox provides extensive tools for stream cipher and block cipher
testing. A list of these tools used in stream cipher assessment is given below, and
further details can be found in [400]. It is emphasized that properties like large
period, large linear complexity and a good statistical behaviour are necessary but
not sufficient conditions for a stream cipher to be considered cryptographically
secure.

3.2.2.1 The NESSIE statistical toolbox for stream ciphers

The NESSIE toolbox provides several tests in order to assess the statistical prop-
erties of output sequences from the keystream generator of a stream cipher:

– Collision Test
The collision test splits up the bit sequence into blocks of a fixed size. A collision
occurs if the same block appears more than once. The test statistically evaluates
the number of collisions.

– Constant Runs Test
For the constant runs test, the sequence of bits is subdivided into runs, that
is maximal disjoint subsequences of consecutive 0s and 1s. The frequencies of
these runs of the various lengths are evaluated statistically.

– Correlation Test
The correlation test statistically evaluates the correlation between a sequence
and shifts of the sequence.

– Coupon Collector’s Test
The coupon collector’s test splits up the bit sequence into blocks of a fixed size.
The test statistically evaluates the number of blocks required until all possible
blocks have appeared. The coupon test is also applied to cyclic shifts of the
original sequence.

– Dyadic Complexity Test
The dyadic complexity test is an implementation of the complexity measure
suggested by Goretzky and Klapper [291] for sequences of bits. This measure
is cryptologically relevant because feedback shift registers with carry, also de-
scribed in [291], have low dyadic complexity.

– The Fast Spectral Test
The fast spectral test applies the fast Walsh transform to the bit sequence. It
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uses two values derived from the transform to assess the randomness of the
sequence.

– Frequency Test
The frequency test splits up the bit sequence into blocks of a fixed size. The
frequencies of these blocks are evaluated statistically.

– Gap Test
The gap test splits up the bit sequence into blocks of a fixed size. The blocks
are interpreted as binary representations of numbers, to give a sequence of
numbers. A gap is a maximal subsequence containing no members in a certain
numerical range, and the lengths of gaps are evaluated statistically. This test
is also applied to cyclic shifts of the original sequence.

– Linear Complexity Test
The linear complexity test uses the Berlekamp–Massey algorithm to determine
the length of the shortest linear feedback shift register which can produce the
given bit sequence. The linear complexity profile is also evaluated.

– Maximum Order Complexity Test
The maximum order complexity test determines the length of the shortest
possibly nonlinear feedback shift register which can produce the given bit se-
quence. For the maximum order complexity profile, this is done for the first
1,2,3... bits of the sequence.

– Overlapping m-tuple Test
The overlapping m-tuple test splits up the bit sequence into overlapping sub-
sequences of length m. The frequency of these (dependent) subsequences is
evaluated statistically. This test is also applied to cyclic shifts of the original
sequence.

– Percolation Test
The percolation test is the simulation of a forest fire. The bit sequence to be
tested determines where trees are standing in the simulated forest. The test
evaluates statistically how fast a fire propagates in the simulated forest.

– Poker Test
The poker test splits up the bit sequence into groups of k successive blocks
of a fixed size, known as (poker) hands. The poker test statistically evaluates
the frequencies of these hands. This test is also applied to cyclic shifts of the
original sequence.

– Rank Test
In the rank test, the bits of the sequence to test are used to fill square matrices.
The bits are treated as elements of the field GF(2), and the ranks of the
matrices are evaluated statistically.

– Run Test
The run test splits up the bit sequence into blocks of a fixed size. These blocks
are interpreted as binary representations of numbers, to give a sequence of
numbers. A run is a maximal subsequence of strictly increasing numbers, and
the lengths of runs are evaluated statistically.

– Universal Maurer Test
The universal Maurer test splits up the bit sequence into disjoint subsequences
of bits. The test statistically evaluates the distances between identical subse-
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quences. The test result of the Maurer test is closely related to the entropy of
the bit sequence.

– Ziv-Lempel Complexity Test
The Ziv-Lempel complexity test is based on a measure of the rate at which
new patterns occur in the sequence.

These tests were applied to all of the stream cipher submissions, but no sub-
mission exhibited anomalous behaviour. Detailed results of the statistical tests
are available as NESSIE public reports.

Some block cipher tests were also used for stream cipher analysis. As an
example, the following tests were applied to analyse the key loading (initializa-
tion vector loading) process used in the stream ciphers SNOW, SOBER-t16 and
SOBER-t32:

– Dependence Test
The dependence test evaluates the dependence matrix and the distance matrix
of a function. Furthermore, the degree of completeness, the degree of avalanche
effect and the degree of strict avalanche criterion of the function are computed.

– Linear Factors Test
The linear factors test is used to find out whether there are any linear com-
binations of output bits which, for all keys and plaintexts, are independent of
one or more key or plaintext bits. Such a linear combination is called a linear
factor.

These tests detected linearity properties in the key loading of SOBER-t32 [166].

3.3 Overview of the common designs

In this section we give an overview of stream cipher design techniques which are
most commonly used today in practice. Because of the broad field of stream cipher
design, only a brief overview is presented in order to give a rough classification
of the stream cipher submissions.

3.3.1 Stream ciphers based on feedback shift registers

Feedback shift registers, in particular LFSRs, are widely used as building blocks
for stream ciphers. LFSRs produce sequences having large periods and good sta-
tistical properties, they are well-suited for hardware implementations and there
are mathematical techniques to analyse them. Unfortunately, the output sequence
of an LFSR is linear and so is easily predictable. When LFSRs are used as com-
ponents for keystream generators, it is very important that the output sequence
does not inherit linearity properties from the output sequences of the component
LFSRs. Some methodologies with this objective are briefly discussed in the next
sections.

The submitted ciphers SNOW, LILI-128, SOBER-t16 and SOBER-t32 are all
based on LFSRs.
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Nonlinear combination generators

A nonlinear combination generator uses a number of LFSRs. The keystream is
generated as a nonlinear function f of the outputs of these LFSRs.

Nonlinear filter generators

In this construction, the keystream is generated as a nonlinear function f of the
stages of a single LFSR.

Clock-controlled generators

An irregularly clocked LFSR does not exhibit the same linearity properties as one
that is regularly clocked. Thus a common technique is to use one LFSR sequence
to control the clocking of another LFSR. A more general form of clock-control is
the irregular decimation of the output sequence of one device by another device.
For each generated sequence bit from the first device, the second device decides
whether the generated bit should be used as a keystream bit or discarded.

The stream cipher submissions LILI-128, SOBER-t16 and SOBER-t32 use
LFSRs, nonlinear filters and irregular clocking as main components.

3.3.2 Stream ciphers based on block ciphers

Some modes of operation of block ciphers can be used to generate a keystream se-
quence, such as the Output Feedback (OFB) Mode, the Cipher Feedback (CFB)
Mode and the Counter Mode (CTR). The BMGL stream cipher submission to
NESSIE is in reality a block cipher mode of operation. Note that stream ci-
phers based on block cipher modes of operation can potentially be attacked by
cryptanalysis of the underlying block cipher. There are also generic distinguishing
attacks on block ciphers in OFB and Counter Mode. For a block cipher with block
size b, 2b/2 blocks of keystream are sufficient to distinguish the keystream from a
truly random sequence. This is achieved by looking for repeated occurrences of
blocks, which are not possible when the stream is generated by a block cipher in
OFB or Counter Mode (unless the sequence has started to repeat itself).

3.3.3 Pseudorandom number generators based on modular arithmetic

The security of these generators is based on the presumed intractability of an
underlying number-theoretic problem. Popular examples of this class are the
RSA generator and the Blum-Blum-Shub generator [89]. The required modular
arithmetic makes these generators extremely slow compared to other keystream
generators, so such generators are primarily used as pseudorandom number gen-
erators.

3.3.4 Other stream ciphers

Stream ciphers based on LFSRs are well-suited for hardware. Some recent stream
ciphers have been designed particularly for efficient software implementation,
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and are not based on LFSRs. Examples include the stream ciphers RC4 [451],
SEAL [453] and SCREAM [235], and the NESSIE stream cipher submission
LEVIATHAN.

3.3.5 Current standards

At present a standard for dedicated stream ciphers, such as the AES standard for
block ciphers, does not exist. One probable reason is that most stream ciphers in
use are either secret or proprietary designs.

The standard ISO 10116 (2nd edition) specifies modes of operation for 64-bit
block ciphers that give keystream generators, in particular the Cipher Feedback
Mode and the Output Feedback Mode. Several other standards (ANSI X9.52,
FIPS 81) specify modes of operation for the DES and triple-DES cipher. Re-
cently, the National Institute of Standards and Technology (NIST) held two
public workshops on block cipher modes of operation. Some of the proposed
modes are suitable for stream cipher design, for example the Counter Mode and
the Key Feedback Mode (BMGL is based on this mode). In the NIST publica-
tion SP800-30A, modes of operation that could be used as keystream generators,
such as Cipher Feedback Mode, Output Feedback Mode and Counter Mode are
recommended. However, as described in section 3.3.2, block ciphers in OFB and
Counter Mode might be vulnerable to distinguishing attacks. When speaking of
OFB mode, one usually considers the OFB mode with full feedback in contrast
to the OFB mode with r-bit (r < n) feedback. With full feedback the complete
output word from the last encryption step is used for feedback, while with r-bit
feedback only r bits are used for feedback. In the first case the feedback function
can be treated as a random permutation with expected cycle length of about
2n−1, while in the second case the feedback function is a random function with
expected cycle length 2n/2. This is the reason why OFB is used in full feedback
mode, and why it is vulnerable to distinguishing attacks. On the other hand
there is a simple way to remove this drawback. If the block size is twice as big
as the key size, then one needs as many output words as the key space size to
mount a distinguishing attack, which is not better than brute force. So if one
uses a 256-bit block cipher with a 128-bit key, then this configuration provides
adequate security in the normal category.

3.4 Stream cipher primitives considered during Phase II

3.4.1 BMGL

BMGL is a stream cipher designed by Johan H̊astad and Mats Näslund [241]
and submitted to the NESSIE project. BMGL provides key sizes as for Rijndael
(128-bit, 192-bit and 256-bit). Furthermore, the tweaked version of BMGL allows
rekeying with an 128-bit initialization vector.
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3.4.1.1 Design

The construction of BMGL is based on so called hardcore functions for one-
way permutations and on the possibility to construct pseudo random number
generators with the aid of them. Given a one-way function f , a set of binary
functions {br} is called a family of hardcore functions, if for any r the output
br(x) cannot be distinguished computationally from a random bit.

Given the seeds x0 and r and the one-way permutation f , one can construct
a random number generator g by xi+1 = f(xi) and g(x0, r) = br(x1), br(x2), . . ..
One can show, that if there is an efficient algorithm D that distinguishes with
non-negligible advantage g(x, r) from a random string (with given r), then there
is an efficient algorithm P that given r, f(x) predicts br(x) with non-negligible
advantage [90]. Furthermore Goldreich and Levin [225] have shown, that in this
case, there is an efficient algorithm B, that inverts f(x) on random x with non-
negligible probability. They also could prove, that for every one-way function
f , hardcore functions exist. The set {br} can be defined by the inner product
br(x) := x · r mod 2 of n-bit strings x and r. This also holds for extending the
inner product on matrix products, in order to generate several bits at once. Let
Mn
m be the set of all m × n-matrices and let R ∈ Mn

m. Then one can define
hardcore functions

BmR (x) =







r11 r12 . . . r1n
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This results in the basic construction of BMGL:

Let f : {0, 1}n → {0, 1}n be a one-way function and let n, m and λ be
integers. Then the generator BMGLn,m,λm(f) is defined as follows: The input
of the generator is x0 ∈ {0, 1}n and R ∈Mn

m. Let xi = f(xi−1). Then the output
of the generator is defined by {BmR (xi)}λi=1.

In the BMGL submission for the NESSIE project the authors have defined
the function f as the block cipher Rijndael. The construction of BMGL is based
on theoretical results for one-way functions. Therefore the security of BMGL
with Rijndael as one-way function has to be related to these theoretical results.
The authors show, that if Rijndael is secure, then their construction of BMGL is
secure.

In the BMGL submission Rijndael is used in a new mode of operation called
key feedback mode (KFB). The idea is not to feedback the ciphertext as new
plaintext input in the next iteration step, but as a new key. In some sense it is a
“dual” to OFB mode. The plaintext and the random matrix R may be publicly
known and need not be a part of the secret key.

3.4.1.2 Security analysis

The security of the construction results from the assumption that the one-way
function used in the BMGL generator does not lose its one-wayness property
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even if the function is iterated many times. Based on previous papers about the
reduction of the security of generators of pseudorandom bits to the existence of
one-way functions [225, 240], the designers show formally in the model of exact
security that a non-trival attack on BMGL gives a black-box reduction to an
attack on the underlying iterated one-way function, i.e. Rijndael. The analysis
allows us to quantify the loss of security. The security and correctness of the
overall construction has been verified several times before in the case of one-way
permutations [225, 240, 223, 336, 222]. All proofs given in the submission were
carefully checked.

In [242] the submitters generalize the generator in order to allow keystream
synchronization with random access properties. Furthermore, they present a
sketch for a security proof based on the assumption that the iterated Rijndael
mapping is hard to invert even if an attacker has a number of extra plaintext-
ciphertext pairs.

We note that BMGL is in reality a mode of use of a block cipher, in this
case Rijndael. This means that certain “generic attacks” on modes of use are
applicable as noted by Babbage [23]. The type of generic attacks described there
is a time-memory tradeoff for stream ciphers, where the internal state size is not
much bigger than the key space size. Babbage recommends that the internal state
size of the key stream generator should be at least two times bigger than the key
space size to prevent time-memory tradeoffs. For the stream cipher BMGL this
is not the case.

3.4.2 SNOW

SNOW is a synchronous stream cipher designed by Patrick Ekdahl and Thomas
Johansson [180] and submitted to the NESSIE project. It uses a 128-bit or 256-
bit key and has an internal memory of 576 bits. The tweaked version of SNOW
allows rekeying with a 64-bit initialization vector.

3.4.2.1 The design

SNOW consists of an LFSR and a Finite State Machine, the states of which are
words in GF (232). We denote addition in GF (232) by the symbol ⊕, addition
modulo 232 by the symbol +, and the ith bit of the element x in the field by x[i].
SNOW uses an LFSR of length 16 defined by the recurrence relation

st+16 = α(st ⊕ st+3 ⊕ st+9)

where α ∈ GF (232) is given in the NESSIE submission. The Finite State Machine
consists of two registers whose values at time t we will denote by at and bt
respectively. Let

at+1 = at ⊕R(ft + bt)

bt+1 = S(at)

ft = (st+15 + at)⊕ bt
zt = ft ⊕ st,
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where R denotes a 7-bit left (towards the most significant bit) rotation and S
is a 32-bit to 32-bit S-box given in the NESSIE submission. The sequence (zt)
is used as the keystream. There is a key initialisation process described in the
submission.

3.4.2.2 Security analysis

A distinguishing attack. Coppersmith, Halevi and Jutla [125] have observed
that if σt = st+15[15] ⊕ st+15[16] ⊕ st+16[22] ⊕ st+16[23] ⊕ ft[15] ⊕ ft+1[23] then
σt has bias ε = 2−8.3.

For a sequence (vt) and polynomial q(X) =
∑N
i=0 ciX

i, let T jq (vt) denote
∑N
i=0 civj+i. They also show that there are about 2100 weight six polynomials

which are divisible by the linear feedback polynomial given above. If p is such a
polynomial, then T jp (st) = 0 for each j. For each such p, T jp (σt) = T jp (ft[15]) ⊕
T jp (ft[23]), so we can obtain T jp (σt) since we know the ft. However, T jp (σt) has
bias ε6 = 2−49.8 since p has weight 6. As there are about 2100 such polynomials
p, we can find 2100 such T jp (σt), each with a bias of 2−49.8.

The mean of the sum of these 2100 values is 299 + 275 and the standard devi-
ation approximately 249+224. The mean of a sum of 2100 ‘random’ values would
be 299 and the standard deviation 249. We can assume that the distributions of
these sums are normal, so most (about 95%) realisations of these sums lie within
two standard deviations of the mean. Thus it is clear we can distinguish the
two distributions. This leads to a distinguishing attack on SNOW requiring 295

observed bits of keystream and workload about 2100.

Guess and determine attacks. Hawkes and Rose [246] present two attacks
on SNOW, the first requiring 264 observed bits of keystream with workload 2256

(so no faster than exhaustive key search) and the second 2224 observed bits of
keystream with workload 295.

For the basic attack we fix t and assume that bt = S(at ⊕ 1) and bt+14 =
S(at+14 ⊕ 1) where 1 = 232 − 1. We guess st, st+1, st+2, st+3, at and at+14

(192 bits in total) and can then determine the shift register state based on these
assumptions and test if this shift register state is correct by comparing its output
with the keystream. If no guesses give the correct keystream for this value of t,
we repeat this with another value of t. As the probability that these assumptions
hold is 2−64, we expect to have to try about 264 values of t. The details of how
to determine the shift register state from each guess are given in [246]. This gives
an attack requiring 264 observed bits of keystream with workload 2256.

We can improve the workload of this attack by also assuming that at+1 is
either 0 or 1 as well as bt = S(at ⊕ 1) and bt+14 = S(at+14 ⊕ 1) as before. We
guess st, st+1, at, at+14 and whether at+3 is 0 or 1 (129 bits in total) and can
then determine the shift register state and test whether this state is correct. The
probability that these assumptions are correct is 2−95, so we expect to have to
repeat this for about 295 values of t. As before, the details of how to determine
the shift register state from each guess are given in [246]. This gives us an attack
requiring 2224 observed bits of keystream with workload 295.
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3.4.3 SOBER-t16

SOBER-t16 is a synchronous stream cipher designed by Philip Hawkes and Greg
Rose [245] and submitted to the NESSIE project. SOBER-t16 uses a 128-bit key
and has an internal memory of 272 bits. SOBER-t16 allows rekeying with an
initialization vector. Hawkes and Rose also submitted to NESSIE SOBER-t32, a
similar stream cipher but with a 256-bit key (see Section 3.4.4).

3.4.3.1 Description of SOBER-t16

SOBER-t16 is based on an LSFR of length 17 over the field GF (216). This LFSR
is ‘stuttered’ as described below. We represent elements of this field with 216

elements by 16-bit binary vectors corresponding to polynomials modulo the irre-
ducible polynomial

x16 + x14 + x7 + x6 + x4 + x2 + x+ 1.

We denote addition in GF (216) by the symbol ⊕, addition modulo 216 by the
symbol + and the ith bit of the element x in the field by x[i].

The linear feedback shift register. SOBER-t16 uses an LFSR of length 17
over GF (216) given by the recurrence relation

st+17 = αst+15 ⊕ st+4 ⊕ βst

where α = 0XE382 and β = 0X67C3.

The nonlinear filter. If the shift register output is given by the sequence (st),
then the nonlinear filter (NLF) used by SOBER-t16 is given by

vt = ((f(st + st+16) + st+1 + st+6)⊕K) + st+13

where
f(a) = S(ā)⊕ (a− ā)

and ā denotes the 8 most significant bits of a, so a − ā is the 8 least significant
bits of a. The value K is a 16-bit key-dependent constant initialised by the key
loading and S is an 8-bit to 16-bit substitution box specified in the submission.

The stuttering. This pair of shift register and nonlinear filter are stuttered as
follows. The first output word v1 of the nonlinear filter is the first ‘stutter control
word’ and is partitioned into 8 pairs of bits. Starting with the least significant
pair, these pairs determine the stuttering according to the table below, where
C = 0X6996, and ∼ C is the bitwise complement of C. When all the pairs have
been used, the shift register is clocked and the output of the nonlinear filter
becomes the next stutter control word. This procedure is repeated until sufficient
keystream has been produced.

00 Clock LFSR.
01 Clock LFSR. Output XOR of C with NLF output to the keystream. Clock LFSR.
10 Clock LFSR twice. Output the NLF output to the keystream.
11 Clock LFSR. Output XOR of ∼ C with NLF output to the keystream.
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Key loading and rekeying. The 17 states r1, . . . , r17 of the shift register are
set to the first 17 Fibonacci numbers. The key loading uses two operations: the
‘Include’ operation and the ‘Diffuse’ operation. The Include operation consists
of adding a given word to r15 modulo 216. The Diffuse operation consists of
clocking the shift register and replacing r4 with the XOR of r4 with the nonlinear
filter output. To load the key, the Include operation is applied with each key
word in turn, with each Include being followed by the Diffuse operation. When
this has been completed, the Include operation is then performed using the key
length as input and the Diffuse operation is applied 17 times. The shift register
is then clocked and K set to the nonlinear filter output.

It is also possible to rekey the cipher by using a public ‘frame key’. This is
done by loading the frame key after the secret key in the same manner.

3.4.3.2 Observations on SOBER-t16

We first consider a simplified version of SOBER-t16 in which the stuttering
is not used. Ekdahl and Johansson [181] have found a distinguishing attack
on this unstuttered SOBER-t16, which we now briefly describe. Let wt =
vt ⊕ st ⊕ st+1 ⊕ st+6 ⊕ st+16 ⊕ st+13 and Wt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt.
Then Wt = zt+17⊕αzt+15⊕ zt+4⊕βzt so we can obtain the sequence (Wt) from
the keystream. The distribution of wt (for fixed K) can be estimated by simu-
lation and is non-uniform for all the values of K for which this has been done.
The error in the distribution obtained this way can also be estimated. We can
then use this distribution to calculate the distribution of Wt (for fixed K). The
Neyman-Pearson lemma then tells us that (in the worst case scenario) we need
292 keystream words to distinguish between keystream from the cipher and a
random keystream with probability of error 2−32. The computational complexity
of this distinguishing attack is 292.

Ekdahl and Johansson [181] have also found a distinguishing attack on
SOBER-t16 (including stuttering). Let E be the event that if zn = Co ⊕ vt
then zn+2 = C1 ⊕ vt+4, zn+7 = C2 ⊕ vt+15 and zn+8 = C3 ⊕ vt+17, where
C1, C2, C3 ∈ {C,∼ C, 0}. We can calculate the most probable position in the
keystream for each of (vt, vt+4, vt+15, vt+17) so we can show that E happens with
probability 2−5.5. Let W ′

t =Wt ⊕C3 ⊕ αC2 ⊕C1 ⊕ βC0. If the event E happens,
then W ′

t = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn so we can calculate the sequence (W ′
t )

from the keystream. If we assume that the distribution is uniform when E does
not occur, then we can calculate the distribution of W ′

t . The Neyman-Pearson
lemma then tells us that we need 2111 keystream words to distinguish between
keystream from the cipher and a random keystream with probability of error
2−32. The computational complexity of this distinguishing attack is 2111.

Pyka [444] has independently found a bias in each bit of wt (other than the
0th, 1st, 2nd and 4th bits) when K = 0. For K 6= 0 the correlations change
their values depending on the bits of K. He also pointed out that for unstuttered
SOBER-t16, the distribution of wt for a given K can be calculated precisely,
since the bias of f(st + st+16) ⊕ st ⊕ st+16 can be determined by looking at all
the possibilities for st and st+16. The bias of each bit can then be determined by
looking at the probabilities of the carry values.
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Besides those attacks, SOBER-t16 is vulnerable to timing attacks and power
attacks due to its irregular decimation [245].

3.4.3.3 Comments from the submitters

The submitters have made some comments on the relevance of these results about
SOBER-t16 and about the results about SOBER-t32, discussed below. These
comments are briefly summarised in Section 3.4.4.3, in the discussion of SOBER-
t32.

3.4.3.4 Conclusions

There is a distinguishing attack on SOBER-t16, as well as a much faster one on
the unstuttered version of SOBER-t16. The nonlinear filter also exhibits signifi-
cant biases. Furthermore, SOBER-t16 is vulnerable to timing and power attacks.

3.4.4 SOBER-t32

SOBER-t32 is a synchronous stream cipher designed by Philip Hawkes and Greg
Rose [245] and submitted to the NESSIE project. SOBER-t32 uses a 256-bit key
and has an internal memory of 544 bits. SOBER-t32 allows rekeying with an
initialization vector. Hawkes and Rose also submitted SOBER-t16 to NESSIE, a
similar stream cipher but with a 128-bit key (see Section 3.4.3).

3.4.4.1 Description of SOBER-t32

SOBER-t32 is based on an LSFR of length 17 over the field GF (232). This LFSR
is ‘stuttered’ as described below. We represent elements of this field with 232

elements by 32-bit binary vectors corresponding to polynomials modulo the irre-
ducible polynomial

x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1).

We denote addition in GF (232) by the symbol ⊕, addition modulo 232 by the
symbol + and the ith bit of the element x in the field by x[i].

The linear feedback shift register. SOBER-t32 uses an LFSR of length 17
over GF (232) given by the recurrence relation

st+17 = st+15 ⊕ st+4 ⊕ αst
where α = 0XC2DB2AA3.

The nonlinear filter. If the shift register output is given by the sequence (st),
then the nonlinear filter (NLF) used by SOBER-t32 is given by

vt = ((f(st + st+16) + st+1 + st+6)⊕K) + st+13

where
f(a) = S(ā)⊕ (a− ā)

and ā denotes the 8 most significant bits of a, so a− ā is the 24 least significant
bits of a. The value K is a 32-bit key-dependent constant initialised by the key
loading and S is an 8-bit to 32-bit substitution box specified in the submission.
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The stuttering. This pair of shift register and nonlinear filter are stuttered as
follows. The first output word v1 of the nonlinear filter is the first ‘stutter control
word’ and is partitioned into 16 pairs of bits. Starting with the least significant
pair, these pairs determine the stuttering according to the table below, where
C = 0X6996C53A, and ∼ C is the bitwise complement of C. When all the pairs
have been used, the shift register is clocked and the output of the nonlinear filter
becomes the next stutter control word. This procedure is repeated until sufficient
keystream has been produced.

00 Clock LFSR.
01 Clock LFSR. Output XOR of C with NLF output to the keystream. Clock LFSR.
10 Clock LFSR twice. Output the NLF output to the keystream.
11 Clock LFSR. Output XOR of ∼ C with NLF output to the keystream.

Key loading and rekeying. The 17 states r1, . . . , r17 of the shift register are
set to the first 17 Fibonacci numbers. The key loading uses two operations: the
‘Include’ operation and the ‘Diffuse’ operation. The Include operation consists
of adding a given word to r15 modulo 232. The Diffuse operation consists of
clocking the shift register and replacing r4 with the XOR of r4 with the nonlinear
filter output. To load the key, the Include operation is applied with each key
word in turn, with each Include being followed by the Diffuse operation. When
this has been completed, the Include operation is then performed using the key
length as input and the Diffuse operation is applied 17 times. The shift register
is then clocked and K set to the nonlinear filter output. It is also possible to
rekey the cipher by using a public ‘frame key’. This is done by loading the frame
key after the secret key in the same manner.

3.4.4.2 Observations on SOBER-t32

We first consider a simplified version of SOBER-t32 in which the stuttering is
not used. Ekdahl and Johansson [181] have found a distinguishing attack on this
unstuttered version of SOBER-t32, which we now briefly describe. Let wt = vt⊕
st⊕st+1⊕st+6⊕st+16⊕st+13 (as for SOBER-t16). Although we cannot estimate
the distribution of wt, we can estimate the distribution of wt[i]⊕wt[i−1] for each
i by simulation. It can be shown that st+τ5⊕st+τ4⊕st+τ3⊕st+τ2⊕st+τ1⊕st = 0
where τ1 = 11, τ2 = 13, τ3 = 4 · 232 − 4, τ4 = 15 · 232 − 4, τ5 = 7 · 232 − 4.
Thus if we let Zt = wt+τ5 ⊕ wt+τ4 ⊕ wt+τ3 ⊕ wt+τ2 ⊕ wt+τ1 ⊕ wt then Zt =
zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt so the sequence (Zt) can be calculated
from the keystream. Since we know the distribution of wt[i]⊕ wt[i− 1] for each
value of i, we can calculate the distribution of Zt[i]⊕Zt[i−1]. For certain values of
i this has bias 2−40.5. The Neyman-Pearson lemma then tells us that (in the worst
case scenario) we need 286.5 keystream words to distinguish between keystream
from the cipher and a random keystream with probability of error 2−32. The
computational complexity of this distinguishing attack is 286.5.

De Cannière, Lano, Preneel and Vandewalle [156] enhanced the attack de-
scribed in [181] by adapting the attack on SOBER-t16 so that it works for
SOBER-t32. This attack results in a distinguishing attack on full SOBER-t32
of complexity 2153.
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The designers of SOBER-t32 describe a guess-and-determine attack on un-
stuttered SOBER-t32 with complexity 2320 [245]. This attack is extended by
de Cannière to improve the complexity to 2304 [155]. The unstuttered version
of SOBER-t32 may also be analysed by noting that the 8 most significant bits
of ā determine the 8 most significant bits of f(a). Babbage and Lano [24] also
describe a guess-and-determine attack based on this observation on unstuttered
SOBER-t32 with complexity 2244 and also indicate that their approach might be
adapted to SOBER-t32 by using timing information to find an unstuttered part
of the keystream that their approach requires.

The observation that the 8 most significant bits of f(a) are determined solely
by the 8 most significant bits of ā is also the basis of some comments about the
nonlinear filter function. This results in poor diffusion properties for the nonlinear
filter, as the only means of diffusion of the 24 least significant bits of the input is
by carry propagation. However, long carry chains only occur with low probability.
In particular Dichtl and Schafheutle [166] specify a sum of bits from the initial
state of the shift register that remains constant with very high probability when
the last key bit is inverted. They have also identified other such sums that remain
constant for inversion of each of the 11 least significant key bits of the last key
word and for each of 8 of the 9 least significant bits of the second to last key
word. For more significant positions, carry propagation seems to be sufficiently
high to destroy such linearity properties. This property of the key loading could
be destroyed by increasing the number of Diffuse steps. Similarly, they show
that there is a correlation between the initial states derived from different frame
keys but the same key. In particular, they give a sum of bits of the initial state
that does not change with very high probability if the least significant bit of
the last key frame word is inverted. As the frame key is a binary counter this is
particularly relevant.

Besides those attacks, SOBER-t32 is vulnerable to timing attacks and power
attacks owing to its irregular decimation [245].

3.4.4.3 Comments from the submitters

The submitters have made some comments on the relevance of these results,
which also apply to SOBER-t16. These comments are briefly summarised here.

– There is a distinguishing attack on the unstuttered version of SOBER-t32. The
submitters in their comments state that irregular stuttering is an essential
part of the security of SOBER. However, the NESSIE project believes that
the original SOBER submissions clearly state the SOBER stream ciphers are
secure without the stuttering.

– The submitters question the rejection of a cipher based solely on distinguishing
attacks based on large known plaintext, which is faster than exhaustive key
search [247]. The submitters argue that there are many stream ciphers in use
for which distinguishing attacks exist (such as a block cipher used in a standard
mode that gives a stream cipher) and that the distinguishing attacks presented
for the SOBER ciphers do not yield any information about the state, so do not
translate into key recovery or prediction attacks.
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3.4.4.4 NESSIE response to the comments from the submitters

– Distinguishing attacks on full SOBER-t16 and SOBER-t32 have been found
since the comments from the submitters were received.

– Distinguishing attacks do not currently give a method for determining the
keystream for SOBER-t16 and SOBER-t32. However, the NESSIE consortium
believes that the SOBER distinguishing attacks mean that a recommendation
is inadvisable.

– The SOBER design raises other security issues not discussed by the submitters.

3.4.4.5 SOBER-t32 Conclusions

There are distinguishing and guess-and-determine attacks on the unstuttered ver-
sion of SOBER-t32, and recently distinguishing attacks for full SOBER-t32 have
been found. For the guess-and-determine attack there are reasons for believing
that it could be extended to SOBER-t32. The nonlinear filter exhibits poor diffu-
sion and has significant biases. Furthermore, SOBER-t32 is vulnerable to timing
and power attacks.

3.5 Stream cipher primitives not selected for Phase II

3.5.1 LEVIATHAN

Leviathan is a synchronous additive stream cipher submitted by Cisco and de-
signed so that it can efficiently find arbitrary locations in the keystream. Though
Leviathan may work with arbitrary output size and an arbitrary number of key
bytes, owing to standardization the key should be either 128 bits or 256 bits
and the output size should be 32 bits. It was submitted to NESSIE, but not
considered during Phase II of the project.

3.5.1.1 Design

The key scheduling:
Let K[i] be the ith byte of the key of length m bytes, and let j ∈ {0, 1, 2, 3}.
We define a sequence (kr) of integers modulo 256 and a sequence (πr) of byte
permutations (i.e. permutations of the set {0, . . . , 255}) as follows.

Let π0 be the identity permutation, and k0 = j. For r 6= 257 let

kr+1 = kr +K[i mod m] + πr(r mod 256) mod 256

If r = 257, define k257 = j+ k1+K[i mod m] +π256(0 mod 256). The permu-
tations (πr) are updated as follows:

πr+1(i) =







πr(kr+1) if i = r mod 256

πr(r) if i = kr+1

πr(i) else
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We then let σj = π512. So to define σj , we are repeating a loop twice in which
we take a permutation and then swap certain pairs of images of elements under
the permutation to obtain a new permutation.

Finally we define byte permutations S0 = σ3, S1 = σ2σ3, S2 = σ1σ2σ3 and
S3 = σ0σ1σ2σ3.

The key stream generation:
Leviathan is defined by a set of binary tree structures of height 16. Each node
of each tree is associated with a triple of words (each of four bytes) z|y|x. The
triple at the root of the jth tree is 1|0|j/216. Key-dependent functions a and b
map the triple s at a node to a triple at each of its two descendants, so that its
lefthand descendant is a(s) while its righthand descendant is b(s), where a(s) in
the kth level is chosen, if the kth bit of j is zero. Otherwise b(s) is chosen.

We apply a function c to the triple at each leaf of each tree to give a word
and use the words thus obtained as the keystream.

The functions a, b and c are defined as follows:

f(z|y|x) = 2z|SRSRy|LSLSx
g(z|y|x) = 2z + 1|LSLSy|SRSR(x̄)
d(z|y|x) = z|x+ y + z|2x+ y + z

c(z|y|x) = x⊕ y
a = f ◦ d
b = g ◦ d

where L and R denote rotation left and right respectively by one byte, x̄ denotes
the complement of x and S denotes a key-dependent S-box given below.

The permutation S is defined as follows. Let the word y consist of the bytes
y0, y1, y2 and y3. Then the image of y under S is defined by

y0 7→ S0(y0)

y1 7→ y1 ⊕ S1(y0)
y2 7→ y2 ⊕ S2(y0)
y3 7→ y3 ⊕ S3(y0)

where the byte permutations S0, S1, S2 and S3 are defined in the key scheduling.

3.5.1.2 Security analysis

There is a distinguishing attack on LEVIATHAN faster than exhaustive key
search [143]. It shows, that the probability of a collision in 64 bit output words is
doubled compared to a random function. Hence LEVIATHAN was not selected
for further study in phase II.
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3.5.2 LILI-128

LILI-128 is a synchronous stream cipher designed by Ed Dawson and submitted
to the NESSIE project. It uses a 128-bit key and an internal memory of 128 bits.
LILI-128 was not considered during Phase II of the project.

3.5.2.1 Design

LILI-128 consists of two components, one used for clock control and the other
for data generation. Each component consists of an LFSR (LFSRc and LFSRd)
and a function f (fc and fd) tapping the LFSRs. LILI-128 can be viewed as a
clock-controlled nonlinear filter generator.

The key scheduling:
During key scheduling the 128 key bits are loaded directly into the LFSRs. The
first 39 key bits are loaded into LFSRc, and the last 89 key bits into LFSRd.
Neither LFSRc nor LFSRd may be zero.

The clock control component:
The clock control component consists of the regularly clocked LFSRc of length
39 and the function fc. The feedback poynomial of LFSRc is

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

and it produces a maximum length sequence.
LFSRc is clocked once, then the function fc takes the contents of the stages

12 and 20 as input and produces an output integer by

c = fc(x12, x20) = 2x12 + x20 + 1.

The data generation component:
LFSRd of length 89 produces a maximum length sequence. Its feedback polyno-
mial is

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

After the clock control component has produced the integer c, LFSRd is
clocked c times. The nonlinear function fd defined by a truth table takes the
content of 10 stages of LFSRd as input and calculates an output bit. This output
bit is taken as the new keystream bit.

3.5.2.2 Security analysis

The key of LILI-128 can be recovered faster than exhaustive key by several kinds
of time-memory tradoff attacks [22, 459] or a fast correlation attack [270]. The
last attack has a complexity around 271 bit operations assuming a received se-
quence of length around 230 bits and a precomputation phase of complexity 279

table lookups. Hence LILI-128 was not selected for further study in phase II.
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3.5.3 RC4

RC4 is the de facto standard for stream ciphers (see [451] for a detailed de-
scription). The second output byte of RC4 can be easily distinguished from a
random one [349]. Although this can be easily overcome, the keystream still can
be distinguished from a random output [197] and the key schedule has severe
weaknesses [196]. There is also no form of rekeying defined for RC4. Therefore
RC4 was not considered by NESSIE.

Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
§3.2.1 Description of time-memory-tradoff for exhaustive key search attack added.
§3.2.1 Reference changed for description of efficient time-memory tradeoffs.
§3.2.1 Description of test for nonlinear complexity added.
§3.3.4 References added for RC4, SCREAM and SEAL.
§3.3.5 Desription of different types of OFB mode and its relationship to distin-

guishing attacks added.
§3.3.5 ISO number changed.
§3.4.1.2 Explanation of ”generic attack” added.
§3.4.2.2 Notation for distinguishing attack changed.
§3.4.4.1 Recurrence relation changed.
§3.4.4.4 Response added.
§3.5.1 Description for LEVIATHAN added.
§3.5.2 Description for LILI-128 added.



4. Hash functions

4.1 Introduction

Hash functions are used as a building block in various cryptographic applications.
The most important uses are in the protection of information authentication and
as a tool for digital signature schemes (see Chapter 7). A hash function is a
function that maps an input of arbitrary length into a fixed number of output
bits, the hash value. In order to be useful for cryptographic applications, a hash
function needs to satisfy some additional requirements. Hash functions can be
further divided into one-way hash functions and collision-resistant hash functions.
We informally give the conditions we require of these different types:

– A one-way hash function should be preimage and second preimage resistant,
that is it should be ‘hard’ to find a message with a given hash (preimage) or
that hashes to the same value as a given message (second preimage).

– A collision-resistant hash function is a one-way hash function for which
it is ‘hard’ to find two distinct messages that hash to the same value.

In some applications additional properties may be required for a hash func-
tion, for example pseudo-randomness of the generated output. Note that, in con-
trast to other cryptographic primitives, the computation of a hash function does
not depend on any secret information.

Before presenting a detailed analysis of the hash functions studied by the
NESSIE project, we first discuss the security requirements and give an overview
of common designs and current standards. For a more comprehensive overview
of cryptographic primitives for information authentication (including hash func-
tions) we refer to the treatment by Preneel in [440].

4.2 Security requirements

In this section we give practical and formal definitions for one-way and collision-
resistant hash functions and describe the general model of an iterated hash func-
tion. We then discuss different types of attacks on hash functions and describe
the assessment process followed by the project.

0 Coordinator for this chapter: KUL — Bart Van Rompay
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4.2.1 Security model

The following informal definitions for one-way and collision-resistant hash func-
tions were given by Preneel in [440].

A one-way hash function is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. The hash function must be one-way in the sense that given a Y in the image of
h, it is ‘hard’ to find a message X such that h(X) = Y (preimage-resistant)
and given X and h(X) it is ‘hard’ to find a message X ′ 6= X such that
h(X ′) = h(X) (second preimage-resistant).

A collision-resistant hash function is a function h satisfying the following
conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. The hash function must be one-way, i.e., preimage-resistant and second
preimage-resistant.

3. The hash function must be collision-resistant: this means that it is ‘hard’ to
find two distinct messages that hash to the same result (i.e., find X and X ′

(X ′ 6= X) such that h(X) = h(X ′)).

Note that if an attacker can find a second preimage, he can also find a collision.
Therefore the second preimage condition in this definition is redundant. However,
preimage-resistance is not always implied by collision resistance.

Most hash functions are iterated constructions, in the sense that they are
based on a compression function with fixed size inputs; they process every mes-
sage block in a similar way. The input X is padded by an unambiguous padding
rule to a multiple of the block size. Typically this also includes adding the total
length in bits of the input. The padded input is then divided into t blocks de-
noted X1 through Xt. The hash function involves a compression function f and
a chaining variable Hi between stage i− 1 and stage i:

H0 = IV ,

Hi = f(Hi−1, Xi) , 1 ≤ i ≤ t ,
h(X) = g(Ht) .

Here IV denotes the Initial Value (a constant which should be defined as part
of the description of the hash function) and g denotes the (optional) output
transformation. A collision-resistant compression function can be extended to a
collision-resistant hash function taking arbitrary length inputs. For a detailed
discussion on the relation between a compression function and a hash function
that is built from it, we refer to [440].
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4.2.1.1 Formal definitions

Before discussing security aspects we first give more precise definitions of a hash
function and its cryptographic properties. The following formal definitions for
a hash function, a compression function and an iterated hash construction are
similar to those given by Black et al. in [82].

Definition 4.1. A hash function is a function h : D → R where the domain
D = {0, 1}∗ and the range R = {0, 1}n for some n ≥ 1.

Definition 4.2. A compression function is a function f : D → R where
D = {0, 1}a × {0, 1}b and R = {0, 1}n for some a, b, n ≥ 1 with a+ b ≥ n.

Definition 4.3. The iterated hash of the compression function f : ({0, 1}n ×
{0, 1}b) → {0, 1}n is the hash function h : ({0, 1}b)∗ → {0, 1}n defined by
h(X1 . . . Xt) = Ht where Hi = f(Hi−1, Xi) for 1 ≤ i ≤ t (set H0 = IV ).

The following definitions for (second) preimage-resistance and for collision-
resistance were given by Brown in [108]. These definitions are somewhat simpli-
fied because we consider a fixed hash function rather than a family of hash func-
tions. Therefore our assumptions, particularly the assumption about collision-
resistance, are stronger than the usual assumptions for families of hash functions.

Definition 4.4 (Preimage-resistance). A hash function h : {0, 1}∗ → R is
preimage-resistant of strength (t, ε) if there exists no probabilistic algorithm Ih
that accepts input Y ∈R R and outputs a value X ∈ {0, 1}∗ in running time at
most t, where h(X) = Y with probability at least ε, assessed over the random
choices of both Y and Ih.

Definition 4.5 (Second preimage-resistance). Let S be a finite subset of
{0, 1}∗. A hash function h : {0, 1}∗ → R is second preimage-resistant of strength
(t, ε,S) if there exists no probabilistic algorithm Sh that accepts input X ∈R S
and outputs a value X ′ ∈ {0, 1}∗ in running time at most t, where X ′ 6= X and
h(X ′) = h(X) with probability at least ε, assessed over the random choices of
both X and Sh.

Note: One can define a stronger notion of (second) preimage resistance, where
the value Y ∈ R (or the value X ∈ S) is a fixed point rather than a random
point, and where one maximises over all such points.

Definition 4.6 (Collision-resistance). A hash function h : {0, 1}∗ → R is
collision-resistant of strength (t, ε) if no probabilistic algorithm Ch is known that
outputs values X,X ′ ∈ {0, 1}∗ in running time at most t, where X ′ 6= X and
h(X) = h(X ′) with probability at least ε, assessed over the random choices of Ch.

Note: Since {0, 1}∗ is infinite andR is finite, collisions for h do exist. And since Ch
has no input, there exists a very efficient algorithm, namely one that immediately
outputs (X,X ′) for some fixed collision. Nevertheless, for a good hash function
with R = {0, 1}n, the best collision-finding algorithm known with high success
probability should have a running time of about 2n/2 (see Sect. 4.2.2).



126 4. Hash functions

4.2.2 Classification of attacks

For one-way and collision-resistant hash functions the computation of the func-
tion does not involve any secret information. Hence, it is not meaningful to dis-
tinguish attacks depending on the information available to an attacker. The goal
of the attacker is to find a preimage or second preimage for the hash function,
or to generate a collision. Collision-resistance is not required in all applications
(the most important case where it is required is in conjunction with digital signa-
tures), which is the reason for the separate category of one-way hash functions.
Also it can be noted that some attacks find a preimage or collision only for ran-
dom messages, while others leave the attacker enough freedom to choose (part
of) the messages.

Note that the security of a hash function can be examined through analysis
of its compression function. A collision-resistant compression function can be
extended to a collision-resistant hash function taking arbitrary length inputs. On
the other hand, attacks on the compression function do not necessarily mean
attacks on the hash function: an attack that finds preimages or collisions for f
with chosen Hi−1 leads to an attack on h, but an attack that finds preimages or
collisions for f with a random Hi−1 does not yield an attack on h (unless when
the IV can be changed). Another example is an attack that finds collisions for
the compression function where the initial chaining value is not the same for both
messages (Hi−1 6= H ′i−1). Attacks on the compression function which cannot be
extended are seen as certificational weaknesses of the hash function involved.

We now briefly describe the best known attacks on hash functions as in [440].

Random (Second) Preimage Attack

This attack can be applied to any hash function and depends only on the size n
in bits of the hash result. An attacker simply selects a random message and hopes
that a given hash result occurs. If the hash function has the required “random”
behaviour, his probability of success equals 1/2n. This attack can be carried out
off-line and in parallel. It is expected that a (second) preimage can be found in
approximately 2n operations.

Birthday Attack

This attack can be applied to any hash function and depends only on the size
n in bits of the hash result. The birthday paradox states that for a group of 23
people, the probability that at least two people have a common birthday exceeds
1/2. Intuitively one expects that the probability is much lower. However, the
probability is determined by the number of pairs of people in such a group and
this number equals 23 · 22/2 = 253. This can be exploited to find collisions for
a hash function in the following way: an adversary generates r1 variations on a
bogus message and r2 variations on a genuine message. The expected number
of collisions equals r1 · r2/2n. The probability of finding a bogus message and a
genuine message that hash to the same result is given by 1 − exp(−r1 · r2/2n),
which is about 63% when r = r1 = r2 = 2

n
2 . Finding the collision does not
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require r2 operations: after sorting the data, which requires O(r log r) operations,
comparison is easy. One can reduce the memory requirements for collision search
by translating the problem to the detection of a cycle in an iterated mapping.

Meet-in-the-Middle Attack

This attack — as well as the attacks described below — depends on some prop-
erties of the compression function. It is a variation on the birthday attack, but
instead of comparing the hash result, one compares intermediate chaining vari-
ables. If the attack can be applied to a hash function, it enables an adversary to
construct a (second) preimage, which is not possible for a simple birthday attack.
The opponent generates r1 variations on the first part of a bogus message and r2
variations on the last part. Starting from the initial value and going backwards
from the hash result, the probability for a matching intermediate variable is again
given by 1−exp(−r1 ·r2/2n). The cycle finding algorithm can be used to perform
a meet-in-the-middle attack with negligible storage.

Correcting Block Attack

This attack consists of substituting all blocks of the message except for one or
more blocks. For a (second) preimage attack, one chooses an arbitrary message
X and finds one or more correcting blocks Y such that h(X‖Y ) takes a certain
value. For a collision attack, one starts with two arbitrary messages X and X ′

and appends one or more correcting blocks denoted with Y and Y ′, such that
the extended messages X‖Y and X ′‖Y ′ have the same hash result.

Fixed Point Attack

The idea of this attack is to look for aHi−1 andXi such that f(Hi−1, Xi) = Hi−1.
If the chaining variable is equal to Hi−1, it is possible to insert an arbitrary
number of blocks equal to Xi without modifying the hash result. Producing
collisions or a second preimage with this attack is only possible if the chaining
variable can be made equal to Hi−1: this is the case if IV can be chosen equal
to a specific value, or if a large number of fixed points can be constructed (i.e.,
if one can find an Xi for a significant fraction of Hi−1’s). Of course this attack
can be extended to fixed points that occur after more than one iteration.

Differential Attacks

Differential cryptanalysis [70] is a powerful tool for the analysis of not only block
ciphers (see Chapter 2) but also of hash functions. This attack method exam-
ines input differences to a compression function and the corresponding output
differences. A collision is obtained if the output difference is zero.
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Analytical Weaknesses

A large number of attacks have been based on blocking the diffusion of the data
input to the hash function: this means that changes have no effect or can be
cancelled out easily in a next stage. Among the most remarkable attacks in this
class are the attacks developed by Dobbertin on the MDx-family [170, 171]. They
combine conventional optimisation techniques (simulated annealing, genetic al-
gorithms) with conventional cryptanalytic techniques. Another property of these
attacks is that differences are only controlled in certain points of the algorithms;
this in contrast to differential cryptanalysis, where typically all intermediate dif-
ferences are controlled to a certain extent.

Side-Channel Attacks

Side-channel attacks are a major threat for all implementations of cryptographic
algorithms. Hash functions are only vulnerable to this type of attack when part
of the input to the function is secret, for example when a hash function is used in
a construction for a message authentication code (MAC) as described in Chap-
ter 5, or when it is used in a key derivation function (KDF) as described in
Chapter 6. In such a case side-channel attacks on hash functions are similar as
for other symmetric primitives. For a detailed discussion on side-channel attacks
and countermeasures that can be applied to protect an implementation we refer
to Annex A.

4.2.3 Assessment process

The hash function submissions were assessed with reference to the above generic
common hash function attacks and by specific attacks when appropriate. Sta-
tistical analysis was carried out for various input lengths. Hash functions were
submitted to the dependence test and linear factors test described in Sect. 2.2.4.
If the NESSIE submissions were based on compression functions, these were also
submitted to the two tests. Furthermore the stream cipher tests described in
Sect. 2.2.4 were also applied on the hashes both in output feedback and counter
mode. None of the hash functions tested exhibited any anomalous behaviour.

4.3 Overview of the common designs

In this section we give an overview of those hash functions which are most com-
monly used in practice today. Most known hash functions are iterated construc-
tions that are based on a compression function with fixed size input. Sometimes,
this compression function is based on a block cipher or on modular arithmetic; in
other cases it is built from scratch specifically for the purpose of hashing. We con-
clude the section with a summary of the procedures which have been undertaken
by several organisations for the standardisation of hash functions.
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4.3.1 Hash functions based on block ciphers

In systems where a block cipher implementation is already available, a hash
function can be obtained at little extra cost (in design, evaluation and imple-
mentation) by constructing it from the underlying block cipher. A disadvantage
is that these hash functions are usually slower than the dedicated proposals (es-
pecially when the block cipher used has a slow key schedule). Furthermore, the
use of a block cipher in a different context may reveal weaknesses which are not
relevant to encryption (it is still an open problem which requirements for a block
cipher are sufficient in order to produce a secure hash function).

Most block cipher based hash functions belong to one of two classes: those
producing a hash value of single block length and those producing a hash value
of double block length. In case the AES (Advanced Encryption Standard, see
Chapter 2) is used as underlying block cipher, the resulting output lengths of
these hash function classes are 128 and 256 bits respectively. Another relevant
characteristic is the rate of the hash function, which is equal to the number of
blocks that are hashed for each computation of the encryption function.

There are several single block length hash functions of rate 1 with provable
black-box security (assuming the underlying block cipher satisfies the required
randomness properties). Two dual constructions are those attributed to Matyas-
Meyer-Oseas and Davies-Meyer. In each step of the iteration the previous value of
the chaining variable (Hi−1) and the message block to be processed (Xi) serve as
key and plaintext of the encryption function (or vice versa), and there is an extra
feed-forward with the purpose of making the compression function uninvertible.
For a block cipher EK(X) (with keyK and plaintextX) the compression function
of the two constructions is as follows:

– Matyas-Meyer-Oseas: Hi = Eg(Hi−1)(Xi)⊕Xi ,
– Davies-Meyer: Hi = EXi(Hi−1)⊕Hi−1 .

Here g is a function that maps Hi−1 to a key suitable for E. The Miyaguchi-
Preneel hashing scheme is a variation on Matyas-Meyer-Oseas, where the only
difference is that the output Hi−1 from the previous stage is also XORed to that
of the current stage.

– Miyaguchi-Preneel: Hi = Eg(Hi−1)(Xi)⊕Xi ⊕Hi−1 .

The most common double block length hash functions are MDC-2 and MDC-4
with a rate of respectively 1/2 and 1/4 (all proposed schemes with rate 1 have
been broken). MDC-2 requires two parallel block encryptions in each iteration
step, and the compression function of MDC-4 has two sequential executions of
the MDC-2 compression function. The level of security of these two schemes is
less than suggested by the output size.

The Matyas-Meyer-Oseas scheme and MDC-2 are included in ISO/IEC 10118-
2 [258], a standard for hash functions using an (unspecified) block cipher. The
NESSIE submission Whirlpool (see Sect. 4.4.1) is based on the Miyaguchi-Preneel
hashing mode of an internal block cipher.
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4.3.2 Hash functions based on modular arithmetic

A hash function can also use modular arithmetic as the basis of its compression
function, allowing the re-use of existing implementations of modular arithmetic
(such as in public-key systems). The biggest disadvantage is the low speed of these
constructions (especially compared to dedicated hash functions). Many of the
proposals which use modular arithmetic have been broken. The experience with
these attacks has led to the design of the MASH-1 and MASH-2 hash functions.

The compression function of MASH-1 is based on a modular squaring op-
eration, where the modulus M is chosen as a composite of sufficient bitlength
m (making it infeasible to factor M). The message block input Xi is first ex-
panded with redundancy bits to a block Yi of double length. The block Yi is then
added bitwise to the previous value of the chaining variable Hi−1 (both Yi and
Hi−1 have bitlength n, chosen as the largest multiple of 16 less than m). After
the squaring operation a feed-forward is applied with Hi−1. This results in the
following equation for the compression function:

Hi = ((((Hi−1 ⊕ Yi) ∨A)2 mod M) a n)⊕Hi−1 ,

where A is a constant forcing the four most significant bits to 1, prior to squaring;
and a n denotes truncation of the result of the squaring operation to the n least
significant bits.

The security of this construction depends in part on the difficulty of extracting
modular roots (for a composite of unknown factorisation). The redundancy bits
are vital as well, resulting in the following security level: matching a given hash
value requires 2n/2 operations; finding a collision requires n× 2n/4 operations.

MASH-2 is a variant of MASH-1, the only difference is that it uses a modular
exponentiation with exponent e = 28 + 1 (instead of modular squaring with
e = 2). Both MASH-1 and MASH-2 are included in ISO/IEC 10118-4 [260], a
standard for hash functions using modular arithmetic. This standard also defines
an additional output transformation that must be used to reduce the length of
the hash value to n/2 bits or less.

4.3.3 Dedicated hash functions

Dedicated hash functions are functions specifically designed for the purpose of
hashing, with optimised performance in mind. The hash functions of this class
which have received the most attention are those based on the design of the MD4
algorithm. While MD4, which dates from 1990, has been broken with respect
to collision-resistance, the algorithms derived from it have benefited from the
experience gained with the cryptanalysis of this type of hash functions.

The MD4-based algorithms generally divide the message block Xi and the
chaining variable Hi−1 in words of 32 bits (or 64 bits for some of the new pro-
posals). The compression function updates the chaining variable to a new value
Hi, making use of the current message block. The computation is divided into a
number of sequential steps, where each step updates the value of one register —
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containing one word of the chaining variable — applying one message word (and
depending on the other registers). The compression function can also be divided
into a number of rounds, where in general each round uses all words from the
message block exactly once.

As an example we describe the step operation of MD4, which is of the following
form:

A = (A+ f(B,C,D) +X[j] + y)<<s[j] .

Here (A,B,C,D) are the registers containing the four 32-bit words of the chaining
variable. The notation + means addition modulo 232 and (·)<<s means bitwise
rotation (circular shift) over s positions to the left. f is a non-linear function
working at bit level, X[j] is the message word applied in step j, y an additive
constant and s[j] a rotation constant. The function f and constant y differ in
different rounds (MD4 has three rounds using the multiplexer, majority and
exclusive-or functions), as does the ordering in which the message words are
applied throughout the steps of one round.

The step operations are reversible (one can calculate backwards easily), but
at the end of the compression function there is a feed-forward operation which
adds the initial value of the registers to their final value in order to compute
the chaining variable Hi. This makes the compression function uninvertible. The
chaining variable derived by the last application of the compression function
(which works on a message block with padding and length information) serves as
the result of the hash function.

Several algorithms have been derived from MD4, applying different ideas in
order to increase the security against preimage and collision attacks. These ideas
include the use of more rounds, slightly different step operations and longer chain-
ing variables (which also means a longer hash result). In particular, the SHA
family1 uses a procedure for expansion of the message block in order to calcu-
late a different word for every step (instead of just reordering the message words
between different rounds). The RIPEMD family uses two parallel lines of com-
putation consisting of modified versions of MD4. In Table 4.1 we summarise the
main differences between the different algorithms.

Table 4.1. Summary of selected MD4-based hash functions. All sizes are given in bits.
Note that for SHA-2 there is no clear distinction in rounds.

Algorithm output size block size word size rounds × steps per round
MD4 128 512 32 3× 16
MD5 128 512 32 4× 16
RIPEMD-128 128 512 32 4× 16 twice (in parallel)
RIPEMD-160 160 512 32 5× 16 twice (in parallel)
SHA-1 160 512 32 4× 20
SHA-2/256 256 512 32 1× 64
SHA-2/384 384 1024 64 1× 80
SHA-2/512 512 1024 64 1× 80

1 A detailed description of these hash functions is given in Sect. 4.4.2 and Sect. 4.4.3.
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4.3.4 Current standards

Several organisations have taken initiatives for the standardisation of hash func-
tions. The SHA-1 hash function is a U.S. government standard, developed by
NIST as Federal Information Processing Standard (FIPS) 180-1, and it can be
used in conjunction with the DSA standard for digital signatures. Recently NIST
has updated this standard to FIPS 180-2 [393] which includes, besides SHA-1,
also three new hash functions — SHA-2/256, SHA-2/384 and SHA-2/512 — with
longer output lengths (in order to match the security level of the new block ci-
pher standard AES). ANSI has adopted hash functions in its public-key based
banking standards: standard X9.30 [14] specifies SHA-1 to be used in conjunction
with DSA; standard X9.31 [15] specifies MDC-2 to be used in conjunction with
an RSA-based signature scheme.

ISO/IEC has developed standard 10118 for hash functions, with separate
parts for different classes of hash functions. Part 10118-2 [258] details hash func-
tions based on block ciphers, more specifically the Matyas-Meyer-Oseas construc-
tion, a block cipher independent MDC-2 and two more functions producing a hash
value of double and triple block length respectively. Part 10118-3 [259] specifies
three dedicated algorithms: RIPEMD-128, RIPEMD-160 and SHA-1. This part
of the standard is currently being revised, with an ongoing assessment of new
cryptographic primitives to be adopted as ISO standards. Besides the original
three algorithms, the following hash functions are being considered: SHA-2/256,
SHA-2/384, SHA-2/512 and Whirlpool. Part 10118-4 [260] describes the MASH-1
and MASH-2 hash functions which use modular arithmetic.

4.4 Hash functions considered during Phase II

The Whirlpool algorithm was submitted to NESSIE and selected for study
during phase II of the NESSIE project. Furthermore, because they are standards
of NIST [393], and under discussion in ISO [259], the algorithms SHA-1 and
SHA-2 were selected for study during NESSIE phase II.

4.4.1 Whirlpool

Whirlpool is a hash function designed by Paulo Barreto and Vincent Rijmen
[31] and submitted to the NESSIE project as a (conjectured) collision-resistant
hash function. The algorithm is byte-oriented and operates on blocks of 512 bits,
producing a message digest (hash value) of 512 bits.

4.4.1.1 The design

The design of Whirlpool consists of the iterative application of a compression
function which is based on an underlying dedicated 512-bit block cipher that
uses a 512-bit key and runs in 10 rounds. In the following we first describe the
individual components that build up Whirlpool, and then specify the complete
hash function in terms of these components.
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Input and output.
The hash state is internally viewed as a matrix inM8×8[GF(28)]. Therefore, 512-
bit data blocks (externally represented as byte arrays by sequentially grouping
the bits in 8-bit chunks) must be mapped to and from this matrix format. This
is done by function µ : GF(28)64 →M8×8[GF(28)] and its inverse:

µ(a) = b ⇔ bij = a8i+j , 0 6 i, j 6 7.

The nonlinear layer γ.
Function γ :M8×8[GF(28)]→M8×8[GF(28)] consists of the parallel application
of a nonlinear substitution box S : GF(28) → GF(28), x 7→ S[x] to all bytes of
the argument individually:

γ(a) = b⇔ bij = S[aij ], 0 6 i, j 6 7.

The substitution box proposed in the tweaked version of Whirlpool is different
from the one proposed in the original version. It is built in a simple way from
smaller 4-bit substitution boxes. For its description we refer to the new algorithm
specification [31].

The cyclical permutation π.
The permutation π :M8×8[GF(28)] →M8×8[GF(28)] cyclically shifts each col-
umn of its argument independently, so that column j is shifted downwards by j
positions:

π(a) = b⇔ bij = a(i−j) mod 8,j , 0 6 i, j 6 7.

The purpose of π is to disperse the bytes of each row among all rows.

The linear diffusion layer θ.
The diffusion layer θ :M8×8[GF(28)]→M8×8[GF(28)] is a linear mapping based
on the [16, 8, 9] MDS code with generator matrix GC = [I C] where

C =















01x 01x 03x 01x 05x 08x 09x 05x
05x 01x 01x 03x 01x 05x 08x 09x
09x 05x 01x 01x 03x 01x 05x 08x
08x 09x 05x 01x 01x 03x 01x 05x
05x 08x 09x 05x 01x 01x 03x 01x
01x 05x 08x 09x 05x 01x 01x 03x
03x 01x 05x 08x 09x 05x 01x 01x
01x 03x 01x 05x 08x 09x 05x 01x















,

so that θ(a) = b ⇔ b = a · C. The effect of θ is to mix the bytes in each state
row.

The key addition σ[k].
The affine key addition σ[k] : M8×8[GF(28)] → M8×8[GF(28)] consists of the
bitwise addition (exor) of a key matrix k ∈M8×8[GF(28)]:

σ[k](a) = b⇔ bij = aij ⊕ kij , 0 6 i, j 6 7.

This mapping is also used to introduce round constants in the key schedule.



134 4. Hash functions

The round constants cr.
The round constant for the r-th round, r > 0, is a matrix cr ∈ M8×8[GF(28)],
defined as:

cr0j ≡ S[8(r − 1) + j], 0 6 j 6 7,
crij ≡ 0, 1 6 i 6 7, 0 6 j 6 7.

The round function ρ[k].
The r-th round function is the composite mapping ρ[k] : M8×8[GF(28)] →
M8×8[GF(28)], parameterised by the key matrix k ∈ M8×8[GF(28)] and given
by:

ρ[k] ≡ σ[k] ◦ θ ◦ π ◦ γ.

The key schedule.
The key schedule expands the 512-bit cipher key K ∈ M8×8[GF(28)] onto a
sequence of round keys K0, . . . ,K10:

K0 = K,

Kr = ρ[cr](Kr−1), 1 6 r 6 10,

The internal block cipher W .
The dedicated 512-bit block cipher WK :M8×8[GF(28)] → M8×8[GF(28)], pa-
rameterised by the 512-bit cipher key K, is defined as

WK =

(
r=10

©
1
ρ[Kr]

)

◦ σ[K0],

where the round keys K0, . . . ,K10 are derived from K by the key schedule.

Padding and MD-strengthening.
Before being subjected to the hashing operation, a message M of bit length
L < 2256 is padded with a 1-bit, then with as few 0-bits as necessary to obtain
a bit string whose length is an odd multiple of 256, and finally with the 256-bit
right-justified binary representation of L, resulting in the padded message m,
partitioned in t 512-bit blocks m1, . . . ,mt.

The compression function.
Whirlpool iterates the Miyaguchi-Preneel hashing scheme over the t padded
message blocks mi, 1 6 i 6 t, using the dedicated 512-bit block cipher W :

ηi = µ(mi), 1 6 i 6 t

H0 = µ(IV ),

Hi = WHi−1
(ηi)⊕ ηi ⊕Hi−1, 1 6 i 6 t,

where IV (the initialisation vector) is a string of 512 0-bits.
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Message digest computation.
The Whirlpool message digest for message M is defined as the output Ht of
the compression function, mapped back to a bit string:

Whirlpool(M) ≡ µ−1(Ht).

4.4.1.2 Security analysis

The Miyaguchi-Preneel scheme is one of the few still unbroken methods to con-
struct a hash function from an underlying block cipher. In particular, it is “prov-
ably secure” if certain ideal properties hold for the underlying block cipher (in
[82] Black et al. prove tight upper and lower bounds for the collision-resistance
and preimage-resistance of this construction, based on a black-box model of the
encryption algorithm).

The block cipher W that forms the basis of Whirlpool is very similar to the
AES algorithm Rijndael. The main difference between W and Rijndael is that
Rijndael supports blocklengths of 128, 192 and 256 bits, while W only works on
512-bit blocks. Rijndael has received quite a bit of analysis during and after the
AES process, and given the similarities between Rijndael and W , some of it may
carry over to Whirlpool. The designers state three criteria that define the level
of security. Assume we take as hash result any n-bit substring of the output of
Whirlpool, then the criteria are:

– The workload of generating a collision is expected to be of the order 2n/2

(collision-resistant).
– Given an n-bit value, the workload of finding a message that hashes to that

value is of the order 2n (preimage-resistant).
– Given a message (and its hash result), the workload of finding a different

message that has the same hash value is of the order 2n (second preimage-
resistant).

No attacks have been reported on Whirlpool that falsify these statements. In
the following we discuss some observations that have been made and an attack
on a reduced round version of Whirlpool.

Choice of the substitution box.
In its nonlinear layer Whirlpool uses a substitution box to map 8-bit inputs

into 8-bit outputs. The originally submitted form of Whirlpool used a pseudo-
randomly generated substitution box, chosen to satisfy certain conditions with
respect to differential and linear analysis, and with respect to the non-linear order.
However, a flaw that went unnoticed caused the value of the linear parameter
to be incorrectly reported. Therefore, in the tweaked version of Whirlpool an
alternative substitution box was described satisfying the design conditions. This
new substitution box is built in a simple way from smaller 4-bit substitution
boxes.2

2 The new substitution box also leads to more efficient hardware implementations.
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Non-random properties of reduced-round Whirlpool.
In [302] it is shown that a variant of the hash function Whirlpool where the

number of rounds in the compression function is reduced from ten to six (or less),
exhibits some non-random properties. The observations have not shown to be a
weakness for Whirlpool. In the following we summarise the analysis of [302].

Consider a collection of 256 texts, which have different values in one byte and
equal values in each of the remaining 63 bytes. Then it follows that after two
rounds of encryption the texts take all 256 values in each of the 64 bytes, and
that after three rounds of encryption the sum of the 256 bytes in each position is
zero. Such a structure has been called an integral (see Sect. 2.2.3.15). Also, note
that there are 63 other similar structures, since the position of the non-constant
byte in the plaintexts can be in any of the 64 positions.

The three-round integral described above can be extended to four rounds by
considering a structure with 264 texts. The main observation is that after one
round one has all 264 values in the top row and that the remaining three rounds
can be seen as a collection of 256 variants of the 3-round integral. Since the texts
in each integral sum to zero in any byte after the fourth round, so does the sum
of all 264 texts.

In much the same manner, one can define a three-round backwards integral
through three rounds of the inverse cipher of W . In versions of W reduced to six
rounds one can then combine the first three rounds of the four-round forwards
integral and the three-round backwards integral to cover all rounds of the cipher
with probability one. We do this by starting our computation after the third
round of W . By a first glance it appears that the two three-round integrals
cannot be combined.

However, choose a structure of 2120 texts such that the fifteen bytes consisting
of the eight bytes of the top row and byte j in row 8 − j for j = 1 . . . 7 take all
possible values. One can view these texts as a collection of 256 3-round forwards
integrals, but one can also view this as a collection of 256 3-round backwards
integrals. Therefore, both when one computes forward three rounds and backward
three rounds, the resulting texts will take the values in each byte equally many
times.

Thus, with time complexity 2120 one can find a collection of 2120 inputs to W
reduced to six rounds, such that each byte in both the inputs and outputs takes
all values equally many times. It is claimed that this distinguishes W reduced to
six rounds from a randomly chosen 512-bit permutation. We conjecture that to
find a structure of 2120 texts with properties similar to the ones outlined for W
reduced to six rounds will require the generation of at least 2128 outputs and a
considerable amount of memory.

In versions ofW reduced to seven rounds one can combine the full four-round
forwards integral and the three-round backwards integral to cover seven rounds
with probability one. However it is unclear whether such an integral can be used
to effectively distinguish W reduced to seven rounds from a randomly chosen
512-bit permutation. In recent work David Wagner shows techniques for solving
a generalised birthday problem. Although these techniques do not seem to apply
directly to our problem, it is possible that they can be adapted hereto.
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Quadratic relations in Whirlpool.
In [303] it is examined whether there exist quadratic relations with certainty

over the input and output bits of the substitution boxes of Whirlpool. It has been
shown by Courtois and Pieprzyk [138] that for the substitution boxes of Rijndael
and Serpent there exist quadratic equations in the input and output bits which
hold with probability one. Such equations always exist for n-bit to n-bit S-boxes
where n ≤ 6, but not in general for n > 6.

Therefore we have investigated whether such quadratic relations exist for the
S-box of Whirlpool. This S-box is a permutation of eight bits. There are 137
possible terms of degree at most two in a multivariate expression of the eight
input and output bits. It is a simple matter to check whether such equations
exist simply by computing the kernel of a 256 times 137 binary matrix. We
implemented this in Maple. It was found that there are no quadratic relations
for the full S-box of Whirlpool. However, after the tweak, the S-box of Whirlpool
is built in a simple way from 4-bit S-boxes. This makes it easy to write a small
system of multivariate quadratic equations for Whirlpool. Security of Whirlpool
against algebraic attacks is a matter of further research.

4.4.2 SHA-1

SHA-1 [393] has been a NIST hash function standard (FIPS 180-1, recently
updated to FIPS 180-2) for a long time, and is also included in the ISO/IEC
standard 10118-3. Although the output length of 160 bits is too short for a
collision-resistant hash function as requested by the NESSIE call for primitives,
many current applications (such as digital signature schemes) use a 160-bit hash
function. Therefore SHA-1 is studied as a legacy hash function. The algorithm
operates on 512-bit message blocks divided in words of 32 bits, and produces a
message digest (hash value) of 160 bits.

4.4.2.1 The design

SHA-1 is a dedicated hash function, clearly influenced by the design of MD4
but a strengthened version of this algorithm. It is defined as the iteration of a
compression function which we specify below. The computation starts with the
initial value

IV = 67452301x efcdab89x 98badcfex 10325476x c3d2e1f0x .

Each application of the compression function uses five words as initial values
and 16 words of the message as input and it gives five words output, which are
then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 512 bits.

Compression function of SHA-1.
Let the message block of 512 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 32-bit words. SHA-1 uses an expansion procedure which is defined as
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Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)
<<1 , 16 ≤ i ≤ 79 .

Define the following constants

Ki = 5a827999x , 0 ≤ i ≤ 19 ,

Ki = 6ed9eba1x , 20 ≤ i ≤ 39 ,

Ki = 8f1bbcdcx , 40 ≤ i ≤ 59 ,

Ki = ca62c1d6x , 60 ≤ i ≤ 79 ,

and the boolean functions

fi(X,Y, Z) = fif (X,Y, Z) = (X &Y ) | (X̄ &Z) , 0 ≤ i ≤ 19 ,

fi(X,Y, Z) = fxor(X,Y, Z) = X ⊕ Y ⊕ Z , 20 ≤ i ≤ 39 , 60 ≤ i ≤ 79 ,

fi(X,Y, Z) = fmaj(X,Y, Z) = (X &Y ) | (X &Z) | (Y &Z) , 40 ≤ i ≤ 59 .

Suppose now that the initial values A0, B0, C0, D0, E0 are given. Then the
compression function proceeds by the following steps for 0 ≤ i ≤ 79 (additions
are mod 232):

Ai+1 = A<<5i + fi(Bi, Ci, Di) + Ei +Wi +Ki ,

Bi+1 = Ai ,

Ci+1 = B<<30i ,

Di+1 = Ci ,

Ei+1 = Di .

Finally compute the output of the compression function as

A = A0+A80 , B = B0+B80 , C = C0+C80 , D = D0+D80 , E = E0+E80 .

4.4.2.2 Security analysis

SHA-1 is conjectured to be a collision-resistant hash function. For an output
length of 160 bits this means that the expected workload of generating a collision
is of the order 280. The workload of finding a (second) preimage should be of the
order 2160. There have not been reported any attacks on SHA-1 falsifying these
statements. An important effect of the expansion of the 16-word message block
to 80 words in the compression function, is that for any two distinct 16-word
blocks, the resulting 80-word values differ in a large number of bit positions.
This makes the attack strategy that has been used on other algorithms of the
MDx-family very difficult and certainly increases the strength of the algorithm.
In the following we discuss some observations that have been made and an attack
on a previous version of SHA.
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Collisions for SHA-0.
An earlier version of SHA — commonly known as SHA-0 — has been crypt-
analysed by Chabaud and Joux [117], resulting in a theoretical attack finding
collisions (two messages hashing to the same value) with a complexity of about
261 evaluations of the compression function. The only difference between these
two versions of SHA is in the expansion procedure which is defined for SHA-0 by

Wi =Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 , 16 ≤ i ≤ 79

(in contrast to SHA-1 there is no rotation by one bit position to the left).
The general idea of the attack on SHA-0 is to track the propagation of local

perturbations and to look for differential masks that can be added to the input
block with non-trivial probability of keeping the output of the compression func-
tion unchanged. In [117] Chabaud and Joux have first studied a simplified variant
of SHA-0 called SHI1 which replaces the modular additions (+) and the nonlin-
ear functions (fi) by bitwise addition (⊕). Single bit errors or perturbations are
introduced to the input of SHI1 and the perturbations are traced through the
compression function. These perturbations are made to disappear by introducing
five other bit errors or corrections. This allows an attack on SHI1 via differential
masking. A second variant of SHA-0 called SHI2 is then analysed, where SHI2
replaces modular addition by ⊕ but this time keeps the nonlinear functions fi.
However we can still view fi as acting like ⊕ with some probability, and the
probability of a successful perturbation attack can be computed as 2−24. A third
variant of SHA-0, SHI3, is then analysed, where SHI3 uses modular addition as in
SHA-0, but uses ⊕ instead of the nonlinear fi. In this case the additions mod 232

cause the perturbations to spread out due to carry propagation. However one is
still able to devise a perturbation attack on SHI3 with probability 2−44. Finally
SHA-0 itself is analysed by taking into account the analyses of SHI2 and SHI3,
and this leads to a perturbation based attack on SHA-0 requiring 261 evaluations
of the compression function.

It should be emphasised that, although SHA-1 and SHA-0 are so similar, this
attack does not carry over to SHA-1. The rotation by one bit position to the
left which is added in the expansion procedure of SHA-1 means that the linear
code of the expansion no longer operates on bit level: a modification of a single
bit influences bits at other positions in the words as well. This makes the attack
strategy of [117] completely ineffective and provides strong evidence that the
transition from SHA-0 to SHA-1 raised the level of security.

Slid pairs in SHA-1.
Recently Saarinen [458] has noted that a slide attack can be mounted on SHA-
1 with about 232 effort. Although it is difficult to see how this attack could
be exploited to find collisions or preimages for the hash function, the analysis
demonstrates an unexpected property of the compression function. Consider two
messages M = [W0 ‖W1 ‖ . . . ‖W15] and M

′ = [W ′
0 ‖W ′

1 ‖ . . . ‖W ′
15]. The main

observation is that the procedure for message expansion can be slid. We simply
choose W ′

i = Wi+1 for 0 ≤ i ≤ 14 and W ′
15 = (W0 ⊕ W2 ⊕ W8 ⊕ W13)

<<1.
After message expansion the following is true: W ′

i = Wi+1 for 0 ≤ i ≤ 78. The
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second observation is that for 20 steps in each round of the compression function,
the boolean function fi and the additive constant Ki are unchanged. Hence any
two consecutive steps (step i and step i + 1) of the compression function are
similar, except for three transitions between different rounds (this happens for
i = 19, 39, 59).

Suppose now that the hashing computation for M and M ′ starts from ini-
tial values A,B,C,D,E and A′, B′, C ′, D′, E′ respectively, which are related as
follows:

B′ = A , C ′ = B>>30 , D′ = C , E′ = D .

Then the purpose of the attack is to find messages and initial values for which
the same relation (between the chaining variables) still holds at the end of the
compression function. Such a pair of messages and corresponding initial values is
called a “slid pair”. The method for finding a slid pair is rather technical but the
general strategy is to choose suitable values for the chaining variables in steps
i = 19 and i = 39, and perform a meet-in-the-middle match. This procedure is
repeated until the transition for i = 59 is also dealt with, which happens with
probability 2−32. The overall time and space complexity of the attack are of the
order 232.

Differential analysis.
Differential cryptanalysis has been applied to the encryption mode of SHA-1 (see
below) and is relevant for the hash function as well. Although the propagation
of a difference in the initial value through the compression function does not
immediately help in finding preimages or collisions for the hash function, it may
point to unwanted properties of the compression function.

For SHA-1, there exists a 5-step differential characteristic over any 5 steps
in the compression function with probability 1. Handschuh and Naccache [237]
conjecture that over 80 steps the best differential characteristic has probabil-
ity around 2−116. It is emphasised that this estimation is over-favourable to the
cryptanalyst as it would be impossible to connect up all the constituent charac-
teristics so as to achieve these biases. Van den Bogaert and Rijmen [504] have
searched for optimal differential characteristics under the requirement that the
Hamming Weight of every 32-bit word of the input is upper bounded by 2. It was
found that there are two 10-step characteristics for fif with probability 2−12 (this
is a factor of 2 better than [237]), a 10-step characteristic for fxor with best case
probability 2−12, and a 20-step characteristic for fif and fmaj with probabilities
2−42 and 2−41 respectively (these figures agree with [237]).

Kim et al. [290] have found a 28-step differential characteristic with prob-
ability 2−107, and a 30-step differential characteristic with probability 2−138.
This shows that when the number of steps increases, the probability of a differ-
ential characteristic decreases rapidly (this is due to the fact that the Hamming
Weight in the difference words grows larger). Overall the security margin of SHA-
1 against this type of analysis appears very large.
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Encryption mode of SHA-1.
The SHA-1 compression function can also be used in encryption mode, by in-
serting a key as message (so the expansion procedure is used as key schedule)
and a plaintext as initial value, while leaving out the feed-forward operation at
the end of the compression function. The resulting 160-bit block cipher, called
SHACAL-1, has been submitted to NESSIE (see Chapter 2). One may also view
SHA-1 as a Davies-Meyer hashing scheme based on SHACAL-1.

In the submission document Handschuh and Naccache [237] conjecture that
a linear cryptanalytic attack on SHACAL-1 would require at least 280 known
plaintexts and that a differential attack would require at least 2116 chosen plain-
texts. These estimations cannot be considered a break of the algorithm because
Handschuh and Naccache construct very loose lower bounds. Differential crypt-
analysis including boomerang attacks [290] and rectangle attacks [68] have been
applied to SHACAL-1. The best known attack works for 49 steps of the com-
pression function with a data complexity of 2151.9 chosen plaintexts and a time
complexity of 2508.5 [68].

Saarinen [460] recently showed that the slide attack on SHA-1 also points
to a weakness in the key schedule of SHACAL-1, and this can be exploited in
a related-key attack. Given access to two SHACAL-1 encryption oracles whose
keys are “slid” (in the same way that the message expansion can be slid for the
hash function) the cipher can be distinguished from a randomly chosen 160-bit
permutation. This requires about 2128 chosen plaintexts. When certain properties
hold for the (related) keys, the complexity can be further reduced to about 296

chosen plaintexts.

4.4.3 SHA-2

SHA-2 [393] has recently been included in the new NIST hash function standard
(FIPS 180-2), generating hash values of 256, 384 or 512 bits. The main reason for
the new standard is to provide a security level comparable to the security level of
the new NIST block cipher standard AES (with keylength of 128, 192 or 256 bits
respectively). Therefore, SHA-2 will serve as a benchmark for the submissions in
this category.

4.4.3.1 SHA-2/256

The SHA-2/256 hash function operates on blocks of 512 bits divided in words of
32 bits and produces a message digest (hash value) of 256 bits. The algorithm is
defined as the iteration of a compression function which we specify below. The
computation starts with the initial value

IV = 6a09e667x bb67ae85x 3c6ef372x a54ff53ax

510e527fx 9b05688cx 1f83d9abx 5be0cd19x .

Each application of the compression function uses eight words as initial values
and 16 words of the message as input and it gives eight words output, which are
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then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 512 bits.

Compression function of SHA-2/256.
Let the message block of 512 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 32-bit words. SHA-2/256 uses an expansion procedure defined by

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 , 16 ≤ i ≤ 63 ,

with σ0 and σ1 defined as follows (where (·)> denotes shift and (·)>> rotation or
circular shift to the right):

σ0(X) = X>>7 ⊕X>>18 ⊕X>3 ,

σ1(X) = X>>17 ⊕X>>19 ⊕X>10 .

Define the following functions:

Ch(X,Y, Z) = (X &Y )⊕ (X̄ &Z) ,

Maj(X,Y, Z) = (X &Y )⊕ (X &Z)⊕ (Y &Z) ,

Σ0(X) = X>>2 ⊕X>>13 ⊕X>>22 ,

Σ1(X) = X>>6 ⊕X>>11 ⊕X>>25 .

Suppose now that the initial values A0, B0, C0, D0, E0, F0, G0, H0 are given.
Then the compression function proceeds by the following steps for 0 ≤ i ≤ 63
(additions are mod 232):

Ai+1 = Σ0(Ai) +Maj(Ai, Bi, Ci) +Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Wi +Ki ,

Bi+1 = Ai ,

Ci+1 = Bi ,

Di+1 = Ci ,

Ei+1 = Di +Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Wi +Ki ,

Fi+1 = Ei ,

Gi+1 = Fi ,

Hi+1 = Gi .

The 32-bit constants Ki are different in each of the 64 steps. We refer to the
description of SHA-2 [393] for their exact value. Finally compute the output of
the compression function as

A = A0 +A64 , B = B0 +B64 , C = C0 + C64 , D = D0 +D64 ,

E = E0 + E64 , F = F0 + F64 , G = G0 +G64 , H = H0 +H64 .
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4.4.3.2 SHA-2/512

The main difference between SHA-2/256 and SHA-2/512 is that the latter uses
a wordlength of 64 bits (instead of 32 bits). This allows the computation of a
message digest which is twice as long compared to SHA-2/256, without changing
the structure of the algorithm. Another distinction is that the number of steps in
the compression function has been changed from 64 to 80. Hence, the SHA-2/512
hash function operates on blocks of 1024 bits divided in words of 64 bits and
produces a message digest (hash value) of 512 bits. The algorithm is defined as
the iteration of a compression function which we specify below. The computation
starts with the initial value

IV = 6a09e667f3bcc908x bb67ae8584caa73bx 3c6ef372fe94f82bx a54ff53a5f1d36f1x

510e527fade682d1x 9b05688c2b3e6c1fx 1f83d9abfb41bd6bx 5be0cd19137e2179x .

Each application of the compression function uses eight words as initial values
and 16 words of the message as input and it gives eight words output, which are
then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 1024 bits.

Compression function of SHA-2/512.
Let the message block of 1024 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 64-bit words. SHA-2/512 uses an expansion procedure defined by

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 , 16 ≤ i ≤ 79 ,

with σ0 and σ1 defined as follows (where (·)> denotes shift and (·)>> rotation or
circular shift to the right):

σ0(X) = X>>1 ⊕X>>8 ⊕X>7 ,

σ1(X) = X>>19 ⊕X>>61 ⊕X>6 .

Define the following functions:

Ch(X,Y, Z) = (X &Y )⊕ (X̄ &Z) ,

Maj(X,Y, Z) = (X &Y )⊕ (X &Z)⊕ (Y &Z) ,

Σ0(X) = X>>28 ⊕X>>34 ⊕X>>39 ,

Σ1(X) = X>>14 ⊕X>>18 ⊕X>>41 .

Suppose now that the initial values A0, B0, C0, D0, E0, F0, G0, H0 are given.
Then the compression function proceeds by the following steps for 0 ≤ i ≤ 79
(additions are mod 264):
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Ai+1 = Σ0(Ai) +Maj(Ai, Bi, Ci) +Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Wi +Ki ,

Bi+1 = Ai ,

Ci+1 = Bi ,

Di+1 = Ci ,

Ei+1 = Di +Σ1(Ei) + Ch(Ei, Fi, Gi) +Hi +Wi +Ki ,

Fi+1 = Ei ,

Gi+1 = Fi ,

Hi+1 = Gi .

The 64-bit constants Ki are different in each of the 80 steps. We refer to the
description of SHA-2 [393] for their exact value. Finally compute the output of
the compression function as

A = A0 +A80 , B = B0 +B80 , C = C0 + C80 , D = D0 +D80 ,

E = E0 + E80 , F = F0 + F80 , G = G0 +G80 , H = H0 +H80 .

4.4.3.3 SHA-2/384

The SHA-2/384 hash function is defined in the exact same manner as SHA-2/512
with the following two exceptions:

The computation starts with a different initial value:

IV = cbbb9d5dc1059ed8x 629a292a367cd507x 9159015a3070dd17x 152fecd8f70e5939x

67332667ffc00b31x 8eb44a8768581511x db0c2e0d64f98fa7x 47b5481dbefa4fa4x .

The 384-bit message digest is obtained by truncating the final hash value to its
left-most 384 bits.

4.4.3.4 Security analysis

SHA-2/256, SHA-2/384 and SHA-2/512 are conjectured to be collision-resistant
hash functions. This means that the expected workload of generating a collision is
of the order 2n/2 and that the workload of finding a (second) preimage should be
of the order 2n, where n denotes the output length which, for these hash function,
is equal to 256, 384 or 512 bits respectively. There have not been reported any
attacks falsifying this statement.

SHA-2 is a new design that has some similarities to SHA-1, but there are
important differences in the structure. We may note that for the 256-bit version
the number of steps in the compression function is lower than for SHA-1 (64 steps
compared to 80). On the other hand, two variables are updated in every step of
the compression function where for SHA-1 only one variable is updated in a step.
With respect to differential cryptanalysis, there exists a 4-step characteristic over
any 4 steps in the compression function with probability 1. The probability of
differential characteristics appears to decrease faster than for SHA-1. This is due
to the multiple rotations in the functions Σ0(·) and Σ1(·). The slide attack on
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SHA-1 does not extend to SHA-2 because for SHA-2 every step of the compression
function uses a unique additive constant. SHA-2 is a recently designed primitive
of which the design strategy was not made public, so more time is needed to
perform a careful and thorough security evaluation.

Encryption mode of SHA-2.
The SHA-2 compression function can also be used in encryption mode, by insert-
ing a key as message (so the expansion procedure is used as key schedule) and a
plaintext as initial value, while leaving out the feed-forward operation at the end
of the compression function. For SHA-2/256 this results in a 256-bit block cipher,
called SHACAL-2, which has been submitted to NESSIE (see Chapter 2). One
may also view SHA-2/256 as a Davies-Meyer hashing scheme based on SHACAL-
2. No security flaws have been identified for SHACAL-2. The weakness in the key
schedule of SHACAL-1 does not extend to SHACAL-2.

4.5 Conclusion

The NESSIE project has studied the submitted algorithm Whirlpool and has
also studied the NIST hash function standards SHA-1 and SHA-2. No significant
security weaknesses have been found for any of these hash functions. The best
result on Whirlpool is an attack which finds non-random properties in versions
of Whirlpool where the compression function is reduced to six rounds or less (the
complete function uses ten rounds). For SHA-1 a slide attack has been found
that demonstrates an unexpected property of the compression function, but this
is not a threat for any normal use of the hash function. However, this attack
also points to a weakness in the key schedule of the encryption mode of SHA-1.
SHA-2 is a new design with significant differences from SHA-1; no weaknesses
have been reported for it.

Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
§4.1 Introduction expanded and reference to Preneel added.
§4.2.1 Formal security model added.
§4.2.2 Second paragraph has been moved from §4.2.1 to here.

Subsection on side-channel attacks added.
§4.3.1 Miyaguchi-Preneel scheme added.
§4.3.4 Section rewritten. Note added on current revision of ISO/IEC 10118-3 (as

pointed out by P. Barreto). More details on ANSI standards.
§4.4.2.2 Security analysis for SHA-1 expanded. More details on the SHA-0 colli-

sion attack, on differential cryptanalysis, and on the security claims and
cryptanalysis of the encryption mode SHACAL-1.

§4.4.3.4 Security analysis for SHA-2 expanded.
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5. Message authentication codes

5.1 Introduction

Message Authentication Codes, also known as MACs, are cryptographic prim-
itives used for information authentication. A MAC is a function that takes an
input of arbitrary length and produces an output of a fixed length. Contrary to
hash functions, the computation of a MAC depends on a secret key. In practical
applications this key has to be shared between two parties (a sender and a re-
ceiver) so MACs are used in a symmetric setting, contrary to digital signatures
(see Chapter 7) which are used for authentication in asymmetric settings. We
informally give the conditions we require of a message authentication code:

– A MAC with an unknown key should be “hard” to forge on a new message,
even when many messages and corresponding MAC values are known.

Before presenting a detailed analysis of the message authentication codes
studied by the NESSIE project, we first discuss the security requirements and give
an overview of common designs and current standards. For a more comprehensive
overview of cryptographic primitives for information authentication (including
message authentication codes) we refer to the treatment by Preneel in [440].

5.2 Security requirements

In this section we give practical and formal definitions for message authentication
codes and describe the general model of an iterated MAC. We then discuss differ-
ent types of attacks on message authentication codes and describe the assessment
process followed by the project.

5.2.1 Security model

The following informal definition for message authentication codes was given by
Preneel in [440]. A MAC is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(K,X) has a
fixed length of n bits, where the secondary input K denotes the secret key.

0 Coordinator for this chapter: KUL — Bart Van Rompay
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2. Given h and X (but with unknown K), it must be ‘hard’ to determine
h(K,X) with a probability of success ‘significantly higher’ than 1/2n. Even
when a large set of pairs {Xi, h(K,Xi)} is known, it is ‘hard’ to determine
the key K or to compute h(K,X ′) for any X ′ 6= Xi.

Most MACs are iterated constructions, in the sense that they are based on
a compression function with fixed size inputs; they process every message block
in a similar way. The input X is padded by an unambiguous padding rule to a
multiple of the block size. Typically this also includes adding the total length
in bits of the input. The padded input is then divided into t blocks denoted X1

through Xt. The MAC involves a compression function f and a chaining variable
Hi between stage i− 1 and stage i:

H0 = IVK ,

Hi = fK(Hi−1, Xi) , 1 ≤ i ≤ t ,
h(K,X) = gK(Ht) .

Here IV denotes the Initial Value and g the output transformation. The secret
key K may be employed in the IV , in the compression function, and/or in the
output transformation.

5.2.1.1 Formal definitions

Before discussing security aspects we first give more precise definitions of a MAC
and its cryptographic strength. These definitions are similar to the definitions
given by Krovetz in [316]. For an iterated construction similar definitions can be
given as for iterated hash functions in Sect. 4.2.1.1 (taking into account the MAC
key, and the fact that there usually is an additional output transformation).

Definition 5.1. A MAC is a function h : K ×M → R where the key space
K = {0, 1}k, the message spaceM = {0, 1}∗ and the range R = {0, 1}n for some
k, n ≥ 1. When given a key K ∈ K and a message X ∈M, the function produces
a MAC value Y ∈ R.

Definition 5.2 (Unforgeability). An adversary has forged a message for a
MAC h if, without knowledge of a random key K, he is able to produce a new
message X and MAC value Y such that h(K,X) = Y . A MAC h : K ×M→ R
is (t, ε, q)-secure if, under a randomly chosen key K, an adversary cannot forge
a new message in time t with probability better than ε even if he is provided with
the MAC values of q other messages of his choice.

5.2.2 Classification of attacks

Depending on the information available to an adversary, the following types of
attacks are distinguished for MACs:

– Known text attack. An attacker is able to examine some plaintexts and their
corresponding MAC values.
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– Chosen text attack. An attacker is able to select a set of texts and subsequently
obtains a list of MAC values corresponding to these texts.

– Adaptive chosen text attack. This is the most general attack where an attacker
chooses a text and immediately receives the corresponding MAC value. The
choice of a text can depend on the outcome of previous queries.

“Breaking” a MAC algorithm can have different meanings:

– Existential forgery. An attacker can determine the MAC value for at least one
text. As he has no control over this text, it may be random or nonsensical.

– Selective forgery. An attacker can determine the MAC value for a particular
text chosen a priori by him. Note that practical attacks often require that a
forgery is verifiable, which means that the attacker knows that the forged MAC
is correct with probability close to 1.

– Key recovery. This means that an attacker can determine the secret key K.
Such a break is more powerful than a forgery, since it allows for arbitrary
selective forgeries.

In practice, an adaptive chosen text attack may not always be feasible; more-
over, forgeries typically need to have specific redundancy to be of any practical
use. However, it is in general better to be conservative and to require that MAC
algorithms resist against the strongest attacks possible. We now briefly describe
the best known attacks on message authentication codes (see [440]).

Guessing of the MAC

A straightforward attack on a MAC algorithm consists of choosing an arbitrary
new message, and subsequently guessing the MAC value. This can be done in
two ways: either one guesses the MAC value directly, with a success probability
of 2−n, or one guesses the key, and then computes the MAC value, with success
probability 2−k. Here n denotes the size in bits of the MAC value and k the
size in bits of the secret key. This is a non-verifiable attack: an attacker does not
know a priori whether his guess was correct. The feasibility of the attack depends
on the number of trials that can be performed and on the expected value of a
successful attack; both are strongly application dependent.

Exhaustive Key Search

This is another straightforward attack that can be applied to any algorithm. The
attack requires approximately k/n known text-MAC pairs for a given key; one
attempts to determine the key by trying one-by-one all the keys. The expected
number of trials is equal to 2k−1. In contrast to the previous attack, this attack
is carried out off-line and it yields a complete break of the MAC algorithm.

Internal Collision Based Forgery

The observation behind this attack is that if one can find an internal collision
(this is a collision which occurs before the output transformation g), this can
be used to construct a verifiable MAC forgery based on a single chosen text.
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Preneel and van Oorschot [442] have shown that an internal collision for h can
be found using u known text-MAC pairs and v chosen texts, where the expected
values for u and v are as follows (here l denotes the size in bits of the chaining
variable): u =

√
2·2l/2 and v = 0 if the output transformation g is a permutation;

otherwise, v is approximately

2

(

2l−n +

⌊
l − n
n− 1

⌋

+ 1

)

.

Further optimisations of this attack are possible if the set of text-MAC pairs has
a common sequence of s trailing blocks.

Internal Collision Based Key Recovery

For some compression functions, one can extend the internal collision attack to a
key recovery attack [443]. The idea is to identify one or more internal collisions;
for example, if f is not a permutation for fixed Hi, an internal collision after the
first message block gives the equation fK(H0, X1) = fK(H0, X

′
1), in which K and

possibly H0 are unknown (it is assumed that the H0 = IV is key dependent).
For some compression functions f , one can obtain information on the secret key
based on such relations.

Divide-and-Conquer Attack

This attack is a special case of an internal collision based key recovery. For some
compression functions that use two seperate keys, it is possible to exploit internal
collisions for a divide-and-conquer key recovery attack [442]. Let the keys be
denoted by K1,K2. The general idea is that an attacker first looks for some
internal collisions, and then searches exhaustively for a key K1 that produces
these collisions. Once K1 is determined, an exhaustive search is used to find K2.
Therefore, the strength of such a MAC comes from its individual keys and not
from their combined length (although the attack is less practical than a simple
exhaustive key search, as it needs a large number of known text-MAC pairs).

Exor Forgery

This type of forgery only works if the value of Hi is computed as a function of
Hi−1 ⊕ Xi, and if no output transformation is present. The easiest variant of
the attack requires only a single known text-MAC pair. Assume that the input
X and its padded version X̄ consist of a single block. Assume that one knows
h(K,X); it follows immediately that h(K, X̄ ‖ (X ⊕ h(K,X))) = h(K,X). This
implies that one can construct a new message with the same MAC value, which
is a forgery.

Side-Channel Attacks

Side-channel attacks are a major threat for all implementations of cryptographic
algorithms. Side-channel attacks on MAC algorithms are similar as for other sym-
metric primitives. For a detailed discussion on side-channel attacks and counter-
measures that can be applied to protect an implementation we refer to Annex A.



5.3 Overview of the common designs 151

5.2.3 Assessment process

The MAC submissions were assessed with reference to the above generic common
MAC attacks and by specific attacks when appropriate. Statistical analysis was
carried out for various input lengths. MACs were submitted to the dependence
test and linear factors test described in Sect. 2.2.4. If the NESSIE submissions
were based on compression functions, these were also submitted to the two tests.
Furthermore the stream cipher tests described in Sect. 2.2.4 were also applied on
the MACs both in output feedback and counter mode. None of the MACs tested
exhibited any anomalous behaviour.

5.3 Overview of the common designs

There are few algorithms that are designed for the specific purpose of message
authentication. In most cases a message authentication code is constructed from
a block cipher or from a hash function as discussed below. A different approach is
the use of families of universal hash functions. We also summarise the procedures
which have been undertaken by several organisations for the standardisation of
message authentication codes.

5.3.1 MACs based on block ciphers

The most common way of basing a MAC on a block cipher is by using the cipher
in CBC-mode (cipher block chaining): the MAC key is used as cipher key in
each step of the iteration, and the message block to be processed in the current
step serves as plaintext input to the cipher, after being added bit by bit to the
ciphertext output from the previous step:

H1 = EK(X1) , Hi = EK(Xi ⊕Hi−1) (2 ≤ i ≤ t) .

Here we assume that the message X (after padding) is divided into blocks
X1, . . . , Xt with length appropriate for the block cipher used. EK denotes en-
cryption with secret key K and Ht forms the output of the MAC algorithm.

The basic CBC-construction is susceptible to the exor forgery attack described
in Sect. 5.2.2, therefore it can only be used in applications where the messages
have a fixed length. Several more secure variations on the scheme exist however.
One example, known as EMAC1, is the use of an additional encryption as output
transformation, where the key for this encryption operation may be derived from
the MAC key. Another example, commonly known as the retail-MAC, replaces
the last encryption by a two-key triple encryption. The security of these construc-
tions can be proven based on the assumption that the underlying block cipher is
pseudo-random [431].

All of these schemes are included in ISO/IEC 9797-1 [256], a standard for
MACs using an (unspecified) block cipher.

1 EMAC stands for Encrypted-MAC. This construction is also known as DMAC
(Double-MAC).
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5.3.2 MACs based on hash functions

A message authentication code can also be obtained from a hash function by
including a secret key in the computation. This is a common approach because
these MACs are usually faster than MACs which are based on a block cipher.
However, simply prepending or appending the key material to the message input
of the hash function does not result in a secure MAC.

HMAC is a nested construction that computes a MAC, for an underlying hash
function h, message X and secret key K, as follows:

HMAC(K,X) = h((K ⊕ opad) ‖h((K ⊕ ipad) ‖X)) .

The keyK is first padded with zero bits to a full block, and opad and ipad are con-
stant values. Bellare et al. [36] have proven the security of this construction under
the following assumptions: the underlying hash function is collision-resistant for
a secret initial value; the compression function keyed by the initial value is a
secure MAC algorithm (for messages of one block); the compression function is
a weak pseudo-random function.

An alternative to HMAC are the MDx-MAC constructions [442] which can
be based on MD5, SHA, RIPEMD or similar hash functions. Here, the under-
lying hash function is converted into a MAC by small modifications, involving
the secret key at the beginning, at the end and in every iteration of the hash
function. This is achieved by key-dependent modification of the initial value and
the additive constants used by the hash function, and by a key-dependent output
transformation. The security of MDx-MAC can be proven based on the assump-
tion that the underlying compression function is pseudo-random.

Both HMAC and MDx-MAC are included in ISO/IEC 9797-2 [257], a stan-
dard for MACs using a dedicated hash function. The NESSIE submission
TTMAC (see Sect. 5.4.1) is also based on a hash function, more specifically
the RIPEMD-160 hash function.

5.3.3 MACs based on universal hashing

A family of hash functions H = {h : D → R} is a finite set of functions with
common domain D and (finite) rangeR. We may also denote this by H : K×D →
R where HK : D → R is a function in the family for each K ∈ K. In the latter
case, one chooses a random function h from the family by choosing K ∈ K
uniformly and letting h = HK .

A universal hash function family is a family of hash functions with some
combinatoric property. For example, a hash function family H = {h : D → R} is
“ε-almost-universal” if for any distinct X,X ′ ∈ D, the probability that h(X) =
h(X ′) is no more than ε, when h ∈ H is chosen at random.

This can be used for message authentication, for example by hashing a mes-
sage with a function drawn from a universal hash function family, encrypting
the output of the hash function, and then producing the encrypted hash output
as MAC value. It can be proven that the security of the resulting MAC scheme
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depends on the security of the cipher used for encrypting the hash output. The
combinatoric property of the universal hash function family is often not difficult
to prove, and the resulting MAC schemes are the fastest MACs around. The
NESSIE submission UMAC (see Sect. 5.4.2) is an example of a MAC based on
universal hashing.

5.3.4 Current standards

Several organisations have taken initiatives for the standardisation of message
authentication codes. ISO/IEC has developed standard 9797 for MACs, with two
separate parts. Part 9797-1 [256] describes MACs based on a block cipher, more
specifically the CBC-MAC for an unspecified block cipher (with some optional
extensions including EMAC and retail-MAC). Part 9797-2 [257] details MACs
based on a dedicated hash function, more specifically the HMAC and MDx-MAC
constructions for an unspecified hash function (and a variant of MDx-MAC for
short input strings only).

ANSI has adopted the DES-based CBC-MAC (including retail-MAC) in its
banking standard X9.19 [13] and HMAC (with unspecified hash function) in
standard X9.71 [17]. NIST has developed FIPS 113 [386] for DES-based CBC-
MAC and FIPS 198 [394] for SHA-1-based HMAC.

5.4 MAC primitives considered during Phase II

The TTMAC and UMAC algorithms were submitted to NESSIE and selected
for study during phase II of the NESSIE project. Furthermore, the schemes
EMAC and HMAC, based on AES and SHA-1 respectively, and RMAC (a variant
of EMAC) were selected for study during NESSIE phase II.

5.4.1 Two-Track-MAC

Two-Track-MAC (also known as TTMAC) is a message authentication code de-
signed by Bert de Boer and Bart Van Rompay [507] and submitted to the NESSIE
project. The design is based on the RIPEMD-160 hash function with modifica-
tions. The algorithm operates on blocks of 512 bits divided into words of 32 bits,
uses a secret key of 160 bits, and generates an output of up to 160 bits.

5.4.1.1 The design

The design of Two-Track-MAC is based on the hash function RIPEMD-160. First,
the message to be authenticated is padded with a 1-bit, and then 0-bits until its
length is 448 mod 512. Then the binary representation of the length of the original
message (mod 264) is appended, so the length of the message becomes a multiple
of 512. Each 512-bit block is split into a set of sixteen 32-bit words, W0, . . . ,W15.
The secret key is a set of five 32-bit words, K0, . . . ,K4. The algorithm works by
iterating a compression function as follows.
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Two sets of five 32-bit wordsX0, . . . , X4 and Y0, . . . , Y4 and a set of 16 message
words are input to two different functions fL and fR that output five 32-bit words
each:

A0, . . . , A4 = fL(X0, . . . , X4,W0, . . . ,W15) ,

B0, . . . , B4 = fR(Y0, . . . , Y4,W0, . . . ,W15) .

These two functions are identical to the ones used in RIPEMD-160 (the details
are given below). Then we compute two new sets of five words each by subtracting
the input words from the results of the previous step:

Ci = Ai −Xi mod 232 , 0 ≤ i ≤ 4 ,

Di = Bi − Yi mod 232 , 0 ≤ i ≤ 4 .

To finish the compression function, the ten words Ci and Di are mixed in two
linear transformations gL and gR:

E0, . . . , E4 = gL(C0, . . . , C4, D0, . . . , D4) ,

F0, . . . , F4 = gR(C0, . . . , C4, D0, . . . , D4) .

Ei and Fi together with the next set of message words, form the inputs to
the next application of the compression function. In the first iteration, the five
secret keywords Ki are input as both Xi and Yi, 0 ≤ i ≤ 4.

In the final iteration, where the last message words are input, fL and fR swap
places. After the subtraction of the input words, instead of executing gL and gR
at the end of this iteration, we compute

Ei = Ci −Di mod 232 , 0 ≤ i ≤ 4 .

The results from these subtractions form the output of Two-Track-MAC. An
optional output transformation is defined for the computation of shorter MAC
values.

The functions fL and fR.
The functions fL and fR, which are known as the left and right trail of

the compression function, are identical to the functions used in the compression
function of RIPEMD-160. They consist of 80 sequential steps which we describe
below. We first define the constants and functions that are used.

Additive constants:

ki = 00000000x, k′i = 50a28be6x, 0 ≤ i ≤ 15,

ki = 5a827999x, k′i = 5c4dd124x, 16 ≤ i ≤ 31,

ki = 6ed9eba1x, k′i = 6d703ef3x, 32 ≤ i ≤ 47,

ki = 8f1bbcdcx, k′i = 7a6d76e9x, 48 ≤ i ≤ 63,

ki = a953fd4ex, k′i = 00000000x, 64 ≤ i ≤ 79.
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Non-linear functions at bit level:

fi(x, y, z) = x⊕ y ⊕ z , 0 ≤ i ≤ 15 ,

fi(x, y, z) = (x& y) | (x̄& z) , 16 ≤ i ≤ 31 ,

fi(x, y, z) = (x | ȳ)⊕ z , 32 ≤ i ≤ 47 ,

fi(x, y, z) = (x& z) | (y& z̄) , 48 ≤ i ≤ 63 ,

fi(x, y, z) = x⊕ (y | z̄) , 64 ≤ i ≤ 79 .

Selection of message word:

r[i] = i, 0 ≤ i ≤ 15

r[i] = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, 16 ≤ i ≤ 31

r[i] = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 32 ≤ i ≤ 47

r[i] = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 48 ≤ i ≤ 63

r[i] = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, 64 ≤ i ≤ 79

r′[i] = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 0 ≤ i ≤ 15

r′[i] = 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, 16 ≤ i ≤ 31

r′[i] = 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 32 ≤ i ≤ 47

r′[i] = 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 48 ≤ i ≤ 63

r′[i] = 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11, 64 ≤ i ≤ 79

Rotation constants:

s[i] = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 0 ≤ i ≤ 15

s[i] = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, 16 ≤ i ≤ 31

s[i] = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 32 ≤ i ≤ 47

s[i] = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 48 ≤ i ≤ 63

s[i] = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, 64 ≤ i ≤ 79

s′[i] = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 0 ≤ i ≤ 15

s′[i] = 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, 16 ≤ i ≤ 31

s′[i] = 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 32 ≤ i ≤ 47

s′[i] = 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 48 ≤ i ≤ 63

s′[i] = 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11, 64 ≤ i ≤ 79

Suppose that the initial values a0, b0, c0, d0, e0 are given.
2 The function fL (left

trail of the compression function) consists of the following steps for 0 ≤ i ≤ 79
(additions are mod 232):

2 These values are X0, . . . , X4 in the description above.
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ai+1 = ei ,

bi+1 = (ai + fi(bi, ci, di) +Wr[i] + ki)
<<s[i] + ei ,

ci+1 = bi ,

di+1 = c<<10i ,

ei+1 = di .

Similarly, when the initial values a0, b0, c0, d0, e0 are given
3, the function fR (right

trail of the compression function) consists of the following steps for 0 ≤ i ≤ 79
(additions are mod 232):

ai+1 = ei ,

bi+1 = (ai + f79−i(bi, ci, di) +Wr′[i] + k′i)
<<s′[i] + ei ,

ci+1 = bi ,

di+1 = c<<10i ,

ei+1 = di .

The functions gL and gR.
The linear transformations gL and gR are used to mix the outputs of the

two trails of the compression function. For inputs C0, . . . , C4 and D0, . . . , D4, the
function gL computes five words E0, . . . , E4 as follows (operations are mod 232):

E0 = (C1 + C4)−D3 ,

E1 = C2 −D4 ,

E2 = C3 −D0 ,

E3 = C4 −D1 ,

E4 = C0 −D2 .

For inputs C0, . . . , C4 and D0, . . . , D4, the function gR computes five words
F0, . . . , F4 as follows (operations are mod 232):

F0 = C3 −D4 ,

F1 = (C4 + C2)−D0 ,

F2 = C0 −D1 ,

F3 = C1 −D2 ,

F4 = C2 −D3 .

3 These values are Y0, . . . , Y4 in the description above.
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5.4.1.2 Security analysis

The security of Two-Track-MAC can be proven based on the assumption that the
underlying compression function is pseudo-random. This function is very similar
to the compression function used by RIPEMD-160 [441], which is a well studied
primitive for which no weaknesses have been reported.

The functions fL and fR consist of 80 step iterations, and use the different
bit operations AND, OR, XOR and bit complementation. The step functions also
include bit rotations and addition mod 232, and iterated 80 times it seems very
hard to trace unknown key bits through it. No weaknesses in Two-Track-MAC
have been reported so far.

It is worth noting that the only place where key material is used is in the initial
value. The 160-bit output of the algorithm is the difference between two 160-bit
quantities, so the knowledge of this difference still gives 160 bits of uncertainty
about which two values produced it. In other words, guessing what these two
values are, and computing backwards to find the input, i.e. the key, is no faster
than guessing on the key directly.

The large size of the internal state (320 bits) in Two-Track-MAC gives the
algorithm a high level of security against attacks based on internal collisions. If
we denote the output length by m (values for m between 32 and 160 bits — in
steps of 32 — are supported), the complexity of generic attacks on this primitive
is as follows:

– About 2159 MAC computations and 160/m known text-MAC pairs are needed
for an exhaustive key search.

– Guessing the MAC value has a success probability of 2−m.
– Internal collision based attacks need about 2160 known text-MAC pairs and

about 2320−m chosen texts.

5.4.2 UMAC

UMAC is a message authentication code designed by Ted Krovetz, John Black,
Shai Halevi, Hugo Krawczyk and Phillip Rogaway [317] and submitted to the
NESSIE project. The design is based on families of universal hash functions (see
Sect. 5.3.3 for a definition) and offers provable security in the sense that there are
provable collision bounds for the compression, so that the security depends on
the AES cipher which is used for the encipherment of a nonce and the derivation
of key material. Compared to conventional MAC algorithms, UMAC offers the
benefits of faster speed (especially for long messages) and provable security at
the cost of greater complexity.

5.4.2.1 The design

The UMAC message authentication code evolved from an earlier version UMAC
(1999). We first describe this first version, next the additions for the new version,
and we also describe some practical specifications and parameter sets. Due to the
complexity of the scheme we give only a general outline, for details we refer to
the algorithm specification in [317].



158 5. Message authentication codes

The previous version of UMAC.
UMAC (1999) computes the MAC by first compressing the message by a fixed

ratio using the NH universal hash function family. A nonce is then concatenated
to the compressed message and the result processed by a PRF (pseudo-random
function) to obtain the authentication tag. HMAC (based on a conventional hash
function) and CBC-MAC (based on a block cipher) were proposed as PRF. In
short we can say that the universal hash function family NH is used as an accel-
erant to HMAC or CBC-MAC.

NH works by dividing the message into blocks of a certain length (except
for the last block which can be shorter). Each block is processed by adding
key material with the same length to it (the same key is used for every block),
and compressing it by multiplying pairs of words and adding the results (e.g.,
starting from a block of 1024 32-bit words one can obtain a compressed value
of 64 bits, which means a compression factor of 512). All compressed blocks are
then concatenated and length information is appended.

The algorithm has some parameters, like the block size and word size, the PRG
(pseudo-random generator) used to compute the needed key material from the
user key (NH needs a key with the same length as the blocks in which the message
is divided), and the PRF used to process the compressed message and nonce.
Furthermore it is possible to use the Toeplitz construction to reduce the chance
of forgery (by applying NH several times with keys that are shifted versions of
each other, and concatenating the results), and/or to use two-level hashing to
reduce the amount of needed key material. There are some other variations that
allow optimisation for certain architectures (e.g., MMX).

Most of the limitations of UMAC (1999) come from the fact that the message
is compressed by a fixed ratio rather than to a fixed length. In the first case the
authentication tag is computed with PRF(hash||nonce), in the second case it
can be computed with hash⊕PRF(nonce), which has some advantages (the use
of the PRF is limited to the minimum, it does not have an input of unbounded
length). NH, the universal hash function family used in UMAC (1999), could also
compress to a fixed output length, but then it would need a key (generated by
the PRG) with length equal to the message (the entire message would be treated
as a single ‘block’ in the description given above).

The submitted version of UMAC.
The new version of UMAC (2000) introduces extra complexity to solve the

problem of compressing the message to a fixed length so the MAC can be com-
puted with hash⊕ PRF(nonce). The PRF part works by enciphering the nonce
with a block cipher. The hash part (also called UHash), which compresses the
message, consists of three different layers:

– Compression: The first layer uses the fast NH hash family to compress the
message by a fixed ratio.

– Hash-to-fixed-length: The second layer uses the RP hash family, which is not
as fast as NH but generates an output of fixed length using a fixed-length key.

– Strengthen-and-fold: The third layer uses the IP hash family, which reduces
the length of its input to a more appropriate size.
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The RP universal hash function family is polynomial-based. A string made
of n words of bitlength w can be viewed as a polynomial of degree n over a
finite field, where each word of the string serves as a coefficient. To compute
the hash, one evaluates the polynomial for a randomly chosen point (the key).
For efficiency reasons, the computations are performed in a prime field, using
the largest prime less then 2w. The function has been tweaked in order to allow
expansion of the domain to arbitrary strings (allowing variations in length, and
dealing with strings outside the prime field). RP stands for ramped polynomial
hashing: small prime fields are used for short messages, and larger prime fields
for longer messages, the reason being that computations in a small prime field
are more efficient, but can only handle messages up to a certain length for a
given collision probability (for polynomial hashing the collision bounds degrade
linearly with the length of the message being hashed, for a given size of the key
set). In fact a hybrid scheme is used, where for long messages a small prime field
is used on the first part of the message. The result is a hash family with arbitrary
length inputs and fixed-length outputs, using a fixed-length key. From a security
point of view it adds little to the collision probability compared to the NH hash
layer of the algorithm.

The layer with the IP universal hash function family reduces the length of its
input because the RP hash layer generates outputs which are quite long compared
to the collision probability which is offered (for all but the longest messages being
authenticated many of the leading bits of the output string of the RP layer will be
zeros). It is based on computing the inner-product over a prime field (multiplying
input words with key words and adding the results). While doing this the collision
probability from the previous layer of the algorithm is maintained.

Specifications.
Many options are available in an implementation of UMAC but two named

parameter sets have been specified: UMAC16 and UMAC32. They are based
on the three-layer hash schemes UHash16 and UHash32 respectively, and use the
AES (Rijndael) block cipher for enciphering the nonce. The PRG which computes
(from the user key) the key material needed in the internal operation of UHash
is also based on the AES, in output-feedback mode.

UHash16 uses 16-bit words, representing them as signed integers. The NH
hash layer operates on blocks of 2Kbytes, which are compressed to 32-bit values
(this corresponds to a compression ratio of 512). The collision probability is
proved to be no more than 2−15. The result is passed to the RP hash layer which
computes an output string of a fixed length of 128 bits. The RP hash family is
a ramped construction using three prime fields with a 32-bit, 64-bit and 128-bit
prime modulus respectively. The message length is restricted to a maximum of
264 bits, and it is proved that this layer adds only little (around 2−19) to the
collision probability. When the message being authenticated is short to begin
with, the RP layer is not needed and it is skipped as an optimisation. The IP
hash layer folds its 128-bit input into a 16-bit output, maintaining the collision
probability of nearly 2−15. The three-layer construction is iterated a number of
times, with independent keys, to increase the length of the authentication tag
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and decrease the chance of MAC forgery. The default number is four times, and
concatenating the 16-bit output values one obtains a 64-bit MAC with forging
probability 2−60.

The main difference in UHash32 is that it uses 32-bit words and iterates
over the three-layer scheme only twice (default). This gives differences in the
implementation (the use of larger prime fields), but the analysis is mainly the
same.

The advantages over the previous UMAC (1999) version are that the use of
the cryptographic primitive (AES) is minimised, that (as a result) it is more
efficient on short messages, and that it offers extra flexibility for the verifier: he
can choose how many of the parallel iterations he wants to perform in the MAC
computation, thereby trading computation time for assurance level.

5.4.2.2 Security analysis

The UMAC message authentication code is based on families of universal hash
functions and offers provable security in the sense that there are provable collision
bounds for the hashing part of the MAC computation, so the security in the end
depends on the cryptographic primitive used for enciphering the nonce. The
primitive stated in the specification is the AES (Rijndael) block cipher, which
has had a lot of analysis during and after the AES process supporting its security
claims. There is the added advantage that the encryption is only performed on
a short nonce.

No flaws have been found in the security proof of UMAC. For the layer using
the NH universal hash function family, a first security proof states that NH is
2−w-almost-universal (this means that the collision probability is no more than
2−w) for strings of equal length, when it operates on words of bitlength w. This
corresponds to the use of NH on one block of fixed length of the message. A
second security proof allows to extend this result to NH working on any pair
of strings, like in the UMAC setting. The reason that the collision probability
after the NH hash layer in the UHash16 scheme is 2−15 rather than 2−16 is that
a signed rather than an unsigned version of NH is used. A variant of the first
security proof shows that the signed version of NH is 2−w+1-almost-universal.

UHash16 and UHash32 have two additional layers using the RP and IP
universal hash function families, and they iterate the three-layer scheme four,
respectively two times. It is proven that the hash family UHash16 is 4-wise
(2−15 + 2−18 + 2−28)-almost-universal, and that the hash family UHash32 is
2-wise (2−31 + 2−33)-almost-universal4.

5.4.3 CBC-constructions: EMAC and RMAC

The DES-based CBC-MAC [386] is an old NISTMAC standard that will probably
be upgraded to AES-based CBC-MAC and the general scheme is also included
in the ISO/IEC standard 9797-1. Therefore AES-based CBC-MAC is considered
as a benchmark for the submissions in this category. The scheme uses the AES

4 Stronger universality properties are also proven for UHash16 and UHash32, see [317].
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(Rijndael) block cipher in a black box model and generates a MAC value of up to
128 bits. We consider EMAC5 [431], a variant of CBC-MAC with an additional
encryption at the end (this is one of the extensions included in ISO/IEC 9797-1).
We also discuss another recently proposed variant called RMAC [392].

5.4.3.1 The design

The computation of EMAC for a secret key K and a message X — divided (after
padding) in 128-bit blocks X1, . . . , Xt — proceeds as follows (here EK denotes
encryption with the 128-bit block cipher AES using key K):

1. Compute H1 = EK1(X1).
2. For i = 2, . . . , t: compute Hi = EK1(Xi ⊕Hi−1).
3. Compute the output transformation: Hout = EK2(Ht). The key K2 may be

derived from K1 by the following procedure: K2 = K1⊕ f0f0 ...f0x.
4. To obtain an m-bit MAC value, select the leftmost m bits of Hout.

RMAC is a randomised variant of this scheme, offering improved resistance
against attacks based on internal collisions. The only difference is in the output
transformation where one encrypts with a key that is obtained by bitwise addition
of K2 and a salt R:

Hout = EK2⊕R(Ht) .

For RMAC, the keys K1 and K2 may be independent or they can be derived
from one master key in a standard way. The salt R is r bits long and should be
padded with 0-bits if it is shorter than K2. Five different parameter sets have
been defined for the sizes m and r.

5.4.3.2 Security analysis

The security of EMAC can be proven based on the assumption that the underly-
ing block cipher is pseudo-random [431], in this case Rijndael which has received
a lot of analysis during and after the AES process supporting its security claims.

It is worth noting that without the additional encryption at the end (or when
K2 would be chosen equal to K1), a simple (adaptive chosen text) existential
forgery would be possible for the CBC-MAC scheme (due to an exor forgery
attack). If K1 and K2 were to be chosen independently, the level of security
against key recovery attacks would be less than suggested by the algorithms
key size (due to a divide-and-conquer attack). An internal collision based forgery
needs about 264 known text-MAC pairs and 1 chosen text when the output length
is 128 bits. More chosen texts are required when the MAC output is truncated,
e.g., when the leftmost 64 bits are chosen, the attack needs about 264 known
pairs and 264 chosen texts. On the other hand this increases the probability of
success for an attack where one tries to guess the MAC value.

The main advantage of the randomised variant RMAC is that it offers im-
proved resistance against attacks that are based on internal collisions. For exam-
ple, when parameters m = 128 and r = 128 are chosen, such an attack requires
about 2128 known pairs and 1 chosen text. On the other hand RMAC needs

5 This construction was previously known as DMAC.
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stronger assumptions for its security proof; for instance, the underlying block
cipher must be secure against related-key attacks. In Appendix A of [392] it is
noted that for RMAC with two independent keys K1 and K2 an exhaustive
search for the keys is expected to require the generation of 22k−1 MACs, where
k is the size of one key. However, as noted in [300], this can be done much
faster for parameters m = 128 and r = 128: under a chosen message attack with
just one known message and one chosen message K2 can be found with about
2k decryption operations, subsequently K1 can be found in roughly the same
time. Document [300] also describes an alternative attack on RMAC (m = 128,
r = 128) requiring 2123 chosen texts (in running time 2124), and a serious attack
on RMAC using three-key Triple-DES as underlying block cipher instead of AES
(in certain cases this attack works with a complexity of about 256 operations and
success probability of 2−16).

5.4.4 HMAC

The SHA-1 based HMAC [394] has been standardised by NIST as FIPS-198 and
the general scheme is also included in the ISO/IEC standard 9797-2. Therefore
it is considered as a benchmark for the submissions in this category. The scheme
uses the SHA-1 hash function in a black box model and generates a MAC value
of up to 160 bits. SHA-1 operates on blocks of 512 bits that are divided in 32-bit
words, computing a 160-bit hash value.

5.4.4.1 The design

The computation of the MAC for a secret key K and a message X proceeds by
the following steps (here h denotes hashing with the hash function SHA-1):

1. Compute a key value K ′ of 512 bits long. Suppose K has bitlength l. If
l = 512 set K ′ = K; if l < 512 obtain K ′ by appending 512 − l zero bits
to K; if l > 512 obtain K ′ by computing the hash h(K) (160 bits long) and
appending 352 zero bits to this hash value.

2. Exor K ′ with the 512-bit constant ipad and append the message X: (K ′ ⊕
ipad) ‖X.

3. Compute the hash of the string resulting from step 2: h((K ′ ⊕ ipad) ‖X).
4. Exor K ′ with the 512-bit constant opad and append the 160-bit result from

step 3: (K ′ ⊕ opad) ‖h((K ′ ⊕ ipad) ‖X).
5. Compute the hash of the string resulting from step 4:
h((K ′ ⊕ opad) ‖h((K ′ ⊕ ipad) ‖X)).

6. To obtain an m-bit MAC value, select the leftmost m bits of the result of
step 5.

The string ipad is defined as the concatenation of 64 times the hexadecimal
value ‘36’, and the string opad is defined as the concatenation of 64 times the
hexadecimal value ‘5c’.
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5.4.4.2 Security analysis

Bellare et al. [36] give theoretical support for HMAC, relating the security of the
MAC scheme to the security of the underlying hash function, in this case SHA-1
which is a well studied primitive for which no weaknesses have been reported.
More specifically, it has been proved that HMAC is secure if the following as-
sumptions hold (here f is the compression function that is iterated by the hash
function for each 512-bit block):

– The hash function h is collision-resistant when the initial value is secret.
– The compression function f keyed by the initial value is a strong MAC algo-

rithm (this means that its output is hard to predict).
– The values f(K ′⊕ ipad) and f(K ′⊕ opad) cannot be distinguished from truly

random values. This means that the compression function f is a ‘weak’ pseudo-
random function (‘weak’ because the opponent has no direct access to K ′).

It may be noted that if the HMAC construction is used with two independent
keys (rather than using K1 = K ′⊕ipad and K2 = K ′⊕opad), the level of security
against key recovery attacks would be less than suggested by the algorithms key
size (due to a divide-and-conquer attack). An internal collision based forgery for
SHA-1-based HMAC needs about 280 known text-MAC pairs and 1 chosen text
when the output length is 160 bits. More chosen texts are required when the MAC
output is truncated, e.g., when the leftmost 80 bits are chosen, the attack needs
about 280 known pairs and 280 chosen texts. On the other hand this increases
the probability of success for an attack where one tries to guess the MAC value.

5.5 Comparison of studied MAC primitives

In this section we compare the security levels of the MAC algorithms studied in
the NESSIE project. No short-cut attacks have been found for any of the algo-
rithms, except RMAC. The estimated complexity for an exhaustive key search
depends on the bitlength k of the secret key: about 2k−1 off-line MAC computa-
tions are required. Likewise, the estimated complexity for an attack guessing the
MAC output depends on the bitlength n of the output: about 2n−1 on-line MAC
verifications are needed for a (non-verifiable) forgery. Note that for UMAC the
(provable) forging probability is only near optimal: 2−60 for an output size of 64
bits. Table 5.1 below compares the possible values of k and n for the different
algorithms6.

The most effective generic attack on MAC algorithms is the birthday forgery
attack (based on internal collisions): for an internal state size of l bits and output
size of n bits, this attack requires about 2l/2 known text-MAC pairs and 2l−n

chosen texts. Table 5.2 below compares this complexity for the different algo-
rithms. The entries in the table are denoted (α, β), where α is the number of
known pairs and β the number of chosen texts that are needed. Maximum values

6 Note that other parameter sets can be chosen for UMAC.
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Table 5.1. Key length k and output length n for MAC primitives.

Algorithm k n
UMAC 128 64
TTMAC 160 ≤ 160
EMAC-AES 128,192,256 ≤ 128
RMAC-AES 128,192,256 ≤ 128
HMAC-SHA-1 ≤ 512 ≤ 160

are chosen for the output size n of the algorithms (this minimises the number of
chosen texts that are needed in the attack).

Table 5.2. Estimated (minimal) complexity of birthday forgery attacks on MACs.

Algorithm birthday forgery
TTMAC (2160, 2160)
EMAC-AES (264, 1)
RMAC-AES (2128, 1)
HMAC-SHA-1 (280, 1)

It can be seen from Table 5.2 that for EMAC-AES and HMAC-SHA-1 the
birthday attack requires respectively 264 or 280 known pairs and (in both cases)
1 chosen text (when the output size n is equal to the internal state size). The
randomised RMAC offers better resistance than EMAC: when both the output
and the salt value are 128 bits long, the attack needs 2128 known pairs and
1 chosen text. TTMAC offers the highest level of security because of its large
internal state size: 2160 known pairs and 2160 chosen texts are needed (when
n = 160). Note that the birthday attack does not apply to the UMAC algorithm.

For RMAC-AES there is an alternative attack as described in [300]. This
attack can be used to find one of the two keys in the system faster than by an
exhaustive search (after which RMAC reduces to a simple CBC-MAC for which
it is well known that simple forgeries can be found). The estimated complexity of
the attack is 2123 chosen texts and 2124 running time (considering RMAC with
output and salt value of 128 bits).
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Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
§5.1 Introduction expanded and reference to Preneel added.
§5.2.1 Formal security model added.
§5.2.2 Divide-and-Conquer attack included.

Exor Forgery attack included.
Side-Channel attacks included.

§5.3 References to MAA removed (Preneel pointed out that it has been with-
drawn from standards).

§5.3.1 Section on block cipher based designs rewritten.
§5.3.3 Section on universal hash based designs included.
§5.4.1 Notations for TTMAC description changed because of several overlaps.
§5.4.3 Name EMAC (aka DMAC) introduced. RMAC included and more security

analysis.
§5.4.4 Security analysis of HMAC expanded.
§5.5 This section replaces the former ’Conclusion’. Contains a comparison of

security levels of studied MACs (with tables).
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6. Asymmetric encryption schemes

6.1 Introduction

Asymmetric encryption, also known as public-key encryption, is a method of
sending messages securely between two people who do not share a common se-
cret. This is the exact opposite of symmetric encryption, where the communicat-
ing parties are assumed to share a common secret key. Examples of symmetric
encryption include block ciphers (see Sect. 2) and stream ciphers (see Sect. 3). It
was developed out of the ideas of Diffie and Hellman [168] and was first properly
realised as the ever popular RSA cryptosystem [452] in 1978.

In the twenty-five years since then, the area has received copious attention
from researchers who have tightened security definitions and requirements, pro-
posed and broken new schemes, and expanded the range of applications.

During the three-year lifespan of the NESSIE project, there have been several
important shifts of focus within this research area. Much effort has been expended
by the research community in the field of provable security and no new primitive
is really taken seriously these days unless its security can in some way be related
to a “hard” problem. This has also led to an increase in research on so called
side-channel attacks: attacks that take advantage of information that may be
available in the real world but is not available to an attacker in a mathematical
model. These security requirements and limitations will be discussed in Sect. 6.2.

Also within the last three years, the International Organisation for Standard-
ization (ISO) has developed a new framework for asymmetric encryption that
attempts to better model the real-world use of public-key cryptography. The new
KEM-DEM framework, discussed in Sect. 6.3, was popular enough that almost all
the primitives selected for further study in phase II of the NESSIE project were
tweaked to fit into this model. Only EPOC-2, discussed in Sect. 6.4.4, remained
completely outside of this framework.

6.2 Security Requirements

6.2.1 Preliminaries

We start with a formal definition of an asymmetric encryption algorithm. In or-
der to fulfil the security requirements of Sect. 6.2.2 we will see that it is necessary

0 Coordinator for this chapter: RHUL — Alex Dent
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for encryption algorithms to be probabilistic. We choose here to represent these
probabilistic algorithms as deterministic algorithms that take some fixed length
random seed as input. This serves to accentuate the problem of adaptively cre-
ating multiple random bit strings, e.g. generating one bit string, testing it for
some property and then discarding it and generating a new random bit string.
However, when there is no danger of confusion, we assume this input is implicit
and whenever an algorithm generates some randomness it actually derives the
required randomness from this seed.

Definition 6.1. An asymmetric encryption system is a triple of deterministic
algorithms (G, E ,D). The first algorithm G is called the key generation algorithm
and need only be run once to set up the system. It takes as input a security
parameter 1λ and a fixed length random seed r, and outputs a key-pair (pk, sk).
The key pk is called the public key and needs to be distributed to all people who
wish to encrypt messages. The key sk is called the secret key or private key1

and should only be known to those people who are permitted to read encrypted
messages.
The second algorithm E is the encryption algorithm. It takes as input a mes-

sage m, the public key pk and a fixed length random seed r, and outputs a cipher-
text C.
The last algorithm D is the decryption algorithm. It takes as input a ciphertext

and the secret key (which may include elements from the public key), and outputs
a message m′ or the error symbol ⊥.

For the system to be useful we require that it is sound, i.e. for any message m,
random seed r and valid key-pair (pk, sk) we require that D(E(m, r, pk), sk) = m.
We also require that some kind of security result holds that limits an attacker’s
power to recover information about a message m or the secret key sk from an
encipherment.

It is impossible for an asymmetric encryption scheme to be perfectly secure;
an attacker that has access to unlimited (time and computational) resources can
always recover a secret key. This is because an attacker with unbounded resources
can just search the (finite) space of possible private keys and check their ability
to decrypt messages. So, in order to prove any meaningful results, we have to
limit the attacker’s computational power and there are two approaches to this
problem.

The first uses the field of complexity theory. We can assume that the attacker
is represented by a (probabilistic) Turing machine that runs in polynomial-time
in the security parameter, and then derive results about its ability to break the
scheme. This is a very elegant theory but is only useful as an asymptotic ap-
proximation. An attacker that runs in polynomial time is not guaranteed to be
practical in real terms and an attacker that doesn’t run in polynomial time is
not guaranteed to be impractical for all useable security parameters. Since the

1 Some standardisation bodies reserve the term “secret key” for a key used within a
symmetric algorithm and insist upon the use of the term “private key” for asymmetric
applications.
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NESSIE call for primitives [396] required that the security level of a candidate
be of a certain specified level we must regretfully put aside this theory and con-
centrate on something more concrete.

Definition 6.2. A (t, ε) solver for a problem is a probabilistic Turing machine
that runs in time bounded above by t and outputs a solution for the problem with
probability at least ε.
A (t, ε, qD) attacker for an asymmetric encryption scheme is a probabilistic

Turing machine A that runs in time bounded above by t, makes at most qD queries
to a decryption oracle and succeeds in breaking the scheme with probability at least
ε.

A further discussion of the access an attacker might have to a decryption
oracle and the definition of “breaking the scheme” can be found in Sect. 6.2.2.

Of course, the success probability ε depends upon the units we use for the
time t — if we measure time in years then we would expect a higher success
probability in 1 unit time than if we measure time in seconds! We decide that
one unit of time is equal to the time taken for one decryption operation.

However there is still a problem with this approach. In order to prove that a
system is as secure as the NESSIE call requires, the submitters had to prove the
absence of a strong attacker. To do this the submitters were allowed to submit
a proof that the existence of a (t, ε, qD) attacker for their scheme implied the
existence of a (t′, ε′) solver for some trusted cryptographic problem. The rela-
tionship between t, t′, ε and ε′ defines the efficiency of the security reduction. A
discussion of those problems which are trusted to be “hard” by the cryptographic
community can be found in Sect. 6.2.3.

6.2.2 The Security Models

So far we have specifically avoided stating what it means for an asymmetric
encryption scheme to be secure. In order to do this we have to define two things:
the conditions an attacker must fulfil for the scheme to be considered broken,
and the access that an attacker has to the system.

There are many different ways in which a cryptosystem might be consid-
ered weak. Whether these weaknesses actually “break” the system, i.e. give an
attacker some useful information, depends upon the application for which the
cryptosystem is being used. We model these various success criteria as games
that an attacker plays against a mythical system that controls the encryption
scheme and measure the attacker’s success as the probability that he wins the
game.

The most obvious, and most naive, way in which an attacker can break an
encryption scheme is if he can, given some ciphertext, recover the associated
message.

Definition 6.3 (One-way (OW)). Consider the following game that an at-
tacker plays against a system, using an asymmetric encryption scheme (G, E ,D)
with security parameter λ.
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1. The system picks a random seed r, runs G(1λ, r) to generate a key-pair
(pk, sk) and passes the value pk to the attacker A.

2. The attacker runs until it is ready to receive a challenge ciphertext.
3. The system picks a random seed r and a message m uniformly at random
from the set of possible messages and calculates the challenge ciphertext C =
E(m, r, pk). The system then passes C back to the attacker.

4. The attacker outputs a guess m′ for the message m.

The attacker wins the above game if m′ = m.
An asymmetric encryption scheme is said to be one-way or OW if the prob-

ability that the attacker wins the above game is small.

This is a fairly weak definition. For example, if an encryption scheme is only
used to encrypt a message from a certain small known subset of possible mes-
sages then it might be enough for an attacker to tell whether a ciphertext is the
encryption of one given message or another. This leads to the stronger definition
of message-indistinguishable encryption schemes [227, 446].

Definition 6.4 (Message-indistinguishable (IND)). Consider the following
game that an attacker plays against a system, using an asymmetric encryption
scheme (G, E ,D) with security parameter λ.
1. The system picks a random seed r, runs G(1λ, r) to generate a key-pair

(pk, sk) and passes the value pk to the attacker A.
2. The attacker generates two distinct messages m0 and m1, and submits them
to the system.

3. The system
a) Chooses a bit σ uniformly at random from {0, 1} and a random seed r.
b) Calculates the challenge ciphertext C = E(mσ, r, pk) and returns this to
the attacker.

4. The attacker outputs a guess σ′ for σ.

The attacker wins the above game if σ′ = σ.
An attacker A has an advantage AdvA of winning the above game where

AdvA = Pr[σ′ = σ]− 1/2 (6.1)

and the scheme is said to have advantage

Adv = max
A

AdvA . (6.2)

An asymmetric encryption scheme is said to be message-indistinguishable or IND
if the scheme’s advantage is small.

Consequently it is easy to see that if a system is message-indistinguishable
then it is certainly one-way; however there are schemes which are thought to be
one-way that are definitely not message-indistinguishable (such as the original
RSA cryptosystem [452]). Of course it is difficult to show that a scheme is one-way
but not message indistinguishable as a proof that a scheme was one-way would
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imply a proof that P 6= NP , which would be a major mathematical achievement.
However we can show that there exists the scope for a scheme that is one-way
but not message indistinguishable. Consider an asymmetric encryption scheme
(G, E ′,D′) constructed from a one-way asymmetric encryption scheme (G, E ,D)
in the following manner:

E ′(m, pk) = b||E(m, pk) where b is the leftmost bit of m,

D′(b||C, sk) =

{
D(C, sk) provided the leftmost bit of D(C, sk) is b ,
⊥ otherwise .

This scheme is one-way (possibly slightly less one-way than the original scheme)
and yet it is easy to distinguish between messages that have different leftmost
bits. Hence the scheme is not message indistinguishable.

Next we will consider the access an attacker has to the system. In its purest
form an attacker might only have access to the challenge ciphertext and the public
key. However it is possible that an attacker might be able to gain decryptions of
certain messages, so we have to define more relaxed attack models.

Definition 6.5 (Attack models). We assume that the attack algorithm A
runs in two stages: pre-challenge and post-challenge. Let the attacker have access
to an oracle O1 up until the challenge is issued, and access to the oracle O2 after
this time.

– The attack is said to be a chosen plaintext attack (CPA) if the oracles are both
trivial, i.e. O1 = O2 and both return the error symbol ⊥ for any input.

– The attack is said to be a chosen ciphertext attack (CCA1) or lunchtime attack
if the oracle O1 decrypts messages (so O1(C) = D(C, sk)) but the oracle O2 is
trivial.

– The attack is said to be an adaptive chosen ciphertext attack (CCA2) if both
oracles O1 and O2 decrypt messages, with the exception that the oracle O2

returns ⊥ if it is queried on the challenge ciphertext.
When the oracles O1 and O2 are not trivial, they are referred to as decryption
oracles.

Again it is easy to see that if a system is secure against an attack in the
CCA2 attack model then it is also resistant to that attack in the CCA1 and CPA
models.

There has been much discussion about the appropriateness of each of the
different types of attack model. It is relatively easy to envision a situation where
it is necessary for an encryption scheme to be resistant to attacks in the CCA1
model – for example, a malicious employee who only attempts to attack a system
after he has been fired and therefore had his decryption privileges revoked. It is
a lot harder to envision a situation where the CCA2 model is appropriate. It is
difficult to see why an attacker with such strong decryption access would not be
able to just decrypt the challenge ciphertext. However this is not the best way to
think of the model. It is better to think of the CCA2 model as proving that the
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only way to break the system is to apply the decryption function to the challenge
ciphertext.

The combination of success criteria and attack model are usually referred to
by their abbreviations. For example, a scheme that is message-indistinguishable
in the adaptive chosen ciphertext model is said to be IND-CCA2. This is the
strongest measure of security and is the de facto standard for an asymmetric
encryption scheme. Formally we will use the notion of an attacker derived in
Sect. 6.2.1. A (t, ε, qD) attacker in the IND-CCA2 model is a probabilistic Turing
machineA that runs in time at most t, makes at most qD queries to the decryption
oracles (i.e. the total number of queries made to the oracles O1 and O2 is at most
qD), and distinguishes messages with advantage at least ε.

We will consider the security of the submitted schemes primarily in the IND-
CCA2 model, i.e. we will consider the resistance to message-distinguishing attacks
in the adaptive chosen ciphertext model. However, we will also consider the se-
curity of some of the submitted schemes in the IND-CPA model, i.e. in a model
where the attacker does not have access to a decryption oracle. Obviously, any
security reduction valid in the IND-CCA2 model is also valid in the IND-CPA
model. Therefore the IND-CPA model is only of interest if it yields a tighter
security proof or a security proof that reduces to a better underlying problem. In
the IND-CPA model we will talk about a (t, ε) attacker: a probabilistic Turing
machine A that runs in time at most t and distinguishes messages with advantage
at least ε.

For a further discussion of security models the reader is referred to [37, 351].

6.2.3 Trusted cryptographic problems

As we have already mentioned, it is impossible to prove the security of an asym-
metric encryption scheme directly. The best that can be done is to relate the
security of a scheme back to some problem that is thought to be hard by the
research community and trusted by developers. In this section we will discuss
the various trusted problems that the security of the submitted primitives can
be reduced to.

The NESSIE primitives use two distinct ‘flavours’ of trusted problems: those
based on the difficulty of solving the discrete logarithm problem and its related
problems, and those based on the difficulty of factoring composite numbers. For
a further discussion of the trusted cryptographic problems used by the NESSIE
primitives see [351].

6.2.3.1 Factoring based problems

All of the schemes based on factoring problems use arithmetic in the equivalence
class Z/nZ where n is some composite number. In all cases the ability to factor
the number (or ‘modulus’) n implies the ability to solve the hard problem. Note
that, for simplicity, we define λ(n) = l.c.m.(p− 1, q − 1) when n = pq.

Definition 6.6. Let n be a composite number.
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– The factoring problem is the problem of finding the component factors of a
composite integer n. In particular, we will concentrate on finding the component
factors of an integer n of the form pdq, where p and q are prime and d ≥ 1.

– An RSA key is a pair (n, e) where n = pq with p and q primes, and 1 < e < n
with g.c.d.(λ(n), e) = 1. The RSA problem is the problem of finding an integer
1 ≤ x ≤ n such that xe = y mod n when given an RSA key (n, e) and a
randomly selected integer 1 ≤ y ≤ n.

The factoring problem has been of interest to mathematicians for centuries
and there are many algorithms that efficiently solve it for specific classes of ‘mod-
ulus’ n. However there are no known efficient algorithms for solving the factoring
problem on a modulus n = pdq for small d (i.e. for d <

√
log p). Again it is quite

easy to see that if the RSA problem is hard for a modulus n then the factoring
problem is hard for n too. The RSA problem was implicitly defined when the
original RSA cryptosystem was proposed and has been widely studied.

Whilst all of the above problems are well established, some of the schemes
studied in phase I reduce to one of the following less well known problems.

Definition 6.7. The following are trusted cryptographic problems:

– Consider a modulus of the form n = p2q where the factorisation is unknown.
The p-subgroup problem is the problem of deciding, given h ∈ (Z/nZ)∗, if there
exists a g ∈ (Z/nZ)∗ such that gp = h.

– For our purposes, the gap-factoring problem is the problem of finding the com-
ponent factors of a composite integer n = p2q when given access to a spe-
cific oracle. The oracle returns the bit b when queried with gbhr for unknown
b ∈ {0, 1} and r ∈ {0, . . . , p− 1}, and fixed public g, h ∈ (Z/nZ)∗ such that
– gp has order p− 1 modulo p2,
– h = hn0 for some h0.

These problems have not been subject to the same level of peer review by the
scientific community as the factoring problem or the RSA problem, however there
is no obvious reason to suspect that the p-subgroup problem or the gap factoring
problem is particularly easier to solve than the RSA or factoring problems.

6.2.3.2 Discrete logarithm based problems

Problems related to the discrete logarithm problem are usually phrased in terms
of a group G = 〈g〉 where g has prime order q. Technically, since all groups
of prime order are isomorphic, the hardness of the problem depends not upon
the group itself but upon the representation of the group. For example, the dis-
crete logarithm problem is thought to be hard in elliptic curve subgroups but is
definitely easy in the group of integers modulo q.

Definition 6.8. Let g be an element of a group, and let g have order q.

– The discrete logarithm problem (DLP) is the problem of finding a when given
(g, ga).

– The computational Diffie-Hellman problem (CDH) is the problem of finding
gab when given (g, ga, gb).



174 6. Asymmetric encryption schemes

– The decisional Diffie-Hellman problem (DDH) is the problem of deciding if
gab = gc when given (g, ga, gb, gc).

– The gap Diffie-Hellman problem (Gap-DH) is the problem of finding gab when
given (g, ga, gb) and an oracle O that correctly solves the decisional Diffie-
Hellman problem.

Obviously if the DDH problem is hard in the group 〈g〉 then so is the CDH
problem and the DLP. All of these problems are well established, except for the
Gap-DH problem, which was only formally introduced in 2001 [418].

In situations where the security of an algorithm can be reduced to the dif-
ficulty of solving the CDH problem on some group it is not uncommon for the
algorithm constructed to solve the CDH problem to output not a single answer to
the problem but a list of some L elements that contains the answer. Obviously, if
one could solve the DDH problem on that group (either by means of a dedicated
algorithm or by the use of some oracle) then selecting the correct answer from the
list would be trivial, but we cannot assume that the DDH problem is tractable
on the group so we are forced to use other means to find the correct answer.

The simplest, and fastest, method of selecting an answer is to pick an element
of the list uniformly at random and output that element as the algorithm’s final
answer. The probability that this technique outputs the correct answer is 1/L
times the probability that the correct answer appears on the list. Since L is
typically of order related to qD, the number of decryption oracle queries, this can
have a significant impact on the efficiency of the reduction (see Sect. 6.2.7).

A more sophisticated approach has been suggested by Shoup [486]. Suppose
that there exists an algorithm that, given an instance of the CDH problem
(g, ga, gb), outputs a (small) list of L elements which contains the solution to
the CDH problem with probability at least ε. Then we may construct an algo-
rithm that will output the correct answer to the CDH problem with probability
at least 1 − (1/2)k for some k > 2. However, this involves running the original
algorithm 2kd1/εe times with randomised inputs.

Formally, if there exists an algorithm that outputs a list of L elements which
contains the solution to the CDH problem with probability at least ε, and this
algorithm runs in time bounded by t, then there exists a (t′, ε′) solver for the
CDH problem with

ε′ ≈ 1− 1

2k
, (6.3)

t′ ≈ 2kd1/εet+ 2kLd1/εeT , (6.4)

where

– k is an integer greater than two,
– and T is the time taken to check an equation of the form

{
h · g−ax1y2 · g−bx2y1 · gx2y2

}x′1y
′
1 =

{
h′ · g−ax′1y′2 · g−bx′2y′1 · gx′2y′2

}x1y1
.

for random x1, y1, x2, y2, x
′
1, y

′
1, x

′
2, y

′
2 and fixed ga and gb.
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6.2.3.3 Solving trusted cryptographic problems

As has been mentioned several times, even the trusted cryptographic prob-
lems in the previous two sections can be solved given enough computing power.
Therefore, if we estimate the different amounts of computing power it would
take to solve these problems then we may gain some measure of the com-
parative difficulty of seemingly unrelated problems. The notation Lq[α, c] =
O(exp((c+o(1))(ln q)α(ln ln q)1−α)) is used for estimating asymptotic complexity.

– Integer factorisation. The fastest known algorithms for factorising large
integers are the Number Field Sieve [331] and the Elliptic Curve Method [335].
The asymptotic time taken by the number field sieve to factor an integer n
is approximately Ln[

1
3 , c], where c depends on the variant of the number field

sieve. The asymptotic time taken by the elliptic curve method to factor an
integer whose smallest factor is p is Lp[

1
2 ,
√
2]. Both of these algorithms are

subexponential in the size of their input.
An improvement of the elliptic curve method exists for n = p2q [430, 179] and
a special algorithm exists for n = prq with large r [97].

– RSA problem The fastest method known for solving the general RSA problem
involves factoring the modulus.

– Discrete logarithm over Fp. The index-calculus method [122, 411, 186] is
the fastest known method of solving the discrete logarithm problem over Fp. It
is closely related to the number field sieve factoring algorithm and has expected
asymptotic running time of Lp[

1
3 , c], which is subexponential in the input size.

– Elliptic curve discrete logarithm. The fastest general method of attack
for solving the elliptic curve discrete logarithm problem are the Pollard ρ and
the Pollard λ methods [436]. For a group with q elements, the Pollard ρ runs
in time

√

πq/2 and the Pollard λ runs in time 2
√
q but can be faster in some

special cases. Both can be efficiently parallelised [505] and have been slightly
improved [212, 522]. No subexponential algorithm has been found for solving
the elliptic curve discrete logarithm problem.
However, there are subexponential attacks for specific elliptic curves: supersin-
gular curves [364, 200, 456] and anomalous curves [470, 461, 492].

NESSIE has concluded that the following key sizes are roughly equivalent.
For a further discussion on this subject, the reader is referred to Sect. 7.2.2.3.

Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

It should be noted that these are estimates for classical computers. If it proves
possible to build a quantum computer then there exists quantum algorithms that
successfully solve both the discrete logarithm problem and the factorisation prob-
lem [485]. None of the asymmetric encryption algorithms submitted to NESSIE
should be considered secure against attacks made by quantum computers.
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6.2.4 The Random Oracle Model

Owing to the complex nature of asymmetric encryption schemes, it is very difficult
to prove results about their security without making some assumptions about the
properties of the components that make up the cipher. A security proof that does
not make any assumptions is called a proof in the standard model.

The most common assumption used to simplify a proof is that a good hash
function will behave exactly like a completely random function. This is the ran-
dom oracle model, and was introduced by Bellare and Rogaway in 1993 [44].
Random functions (or oracles) and good hash functions share many properties,
for example in both cases it is difficult to compute the pre-image of a given output
or to find two elements that have the same image, and so this might be consid-
ered a reasonable modelling assumption. One of the common interpretations of a
proof in the random oracle model used to be that if a scheme had a security proof
in the random oracle model then that scheme was secure unless the particular
hash function used interacted badly with the rest of the cryptosystem. This was
considered unlikely to happen as hash functions are usually composed on the
bit level whilst asymmetric encryption schemes take advantage of higher-level
properties such as group structures.

Doubt, however, was cast on the random oracle model in a paper by Canetti,
Goldreich and Halevi [114]. This paper proved that if there exists a cryptosystem
that is secure in the random oracle model then there exists a cryptosystem that
is secure in the random oracle model but insecure when the random oracle is
replaced with any hash function. Whilst this means that the above interpretation
is, in fact, incorrect, many people still accept it owing to the highly technical and
theoretical nature of the results in [114].

For the purposes of NESSIE, proofs of security that were given in the random
oracle model were accepted but regarded as heuristic.

6.2.5 Other models

There are several other models that have been used to examine cryptographic
algorithms, but all of the NESSIE submissions were provided with proofs of
security in either the standard or random oracle model. The only other model
that could be of interest is the generic group model [395, 486].

The generic group model examines the security of schemes that can be im-
plemented on many different groups, such as ECIES (see Sect. 6.4.2). A proof of
security in the generic group model intends to show that a scheme is secure up
to attacks that take advantage of the specific nature of the group on which the
scheme operates. It models this by only giving the scheme access to a random
encoding of a group element, rather than the group element itself.

Unfortunately the generic group model was shown to have the same weak-
nesses as the random oracle model: if there exists a scheme that is provably secure
in the generic group model then there exists a scheme that is provably secure in
the generic group model but insecure when the random encoding function is re-
placed by any fixed encoding function [161, 194]. Also the generic security proofs
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cannot be provided for the schemes based on factoring problems, as the factoring
problems tend to be defined on specific group encodings (usually Z/nZ). This
means that NESSIE has given less weight to security proofs given in the generic
group model.

6.2.6 Side-channel attacks

Due to the increasing prominence of proofs of security in the field of asymmetric
encryption, there has been an increase in interest in side-channel attacks. Es-
sentially, a side-channel attack is the only method of breaking a provably secure
asymmetric encryption scheme without breaking the underlying problem. For
further information on side-channel attacks, the reader is referred to Sect. A. For
a further discussion of side-channel attacks against the asymmetric encryption
primitives submitted to NESSIE, the reader is referred to [164, 173, 424].

6.2.7 Assessment criteria

The most important criterion in the NESSIE evaluation process is security. The
submitters were encouraged to submit their asymmetric encryption primitives
with a proof that they are secure in the IND-CCA2 model, although this proof
could use the heuristic random oracle model. The security proofs were evaluated
in terms of the hardness of the problem to which the security of the scheme
reduces (see Sect. 6.2.3) and the efficiency of that reduction.

The efficiency of the reduction is the relationship between a (t, ε, qD) attacker
that breaks the cryptosystem and the implied (t′, ε′) solver that would solve the
underlying trusted cryptographic problem. We can then examine the best known
methods for solving the underlying problem and estimate the best advantage ε
that an attacker could be said to have. Normally we will also be able to determine
the minimum size of the security parameter for which the cryptosystem has the
security level specified in the NESSIE call. We classify the efficiency of the security
reductions in the following way:

– the security reduction is tight if t′

ε′ ≈ t
ε ,

– the security reduction is not so tight if t′

ε′ ≈ qD t
ε ,

– the security reduction is loose if t′

ε′ À t
ε .

Usually we assume that qD ¿ 2λ, where λ is the security parameter.
In order for a scheme to be practical we must balance its security against the

performance (speed and size) of the protocol. In order for these calculations to
be fair and accurate we need to make certain comparisons between the various
parameter sizes of the underlying trusted problems. We wish to use parameters
that ensure that each of the problems can be solved with the same amount of
computational power and that this amount of computational power sufficiently
protects the data. A discussion of these issues can be found in [479].

In accordance with the wishes of the NESSIE Project Industry Board, Intel-
lectual Property Right (IPR) issues were also considered.
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Lastly we use vulnerability to side-channel attacks only as a final factor in
determining suitability. This is because an algorithm that is vulnerable to a side-
channel attack can be protected by a careful implementation, indeed this is the
most common solution according to the PIB. The attitude of the PIB to side-
channel attacks is typified by comments such as

Only if it can be shown that the side channel attack applies to a primitive,
regardless of the implementation (i.e. there is no known defence, or the
primitive has an inherent weakness when confronted with side channel
attacks), should it be taken into account as a selection criteria.

– Pieter Kasselman, Baltimore Technology

6.3 KEM-DEM cryptosystems

6.3.1 Hybrid encryption

In comparison with symmetric encryption algorithms, asymmetric encryption
schemes are often slow and tend to have smaller message spaces. Consequently,
in practice, asymmetric encryption schemes are often only used to encrypt a
randomly generated symmetric key that is then used to encrypt a longer message.
Asymmetric encryption schemes that use this technique are known as hybrid
encryption schemes. The KEM-DEM model is a formalisation of this idea. It was
introduced in a later version of [142], which also included the security analysis of
ACE-KEM described in Sect. 6.4.1, and in the draft ISO proposal [489].

A KEM-DEM cryptosystem is composed of two algorithms: a key encapsu-
lation mechanism (KEM) and a data encapsulation mechanism (DEM). A key
encapsulation mechanism is a scheme that, given a public-key, derives a random
key and provides a method of encrypting (encapsulating) and decrypting (de-
capsulating) that random key. This typically uses asymmetric techniques. The
data encapsulation mechanism uses that random key to encrypt a message. This
typically uses symmetric techniques. Formally,

Definition 6.9. A key encapsulation mechanism (KEM) is a triple of determin-
istic algorithms (G,KEM .Encrypt ,KEM .Decrypt). As before, G is a key gener-
ation algorithm that takes a security parameter 1λ and a random seed as input
and produces a key-pair (pk, sk). The encapsulation algorithm, KEM .Encrypt,
takes the public-key pk and a random seed as input and outputs a pair (K,ψ).
The decapsulation algorithm, KEM .Decrypt, takes as input an encapsulation ψ
and the secret-key sk, and outputs a key value K ′ or the error symbol ⊥.

As before we require that the KEM is sound, i.e. for any valid key-pair (pk, sk)
the decapsulation of an encapsulated key is the key itself or in other words, if
KEM .Encrypt(pk, r) = (K,ψ) then KEM .Decrypt(ψ, sk) = K. We will also need
some kind of security result that limits an attacker’s ability to derive information
about the key K from the public-key pk and the encapsulation ψ. Notice that
the KEM encapsulation algorithm does only take as input a random seed and
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the public-key pk, which is often considered to be a system parameter, and never
has access to the message.

Again, although we define both the key generation algorithm and the encap-
sulation algorithm as deterministic, it is often easier to think of them as prob-
abilistic algorithms. So, when the context is sufficiently clear, we will implicitly
assume the presence of a random input and that any randomness required by an
algorithm is actually derived from the random input provided.

Definition 6.10. A data encapsulation mechanism (DEM) is a pair of deter-
ministic algorithms (DEM .Encrypt ,DEM .Decrypt).2 The encryption algorithm
DEM .Encrypt takes as input a message m and a key K and computes a cipher-
text χ. The decryption algorithm DEM .Decrypt takes as input a ciphertext χ and
a key K and outputs a message m′ or the error symbol ⊥.

The DEM must also be sound, i.e. for all valid keys K and messages m
we have that DEM .Decrypt(DEM .Encrypt(m,K),K) = m, and it must satisfy
some security condition. It should also be noted here that the DEM does not have
access to the public key used by the KEM, only the symmetric key produced by
the KEM and the message itself.

Definition 6.11. A KEM-DEM based cryptosystem is a hybrid asymmetric en-
cryption scheme composed of a KEM (G, KEM .Encrypt, KEM .Decrypt) and a
DEM (DEM .Encrypt, DEM .Decrypt) where the output key-space of the KEM
is the same as the key-space of the DEM. To encrypt a message m the hybrid
scheme runs as follows:

1. Generate a random seed r.
2. Run KEM .Encrypt(pk, r) to produce an encapsulation pair (K,ψ).
3. Run DEM .Encrypt(m,K) to produce a ciphertext χ.
4. Output C = (ψ, χ).

Hence the decryption algorithm for a ciphertext C is

1. Parse C as appropriately sized ψ and χ.
2. Run KEM .Decrypt(ψ, sk) to obtain a key K ′ or ⊥.
3. Run DEM .Decrypt(χ,K ′) to obtain a message m′ or ⊥.
4. Output m′ or ⊥.
Key generation for the hybrid scheme is provided by G.

At this point it might be helpful to consider an elementary example of a KEM-
DEM based cryptosystem. The first asymmetric encryption scheme that can be
modelled as a KEM-DEM cryptosystem is the ElGamal scheme [185]. This uses

2 Technically there is no reason why the DEM should be composed of two probabilistic
algorithms. However, due to the computationally problems associated with generating
random or pseudo-random bits, we do not recommend that probabilistic algorithms
are used.
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a KEM based on the Diffie-Hellman key agreement protocol and a DEM based
on modular multiplication.3

This provides a good example of the differences between a key encapsulation
mechanism and a key agreement or key exchange protocol. Although a key agree-
ment protocol can be used as the basis for a KEM, the security requirements for
a KEM are different from those of a key agreement protocol. A KEM is only re-
quired to produce an encapsulation of a key that will be secure when used once.
The ElGamal scheme is a good example: the scheme is provably as secure as the
decisional Diffie-Hellman problem (see Sect. 6.2.3) when a new key is generated
for each encryption, but it is totally insecure when keys are reused.

6.3.2 KEM Security

One of the aims of the KEM-DEM model was to provide a security analysis based
on the component parts. The security of the KEM is based on the inability of an
attacker to distinguish a proper encapsulation pair from a random pair.

Definition 6.12. Consider the following game an attacker A plays against a sys-
tem using a KEM (G,KEM .Encrypt ,KEM .Decrypt) with a security parameter
λ.

1. The system runs G(1λ, r) (for some suitably random seed r) to generate a
random key-pair (pk, sk) and passes pk to the attacker.

2. The attacker runs until it requests a challenge encapsulation.
3. The system generates the challenge in the following way:
a) The system generates a suitably random seed r.
b) Next, it runs KEM .Encrypt(pk, r) to generate a pair (K0, ψ).
c) The system then generates a key K1 uniformly at random from the entire
output space of the KEM.

d) Lastly, it picks a bit σ uniformly at random from {0, 1} and returns
(Kσ, ψ) to the attacker.

4. The attacker outputs a guess σ′ for σ.

The attacker wins the above game if σ′ = σ.
The advantage of an attacker A is

AdvA = Pr[σ′ = σ]− 1/2 (6.5)

and the advantage of the KEM is said to be

AdvKEM = max
A

AdvA . (6.6)

A KEM is said to be indistinguishable or IND if its advantage is small.
A (t, ε) attacker for a KEM in the IND-CPA model is a probabilistic Turing

machine A that runs in time bounded above by t and has advantage at least ε. A
3 Technically, ElGamal does not fit into the formal KEM-DEM model as the DEM
requires access to the public key in order to encrypt the message. However the struc-
tures are sufficiently similar to be enlightening.
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(t, ε, qD) attacker for a KEM in the IND-CCA2 model is a probabilistic Turing
machine A that runs in time bounded above by t, makes at most qD decryption
queries and has advantage at least ε.

Most key encapsulation mechanisms are composed of some kind of security
mechanism which is highly algebraic and some kind of key derivation function
(KDF). The purpose of the key derivation function is more than just formatting: it
takes some raw key or seed produced by the security mechanism and produces an
appropriately sized bit string that has been stripped of all its algebraic properties.
This usually involves some kind of hash function and is often modelled as a
random oracle. A security mechanism is defined as follows.

Definition 6.13. A security mechanism is a pair (Mech.Encrypt,Mech.Decrypt)
of algorithms along with some key generation algorithm G. The encryption func-
tion Mech.Encrypt takes as input a random seed r and the public-key pk, and
outputs a pair (Kraw, ψ). The decryption function Mech.Decrypt inverts this op-
eration by returning Kraw when given ψ and the secret key sk.

This ‘pared down’ version of the KEM allows us to show that, in the random
oracle model at least, key encapsulation mechanisms are fairly abundant. The
following is shown in [160].

Theorem 6.1. If (Mech.Encrypt, Mech.Decrypt) is a security mechanism that
is OW-CCA2 and KDF is a key derivation function, then we may define a KEM
(G,KEM .Encrypt ,KEM .Decrypt) in the following manner. Key generation is
provided by the key generation algorithm of the security mechanism. We define
the encapsulation function KEM .Encrypt(pk, r) as follows:

1. Compute Mech.Encrypt(pk, r) = (Kraw, ψ).
2. Compute K = KDF (Kraw).
3. Output (K,ψ).

The corresponding decryption function KEM .Decrypt(ψ, sk) can then be defined
as follows:

1. Compute Mech.Decrypt(ψ, sk) = Kraw.
2. Compute K = KDF (Kraw).
3. Output K.

If the security mechanism is OW-CCA2 (in the obvious sense, i.e. that an attacker
is unable to recover Kraw from ψ) then, in the random oracle model, the KEM is
IND-CCA2.

As will be seen, both the RSA protocol and the Diffie-Hellman key agreement
protocol make good security mechanisms and this construction will be used in
RSA-KEM (see Sect. 6.4.6) and ECIES-KEM (see Sect. 6.4.3). Further generic
constructions for KEMs from low-level primitives can be found in [162].

There is also a further distinction that one can make with regard to key en-
capsulation mechanisms. Of the KEMs presented there seem to be two separate
flavours: authenticated key encapsulation mechanisms and unauthenticated key
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encapsulation mechanisms. An authenticated KEM is a KEM where a decapsu-
lated key is only released if the encapsulation satisfies some kind of extra criteria
that gives the user some assurance that the encapsulation was properly con-
structed and not just some kind of guess. A good example of this is the difference
between ECIES-KEM (see Sect. 6.4.3) and ACE-KEM (see Sect. 6.4.1). ACE-
KEM uses a method similar to ECIES-KEM for the actual key encapsulation but
adds extra elements to authenticate the fact that a key was encapsulated prop-
erly. The difference is typified by the fact that an unauthenticated KEM will
generally decapsulate any encapsulated key whilst an authenticated KEM will
reject most randomly formed encapsulation. Although authenticated KEMs usu-
ally have better security proofs, i.e. security proofs that work in stronger models
or reduce more efficiently to weaker assumptions, some concern has been raised
as to whether it is necessary to authenticate a key that will be used to decrypt a
message that will, most likely, itself be authenticated [160].

6.3.3 Key derivation functions

Almost all of the asymmetric encryption primitives use some kind of key deriva-
tion function (KDF) or mask generating function (MGF). Whilst the uses of
key derivation functions and mask generating functions are slightly different, the
properties that each of the functions must have and the methods used to construct
these functions seem to be the same. Hence we will only refer to key derivation
functions in this section with the understanding that all of the following discus-
sion is relevant to mask generating functions as well.

Key derivation functions are similar to hash functions in that they map bit
strings of any length to fixed length bit strings in an almost random way. However,
unlike hash functions, which map a bit string to a bit string of a fixed length
determined by the hash function, KDFs and MGFs are families of functions that
map a bit string onto a bit string of a fixed length which may depend upon the
security parameter or the public-key. KDFs are usually based on hash functions
(see Chapter 4) and are often modelled as random oracles (see Sect. 6.2.4) for
simplicity.

Whether we regard KDFs (and MGFs) as distinct cryptographic entities or
modes of operation of a hash function, they are still outside the initial scope of
NESSIE and so have not in themselves received a high level of scrutiny from the
NESSIE partners.

With the exception of ACE-KEM (see Sect. 6.4.1), each of the primitives
that used a KDF (or MGF) modelled it or them as a random oracle. Hence for
the security proof to be valid it is necessary for each of the functions to act in
a manner that has no obvious consistencies and are independent of each other
and of any hash functions used. For ACE-KEM the KDF is required to have an
output that is indistinguishable from random even when some of the leftmost
bits of the input are known.

All of the key derivation functions submitted to NESSIE use one of two tech-
niques to construct a KDF KDF (·) from a hash function Hash(·). Suppose
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Hash(·) is a hash function with output size HashLen and that we wish to eval-
uate KDF (·) on an input x and get an output of length KDFLen(λ, pk). Set

BlockNum(λ, pk) :=
⌈

KDFLen(λ,pk)
HashLen

⌉

.

The first technique, known as KDF1 [489] or MGF1 [455], is to use the leftmost
KDFLen(λ, pk) bits of the string

Hash(x||032) || . . . ||Hash(x||(BlockNum− 1)32) ,

where i32 is the 32-bit representation of the integer i. The second technique,
known as KDF2 [489], is to use the leftmost KDFLen(λ, pk) bits of the string

Hash(x||132) || . . . ||Hash(x||BlockNum32) ,

where i32 is the 32-bit representation of the integer i. Notice that both of these
techniques fail if the output size of the KDF is required to be too large, i.e.
KDFLen(λ, pk) > 232 ·HashLen.

These techniques have the advantage that the output of the KDF is random
providing the underlying hash function is random (and unavailable to the at-
tacker). However these functions have been criticised by Shoup [489] because of
the nature of the way some hash functions work. Whilst this criticism appears
valid, it does not appear to be a critical flaw in the design.

Another problem with modelling both hash functions and key derivation func-
tions as random oracles is that the outputs of each of these functions need to be
independent of each other. Obviously if the KDF is either KDF1 or KDF2 then
the output will be correlated to the output of the hash function Hash(·). The
simplest solution would be for each primitive to use a different hash function,
however this is often impractical. Another good solution is to assign each com-
ponent that uses the hash function, including the hash function itself, a unique
fixed length identifier id and prefix all inputs to the hash function with this value.
In this case, the outputs of the hash function and the key derivation functions
KDF1 and KDF2 will be random and uncorrelated.

6.3.4 DEM Security

It might be reasoned from some of the discussion in this chapter that the security
of the KEM is in some way more important than the security of the DEM. This
is, of course, not true. As we shall see in Sect. 6.3.5, the security of the hybrid
scheme depends in equal measure on the security of the KEM and the DEM.

We have seen that the key produced by a KEM is very similar to a random
key, hence it makes sense to examine the security of the DEM under the action of
a random key. Furthermore, since it makes no sense to query a DEM decryption
oracle before a challenge key has been produced, we will have to slightly tweak
the attack models for the DEM.

Definition 6.14. Consider the following game an attacker plays against a sys-
tem, using a DEM (DEM .Encrypt ,DEM .Decrypt) with a security parameter λ.
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1. The system generates a key K for the DEM uniformly at random from the
key-space of the DEM (which is defined in terms of the security parameter
λ).

2. The attacker generates two distinct messages m0 and m1 of the same length,
and submits these to the system.

3. The system
a) Chooses a bit σ uniformly at random from {0, 1}.
b) Calculates the challenge ciphertext χ = DEM .Encrypt(mσ,K) and re-
turns this to the attacker.

4. The attacker outputs a guess σ′ for σ.

The attacker wins the game if σ′ = σ.
An attacker A has an advantage AdvA of winning the above game where

AdvA = Pr[σ′ = σ]− 1/2 (6.7)

and the DEM is said to have advantage

AdvDEM = max
A

AdvA . (6.8)

A DEM is said to be message-indistinguishable or IND if its advantage is small.

The attack model for a DEM also follows the standard ideas.

Definition 6.15. We allow the attacker A access to an oracle O after the chal-
lenge has been issued. The attack is said to be passive (PAS) if the oracle always
returns the error symbol ⊥. The attack is said to be a chosen ciphertext at-
tack (CCA) if the oracle decrypts messages under the challenge key K (hence
O(χ) = DEM .Decrypt(χ,K)) with the exception that the oracle returns ⊥ if it
is queried with the challenge ciphertext.

Obviously if a scheme is secure against an attack in the chosen ciphertext
model then it is secure in the passive model, and it is easier to demonstrate the
security of a scheme in the passive model than in the chosen ciphertext model.
A result of [142] shows that it is possible to combine a DEM that is secure in
the passive model with a message authentication code (MAC) (see Chapter 5) to
give a DEM that is secure in the chosen ciphertext model.

6.3.5 Hybrid Security

Of course the aim of this entire section is to provide some insight into the security
of a hybrid KEM-DEM based cryptosystem. So, whilst it might be very inter-
esting to talk about the security of the KEM and the DEM in abstract models,
it is useless unless we can combine these results to prove something about the
security of the hybrid scheme. In particular we wish to show that a KEM-DEM
based cryptosystem achieves the minimum security requirements specified by the
NESSIE call, i.e. that the scheme is IND-CCA2 secure.
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A security proof for the KEM-DEM construction was given in [142]. It basi-
cally shows that a KEM-DEM scheme composed of a secure DEM and a secure
KEM will itself be secure. This shows that the method of construction is in
some sense a “black-box” construction: any secure KEM and secure DEM can be
chosen to give a secure scheme without reference to each other.

Theorem 6.2. Suppose (G, E ,D) is a KEM-DEM scheme composed of a KEM
and a DEM in the usual manner. If the KEM is IND-CCA2 secure and the DEM
is IND-CCA secure then the overall hybrid scheme will be IND-CCA2 secure in
the usual sense.

There has been some work [231] that shows that if the public key pk used
by the KEM is considered a system parameter available to all parties then the
above theorem no longer holds. A separate security proof for this case was also
proposed in that paper but, unfortunately, this security proof no longer allows a
black-box construction.

Theorem 6.3. Suppose (G, E ,D) is a KEM-DEM scheme composed of a KEM
and a DEM in the usual manner. Suppose further that the DEM takes the security
parameter as an extra input. If the KEM is IND-CCA2 secure and the DEM is
IND-CCA secure when the attacker has access to a decryption oracle for
the KEM, then the overall hybrid scheme is IND-CCA2 secure in the standard
sense.

In practice it seems very unlikely that a DEM would consider using the
public-key in any way that would compromise the security of the system. How-
ever it should be noted that the ElGamal scheme and the EPOC-2 scheme (see
Sect. 6.4.4) both fit into this formal model of a KEM-DEM based scheme, as
both contain modular arithmetic operations in the DEM phase.

One generic problem associated with KEM-DEM constructions is message
expansion. Since only the ciphertext produced by the DEM depends on the mes-
sage, we necessarily have that the complete ciphertext is bigger than the plaintext
by at least a number of bits equal to the size of the encapsulation produced by
the KEM. In practice the amount of message expansion may be larger even than
this as the DEM ciphertext may contain bits that do not directly relate to the en-
cryption of the message but are instead some kind of assurance of the integrity of
the message (such as a MAC). Therefore in situations where message expansion
is a critical factor, it might be best to avoid using a hybrid construction.

6.3.6 Assessment criteria

The assessment process for KEM-DEM based cryptosystems was roughly the
same as for general asymmetric encryption schemes (see Sect. 6.2.7). The most
important criterion is security. However, since this section of the NESSIE project
is concerned with asymmetric techniques, we have concentrated our resources
on examining the security of the key encapsulation mechanisms. We therefore
assume the existence of a DEM that is equally secure for each KEM even in the
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presence of a decryption oracle for that KEM. This greatly simplifies matters as
the security of the KEM can be examined independently of the DEM. Again,
each of the submitted primitives came with a proof of security and these proofs
were evaluated in terms of the efficiency of their reductions and the hardness of
the underlying trusted problems.

Next, performance was considered, on platforms of equal security, and lastly
side-channel attacks were considered only if they could be applied to multiple
platforms. Intellectual Property Rights (IPR) were also considered.

6.4 Asymmetric encryption primitives considered during
Phase II

The following algorithms were selected for study during phase II of the
NESSIE project:
– ACE-KEM,
– ECIES,
– EPOC-2,
– PSEC-KEM,

and, because they are under discussion in ISO [489], the following algorithms were
selected for study during NESSIE phase II as de facto standards for asymmetric
encryption algorithms:

– ECIES-KEM,
– RSA-KEM.

We deal with the security considerations for each algorithm in turn. Note that the
algorithms given here are not complete specifications but rather the mathematical
basis for each algorithm. In particular we assume that variables are stored in
binary form even if they are integers, elliptic curve points, etc. We also assume
that all hash functions, mask generating functions, key derivation functions and
symmetric encryption schemes take inputs and produce outputs of a “correct”
length for the asymmetric scheme. References are given to complete specifications
which may be found on the NESSIE website.

6.4.1 ACE-KEM

The ACE-KEM cryptosystem is based on the work of Cramer and Shoup [142]
and is purposely designed to be secure without needing the heuristic random
oracle model. It has been submitted to NESSIE by IBM. The scheme consists
loosely of the following algorithms. A complete specification is given in [489].

6.4.1.1 The design

Key Generation. ACE-KEM is described on an abstract group and so can
be realised either as an elliptic curve scheme or as a scheme working in the
multiplicative group of integers for some modulus. We will represent the group
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as an additive group where group elements are represented as capital letters (as in
an elliptic curve group). We assume that the group is a cyclic group generated by
some element P of order p and that p has length equal to the security parameter
λ. The key generation algorithm is a probabilistic algorithm that takes the group
parameters (P, p, λ) as input. It runs as follows.

1. Generate random and independent integers w, x, y, z ∈ {0, . . . , p− 1}.
2. Set W := wP , X := xP , Y := yP and Z := zP .
3. Set pk := (P, p,W,X, Y, Z, λ) and sk := (w, x, y, z, pk).
4. Output the key-pair (pk, sk).

Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes the public-key pk as input. It uses a public and pre-agreed
hash function Hash(·) and key derivation function KDF (·). It runs as follows.

1. Generate a random integer r ∈ {0, . . . , p− 1}.
2. Set C1 := rP .
3. Set C2 := rW .
4. Set Q := rZ.
5. Set α := Hash(C1||C2).
6. Set C3 := rX + αrY .
7. Set C := (C1, C2, C3).
8. Set K := KDF (C1||Q).
9. Output the encapsulated key-pair (K,C).

The ACE-KEM encapsulation algorithm is also shown pictorially in Fig. 6.1.

Fig. 6.1: The ACE-KEM encapsulation algorithm.
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Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes a key encapsulation C and the secret-key sk as input. It also
uses the pre-agreed hash function Hash(·) and key derivation function KDF (·).
It runs as follows.

1. Parse the encapsulated key C as (C1, C2, C3).
2. Set α := Hash(C1||C2).
3. Set t := x+ yα.
4. Check that C2 = wC1. If not, output Invalid Ciphertext and halt.
5. Check that C3 = tC1. If not, output Invalid Ciphertext and halt.
6. Set Q := zC1.
7. Set K := KDF (C1||Q).
8. Output K.

6.4.1.2 Security analysis

The following is a summary of the security analysis of ACE-KEM; for more details
see [119, 160].

The main advantage of ACE-KEM is that the security of the scheme can be
proven without the use of the heuristic random oracle model (see Sect. 6.2.4).
This combines nicely with the security proof for the generic hybrid construction
discussed in Sect. 6.3.5 to form a hybrid scheme that is provably secure without
the need for random oracles.

The security proof for ACE-KEM [142] reduces the problem of breaking ACE-
KEM in the IND-CCA2 sense to the problem of solving the decisional Diffie-
Hellman problem in the group generated by P . As we do not model the hash
function or the key derivation function as random oracles we must formally define
their security conditions.

Definition 6.16. A hash function Hash(·) is 2nd pre-image resistant if, given
a value x, it is hard to find a value y 6= x such that Hash(x) = Hash(y). We
define a (t, ε) attacker for a hash function to be a probabilistic Turing machine
that runs in time bounded above by t and, given a randomly generated x, finds a
second pre-image with probability at least ε.

Definition 6.17. A key derivation function KDF (·) is indistinguishable if,
given x, it is computationally infeasible to distinguish between KDF (x||y) and a
random generated bit string of the same length when y is unknown. We define a
(t, ε) attacker for a key derivation function to be a probabilistic Turing machine
that runs in time bounded above by t and solves the above problem with probability
at least 1/2 + ε.

If there exists a (t, ε, qD) attacker for ACE-KEM in the IND-CCA2 sense then
there exists a (t1, ε1) solver for the decisional Diffie-Hellman problem on the group
generated by P , a (t2, ε2) attacker for the hash function Hash(·) and a (t3, ε3)
attacker for the key derivation function KDF (·) with

ε ≈ ε1 + ε2 + ε3 +
qD
p
, (6.9)

t ≈ ti for i ∈ {1, 2, 3} . (6.10)
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Whilst the reduction to the decisional Diffie-Hellman (DDH) problem is tight,
the assumption that the DDH problem is hard is quite a strong one. For better
comparison to existing schemes the submitters have also shown that ACE-KEM
is at least as secure as ECIES-KEM (see Sect. 6.4.3). Formally, if there exists a
(t, ε, qD) attacker for ACE-KEM then there exists a (t, ε, qD) attacker for ECIES-
KEM. This serves to show that, in the random oracle model, the security of
ACE-KEM in the IND-CCA2 sense tightly reduces to the problem of solving the
gap Diffie-Hellman problem on the group generated by P .

The relationship between ACE-KEM and ECIES-KEM also means that in
the IND-CPA model, and with the help of the random oracle model, the security
of ACE-KEM can be reduced to the problem of breaking the computational
Diffie-Hellman (CDH) problem in the group 〈P 〉.4 Formally, if there exists a
(t, ε) attacker for ACE-KEM then there exists an algorithm running in time t′

that outputs a list of L elements and contains a solution to the CDH problem
with probability at least ε′ with

ε′ ≈ ε , (6.11)

t′ ≈ t , (6.12)

L ≤ qK , (6.13)

where the attacker makes at most qK queries of the random oracle simulating the
key derivation function. Of course, we may now use the techniques of Sect. 6.2.3.2
to construct a (t′′, ε′′) solver for the CDH problem with

ε′′ ≈ 1− 1

2k
, (6.14)

t′′ ≈ 2kd1/ε′et′ + 2kLd1/ε′eT , (6.15)

where T is the time taken to compute a group element of the form

x−11 y−11

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
Recently a new version of the ACE-KEM scheme has been proposed by Lucks

[343]. This new scheme works in the multiplicative group of integers modulo n,
where n = PQ, P = 2p + 1, Q = 2q + 1 and P,Q, p, q are prime numbers. This
scheme has the disadvantage of working in a very specific, multiplicative group
(and so will probably have longer keys than the elliptic curve version) but has the
advantage of a stronger security proof. The Lucks scheme is secure in the standard
model providing the factoring problem is secure and the DDH problem is secure
in the group of quadratic residues modulo n. This is worse than ACE-KEM as
ACE-KEM does not require the factoring problem to be difficult. However, in
the random oracle model, the Lucks scheme reduces to solving the CDH problem

4 In the IND-CCA2 attack model, and using the random oracle model, the security of
ACE-KEM can be directly reduced to the problem of breaking the CDH problem in
the group generated by P [487]. However this reduction is far from tight.
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in a very efficient manner. This is a significant improvement over ACE-KEM in
theoretical security.

Along with most of the other asymmetric encryption schemes, ACE-KEM is
vulnerable to a fault attack that recovers the secret key [164]. It also appears to
be vulnerable to power analysis during the scalar multiplications of the elliptic
curve faults. This is a common problem with schemes based on elliptic curves,
for more information see Sect. A.1.2.3.

6.4.2 ECIES

ECIES is a hybrid encryption scheme submitted to NESSIE by Certicom Corp.
It loosely consists of the following algorithms. A complete specification can be
found in [115].

6.4.2.1 The design

Key Generation. Since ECIES is an elliptic curve based cryptosystem, it is
necessary to generate a suitably secure elliptic curve E and a point P ∈ E that
has prime order p. We will assume that the length of p is equal to the security
parameter λ. The key generation algorithm for ECIES is a probabilistic algorithm
that takes (E,P, p, λ) as input. It runs as follows. (For notational purposes, let
O be the ‘point at infinity’ – the identity element of an elliptic curve group).

1. Randomly generate an integer s ∈ {1, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P, p,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes as input a message m and the public-key pk. The scheme also relies on
a set of public and pre-agreed functions that are available to all parties. These in-
clude a key derivation functionKDF (·), a message authentication code algorithm
MAC(·, ·) and a symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt). It
runs as follows. (For notational purposes, let O be the ‘point at infinity’ – the
identity element of an elliptic curve group).

1. Generate a random integer r ∈ {1, . . . , p− 1}.
2. Set C1 := rP .
3. Set Q := rW .
4. Check that Q 6= O. If so, output Invalid Encryption and halt.
5. Set x to be the x-coordinate of Q.
6. Set K := KDF (x).
7. Parse K as EK and MK, where EK is a suitably sized key for the sym-

metric encryption scheme and MK is a suitably sized key for the message
authentication scheme. 5

5 Note that if the lengths of EK and MK are not predetermined, then the attack of
Shoup [489, 15.6.4] applies.
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8. Encrypt the message m using the symmetric encryption scheme under the
key EK, i.e. C2 := Sym.Encrypt(m,EK).

9. Generate a message authentication code (MAC) for the ciphertext C2 us-
ing the message authentication scheme under the key MK, i.e. C3 :=
MAC(C2,MK).

10. Output the ciphertext C := (C1, C2, C3).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It also uses the same pre-
agreed key derivation function KDF (·), message authentication code algorithm
MAC(·, ·) and symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt) as the
encryption algorithm. It runs as follows.

1. Parse C as (C1, C2, C3).
2. Set Q := sC1.
3. Check that Q 6= O. If so, output Invalid Ciphertext and halt.
4. Set x to be the x-coordinate of Q.
5. Set K := KDF (x).
6. Parse K as EK and MK, where EK is a suitably sized key for the sym-

metric encryption scheme and MK is a suitably sized key for the message
authentication scheme.

7. Check that C3 is a valid message authentication code for C2 under the key
MK, i.e. that C3 = MAC(C2,MK). If not, output Invalid Ciphertext

and halt.
8. Decrypt the ciphertext C2 using the symmetric encryption scheme under the

key EK, i.e. m := Sym.Decrypt(C2, EK).
9. Output m.

6.4.2.2 Security analysis

The following is a summary of the security analysis of ECIES; for more details
see [477].

The first thing to notice about the ECIES algorithm as it stands is that it is
not secure in the IND-CCA2 sense. If an attacker is given a challenge ciphertext
(C1, C2, C3) then he may submit the ciphertext (−C1, C2, C3) to the decryption
oracle (providing C1 6= −C1, a condition which occurs with overwhelming proba-
bility) and the oracle will return the correct message m. Therefore if we are going
to find any meaningful result on the security of ECIES in this model then we will
have to formally deny the attacker the power to make these queries. Shoup [489]
calls this property benign malleability.

The security proof for ECIES is sketched in [2]. This paper describes the
security of the DHAES scheme, a scheme similar to ECIES but defined on an
abstract cyclic group of order p rather than specifically on an elliptic curve group.
It differs from ECIES in the generation of the symmetric keyK which, in DHAES,
is derived from a complete representation of Q and from C1. The security proof
shows that, provided the symmetric encryption scheme and the MAC are in
some sense secure, the problem of breaking the scheme reduces to the problem
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of differentiating the output of the key derivation function from a random string
of the same size.

A security proof for ECIES in the generic group model (see Sect. 6.2.5) has
also been proposed [493].

ECIES is essentially an example of ECIES-KEM (see Sect. 6.4.3) used with a
particular data encapsulation mechanism (known as DEM-1 [489]). We consider
ECIES-KEM to be more flexible than ECIES without having any computational
or security loss.

6.4.3 ECIES-KEM

ECIES-KEM is essentially the asymmetric heart of ECIES described in the KEM-
DEM framework. Although ECIES-KEM was never formally submitted to the
NESSIE project, it is considered by NESSIE as a de facto standard for a KEM-
DEM based cryptosystem and because it has been proposed for standardisation
in the ISO/IEC standard 18033-2 [489]. It consists loosely of the following algo-
rithms. A complete specification can be found in [489].

6.4.3.1 The design

Key Generation. ECIES-KEM, like ECIES, is an elliptic curve scheme. This
means that before the scheme can be implemented a suitably secure elliptic curve
E must have been generated and a point P ∈ E with prime order p must have
been chosen. We assume that the length of p is equal to the security parameter λ.
The key generation algorithm is a probabilistic algorithm that takes the elliptic
curve parameters (E,P, p, λ) as input and runs as follows.

1. Randomly generate an integer s ∈ {1, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P, p,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes the public-key as input. It uses a public and pre-agreed key
derivation function KDF (·) that must be available to all parties wishing to use
the scheme. Its encapsulation algorithm runs as follows.

1. Generate a random integer r ∈ {1, . . . , p− 1}.
2. Set C := rP .
3. Set x to be the x-coordinate of rW .
4. Set K := KDF (C||x).
5. Output the encapsulated key-pair (K,C).

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes as input an encapsulated key C and the secret-key sk. It also
uses the pre-agreed key derivation function KDF (·) that was used in the encap-
sulation process. The algorithm runs as follows. (For notational purposes, let O
be the ‘point at infinity’ – the identity element of an elliptic curve group).
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1. Set Q := sC.
2. Check that Q 6= O. If so, output Invalid Ciphertext and halt.
3. Set x to be the x-coordinate of Q.
4. Set K := KDF (C||x).
5. Output K.

6.4.3.2 Security analysis

It is very easy to show that ECIES-KEM is IND-CCA2 secure in the random
oracle model [162]. The security of the scheme can be very efficiently reduced
to the problem of solving the gap Diffie-Hellman problem in the elliptic curve
subgroup generated by P . Formally, if there exists a (t, ε, qD) attacker for ECIES-
KEM then there exists a (t′, ε′) solver for the gap Diffie-Hellman problem in the
group 〈P 〉 with

ε′ ≈ ε , (6.16)

t′ ≈ t+ 2qKT , (6.17)

where

– qK is the number of queries that the attacker submits to the random oracle
simulating the key derivation function,

– and T is the time taken to check a Diffie-Hellman triple (i.e. the time taken
for the oracle to check whether gc = gab for a triple (ga, gb, gc)).

In the IND-CPA model, the security of ECIES-KEM can be improved. The
security of the scheme, in the random oracle model, can be reduced to the problem
of breaking the computational Diffie-Hellman (CDH) problem in the group 〈P 〉.
Formally, if there exists a (t, ε) attacker for ECIES-KEM then there exists an
algorithm running in time t′ that outputs a list of L elements and contains a
solution to the CDH problem with probability at least ε′ with

ε′ ≈ ε , (6.18)

t′ ≈ t , (6.19)

L ≤ qK , (6.20)

where the attacker makes at most qK queries of the random oracle simulating the
key derivation function. Of course, we may now use the techniques of Sect. 6.2.3.2
to construct a (t′′, ε′′) solver for the CDH problem with

ε′′ ≈ 1− 1

2k
, (6.21)

t′′ ≈ 2kd1/ε′et′ + 2kLd1/ε′eT , (6.22)

where T is the time taken to compute a group element of the form

x−11 y−11

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
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The ECIES-KEM mechanism can be viewed as a subroutine of both the
PSEC-KEM (see Sect. 6.4.5) and the ACE-KEM algorithms (see Sect. 6.4.1).
This means that the performance costs of PSEC-KEM and ACE-KEM are at
least that of ECIES-KEM.

The only side-channel attacks that ECIES-KEM seems to be vulnerable to is
a fault attack [164] and a power attack based on its use of elliptic curve groups
(see Sect. A.1.2.3).

6.4.4 EPOC-2

EPOC-2 is a hybrid asymmetric encryption scheme submitted by NTT Corpo-
ration. It consists loosely of the following algorithms. A complete specification is
given in [404].

6.4.4.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Generate (usually randomly) two distinct λ-bit primes p and q. Set n := p2q.
2. Generate (usually randomly) an element g ∈ (Z/nZ)∗ such that gp :=
gp−1 mod p2 has order p in (Z/p2Z)∗.

3. Set h := gn mod n.
4. Set w := (gp − 1)/p mod p.
5. Set pk := (n, g, h, λ) and sk := (p, q, w, pk).
6. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a message m. It also relies on a set of pre-agreed system param-
eters. In order for the scheme to work, the two parties must have agreed on
the use of a hash function Hash(·), a mask generating function MGF (·), a key
derivation function KDF (·) and a symmetric encryption scheme (Sym.Encrypt ,
Sym.Decrypt). It runs as follows.

1. Generate a random octet string R ∈ {0, . . . , 255}b(λ−1)/8c.
2. Derive a suitable symmetric key K := KDF (R).
3. Encrypt the message m using the symmetric scheme and the key K, C2 :=
Sym.Encrypt(m,K).

4. Set DB := m||R||C2.
5. Set H :=MGF (Hash(DB)).
6. Set C1 := gRhH mod n.
7. Output the ciphertext C = (C1, C2).

This process is also shown pictorially in Fig. 6.2.

Decryption Algorithm. The decryption algorithm uses the same set of system
parameters as the encryption algorithm, i.e. a pre-agreed hash function Hash(·),
mask generating functionMGF (·), key derivation functionKDF (·) and symmet-
ric encryption scheme (Sym.Encrypt , Sym.Decrypt). It takes as input a ciphertext
C and the secret-key sk and runs as follows.
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Fig. 6.2: The EPOC-2 encryption algorithm.

1. Parse the ciphertext C into (C1, C2).
2. Check that 0 ≤ C1 < n. If not, output Invalid Ciphertext and halt.
3. Set C ′1 := Cp−11 mod p2.
4. Set C ′′1 := (C ′1 − 1)/p mod p.
5. Set R := C ′′1 /w mod p.
6. Check that 0 ≤ R < 256b(λ−1)/8c. If not, output Invalid Ciphertext and

halt.
7. Derive a suitable symmetric key K := KDF (R).
8. Decrypt the ciphertext C2 using the symmetric encryption scheme and the

key K, m := Sym.Decrypt(C2,K).
9. Set DB := m||R||C2.

10. Set H :=MGF (Hash(DB)).

11. Derive a reduced public key ˆPK with ĝ := g mod q, ĥ := h mod q and
Ĥ := H mod q − 1.

12. Calculate Ĉ1 = ĝRĥĤ mod q.
13. Check that Ĉ1 = C1 mod q. If not, output Invalid Ciphertext and halt.
14. Output m.

6.4.4.2 Security analysis

The following is a summary of the security analysis of EPOC-2; for more details
see [519, 159]. Some arguments as to why EPOC-2 was selected to be studied in
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NESSIE phase II over the other EPOC candidates (see Sect. 6.5.1 and Sect. 6.5.2)
can be found in [482].

It should be noted that the structure of EPOC-2 is very similar to that of a
KEM-DEM based cryptosystem. It has, presumably, not been phrased in these
terms because the ‘KEM’ output would not be indistinguishable from a random
key in the CCA2 model. This is a good example of a hybrid scheme that is secure
but does not satisfy the security requirements for a KEM-DEM based scheme.
It should also be noted that the ‘DEM’ section uses group operations derived
from the public key as a MAC tag, and this is formally excluded from a DEM
construction as the DEM has no access to the public key. In the security proof the
symmetric cipher is assumed to be a Vernam cipher, in which the key is bitwise
XORed with the message to form the ciphertext.

The security of EPOC-2 is based on the Okamoto-Uchiyama cryptosystem
[420], which is provably as secure as factoring in the IND-CPA model, and an
improved version of the Fujisaki-Okamoto transform [205] which is specific to
the Okamoto-Uchiyama cryptosystem. The security proof [201] for the scheme
proves that, in the random oracle model, one can reduce the problem of attacking
the scheme in the IND-CCA2 setting to the problem of factoring the modulus
n = p2q. For convenience we define |n| to be the size of the integer n in bits.
Formally, if there exists a (t, ε, qD) IND-CCA2 attacker for EPOC-2 in the random
oracle model then there exists a (t′, ε′) solver for the problem of factoring the
modulus n with

ε′ ≈ ε

3
(1− 2−3λ+3)(1− 2−γ)qD , (6.23)

t′ ≈ t+ qHT1 + qHqDT2 , (6.24)

where

– qH is the number of queries the attacker makes of the random oracle,
– γ is a constant that depends only upon the public key,
– T1 is the time taken to compute the greatest common divisor of two |n|-bit

numbers,

– and T2 is the time taken to check an equation of the form C1 = ĝRĥĤ mod q.

The problem of factoring a number of the form n = p2q is one of the less
well researched trusted cryptographic problems used by the NESSIE phase II
submissions. Most of the research into factoring algorithms concentrates on at-
tempting to factor integers of the form pq. The attack of [97], whilst not directly
applicable to the Okamoto-Uchiyama modulus n, only serve to underline the fact
that factoring a number of the form p2q is unlikely to be harder than factoring
a number of the form pq. Furthermore, factoring the modulus is enough to re-
cover the secret key (which depends only on p and q). So any attack that can
reliably distinguish messages in the CCA2 model also provides, in the random
oracle model, an attack that can recover the secret key.

EPOC-2 is also vulnerable to a few important side-channel attacks (see
Sect. 6.2.6). Whilst it is true that EPOC-2 is the only primitive in Phase II
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that does not seem susceptible to fault attacks [164], it is vulnerable to a Ham-
ming weight attack [164] and to an error message attack [163]. This seems to be
indicative of an inherent weakness of EPOC-2; the security proof for the prim-
itive shows that if any information can be gained about the value derived from
the Okamoto-Uchiyama decryption process (the number R calculated in step 5 of
the decryption process) then an attacker is likely to be able use this information
to launch a key recovery attack. For this reason we consider EPOC-2 to be weak
against side-channel attacks.

For fair comparison EPOC-2 was not only evaluated against the other NESSIE
candidates but also against existing schemes with similar security assumptions
[175]. The scheme was compared against the HIME(R) scheme [403] and the
Rabin-SAEP scheme [92], the security of both of which can be reduced to the
problem of factoring a modulus n of the form n = pq or n = prq for small r.
Whilst all of the schemes had comparable security reductions, EPOC-2 was found
to have a comparatively large key size and a slow running time.

6.4.5 PSEC-KEM

PSEC-KEM is a tweaked version of PSEC-2 and was submitted by the NTT Cor-
poration. It consists loosely of the following algorithms. A complete specification
is available in [405].

6.4.5.1 The design

Key Generation. Since PSEC-KEM is defined over an elliptic curve, a suitable
curve E will have to be generated before the key generation algorithm is executed.
The curve should have a point P that generates a secure cyclic subgroup of E with
prime order p. We assume that p is of size λ where λ is the security parameter.

The key generation algorithm is a probabilistic algorithm that takes the el-
liptic curve E, the point P and the order p of P as input. It runs as follows.

1. Generate an integer s uniformly at random from {0, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P,W, p, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encapsulation Algorithm. The key encapsulation algorithm is a probabilistic
algorithm that takes as input the public-key pk. In order for the scheme to work
the two communicating parties must have agreed on the use of a common key
derivation function KDF (·). It runs as follows.

1. Generate a suitably sized random bit string r (of size comparable to p, say).
2. Set H := KDF (032||r), where 032 is the 32-bit representation of the integer

0.
3. Parse H as t||K where t is a (λ+ 128)-bit integer and K is a suitably sized

symmetric key.
4. Set α := t mod p.
5. Set Q := αW .
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6. Set C1 := αP .
7. Set C2 := r⊕KDF (132||C1||Q), where 132 is the 32-bit representation of the

integer 1.
8. Set C := (C1, C2).
9. Output the encapsulated key-pair (K,C).

The PSEC-KEM encapsulation algorithm is also shown pictorially in Fig. 6.3.

Fig. 6.3: The PSEC-KEM encapsulation algorithm.

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes as input a key encapsulation C and the secret-key sk. It also
uses the pre-agreed key derivation function KDF (·). It runs as follows.

1. Parse C as (C1, C2).
2. Set Q := sC1.
3. Set r := C2⊕KDF (132||C1||Q), where 132 is the 32-bit representation of the

integer 1.
4. Set H := KDF (032||r), where 032 is the 32-bit representation of the integer

0.
5. Parse H as t||K, where t is an (λ+128)-bit integer and K is a suitably sized

symmetric key.
6. Set α := t mod p.
7. Check C1 = αP . If not, output Invalid Ciphertext and halt.
8. Output K.
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6.4.5.2 Security analysis

In many ways the PSEC family of asymmetric encryption schemes are coun-
terparts to the EPOC schemes, in the sense that they both use the same con-
structions to turn a base problem into useable asymmetric encryption schemes.
However, when the schemes were tweaked at the start of NESSIE phase II, PSEC-
2 was rephrased as a KEM-DEM based cryptosystem (see Sect. 6.3), whereas
EPOC-2 (see Sect. 6.4.4) was not. The following security analysis is a summary
of the work found mainly in [480, 481]. Some arguments as to why PSEC-2 was
chosen to be studied in NESSIE phase II over the other PSEC candidates (see
Sect. 6.5.3 and Sect. 6.5.4) were given in [482].

The security proof for PSEC-KEM can be found in [489]. It shows that, in the
random oracle model, the problem of breaking the system can be reduced to the
problem of solving a computational Diffie-Hellman problem on the elliptic curve
E. Formally, if there exists a (t, ε, qD) IND-CCA2 attacker for PSEC-KEM then
there exists an algorithm running in time t′ that outputs a list of L elements that
contains the solution to the CDH problem with probability ε′ and

t′ ≈ t , (6.25)

ε′ ≈ ε− qK0
+ 2qD
p

− qK0
+ qD
2λ

, (6.26)

L ≤ qD + qK1
, (6.27)

where

– the encryption algorithm generates a random integer of length λ in step 1,
– the attacker makes at most qKi

queries to the random oracle representing the
key-derivation function where the initial 32-bits are a representation of the
integer i.

Of course we may now use the probability amplification techniques given in
Sect. 6.2.3.2 to give a (t′′, ε′′) solver for the CDH problem on E with

ε′′ ≈ 1− 1

2k
, (6.28)

t′′ ≈ 2kd1/ε′et′ + 2kLd1/ε′eT , (6.29)

where T is the time taken to compute a group element of the form

x−11 y−11

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
Since the reduction shown for PSEC-KEM appears to be close to optimal in

a group for which a DDH oracle does not exist, we do not expect the security
reduction to be significantly improved in the IND-CPA model.

PSEC-KEM is an authenticated KEM. The PSEC-KEM algorithm can be
viewed as using a version of ECIES-KEM (see Sect. 6.4.3) as a mask for the key.
It also produces data that is used to perform a consistency check.
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Along with most of the other NESSIE phase II candidates, PSEC-KEM is
vulnerable to a fault attack and, along with the other schemes that are based on
elliptic curves, it does seem to be vulnerable to power analysis (see Sect. A.1.2.3).
It does not appear to be vulnerable to either an error message attack or a Ham-
ming weight attack [164].

6.4.6 RSA-KEM

The RSA based key encapsulation mechanism is one of the simplest key en-
capsulation mechanisms. It uses the RSA trapdoor permutation as a security
mechanism (see Sect. 6.3.2). Although RSA-KEM was never formally submitted
to the NESSIE project, it is included in the evaluation process as a de facto
standard for a KEM-DEM based cryptosystem and because it has been proposed
for inclusion in the ISO/IEC standard 18033-2 [489]. It consists loosely of the
following algorithms. A complete specification can be found in [274, 489].

6.4.6.1 The design

Key Generation. The key generation algorithm for RSA-KEM is very similar
to that of RSA-OAEP (see Sect. 6.5.5) as both concentrate on producing a valid
RSA key. The RSA-KEM key generation algorithm is a probabilistic algorithm
that takes the security parameter λ as input and runs as follows.

1. Generate a public exponent e, an odd integer greater than 1.
2. Randomly generate a prime p of length λ such that gcd(p− 1, e) = 1.
3. Randomly generate a prime q of length λ such that gcd(q − 1, e) = 1.
4. Set n := pq.
5. Set d to be the unique integer in Z/λ(n)Z such that ed ≡ 1 mod λ(n), where
λ(n) = l.c.m.(p− 1, q − 1).

6. Set pk := (n, e, λ) and sk := (d, pk).
7. Output the key-pair (pk, sk).

Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes as input the public key pk. It also uses a common, public key
derivation function KDF (·) that is available to all parties. It runs as follows.

1. Generate a random integer r ∈ {0, . . . , n− 1}.
2. Set C := re mod n.
3. Set K := KDF (r).
4. Output the encapsulated key-pair (K,C).

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes an encapsulation C and the secret-key sk as input. It also
uses the pre-agreed key derivation function KDF (·) and runs as follows.

1. Set r := Cd mod n.
2. Set K := KDF (r).
3. Output K.



6.5 Phase I-only asymmetric encryption 201

6.4.6.2 Security analysis

The following is a summary of the security analysis for RSA-KEM and is found
mainly in [231] or derived from the general results on KEM-DEM cryptosystems
in [160].

The security of RSA-KEM is based on the security of the RSA cryptosystem
[452] in the OW-CPAmodel. We use the general result about security mechanisms
of [160] to show that, in the random oracle model, the security of RSA-KEM can
be reduced to the RSA problem. Formally, if there exists a (t, ε, qD) attacker for
RSA-KEM in the IND-CCA2 sense then there exists a (t′, ε′) solver for the RSA
problem with

ε′ ≈ ε , (6.30)

t′ ≈ t+ (qK + qD)T , (6.31)

where

– qK is the number of queries the attacker makes to the random oracle,
– and T is the time taken to calculate xe for some x.

Since the reduction shown for RSA-KEM appears to be close to optimal, we
do not expect the security reduction to be significantly improved in the IND-CPA
model.

The RSA cryptosystem exhibits some homomorphic properties, most notice-
ably that if C1 = me

1 mod n and C2 = me
2 mod n then C1C2 mod n is the

encryption of m1m2 mod n. Whilst this is highly desirable in certain applica-
tions, it does allow unknown messages to be manipulated in quite specific ways.
In RSA-KEM we rely on the nature of the key derivation function KDF (·) to
destroy any relations between keys that might be a result of relations in the en-
capsulations. Hence the properties of the key derivation function are more critical
in RSA-KEM than they might be in, say, ACE-KEM (see Sect. 6.4.1). This ho-
momorphic property is also useful when implementing side-channel attacks. It
has been shown that RSA-KEM is vulnerable to a fault attack that recovers
the secret key [292], a chosen modulus attack [292, 173] and a Hamming weight
attack [292, 164]. See Sect. 6.2.6 for a discussion of the relevance of these attacks.

RSA-KEM was selected as a suitable de facto standard for hybrid RSA based
cryptosystems after it was evaluated against RSA-REACT [419] in a paper by
Granboulan [231]. RSA-KEM was selected as the de facto standard because its
security was shown to be at least that of RSA-REACT and it was shown to have
better performance characteristics.

6.5 Asymmetric encryption primitives not selected for
Phase II

The following algorithms were submitted to NESSIE but not selected for
further study in the second phase of the project:
– EPOC-1
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– EPOC-3
– PSEC-1
– PSEC-3
– RSA-OAEP

Again we choose to specify the algorithms in a general mathematical way rather
than as a detailed specification. In particular we assume that variables are stored
in binary form even if they are integers, elliptic curve points, etc. We also assume
that hash functions, mask generating functions, key derivation functions and
symmetric encryption schemes all take inputs and produce outputs of a “correct”
length for the asymmetric scheme. References are given to complete specifications
for the algorithms.

6.5.1 EPOC-1

EPOC-1 was the first of the EPOC series submitted by the NTT Corporation.
It is based on the Okamoto-Uchiyama problem [420], which is provably secure in
the IND-CPA sense in the random oracle model. The techniques of [204] are then
used to transform this into an asymmetric encryption scheme that is IND-CCA2
secure in the random oracle model. The scheme consists loosely of the following
algorithms. A complete specification can be found in [203].

6.5.1.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Randomly generate two λ-bit primes p and q. Set n := p2q.
2. Randomly generate an element g ∈ (Z/nZ)∗ such that gp := gp−1 mod p2

has order p in (Z/p2Z)∗.
3. Randomly generate an element h0 ∈ (Z/nZ)∗ and set h := hn0 mod n.

4. Set w :=
gp−1
p mod p.

5. Choose positive integers mLen and rLen such that mLen+ rLen ≤ λ− 1.
6. Set pk := (n, g, h,mLen, rLen, λ) and sk := (p, q, w, pk).
7. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a message m of length mLen. It also uses a pre-agreed hash function
Hash(·). It runs as follows.
1. Generate a random string R of length rLen and compute r := Hash(m||R).
2. Set C := gm||Rhr mod n.
3. Output the ciphertext C.

Decryption Algorithm. The decryption algorithm takes as input a ciphertext
C and the secret-key sk. It also uses the pre-agreed hash function Hash(·) and
runs as follows.

1. Set Cp := Cp−1 mod p2.

2. Set C ′p :=
Cp−1
p mod p.
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3. Set X :=
C′
p

w mod p.
4. Check that 0 ≤ X ≤ 2mLen+rLen. If not, output Invalid Ciphertext and

halt.
5. Check that C = gXhHash(X). If not, output Invalid Ciphertext and halt.
6. Set m to be the first mLen bits of X.
7. Output the message m.

6.5.1.2 Security analysis

The following is a summary of the security analysis of EPOC-1 ; for more details
see [519]. Some of the arguments as to why EPOC-2 (see Sect. 6.4.4) was selected
to be studied in NESSIE phase II over EPOC-1 were given in [482].

It has been shown that, in the random oracle model, EPOC-1 is secure in the
IND-CCA2 sense [203]. The security of the scheme reduces to the problem of solv-
ing the p-subgroup membership problem on the group (Z/nZ)∗ (see Sect. 6.2.3).
Formally, if (t, ε, qD) is an IND-CCA2 attacker for the EPOC-1 scheme then there
exists a (t′, ε′) solver for the p-subgroup problem with

ε′ ≈ (ε− qH2−(rLen−1))(1− 2−2λ)qD , (6.32)

t′ ≈ t+ qH(T + cλ) , (6.33)

where

– qH is the number of queries the attacker makes to the random oracle,
– T is the time taken to calculate gmhr mod n,
– and c is a constant.

EPOC-1 was designed for key distribution, which is outside the scope of the
NESSIE project. The scheme was not selected for NESSIE phase II because
it had a worse security reduction than EPOC-2 for similar performance costs.
Furthermore, the submitters withdrew their support for EPOC-1 in favour of
EPOC-2 (see Sect. 6.4.4).

6.5.2 EPOC-3

EPOC-3 was submitted by the NTT Corporation and, like the other members of
the EPOC series, uses the Okamoto-Uchiyama cryptosystem [420]. This time the
submitters use the REACT transform [419] to improve the security of the basic
scheme. The EPOC-3 scheme consists loosely of the following three algorithms.
A complete specification is given in [203].

6.5.2.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Randomly generate two λ-bit primes p and q. Set n := p2q.
2. Randomly generate an element g ∈ (Z/nZ)∗ such that gp := gp−1 mod p2

has order p in (Z/p2Z)∗.
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3. Randomly generate an element h0 ∈ (Z/nZ)∗ and set h := hn0 mod n.

4. Set w :=
gp−1
p mod p.

5. Set pk := (n, g, h, λ) and sk := (p, q, w, pk).
6. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a message m. It also relies on a set of pre-agreed system parame-
ters. In order for the scheme to work the two communicating parties must have
agreed upon a public choice of a hash function Hash(·), a key derivation function
KDF (·) and a symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt). The
encryption algorithm runs as follows.

1. Generate two independent and uniform random bit strings r and R of length
λ− 1.

2. Derive a suitable symmetric key K := KDF (R).
3. Set C1 := gRhr mod n.
4. Set C2 := Sym.Encrypt(m,K), i.e. the encryption of the message m in the

symmetric scheme under the key K.
5. Set C3 := Hash(C1||C2||R||m).
6. Output the ciphertext C = (C1, C2, C3).

Decryption Algorithm. The decryption algorithm uses the same set of sys-
tem parameters as the encryption algorithm: a hash function Hash(·), a key
derivation function KDF (·) and a symmetric encryption scheme (Sym.Encrypt ,
Sym.Decrypt). It takes as input a ciphertext C and the secret key sk. It runs as
follows.

1. Parse C as an appropriately sized triple (C1, C2, C3).
2. Set C ′1 := Cp1 mod p2.

3. Set C ′′1 :=
C′

1−1
p mod p.

4. Set R :=
C′′

1

w mod p.
5. Derive a suitable symmetric key K := KDF (R).
6. Decrypt the ciphertext C2 using the symmetric encryption scheme and the

key K, i.e. set m := Sym.Decrypt(C2,K).
7. Check if R < 2λ−1. If not, output Invalid Ciphertext and halt.
8. Check that C3 = Hash(C1||C2||R||m). If not, output Invalid Ciphertext

and halt.
9. Output the message m.

6.5.2.2 Security analysis

The following is a summary of the security analysis of EPOC-3; for more details
see [519]. Some of the arguments as to why EPOC-2 (see Sect. 6.4.4) was selected
to be studied in NESSIE phase II over EPOC-3 were given in [482].

It has been shown in [203] that EPOC-3 is IND-CCA2 secure in the random
oracle model, and reduces to the problem of solving the gap-factoring problem
for the modulus n. As with EPOC-2 (see Sect. 6.4.4) we will assume that the
symmetric encryption system used is a Vernam cipher. Formally, if there exists
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a (t, ε, qD) attacker for EPOC-3 then there exists a (t′, ε′) solver for the gap-
factoring problem (see Sect. 6.2.3) with

ε′ ≈ 1

2
ε− qD

2λ
, (6.34)

t′ ≈ t+ c(qH + qK) , (6.35)

where

– c is a constant,
– qH is the number of queries the attacker makes to the hash function random

oracle,
– and qK is the number of queries the attacker makes to the key derivation

function random oracle.

The reduction of EPOC-3 is not as efficient as that of EPOC-2, and the
underlying assumption is not as strong. Furthermore, the submitters withdrew
their support from the scheme in favour of EPOC-2.

6.5.3 PSEC-1

PSEC-1 is the first of the PSEC family of cryptosystems that were submitted to
NESSIE by the NTT Corporation of Japan. It consists loosely of the following
algorithms. A complete specification can be found in [202].

6.5.3.1 The design

Key Generation. PSEC-1 is defined over an elliptic curve, so, before any of
these algorithms are executed, it is necessary to have constructed a suitably
secure elliptic curve E and chosen a point P ∈ E with prime order p. We assume
that the length of p is equal to the security parameter λ and that the elliptic curve
is defined over a finite field Fq, where q is a prime power of length qLen. The key
generation algorithm is a probabilistic algorithm that takes (E,P, p, qLen, λ) as
input. It runs as follows.

1. Generate a random integer s ∈ (Z/pZ)∗.
2. Set W := sP .
3. Choose positive integers mLen and rLen such that mLen+ rLen = qLen.
4. Set pk := (E,P, p, qLen,W,mLen, rLen, λ) and pk := (s, pk).
5. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes as input a messagem of lengthmLen and the public-key pk. Before the
encryption algorithm can be run the communicating parties must have agreed
upon the use of some common, public hash function Hash(·). The encryption
algorithm runs as follows.

1. Generate a random bit string r of length rLen.
2. Set α := Hash(m||r).
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3. Set C1 := αP .
4. Set x to be the x-coordinate of αW .
5. Set C2 := (m||r)⊕ x.
6. Output the ciphertext C = (C1, C2).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes as input a ciphertext C and the private-key sk. It also uses the agreed
hash function Hash(·). It runs as follows.
1. Parse the ciphertext C into (C1, C2).
2. Set x to be the x-coordinate of sC1.
3. Set m and r to be the appropriately sized bit strings that satisfy (m||r) =
C2 ⊕ x.

4. Set α := Hash(m||r).
5. Check that C1 = αP . If not, output Invalid Ciphertext and halt.
6. Output m.

6.5.3.2 Security analysis

The following is a summary of the security analysis of PSEC-1; for more details
see [480]. Some of the arguments that justify the selection of PSEC-2 for further
study in NESSIE phase II over PSEC-1 can be found in [482].

The security claims of [202] refer to a security proof in [204]. Here it is loosely
shown that PSEC-1 is IND-CCA2 secure in the random oracle model provided
that the decisional Diffie-Hellman problem (see Sect. 6.2.3) is intractable on the
elliptic curve group generated by P . Formally, if there exists a (t, ε, qD) attacker
for PSEC-1 then there exists a (t′, ε′) solver for the decisional Diffie-Hellman
problem on the elliptic curve group generated by P , with

ε′ ≈ (ε− qH2−rLen+1)(1− 2p)qD , (6.36)

t′ ≈ t+ qH(T + cλ) , (6.37)

where

– the attacker makes at most qH queries to the random oracle simulating the
hash function,

– T is the time taken to calculate sQ on the elliptic curve,
– and c is a constant.

PSEC-1 has a very limited message space. This is because it was designed
as a key distribution mechanism, but key distribution mechanisms are outside
the scope of the NESSIE project. It shares a lot of properties with PSEC-KEM
(see Sect. 6.4.5) but reduces to a weaker security assumption. Furthermore, the
submitters withdrew their support from PSEC-1 in favour of PSEC-KEM.

6.5.4 PSEC-3

The last of the PSEC algorithms submitted by NTT Corporation, PSEC-3, is a
hybrid encryption scheme based on the hardness of the gap Diffie-Hellman prob-
lem on certain elliptic curve groups. It consists loosely of the following algorithms.
A complete specification can be found in [202].
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6.5.4.1 The design

Key Generation. The key generation algorithm for PSEC-3 is similar to that
of PSEC-KEM (see Sect. 6.4.5). Since PSEC-3 is based on the Diffie-Hellman
problem on elliptic curves, it is necessary to have generated a suitable curve E
and chosen a point P ∈ E with prime order p. We will assume that the length
of p is equal to the security parameter λ and that E is defined over a finite field
Fq, where q is a prime power of length qLen. The key generation algorithm is a
probabilistic algorithm that takes (E,P, p, qLen, λ) as input. It runs as follows.

1. Generate a random integer s ∈ (Z/pZ)∗.
2. Set W := sP .
3. Set pk := (E,P, p, qLen,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes a message m and the public-key pk as input. It is necessary for the
two communicating parties to have agreed on the use of some common functions:
a hash function Hash(·), a key derivation function KDF (·) and a symmetric
encryption scheme (Sym.Encrypt , Sym.Decrypt). It runs as follows.

1. Generate a random integer r ∈ (Z/pZ)∗.
2. Set C1 := rP .
3. Set x to be equal to the x-coordinate of rW .
4. Generate a random bit string u of length qLen.
5. Set C2 = u⊕ x.
6. Derive a suitable symmetric key K := KDF (u).
7. Encrypt the messagem using the agreed symmetric encryption scheme under

the key K, i.e. set C3 = Sym.Encrypt(m,K).
8. Set C4 = Hash(C1||C2||C3||u||m).
9. Output the ciphertext C = (C1, C2, C3, C4).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It also uses the pre-
agreed hash function Hash(·), key derivation function KDF (·) and symmetric
encryption scheme (Sym.Encrypt , Sym.Decrypt). It runs as follows.

1. Parse the ciphertext C as (C1, C2, C3, C4).
2. Set x to be the x-coordinate of sC1.
3. Set u := C2 ⊕ x.
4. Derive a suitable symmetric key K := KDF (u).
5. Decrypt the symmetric ciphertext C3 using the key K, i.e. set m :=
Sym.Decrypt(C3,K).

6. Check that C4 = Hash(C1||C2||C3||u||m). If not, output Invalid

Ciphertext and halt.
7. Output m.
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6.5.4.2 Security analysis

The following is a summary of the security analysis for PSEC-3; for more details
see [480]. Some justification for the selection of PSEC-KEM (see Sect. 6.4.5) for
further study over PSEC-3 is given in [482].

PSEC-3 is an amalgamation of two techniques used to enhance the security
of a key distribution scheme similar to PSEC-1 (see Sect. 6.5.3). The scheme uses
standard techniques to transform the weak key distribution scheme into a weak
hybrid encryption scheme. It then uses the techniques of [204] to improve the
security of the scheme.

The security analysis of PSEC-3 assumes that the implementation uses a
Vernam cipher as its symmetric component. The specifications [202] claim that
PSEC-3 is IND-CCA2 secure in the random oracle model and reduces to solving
the gap Diffie-Hellman problem on the elliptic curve group generated by P . A
formal proof of security was never given.

PSEC-KEM has an efficient reduction to a better assumption than PSEC-3,
and PSEC-3 does not appear to be significantly faster than a hybrid scheme using
PSEC-KEM. PSEC-3 is also very similar in structure to ECIES (see Sect. 6.4.2).
Furthermore, the submitters withdrew their support for PSEC-3 in favour of
PSEC-KEM.

6.5.5 RSA-OAEP

The RSA-OAEP algorithm is a well-established asymmetric encryption scheme
that uses the OAEP padding scheme developed by Bellare and Rogaway [45].
It was submitted to NESSIE by RSA Laboratories and consists loosely of the
following algorithms. A complete specification can be found in [274].

6.5.5.1 The design

Key Generation. The key generation algorithm for RSA-OAEP is similar to
that of RSA-KEM (see Sect. 6.4.6). It takes the security parameter λ as input
and runs as follows.

1. Generate a public exponent e, an odd integer greater than 1.
2. Randomly generate a prime p of length λ such that gcd(p, e) = 1.
3. Randomly generate a prime q of length λ such that gcd(q, e) = 1.
4. Set n := pq.
5. Set d to be the unique integer in (Z/λ(n)Z)∗ such that ed ≡ 1 mod λ(n),

where λ(n) = l.c.m.(p− 1, q − 1).
6. Choose positive integers mLen and rLen such that the length of n in bits is

equal to mLen+ rLen+ 32.
7. Set pk := (n, e,mLen, rLen, λ) and sk := (d, pk).
8. Output the key-pair (pk, sk).
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Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes a message m of length mLen and the public key pk as input. In order
to use the scheme all parties must have agreed on the use of a common, public
mask generating function MGF (·). Note that here we use the mask generating
function to produce outputs of different lengths. We trust that the size of the
output required from the mask generating function will be clear from the context.

The encryption algorithm runs as follows.

1. Generate a random bit string R of length rLen.
2. Set X := MGF (R)⊕ (116||m), where 116 is the 16-bit representation of the

integer 1.
3. Set Y := R⊕MGF (X).
4. Set Z := 016||Y ||X where 016 is the 16-bit representation of the integer 0.
5. Set C = Ze mod n.
6. Output the ciphertext C.

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It requires access to the
same mask generating function that is used in the encryption process, and runs
as follows.

1. Set Z := Cd mod n.
2. Check that the leftmost 16 bits of Z are equal to 0. If not, output Invalid

Ciphertext and halt.
3. Parse Z as 016||Y ||X, where Y has length rLen, X has length mLen + 16

and 016 is the 16-bit representation of the integer 0.
4. Set R := Y ⊕MGF (X).
5. Set W := X ⊕MGF (R).
6. Check that the leftmost 16 bits of W are equal to the 16-bit representation

of the integer 1. If not, output Invalid Ciphertext and halt.
7. Parse W as 116||m, where m has length mLen and 116 is the 16-bit repre-

sentation of the integer 1.
8. Output m.

6.5.5.2 Security analysis

The following is a summary of the security analysis of the RSA-OAEP asymmetric
encryption scheme; for more details see [350].

The RSA cryptosystem [452] is well known not to be message-indistinguishable
in any normal attack model; however it is thought to be OW-CPA secure in the
standard model. Indeed its security has been so well studied that it is considered
to be a trusted cryptographic problem in its own right and so needs no more jus-
tification as a cryptosystem. The OAEP padding method was introduced in [45]
and provided with a proof that it transforms a scheme that is OW-CPA secure
into a scheme that is IND-CCA2 secure in the random oracle model. Unfortu-
nately this proof was shown to have a flaw in [488]. The proof was corrected for
the RSA cryptosystem in [206].
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This proof reduces the security of the cryptosystem to the RSA problem.
Formally, if (t, ε, qD) is an attacker for RSA-OAEP in the IND-CCA2 model then
there exists a (t′, ε′) solver for the RSA problem with

ε′ ≥ ε2

4
− ε ·

(2qDqM + qD + qM
2rLen

+
2qD
216

+
32

4λ−rLen

)

, (6.38)

t′ ≥ 2t+ 3q2M +O(λ3) , (6.39)

where

– qM is the number of queries the attacker makes to the random oracle repre-
senting the mask generating function.

Note that this security bound is not tight.
Although side-channel attacks were not considered during phase I, the wealth

of literature on RSA based cryptosystems means that they are easy to find. It
is vulnerable to an error-message attack [348] and to a Hamming weight attack
[292] that recover a hidden message.

At the end of phase I NESSIE invited RSA Laboratories to submit a tweaked
version of the RSA cryptosystem with a padding method that gave rise to a
more efficient security reduction (such as RSA-SAEP or RSA-SAEP+ [92]). RSA
Laboratories responded by saying:

The only known RSA-based encryption scheme with a better security
reduction than RSA-OAEP is Victor Shoup’s adaption RSA-OAEP+.
However, the security reduction for RSA-OAEP+ is not tight enough
either in practice. Since neither of the schemes are provably secure for
concrete parameters, replacing one with the other does not appear mean-
ingful.

– J. Jönsson, RSA Laboratories

Hence RSA-OAEP was not selected for further study in NESSIE phase II because
it offers no advantages over a hybrid scheme that uses RSA-KEM (see Sect. 6.4.6).

Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
— Some performance considerations have been moved to D21.
— Pictures added in §6.4.1, §6.4.4 and §6.4.5.

§6.2.2 Message Indistinguishable vs. one-way expanded.
§6.2.3 Updated trusted problems to be more in line with Ch. 7.
§6.2.3.2 Now includes a section on changing list solutions for CDH into a single

solution.
§6.3.2 Improved, added reference to [162].
§6.3.3 Added a section on KDFs.
§6.4.5 Updated PSEC-KEM, including a reference to [415].



7. Digital signature schemes

7.1 Introduction

What is a digital signature? A signature is used by a signer to authenticate
a document, in such a way that anyone can check the validity of the signature.
A digital signature scheme does not mimic exactly the classical handwritten
signatures, because the signature is different for each message. If this were not
the case, a signature could be extracted from a document and copied to another
document.

The digital information that allows the signer to generate valid digital sig-
natures is the private key, and the digital information that allows the verifier to
check the validity of the signature is the public key.

Components of a digital signature scheme. A signature scheme is described
by the following four algorithms, with the security parameter k:

– a parameter generation Generate : (k, ρ) 7→ param,
– a key generation KeyGen : (param, ρ′) 7→ (pk, sk),
– a signature generation Sign : (param, sk,m, r) 7→ σ,
– a signature verification Ver : (param, pk, σ, r′) 7→ m or reject.

All these algorithms are deterministic. pk is the public key, sk is the private key,
m is a message and σ a signed message. The inputs ρ, ρ′, r and r′ (if non empty)
contain the optional randomisation for the algorithms. Usually these are fixed
length bit strings.

The digital signature scheme is sound if the following condition holds.

– For all k and m and for all ρ, ρ′, r and r′, let param = Generateρ(k) and

(pk, sk) = KeyGenρ
′

(param), and let σ = Signrparam,sk(m). Then Verr
′

param,pk(σ) =
m.
It may be accepted that the scheme is sound either with probability 1 or for
all but a negligible proportion of ρ, ρ′, r and r′.

The digital signature scheme is secure if it is hard to generate a valid σ without
knowing sk. When studying the security of a digital signature scheme, the exact
description of the algorithms Generate, KeyGen and Sign is not needed. Only the
probability distribution of their output makes a difference (see also the notion of

0 Coordinator for this chapter: ENS — Louis Granboulan
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equivalent signature schemes in Sect. 7.2.3). This is why we will begin the descrip-
tion of signature schemes by the description of their most specific component:
Ver.

Appendix or message recovery. Signature schemes with appendix have the
property that σ = m‖s and s is called the appendix. Signature schemes with
partial message recovery have the property that σ = m̂‖s and that the whole
message is m = m̂‖m̄, where m̄ is the recovered part of the message. They
typically have a lower bound for the size of the whole message, which is also
the number of message bits recovered. This lower bound can be overcome by
storing the length of the actual recovered part in m̄, e.g. by padding m̄ with a
1 followed by a string of 0s. With this padding, one bit of message expansion is
added. All the signature schemes submitted to NESSIE are signature schemes
with appendix.

Stateful schemes. In a stateful digital signature scheme, the signing algorithm
Sign is allowed to keep an internal state that tracks the number of signatures
generated and optionally their values.

All the signature schemes submitted to NESSIE are stateless, but there exist
interesting examples of stateful schemes [229, 178, 140].

Public key and identity. It is important that the verifier is convinced that the
public key used to verify a signature corresponds to the alleged signer. Generally,
it is not the goal of the signature scheme to decide how the public key infras-
tructure is organised, but any application that uses a signature scheme needs to
decide how public keys are linked to meaningful identities.

Some digital signature schemes are identity-based, which means that the
signer can choose his public key to be equal to his identity, and that a trusted
authority generates the corresponding secret key. No identity-based signature
scheme was submitted to NESSIE.

Description of the scheme, public parameters and public keys. Many
descriptions of signature schemes only include the precise description for the
algorithms Sign and Ver. However, to study the performance and security of the
scheme one needs to know what is part of the scheme, what is a parameter that
can be tuned to different applications, and what is in the keys specific to each
user.

In many cases, parameters and keys are not clearly separated, and param-
eter generation and key generation are merged in a single algorithm KeyGen′ :
(k, ρ‖ρ′) 7→ (param‖pk, param‖sk), but separating the two is useful in practice.

The public parameters of a scheme usually include some information on the
key size, but may include other additional information like the description of an
elliptic curve subgroup. The choice of a hash function for the scheme may be
fixed, but is usually left as a parameter, or may even be left up to the user (see
also the discussion on hash identifiers [281]).

Parameters and key validation. Many descriptions of signature schemes only
include the algorithms Sign and Ver. They certainly are the most specific compo-
nents of a scheme, and their performance and security are usually studied assum-
ing that the parameters and keys are uniformly randomly distributed. However,



7.2 Security requirements 213

the way parameters and keys are actually generated can be the source of weak-
nesses and it is important that the verifier and the signer can trust the parameters
and the keys. This document will not go deeply into this topic, but this issue will
be highlighted when necessary.

Short to long term security. Some applications may need long term security
(50 to 80 years) but current knowledge does not allow us to make predictions
about cryptanalytic advances for such a long time. Some applications only need
short term validity of a signature (1 day to 1 month). Medium term security is 5
to 10 years and is the main target of this document.

All signature schemes should incorporate in their public parameters a deadline
for validity. If the validity needs to be extended beyond this deadline, re-signing
with more recent public parameters is mandatory.

7.2 Security requirements

7.2.1 Security model

7.2.1.1 Existential unforgeability under adaptive chosen message
attack

Unforgeability. An existential forger under adaptive chosen message attack is
a (randomised) algorithm that inputs a public key and tries to produce a valid
signature, the forgery. The forger is able to make queries to a black box that
generates valid signatures and the forgery must be new (see below). A (t, ε, qS)-
forger succeeds in time t with probability ε and is allowed to make qS signing
queries. A signature scheme with no (t, ε, qS)-forger is said to be (t, ε, qS)-secure.

The original definition of an existential forger [229] required that the forgery
is a valid signed message for a message that was not the input of a signature
query. Our definition only requires that the forgery is a valid signed message
that was not the answer to a query. This means that another valid appendix for
the same message is a valid forgery. This requirement is called “super-security”
by Goldreich [222, Volume 2, Sect. 6.5.2], “strong unforgeability” by Bellare and
Namprempre (introduced for MACs [42]) or “non-malleability” by Stern et al.
[497].

We will aim at non-malleable existential unforgeability under adaptive chosen
message attack. Non-malleability may not be really important [10] but some
applications may need it.

Some weaker security requirements. The adaptive chosen message signing
oracle can be replaced by a less powerful oracle.

– Single-occurrence chosen message attacks (SO-CMA) [497]. The forger is not
allowed to make multiple signing queries on the same message. This attack
model appears during the study of non-deterministic signature schemes, espe-
cially ESIGN. See Sect. 7.3.1.2 and 7.4.2.
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– Random message attacks (RAND). The forger has access to a list of signed
messages that correspond to random messages. This attack model depends on
a probability distribution on the message space. Schemes that are secure in
this attack model can be used as building blocks for schemes that are secure
against adaptive chosen message attacks. See Sect. 7.3.3.3.
Goldwasser, Micali and Rivest [229] defined known-message attacks where the
forger has access to a list of signed messages, but they don’t say how these
messages are chosen, only that the forger did not choose them.

Security level. The security level of a scheme is k bits if there exists no (t, ε, qS)-
forger with log2(t/ε) < k.

This value k depends on the time unit used for t. A natural time unit is the
running time of the verification algorithm.

Non-repudiation of origin. In a similar way to the two flavours of unforge-
ability, two flavours of non-repudiation of origin exist.

Basic non-repudiation of origin means that any third party can be convinced
that a valid signed document corresponds to a message that has been deliberately
signed by the secret key holder. It makes it impossible to repudiate a message.
Existential unforgeability under adaptive chosen message attack implies (basic)
non-repudiation.

Strong non-repudiation of origin means that any third party can be con-
vinced that a valid signed document has been deliberately signed by the secret
key holder. It makes it impossible to repudiate a signed message. Non-malleable
(strong) existential unforgeability under adaptive chosen message attack implies
strong non-repudiation.

Remark: The verification algorithm needs to get the whole signed message σ
to compute its answer. Therefore, for a signature scheme with appendix, it is
meaningless to consider properties where the appendix is studied separately
from the message.
For example, the notion of duplicate signatures is meaningless. It was de-
fined [497] as an attack against an appropriate definition of non-repudiation.

Duplicate signatures are values m,m′, s such that Verr′

param,pk(m‖s) = m and

Verr′

param,pk(m
′‖s) = m′. This property also appeared in [105] where it was seen

as a potential weakness.
While the existence of duplicate signatures may be surprising, it is not a weak-
ness of a digital signature scheme. If the scheme is existentially unforgeable, it
proves that both signed messages were produced by a secret key holder.
Moreover, one can notice that the secret key can easily be deduced from the du-
plicate signatures described in [105, 497]. Therefore a user that shows duplicate
signatures in these schemes is a user that publishes his secret key.

It is important that the secret key is not compromised, because any holder
of the secret key can sign documents. Therefore, non-repudiation of origin is not
a proof of security against viruses or Trojan horses. Forward secrecy and related
properties [11, 41, 314, 3, 264, 345] deal with this problem. Such properties are
not in the scope of the NESSIE evaluation and we make the hypothesis that the
secret key is never compromised.
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7.2.1.2 Other security models

While existential unforgeability under adaptive chosen message attack is the de
facto standard notion of security for signature schemes, it does not cover all
possible attacks. This security notion only considers a unique randomly generated
param and a unique (pk, sk) pair. Non-uniqueness or non-random generation lead
to realistic attack models that are not covered by existential unforgeability under
adaptive chosen message attack.

Authentication of origin. An attacker against this property of a digital sig-
nature scheme is an algorithm that inputs a signed message σ valid for a public
key pk and outputs another public key pk′ such that σ is valid for pk′.

This property is not implied by existential unforgeability, but it is useful
to mimic some properties of hand-written signatures, e.g. in applications where
some write-only and time-stamped database is used to receive signed messages
and then to solve disputes for anteriority.

The attack against the property of authentication of origin is named duplicate-
signature key selection [83] or key substitution [365] or key-collision [454].

Multi-key/multi-user setting. These settings consider the case where a fixed
param and many pki are used, and the adversary has access to signature oracles
for all those keys.

The multi-user setting for digital signature schemes first appeared in [365, 211]
and its security requirements are related to those of the multi-user setting for
asymmetric encryption schemes [35].

By definition, a (t, ε, n, qS)-mu-forger has access to the signature oracles cor-
responding to n public keys pki, is allowed to make at most qS queries to the
oracles, runs in time t and outputs a forgery for some pki with probability ε. A
scheme for which the existence of a (t, ε, n, qS)-mu-forger implies the existence of
a (t, ε, qS)-forger is secure in the multi-user setting. This also implies authentica-
tion of origin.

Using similar techniques to those of Bellare et al. for multi-user security
with asymmetric encryption, Galbraith et al. [211] showed how random self-
reducibility of Schnorr-like signature schemes proves multi-user security.

A similar requirement appeared in [230] under the name multi-key. Here the
best simultaneous attack on all the keys should be an independent attack on each
key.

By definition, a (t, ε, n, qS)-mk-forger has access to the signature oracles cor-
responding to n public keys pki, is allowed to make at most qS queries to each
oracle, runs in time nt and outputs a list of forgeries for each pki such that
each forgery is valid with probability ε. A scheme for which the existence of a
(t, ε, n, qS)-mk-forger implies the existence of a (t, ε, qS)-forger is secure in the
multi-key setting.

This is the case if all the verification algorithms with distinct (param, pk)
values are information-theoretically independent. However, most digital signature
schemes share a common hash function for all public keys. Finding a collision in
the hash function is a more efficient simultaneous attack on multiple keys than on
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a single key. Therefore it is good practice to have a key-dependent hash function,
for example by including param and pk in the input of a common hash function.

Parameter manipulation. If param is not chosen at random, new attacks may
appear. For example, param can be chosen with a trapdoor enabling the gen-
eration of valid signatures without knowing the secret key [85] or such that a
collision is introduced in the hash function [510, 369].

One technique that protects against parameter manipulation is parameter
validation, e.g. the publication of (k, ρ) together with param, but this might not
be sufficient if the algorithm that generates the parameters from the seed leaves
some freedom, as is the case for the ECDSA standardised technique [513]. Ideally,
one should provide a security proof for Generate. Another heuristic protection has
been proposed [285, 369] to protect against an attacker that studies the properties
of a hash function used in the scheme to select weak or trapdoor parameters: one
can include the values param, pk in the input to this hash function.

Side-channel attacks. A hidden assumption of our security model is that the
attacker may have access to the input and output of the signing algorithm, but
the attacker should not be able to get any information about intermediate values
that appear during the computation of a signature.

An adversary that has access to this type of information is said to be able to
mount a side-channel attack (see Appendix A for more details).

Key recovery vs. forgery. If one access to a forger allows an attacker to
compute the secret key, then additional forgeries can be made without the forger
and the message for these forgeries can be chosen by the attacker. For example,
if a side-channel attack can succeed in producing a forgery, then a few accesses
to side-channel information can allow an attacker to make an unlimited number
of chosen-text-forgeries. Therefore, the existence of a reduction from forgery to
key recovery can be seen as a weakness of the system.

7.2.2 Intractability assumptions

7.2.2.1 Mathematical problems

A mathematical problem is described by the set of instances of size l, a probability
distribution on this set, and a set of possible solutions. For each instance, some
of the possible solutions are valid and the others invalid.

Computational and decisional problems. If the set of possible solutions is
{yes, no} with one valid and one invalid for each instance, then it is called a
decisional problem; else it is called a computational (or search) problem.

A solution-checker is an efficient algorithm that inputs an instance and a
solution and tells if the solution is valid. The problem of the existence of a
solution-checker is the decisional problem associated with the problem.
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Concrete intractability. A solver for the problem is an efficient algorithm
that inputs an instance and outputs a valid solution. A mathematical problem is
(t′, ε′)-intractable for size l if there exists no solver running in time t′ that succeeds
with probability better than ε′ for a random instance of size l. The problem has
intractability k′ bits if there exists no (t′, ε′)-solver with log2(t

′/ε′) < k′. The
value k′ depends on the time unit.

Asymptotic intractability. A problem is intractable if for any polynomial p
the problem with size l has intractability p(l) bits for large enough l. With the
terminology of complexity theory an intractable problem (usually only defined
for decisional problems) is a problem that is not a member of P.

NP-hard problems are proven to be at least as difficult to solve as all NP
problems (problems that have a polynomial-time solution-checker). They may
be good candidates for intractable problems. However NP-hardness only gives a
bound for the worst case and not for an average instance of the problem, and
hard instances may be difficult to generate.

7.2.2.2 Trusted cryptographic problems

No mathematical problem is provably intractable, but the following problems are
good candidates and their intractability is assumed when proving the security of
some cryptographic schemes.

Factorisation-based problems.

– The integer factorisation problem. An instance is a composite integer n
of l bits. A solution is a non-trivial factor of n.
The probability distribution of the instances is unclear. Usually, the integer n
is constructed as pq or p2q where p and q are randomly generated primes of
similar sizes, because these are the most difficult instances for the current best
factorisation algorithms. 1

The corresponding decisional problem is easy because the algorithm that com-
putes the gcd of the instance and the solution is a solution-checker.

– The RSA problem. An instance is (n, e, y) where n is a composite integer of
l bits, e is an integer coprime to φ(n) and y ∈ (Z/nZ)×, the set of invertible
elements modulo n. A solution is some x ∈ (Z/nZ)× such that y = xe.
The probability distribution of the instances is as unclear as for the factori-
sation problem. There exist two techniques for generating random instances:
choosing n, then e and then y, or choosing e, then n and then y. The second
technique is usually preferred because it allows one to fix the value of e in
advance and use the e-th root problem below.
The only known method of solving this problem is to solve the integer factori-
sation problem for n. The assumption that the RSA problem is hard is known
as the RSA assumption.

1 There is no simple method to detect if n is of one of these special forms. In general,
the best known technique to detect if n is of one of these forms is to factor it.
Many algorithms exist for the generation of random primes and give different prob-
ability distributions. One efficient algorithm has been submitted to NESSIE [279].
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The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

– The e-th root problem. An instance with parameter e is (n, y) where n is a
composite integer of l bits such that φ(n) is coprime to e and y ∈ (Z/nZ)×. A
solution is some x ∈ (Z/nZ)× such that y = xe.
This problem looks very similar to the RSA problem, but having a fixed value
for e leads to some theoretical results, e.g. if e is a smooth integer [98]. One
can also notice that if e is not coprime to φ(n), e.g. e = 2, then the e-th root
problem (where y is a e-th power) is proven to be equivalent to the factorisation
problem.
The only known method of solving the e-th root problem is to solve the integer
factorisation problem for n.
The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

– The flexible RSA problem. An instance is (n, y) where n is a composite
integer of l bits and y ∈ (Z/nZ)×. A solution is some x ∈ (Z/nZ)× and e > 1
such that y = xe.
The only known method of solving this problem is to solve the integer factori-
sation problem for n. The assumption that this problem is hard is known as
the strong RSA assumption.
The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

– The approximate e-th root problem (AER). An instance with parameters
e and d is (n, y) where n is a composite integer of l bits such that φ(n) is coprime

to e and y ∈ (Z/nZ)×. Let αd(x) =
⌊
x mod n
n(d−1)/d

⌋
the n

1
d -approximation of x. A

solution is some x ∈ (Z/nZ)× such that αd(y) = αd(x
e).

For d = 3, this problem has been solved for e < 4. The only known method of
solving this problem for d = 3 and e ≥ 4 is to solve the integer factorisation
problem for n.
The corresponding decisional problem is easy because the algorithm that com-
putes αd(x

e) ?= αd(y) is a solution-checker.
– The claw-free approximate e-th root problem (Claw-AER). Parame-

ters and instances are defined as for AER but a solution is a pair x, z ∈ (Z/nZ)×

such that αd(yz
e) = αd(x

e). This problem appeared recently [230] and its in-
tractability is not well known.

– The second-preimage approximate e-th root problem (2nd-AER).
Parameters and instances are defined as for AER but a solution is a value
x ∈ (Z/nZ)× such that x 6= y and αd(x

e) = αd(y
e). This problem is related to

the non-malleability of ESIGN and its intractability is not well known.

Discrete logarithm-based problems. All problems are parameterised by a
cyclic group 〈G〉 and its generator G. The order of 〈G〉 is a number q with l bits.
Group operations should be easy to compute, but elements of this group may be
indistinguishable from elements of a larger group.
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〈G〉 is usually a subgroup of the multiplicative group of a finite field of prime
order p or a subgroup of the group of points on an elliptic curve over a finite
field.

– The discrete logarithm problem. An instance is H, a random element in
〈G〉. The solution is x ∈ Z/qZ such that Gx = H.
This value is unique and is the discrete logarithm logH.
The corresponding decisional problem is easy because the algorithm that com-
putes Gx ?= H is a solution-checker.

– The computational Diffie-Hellman problem. An instance is (H1, H2),
both random elements of 〈G〉. The solution is H such that logH = logH1 ·
logH2.
The only known method for solving this problem is to solve the discrete loga-
rithm problem.

– The decisional Diffie-Hellman problem. An instance is (H,H1, H2), ele-
ments of 〈G〉. The solution is yes if logH = logH1 · logH2.
The probability distribution of instances is given by the following algorithm:
take independent random x1, x2, x3 ∈ Z/qZ and a random bit b, let H1 = Gx1 ,
H2 = Gx2 and, depending on b, either H = Gx3 or H = Gx1x2 .
The only known generic method for solving this problem is to solve the compu-
tational Diffie-Hellman problem, hence to solve the discrete logarithm problem.
However, there exist groups where an efficient algorithm solves the decisional
Diffie-Hellman problem without solving the computational Diffie-Hellman prob-
lem (they are called GDH groups and are elliptic curves where the Tate/Weil
pairing [199, 277] has special properties).

– The gap Diffie-Hellman problem. Solve the computational Diffie-Hellman
problem with access to an oracle that answers the decisional Diffie-Hellman
problem. In practice this problem appears in GDH groups.

Multivariate algebra-based problems.

– The MQ problem. The MQ problem is to find a solution to a given set of
multivariate quadratic equations over a finite field, and is NP-hard in general.

– The HFE problem and variants. The HFE problem is a special case of the
MQ problem where the set of equations is not random but constructed so that
there is a trapdoor to their solution, and the HFEv− problem is an extension
of the HFE problem which is harder to solve.
The QUARTZ, FLASH and SFLASH problems are special cases of HFEv−.

7.2.2.3 How to estimate concrete intractability

Best known solvers. There are some algorithms for solving the above prob-
lems. The notation Lq[α, c] = O(exp((c+o(1))(ln q)α(ln ln q)1−α)) is used for the
asymptotic complexity of some of them.

– Integer factorisation. The fastest known algorithms for factorising large
integers are the Number Field Sieve [331] and the Elliptic Curve Method [335].
The asymptotic time taken by the number field sieve to factor an integer n is
approximately Ln[

1
3 , cNFS] where cNFS is a constant depending on the variant
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of number field sieve. 2 The asymptotic time taken by the elliptic curve method
to factor an integer whose smallest factor is p is Lp[

1
2 ,
√
2]. Both algorithms

are subexponential in the size of their input.
An improvement of the elliptic curve method exists for n = p2q [430, 179] and
a special algorithm for n = prq with large r [97].

– Discrete logarithm over Fp. The index-calculus method [122, 411, 186] is
the fastest known method of solving the discrete logarithm problem over Fp. It
is closely related to the number field sieve factoring algorithm and has expected
asymptotic running time of Lp[

1
3 , cNFS], which is subexponential.

– Elliptic curve discrete logarithm. The fastest general methods of attack
for solving the elliptic curve discrete logarithm problem are the Pollard ρ and
the Pollard λ methods [436]. For a group with q elements, the Pollard ρ runs
in time

√

πq/2, and the Pollard λ runs in time 2
√
q but can be faster in some

special cases. Both can be efficiently parallelised [505] and have been slightly
improved [212, 522]. No subexponential algorithm has been found for solving
the elliptic curve discrete logarithm problem.
There exist subexponential attacks for specific elliptic curves: supersingular
and similar curves [364, 200, 238, 456] and anomalous curves [470, 461, 492].

– Generic group discrete logarithm. Nechaev [395] and Shoup [486] proved
that the best algorithm to solve the discrete logarithm in a generic group runs
in time O(√q). However, all known concrete groups can easily be distinguished
from a generic group (they have automorphisms that are easy to compute from
the binary representation of the elements).

– MQ and related problems. For the MQ and HFE problems the situation
is somewhat more complicated and not as well studied. The MQ problem is
usually solved by looking for a Gröbner basis — a method that can handle
generic multivariate equations. Faugère [190] showed that the instances of HFE
generated for QUARTZ are easier than generic instances and Courtois, Daum
and Felke [132] studied the implications of this result.
The XL and FXL algorithms are designed for systems where the equations
are quadratic and there is an attack of Shamir and Kipnis [472] on the HFE
problem.

Quantum computers. Today large quantum computers don’t exist, and they
may never exist, but their theoretical aspects have been studied and many re-
searchers are trying to build one. The largest quantum computer that has been
built handled 7 q-bits. If larger quantum computers can be realised, their impact
on cryptology is important, because some algorithms have been designed that
can efficiently solve the integer factorisation or discrete logarithm problem with
a quantum computer [485]. No algorithm is known that solves MQ and related
problems faster with a quantum computer than with current computers.

2 The General Number Field Sieve works for any integer n and has cNFS = ( 64
9
)1/3 '

1.923. The Special Number Field Sieve works for n = k · ab ± c and has cNFS =
( 32

9
)1/3 ' 1.526.
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Estimations for the difficulty of problems. While it is impossible to be sure
that a cryptographic problem will remain intractable (because a fast polynomial
algorithm might be discovered, that solves all NP problems), it is necessary to
estimate the lifespan of a public key. Articles giving such estimates have been
written by many researchers [410, 521, 491, 334] and have led to various conclu-
sions. See also the discussion in [479].

The simplest presentation of their results can be given in terms of equivalent
symmetric key size for a given security. The NESSIE call [396] asked for a security
equivalent to an 80-bit symmetric key, by asking that the best attacks require
the equivalent of 280 Triple-DES operations.

– Current practice. For normal security most products use DES (56-bit sym-
metric key), 512-bit RSA moduli, 112-bit elliptic curve keys and 160/512-bit
DSA. Higher security is obtained with Triple-DES (112 bits) or AES (128 bits),
1024-bit RSA and 160-bit elliptic curve keys.

– Estimates by Certicom. The Standards for Efficient Cryptography Group
[115, appendix B.2] gives the following estimates for comparable key sizes.
Equivalent symmetric key size 56 80 112 128 192 256
RSA modulus length 512 1024 2048 3072 7680 15360
Elliptic curve key size 112 160 224 256 384 512

– Estimate of Silverman. A cost-based analysis [491] gives the following table.
Equivalent symmetric key size 56 64 80 96 112 128
RSA modulus length 430 530 760 1020 1340 1620

With these estimates, the computing power for the factorisation of 1020-bit
integers should not be available during the next 20 years, and a 768-bit integer
should be factorised by public effort around 2019.

– Estimates for the computing power available. Blaze et al. [84] estimated
in 1996 that a minimum of 75 bits was necessary to have security for commercial
use, and that 90 bits were needed to protect data for the next 20 years.

– Estimates by Lenstra and Verheul. Their article [334] is the most complete
study of this topic. They take many factors into account:
– Trusted key length for secure block ciphers.
– Increase of computing power and memory available on constant-cost com-

puters.
– Increase of the budget of attackers.
– Cryptanalytic advances.
Their results can be summarised with the following approximate table.
Equivalent symmetric key size 56 64 72 80 90 100
Elliptic curve key size 105 120 135 160 185 220
RSA modulus length 417 682 1024 1500 2236 3100
RSA cost-based equiv. 288 480 768 1150 1792 2600

They also find equivalent dates for different key sizes if one makes the hypoth-
esis that DES could be trusted until 1982.
Equivalent symmetric key size 56 64 72 80 90 100
Last year with trust 1982 1992 2002 2012 2025 2040
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– Bernstein’s circuit for integer factorisation. Recently, Bernstein [47] pro-
posed a new hardware design for the linear algebra step of the Number Field
Sieve that might reduce the cost of factorisation. Dedicated hardware for the
sieving is also studied. The proposed measure of the efficiency of such tech-
niques is “construction cost × run time”, which is quite different from the
classical count of the number of operations. This approach has been heavily
discussed within the community of researchers in cryptography and algorith-
mic number theory [464, 332], but currently no real consensus emerges. It is
likely that dedicated hardware will improve the cost of factorisation, but sev-
eral estimations give different values, all being asymptotic. However, one can
remark that Bernstein’s techniques don’t reduce the number of operations.

– Some records. Here is a table of some historical factorisation records.
Year 1978 1982 1986 1992 1999 2002
Bit size 150 170 289 429 512 525

Exhaustive key search for 64 bits was achieved in 2002 with two years of com-
putation on the spare time of thousands of computers [169]. Factorisation of
a 525-bit number was achieved in 2002 with two months of computation on a
few dozens of computers [25].

– A conclusion. To comply with the NESSIE requirement of an equivalence
with a symmetric key of 80 bits, the size given in the above papers for an
elliptic curve key is 160 bits, but the sizes for an RSA modulus range from 760
to 1500 bits. All submitted schemes use the intermediate value of 1024 bits.
However, the NESSIE call was phrased in terms of number of operations, be-
cause it was felt that cost-based analysis introduces an additional parameter
that is not very well understood. Moreover, the difference between attack tech-
niques against symmetric and asymmetric schemes is already taken into ac-
count by the fact that the minimal computational cost of an attack against
NESSIE-recommended symmetric primitives is 2128 operations while the mini-
mal computational cost of an attack against NESSIE-recommended asymmet-
ric primitives is 280 operations.
Therefore, we use the following table, based on the hypothesis that the factori-
sation of 512-bit numbers with NFS needs a workfactor of 256 and that 190-bit
factors are found by ECM with a workfactor of 256.
Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve key size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

7.2.3 Proven security

A proof of security is the description of a (randomised) algorithm called a reduc-
tion algorithm. This algorithm is a (t′, ε′)-solver for some mathematical problem
and interacts with a (t, ε, qS)-forger for the signature scheme. For a random in-
stance of the problem the reduction algorithm sends a random-looking public
key to the forger and uses the forgery to solve the problem. Therefore ε′ ≤ ε and
t′ ≥ t.
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Usually qS ¿ t, and we will require k = log2(t/ε) = 80 (the attacker’s
computing power is estimated to 280 triple-DES operations) and log2 qS = 30
(the attacker cannot require more than a billion signed messages).

Simulation of signature queries. The black box that is used by the forger to
get the qS signatures depends on the public key. Therefore it is provided by the
reduction algorithm, which acts as an oracle. For each signature query made by
the forger, the reduction algorithm should answer with a valid signed message,
and this answer should be indistinguishable from an answer made by the signing
algorithm with the secret key. Therefore the reduction algorithm is also named
a simulator.

The reduction does not always succeed, partly because its simulation of an
equivalent signature scheme may not be perfect, and partly because the forgery
may be useless.

Uniformity of proofs. Uniform reduction means that the reduction algorithm
does not depend on the description of the forger. Non-uniform reduction means
that for any possible forger, there exists a reduction algorithm which is a solver.
An example of non-uniform reduction can be found in [435] where the reduction
algorithm depends on the success probability and number of queries of the forger.

Efficiency of proofs. We have a tight proof of security if t′/ε′ ' t/ε.
We have a not so tight proof of security if t′/ε′ ' qSt/ε.
We have a loose proof of security if t′/ε′ À qSt/ε, for example t′/ε′ ' t2/ε.
For example, for the security proof to give 80 bits of security, factorisation-

based schemes should use a 1536-bit modulus if they have a tight proof of security,
a 4096-bit modulus with a not so tight proof and a 10000-bit modulus with a
loose proof.

Equivalent signature schemes. Two signature schemes are equivalent when
the following conditions are satisfied:

– The possible values of param are the same.
– The distributions of the pk generated are indistinguishable.
– Both verification algorithms are the same.
– The output of the two Sign algorithms for fixed m and random r are indistin-

guishable. When this last condition is omitted, it is a weak equivalence.

Any (t, ε, qS)-forger for a signature scheme is also a (t, ε, qS)-forger for all equiv-
alent signature schemes. If qS ≤ 1, weak equivalence is sufficient.

A security proof for a signature scheme shows that if the mathematical prob-
lem is intractable, then there exists no forger for any scheme equivalent to it.

7.2.4 Proofs in an idealised world

Definition. A proof in an idealised world involves a restriction of the power of
the attacker: some components of the verification algorithm cannot be computed
by the forger alone, help from the simulator is needed. By definition all our
algorithms are deterministic, hence the components are deterministic functions
of their inputs.



224 7. Digital signature schemes

Basic oracle property. An idealised component has the basic oracle property
if the simulator knows the values of all inputs and outputs of this component.
Usually the basic oracle property is introduced in the proof by requesting that for
each access to this component, the attacker must send to the simulator a query
containing the input. Then the simulator computes the output of the component
and sends it to the attacker. The simulator behaves like an oracle for this function,
hence the name.

Usually the number of queries to the oracle is bounded by qO, and because
the actual computation of the idealised components takes time, a scheme with k
bits of security and with the appropriate time unit always has qO ≤ 2k.

Randomness. Instead of computing the idealised component, the simulator
may give random answers, provided that they agree with the properties of the
component.

The simulator needs to remember all the inputs that are queried and the an-
swers that are made, and make the appropriate consistency checks before answer-
ing. In other words, the reduction algorithm constructs the oracle input/output
table in answer to queries.

Such an idealised proof makes the assumption that the component has no
other useful property than the ones used for the consistency checks.

Programmability. Instead of choosing the answer at random from the set of
consistent answers, the simulator is allowed to generate the answer with any
technique that is indistinguishable from a random choice.

Example of idealised components and some terminology.

– Random oracle model. The idealised component is a hash function. The
only consistency check is that two identical inputs get the same answer, hence
the name [44]. This is the simplest possible consistency check and it was the
first idealised model used for security proofs [193]. The alternative generic
hash model terminology has been proposed [108].
The random oracle model is the most widely used model for security proofs in
an idealised world [44, 45, 46, 127].

– Generic group model. The idealised component is the group where some
computations take place. The consistency check has to make sure that algebraic
properties of the group operation are respected.
The generic group model appeared in [395, 486] and has been used to prove
the security of some specific schemes [106, 108].

– Random permutation model. The idealised component is a permutation,
and oracle queries can be made for the permutation or for the inverse permu-
tation. Consistency checks make sure that it is 1-to-1.
This model is used to prove the security of some specific schemes [232].

– Ideal cipher model. The idealised component is a block cipher. This is a
simultaneous use of multiple idealised permutations, one for each value of the
key.
This model is used to prove the security of some specific schemes [272, 232].
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Can we trust security proofs in an idealised world? Proofs in these models
cannot generically be translated into the real world [114, 194, 161], but it is widely
believed that a proof in an idealised model gives some confidence in the design
of a cryptographic primitive.

The impossibility result of Canetti, Goldreich and Halevi [114] shows that
there exist systems that are secure in an idealised model, but insecure when the
idealised component is replaced by any concrete component. Such a weakness is
very unlikely to be present in a simple cryptographic design, but cannot be ruled
out. The only solution is to find a proof in the real world.

Another problem with proofs in an idealised world is that they don’t specify
which concrete attacks against the idealised component should be prevented. The
availability of different proofs that idealise distinct components gives a partial
answer to this problem.

7.2.5 Assessment process

The digital signature submissions were assessed with reference to the submitted
security proof. The underlying intractability assumption was reviewed.

Variants of the scheme were studied to verify whether the designers have made
the optimal choices or not. When interesting variants were found, we interacted
with the submitters to find justifications for keeping the submitted design un-
changed. Compatibility with existing de facto standards was not received as a
good argument for not improving a scheme, because the goal of NESSIE is not
to recommend the de facto standards, but to recommend a portfolio of secure
and efficient primitives.

7.3 Overview of the common designs

We describe three types of design commonly used to build digital signature
schemes.

– The idea of using a trapdoor one-way function to obtain digital signatures dates
back to 1978 [452]. This paradigm is also named hash-then-invert or hash-then-
sign and NESSIE submissions RSA-PSS, ESIGN, Quartz, Flash and Sflash fall
into this category.

– The discrete logarithm problem was the first basis for security in public key
cryptography [168] and the first digital signature scheme based on this problem
was introduced in 1985 [184]. A wide family of other schemes based on the
discrete logarithm problem has been developed and the NESSIE submission
ECDSA is one of them.

– The above schemes don’t have a security proof without an idealised model.
There exist many schemes that have a security proof in the “real world” and
the NESSIE submission ACE-Sign is one of those.

This section contains much technical information about the design criteria for
digital signature schemes, and the key ideas of the security proofs that support
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them. Much of the material in this section appeared in various places, but no
previous overview of common designs for digital signature schemes covers all the
schemes submitted to NESSIE.

7.3.1 Schemes based on trapdoor one-way functions

7.3.1.1 Properties of one-way functions

Family of one-way functions. A family of one-way functions is a collection
of functions {fi : Si → Hi|i ∈ I} over some index set I =

⊕

l Il (disjoint union)
with the following properties.
OW1 There is an efficient randomised algorithm Gen which takes as input a

length parameter l and outputs an index i ∈ Il.
OW2 There is an efficient randomised algorithm which on input i outputs x ∈

Si. The resulting probability distribution is denoted x← Si.
OW3 Each fi is efficiently computable.

We remark that there is an efficient randomised algorithm that outputs
some y ∈ Hi: this algorithm generates x ← Si and finds y = fi(x). The
resulting probability distribution is written y ← Hi.

OW4 Preimage-resistance: for random i ← Gen(l), y ← Hi, the problem of
finding a value x ∈ Si such that fi(x) = y is intractable.

OW5 Second-preimage-resistance: for random i← Gen(l), x← Si, the problem
of finding a value z ∈ Si, z 6= x, such that fi(x) = fi(z) is intractable.

Property OW5 will imply non-malleability of the signature scheme. It is always
true if fi is injective.
Note that if the preimage-resistance has intractability k bits, then the set Hi has
at least 2k elements, because exhaustive sampling in Si is always possible.
Family of claw-free functions. A family of claw-free functions is a collection
of functions {fi : Si → Hi, gi : Ti → Hi|i ∈ I} over some index set I =

⊕

l Il
with the following properties.
CF1 There is an efficient randomised algorithm Gen which takes as input a

length parameter l and outputs an index i ∈ Il.
CF2 There are efficient randomised algorithms which on input i output x ∈ Si

or z ∈ Ti.
CF3 Each fi and gi are efficiently computable.
CF4 Claw-freeness: for a random i← Gen(l), the problem of finding two values

x ∈ Si and z ∈ Ti such that fi(x) = gi(z) is intractable.
We remark that if (f, g) is claw-free, both f and g are preimage-resistant.
Note that if the claw-freeness has intractability k bits then the set Hi has at least
22k elements, or exhaustive sampling in Si and Ti would lead to a collision with
the birthday paradox.

Uniformity. In the above general definitions, the distributions i← Gen(l), x←
Si and y ← Hi don’t need to be uniform.
A family f is said to be uniform if the following additional property holds.

UN The distribution y ← Hi is indistinguishable from the uniform distribu-
tion in Hi.
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Trapdoor invertibility. The family f is invertible with a trapdoor if the fol-
lowing additional properties hold.
TR1 The algorithm Gen also outputs a trapdoor trapi.
TR2 There is an efficient (randomised) algorithm that on input i, trapi, y ∈ Hi

returns a value x = f−1i (y) such that fi(x) = y.
TR3 The distribution of x generated by y ← Hi and x = f−1i (y) is indistin-

guishable from the distribution x← Si.
Note that in many examples of such families of functions we have Si = Ti = Hi
and fi and gi are permutations, but these more general definitions are necessary
to cover all submissions to NESSIE.

A generalisation to verifiable simulatable functions. While the usual def-
inition of the hash-then-invert paradigm makes the hypothesis that the fi are
efficiently computable, this requirement can be relaxed for the FDH and PFDH
constructions, as described below. This is used e.g. in Sect. 7.3.2.11.

A family of verifiable simulatable one-way functions is similar to a family of
one-way functions, but with the properties OW2 and OW3 replaced by
OW2S There exists an efficient randomised algorithm Sf

i which on input i outputs
a pair (x, y) ∈ Si×Hi such that y = fi(x). The corresponding probability
distributions are written x ← Si and y ← Hi. This algorithm simulates
x← Si, y = fi(x).

OW3T Each test function Tf
i : Si×Hi → 0/1 defined by Tf

i(x, y) =
(
y ?= fi(x)

)
is

efficiently computable.
A family of verifiable simulatable claw-free functions is similar to a family of
claw-free functions, but with the properties CF2 and CF3 replaced by
CF2S There exist two efficient randomised algorithms Sf

i and S
g
i which on input

i output a pair (x, y) ∈ Si×Hi such that y = fi(x) or a pair (z, y) ∈ Ti×Hi
such that y = gi(z) and such that the two corresponding distributions
y ← Hi are indistinguishable.

CF3T The test functions Tf
i : Si × Hi → 0/1 and T

g
i : Ti × Hi → 0/1 de-

fined by Tf
i(x, y) =

(
y ?= fi(x)

)
and T

g
i (z, y) =

(
y ?= gi(z)

)
are efficiently

computable.

7.3.1.2 FDH: Full Domain Hash

Definition. This is the most natural scheme. It was formally introduced in 1988
[38] and was provided with a security proof in the random oracle model in 1993
[44].

The f-FDH digital signature scheme with appendix is defined as follows. For
any i ∈ I the components are a hash function Hi with output in Hi and a
trapdoor invertible verifiable function fi : Si → Hi with test Tf

i. The appendix is
an element of Si and Hi is idealised as a (programmable) random oracle.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification algorithm on m‖s, where m is the message and s ∈ Si the

appendix, checks if Tf
i(s,Hi(m)) ?= 1.

– The signature generation algorithm computes h = Hi(m) and uses the trapdoor
to compute s = f−1i (h). The signed message is (m, s).
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Note that in the multi-key setting the hash functions Hi should be independent.
However, in most actual published FDH schemes Hi depends only on the length
parameter.

Theorem 7.1 (Necessary conditions). The following conditions are neces-
sary to the existential unforgeability of the f-FDH signature scheme.

1. Preimage-resistance of f.
2. Second-preimage-resistance of f is necessary for non-malleability.
3. Collision-resistance of H, which implies second-preimage-resistance.
4. Preimage-resistance of H.

Proof. We describe an attacker if one of the conditions does not hold.

1. The attacker computes h = Hi(m) and finds a preimage s ∈ f−1i ({h}).
2. The attacker queries for a valid signed message (m, s) and computes another
s′ ∈ f−1i ({Hi(m)}).

3. With a collision Hi(m) = Hi(m
′) with m 6= m′, the attacker queries for a

valid signed message (m, s). Then (m′, s) is a new valid signed message.
4. The attacker computes a pair (s, h) = Sf

i and finds a preimagem ∈ H−1i ({h}).
Then (m, s) is a valid signed message.

ut

Theorem 7.2. (Security result if f is verifiable simulatable one-way).
Let f be uniform one-way with preimage-resistance of k+log2 qH bits and second-
preimage-resistance of k bits. If either f−1i is deterministic or the forger is SO-

CMA, then in the random oracle model with qH hash queries and qS signing
queries f-FDH has a security level of k bits.

Proof. This result dates back to Bellare and Rogaway [44]. It is a special case of
the security result for PFDH (see next section). ut

Generic attack. Theorem 7.2 is the best possible generic security result for a
FDH scheme, because it applies to a trapdoor invertible bijection of a set of 22k

elements with preimage resistance of 2k bits. Such a trapdoor invertible bijection
might exist, and the FDH scheme based on this function can be broken with 2k

hash queries and no signature query, by looking for a collision between random
Hi(m) and random fi(s).

Theorem 7.3. (Security result if f comes from a verifiable simulatable
claw-free pair). Let (f, g) be uniform claw-free with intractability of k+ log2 qS
bits with f having second-preimage-resistance of k bits. If either f−1i is determin-
istic or the forger is SO-CMA, then in the random oracle model with qH hash
queries and qS signing queries f-FDH has a security level of k bits.

Proof. This result applied to RSA dates back to Coron [127]. Its generalisation
to claw-free pairs is due to Dodis and Reyzin [172]. It is a special case of the
security result for PFDH (see next section). ut
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Generic attack. Theorem 7.3 is the best possible security result for a generic
FDH scheme, because it applies to a trapdoor invertible bijection of a set of 22k

elements with claw-freeness of k bits. Such a trapdoor invertible bijection might
exist, and the FDH scheme based on this function can be broken with 2k hash
queries and no signature query, by looking for a collision between random Hi(m)
and random fi(s).

7.3.1.3 FDH with a non-deterministic f
−1
i

Definition. For non-deterministic f−1i the previous results only prove the secu-
rity of the FDH design if the forger is not allowed to make multiple queries for
a single message. However, it is possible to tweak the design to make it deter-
ministic and have proven security. The following FDH-D technique is used in the
FLASH and QUARTZ families [428, 136] and in ESIGN-D [230].

Let f−1i (r, h) denote the randomised algorithm that computes a preimage of h
with random seed r ← Rh. Let prf be a family of pseudo-random functions such
that the output distribution of prf∆(h) for uniform random ∆ is indistinguishable
from the distribution r ← Rh.

– The key generation algorithm chooses a random k-bit index ∆, runs Gen and
sets pk = i and sk = (trapi,∆).

– The verification algorithm on m‖s, where m is the message and s ∈ Si the
appendix, checks if Tf

i(s,Hi(m)) ?= 1.
– The signature generation computes h = Hi(m) and r = prf∆(h) and uses the

trapdoor to compute s = f−1i (r, h). The signed message is (m, s).

A remark. For some schemes (QUARTZ or ESIGN-D) the distribution r ← Rh
is defined as follows. A value r is chosen uniformly from a set R. If it is incom-
patible with h then it is discarded and another r is chosen, until a compatible
value is found. Then prf∆ is a function that generates an (infinite) sequence of
uniform values r ∈ R and takes the first that is compatible with h.

7.3.1.4 PFDH: Probabilistic Full Domain Hash

Definition. This scheme was defined by Coron [129] but the underlying ideas
date back to Bellare and Rogaway [46].

For any i ∈ I the components are a hash function Hi with output in Hi, a
trapdoor invertible verifiable function fi : Si → Hi with test Tf

i and a set Ri with
uniform sampling in 2ki elements. The appendix is an element of Si×Ri and Hi
is idealised as a (programmable) random oracle.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification algorithm on m‖r‖s, where m is the message, r ∈ Ri and
s ∈ Si, checks if Tf

i(s,Hi(m‖r)) ?= 1.
– The signature generation algorithm generates r ← Ri, computes h = Hi(m‖r)

and uses the trapdoor to compute s = f−1i (h). The signed message is (m, r, s).
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An alternative description of PFDH is that it is an FDH signature scheme on
messages of the form m‖r, with a restriction on the attacker. The attacker is not
able to decide the r-part of his queries to the signature oracle. Therefore if Ri
is sufficiently large, the attacker does not learn anything useful from the signing
queries.

Theorem 7.4. (Security result if f is verifiable simulatable one-way).
Let f be uniform one-way with preimage-resistance of k+log2 qH bits and second-

preimage-resistance of k bits. If either f−1i is deterministic or qS <
√
2ki , then

in the random oracle model with qH hash queries and qS signing queries f-PFDH
has a security level of k bits.
Note that when based on one-wayness, PFDH does not have better security than
FDH.

Proof. This result is a generalisation of the proof by Bellare and Rogaway for
FDH [44]. Dodis and Reyzin [172] give an argument showing that no better proof
can be found in a black box model.

Assuming the existence of a (t, ε, qS , qH)-forger for f-PFDH, we show how
to construct an algorithm (the simulator) that runs in time t′ ' 2t and either
breaks the preimage-resistance of f with probability ε′ ' ε/(qH + qS) or breaks
the second-preimage-resistance of f with probability ε′′ ' ε. 3

The simulator receives a challenge (i, y ∈ Hi). Then it chooses a random
element j0 ∈ {1...qH + qS} and runs the forger on pk = i.

For a hash query mj‖rj , if the answer was already defined then it is returned.
Else, if it is the j0-th query then the answer is the challenge y, and otherwise the
simulator picks a random (xj , yj)← Sf

i and sets Hi(mj‖rj) = yj . This simulates
the hash function because yj has uniform distribution (property UN).

For a signing query mj the simulator generates rj ← Ri and internally simu-
lates a hash query for mj‖rj . It returns the corresponding rj‖xj . This fails if the
j0-th query is a signing query, which happens with probability qS

qH+qS
.

It is also necessary to show that the simulator makes a good simulation of the
signing algorithm. Property TR3 implies that the simulation is valid for signing
queries of distinct values of m. A problem may only arise if multiple signature
queries for the same message are made [497]. If two answers have the same rj ,
then the simulation also answers the same xj . If f−1i is deterministic, this is
exactly the right behaviour. Else we should avoid such a collision, which we do
if qS <

√
2ki or if the forger is SO-CMA.

The forgery is some m‖r‖s. If the signing oracle never received m as a query
and returned an answer rj‖xj with rj = r, then Hi(m‖r) is unset unless it was
a hash query. In that case, if the forgery corresponds to the j0-th query (which

3 Dodis and Reyzin propose a proof where ε′

ε
' 1

qH+1
, but their proof is flawed in the

following way. (The reader is invited to look at the sketch proof of (b) in Sect. 3
of [172]). If the forger makes the corresponding hash query after each signing query,
then with probability qS

qH
their simulator will be unable to answer the selected hash

query. If qH − qS ¿ qH , the success of the simulator is ε′

ε
' 1

q2
H
.
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happens with probability 1
qH+qS

), then it gives a preimage of y. This contradicts
property OW4 of one-way functions.

Else the signing oracle received m as a query and returned an answer r‖xj
with xj 6= s. This contradicts the second-preimage resistance, property OW5 of
one-way functions.

The running time of the simulator is the running time t of the forger plus the
time corresponding to qH + qS executions of the verification algorithm, which is
bounded by t. ut

Theorem 7.5. (Security result if f comes from a verifiable simulat-
able claw-free pair). Let (f, g) be uniform claw-free with intractability of
k +max(log2 qS − ki, 0) bits, with f having second-preimage-resistance of k bits.

If either f−1i is deterministic or qS <
√
2ki , then in the random oracle model with

qH hash queries and qS signing queries f-PFDH has a security level of k bits.
When based on claw-freeness, PFDH does have better security than FDH.

Proof. This result dates back to Bellare and Rogaway [44] and Coron [129] showed
that this is optimal (under reasonable assumptions). The generalisation to claw-
free pairs is due to Dodis and Reyzin [172].

Assuming the existence of a (t, ε, qS , qH)-forger for f-PFDH, we construct
a simulator that either breaks the claw-freeness of (f, g) or breaks the second-
preimage-resistance of f.

The simulator receives a challenge i. Then it generates a list L of qS random
elements of Ri and runs the forger on pk = i. Some elements may have multiple
occurrences in L.

For a hash query mj‖rj , if the answer was already defined then it is returned.
Else, if rj ∈ L the simulator picks a random (xj , yj)← Sf

i and sets Hi(mj‖rj) =
yj . Else the simulator picks a random (zj , yj) ← S

g
i and sets Hi(mj‖rj) = yj .

This simulates the hash function because yj has a uniform distribution (property
UN).

For a signing query mj the simulator takes an element rj ∈ L and internally
simulates a hash query for mj‖rj . Then it deletes rj from L. Since rj was in L
the hash query has generated an xj and the simulator can return the appendix
rj‖xj .

For the same reason as in the previous proof, this is a good simulation of the
signing algorithm if f−1i is deterministic, if qS <

√
2ki or if the forger is SO-CMA.

If the forgery m‖r‖s does not contradict the second-preimage resistance, then
it corresponds to a hash query, which either had an f answer or a g answer.
If it corresponds to a g answer, then it contradicts the claw-freeness because
f(s) = g(zj). When the list L contains q elements, a g answer happens with
probability (1− 2−ki)q. The number of elements of L decreases regularly during
the simulation, so the probability that the forgery corresponds to a g answer is
ε′/ε = 1

qS

∑

q=0...qS
(1− 2−ki)q.

If qS ¿ 2ki then ε′/ε ' (1 − 2−kiqS) ' 1 and therefore the security loss is
− log2(ε

′/ε) ' 0.
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If qS À 2ki then ε′/ε ' 1
qS

1
2−ki

and therefore the security loss is − log2(ε
′/ε) '

log2 qS − ki. ut

7.3.1.5 PSS and PSSR: partial message recovery

Definition. PSS means Probabilistic Signature Scheme, and PSSR means Prob-
abilistic Signature Scheme with message Recovery.

The PSS and PSSR schemes are due to Bellare and Rogaway [46]. They
include some message recovery in (P)FDH. The key idea is that the output of
H can be smaller than Hi, provided that it is collision-intractable and that the
input of f−1i is random.

For any i ∈ I, the recovered part of the message is ai bits long and it is
an element of the set Ai = {0, 1}ai . The components of the scheme are a hash
function Hi with output in Bi, a hash function Gi : Bi → Ai and a trapdoor
invertible function fi : Si → Hi such that Hi = Ai×Bi. The functions Hi and Gi
are idealised as (programmable) random hash oracles. For k bits of security the
set Bi should have at least 22k elements.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification of m̂‖s computes a‖b = fi(s), m̄‖r = a ⊕ Gi(b) and checks

Hi(m̂‖m̄‖r) ?= b. The message is m = m̂‖m̄.
– The signature generation for the messagem = m̂‖m̄ computes h = Hi(m̂‖m̄‖r)

and a = (m̄‖r) ⊕ Gi(h) and uses the trapdoor to compute s = f−1i (a‖h). The
signed message is m̂‖s.

PSS is the special case where this scheme is applied to PFDH with m̂ = m and
m̄ = 0...0 or another constant.

Theorem 7.6. (Security result). PSS(R) has the same security as (P)FDH.

Proof. This result is due to Coron [129] and is an improvement on the original
result of Bellare and Rogaway [46]. For a complete proof, the reader should look
at those papers.

The main difference from (P)FDH is that the unique hash function m 7→
Hi(m) is replaced by m 7→ a‖h where h = Hi(m) and a = m̄⊕ Gi(h). If there is
no collision in h, then all oracle queries to Hi or to Gi make a commitment to
some value for m. This is the essential reason why the security of PSS(R) is the
same as the security of (P)FDH if the number of hash-oracle queries is at most
the square root of the number of elements of Fi.

Note that this theorem also applies to the variant with h‖a instead of a‖h,
which just uses the different definition Hi = Bi ×Ai and is also named PSS. ut

7.3.1.6 OPSSR: maximal message recovery

Definition of Basic OPSSR. OPSSR means Optimal Padding for Signature
Schemes with message Recovery.

The Basic OPSSR scheme is due to Granboulan [232] and is designed to have
maximal message recovery. It is based on the fact that the important property of
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Hi is not one-wayness but collision-intractability. Therefore a (random) permu-
tation can be used instead of a hash function.

For any i ∈ I, the set of possible messages isMi and Vi is a set of 2k elements.
The components of the scheme are a bijection Pi : Hi →Mi×Vi and a trapdoor
invertible function fi : Si → Hi. The function Pi is idealised as a (programmable)
random permutation oracle.

– The key generation algorithm runs Gen and selects an arbitrary public value
vi ∈ Vi, e.g. vi = 0k. It sets pk = (i, vi) and sk = (trapi, vi).

– The verification algorithm on s computes m‖v = Pi(fi(s)) and checks if v ?= vi.
– The signature generation algorithm uses the trapdoor to compute the signed

message s = f−1i (P−1i (m‖vi)).
A probabilistic variant of OPSSR can be defined as in PFDH, by replacing m
with m‖r.
Definition of OPSSR. The full OPSSR scheme can do partial message recov-
ery, which allows the signer to sign messages of arbitrary length with a fixed
public key. It is a variant of Basic OPSSR where one replaces the bijection Pi
by a keyed family Ei with keyspace equal to the output of a collision-intractable
hash function Ĥi. It is defined by Pi(m̂‖a) = m̂‖Ei[Ĥi(m̂)](a). The family Ei is
idealised as a (programmable) ideal cipher.

– The key generation algorithm is the same as for Basic OPSSR.
– The verification algorithm on m̂‖s computes m‖v = m̂‖Ei[Ĥi(m̂)](fi(s)) and

checks if v ?= vi.
– The signing algorithm uses the trapdoor to compute the signed message m̂‖s

where s = f−1i (E−1i [Ĥi(m̂)](m̄‖vi)).
Comparison with previous paddings. FDH is a special case of Basic OPSSR
based on the involution Pi(m‖v) = m‖(vi ⊕ v ⊕ Hi(m)) and on the family {fMi :
M× Si → M× Hi} defined by fMi (m‖x) = m‖fi(x). This family fM has the
same properties as f, but the proof given below does not apply to FDH because
this function Pi is trivially not a random permutation.

PSS(R) is another special case of Basic OPSSR based on Pi(m̂‖a‖b) =
m̂‖m̄‖(vi ⊕ b⊕ Hi(m̂‖m̄)), where m̄ = a⊕ Gi(b), and its inverse P−1i (m̂‖m̄‖v) =
m̂‖(m̄ ⊕ Gi(b))‖b, where b = vi ⊕ v ⊕ Hi(m̂‖m̄), and on the family fM̂. But the
proof given below does not apply to PSS(R) because this function Pi is trivially
not a random permutation.

The main advantage of OPSSR compared to PSSR is that the message ex-
pansion can be reduced to k bits (the size of v) instead of 2k bits (the size of
Bi).
Theorem 7.7. (Security result). OPSSR has the same security as (P)FDH,
where the random permutation model replaces the random oracle model.

Proof. This result is due to Granboulan [232]. For a complete proof, the reader
should look at this paper.

As with PSS(R), the key idea is that all oracle queries to Pi or P−1i make a
commitment to some value for m. ut
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7.3.1.7 CPC : generalised Chained Patarin Construction

Definition. This technique is used in Quartz [136] and is also named the gen-
eralised Feistel-Patarin construction [131].

The parameter r ≥ 1 is the number of rounds. The components are r hash
functions (Hi,j)j=1...r with output in Si and a trapdoor function fi : Si×Ti → Si.
The Hi,j are idealised as programmable random oracles, the set Si has a group
operation ⊕ and the appendix is an element of Si × Ti × ...× Ti

︸ ︷︷ ︸

r times

,

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification algorithm on m‖s‖t1‖...‖tr sets sr = s, computes the sequence
sj−1 = fi(sj‖tj)⊕ Hj(m) for j = r...1 and checks if s0 ?= 0.

– The signature generation algorithm sets s0 = 0, computes the sequence sj‖tj =
f−1i (sj−1 ⊕ Hj(m)) for j = 1...r and sets s = sr.

If f−1i is not deterministic the same technique as for FDH-D can be used and is
named CPC-D.

Theorem 7.8. (Security result). While the proven security of CPC is the
same as for FDH, the generic attack against FDH does not work against CPC.
Therefore the actual security of CPC may be better than FDH.
In fact, Courtois proved that if qS = 0 then the generic attack against CPC

is the best possible.

Proof. See Courtois’ paper [131]. ut

Generic attack. Let S be the number of elements of Si and let us compute
Sr/(r+1) random values (s‖t, fi(s‖t)). These values allow us to invert fi with
probability S−1/(r+1).

The generic attack then generates Sr/(r+1) random messagesm and computes
the corresponding (Hi,j(m))j=1...r. For each m the probability that a forgery can
be made by using the precomputed partial table for f−1i is S−r/(r+1), so the
average number of forgeries made by this attack is 1.

7.3.2 Schemes based on the Discrete Logarithm Problem

7.3.2.1 Introduction

We describe how most DL-based signature schemes [387, 465, 466, 408, 409, 370,
371, 268, 285, 4, 378, 432] can be built by mixing four components, which we call
a group, a hash function, a projection and a category. We describe some possible
values of each component, and give some security proofs.

All the security proofs for DL-based signature schemes work in an idealised
model. Therefore it may happen that the scheme is not secure when a concrete
component is chosen to replace an idealised component, and it may even happen
that any choice of a concrete component makes an insecure scheme. We will
show how the security can be proven in three independent ways: when the group
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is idealised, or when the hash function is idealised, or when the projection is
idealised. A scheme for which a security proof exists in all three models is secure
in the real world unless all three concrete components are weak choices.

The toolbox. The signature scheme is built on

– A DL-group 〈G〉 of order q (usually a prime number) where computing dis-
crete logarithms is hard.
The set of possible private keys is V ⊂ Z/qZ. If the private key of the signer
is v ∈ V, the corresponding public key is the element V = Gv. Depending on
the category, we may need V = Z/qZ or V = (Z/qZ)×.
In this section all groups will be denoted multiplicatively, even in the case of
elliptic curves.

– A projection. This is a function p : 〈G〉 → R, where R can be an arbitrary
set.

– A hash function that makes a digest of the message. It is a function H :
M×R→ H, whereM is the set of possible messages.

– A category that defines the formulae for signature and verification.
The category defines two functions φ and ψ : H × R × S → Z/qZ and a
function σ : I → S, where I ⊂ H × R × V × K, S = Z/qZ or (Z/qZ)× and
K = Z/qZ or (Z/qZ)×.

Description. The digital signature scheme works as follows:

– Verification. The verification of (m, r, s) ∈M×R×S computes h = H(m, r),
α = φ(h, r, s), β = ψ(h, r, s), R = GαV β and checks if r ?= p(R).

– Signature. To sign the message m one takes a random k ∈ K and computes
R = Gk, r = p(R) and h = H(m, r), until (h, r, v, k) ∈ I and s = σ(h, r, v, k).
The signed message is (m, r, s).

– Parameters and keys. For most DL-based schemes, the description of 〈G〉 is a
public parameter and the public key is V . Schemes where both 〈G〉 and V are
in the public key might be more secure in the multi-key setting.

– Partial message recovery. For some schemes the p function is designed to allow
partial message recovery. The verification r ?= p(R) also extracts the recovered
message m̄.

7.3.2.2 DL-groups

DL-based signature schemes do computations in a cyclic group 〈G〉 of known
order q and known generator G. Multiplying or taking inverses of elements of
the group should be easy, but elements of 〈G〉 might be indistinguishable from
elements of a larger set G. 4

Usually 〈G〉 is a cyclic subgroup of the multiplicative group (Z/pZ)× of inte-
gers modulo p, or an elliptic curve subgroup, and q is a prime number.

4 Shoup [489, Sect. 13] defines the more complete notion of “abstract group”
(H,G,g, µ, ν, E ,D, E ′,D′). His G is a cyclic group generated by g: it is 〈G〉 with
our notation. His H is a group that contains G: it is G with our notation. His µ is
our q and his ν is the index of G in H. His E and D define bijective encodings of the
elements of H to byte strings. His E ′ is a partial encoding, and corresponds to what
we call a “projection”.
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The exponentiation is a bijection from Z/qZ to 〈G〉 defined by k 7→ Gk, and
the discrete logarithm is the inverse of that bijection. By definition, computing
the discrete logarithm in a DL-group is intractable.

(Z/qZ)× is the set of invertible elements of Z/qZ, and for any k ∈ (Z/qZ)×

the group element Gk is a generator of 〈G〉. One must know the factorisation of
q to compute inverses in (Z/qZ)×.

Let #q be an integer smaller than log2 q and let [Z/qZ]# be the subset of
Z/qZ that contains the integers smaller than 2#q. Then [Z/qZ]# form a group
under the operation ⊕ corresponding to the XOR of bit strings of length #q.

7.3.2.3 Hash function

The function H :M×R → H should be easy to compute, should have uniform
random output for random m and may have some of the following properties.

– H is Type I if ∀m ∈M and r, r′ ∈ R, H(m, r) = H(m, r′). This common value
is called H(m).
H is Type II if it is not Type I.

– H with Type I is collision-resistant if it is hard to find distinct inputs m 6= m′

such that H(m) = H(m′).
– H with Type II is collision-resistant if it is hard to find distinct inputs (m, r) 6=

(m′, r′) such that H(m, r) = H(m′, r′).

– H with H ⊂ [Z/qZ]# and R ⊂ [Z/qZ]# is xor-collision-resistant if given ran-
dom r, r′ it is hard to find m,m′ such that H(m, r)⊕ r = H(m′, r′)⊕ r′. For a
type I hash, this is equivalent to preimage-resistance.

– H with H ⊂ Z/qZ and R ⊂ Z/qZ is add-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r) + r = H(m′, r′) + r′. For a type
I hash, this is equivalent to preimage-resistance.

– H with H ⊂ Z/qZ and R ⊂ (Z/qZ)× is div-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r)/r = H(m′, r′)/r′. For a type I
hash, this is equivalent to preimage-resistance.

– H is suitable as a random oracle if the knowledge of any number of input-output
pairs cannot help to build an algorithm that will compute another input-output
pair without doing the computation of H.

Usually one takes a cryptographic hash function such as those studied in Chapter
4. It is likely that these functions have uniform output and have all the variants of
collision-resistance mentioned above. However, strictly speaking, none is suitable
as a random oracle, because of their extensibility property [109].

7.3.2.4 Projections

The function p : 〈G〉 → R is easy to compute by the signer, and the verifier
should be able to test if r ?= p(R) for R ∈ 〈G〉 and r ∈ R. Note that if elements of
〈G〉 are indistinguishable from elements of G, then p is defined on the complete
group G. The projection may have some of the following properties.
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– p is ε-almost uniform if ∀r ∈ R, PrR∈〈G〉[p(R) = r] ≥ ε. This is similar to the
entropy-smoothing property defined by Shoup [489].

– p is ε-almost invertible if there exists an efficient algorithm to compute the
function p−1 : R → P(〈G〉) such that
– ∀R ∈ p−1(r), p(R) = r
– At least a proportion ε of the sets p−1(r) is non empty.
– Elements randomly taken from random sets p−1(r) are indistinguishable

from elements randomly taken from 〈G〉.
– p is ` + 1-collision-resistant for ` ≥ 1 if it is hard to find distinct R0, ..., R`

such that p(R0) = ... = p(R`).
– p is suitable as a random oracle if the knowledge of any number of input-output

pairs cannot help to build an algorithm that will compute another input-output
pair without doing the computation of p or p−1. Note that an almost invertible
function can be suitable as a random oracle (see also Sect. 7.3.2.7).

Examples of projections.

– Identity projection. For G ⊂ R it is p(R) = R.
This function is almost uniform and collision-resistant. It is not almost-
invertible if membership of 〈G〉 is hard to check. It is not suitable as a random
oracle.

– DSA projection. For G = (Z/pZ)× and R = Z/qZ this is p(R) = R mod q.
This function is almost uniform and probably log q-collision-resistant [105]. It
is not almost-invertible if membership of 〈G〉 is hard to check. It is not suitable
as a random oracle.

– EC projections. If G is an elliptic curve defined over some finite field F, let
(Rx, Ry) be the coordinates of a point R and iF a mapping from F to the set
of integers.
– ECxq projection. For R = Z/qZ it is p(R) = iF(Rx) mod q.
– ECx2 projection. For R = [Z/qZ]# it is p(R) = iF(Rx) mod 2#q.
– ECaddq projection. For R = Z/qZ it is p(R) = iF(Rx +Ry) mod q.
These functions are almost uniform and almost invertible. They are probably
log q-collision-resistant. They are not suitable as a random oracle.

– KCDSA projection. p is a hash function with output in R, e.g. based on
SHA-1 (see Sect. 4.4.2).
This function is uniform and collision-resistant. It is almost (because of the
extensibility property) suitable as a random oracle. It is not almost-invertible.

– Permuted projection. Any projection p′ : 〈G〉 → R can be composed with
a random permutation P : 〈G〉 → 〈G〉 to obtain p = p′ ◦ P.
The projection p inherits the properties of p′, but is also suitable as a random
oracle.

Projections with partial message recovery. Let F : 〈G〉 × M̄ → R and
F−1 : 〈G〉×R → M̄∪{fail} such that ∀R ∈ 〈G〉, F(R, m̄) = r ⇔ F−1(R, r) = m̄.
Then the function p(R) = F(R, m̄) is a projection that allows partial message
recovery. The verification r ?= p(R) is false if, and only if, F−1(R, r) returns fail .
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– PVSSR projection. This is the composition of an arbitrary encryption func-
tion E over R, with a key selected from 〈G〉, and a redundancy function ρ :
M̄ → R. The definition is F(R, m̄) = ER ◦ ρ(m̄) and F−1(R, r) = ρ−1 ◦E−1R (r).
The redundancy function ρ should have the following properties:
– it is collision resistant,
– the inverse ρ−1 : R → M̄ ∪ {fail} is easy to compute.
– a random element m̃ ∈ R is very unlikely to be the image of some m̄ ∈ M̄,
If E is a secure cipher, then the projection is uniform, collision-resistant and
suitable as a random oracle, but is not almost invertible.

– Group projection. This is a special case of the PVSSR projection, based
on any other projection p′ : 〈G〉 → G such that G is a group with an action
on R. This defines a one-time-pad encryption scheme and the projection is
p(R) = p′(R) · ρ(m).
This projection has the same properties as p′.

– NS projection. This is the Group projection where G = R = Z/qZ with
additive action. It is defined by the equation p(R) = p′(R) + ρ(m) mod q.
This projection has the same properties as p′.

– NR projection. This is the Group projection where G = G = (Z/pZ)×

has a multiplicative action on R = Z/pZ, and with a tweak of the Identity
projection p′(R) = R−1 mod p. The NR projection is defined by the equation
ρ(m) = R · p(R) mod p.

7.3.2.5 Categories

Definition and properties. The category is described by the sets V, K and S,
subsets of Z/qZ, the setsH andR, the two functions φ and ψ : H×R×S → Z/qZ
and a set I ⊂ H ×R× V ×K.

A category should meet some of the following properties.

– Other functions. Let A be the set of possible outputs for φ and B the set
of possible outputs for ψ. Five additional functions σ, λh, λs, λr, µh can be
defined, and for each of these functions there exists an efficient algorithm that
computes the result.
– σ : I → S.
– λh : A× B ×R → H
– λs : A× B ×R → S
– λr : A× B ×H → R
– µh : S ×R× V ×K → H

– Main properties. These properties are mandatory for all DL-based schemes.
(m1) For all (h, r, v, k) ∈ I, the value s = σ(h, r, v, k) is such that if α =

φ(h, r, s) and β = ψ(h, r, s) then k = α+ v · β.
(m2) For all v ∈ V and h ∈ H, Pr

r∈R, k∈K
[(h, r, v, k) ∈ I] ≥ εm.

Property (m1) implies that all signatures generated by the signing algorithm
are valid. Property (m2) implies that the expected number of random values
for k needed to generate a signature is less than 1

εm
.
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– Other properties.
(o1) For all (h, r, s) ∈ H ×R× S the equation λh(φ(h, r, s), ψ(h, r, s), r) = h

holds.
(o2) For all (h, r, s) ∈ H × R × S the equation λs(φ(h, r, s), ψ(h, r, s), r) = s

holds.
(o3) The function s 7→ µh(s, r, v, k) is the inverse of h 7→ σ(h, r, v, k).

– Additional properties for security with idealised p.
(p1) For fixed (h, r, v) and uniform k such that (h, r, v, k) ∈ I the value

σ(h, r, v, k) is uniform in S.
Note that this property together with the hypothesis that the function
k 7→ p(Gk) is (almost-)uniform and one-way implies that the set of pos-
sible valid appendices (r, s) for a message m is uniformly distributed.

(p2) For fixed h ∈ H and v ∈ V and uniformly random s ∈ S and r ∈ R, the
value k = φ(h, r, s) + v · ψ(h, r, s) is uniformly random in K.
Note that failure may happen if I 6= H×R× V × K and if k 6∈ K. It is
accepted that the probability of this failure is negligible.

(p3) Given random r and r′, it is hard to find some (α, β) and messages m
and m′ such that λh(α, β, r) = H(m, r) and λh(α, β, r

′) = H(m′, r′).
Note that for a type I hash, this property is usually equivalent to the
preimage-resistance of H.

– Additional properties for security with idealised H.
(h1) If h = λh(α, β, r) and s = λs(α, β, r), then α = φ(h, r, s) and β =

ψ(h, r, s).
(h2) Pr

α∈A,β∈B
[λh(α, β, p(G

αV β)) ∈ H and λs(α, β, p(G
αV β)) ∈ S] ≥ εh.

– Additional properties for security with idealised 〈G〉.
(g1) For all (h, r, s) the equation λr(φ(h, r, s), ψ(h, r, s), h) = r holds.
(g2) For any (h, h′, r, s), if λr(φ(h, r, s), ψ(h, r, s), h

′) = r then h′ = h.

Simple categories. These are the categories where H ⊂ Z/qZ and R ⊂ Z/qZ
and where each of φ and ψ only does one operation in Z/qZ. These are less
general than Meta-ElGamal [251] or TEGTSS [105] schemes, but cover all actual
published schemes.

Examples. These are taken from the literature. Properties (m1), (m2), (o1),
(o2), (o3), (p1), (p2), (h1) and (h2) hold for all these examples.

– ElGamal category. Let H ⊂ Z/qZ, R = V = K = S = B = (Z/qZ)×

and A = Z/qZ. Because I = {(h, r, v, k)|h + v · r ∈ (Z/qZ)×} property
(p2) can fail with negligible probability. Property (p3) is equivalent to div-
collision-resistance of H. Properties (g1) and (g2) hold with the restrictions

H ⊂ (Z/qZ)× and A = (Z/qZ)×. Properties (m2) and (h2) hold with εm = ϕ(q)
q

and εh = |H|
q .

φ(h, r, s) = h/s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r/s λs(α, β, r) = β−1 · r
σ(h, r, v, k) = (h+ v · r)/k λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k · s− v · r
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– Inverse ElGamal category. Let H ⊂ Z/qZ, R = V = K = S = B =
(Z/qZ)× and A = Z/qZ. Because I = {(h, r, v, k)|h+v ·r ∈ (Z/qZ)×} property
(p2) can fail with negligible probability. Property (p3) is equivalent to div-
collision-resistance of H. Properties (g1) and (g2) hold with the restrictions

H ⊂ (Z/qZ)× and A = (Z/qZ)×. Properties (m2) and (h2) hold with εm = ϕ(q)
q

and εh = |H|
q .

φ(h, r, s) = h · s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r · s λs(α, β, r) = r−1 · β
σ(h, r, v, k) = k/(h+ v · r) λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k/s− v · r

– GOST category. Let H ⊂ (Z/qZ)×, V = K = S = A = Z/qZ and R =
B = (Z/qZ)×. Property (o3) needs the restriction K = (Z/qZ)×. Property (p3)
is equivalent to div-collision-resistance of H. Properties (g1) and (g2) hold.

Properties (m2) and (h2) hold with εm = 1 and εh = |H|
q .

φ(h, r, s) = s/h λh(α, β, r) = β−1 · r
ψ(h, r, s) = r/h λs(α, β, r) = αβ−1 · r
σ(h, r, v, k) = k · h− v · r λr(α, β, h) = β · h
µh(s, r, v, k) = (s+ v · r)/k

– GDSA category. Let H ⊂ Z/qZ, K = S = A = B = Z/qZ and R = V =
(Z/qZ)×. Property (p3) is equivalent to div-collision-resistance of H. Properties
(g1) and (g2) hold with the restrictions H ⊂ (Z/qZ)× and A = (Z/qZ)×.
Properties (m2) and (h2) hold with εm = 1 and εh = |H|

q .

φ(h, r, s) = h/r λh(α, β, r) = α · r
ψ(h, r, s) = s/r λs(α, β, r) = β · r
σ(h, r, v, k) = (k · r − h)/v λr(α, β, h) = α−1 · h
µh(s, r, v, k) = k · r − v · s

– KCDSAadd category. Let H ⊂ Z/qZ, R = K = S = A = B = Z/qZ
and V = (Z/qZ)×. Property (p3) is equivalent to add-collision-resistance of H.
Properties (g1) and (g2) hold. Properties (m2) and (h2) hold with εm = 1 and

εh = |H|
q .

φ(h, r, s) = h+ r λh(α, β, r) = α− r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h+ r))/v λr(α, β, h) = α− h
µh(s, r, v, k) = (k − v · s)− r

– KCDSAxor category. Let H = R = A = [Z/qZ]#, K = S = B = Z/qZ
and V = (Z/qZ)×. Property (p3) is equivalent to xor-collision-resistance of H.
Properties (g1) and (g2) hold. Properties (m2) and (h2) hold with εm = 1 and
εh = 1.
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φ(h, r, s) = h⊕ r λh(α, β, r) = α⊕ r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h⊕ r))/v λr(α, β, h) = α⊕ h
µh(s, r, v, k) = (k − v · s)⊕ r

– Schnorr category. Let H ⊂ Z/qZ, V = K = S = A = Z/qZ and B = H.
The variable r is not used and is taken from an arbitrary set R. Property
(p3) is implied by the collision-resistance of H. Properties (g1) and (g2) do
not hold because λr cannot be defined. Property (o3) needs the restriction
V = (Z/qZ)×. Properties (m2) and (h2) hold with εm = 1 and εh = 1.

φ(h, r, s) = s λh(α, β, r) = β
ψ(h, r, s) = h λs(α, β, r) = α
σ(h, r, v, k) = k − v · h
µh(s, r, v, k) = (k − s)/v

– Swapped-Schnorr category. Let H ⊂ Z/qZ, K = S = B = Z/qZ, V =
(Z/qZ)× and A = H. The variable r is not used and is taken from an arbitrary
set R. Property (p3) is implied by the collision-resistance of H. Properties (g1)
and (g2) do not hold because λr cannot be defined. Properties (m2) and (h2)
hold with εm = 1 and εh = 1.

φ(h, r, s) = h λh(α, β, r) = α
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (h− k)/v
µh(s, r, v, k) = v · s+ k

7.3.2.6 Examples of published signature schemes

– The ElGamal scheme [184] is defined on the multiplicative group (Z/pZ)×, with
a slight variant of the ElGamal category (where −r replaces r), the identity
projection and a type I hash.

– The DSA scheme [387] is defined on a prime order subgroup of the multiplica-
tive group (Z/pZ)×, with the ElGamal category, the DSA projection and a
type I hash.

– The ECDSA scheme [268] is defined on a prime order elliptic curve subgroup
with the ElGamal category, the ECxq projection and a type I hash.

– The GOST 34.10 scheme [370] is defined on a prime order multiplicative sub-
group of Z/pZ, with a slight variant of the GOST category (where −r replaces
r), the DSA projection and a type I hash.

– The KCDSA scheme [285] is defined on a prime order multiplicative subgroup
of Z/pZ or on a prime order elliptic curve subgroup, with the KCDSAxor
category, the KCDSA projection and a type I hash, where some certification
data is hashed together with the message.

– The ECGDSA scheme [9] is defined on a prime order elliptic curve subgroup,
with the GDSA category, the ECxq projection and a type I hash.

– The DSA-II scheme [105] is defined on a prime order multiplicative subgroup
of Z/pZ, with the ElGamal category, the KCDSA projection and a type II
hash.
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– The ECDSA-II scheme [346] is defined on a prime order elliptic curve subgroup,
with the ElGamal category, the ECxq projection and a type II hash.

– The ECDSA-III scheme [346] is defined on a prime order elliptic curve sub-
group, with the ElGamal category, the ECaddq projection and a type II hash.

– The Schnorr scheme [465] is defined on a prime order multiplicative subgroup
of Z/pZ, with a slight variant of the Schnorr category (where −h replaces h),
the identity projection and a type II hash.

– The GPS-sign scheme [221] is defined on a subgroup of Z/nZ with a variant
of the Schnorr category (where S = Z), the identity projection and a type II
hash. The composite modulus n is viewed as part of the public key and not as
a scheme parameter.

– The Nyberg-Rueppel scheme [408, 409] is a scheme with total message recovery,
and hence no variable m. It is defined on a prime order multiplicative subgroup
of Z/pZ, with the Schnorr category, the NR projection and the type II hash
defined by H(r) = r mod q.

– The PVSSR scheme (Pintsov-Vanstone Signature Scheme with message Re-
covery [432]) is defined on a prime order elliptic curve subgroup with a slight
variant of the Schnorr category (where −h replaces h), the PVSSR projection
and a type II hash.

– The Naccache-Stern scheme [378] is defined on a prime order elliptic curve sub-
group with the ElGamal category, the NS projection based on ECxq projection
and a type I hash.

– The Abe-Okamoto scheme [4] is a scheme with total message recovery, and
hence no variable m. It is defined on a prime order elliptic curve subgroup
with the Schnorr category, the xor variant of the NS projection based on ECx2
projection and the type II hash H(r).

7.3.2.7 Initial results to be used in the security proofs

The random oracle model for almost invertible functions. The random
oracle model builds an oracle for a one-way function f, that answers queries for
f(x) with some uniformly distributed value y. Suitable functions have uniform
output, are collision-resistant, etc.

If the function f is almost invertible, then the random oracle model should also
allow queries for f−1(x). Many results that were proven for the original random
oracle model are also valid for this model.

The forking lemma. This lemma is found e.g. in [435] and is a tool for proofs
of security in the random oracle model. The lemma holds when the scheme has
the following property: each forgery can be linked to a unique “critical” query to

the random oracle. The critical query is an input x such that knowing x
f7→ y is

necessary to check if the forgery is valid.

The forking lemma also holds in the random oracle model for an almost
invertible function, if the critical query hypothesis holds.

Let qS be the number of signature queries, qH the number of oracle queries,
nH the number of possible outputs for the random oracle and ε the probability
that the forger outputs a valid forgery.
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Lemma 7.1. (Forking lemma). There exist constants c0 and c1 such that if
ε ≥ c0/nH then after an expected number of c1·qH/ε replays of the simulation with
different choices for the random oracle, one can obtain (with some probability ε′)
another forgery with the same critical query but having another uniform random
answer.

In [435, Lemma 8 ] we have c0 = 7qH , c1 = 2(7 + 1
qH

) and ε′ = 3/25 and also

[435, Theorem 10 ] c0 = 7qH , c1 = 84480 and ε′ ' 1.

The improved forking lemma. This lemma is an extension of the forking
lemma that is found in [105] and is used together with ` + 1-collision-resistant
functions.

Lemma 7.2. (Improved forking lemma). There exist constants c0 and c1
such that if ε ≥ c0/nH then after an expected number of c1 · qH/ε replays of
the simulation with different choices for the random oracle, one can obtain (with
some probability ε′) ` other forgeries with the same critical query but having other
uniform random answers.

In [105, Lemma 10 ] we have c0 = 4, c1 = 24` log(2`) + 1
qH

and ε′ = 1/96.

Unique representation.

Lemma 7.3. (Unique representation). If the discrete logarithm of V ∈ 〈G〉
is hard to compute and if two representations R = GαV β and R = Gα

′

V β
′

can
be computed then α = α′ and β = β′.

Proof. This is proven by (α− α′) = (β′ − β) · log V . ut

7.3.2.8 Security proof with idealised p

This proof is based on one of the results from [105]. In this proof, H may be a
Type I or Type II hash function, and p may be almost invertible.

Theorem 7.9. A DL-based signature scheme is existentially unforgeable (and
non-malleable) under adaptive chosen message attacks if the discrete logarithm
is hard, if H is collision-resistant, if p is a random oracle and if the category has
properties (o1), (o2), (p2), (p1), and (p3). The security reduction is loose.

Proof. To answer a signature query for m, the simulator generates a random r
and a random s, and computes h = H(m, r) and R = Gφ(h,r,s)V ψ(h,r,s). With
property (p2), the value R is uniformly distributed and with property (p1) the
value s has the same distribution as for the signing algorithm. The simulator sets
the oracle table p(R) := r. The signed message is (m, r, s).

p-oracle queries that were not defined by a signature query are answered with a
random value. If p is almost invertible, then p−1-oracle queries are answered with
some R = Gα

′

V β
′

for random α′ and β′. The probability that the oracle table
cannot be set is the probability of a collision in R, which is low if (qH + qS)

2 ≤ q.
When the forger outputs its forgery (m, r, s), the critical query is the value

R = GαV β where α = φ(h, r, s), β = ψ(h, r, s) and h = H(m, r).
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Let us suppose that the critical query was part of a signature query for
some m′ that answered (m′, r′, s′) 6= (m, r, s). We define h′ = H(m′, r′),
α′ = φ(h′, r′, s′) and β = ψ(h′, r′, s′). Validity of the signature means that
R = Gα

′

V β
′

, and the unique representation of R implies α′ = α and β′ = β. We
also have r′ = r = p(R). Property (o1) implies h = λh(α, β, r) = h′ and property
(o2) implies s = λs(α, β, r) = s′. Therefore (m′, r′, s′) 6= (m, r, s) implies m′ 6= m.
Since H(m′, r′) = H(m, r) we have found a collision in H.

Let us suppose that the critical query was a p-oracle query for R. The forking
lemma allows us to find another forgery (m′, r′, s′) 6= (m, r, s) with the same
critical R but a different oracle for p. The unique representation of R implies
α′ = α and β′ = β. Therefore the simulator can find α, β, m and m′ such that
λh(α, β, r) = H(m, r) and λh(α, β, r

′) = H(m′, r′) for random r and r′, which is
intractable if (p3) holds.

Let us suppose that the critical query was a p−1-oracle query that returned
R = Gα

′

V β
′

. The unique representation of R implies α′ = α and β′ = β, which
is very unlikely because α′ and β′ were kept secret. ut
7.3.2.9 Security proof with idealised H of type II

This proof is based on one of the results from [105]. In this proof, H is a type II
hash function.

Theorem 7.10. A DL-based signature scheme is existentially unforgeable under
adaptive chosen message attacks if the discrete logarithm is hard, if H is a random
oracle with large output set, if p is almost uniform and ` + 1-collision-resistant
and if the category has properties (o1), (o2), (h1), and (h2). Collision-resistance
of p also implies non-malleability. The security reduction is loose.

Proof. To answer a signature query, the simulator generates random α ∈ A and
β ∈ B and computes R = GαV β , r = p(R), h = λh(α, β, r) and s = λs(α, β, r),
until h ∈ H and s ∈ S. This is equivalent to using the signature generation
algorithm with k = α+ v · β, and therefore this simulation has the same output
distribution. Property (h2) says that the expected number of random α, β needed
is less than 1

εh
. The simulator sets the oracle table H(m, r) := h. The signed

message is (m, r, s).
Oracle queries that were not defined by a signature query are answered with a

random value. The value of R = GαV β is uniformly distributed for random α and
β. If p is 1

n -almost uniform then the probability that the oracle table cannot be
set is bounded by the probability of a collision in r, which is low if (qH+qS)

2 ≤ n.
When the forger outputs its forgery (m, r, s), the critical query is the H-oracle

query of (m, r).
Let us suppose that the critical query was part of a signature query. This

signature query returned a valid (m, r, s′) with the same oracle. Therefore h′ = h.
If p is collision-resistant, thenR = R′ and its unique representation implies α′ = α
and β′ = β, so property (o2) implies s′ = s.

Let us suppose that the critical query was an oracle query for (m, r). The
improved forking lemma allows us to find ` other forgeries (m, r, si) with the
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same critical (m, r) but different oracles for H. Since all p(Ri) = r, the ` + 1
collision-resistance of p implies that there exists a pair where Ri = Rj . Unique
representation implies αi = αj and βi = βj . Property (o1) implies a unique
possible value hi = hj , which is unlikely to be the one given by the two different
oracles for H, because the output set is large. ut

7.3.2.10 Security proof with idealised 〈G〉

The generic group model was introduced by Shoup [486] and extended by Brown
[108] to prove the security of ECDSA.

Theorem 7.11. A DL-based signature scheme is existentially unforgeable under
adaptive chosen message attacks in the generic group model if H is uniform, one-
way and collision-resistant, if p is almost uniform and almost invertible and if
the category has properties (g1) and (g2). The security reduction is tight.

Proof. We don’t include in this document the proof given in [108] but we show
below how it can be adapted to other schemes than ECDSA, using our general
framework.

The proof was written for a type I hash function, but it also works for a type
II hash. It was written for ElGamal category, but it works for all categories with
properties (g1) and (g2).

– In [Table 1] step 3 of Hint is replaced with
sm+1 = z1 · σ(hm+1, p(Am+1), z2z

−1
1 , zm+1).

– In [Table 2] steps 1 and 2 of Hint are replaced with
C(m+1)1 = φ(hm+1, p(Am+1), sm+1) and
C(m+1)2 = ψ(hm+1, p(Am+1), sm+1).

– In [Table 4] step 2.b should use p−1(λr(Ci1, Ci2, e)).
– In [Table 7] step 1.b.iii should use p−1(λr(Ci1, Ci2, êi)).

Property (g2) is used when the proof shows that
r = ... = λr(Cm1, Cm2, êi) = λr(φ(H(m), r, sm), ψ(H(m), r, sm), êi)

and then deduces that êi = H(m). ut

7.3.2.11 Security proof with idealised H of type I

A proof where the scheme is seen as an FDH scheme. Under some con-
ditions, DL-based schemes can easily fit into the hash-then-invert paradigm.

Theorem 7.12. A type I DL-based signature scheme is existentially unforgeable
under single-occurrence chosen message attacks if H is a random oracle, p is in-
vertible, the category has properties (h1) and (o3), and the following problem is in-
tractable: given h ∈ H, finding (r, s) ∈ R×S such that r = p(Gφ(h,r,s)V ·ψ(h,r,s)).

Proof. The FDH scheme based on the function f(r‖s) = µh(s, r, v, logG(p
−1(r))),

is exactly the Type I scheme based on this category and projection p.

– f is not efficiently computable if the discrete logarithm is hard.
– The test function Tf(r‖s, h) =

(
r ?= p(Gφ(h,r,s)V ψ(h,r,s))

)
is efficiently com-

putable from the public information.
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– The simulation function takes random α ∈ A, β ∈ B and computes Sf(α, β) =
(r‖s, h) with r = p(GαV β), s = λs(α, β, r) and h = λh(α, β, r).

– The randomised inverse f−1(k, h) = p(Gk)‖σ(h, p(Gk), v, k) is efficiently com-
putable with the trapdoor.

The function f is verifiable simulatable trapdoor and its preimage-resistance is
based on the intractability of the following problem: given h ∈ H, finding (r, s) ∈
R × S such that r = p(Gφ(h,r,s)V ·ψ(h,r,s)). This problem is provably as hard
as the discrete logarithm in 〈G〉 if p is replaced with a random oracle. This
result is weaker than the previous ones, because two components need to be
simultaneously idealised.

Non-malleability of the scheme is also equivalent to second-preimage resis-
tance of f. ut

Proofs based on “semilogarithm” problems. A result of Brown [107] can be
seen as an improvement of Theorem 7.12. It is a proof that the single-occurrence
security of ECDSA is equivalent, in the random oracle model for H, to the in-
tractability of an ad hoc “semilogarithm” problem. This result applies directly
to the ElGamal category and can be generalised to other categories.

Definition. An instance of the (φ̄, ψ̄)-semilogarithm problem in the group 〈G〉
with projection p is a random element P ∈ 〈G〉. A solution is a pair (r, u) such
that r = p(Gφ̄(r,u)P ψ̄(r,u)).

Theorem 7.13. (Intractability of the semilogarithm problem is neces-
sary for the security of ECDSA). If there exists a solver for the (u, ru)-
semilogarithm problem, then one can attack all Type I schemes based on the
ElGamal category, e.g. ECDSA.

Proof. To forge a signature of m under public key V , one computes h = H(m)
and P = V 1/h, finds (r, u) a semilogarithm of P , and computes s = h/u. Then
r = p(Gh/sV r/s) and (m, r, s) is a valid signed message. ut

Theorem 7.14. (Intractability of the semilogarithm problem in the
random oracle model is sufficient for the SO-CMA security of ECDSA).
If there exists an existential forger under single-occurrence chosen message at-
tacks for a Type I scheme based on the ElGamal category, in the random oracle
model for H, then there exists a solver for the (u, ru)-semilogarithm problem. The
security reduction is loose.

Proof. This proof is similar to both the proof of Theorem 7.2 (FDH) and that of
Theorem 7.10 (Type II).

To find a semilogarithm of P ∈ 〈G〉, one pre-selects a random h0 ∈ H and
runs the forger with public key V = P h0 .

To answer a signature query, the simulator generates random α ∈ A and
β ∈ B and computes R = GαV β , r = p(R), h = λh(α, β, r) and s = λs(α, β, r),
and sets H(m) := h. The signed message is (m, r, s).

To answer an H-oracle query, the corresponding signature query is made, with
the exception of one query which is answered with h0.
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If the forgery (m, r, s) corresponds to this H-oracle query with answer h0, then
(r, h0/s) is a (u, ru)-semilogarithm of P . ut

Similar results can be obtained for some other categories. Condition (h1) is
necessary, but not sufficient.

– Inverse ElGamal category. The security of schemes built with the Inverse El-
Gamal category is based on the (u, ru)-semilogarithm problem. The proof uses
P = V 1/h and s = u/h.

– GOST category. The security of schemes built with the GOST category is based
on the (u, r)-semilogarithm problem. The proof uses P = V 1/h and s = u · h.

– GDSA category. It is not clear if a similar security result can be obtained for
the GDSA category.

– KCDSAadd category. It is not clear if a similar security result can be obtained
for the KCDSAadd category.

– KCDSAxor category. It is not clear if a similar security result can be obtained
for the KCDSAxor category.

– Schnorr category. The security of schemes built with the Schnorr category
is based on the (u, 1)-semilogarithm problem. The proof uses P = V h and
s = u. Note that this shows that a Type I scheme based on Schnorr category
is insecure, because the (u, 1)-semilogarithm problem is easy.

– Swapped Schnorr category. It is not clear if a similar security result can be
obtained for the Swapped Schnorr category.

7.3.2.12 Comments on the security proofs

Comparison with the results from [105]. The two above results follow
closely the proofs from Brickell et al. [105], but their interactions with the com-
ponents of the scheme are more clearly detailed. Property (p3) was not clearly
defined in terms of interaction between the category and H.

Moreover, we showed that the proof with an idealised p also works if p is
almost invertible.

Comparison with the results from [108]. Our result is more general but does
not go into all the details that are considered by Brown in [108]. For example
we don’t consider zero-finder-resistance, because our toolbox restricts ElGamal
category to H ⊂ (Z/qZ)× to meet properties (g1) and (g2).

Note that footnote number 13 in [108] explains why collision-resistance to-
gether with uniformity implies preimage-resistance, so Theorem 4 of [108] doesn’t
mention the assumption that the hash function needs to be preimage-resistant.

7.3.2.13 Comments on the toolbox

Type I or Type II. Both approaches have their specific security proof where
H is idealised. However, Type II is probably to be preferred, because of the fact
that a Type I scheme with Schnorr category is insecure, while a Type II scheme
with Schnorr category is probably secure, and the fact that the Type I proof only
considers SO-CMA security.
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Projections. None of the projections previously proposed in the literature has
all the required properties for our three proofs. This is why we described how to
build a permuted projection. The permuted EC projections probably have all the
required properties, but a random fixed permutation of 〈G〉 may be difficult to
design [81]. If partial message recovery is useful, Group projections are the best
candidates.

Categories. No category is clearly better than the other ones.
ElGamal category and GOST category have all the required properties, but

they rely on distinct semilogarithm problems which are difficult to compare.
Schnorr and Swapped-Schnorr categories are the simplest choice, but they

need a Type II hash and are not proven with idealised 〈G〉.
The KCDSAadd and KCDSAxor categories have the advantage of using sim-

pler computations.
For Schnorr category, the order q can have intractable factorisation, because

no inverse is computed. For the KCDSA categories and Swapped-Schnorr cat-
egory, computing inverses in (Z/qZ)× is only needed for key generation. If the
signer’s only private information is v−1, neither the verifier nor the signer needs
to know the factorisation of q. Intractable factorisation might be useful for an
identity based scheme [358].

7.3.3 Schemes with security proven in the “real world”

7.3.3.1 Introduction

Thoughts on the signature oracle. The security proof is the description of
a reduction algorithm (aka. a simulator) that interacts with a forger and uses
the forgery to solve some intractable problem (see Sect. 7.2.3). One important
difficulty is that the simulator needs to be able to answer the signature queries
made by the forger. The simulator must know some trapdoor that allows it to
generate at least qS valid signatures for arbitrary messages. Notice that this
requirement implies that the public key is generated by the simulator. To reduce
the security of the scheme to the intractability of a mathematical problem, it
is necessary that the forgery could not have been made by the simulator. This
remark was made by Goldwasser, Micali and Rivest [229, Sect. 4].

One-time and fixed-time signature schemes. With a one-time signature
scheme, a public key is used for validating one signature only. For fixed-time
signature schemes, there is an a priori upper bound on the number of messages
that can be validated with a given public key.

One-time signature schemes as chameleon hashing. A one-time signature
scheme is KS-secure (also called secure chameleon hashing [315]) if no KS-attacker
exists. Such an attacker is allowed to make key-then-sign queries, where the input
is a message and the output is a random public key with a valid signed message.
The attacker succeeds if it can make another valid signed message for one of those
public keys.



7.3 Overview of the common designs 249

The refreshing paradigm. The key idea is that all the messages will be signed
by a secure one-time signature scheme, but with a different public key for each
message. The public key of the secure scheme is the concatenation of all those
one-time public keys. With this simple construction the public key of the whole
scheme has length qS times the length of the public key of the one-time signature
scheme.

This technique for constructing signatures is also used in the online/offline
approach to improve the performance of digital signature schemes [188], where
a public key for a fast one-time scheme is signed by a normal secure and slow
signature scheme.

7.3.3.2 Tree constructions based on the refreshing paradigm

This technique can be used to construct secure signature schemes from secure
one-time signature schemes (see also [222, Volume 2, Sect. 6.4.2]).

Practical constructions are based on the refreshing paradigm and use an au-
thentication tree to authenticate the one-time public keys with respect to a unique
short public key. No such scheme has been submitted to NESSIE.

7.3.3.3 Using a RAND-secure scheme in the refreshing paradigm

Any RAND-secure signature scheme can be used to authenticate the one-time
public keys. The key idea is that the RAND scheme is able to securely sign any
random one-time public key, and each one-time public key can securely sign one
arbitrary message.

Theorem 7.15. If GenerateA,KeyGenA,SignA,VerA defines a KS-secure signa-
ture scheme and if GenerateB,KeyGenB,SignB,VerB defines a RAND-secure sig-
nature scheme, then the following signature scheme is secure under adaptive cho-
sen message attacks.

– Generate runs GenerateA and GenerateB and outputs param = paramA‖paramB.
– KeyGen runs KeyGenB and outputs pk = pkB and sk = skB.
– Sign computes (h, ĥ) = KeyGenA. Then it computes s = SignAĥ(m) and t =

SignBsk(h), and outputs σ = (t, s).
– Ver computes h = VerBpk(t) and m = VerAh(s).

Proof. Let us name (t, s) the forgery, h = VerBpk(t) the corresponding one-time
public key and m = VerAh(s) the corresponding message. Let us name (tj , sj)
and (hj ,mj) the questions and answers to the j-th query to the signing oracle.

All the information that the forger receives about the scheme A is contained
in mj , hj , sj , where the forger chooses mj but the public key hj is random. This
is exactly a KS-attack.

All the information that the forger receives about the scheme B is contained
in hj , pk, tj , where the forger does not choose the values hj , which are random
values. This is exactly a RAND-attack.

Two variants of the theorem can be proven: with or without non-malleability.
With non-malleability, we define two types of forgeries.
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– KS forgery. ∃j0 : t = tj0 . Therefore s 6= sj0 and h = hj0 . The forger has
produced a new valid signed message s for an old public key h of the scheme
A, which contradicts its KS-security.

– RAND forgery. ∀j, t 6= tj . The forger has produced a new valid signed message
t for the scheme B, which contradicts its RAND-security.

Without non-malleability, we define two types of forgeries.

– KS forgery. ∃j0 : h = hj0 and m 6= mj0 . The forger has produced a valid
signature s for a new message m and an old public key h of the scheme A,
which contradicts its KS-security.

– RAND forgery. ∀j, h 6= hj . The forger has produced a valid signature t for a
new message h for the scheme B, which contradicts its RAND-security.

ut

The two main examples are the GHR scheme [217] and the ACE-Sign submis-
sion to NESSIE, both of whose security is based on the strong RSA assumption.
One can compare these two schemes. While all components of ACE-Sign are effi-
ciently computable, GHR needs an efficient collision-resistant hash function with
an additional property named division-intractability, e.g. a hash function that
outputs prime numbers. On the other hand, GHR has a tight reduction to the
strong RSA assumption, while the reduction for ACE-Sign is not so tight.

7.3.3.4 The Cramer-Shoup family of schemes: ACE-Sign and variants

The RAND component. The following RAND-secure scheme is the core of this
family of schemes.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H and determines the length of the RSA composite
number and of some prime numbers.

– Key generation algorithm. The key generation algorithm chooses two random
strong primes p and q, computes n = pq and chooses two random values x and
g in QRn (quadratic residues). The public key is pk = (n, x, g) and the private
key is sk = (p, q).

– Verification algorithm. The verification of a signed message (m, y, e) ∈ M ×
QRn × [2l, 2l+1] begins with h = H(m) and checks if ye ?= xgh.

– Signing algorithm. To sign the message m one takes a random prime e ∈
[2l, 2l+1] and uses the secret key to compute y = (xgH(m))1/e.

Theorem 7.16. This scheme is RAND-secure under the Strong RSA assump-
tion, with not so tight reduction.

Proof. Using a (t, ε, qS)-forger, the following algorithm either solves with prob-
ability 1 the flexible RSA problem or solves with probability 1/qS the e-th root
problem.

We can define two types of forgeries, depending on their common values with
the queries. We let hj , yj , ej denote the values for the j-th query and h, y, e the
values for the forgery.
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– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and a random

α ∈ [1...n2], then deduces the elements of the public key g = u2
∏

j ej and
x = gα. It can answer the j-th oracle query by generating a random mj and

computing yj = u2(α+H(mj))
∏

i6=j ei . The forgery will give an e-th root of g, and
therefore a non-trivial root of u.

– GUESS forgery. ∃j0 : e = ej0 . The reduction wants to find u1/e
′

mod n. It
chooses a random j0 in 1...qS , sets ej0 = e′ and generates qS − 1 other random
primes ej ∈ [2l, 2l+1]. It generates random values for α ∈ [1...n2] and h′ =

H(m′), then deduces the elements of the public key g = u2
∏

j 6=j0
ej and x =

gαe
′−h′ . It can answer the j0-th oracle query with mj0 = m′, yj0 = gα and

ej0 = e′. It can answer all other oracle queries by generating a random mj and

computing yj = u2(αe
′−h′+H(mj))

∏

i6=j,j0
ei . If indeed the forgery is such that

e = e′, then (y/yj0)
e = gH(m)−h′ and it gives the e-th root of u. This succeeds

if j0 was correctly guessed (probability 1/qS).
ut

The chameleon hash. The following one-time signature scheme is used in the
original scheme.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H and determines the length of the RSA composite
number n and of a prime number e. A random f in QRn is chosen and g = f e is
computed. The public domain parameters are n, g and e. The private parameter
f is used for key generation. 5

– Key generation algorithm. The key generation algorithm chooses a random
value z in QRn and computes x = ze. The public key is pk = (x) and the
private key is sk = (f, z).

– Verification algorithm. The verification of a signed message (m, y) ∈M×QRn
begins with h = H(m) and checks if ye ?= xgh.

– Signing algorithm. To sign the message m one uses the secret key to compute
y = zfH(m).

Theorem 7.17. This scheme is KS-secure under the RSA assumption, with tight
reduction.

Proof. The reduction algorithm wants to find u1/e mod n. It defines g = u and
interacts with the forger. In answer to a key-then-sign query for the message m,
the reduction generates a random y and computes the public key x = yeg−H(m).
The forgery is a pair (m′, y′) such that (y′/y)e = gH(m′)−H(m), which gives an
e-th root of g. ut

ACE-Sign. The actual Cramer-Shoup scheme [141] is an improvement on the
straightforward construction based on the two components described above.

5 An equivalent scheme can be obtained by generating n with known secret factorisa-
tion, kept in the private key.
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The security of the construction is the same if the values n and g are common
to the RAND-secure scheme and to the one-time scheme. With this improvement,
the public key is (n, x, g, e′), the signed message is (m, y, e, x′, y′) and the verifi-
cation checks if x ?= yeg−H(x′) and if x′ ?= (y′)e

′

g−H(m). If we also notice that x′

can be omitted from the signed message, the result is ACE-Sign, fully described
in Sect. 7.5.1.1.

Another Chameleon hash. The following scheme is also proposed as an al-
ternative in [141]. It is based on the intractability of discrete logarithms.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H. Computations are made in a group 〈G〉 of order q.
Two random α, α′ coprime to q are chosen such that the public parameters
g1 = Gα

′

and g2 = gα1 are generators of 〈G〉. The private parameter α is kept
for key generation.

– Key generation algorithm. The key generation algorithm chooses a random
β and computes x = gβ1 . The public key is pk = (x) and the private key is
sk = (α, β).

– Verification algorithm. The verification of a signed message (m, t) ∈M×Z/qZ
begins with h = H(m) and checks if x ?= gt1g

h
2 .

– Signing algorithm. To sign the message m one uses the secret key to compute
t = β − αH(m) mod q.

Theorem 7.18. This scheme is KS-secure if the discrete logarithm problem in
〈G〉 is intractable, with tight reduction.

Proof. The reduction algorithm wants to find the logarithm of g2 with respect to
g1. In answer to a key-then-sign query for the message m, the reduction generates

a random t and computes the public key x = gt1g
H(m)
2 . The forgery is a pair (m′, t′)

such that g2 = g
(t−t′)/(H(m′)−H(m))
1 . ut

Generalisation to any group. Damg̊ard and Koprowski [152] proposed a gen-
eralisation of ACE-Sign to any group where the equivalent of the flexible RSA
problem is intractable.

Variants without a chameleon hash. The key idea is that the chameleon
hash is only needed for the j0-th query in the GUESS forgery. In all the other
cases any arbitrary message can be signed by the reduction algorithm. Therefore
a chameleon hash brings unnecessary flexibility.

Instead of replacing gH(m) by gH(chameleon−hash(m)), one first variant, due to

Camenisch and Lysyanskaya [112], replaces gH(m) by gt1g
H(m)
2 . The signed message

is (m, t, e, y) and the verification checks if ye ?= xgt1g
H(m)
2 . If n is an l′-bit number

and H has l-bit output (i.e. security l/2 bits) then this variant is secure when t
is an l′ + 3l/2-bit number. Therefore it is less efficient than ACE-Sign.

Theorem 7.19. The Camenisch-Lysyanskaya scheme is secure under the Strong
RSA assumption, with not so tight reduction.

Proof. The proof is very similar to the proof of Theorem 7.16.
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– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and random

α, β ∈ [1...n2], then deduces the elements of the public key g1 = u2
∏

j ej ,

g2 = gβ1 and x = gα1 . It can answer the j-th oracle query for mj by generating

a random tj ∈ [0...2l
′+3l/2] and computing yj = u2(α+tj+βH(mj))

∏

i6=j ei . The
forgery will give an e-th root of g1, and therefore a non-trivial root of u.

– GUESS forgery. ∃j0 : e = ej0 . The reduction wants to find u1/e
′

mod n. It
chooses a random j0 in 1...qS , sets ej0 = e′ and generates qS − 1 other random

primes ej ∈ [2l, 2l+1]. It generates random α, β ∈ [1...n2] and γ ∈ [0...2l
′+3l/2],

then deduces the elements of the public key g1 = u2
∏

j 6=j0
ej , g2 = gβ1 and x =

gαe
′−γ

1 . It can answer the j-th oracle queries for mj with j 6= j0 by generating

a random tj ∈ [0...2l
′+3l/2] and computing yj = u2(αe

′−γ+tj+βH(mj))
∏

i6=j,j0
ei .

It can answer the j0-th oracle query for mj0 with yj0 = gα, ej0 = e′ and

tj0 = γ−βH(mj0). Owing to the condition γ ∈ [0...2l
′+3l/2], the value t appears

to be uniform in [0...2l
′+3l/2]. If indeed the forgery is such that e = e′, then

(y/yj0)
e = gt−tj0+βH(m)−βH(mj0

) and it gives the e-th root of u. This succeeds
if j0 was correctly guessed (probability 1/qS).

ut
Two other variants, due to Fischlin [195], replace gH(m) by gt1g

t+H(m)
2 or by

gt1g
t⊕H(m)
2 . The signed message is (m, t, e, y) and the verification checks e.g. if

ye ?= xgt1g
t⊕H(m)
2 . These variants are secure for l-bit t, so their efficiency is similar

to ACE-Sign with the DL-based chameleon hash.

Theorem 7.20. The Fischlin schemes are secure under the Strong RSA assump-
tion, with not so tight reduction.

Proof. The proof is very similar to the proofs of Theorem 7.16 and 7.19.

– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and random

α, β ∈ [1...n2], then deduces the elements of the public key g1 = u2
∏

j ej ,

g2 = gβ1 and x = gα1 . It can answer the j-th oracle query for mj by generating

a random tj ∈ [0...2l] and computing yj = u2(α+tj+β(tj⊕H(mj)))
∏

i6=j ei . The
forgery will give an e-th root of g1, and therefore a non-trivial root of u.

– GUESS/1 forgery. ∃j0 : e = ej0 and tj0 6= t. The reduction wants to

find u1/e
′

mod n. It chooses a random j0 in 1...qS , sets ej0 = e′ and gen-
erates qS − 1 other random primes ej ∈ [2l, 2l+1]. It generates random
α, β ∈ [1...n2] and γ ∈ [0...2l], then deduces the elements of the public key

g1 = u2
∏

j 6=j0
ej , g2 = gβe

′

1 and x = gαe
′−γ

1 . It can answer the j-th oracle
queries for mj with j 6= j0 by generating a random tj ∈ [0...2l] and computing

yj = u2(αe
′−γ+tj+βe

′(tj⊕H(mj)))
∏

i6=j,j0
ei . It can answer the j0-th oracle query

for mj0 with yj0 = g
α+β(γ⊕H(mj0

))
1 , ej0 = e′ and tj0 = γ. If indeed the forgery

is such that e = e′ and tj0 6= t, then (g
β(tj0⊕H(mj0

))−β(t⊕H(m))
1 ·y/yj0)e = gt−tj0

and it gives the e-th root of u.
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– GUESS/2 forgery. ∃j0 : e = ej0 and tj0 ⊕ H(mj0) 6= t ⊕ H(m). Similar to

the GUESS/1 forgery, with the public key g2 = u2
∏

j 6=j0
ej , g1 = gβe

′

2 and

x = gαe
′−γ

2 . Also tj0 = γ ⊕ H(mj0) and yj0 = g
α+βtj0
2 .

ut

7.3.4 Current standards

The US NIST (National Institute of Standards and Technology) issued in 1994
a FIPS (U.S. Government Federal Information Processing Standard) that de-
scribed DSA (Digital Signature Algorithm) [387]. This standard has been revised
twice: FIPS-186-1 [388] and FIPS-186-2 [389] added the ANSI X9.31 and X9.62
standards.

The ANSI (American National Standards Institute) issued in 1999 ANSI
X9.31 [15], which is a partial domain hash RSA signature, and ANSI X9.62
[16], which is ECDSA.

The ISO (International Organisation for Standardisation) has published ISO-
9796 [254, 255], ISO-14888 [261, 262] and ISO-15946-2 [263].

The IEEE P1363 group has published various standards on public key cryp-
tography [252, 253] that go down to implementation details.

7.4 Digital signature schemes considered during Phase II

The complete description of a signature scheme needs to explain how to con-
vert integers to and from byte strings or bit strings. Usually, this has no influence
on the security and will not be mentioned here.

7.4.1 ECDSA

ECDSA was submitted by Certicom [268] and is a signature scheme based on
the intractability of the discrete logarithm problem in an elliptic curve subgroup.
It was first proposed in 1992 by Scott Vanstone [508] in response to NIST’s
request for public comments on their first proposal for DSS [387]. It is an ISO
[262] standard since 1998, an ANSI [16] standard since 1999 and an IEEE [252]
and NIST [389] standard since 2000. Interoperability between these standards is
discussed in http://www.certicom.com/resources/news/news_103000.html.
The version submitted to NESSIE is the ANSI X9.62 ECDSA.

7.4.1.1 The design

ECDSA is a special case of the family of DL-based signature schemes described
in Sect. 7.3.2. It is defined on a prime order elliptic curve subgroup with ElGamal
category, ECxq projection and type I hash.

– Domain parameters. The security parameter is an integer l, e.g. 160. Let E
be an elliptic curve over the finite field F and 〈G〉 a subgroup of known prime
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order q ∈ [2l, 2l+1] and known generator G. We use the additive notation for
this group.
F is either a prime field GF (p) or a characteristic 2 field GF (2n).
Let H be a hash function with l bits of output (usually SHA-1) and iF a mapping
from F to the set of integers modulo q, that does the conversion from F to Z
as specified in ANSI X9.62 and then a reduction modulo q.

– Key generation algorithm. The key generation algorithm chooses a random
v ∈ (Z/qZ)× and sets pk = V = v ·G and sk = v.

– Verification algorithm. The verification algorithm on a signed message
(m, r, s) ∈M×Z/qZ×(Z/qZ)× computes h = H(m) and R = s−1 ·(h·G+r·V ),
and checks if r ?= iF(Rx).

– Signing algorithm. To sign the message m one takes a random invertible k ∈
(Z/qZ)×, and computes R = k ·G, r = iF(Rx), h = H(m) and s = k−1(h+ vr).
If s is not invertible, another k is taken. The signed message is (m, r, s).

Parameter generation. The parameters for ECDSA consist mainly of the de-
scription of a suitable elliptic curve and of a base point that generates a subgroup
with large prime order.

Depending on the variant of ECDSA, the elliptic curve and base point can be
chosen from a table of suitable values [116] or can be taken at random subject
to the base point having large prime order. Any underlying field can be chosen,
but only prime fields or binary fields are usually considered.

The elliptic curve subgroup is not part of the public key, it is a system pa-
rameter common to all users. Therefore it is important that no weaknesses can
be found in it.

Okeya et al. [422] proposed the use of elliptic curves with Montgomery form
to protect against timing attacks. This leads to the OK-ECDSA variant, which
was not submitted to NESSIE but is studied by CRYPTREC [421].

7.4.1.2 Security analysis (see also Sect. 7.3.2)

Attacks on ECDSA. Necessary conditions for the security of ECDSA are
one-wayness and collision resistance of H and intractability of the (u, ru)-
semilogarithm in the elliptic curve E, which implies intractability of the discrete
logarithm.

Security proofs for ECDSA. This signature scheme has been published for
a long time and various security arguments have been provided which show that
the two necessary conditions above might be sufficient. However, none of those
security arguments can be used to argue that ECDSA is an optimal design for a
scheme based on the intractability of the elliptic curve discrete logarithm.

The first published arguments were proofs in the random oracle model that
in fact apply to variants of ECDSA, e.g. to KCDSA (proof with idealised p) or to
the Schnorr or PVSSR schemes (proof with idealised H). The proof that works
in the generic group model applies to ECDSA itself, but it is also an example of
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a case where a generic proof is explicitly invalidated by some specific properties
of the components. 6

Therefore one big concern about ECDSA is that it is probably not the best
choice in the extensive family of DL-based signature schemes.

The hash function of ECDSA. The function H should be a one-way collision
resistant hash function with output in a subset of (Z/qZ)×, and the security of
the scheme may be weakened if this output set has substantially fewer than q
elements.

But the specifications of ECDSA say that H is the SHA-1 hash function,
whose output is a 160-bit string, reduced modq. Therefore it might not be an
element of (Z/qZ)×, because it can be zero. An additional property required for
SHA-1 is zero-finder resistance [108], which means that a preimage of 0 should
be hard to find.

Some realistic attacks on DSA and ECDSA rely on the ability to choose
the parameters of the scheme after having studied some properties of the hash
function [85, 510]. An easy protection is the inclusion in the input of H of some
certification data depending on the parameters and the public key. It has been
proposed for KCDSA and some other schemes [285, 369].

Other comments: parameter and key validation. Note that to prove that
the parameters are not designed to correspond to a weak elliptic curve, ECDSA
asks for a certification, which is the seed used for the generation of a random
curve. This certification technique can be bypassed in characteristic 2, and should
absolutely be improved [513].

Note also that the ECDSA submitted to NESSIE asks that the verification
and the signing algorithms make sure that r 6= 0, while the description in this
document does not make this verification. The rationale for this check on r is
to protect against a very specific type of bad parameter. It is felt that a good
algorithm for parameter validation would be preferred to ad hoc checks, and that
it is harmful to make the verification and signing algorithms more complicated
than necessary.

The random nonce. The random value k used in the signing algorithm should
be unpredictible, otherwise the scheme can be attacked [182, 401, 402]. However,
this value can be deterministically generated from the message and a secret value,
like it is done for the FDH-D design (cf. Sect. 7.3.1.3).

Side-channel attacks. In elliptic curve cryptography, scalar point multiplica-
tion is a crucial operation. As mentioned in Sect. A.1 algorithms performing this
operation are a particular target for side-channel attacks. In ECDSA, the task is
to compute k ·G. Any information concerning the value k that can leak during the
computation might be used by an attacker to compute the secret key. Different
side-channel techniques exist to get the information and various countermeasures

6 The elliptic curve subgroup can easily be distinguished from an ideal group because
it has the trivial automorphism (x, y) 7→ (x,−y). In the case of ECDSA, the choice
of p being the reduction of the x-coordinate allows one to use this automorphism to
forge a new signature for an existing signed message.
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have been proposed in the literature to defend against this kind of attack. For
further discussion on this subject, the reader is referred to the Annex A and to
the survey [424] by Oswald and Preneel.

Another side-channel technique that can be used is introducing faults during
the computation of the signature (for a general introduction to fault attacks, see
Sect. A.2). For example, and following the original idea of Bao et al. [26] against
DSA, if an attacker is able to change one bit of the secret key v used by the
signer, then the erroneous signature can be used to recover the original value
of the bit. Indeed, the signer would output s′ = k−1(h + vr ± 2ir), assuming
the attacker changed the i-th bit of v, and depending on its original value. So
the verification algorithm would give s′

−1
(h · G + r · V ) = k · G ± (2irs′

−1
) · G.

Thus, computing all the possible values for R = s′
−1

(h ·G+ r ·V )± (2irs′
−1

) ·G
and detecting if r ?= iF(Rx). the attacker will discover the original value of the
bit that he flipped. In [50], Biehl et al. present another idea: faults are used to
make the device apply the multiplication algorithm to a point that is actually
on a different, probably cryptographically weak, elliptic curve. The result of this
computation might be used to recover the secret key v. Countermeasures against
fault attacks are necessary, e.g. checking the consistency of the output.

7.4.2 ESIGN

ESIGN was submitted by NTT [207] and can be viewed as a variant of RSA that
has faster signing but relies on more demanding security assumptions.

7.4.2.1 The design

– Domain parameters. The security parameter is an integer l, e.g. 512. Let H be
a hash function with l − 1 bits of output and e be a small integer.
In the original submission of ESIGN to NESSIE [207] the requirements are
l ≥ 352 and e ≥ 8, with recommended values l = 384 and e = 1024. In the
specification of ESIGN-D [416] the requirements are l ≥ 342 and 3l

2 ≤ e ≤ 2l/4,
with recommended values l = 512 or 1024 and e = 65537.

– Key generation algorithm. Let p and q be distinct primes from [2l−1, 2l] such
that n = p2q ∈ [23l−1, 23l]. The keys are pk = n and sk = (p, q).

– Verification algorithm. The verification of a signed message (m, s) ∈M×Z/nZ
begins with h = H(m) and x = se mod n, and checks if x ?= h · 22l + w where
w ∈ [0, 22l−1].

– Basic signing algorithm. To sign the message m one takes a random w ∈
[0, 22l−1] and computes h = H(m), x = h · 22l + w and s = x1/e mod n. The
signed message is (m, s).

– ESIGN fast signing algorithm. To sign the message m one computes h = H(m).
Then one takes a random r < pq and computes u = h ·22l−re mod n, v = d upq e
and w = v · pq − u until w < 22l−1. Then t = v

e·re−1 mod p and s = r + t · pq.
The signed message is (m, s).
Both signing algorithms give the same output distribution.
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7.4.2.2 Security analysis (see also Sect. 7.3.1)

Attacks on ESIGN and its variants. Necessary conditions for the security
of ESIGN are one-wayness and collision resistance of H and intractability of the
AER problem.

Security proofs for ESIGN and its variants. ESIGN is an FDH signature
scheme based on the “truncated e-th power” function, which is defined by f(x) =
bxe mod n

22l c. The original description of ESIGN [207] made the statement that the
original security proof of FDH applies to ESIGN, but Stern et al. [497] noticed
that f−1 is randomised, and therefore this proof only assesses the security against
a SO-CMA attacker.

A variant named ESIGN-D has been described [230] and replaces the original
submission. This variant uses the FDH-D technique described in Sect. 7.3.1.3.
Another variant named ESIGN-R is described in the same document and uses
PFDH with a seed of length at least 2 log2 qS .

To assess the security of ESIGN-D and ESIGN-R, we need to study the prop-
erties of f.

– Definitions. The set Il contains all pairs (n, η) with suitable n = p2q and η ∈
Z/nZ. Let us define X = {x ∈ Z/nZ|x = 0‖h‖0‖w with h ∈ [0, 22l−1] and w ∈
[0, 22l−1]}. The input sets are S = T = {x ∈ Z/nZ|xe mod n ∈ X} and the
output set is H = [0, 22l−1].

We define f(x) = bxe mod n
22l c and g(x) = b η·xe mod n

22l c.
– Computational properties. These properties (OW1, OW2, OW3, CF1, CF2,

CF3, TR1 and TR2) are implied by the description of the scheme, the probabil-
ity distribution on S = T being uniform, with a sampling algorithm uniformly
taking an element of Z/nZ until it is in S.

– Statistical properties. Property UN (almost uniformity of the output of f and
g) can be proved [183, 417, 496].
Property TR3 comes from the following facts. Both signing algorithms gener-
ate values with their e-th power uniform in X . The e-th power function is a
bijection between S and X .

– Intractability properties. Preimage resistance (property OW4) holds if the AER
problem is hard.
Claw-freeness (property CF4) holds if the Claw-AER problem is hard.
Second preimage resistance (property OW5) holds if the 2nd-AER problem is
hard.

Therefore, the following security results have been proven.

– If the AER problem is hard with a security level of k bits, then both ESIGN-D
and ESIGN-R have a proven (in the random oracle model) security level of
k − log2 qH bits. Non-malleability requires also that the 2nd-AER problem is
hard.

– If the Claw-AER problem is hard with a security level of k bits, then ESIGN-D
also has a proven security level of k− log2 qS bits and ESIGN-R a proven secu-
rity level of k bits. Non-malleability still requires that the 2nd-AER problem
is hard.
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The hash function of ESIGN and its variants. Both the original description
of ESIGN and the tweak to ESIGN-D use a hash function H, based on SHA-1,
which is common to all the public keys. It may be a better design to improve the
security in the multi-key setting by including pk in the input of H.

In the original description of ESIGN, the value H(m) is defined to be the first
bits of SHA-180σ (0‖m)‖SHA-180σ (1‖m)‖..., where SHA-180σ is a variant of SHA-1
with a different starting value and truncated to 80 bits. This is not an optimal
design because it is too slow ifm is a long message. The specification of ESIGN-D
uses a better design: SHA-1(SHA-1(m)‖0)‖SHA-1(SHA-1(m)‖1)‖....
Side-channel attacks. For a general introduction to side-channel attacks, see
the Annex A. We did not find any side-channel attack against ESIGN. The fact
that it is a randomised algorithm protects ESIGN against some side-channel
attacks.

ESIGN-D is a deterministic variant of ESIGN. We can use this to mount
a side-channel attack that uses faults (see Sect. A.2). Imagine an attacker can
disturb the signing algorithm by introducing faults during the computation of
either u, v or t. This leads to an erroneous value t′ = t± ε, with 0 ≤ ε < p. Thus,
an erroneous signature s′ is computed, with the following relation: s′ = s± ε · pq,
where s = r+t ·pq is the correct signature. If an attacker can get both the correct
signature and an erroneous one on the same message, then he gets εpq, which
is not a multiple of N , so gcd(s − s′, N) = pq and the modulus is factorised.
This attack is particularly powerful because all it needs is a random error during
the computation of the most time-consuming steps. So any implementation of
ESIGN-D should be protected against fault attacks.

7.4.3 SFLASHv2

All signature schemes from the FLASH family are FDH-D schemes based on the
intractability of variants of the HFE problem. These variants are named C∗−−

(see [429]).

7.4.3.1 The design

– Domain parameters. The parameters are four integers q, d, n and r, a security
parameter l, a hash function H with output in (Fq)n−r and a family of pseudo-
random functions prf with an l-bit index, input in (Fq)n−r and output in (Fq)r.
The function F(x) = xq

d+1 is a bijection of the finite field Fqn with inverse
F−1(x) = xh, where h = (qd+1)−1 mod (qn−1). The function φ : Fqn → (Fq)n

fixes a representation of Fqn as an Fq-vector space. Let f = φ−1 ◦ F ◦ φ.
For SFLASHv2 we have l = 80, q = 128 = 27, d = 11, n = 37 and r = 11 and
H and prf based on SHA-1.

– Key generation algorithm. Two random affine bijections s and t of (Fq)n and
a random l-bit value ∆ are generated. They are the private key.
The public key is (P1, ..., Pn−r) where (P1, ..., Pn) are the quadratic polynomials
that describe t ◦ f ◦ s.
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– Verification algorithm. The verification of a signed message (m, s1, ..., sn) ∈
M×(Fq)n begins with (h1, ..., hn−r) = H(m) and then computes (y1, ..., yn−r) =
(P1, ..., Pn−r)(s1, ..., sn) and checks if all hi ?= yi.

– Signing algorithm. To sign the message m one computes (h1, ..., hn−r) = H(m),
then (x1, ..., xr) = prf∆(h1, ..., hn−r) and finally (s1, ..., sn) = s−1 ◦ f−1 ◦
t−1(h1, ..., hn−r, x1, ..., xr). The signed message is (m, s1, ..., sn).
The fact that x 7→ xq is linear over (Fq)n allows for some tricks that help to
do a fast computation of F−1(x) = xh and therefore of f−1.

7.4.3.2 Security analysis (see also Sect. 7.3.1)

Attacks on SFLASHv2. The security of SFLASHv2 is exactly the security of
an FDH-D scheme based on the one-wayness of the function f = (P1, ..., Pn−r) :
(Fq)n → (Fq)n−r, where the Pj are quadratic polynomials in Fq generated with
a C∗−− trapdoor.

Necessary conditions for the security of SFLASHv2 are one-wayness and col-
lision resistance of H and one-wayness of f.

Security proof for SFLASHv2. The preimage resistance of the function f is
not well defined, but two techniques to find preimages can be described. This
is not sufficient for a high level of confidence in the intractability of the C∗−−

problem, but it is sufficient for short term security.

– Attack on the C∗−− structure. This attack [429] requires O(qr) operations,
which is more than 280 Triple-DES operations for the parameters of SFLASHv2.

– Resolution of a random set of quadratic equations. This is called the MQ
problem and is NP-hard. However, Gröbner basis finding [110], XL or FXL
algorithms [137] or the more sophisticated F5 and F5/2 algorithms of Faugère
[189] are relatively efficient at solving systems of polynomial equations over
finite fields.
For the parameters of SFLASHv2, they probably require more computational
power than 280 Triple-DES operations.

The hash function of SFLASHv2. In the specifications for SFLASHv2 the
value H(m) is defined to be the first bits of SHA-1(m)‖SHA-1(SHA-1(m)). The
output of H is clearly not uniform random in (Fq)n−r. A better design is to take
the first bits of SHA-1(SHA-1(m)‖0)‖SHA-1(SHA-1(m)‖1).
Other comments about the design. The value prf∆(h) is defined to be the
first bits of SHA-1(h‖∆). This is an acceptable family of pseudo-random func-
tions. HMAC may be preferred.

The affine part of s and t can be recovered from the public key alone, and
therefore appears to be useless [214, 215].

Side-channel attacks. For a general introduction to side-channel attacks, the
reader is referred to the Annex. A. When a message is signed with SFLASHv2,
most of the computations are performed in finite fields of characteristic 2. This
makes it difficult to imagine, for example, a fault attack where one would change
a bit of the secret key and try to use the erroneous signature to recover the
original value of the bit. However, other methods might exist to gain information
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about the secret key, for instance using differential power analysis (DPA) [495].
The submitters proposed in [8] to mask all the intermediate data with random
values.

7.4.4 QUARTZ

QUARTZ is a CPC-D scheme based on the intractability of a variant of the HFE
problem.

7.4.4.1 The design

– Domain parameters. The parameters are four integers d, n, v and r, a secu-
rity parameter l, a hash function H with output in {0, 1}n−r and a family of
pseudo-random functions prf with l-bit index, input in {0, 1}n−r and output
in {0, 1}r+v.
The function φ : F2n → {0, 1}n fixes a representation of F2n as a {0, 1}-vector
space. For any function F on the finite field F2n let f = φ−1 ◦ F ◦ φ.
For QUARTZ we have l = 80, d = 129, n = 103, v = 4 and r = 3 and H and
prf based on SHA-1.

– Key generation algorithm.A random affine bijection s of {0, 1}n+v, a random
affine bijection t of {0, 1}n, a random family (FV )V ∈{0,1}v of polynomials over
F2n and a random l-bit value ∆ are generated. They are the private key.
Each polynomial FV is randomly chosen from the polynomials of degree at

most d whose monomials {x2a+2b}a,b≥0 have constant coefficient, {x2a}a≥0
have coefficient linear in V , and x0 has coefficient quadratic in V .
The public key is P = (P1, ..., Pn−r) where (P1, ..., Pn) are the quadratic poly-
nomials that describe the function(t ◦ fV ◦ s) : {0, 1}n+v → {0, 1}n.

– Signing and verification algorithms. QUARTZ is exactly the CPC-D design
with 4 rounds based on the trapdoor function P : {0, 1}n−r × {0, 1}r+v →
{0, 1}n−r. The appendix is an element of {0, 1}n−r × ({0, 1}r+v)4, with length
n+ 3r + 4v = 128 bits.
The signer can compute P−1 because the knowledge of FV is sufficient to
compute a preimage for fV and P−1(x) ∈ {s−1◦f−1V ◦t−1(x,R) for R ∈ {0, 1}r,
V ∈ {0, 1}v }. The probability that the preimage does not exist for fixed R
and V is approximately 1

e , so the average number of attempts is e and the
probability that the signing algorithm fails is 1

e128 ' 2−185.

7.4.4.2 Security analysis (see also Sect. 7.3.1)

General security analysis. The preimage resistance of the function P is not
well defined, but two techniques to find preimages can be described.

– Attack on the QUARTZ structure. If the degree of FV is not bounded, then
the function P is a random set of quadratic polynomials, but the signing time
is too long. To improve the efficiency of the signing algorithm (which is still
very slow) the maximal degree in QUARTZ is set some value d. No known
attack directly exploits this difference between the QUARTZ problem and the
MQ problem.
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– Resolution of a random set of quadratic equations. This is called the MQ
problem and is NP-hard. However, Faugère [190] showed experimentally that
the classical algorithm to solve a system of polynomial equations (Gröbner
basis finding) is much more efficient on QUARTZ systems than on general
systems.
The impact of this result has been studied by Courtois et al. [132] and their con-
clusion is that setting d = 257 increases the computational power of Faugère’s
attack to 278. The price to pay is a signing algorithm that is more than 3 times
slower.

The hash function of QUARTZ. In the specifications for the first version
of QUARTZ [134], the value H(m) is defined to be the first bits of h1‖h2‖h3,
where h1 = SHA-1(m), h2 = SHA-1(h1) and h3 = SHA-1(h2). The revised
version of QUARTZ [136] uses the better design that takes the first bits of
SHA-1(h‖0)‖SHA-1(h‖1)‖SHA-1(h‖2), where h = SHA-1(m).

Other comments about the design. The signature generation algorithm in
the first version of QUARTZ only accepts the case where F−1V has a unique
solution. The revised version also accepts the case where two solutions exist and
chooses one in a deterministic way. The drawback of the first version is that the
appendix space is restricted to the values where FV has only one root, and that
gives some information about FV that might be usable for an attack.

Another drawback of Quartz is that the scheme is malleable (it is not strongly
unforgeable) [276].

Side-channel attacks. Side-channel attacks are introduced in Annex A. The
signing algorithm of QUARTZ does not use any of the classically vulnerable
operations, and we did not find any side-channel attack against it.

7.4.5 RSA-PSS

RSA-PSS as submitted by RSA Labs [275] is based on the PSS design, and its
security mainly relies on the intractability of the e-th root problem.

The differences between the submitted RSA-PSS and the generic design de-
scribed in Sect. 7.3.1.5 of this document and in the original description of PSS
[46] are justified in the submission and in supporting documents [275, 271].

7.4.5.1 The design

– Domain parameters. The parameters are the bitlength l of the modulus, the
output size l′ of a hash function Hash and the public exponent e ≥ 3.

– Key generation algorithm. Two random primes p and q are generated. The
public key is n = pq and the private exponent is d = e−1 mod (p− 1)(q − 1).

– Signing and verification algorithms. The scheme uses the PSS design where
the trapdoor function is f(x) = xe mod n and where the two functions H and
G are built from the common hash function Hash. A hash identifier may be
used, and the complete definitions of H and G are given in Sect. 7.4.5.2 below.
One consequence of this complete definition is that the trapdoor function
f is used only on a subset of Z/nZ. More precisely, if we define H0 =
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{x ∈ Z/nZ |x = a‖b‖0xBC}, HId = {x ∈ Z/nZ |x = a‖b‖Id‖0xCC},
H = H0 ∪

⋃

IdHId and S = {x1/e |x ∈ H}, then the NESSIE submission is
a PSS construction based on the restriction f : S → H.

Parameter and key generation. While any exponent e ≥ 3 can be used, the
NESSIE submission proposes small values like 3, 17, or 65537. The advantage of
choosing a small e is that the verification algorithm is much faster.

The generation of random prime numbers p and q of a given size is crucial
to the security of the scheme. The NESSIE submission suggests an algorithm
that does a probabilistic primality testing. Other algorithms may be used for key
generation.

7.4.5.2 Security analysis (see also Sect. 7.3.1)

Security proof for RSA-PSS. Following the generic security proof for the
PSS design, the security of RSA-PSS is based on the clawfreeness of f and g(x) =
η · xe mod n for a random η. This is easily shown to be equivalent to the e-th
root problem for η.

But because the NESSIE submission is based on a restriction of the function
f, the efficiency of the security proof is slightly worse than for the generic PSS
design. This is shown by Jonsson [271].

On the hash functions of RSA-PSS. The description of the function H de-
pends on an option t which can be 1 or 2 and decides whether a hash iden-
tifier 7 is used or not. If t = 1 and Hash is a hash function with hLen-
byte output, then H has an output of hLen + 1 bytes and is defined by
H(m‖r) = Hash(0(8 bytes)‖Hash(m)‖r)‖0xBC. If t = 2 and Hash is a hash func-
tion with hLen-byte output and identifier Id, then H has an output of hLen+ 2
bytes and is defined by H(m‖r) = Hash(0(8 bytes)‖Hash(m)‖r)‖Id‖0xCC. The
output of the function G(h) is defined to be the first bl/8c − hLen − t bytes
of Hash(h‖Hash(0(4 bytes))‖Hash(h‖1(4 bytes))‖... Moreover, the salt r being of
length smaller than bl/8c − hLen− t bytes, a constant m̄ = 0...01 is used.

While this is very close to the generic PSS design, the fact that H and
G have variable output length, depending on t, makes a new proof necessary
and may introduce subtle weaknesses. Another very similar design is easier to
provide with a security proof, if the function H has a fixed output length for
each public key. For example, H(m‖r) can be defined to be the last bytes of
...‖Hash(1(8 bytes)‖Hash(m)‖r)‖Hash(0(8 bytes)‖Hash(m)‖r)‖Trail, where Trail

is either 0x00BC or Id‖0xCC. The security proof of this variant of RSA-PSS then
makes the hypothesis that this function can be viewed as a random oracle (with
output in H), which is likely if Hash is one-way and collision-resistant. 8

Another improvement on the functions H and G can be suggested, which
protects against parameter manipulation, especially against adversarial hashing
[369]: the inclusion of some commitment to the parameters and the public key in
the input of the hash functions, as suggested in Sect. 7.2.1.2.

7 Some thoughts on hash identifiers have been published by Kaliski [281].
8 This design may even be better than the simple design H(m‖r) = Hash(m‖r), which
has the extensibility property [109].
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One last improvement is the use of UOWHF (Universal One-Way Hash Func-
tions) instead of CRHF (Collision-Resistant Hash Functions). The reason behind
this is that there exist secure constructions of families of UOWHF, while no
family of CRHF has been found.

RSA problem versus e-th root problem. It is important to notice that
because the exponent e is a parameter of the scheme the security of RSA-PSS is
provably based on the e-th root problem.

Some implementations of RSA-based schemes generate n before choosing e. If
e is not randomly chosen from the numbers coprime to φ(n) (e.g. the implementa-
tion of GPG 1.2.1 www.gnupg.org chooses the smallest such e in the list 41, 257,
65537, 65539, ...) the security of the scheme is based on another intractability
assumption.

However, flexibility in the choice of e can be useful for some RSA-based
schemes, e.g. threshold RSA and mediated RSA [157, 94].

It is possible that the e-th root problem for small values of e like 3, 17, or
65537 has not the same intractability as the generic problem. It may be easier,
or harder to solve. But small exponents make this problem easier to solve if some
side-channel information can be obtained, e.g. some bits of the secret exponent
d [96]. Moreover, some other theoretical arguments have been given that suggest
that a prime e ≥ 65537 is a conservative choice [98].

The random nonce. The random value r used in the signing algorithm should
have entropy, otherwise the efficiency of the security proof decreases. If this value
is deterministically generated, then the scheme is equivalent to a RSA-FDH
scheme, and has not so tight reduction to the e-th root problem. Even if the
deterministic generation of r is not pseudo-random, e.g. if r = 0, no concrete
weakness of the resulting scheme is known.

Side-channel attacks. A general introduction to side-channel attacks can be
found in Annex. A. In [93], Boneh et al. stressed how Chinese remainder based
implementations of RSA signature schemes are vulnerable to faults. For efficiency,
one would compute separately Sp = xd mod p and Sq = xd mod q and then use
the Chinese remainder theorem to construct the signature S = xd mod n. If an
error occurs during only one of the two exponentiations, then an attacker who
obtains this faulty signature and the correct one of the same message can factor
the modulus. This attack has been improved by Joye et al. in [278]: one such
erroneous signature and the corresponding plaintext x are enough to find out the
entire secret exponent. This attack does not apply to RSA-PSS. Indeed, in this
scheme, the message is at first encoded using the PSS encoding method, which
introduces some random bits. Thus the user never signs the same message twice,
and so the first version of the attack is avoided. Furthermore, given an erroneous
signature, the full message x that has been signed cannot be recovered, so the
second version of the attack does not work either.

For the same reason, it seems very hard to mount against RSA-PSS a fault
based attack (based on [292]) that introduces faults in the secret exponent.
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7.5 Digital signature schemes not selected for Phase II

7.5.1 ACE-Sign

7.5.1.1 The design

ACE-Sign is based on the merge of a RAND-secure scheme and of a secure
chameleon hash, as described in Sect. 7.3.3.4.

– Domain parameters. The security parameters are two integers l (e.g. 160) and
l′ (e.g. 512). Let H be a hash function with an l-bit output.

– Key generation algorithm. Two l′-bit strong primes p and q are randomly
chosen, and n = pq is computed. h and x are randomly taken in QRn and
e′ is a randomly chosen (l + 1)-bit prime. The keys are pk = (n, h, x, e′) and
sk = (p, q).

– Verification algorithm. The verification of a signed message (m, e, y, y′) ∈M×
Z× Z/nZ× Z/nZ checks that e is an odd (l + 1)-bit integer different from e′.
Then it computes x′ = (y′)e

′

h−H(m) and checks if x ?= yeh−H(x′).
– Signing algorithm. A random y′ ∈ QRn and a random (l + 1)-bit prime e are

generated, and x′ = (y′)e
′

h−H(m) and y = (xhH(x′))1/e are computed. The
appendix is (e, y, y′).

In fact, ACE-Sign as submitted to NESSIE does not use a collision resistant
function H but a family of universal one-way hash functions (UOWHF). The
index of the hash function used is added to the signed message. This increases
its size but weakens the security hypothesis on the hash.

Moreover, the random prime e is generated by some specific randomised al-
gorithm that output e together with some certification values. The properties of
this algorithm are: the probability that the same e is generated twice is negligi-
ble, and it is intractable to generate e and the certification without using this
algorithm. This modification increases the size of the signed message but allow
to reduce the security of ACE-Sign to the RSA assumption in the random oracle
model.

7.5.1.2 Security analysis (see also Sect. 7.3.3)

General security analysis. We can apply the general security result for this
construction (cf. Sect. 7.3.3.4), but ACE-Sign is also provided with an explicit
security proof, under the hypothesis that H is collision resistant (or taken from
a family of UOWHF).

If the forgery is (m, e, y, y′) we define x′ = (y′)e
′

h−H(m), and for all answers
(mi, ei, yi, y

′
i) to signature queries we define x

′
i = (y′i)

e′h−H(mi). This proof defines
three types of forgeries:

– In a type I forgery for some j we have e = ej and x
′ = x′j . It leads to a solution

of the RSA problem for (n, z, e′) with tight reduction. This corresponds to a
forgery of the chameleon hash. One can notice that e = ej is not used in the
proof.
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– In a type II forgery for some j we have e = ej but x
′ 6= x′j . It leads to a solution

of the RSA problem for (n, z, ej) with not so tight reduction. This corresponds
to the GUESS forgery of the RAND scheme.

– In a type III forgery for all i we have e 6= ei. It leads to a solution of the strong
RSA problem for (n, z) with tight reduction. This corresponds to the FLEX
forgery of the RAND scheme.

The random nonces. The random value y′ used in the signing algorithm and
the randomness needed to generate e only need to be unpredictible. These values
can be deterministically generated from the message and a secret value, like it is
done for the FDH-D design (cf. Sect. 7.3.1.3).

Comments about the design. ACE-Sign is the first of a family of digital
signature schemes which have a security proof in the real world and for which all
the operations used for signature or verification are efficient. While this design is
very promising, ACE-Sign has the drawback of having a not so tight reduction.
This is also the case for all the variants of this scheme.

For this reason its advantage over RSA-PSS, namely the fact that the security
proof holds in the real world, is only meaningful if parameter size is increased to
counteract the non-optimal reduction. For example, to have 80-bit security with
qS ' 232, ACE-Sign would need a modulus of 4096 bits, where RSA-PSS only
needs 1536 bits. The impact in terms of performance is important.

7.5.2 FLASH

7.5.2.1 The design

This scheme is very similar to SFLASHv2. The only change is in the parameter
choice, where q = 256 = 28 instead of 27. See also [427].

7.5.2.2 Security analysis

There is no known difference in security between FLASH and SFLASHv2 and
the performance is similar. However, the fact that 7 is prime implies that no
other subfield can be found in F128 than F2, while the FLASH base field F256

can also be seen as a vector space over F16 or F4. This may introduce additional
weaknesses in FLASH.

7.5.3 SFLASH

7.5.3.1 The design

This scheme is very similar to SFLASHv2. The only change is in the secret
key choice, where all components of s and t are 0 or 1. The advantage of this
restriction is that the keys are much shorter than for SFLASHv2.

7.5.3.2 Security analysis

Gilbert and Minier [220] have found how to use this special property to break
SFLASH. Their attack is practical, so SFLASH is totally insecure.
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Changes from version 1.0 to version 2.0 of the document

— Typos have been corrected.
§7.1 More on the distinction between parameters and keys. Short reference to

hash identifiers.
§7.2.1.1 SO-CMA and RAND are defined. Strong non-repudiation and basic non-

repudiation of origin are distinguished.
§7.2.1.2 Reference to [369] is added.
§7.3.1.2 Theorem 7.1 added.
§7.3.2 Reference to extensibility of common hash functions and their suitability

as random oracles added [109].
§7.3.2.4 “ElGamal projection” is renamed “Identity projection”.
§7.3.2.6 “GPS-sign scheme” is added.
§7.3.2.11 Proofs based on “semilogarithm” are added. They are generalisations of

Brown’s results [107].
§7.3.3 Rewritten to be more explicit on the underlying design techniques.
§7.4.1.2 Partly rewritten.
§7.4.3.2 References to [214, 215] are added.
§7.4.4.2 Comments about malleability of Quartz corrected.
§7.4.5 Expanded, to answer Burt Kaliski’s comments on version 1.0.
§7.5.1 The description is made more readable. Some considerations are moved to

Sect. 7.3.3.4. CRHF and UOWHF variants mentioned.
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8. Digital identification schemes

We present in this chapter asymmetric techniques to identify one entity (the
prover, also called Alice) with regard to another (the verifier, also called Bob),
in a way that any attacker (also called Charlie) would most certainly fail to
substitute himself to Alice. We will review some standard techniques to achieve
this goal, starting from the least secure.

8.1 Introduction

8.1.1 Identification through Password

The most widespread identification protocol is the identification through a pass-
word. For instance, under a UNIX system, it works as follows. Every user U
chooses a password xU and sends it to the server. The server applies a hash func-
tion f to compute yU = f(xU ) and then stores (U, yU ). Each time a user wants
to access his account, he will send his password x to the server that will then
check whether yU = f(x).

Unfortunately, this identification does not satisfy the modern security require-
ments. Indeed any eavesdropper will be able to recover the secret password (which
is sent unencrypted) therefore causing the scheme to be totally vulnerable to a
passive attack (cf. Definition 8.2).

8.1.2 Lamport’s Protocol

This protocol is akin to the previous password protocol, with the difference that
any password is only used once. The price to pay is a larger storage capacity, or
an enhanced computational power. It works as follows.

– Initialisation
1. Every user U chooses and saves a secret value xU = x0.
2. He then computes x1 = f(x0), x2 = f(x1), . . . , x1000 = f(x999), where f is

as before a one-way function.
3. He then publishes yU = x1000 to the server (verifier) who stores (U, yU ).
– Identification

0 Coordinators for this chapter: UCL — Mathieu Ciet and Francesco Sica



270 8. Digital identification schemes

1. When first identifying himself, the prover sends, together with his identity,
x = x999. The verifier then checks that f(x) = yU and updates the value of
yU by setting yU = x.

2. Successive identification are carried out as previously, with the prover send-
ing x998, x997, . . . and so on. Since f is supposed one-way, only the prover is
able to produce this sequence of values.

There are two problems with this kind of identification. Since successive values
x1000, x999, . . . become public after doing several executions of the protocol, one
cannot safely replay this protocol. In particular, in case of disk crash, if the last
value sent (say x765) was not stored, but say only up to x900 was stored, anyone
having recorded any value between x899 and x765 will be able to identify himself
instead of the prover if the server replays previous identification rounds.

Another issue lies in the fact that this identification scheme can only be used
with one verifier (this is a problem for electronic transactions, for instance).

8.2 Security Requirements

8.2.1 Passive Attacks and Interactive Proofs

As we saw in the previous section, a major threat is represented by replay attacks,
that are the most dangerous passive attacks. To thwart the possibility of passive
attacks, one solution is to make the identification protocol interactive with a
series of questions and answers between Alice and Bob. The minimal properties
of this protocol against any attack are the completeness and the soundness. They
are explained in the following.

Definition 8.1 (Goal of attacker). An identification scheme is totally broken
by an attacker if the attacker can impersonate the legitimate prover at will (to
any verifier) using his public key.

Definition 8.2 (Passive and active attacks). A passive attack involves an
adversary who tries to break the identification scheme by simply recording data
exchanged between prover and verifier and thereafter analysing it. An active at-
tack involves an adversary who can deviate from the verifier’s protocol in order
to extract more information about the secret key.

Definition 8.3 (Completeness property). An interactive proof is called
complete if given a honest prover and a honest verifier, the verifier accepts the
prover with overwhelming probability.

Definition 8.4 (Soundness property). An interactive proof is called sound
if whenever Charlie tries to impersonate Alice during the identification protocol,
he will fail with overwhelming probability.

How do we build in practice such interactive proofs of knowledge? Asymmetric
cryptography comes to our help: Alice will be the holder of a secret key SA, with
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corresponding public key IA. This public key is a word of a language L ∈ NP (see
start of Section 8.2.5 for a definition of NP). The secret key SA witnesses that
IA ∈ L. One chooses L in such a way that finding such a witness is untractable.
The identity proof consists in Alice trying to persuade Bob that she possesses
such a witness SA. Also if Charlie wants to successfully identify himself, he will
have to know a witness.

We can reformulate the soundness property by making it more precise.

Definition 8.4b (Soundness property). An interactive proof is called sound
if there exists an expected polynomial-time algorithm M with the following prop-
erty: if an attacker impersonating the prover can, with non-negligible probability,
successfully execute the protocol and be accepted by the verifier thenM can recover
a prover’s witness using the attacker as a subalgorithm.

We will now present a few problems on which such interactive proofs are
based.

8.2.2 Trusted Hard Mathematical Problems

These problems can be divided into two classes, namely the popular number-
theoretic problems (RSA, discrete logarithm, . . . ) which are not NP-complete
but on which much can be written, and proven NP-complete problems (PKP,
SD, . . . , see below). NP-complete languages L are the natural candidates for
identification tasks, because by definition if L 6∈ P (supposing P 6= NP) then
checking whether a word x belongs to L cannot be done in polynomial time,
whereas the knowledge of a witness (certificate) y allows to do so.

Let us describe these problems (cf Section 6.2.3).

– Let g be an element of a group, and let g have order q. The discrete logarithm
problem (DLP) is the problem of finding a when given (g, ga). The DLP as-
sumption is that the DLP cannot be solved by a polynomial-time (with respect
to q) algorithm. We will use the version where the group is the set (Z/nZ)×

of invertible residues modulo n.
– Short exponent problem: this is a sub-instance of the discrete logarithm prob-

lem. Given two coprime integers n, g, an integer S << ϕ(n) and gs mod n the
problem consists of recovering the exponent s, knowing that s ≤ S.

– An RSA key is a pair (n, e) where n = pq with p and q primes, and 1 ≤ e < n
with g.c.d.(n, e) = 1. The RSA problem is the problem of finding an integer
1 ≤ x ≤ n such that xe = y when given an RSA key (n, e) and an integer
1 ≤ y ≤ n.

– The eth root problem is similar to the RSA problem but the RSA key is thought
of a parameter to the system, i.e. it is the problem of finding, for some fixed
RSA key (n, e), an integer 1 ≤ x ≤ n such that xe = y when given an integer
1 ≤ y ≤ n.

– RSA-omi (one more inversion) problem: given two integers n, e such that
gcd(e, ϕ(n)) = 1, a challenge oracle outputting a random y ∈ (Z/nZ)× for
each query and a inversion oracle which on input y ∈ (Z/nZ)× outputs x such



272 8. Digital identification schemes

that y ≡ xe (mod n), the problem is for an adversary making t queries to
the challenge oracle and getting y1, . . . , yt to find x1, . . . , xt such that yi = xei
(mod n) for i = 1, . . . , t with at most t− 1 queries to the inversion oracle.

– One-more discrete logarithm (omdl) problem: this is defined similarly to the
RSA-omi, where the inversion oracle is replaced by a discrete logarithm oracle.

– PKP (Permuted Kernel Problem): Given an m × n matrix A with entries in
Z/pZ and a vector (v1, . . . , vn) ∈ (Z/pZ)n, find a permutation σ (if it exists)
on the set {1, . . . , n} such that (vσ(1), . . . , vσ(n)) lies in the kernel of A.

– SD (Syndrome Decoding problem): Given a (n, n− k)-linear binary code with
parity matrix H and a k-bit vector i, find a minimum-weight solution to the
linear equation H(s) = i.

– CLE (Constrained Linear Equations problem): This is the problem of finding
solutions to a system of linear equations modulo a small prime, when imposing
that the solutions must be taken from a specified set of residues.

– PPP (Permuted Perceptrons Problem): Define an ε-matrix (resp. vector) to
have all entries equal to ±1. Let A be an ε-matrix of size m × n and S be a
set of m nonnegative integers. The problem consists in finding an ε-vector V
of size n such that the set of the components of the vector AV is equal to S.

8.2.3 Protection against Active Attacks

The reason to base interactive protocols on hard problems is to offer resistance to
the more pernicious active attacks. We can adapt a methodology similar to other
asymmetric schemes proofs in order to show that a given scheme is secure under
active attacks. The following definitions are adaptations of similar Definition 6.2
and the definition found at the beginning of Section 7.2.3.

We precise that an active attacker will usually act as the verifier to Alice for a
number of times and then try to impersonate her successfully with other honest
verifiers.

Definition 8.5. A (t, ε)-solver for a problem is a probabilistic Turing Machine
A that runs in time bounded above by t and outputs a solution for the problem
with probability at least ε.
A (t, ε, qI)-impersonator for a digital identification scheme is a probabilistic

Turing Machine A that runs in time bounded above by t, makes at most qI chal-
lenges to the prover and succeeds in breaking the scheme with probability at least
ε.

Definition 8.6. A proof of security is the description of a (randomised) algo-
rithm called reduction algorithm. This algorithm is a (t′, ε′)-solver for some
mathematical problem and interacts with a (t, ε, qI)-impersonator for the iden-
tification scheme. A proof of security explains how a solver, using a (t, ε, qI)-
impersonator as a subalgorithm, can solve the underlying mathematical problem
in time t′ with probability ε′. The proof must relate t to t′ and ε to ε′. In partic-
ular, ε′ ≤ ε and t′ ≥ t.
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Thus if the underlying mathematical problem is hard, so that there are no
(t′, ε′)-solver for it, then there cannot exist any (t, ε, qI)-impersonator of the iden-
tification scheme. We say that the identification scheme is (t, ε, qI)-secure.

Usually qI ¿ t, and we will require k = log2(t/ε) = 80 (the attacker’s comput-
ing power is estimated to 280 triple-DES) and log2 qI = 30 (the attacker cannot
require more than a billion executions of the identification protocol).

However, some algorithms until recently did not have any security proof ac-
cording to this paradigm, and even the known proofs [43] use some strong under-
lying assumption, like the RSA-omi for GQ2 or the one-more discrete logarithm
for Schnorr.

This is the reason the zero-knowledge property proposed by Goldwasser, Mi-
cali and Rackoff [228] is rather used as a shield against active attacks.

8.2.4 Zero-Knowledge

8.2.4.1 The Power of Zero-Knowledge Interactive Proofs

Is it possible for Alice to convince Bob that she knows a secret SA without
revealing anything other than this fact? The theory of zero-knowledge answers in
the affirmative. In other words, during a zero-knowledge identification protocol,
Alice is effectively sending Bob only one bit of information, namely that she is
indeed who she claims she is.

This section is largely inspired from Goldreich’s book [222, Chapter 6], to
which we refer for more technical details and proofs. Following is a formalisation
of Alice and Bob and some rephrasing of concepts already seen. Note that one
can view, in light of the preceding sections, an interactive identification protocol
as a proof that some word x belongs to a language L.

Definition 8.7 (Loose formalisation of prover and verifier). Alice and
Bob are interactive Turing machines (ITM), denoted respectively P and V . Each
of these Turing machines has a certain number of tapes, most important of which
are a common input tape (read-only), auxiliary input tapes (read-only and specific
to each), random seed or coin tapes (read-only and specific to each), work tapes
(read-write and specific) and two communication tapes (shared, on one of them
P can read and V can write, on the other one V can read and P can write).
Also, P and V have two states (active and idle) and they cannot be both active

(they are both idle only before and after the identification protocol).

Definition 8.8 (Time complexity of ITMs). Let A and B be two linked
ITMs and t : N→ N a non-decreasing function. Then A has time complexity t if
for any B and any bit string x, machine A on interacting with B with common
input x always (i.e. for any distribution of outputs of tapes specific to B) halts
within time t(|x|), where |x| denotes the bit length of x.
We say A has polynomial-time complexity if t can be chosen to be a polyno-

mial.
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Definition 8.9. We denote by 〈A(y), B(z)〉(x) the random variable consisting
of the local output of B after interacting with A, over all choices of the random
seed tapes, with common input x and auxiliary inputs y for A and z for B.

Definition 8.10 (Completeness and soundness revisited). The identifica-
tion protocol between P and V which is an interactive proof system for a language
L is

– complete if for every common input x ∈ L, there exists y such that for any z

Prob(〈P (y), V (z)〉(x) = 1) ≥ 2

3
, (8.1)

– sound if for every x 6∈ L, for any ITM B for any bit string y, z

Prob(〈B(y), V (z)〉(x) = 1) ≤ 1

3
.

Remark. The numbers 2/3 and 1/3 can be equivalently replaced in this definition
by 1− ε and ε for any 0 < ε < 1/2. Also, given x ∈ L, we denote PL(x) to be the
set of y satisfying (8.1).

We come to the main definition of this section.

Definition 8.11 (Zero-knowledge property). Let (P, V ) be an interactive
proof for a language L. We say (P, V ) is auxiliary-input zero-knowledge if for
every probabilistic polynomial time interactive machine V ∗ there exists a prob-
abilistic algorithm M∗(·, ·), running in polynomial time with respect to its first
input, so that the following two distributions are indistinguishable:

– {〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and
– {M∗(x, z)}x∈L,z∈{0,1}∗ .
In this case, M∗ is called a simulator of the interaction of V ∗ with P .

What this says is that the interaction of P and V can be simulated polynomi-
ally by an algorithm controlled by V , with the same inputs (to V ). It is important
that this simulation be polynomial-time, as we will later see. Also note that an
eavesdropper seeing only the interaction between P and V will be unable to tell
whether he is witnessing a real interaction (variable 〈P (y), V ∗(z)〉(x)) or a fake
one (M∗(x, z)).

In this definition, one has to give a meaning to the term indistinguishable.
If the two distributions are truly the same, the property is called perfect zero-
knowledge. But in practice, giving the limited power an attacker can have, the
weaker notion of computational zero-knowledge offers enough security.

Definition 8.12 (Computational indistinguishability). The distribu-
tions defined by the random variables {〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and
{M∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable if for every proba-
bilistic algorithm D(·, ·, ·) running in polynomial time with respect to its first in-
put, every polynomial p, all sufficiently long x ∈ L, all y ∈ PL(x) and z ∈ {0, 1}∗,
one has
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|Prob(D(x, z, 〈P (y), V ∗(z)〉(x)) = 1)− Prob(D(x, z,M∗(x, z)) = 1)| < 1

p(|x|) .

Remark. By zero-knowledge we will henceforth mean computational zero-
knowledge.

Note that for the time complexity of ITMs and hence M ∗ and D we require
polynomial-time only in the common input x, not in the auxiliary inputs z or
y which can be very large. If we did, then we would allow for instance D’s that
could run in exponential time and worse, in practice shredding the notion of
computational indistinguishability.

The interesting property of zero-knowledge proofs is that they remain zero-
knowledge after polynomially many repetitions of the protocol.

Theorem 8.1 (Closure under sequential composition). Let (P, V ) be an
interactive auxiliary-input zero-knowledge proof for a language L. Let Q be a
polynomial. Define PQ to be the sequential running of P with same x as com-
mon input Q(|x|) times and independent random tapes (similarly for VQ). Then
(PQ, VQ) is an auxiliary-input zero-knowledge proof for L. Moreover if (P, V ) is
perfect auxiliary-input zero-knowledge, then so is (PQ, VQ).

Remark. Actually, V plays no role here, because it is clear that the zero-
knowledge property is a property of the prover P only.

One should be aware here that the assertions of the theorem are not neces-
sarily valid if one uses alternative definitions of zero-knowledge, as the original
definition of Goldwasser, Micali and Rackoff [228]. In particular, allowing auxil-
iary inputs is essential in order to get closure under sequential composition.

This theorem is used in practice to construct protocols where the probability
of cheating is as low as one desires. For instance, in the Fiat-Shamir protocol
(see Section 8.4.1) a legitimate prover is always accepted, but a cheater can be
accepted with probability 1/2. Therefore by repeating the basic 3-round protocol
a number k of times, one can ensure that a cheater will only be accepted with
probability 1/2k, while retaining the zero-knowledge character of the protocol.

A very nice result is that all languages in NP have a zero-knowledge proof
provided one-way function exist.

Theorem 8.2. Suppose one-way functions exist. Then every language in NP

has an auxiliary-input zero-knowledge proof system. Furthermore, the prescribed
prover in this system can be implemented in probabilistic polynomial-time, pro-
vided it gets the corresponding NP witness as auxiliary input.

8.2.4.2 Negative Results on Zero-Knowledge

The theory of zero-knowledge does not solve all our problems, since we will see
that to obtain adequate security, zero-knowledge protocols have to be repeated
sufficiently many times and thus lose in efficiency.

We begin by recalling the definition of the complexity class BPP.
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Definition 8.13 (BPP). The class BPP consists of all languages L for which
there exists a randomised algorithm V such that for all x

Prob(V (x) = 1 | x ∈ L) ≥ 2

3

and

Prob(V (x) = 1 | x 6∈ L) ≤ 1

3
.

As before, the numbers appearing in the right-hand sides can be made ar-
bitrarily close to 1 (resp. 0). It is clear that languages in this class have trivial
interactive proofs of knowledge, in the sense that the verifier has no interaction
with the prover.

Definition 8.14 (Black-box zero-knowledge). The prover P for the lan-
guage L is black-box zero-knowledge if there exists a universal probabilistic
polynomial-time algorithmM which uses any verifier V ∗ as a black box, such that
{〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and {MV ∗(z)(x)}x∈L,z∈{0,1}∗ are compu-
tationally indistinguishable.

Hence the main difference with traditional zero-knowledge definitions is that
the simulator here is universal and does not depend on the verifier V ∗. In practice,
all known proof of zero-knowledge proceed by exhibiting a universalM , so that in
the end, one always demonstrates black-box zero-knowledge properties. However
this theoretical definition is important because of the following result.

Theorem 8.3. Suppose that (P, V ) is an interactive proof system for the lan-
guage L with negligible error probability. Suppose also that there exists a constant
ρ such that for every x ∈ L, on input x the prover P sends at most ρ messages
(constant round), the messages sent by the verifier are predetermined consecutive
segments of its random tape (public coins or Arthur-Merlin game) and that P is
black-box zero-knowledge. Then L ∈ BPP.

Thus, except for “trivial” languages, if (P, V ) satisfy all the properties above,
it must be that the error probability is not negligible, hence to make small, you
must increase the number of sequential runs of the protocol. Another conclusion
is that in order to construct low error probability zero-knowledge protocols it is
wise to allow the verifier to use secret coins.

In the cases that we will consider, namely 3-round protocols, the distinction
between public and secret tosses of a coin does not exist (since there is only one
random toss), hence we get that there are no 3-round black-box zero-knowledge
identification systems with negligible error probability. The number of rounds
here is believed to be optimal in the sense that there exist 4-round black-box
zero-knowledge proofs for languages believed to be outside BPP and assuming
the existence of claw-free permutations (see 7.3.1.1) there exist 5-round zero-
knowledge interactive proofs for all languages in NP.

There is one important consequence of this fact. If we consider parallel ex-
ecutions of the protocol, then the error probability can be made negligible (for
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instance less than 1/2m for m parallel executions of Fiat-Shamir). If (P, V ) play
an Arthur-Merlin game, then the same is true for the parallel version and the
number of rounds stays the same. Hence the theorem implies that this paral-
lel version cannot be black-box zero-knowledge. Although it may still be zero-
knowledge, the fact that all known zero-knowledge proofs are actually black-box
zero-knowledge proofs is bad omen. Indeed the following was proved.

Theorem 8.4 (Non-closure under parallel composition). There exist two
zero-knowledge provers P1 and P2 such that the prover P which runs both of them
in parallel leaks knowledge.

This and the fact that zero-knowledge protocols are expensive (in terms of
performance) has led to consider a larger class of protocols that includes zero-
knowledge protocols but can still be used for secure identification.

8.2.5 Witness Indistinguishability

Let L be a language of NP. By definition, this means that there exists a binary
relation, called witness relation, RL such that (x, y) ∈ RL implies |y| ≤ pL(|x|)
for some polynomial pL. Also, (x, y) ∈ RL can be checked in polynomial-time
and

L = {x : ∃y : (x, y) ∈ RL} .
We call y a witness to x ∈ L. In general, x ∈ L may have more than one witness,
so that the cardinality of RL(x) = {y : (x, y) ∈ RL} is larger than 1. We say an
interactive proof for L is witness-indistinguishable if after running the protocol,
the verifier cannot tell which witness the prover used as auxiliary input. Formally,

Definition 8.15 (Witness indistinguishability/independence). Let
L ∈ NP with a witness relation RL, (P, V

∗) an interactive proof for L, where

V ∗ is any polynomial-time ITM . Denote by view
P (y)
V ∗(z)(x) a random variable de-

scribing the contents of the random-tape of V ∗ and the messages V ∗ reads on the
communication tape (written by P ), on common input x, auxiliary input y (for
P ) and z (for V ∗). We say P is witness-indistinguishable if for every V ∗ and
every two sequences (w1

x)x∈L and (w2
x)x∈L such that w

i
x ∈ RL(x), the following

two distributions are computationally indistinguishable

– {x, viewP (w
1
x)

V ∗(z) (x)}x∈L,z∈{0,1}∗ and
– {x, viewP (w

2
x)

V ∗(z) (x)}x∈L,z∈{0,1}∗ .

If the two distributions are the same, then we use the term witness-independent.

Note that any zero-knowledge proof for a language in NP is witness-indistingui-
shable, since the view corresponding to each witness can be approximated by the
same simulator. Likewise, perfect zero-knowledge proofs are witness independent.
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Theorem 8.5 (Closure under sequential and parallel composition).
The sequential composition of witness-indistinguishable (resp. witness-indepen-
dent) provers is witness-indistinguishable (resp. witness-independent).
Let L ∈ NP, RL a witness relation, P a witness indistinguishable (resp.

witness-independent) prover for RL that runs in probabilistic polynomial time. Let
Q be a polynomial and PQ denote the ITM that on common input x1, . . . , xQ(n) ∈
{0, 1}n and auxiliary input y1, . . . , yQ(n) ∈ {0, 1}∗ invokes P in parallel Q(n)

times, so that in the ith copy P is invoked with common input xi and auxiliary
input yi. Then PQ is witness-indistinguishable (resp. witness-independent) for
the relation RLQ such that

(
(u1, . . . , uQ(n)), (v1, . . . , vQ(n))

)
∈ RLQ iff (u1, v1) ∈

RL, . . . , (uQ(n), vQ(n)) ∈ RL.
Remark. It is important that P be probabilistic polynomial-time.

Theorems 8.2 and 8.5 together with the observation that zero-knowledge implies
witness-indistinguishability can be put together to arrive to the following result.

Theorem 8.6. Assume there exist one-way functions, then every language in
NP has a constant round witness-indistinguishable proof system with negligible
error probability. In fact, the error probability can be made exponentially small.

8.2.6 Resettable Zero-Knowledge Proofs

The notion of resettable zero-knowledge was introduced in [113] to provide natu-
ral solutions to physical problems in the implementation of zero-knowledge pro-
tocols, for instance when the prover is implemented on a smart card that can be
reset by simply disconnecting its power supply.

Also this stronger property offers security (is closed) under concurrent (par-
allel) executions of the protocol, something we have seen to be false for the plain
zero-knowledge property.

Finally, this notion provides an alternative way of constructing identification
schemes that are fundamentally different from the ones constructed following the
Fiat-Shamir paradigm, see Section 8.3.1.

We will not discuss at length this property, since it is not satisfied by any of
the submissions or the existing standards. We mention it for completeness and
because of its practical relevance.

Loosely speaking, a resettable zero-knowledge proof is an interactive proof
where the prover is forced to use a random but fixed coin in a polynomial num-
ber of executions, each time interacting with the verifier in the usual fashion.
The verifier can of course send messages that are related from one execution to
another. If the output of the verifier is indistinguishable from a polynomial-time
simulator (that depends only on the common input, previously denoted by x),
we say the proof is resettable zero-knowledge (rZK).

Analogously, one can define resettable witness-indistinguishability (rWI). The
main results are the following.

Theorem 8.7. Under the DLP assumption, there is a non-constant round (resp.
constant round) rZK (resp. rWI) proof for NP.
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Hence we can do, under classical assumptions, everything previously written in
a resettable fashion.

8.2.7 Classification of Attacks

In the following, we give the list of possible attacks against identification schemes.
Notice that the attacks are similar to those for message authentication codes.

Distinction is sometimes made between adversaries based on the type of in-
formation available to them.

Definition 8.16. An outsider is an adversary who has no special knowledge
beyond that generally available, e.g. by eavesdropping on protocol messages over
open channels.
An insider is an adversary with access to additional information, (e.g. com-

mitment of prover, see Section 8.3.1). He can be a one-time insider, if he obtains
such information at one point in time for use at a subsequent time or a perma-
nent insider if he has continual access to privileged information.

We list some particular active attacks on identification schemes.

Concurrent attack. A concurrent attack is an active attack whereby the at-
tacker interacts with several copies of the same prover (same secret key) using
different commitments g in the notation of Section 8.3.1. This attack is realistic
when identification protocols are used in the context of Internet.

Man-in-the-middle attack. A man-in-the-middle attack is an attack whereby
an intruder will communicate anonymously with both the verifier and the prover
in such a way as to cut off the direct information exchange between them. As a
result the (honest) verifier and prover will think to have successfully executed the
identification protocol while in fact they will have leaked privileged information
that may prove fatal to the prover.

Replay attack. A replay attack is an attack whereby the attacker is able to
achieve his goal by using some previous honest execution of the protocol, either
with the same verifier or a different one.

Interleaving attack. An interleaving attack is an attack whereby the attacker
uses a selective combination of information from several previous honest protocol
executions. A replay attack is a type of interleaving attack.

Reflection attack. A reflection attack is an interleaving attack whereby the
attacker passes all queries from the verifier to the originator of the honest infor-
mation and forwards all replies from this entity back to the verifier.

Forced delay attack. This attack occurs when an attacker intercepts a message
and relays it at some later point in time.

Chosen text attack. This is an attack whereby an attacker impersonates the
verifier and chooses messages in such a way as to obtain information about the
prover’s key.
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Reset attack. In this type of attack the attacker is able to reset the prover to
a previous state, for instance by forcing it to always use the same random seed
(coin). This is a very powerful physical attack that can be implemented easily on
smart cards deprived of internal power supply. Note that resistance against reset
attacks, in a slight generalisation of Section 8.2.6 implies resistance to concurrent
attacks defined above.

8.2.8 Assessment Process

The submitted asymmetric identification scheme is assessed with respect to
generic common identification schemes and specific attacks. To assess the se-
curity of an asymmetric identification scheme which is a zero-knowledge proto-
col we will follow the Feige-Fiat-Shamir methodology in proving completeness,
soundness and the zero-knowledge property.

8.3 Overview of Common Designs

8.3.1 Interactive 3-round Identification Protocols

An identification protocol relying on a zero-knowledge proof of knowledge usually
follows the four steps which we will describe. This paradigm is often called the
Fiat-Shamir paradigm, since it was first described in the Fiat-Shamir protocol
(see Section 8.4.1) for knowledge of a square root modulo n.

This kind of protocols is commonly called interactive 3-round identification
protocol.

– Commitment: the prover randomly selects a commitment g (also called coin)
and sends it under a mask x to the verifier.

– Challenge: the verifier chooses a random challenge c and sends it to the prover.
– Response: the prover uses his secret key together with g to compute a response

value y, which is sent back to the verifier.
– Verification: the verifier uses y together with x to check the identity of the

prover. He may either accept or reject.

There is also a need when using an asymmetric proof of identity to get assur-
ance of the validity of a public key of the prover. This is the role of the trusted
authority (TA) which is always supposed honest: the prover chooses a secret key
and computes the related public key and the TA certifies his choice. Some of the
schemes such as GQ, GPS and Feige-Fiat-Shamir (but not GQ2 or Schnorr) can
be made identity-based, meaning that the public key is related very closely to the
prover’s identity (e.g. his email address) and his secret key is then computed by
the TA (who hold of some super-secret unknown to all provers) who then passes
it on to the prover.

Note that it is obvious in all the following protocols that these are vulnerable
to reset attacks and there is nothing we can do about it, since this is a common
weakness to all zero-knowledge proofs of knowledge (by definition, which we do
not recall here, see [222, Chapter 6]).
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8.3.2 Current standards

– ISO/IEC 9798-5 specifies three identification techniques: one family based on
the RSA problem, of which Fiat-Shamir and GQ are instances, one family
based on the discrete logarithm problem, of which Schnorr is an example and
a mechanism based on an asymmetric encryption scheme, derived from the
Brandt-Damgaard-Landrock-Pedersen scheme [104].

8.4 Digital identification schemes considered during
Phase II

8.4.1 Fiat-Shamir

We describe the Fiat-Shamir protocol [193], historically the first zero-knowledge
protocol and an example emulated by later schemes.

– Initialisation
1. The TA chooses a largeN = pq, with p and q primes of size n/2 and publishes
N .

2. Alice chooses her secret key S ∈ (Z/NZ)∗ and computes the public key
I = S2 mod N .

– Identification
1. Alice chooses a random number r ∈R (Z/NZ)∗, computes x = r2 mod N

and sends x to Bob.
2. Bob chooses a random bit b ∈R {0, 1} and sends it to Alice.
3. Alice then computes y = rSb mod N and sends it to Bob.
4. Bob checks whether y2 = xIb mod N .

As explained after Theorem 8.1, one has to repeat this protocol sequentially
k times to obtain a cheating probability of 1/2k. Hence it is important that k
grows faster than any expression C log n for any constant C > 0 to achieve super-
polynomial security, but must remain less than nC

′

for some C ′ > 0, in order to
preserve the zero-knowledge property (see Theorem 8.1).

Theorem 8.8. The sequential Fiat-Shamir protocol is an interactive proof of
knowledge of a square root of I. It is sound, complete and zero-knowledge.

8.4.2 Schnorr

The prototype of many identification schemes is Schnorr’s identification scheme,
which we will describe briefly. A TA publishes

– two primes p, q, such that q divides p−1 and such that the discrete log problem
is difficult to solve in F∗p (typically log2 p = 1024 and log2 q = 160),

– an element g ∈ F∗p of order q and
– a security parameter t such that q > 2t.
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Each prover chooses s ∈ {1, . . . , q−1} at random and computes I = g−s (mod p),
publishing I through the TA as their public key. Let us examine a protocol round.

1. Commitment : the prover picks r ∈ {0, . . . , q−1} at random and sends to the
verifier x = gr (mod p).

2. Challenge: the verifier chooses a random c ∈ {1, . . . , 2t} and sends it to the
prover.

3. Response: the prover computes y = r+sc (mod q) and sends it to the verifier.
4. Verification: the verifier computes z = gyIc (mod p) and accepts the prover

if and only if z = x.

Theorem 8.9. The Schnorr protocol is an interactive proof of knowledge of the
discrete logarithm of I to the base g in Z/pZ. It is sound, complete and zero-
knowledge for fixed t.

Note that trivially if Charlie tries to impersonate Alice, his probability of
fooling Bob is at most 1/2t. However, if one lets t grow super-polynomially,
then the protocol cannot be simulated in polynomial time and thus cannot be
zero-knowledge. Hence to decrease the error probability while keeping adequate
security against active attacks, one must play this protocol several times sequen-
tially.

8.4.3 GPS

GPS is the only identification scheme submitted to NESSIE. The scheme has
good performance with high security. The submitted documents contained some
minor flaws in the specifications, but these were corrected at the beginning of
phase II.

8.4.3.1 The Design

GPS scheme consists of an interactive zero-knowledge identification scheme, that
combines provable security based on integer factorisation and computing discrete
logarithms modulo prime numbers, identity-based short key and minimal on-line
computation.

It is essentially a modified version of the well-known Schnorr identification
scheme (see Section 8.4.2). Unlike the Schnorr scheme, GPS uses a generator g
with unknown order and the exponent is calculated in Z rather than modulo p.

The GPS identification scheme consists of ` iterations of an identification
round. This ` is part of the security parameters of the scheme. We now describe
one round of the GPS identification scheme. Let A, B, S be parameters with
|A| ≥ |S| + |B| + 80, |B| = 32 and |S| greater than 140 bits. It would be better
if |S| = 180 meaning A is approximately a 300-bit number. Let n be a RSA
modulus (n = pq where p, q are 512-bit primes).



8.4 Phase II identification schemes 283

Prover Verifier

choose r ∈ {0, . . . , A− 1}
compute x = gr (mod n)

x−−−−−→

c←−−−−− choose c ∈ {0, . . . , B − 1}
check c ∈ {0, . . . , B − 1}
compute y = r + cs

y−−−−−→ check y ∈ {0, . . . , A+ (B − 1)(S − 1)− 1}
accept if gyIc = x (mod n)

This scheme is proved complete, sound (a prover accepted with probabil-
ity greater than 1/B` must know the discrete logarithm of I), and perfectly
zero-knowledge and honest-verifier zero-knowledge if B is not too large, see Sec-
tion 8.4.3.2.

GPS is designed to be used in situations where authentication has to be done
“on the fly” with smart cards.

8.4.3.2 The Security of GPS

The submitters show that GPS is complete, sound and zero-knowledge. More
precisely they prove the following three assertions [438].

Theorem 8.10 (Completeness). The execution of the protocol between a
prover who knows the secret key corresponding to his public key and a verifier is
always successful.

Theorem 8.11 (Soundness). Assume some adversary is accepted in polyno-
mial time with non-negligible probability by honest verifiers, that log(|n|) =
o(` · |B|) and that ` and B are polynomial in |n|. Then there exists a polynomial-
time algorithm that solves the discrete log with short exponent problem.

Theorem 8.12 (Zero-knowledge). The GPS protocol is computationally zero-
knowledge if ` and B are polynomial in |n| and `SB/A is negligible. As a conse-
quence it is also honest-verifier computationally zero-knowledge under the same
assumptions.

In [439], the authors actually relate the soundness of the protocol to the
factorisation of the modulus n, under the same hypothesis.

It may be remarked that the proof of the zero-knowledge property assumes
that |B| is constant, as in the proof for the original Schnorr protocol. On the
other hand, Pointcheval [434] proves that under some hypothesis on n and g,
assuming |B| > 2 ord(g), GPS still retains its witness indistinguishable property,
and active attacks are then related to the factorisation of n. This leads to more
efficient and secure identification protocol since one can then safely take ` = 1.

8.4.3.3 Various Attacks on GPS [478]

Verifier Cheating over Value of c. In the original version of GPS the response
did not include any check that c < B. If the verifier is dishonest then he could
send c = A as a challenge to the prover. The prover then computes y = r + sA
and sends this value to the verifier. Since (assuming the prover is following the
protocol correctly) r < A, the verifier can easily compute
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s =
⌊ y

A

⌋

.

This problem was pointed out by Daniel Bleichenbacher (see NESSIE forum)
and the protocol was consequently modified.

Breaking the Pseudo-Random Number Generator. Suppose that the
pseudo-random number generator used to generate r in the commitment step is
weak, so that given k random values r1, r2, . . . , rk we can predict rk+1. Then the
verifier can break the system by sending c = 0 k times in order to find the values
r1, r2, . . . , rk and thus predict the value of rk+1. On the (k+1)-th application of
the algorithm, the verifier can send an arbitrary value of c and then compute the
secret key s which is given by

s =
y − rk+1

c
.

Alternatively, suppose that the prover is dishonest and wishes to pass himself
off as the holder of private/public key pair (s, I) without actually knowing the
private key s. If such a dishonest prover could break the pseudo-random number
generator used to generate the challenge c then he could fool the verifier as
follows:

– the dishonest prover sends the commitment x = gr+cIc to the verifier. The
verifier sends the (not so) random challenge c to the prover.

– The dishonest prover sends y = r + c to the verifier. The verifier checks that
x = gyIc = gr+cIc and that y ∈ [0, A+ (B − 1)(S − 1)].

Both of these checks will be accepted as correct by the verifier who will then
assume that the dishonest prover is in fact the holder of the private key s.

Therefore GPS is only as safe as long as the pseudo-random number generator
used is unbroken.

8.4.3.4 Fault and Chosen-Modulus Attacks on GPS [174, 173]

The first fault attack targets the secret key and requires the following fault model:
bit flip fault model, complete control on the number of faulty bits induced and
complete or loose control on the fault location. The fault can be induced before
the computation starts. The idea is to flip exactly one bit of the secret key used
by the prover. With his response to the challenge, an attacker can recover the
original value of the bit he flipped. Repeating this operation, he can recover all
the bits of the secret key. This attack has been introduced by [93] and is fully
described in [174]. If the attacker does not know exactly which bit of the secret
key he flipped, he can make several tries and find out which one it was and its
original value. Obviously the attack is then less efficient.

The second fault attack targets an intermediate value and works in the fol-
lowing model: bit flip fault model, complete control on the number of faulty bits
induced, and complete or loose control on the fault location. The value targeted
is namely the random value r chosen by the prover at the first step. The prover
has to store this value as he is going to use it again when responding to the ver-
ifier’s challenge. If an attacker is able to swap exactly one bit of this value while
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the prover is waiting for the challenge, and to repeat this operation several times
sending the same challenge to the prover, the attacker can recover the secret key
s. The attacker must have at least the following control on the fault location: the
fault concerns the value r. If he has complete control, so that he knows exactly
which bit has been flipped, the attack is more efficient. This attack has been first
described against Schnorr’s identification scheme in [93], and the version against
GPS is described in [174].

GPS is also vulnerable to a chosen-modulus attack. Indeed, the modulus n
is needed by the prover, so a modification of this value can lead to an attack.
An attacker who is able to replace this value by a value of his choice can recover
the secret key. The first step of the protocol consists in the prover choosing a
commitment r and sending the value gr mod n to the verifier. If the attacker
has replaced the original modulus by a number so that he can easily solve the
discrete logarithm in the new field, he can thus find the value r and so the secret
key.

8.4.4 GQ

In this section we sum up what the research community already knows about
the security of the GQ protocol. We will see that GQ satisfies the following
properties: completeness, soundness, perfect zero-knowledge and security against
concurrent attacks under the RSA-omi assumption. We will then discuss more
practical aspects of the security of GQ, namely we see what attacks on RSA
apply to GQ, then we notice that GQ is immune from side-channel attacks on
exponents.

8.4.4.1 The Design

The GQ protocol was first published in [234]. It is of the same design as the Fiat-
Shamir identification scheme. It provides security based on the RSA assumption,
identity-based public keys, and allows the use of the same modulus by multiple
users. It needs a trusted authority to generate some of the parameters.

Public Parameters. Let n be a RSA modulus, and v a prime RSA exponent.
These parameters can be shared by several users.

Parameters of the authority. The factorisation of n and the integer s such
that v.s ≡ 1 (mod ϕ(n)) are kept secret by the authority.

Parameters of the users. Each user’s private key is an integer Q, and the cor-
responding public key is an integer G verifying GQv ≡ 1 (mod n) (the equation
G ≡ Qv (mod n) can also be used).

Remark. The use of the second equation only affects the verification step.
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A round of GQ.

Prover Verifier

choose r ∈ (Z/nZ)∗

compute R = rv (mod n)
R−−−−−−→

d←−−−−− choose d ∈ {0, . . . , v − 1}

check d ∈ {0, . . . , v − 1}
compute D = rQd (mod n)

D−−−−−−→
check D ∈ (Z/nZ)∗

accept if R ≡ DvGd (mod n)
(or RGd ≡ Dv (mod n)
if second equation is used)

8.4.4.2 The Security of GQ

The following properties of GQ have been proved.

Theorem 8.13 (Completeness). The execution of the protocol between a
prover who knows the secret key corresponding to his public key and a verifier is
always successful (it is obvious, see [234]).

Theorem 8.14 (Soundness). Assume some adversary knows a commitment
such that he can succeed in an identification with probability greater than v−1,
then this cheater can recover the real prover’s private key in polynomial time.
This proof was first published in [233].

Theorem 8.15 (Zero-knowledge). The GQ protocol is perfect zero-knowledge
if v is polynomial in n (this was shown in [111]). As a consequence it is also
honest-verifier computationally zero-knowledge under the same assumption.

Theorem 8.16. (Security against Impersonation under Concurrent At-
tacks). The GQ protocol is secure against impersonation under concurrent and
active attacks, if the RSA-omi problem is hard. This result was published in [43].

8.4.4.3 Practical security problems

RSA-related security problems. The GQ protocol requires the use of a RSA
modulus, and the private GQ key (or its inverse, depending upon which version
is being used) is the RSA signature of the public GQ key. This implies that the
choice of the modulus n and the private exponent s must be done with the same
care than in RSA.

– The modulus n must be large enough to prevent elliptic curve factorisation
– One can wonder if Wiener’s attack [520], Boneh-Durfee’s attack [95], or Blömer-

May’s attack [87] apply to GQ. It could in theory, but it will not work in prac-

tice. These attacks work on small secret exponents (i.e., s < n
1
4 for Wiener’s

attack, s < n0.292 for Boneh-Durfee’s attack and s < n0.29 for Blömer-May’s
attack). But the secret exponent cannot be small in GQ because v.s > ϕ(n)
and v is small. For example, if we take |n| = 1024 and |v| = 16, we have
|s| > 1000.

– Since the factorisation of n is not known by the prover, she can’t use the CRT
function, and the fault attack on chinese remainder based implementation [93]
will not work on GQ.
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A remark about side channel attacks. An attacker might try to find some
information on the private key by using a side channel attack to recover one or
both of the exponents used by the prover. In this paragraph, we notice that even
if the attacker recovers both of the exponents it doesn’t give him any advantage.

Let us give at look at the computations made by the prover during a proof
(notice that the first computation can be made in advance).

– Commitment : The prover calculates R = rv mod n. The exponent used here,
v, is public.

– Answer : The prover calculates D = rQd mod n. The exponent used here, d,
is the challenge and is not secret (more precisely, an eavesdropper can see it
during the proof).

Recovering one of the exponents, or both of them, will not provide an attacker
any additional information about the private key.

Changes from version 1.0 to version 2.0 of the document

— The first part of the chapter was completely rewritten. Sections 8.1.1
through 8.2.6 reflect this new material. Older sections were incorporated
into Sect. 8.2.1 and Sect. 8.2.3 (definitions).

§8.2.2 expanded to include proven NP-complete problems PKP, SD, CLE, PPP
as well as omdl (one more discrete log problem).

§8.2.7 Added reset attacks.
§8.3.1 one paragraph removed. Clarification that ZK proofs of knowledge are sus-

ceptible to reset attacks.
§8.3.2 developed.
§8.4.1 added: description of Fiat-Shamir identification scheme.
§8.4.3.2 first two paragraphs omitted and writing of new security considerations

after the three theorems.
§8.4.3.4 is new material.

— Typos were corrected and description of protocols were uniformised to some
extent.
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A. Side-channel attacks

Ever since cryptography became part of our every day’s life, not only the used
cryptographic algorithms became subject to attacks, but also their implementa-
tions in hard- or software. The traditional cryptographic model however, does
not take the aspect of implementation attacks into account. In the traditional
scenario, Alice and Bob secure their communication by some mathematical func-
tion, namely the cryptographic algorithm. The adversary Eve, is only assumed
to have knowledge about this mathematical function and some plain- and cipher-
text pairs. Consequently, security proofs only involve these components. Despite
the given proofs of security for any cryptographic algorithm in any theoretical
model, a communications system based on this algorithm can still be vulnerable
to quite a number of other attacks. A very dangerous class of such attacks is
commonly referred to as side-channel attacks and this appendix is devoted to
the consideration of the NESSIE primitives towards their vulnerabilities to such
attacks and their properties and abilities to help defeating such attacks.

Currently there is very little theoretical framework in which one can assess
such attacks. The NESSIE PIB members have stated that only if a side-channel
attack applies, regardless of implementation, should this be used as a selection
criterion. Unfortunately, some of the currently known side-channel attacks work
regardless of the specific implementation, and even worse, they do not assume an
attacker to have knowledge about the attacked device. Furthermore these attacks
work also for all currently known algorithms. Apparently, the selection criterion
should not be the applicability of these types of attacks. On the contrary, an algo-
rithms abilities to counteract them should be a selection criterion instead. This is
also what we concentrated on in our research towards side-channel attacks within
the NESSIE project. The results of this research has been collected in several sur-
vey articles In section A.1 we deal with the passive types of side-channel attacks
which are also well known as information leakage attacks. Such attacks do not re-
quire to actively manipulate the computation, but only monitor the side-channel
leakage during the computation. First, we introduce the currently exploitable
side-channels in section A.1.1. Section A.1.2 deals with simple side-channel at-
tacks on implementations of symmetric and asymmetric primitives, while section
A.1.3 discusses differential side-channel attacks on implementations of symmetric
and asymmetric schemes. In section A.2 we deal with active side-channel attacks.
As can be deduced from their name, this type of side-channel attacks assumes an

0 Coordinator for this appendix: KUL — Elisabeth Oswald
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attacker actively manipulating the execution of a cryptographic algorithm. Both
sections conclude our research and give some general recommendations about
selecting and implementing algorithms. Information which is specifically related
to the NESSIE primitives can be found directly in the sections devoted to the
individual primitives, in the main part of this document.

A.1 Passive Side-Channel Attacks

Passive side-channel attacks were published by Kocher in [312] for the first time.
In this first article, timing information was used to gain knowledge about the
secret key of implementations of the RSA, DSS, and other cryptosystems. The
attack described in this article required an attacker to be able to simulate or
predict the timing behaviour of the attacked device rather accurately. The second
article by Kocher et al. [313] presented a similar, but far more dangerous attack.
This second article introduced the usage of power consumption information to
determine the secret key. Due to its statistical nature, one of the attacks in [313]
is called differential power analysis. Another type of side-channel information
was introduced only recently. The first articles, [445] and [213], about the usage
of electromagnetic emanations were presented in 2000 and published in 2001.

A.1.1 Types of Information Leakage

We shortly discuss the different types of information leakage that have been
exploited by attacks which have been published in the open literature so far.

Execution Time Leakage. Often, a device takes slightly different amounts of
time to execute an algorithm. Explanations for this behaviour include different
input data which might cause some instructions to take different amounts of
time for their executions, performance optimisations or branching instructions.
Practical implementations for attacks using this kind of information leakage,
such as [165] and [250], indicate that such attacks are challenging to realize in
practice due to the difficulty of measuring the real execution time. In many
modern processors, even on smartcards, instructions can be cached and so the
execution time is more and more related to other influences.

Countermeasures appear to be easy to implement, and to work efficiently
in practice. Since their first introduction, most work has been dedicated to the
exploitation of side-channels with a higher amount of information.

Power Consumption Leakage. Most commonly used cryptographic devices
are implemented in CMOS (complimentary metal-oxide semiconductor) logic.
The power consumption characteristics of CMOS circuits can be summarised
shortly as follows. Whenever a circuit is clocked, the circuits gates change their
states simultaneously. This leads to a charging and discharging, resp., of the in-
ternal capacitors and this in turn results in a current flow which is measurable at
the outside of the device. The measurements can be conducted easily. One needs
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either a data acquisition card or a digital oscilloscope to acquire the measure-
ments. The current flow can be measured directly with a current probe, or by
putting a small resistor in series with the devices ground-input or power-input.
Power analysis attacks are the most popular attacks at the time of writing due
to their effectiveness and simplicity. While the first publication [313] was mainly
concerned with power-analysis attacks on secret-key cryptosystems, Messerges
et. al. [368] presented such an attack for public-key cryptosystems. In [48] and
[7], the methods of some power-analysis attacks are refined. An introduction to
the practical aspects of power-analysis attacks can be found in [6].

Electromagnetic Radiation Leakage. The same charging and discharging
which occurs whenever a circuit is clocked creates besides the current flow also a
certain electromagnetic (short EM) field. Direct emanations are caused by inten-
tional current flow which is caused by the execution of an algorithm. Uninten-
tional emanations are caused by the miniaturisation and complexity of modern
CMOS devices. This miniaturisation and complexity results in coupling effects
between components in close proximity. EM attacks are becoming more and more
popular at the time of writing because of the high amount of information of this
side-channel and because due to the fact that the information can be exploited
also in a larger distance to the attacked device [5].

Error Message Leakage. An error message attack usually targets a device
implementing a decryption scheme. We make the assumption that there is a
one-bit feedback from the device to tell whether or not the message has been
successfully decrypted. If the attacker can somehow know the reason why the
decryption operation failed, he might gain some information about the secret
key or a plaintext by sending well chosen ciphertexts to the device. An attack
exploiting this side-channel has been published in [512].

Combining Side-Channels. Not much research has been done on this topic so
far. However, the following simple observation has been used for attacks. Timing
attacks can suffer from the difficulty of obtaining precise measurements. Attacks
are even more difficult whenever only one intermediate operation is targeted. In
such a case, power measurements lead directly and more precisely to the timing
of the intermediate operation if this intermediate operation is visible in the power
consumption trace. Besides in [463], such an attack is also presented in [515].

A.1.2 Simple Side-Channel Attacks

All attacks presented in this section have been performed with power consump-
tion leakage information so far. A trace refers to a measurement taken for one
execution of the attacked cryptographic operation. In a simple side-channel at-
tack, only one single measurement is used to gain information about the devices
secret key. Obviously, to perform such an attack, the side-channel information
needs to be strong enough to be directly visible. Additionally, the secret key
needs to have some simple, exploitable relationship with the operations visible in
the side-channel trace. Such an attack typically targets implementations which
use key dependent branching in the implementation.
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A.1.2.1 Attacking Implementations of Symmetric Schemes

A special kind of simple power-analysis attacks, the so called Hamming weight
attacks exploit a strong relationship between the Hamming weight and the power-
consumption trace. In [72] such an attack is presented on an implementation of
the DES algorithm and in [347] such an attack is presented on an implementation
of the AES algorithm. For these types of attacks it is vital that the implemen-
tation is based on relatively small data-words such as for example, in an 8-bit
implementation. Usually, this type of attack is applied to implementations of
ciphers with a simple key schedule. For implementations that try to achieve a
protection against first-order differential power-analysis attacks, this method can
be used to determine information on the used mask. Collision Attacks on imple-
mentations of the DES algorithm have been examined in [468]. Internal collisions
are detected by their power trace in these attacks.

A.1.2.2 Securing Implementations of Symmetric Schemes

To counteract the type of simple power-analysis attack that uses Hamming weight
information, a designer has to assure that the Hamming weight information which
is leaked is not correlated with the intermediate values that are processed. In
dedicated hardware implementations this can be achieved by using a special logic-
style or by masking intermediate values (this can be achieved by bus encryption
as well as by masking the operations of the algorithm in general). In software
implementations the intermediate values have to be masked. It is imperative
to implement a decent masking scheme to counteract attacks such as presented
in [120] and [126]. Probably a good noise generator on chip can also help to
counteract such attacks, at least in the case of a power attack.

A.1.2.3 Attacking Implementations of Asymmetric Schemes

Scenarios in which simple side-channel attacks are a possible threat have been
considered in [424] and can be summarised as follows. If a multiplication of a
known and a secret value has to be calculated, then a simple side-channel attack
is theoretically possible, but unlikely to work in practice. An exponentiation of a
known with a secret value is also in principle vulnerable to simple side-channel
attacks. The practical feasibility of the attack is heavily dependent on the im-
plementation. Unprotected Scalar multiplications of a known elliptic curve point
by an unknown scalar are highly vulnerable to this kind of attack regardless of
the underlying hardware. Also, implementations based on addition-subtraction
chains can leak enough information to recover the private key [423]. Consider-
ations of the security of implementations of S-Flash and Quartz can be found
in [8]. In Klima et al. [292] a variant of a Hamming weight attack is applied on
RSA.

A.1.2.4 Securing Implementations of Asymmetric Schemes

Counteracting attacks on a multiplication can be achieved by switching multi-
plier and multiplicand. To protect implementations of modular exponentiations,
an always-square-and-multiply approach can be helpful. The same is valid for
implementations of the scalar point-multiplication on elliptic curves. In general,
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there are more implementation options to secure elliptic curve cryptosystems. An
overview of countermeasures published in the open literature is given in [424].

A.1.2.5 Conclusions and Recommendations

Hamming weight attacks are a practical threat to all (unprotected) software im-
plementations of symmetric algorithms. Countermeasures in hard- and software
have been published in the open literature (see [425] for a survey). Since the
efficient implementation of countermeasures is most important, we recommend
to choose algorithms which allow such efficient implementations. Summarising
our considerations in [425] we can say, that ciphers without too many different
algebraic structures are easier to protect. Rijndael, Khazad and Camellia are
algorithms which are favourable from our point of view.

Simple side-channel attacks can be applied in practice on (unprotected) soft-
ware implementations of a modular exponentiation and on potentially all kinds of
(unprotected) implementations of elliptic-curve scalar point-multiplications. Such
attacks are less likely to be realizable in practice for implementations of modular
exponentiations than on implementations of scalar point-multiplications. But,
there are much more possibilities to counteract such attacks for implementations
of the scalar point-multiplication.

A.1.3 Differential Side-Channel Attacks

Differential side-channel attacks exploit the correlation between the processed
data and the instantaneous side-channel leakage of the attacked cryptographic
device. Due to the fact that this correlation is usually very small, statistical meth-
ods must be used to exploit it efficiently. In a differential side-channel attack the
output(s) of the real physical device and the output of a hypothetical model of
the device (working with a hypothetical key) are compared. Only if the hypothet-
ical key equals the real key, the output of the hypothetical model is correlated
to the output of the real device. By comparing the two outputs, the secret key
can be determined. If the hypothetical model only outputs a single value (i.e.
it predicts for example, the power consumption of the real device for only one
moment in time), then the attack is called first-order differential side-channel
attack. If a model can output more values for the same side-channel then such
an attack is called higher-order differential side-channel attack. For example, if
two output-values are used in an attack, then one usually refers to the attack
as a second-order differential side-channel attack. If only the term differential
side-channel attack is used, then it refers to a first-order differential side-channel
attack.

A.1.3.1 Attacking Implementations of Symmetric Schemes

The quality of the hypothetical model of the attacker influences the strength of
the attack to a large extent. Dedicated hardware implementations Feistel ciphers
without an initial bit-wise addition of the key, allow the implementation of a
very powerful hypothetical model. The statistical qualities of the S-boxes also
influence the strength of an attack. However, none of the block ciphers which we
considered in [425] showed in this case special properties.
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A.1.3.2 Securing Implementations of Symmetric Schemes

As we already pointed out in the previous sections, software countermeasures
are usually based on masking the data and the key during the computation.
Ciphers which allow the cheap implementation of masking schemes are certainly
preferable. Also for hardware countermeasures, the cheap realization is mostly
important. In case of using a special logic style it is certainly an advantage if only
very few different types of gates have to be designed in this logic style. The simpler
a cipher can be described, the more suited it is for such an implementation.

A.1.3.3 Attacking Implementations of Asymmetric Schemes

Typical targets for an attack are again implementations of the modular expo-
nentiation and implementations of scalar point-multiplication. Three different
types of differential side-channel attacks have been introduced. Two of them,
the SEMD (Single-Exponent Multiple-Data) and the MESD (Multiple-Exponent
Single-Data) attack, do not require the attacker to have knowledge or a model for
the attacked device. The ZEMD (Zero-Exponent Multiple-Data) attack which is
essentially the same attack as proposed in [128], assumes that the attacker has
a model and can predict intermediate values of the computation. Several re-
finements for the basic ideas behind differential side-channel attacks have been
presented. An overview can be found in [424].

A.1.3.4 Securing Implementations of Asymmetric Schemes

There have been significantly less articles published dealing with countermeasures
for implementations of the modular exponentiation than for countermeasures
for implementations of the scalar point-multiplication on an elliptic curve (see
[424] for a survey). Countermeasures for the scalar point-multiplication include
randomising points, randomising curves, randomising the scalar and randomising
the algorithms for the scalar point-multiplication. Since practical realizations of
elliptic curve cryptosystems are software implementations (which probably make
use of some accelerator unit) anyway, most of these countermeasures are cheap
to implement and to combine with each other.

A.1.3.5 Conclusions and Recommendations

Summarising our considerations in [425] we can say, that ciphers without too
many different algebraic operations are easier to protect. AES, Khazad and
Camellia are algorithms which are favourable from our point of view. We did
not consider any hash function, stream cipher or MAC algorithm in detail. How-
ever, the attack techniques and countermeasures would be exactly the same as
for block ciphers.

Because of the variety of available countermeasures for elliptic curve cryp-
tosystems, they seem to be favourable in the case of asymmetric schemes.

Hardware countermeasures suffer from the same drawbacks as already stated
in A.1.2.5. Another difficulty in the implementation of asymmetric schemes is
usually the inherent complexity of their implementation. Dedicated hardware
implementations of asymmetric schemes are significantly larger than such imple-
mentations of symmetric schemes. This amplifies the difficulties for the applica-
tion of such countermeasures.



A.2 Active Side-Channel Attacks 295

A.1.4 Error Message Attacks

This kind of attack has been first introduced by Bleichenbacher in [86] where
a chosen ciphertext attack against the RSA encryption standard PKCS#1 is
described. In this standard, the decryption operation fails if the result of the
RSA decryption is not in the correct format (more precisely, the first two bytes
are fixed). The attack demonstrated that it is then possible to compute the RSA
decryption of any ciphertext, by sending well chosen “ciphertexts” to the device
and using it as an oracle to know if the corresponding plaintext is in the right
format. There may be other integrity checks applied, in addition to the format
checking, but the attack is still reliable if the different failures can be separated.
This is the case, for instance, if different error messages are sent, or if the whole
verification process takes more time to achieve than the first failure condition (and
in that case, the attack will be combined with a passive side-channel technique,
see Sect. A.1).

Other error message attacks are mentioned in the literature: [348] against
RSA-OAEP, [159] against the NESSIE candidate EPOC-2 (this one recovers the
secret key). This shows that no information about the reasons why a decryption
failed should leak from the device, and how important it is to completely obscure
this information.

A.1.5 Consideration of Hash-function, MACs and Stream Ciphers

There has been no research on attacks of MAC primitives and hash functions.
Only in the case of the stream cipher SOBER a timing attack is known [328].
The attack-techniques however, are essentially the same as the techniques which
were developed for block ciphers. Scenarios in which hash functions or MACs
would be subject to attacks include constructions in which these primitives are
used keyed.

A.2 Active Side-Channel Attacks

In a passive side-channel attack, the attacker only eavesdrops on some side-
channel information, which is analysed afterwards to reveal some secret infor-
mation. An active side-channel attack involves an attacker that takes active part
in the attack: he somehow interacts with the device and tries to gain additional
information by analysing its reactions. Some passive side-channel techniques seen
in the previous section can be used to determine these reactions. This kind of
attack requires the attacker to be able to deviate the device from its normal be-
haviour. This can be done, for instance, by modifying some internal data used
by the device.

In the following we describe the most popular active side-channel attack: fault
attacks. We will give examples of how successfully they have been applied, and
see how they can be avoided.
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A.2.1 Fault Attacks

When an attacker has physical access to a cryptographic device, he may try to
force it to malfunction. A fault attack is an attack in which information about the
message or the secret key is leaked from the output of erroneous computations.
This kind of attack can be applied to symmetric cryptosystems as well as to
asymmetric cryptosystems, and has been first introduced in [93].

There are several ways to introduce an error during the computation per-
formed by the cryptographic device. Though the description of these practical
means is beyond the scope of this introduction, we cite some non-invasive meth-
ods:

– spike attacks consist in deviating the external power supply more than can be
tolerated by the device. This will surely lead to a wrong computation.

– glitch attacks are similar to spike attacks, but target the clock contact of the
integrated circuit.

– optical attacks consist in focusing flash-light on the device in order to set or
reset bits. It seems that very precise faults can be induced with this technique,
as shown by Anderson et al. in [12].

We will now focus on what the attacker is able to do (i.e. the attack model)
instead of considering the practical means to achieve this attack model. We will
first sort these attacks according to two criteria. The first one is the attack model:
how does the attacker modify the value? Which are exactly the assumptions about
his capabilities? The second one concerns the value targeted: which data used by
the device does the attacker modify?

A.2.1.1 Attack models

There exist a lot of different fault attacks. Most of the time, they differ by the
assumptions made about the attackers capabilities: the way he can access and
modify the memory, the power he has upon the fault occurrence time, . . . In
Blömer et al. [88], the authors characterise fault attacks according to different
criteria:

– control on the fault location;
– control on the fault occurrence time;
– control on the number of faulty bits induced;
– fault model.

On the three first items, an attacker can have no control, loose control or precise
control. We have to clarify the fault models we will consider. In [88] different
models are proposed, we selected the following ones: random fault model, bit flip
model, bit set or reset model.

The authors precise that the bit flip and bit (re)set models can be achieved
with complete control on fault location and precise timing using optical attacks.
In that case, an attacker can mount what we will call a chosen value/modulus
attack : he can replace a value used by the device by a value of his choice. The fact
that the attacker knows the original value does not matter. This kind of attack
is described in Sect A.2.2.
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A.2.1.2 Target values

We now differentiate the different values that can be the target of a fault attack.
In asymmetric cryptography, one party owns some secret and the other party

only knows public values. Let Bob be the one who possesses the secret (the de-
crypter, the signer or the prover, depending on the type of primitive considered),
and Alice the one that knows only the public values. First we should separate
into two parts the set of data that can be made public. The parameters are the
set of public data which are initially chosen and which define the general setting
(e.g., the characteristics of the elliptic curve in elliptic curve cryptography). The
public key is then chosen among all the public keys that the parameters permit.
This public key can be modified without changing the parameters. We call the
private key the whole set of data needed by Bob to perform his computation
part that changes when we change the public key. So, the public data that is not
modified when the public key changes are part of the parameters. We call the
secret key the subset of the private key that has to be kept secret. Note that the
private key depends on implementation choices. For instance, if a public modulus
n = pq is needed, one can choose to store n, or to store the values p and q, and
to compute n. The secret key may also depend on some choices.

In symmetric cryptography, the private key is reduced to the secret key and
if public data is needed, they are parameters (e.g., constant words, S-boxes).

So, in order to perform his part of the computation, Bob needs the private key
(which may contain a part of the public key) and maybe some parameters. Thus
a modification of any part of this set of data can possibly lead to an attack giving
some information. This is important to notice because the data which does not
need to be kept secret might be stored in unprotected memory location, so that
it is easy to modify it. If a modification of some public data permits an attack
giving information about the secret data, this data should be protected as well
as the secret ones, and some additional countermeasures might be useful.

Another kind of data that can be the target of a fault attack is intermediate
data. An attacker could introduce faults in the registers of the device while they
are holding some intermediate values.

A.2.1.3 Published attacks

Introducing faults in the secret key of asymmetric schemes. This kind
of attack has been applied by Bao et al. [26] to the RSA decryption (or signature)
scheme, to the El Gamal, Schnorr and DSA signature schemes. It has been ex-
tended to various RSA-type signature schemes in [27], to the encryption scheme
RSA-KEM in Kĺıma et al. [292], and to ACE-KEM, ECIES-KEM, PSEC-KEM
in [164]. It works efficiently in the following model: bit flip fault model, complete
control on the number of faulty bits induced, complete control on the location.
For the timing, the fault must occur before the critical computation, so we need
only loose control on it.

The idea is to flip one bit of the secret key and to use the erroneous com-
putation of the device to get the value of this bit. This is particularly easy for
discrete logarithm based schemes because we can use the simple relation between
the secret and the public keys to successively guess the bits of the secret key.
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Introducing faults in registers. Here, faults are introduced in an intermediate
value stored in the registers of the device. This kind of attack has been applied to
the Fiat-Shamir and the Schnorr identification schemes in Boneh et al. [93], where
the random value r chosen by the prover is the target of the fault introduction.
This attack works against GPS, as shown in [174]. The prover has to store this
value r, as he is going to use it again when responding to the verifier’s challenge.
The idea is to swap exactly one bit of r while the prover is waiting for the
challenge. Several such erroneous computations are used to recover the secret
key.

Random faults. This is the most powerful attack model, as the fault model
and the number of faulty bits induced are random, and controls on the location
and the timing are loose. The well known Bellcore attack [93] against RSA using
the Chinese Remainder Theorem belongs to this category. This attack has been
improved by Joye et al. [278]. The NESSIE candidate ESIGN-D (see Sect. 7.4.2)
is also vulnerable to an attack of this type [173]. Here, a random error occurs
during some (more or less long) step of the computation, and the erroneous
output completely reveals the secret key.

Fault attacks against elliptic curve cryptosystems. The use of elliptic
curves can lead to specific fault attacks. A fault attack of this type is described
in Biehl et al. [50]. Here, the idea is to disturb the point multiplication step
such that the resulting point is on a cryptographically weak curve, where we can
solve the discrete logarithm, and thus find out the secret key. First, the authors
present an attack in the bit flip fault model, with complete control on the number
of faulty bits induced, loose control on the location and complete control on the
timing. Exactly one bit of the input point is flipped, exactly at the beginning of
the multiplication process, but the attacker does not know which bit has been
modified. Then the constraint on the timing is relaxed, and faults are introduced
at random moments during the multiplication process.

Fault attacks against symmetric cryptosystems. Fault attacks as they
have been introduced in [93] use algebraic properties of the asymmetric cryptosys-
tems. In Biham et al. [71], the authors first applied fault attacks to symmetric
cryptosystems, introducing differential fault analysis, where statistical method
are to be used. Various fault models are considered, and several cryptosystems
are attacked, among them the full DES. Fault attacks against the AES are con-
sidered by Blömer et al. in [88].

A.2.2 Chosen Modulus Attacks

Chosen modulus attacks can be viewed as a particular kind of fault attack. In a
chosen modulus attack, the attacker replaces a value used by the device to per-
form its cryptographic computation. This can be done, for instance, by applying
several bit sets/resets at a precise memory location of the device in order to re-
place a (possibly unknown) value by another value, this one known and chosen.
The target value is more likely to be a public one (either a part of the public key,
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or some parameter of the scheme), as it may not be as well protected as a secret
value.

The schemes vulnerable to this kind of attacks are typically the ones where a
modular exponentiation with secret exponent is performed. Usually, the (public)
modulus will be replaced by a value well chosen by the attacker, enabling him to
recover the secret exponent. This is done against RSA-KEM in [292]. The authors
explain how to recover the secret exponent using the decrypting device with a
Trojan modulus. A chosen modulus attack against GPS is described in [173].

A.2.3 Preventing fault attacks

As we have seen, fault attacks are very powerful attacks that may permit the
cryptanalysis of theoretically secure schemes. Several software countermeasures
have been proposed, among them:

– Double computation: for encryption schemes, this could be a solution. However,
it doubles the computational time, and does not protect against permanent
faults.

– Checking the output: this can be done quite efficiently with signature and
identification schemes. However, it assumes that the device contains the whole
public key, and this is not always the case.

– Randomisation: here random bits are introduced in the computation. They are
either XOR-ed to sensitive data to blind them, or appended to the message,
as in the signature scheme RSA-PSS.

In [280], Joye et al. show that some countermeasures can sometimes help
the attacker. However, we feel confident that hardware countermeasures are also
used in combination with the software countermeasures in order to avoid the
large range of existing fault attacks.
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319. U. Kühn, “Improved cryptanalysis of MISTY1.” in Proceedings of Fast Software
Encryption – FSE’02 (J. Daemen and V. Rijmen, eds.), no. 2365 in Lecture Notes
in Computer Science, pp. 61–75, Springer-Verlag, 2002. Also in Proceedings of
the Second NESSIE Workshop, 2001. [p. 46, 91]

320. K. Kurosawa, T. Iwata, and V. D. Quang, “Root finding interpolation attack.”
in Proceedings of Selected Areas in Cryptography – SAC’00 (D. R. Stinson and
S. E. Tavares, eds.), no. 2012 in Lecture Notes in Computer Science, pp. 303–314,
Springer-Verlag, 2001. [p. 19]

321. X. Lai, On the Design and Security of Block Ciphers. Hartung-Gorre Verlag,
Konstanz, 1992. [p. 16, 35]

322. X. Lai, Communication and Cryptography, Two Sides of One Tapestry . Kluwer
Academic Publishers, 1994. [p. 16]

323. X. Lai, “Higher order derivatives and differential cryptanalysis.” in In Proceed-
ings of ”Symposium on Communication, Coding and Cryptography”, in honor of
James L. Massey on the occasion of his 60th birthday , 1994. [p. 16, 46]

324. X. Lai and J. L. Massey, “A proposal for a new block encryption standard.” in
Proceedings of Eurocrypt’90 (I. B. Damg̊ard, ed.), no. 473 in Lecture Notes in
Computer Science, pp. 389–404, Springer-Verlag, 1990. [p. 320]

325. X. Lai and J. L. Massey, “IDEA.” Primitive submitted to NESSIE by R. Straub,
MediaCrypt AG, Sept. 2000. Based on [324] and [326]. [p. 4, 32]

326. X. Lai, J. L. Massey, and S. Murphy, “Markov ciphers and differential cryptanaly-
sis.” in Proceedings of Eurocrypt’91 (D. W. Davies, ed.), no. 547 in Lecture Notes
in Computer Science, pp. 17–38, Springer-Verlag, 1991. [p. 15, 16, 320]

327. S. K. Langford and M. E. Hellman, “Differential-linear cryptanalysis.” in Pro-
ceedings of Crypto’94 (Y. Desmedt, ed.), no. 839 in Lecture Notes in Computer
Science, pp. 17–25, Springer-Verlag, 1994. [p. 17, 92]

328. J. Lano and G. Peeters, “Cryptanalyse van NESSIE kandidaten.” Master’s thesis,
ESAT-COSIC, KU-Leuven, 2002. [p. 295]

329. A. N. Lebedev and A. A. Volchkov, “Nush.” Primitive submitted to NESSIE by
LAN Crypto, Int., Sept. 2000. [p. 4, 81, 86]

330. S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon, “Truncated differential cryptanalysis
of Camellia.” in Proceedings of ICISC’01 (K. Kim, ed.), no. 2288 in Lecture Notes
in Computer Science, pp. 32–38, Springer-Verlag, 2001. [p. 95]

331. A. K. Lenstra and H. W. Lenstra, Jr, eds., The development of the number field
sieve. No. 1554 in Lecture Notes in Mathematics, Springer-Verlag, 1993.

[p. 175, 219]
332. A. K. Lenstra, A. Shamir, J. Tomlinson, and E. Tromer, “Analysis of Bernstein’s

factorization circuit.” in Proceedings of Asiacrypt’02 (Y. Zheng, ed.), no. 2501 in
Lecture Notes in Computer Science, pp. 1–26, Springer-Verlag, 2002. [p. 222]

333. A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes.” in Pro-
ceedings of Public Key Cryptography – PKC’00 (H. Imai and Y. Zheng, eds.),
no. 1751 in Lecture Notes in Computer Science, pp. 446–465, Springer-Verlag,
2000. [p. 320]

334. A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes.” Journal of
Cryptology , vol. 14, no. 4, pp. 255–293, Autumn 2001. Full version of [333].

[p. 221]
335. H. W. Lenstra, Jr, “Factoring integers with elliptic curves.” Annals of Mathemat-

ics, vol. 126, no. 3, pp. 649–673, Nov. 1987. Second series. [p. 175, 219]



References 321

336. M. Luby, Pseudorandomness and Cryptographic Applications. Princeton Com-
puter Science Notes, Princeton University Press, 1996. [p. 112]

337. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions.” in Proceedings of Crypto’85 (H. C. Williams, ed.),
no. 218 in Lecture Notes in Computer Science, p. 447, Springer-Verlag, 1986.
Full version in [338]. [p. 321]

338. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions.” SIAM Journal on Computing , vol. 17, no. 2, pp. 373–
386, Apr. 1988. An abstract appeared in [337]. [p. 12, 321]

339. M. Luby and C. Rackoff, “A study of password security.” in Proceedings of
Crypto’87 (C. Pomerance, ed.), no. 293 in Lecture Notes in Computer Science,
pp. 392–397, Springer-Verlag, 1988. [p. 12]

340. S. Lucks, “Attacking triple encryption.” in Proceedings of Fast Software Encryp-
tion – FSE’98 (S. Vaudenay, ed.), no. 1372 in Lecture Notes in Computer Science,
pp. 239–253, Springer-Verlag, 1998. [p. 54, 92]

341. S. Lucks, “Attacking seven rounds of Rijndael under 192-bit and 256-bit keys.” in
Proceedings of the Third Advanced Encryption Standard Conference, NIST, Apr.
2000. [p. 64, 65, 96]

342. S. Lucks, “The saturation attack - a bait for Twofish.” in Proceedings of Fast
Software Encryption – FSE’01 (M. Matsui, ed.), no. 2355 in Lecture Notes in
Computer Science, pp. 1–15, Springer-Verlag, 2001. [p. 20]

343. S. Lucks, “A variant of the Cramer-Shoup cryptosystem for groups of unknown
order.” in Proceedings of Asiacrypt’02 (Y. Zheng, ed.), no. 2501 in Lecture Notes
in Computer Science, pp. 27–45, Springer-Verlag, 2002. [p. 189]

344. A. W. Machado, “Nimbus.” Primitive submitted to NESSIE, Sept. 2000.
[p. 4, 80]

345. T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-secure signa-
tures with an unbounded number of time periods.” in Proceedings of Eurocrypt’02
(L. R. Knudsen, ed.), no. 2332 in Lecture Notes in Computer Science, pp. 400–
417, Springer-Verlag, 2002. [p. 214]

346. J. Malone-Lee and N. P. Smart, “Modifications of ECDSA.” in Proceedings of
Selected Areas in Cryptography – SAC’02 (K. Nyberg and H. Heys, eds.), no. 2595
in Lecture Notes in Computer Science, Springer-Verlag, 2002. [p. 242]

347. S. Mangard, “A simple power-analysis (SPA) attack on implementations of the
AES key expansion.” in Proceedings of ICISC’02 (K. Kim, ed.), no. 2587 in
Lecture Notes in Computer Science, Springer-Verlag, 2002. [p. 292]

348. J. Manger, “A chosen ciphertext attack on RSA optimal asymmetric encryption
padding (OAEP) as standardized in PKCS # 1 v2.0.” in Proceedings of Crypto’01
(J. Kilian, ed.), no. 2139 in Lecture Notes in Computer Science, pp. 230–238,
Springer-Verlag, 2001. [p. 210, 295]

349. I. Mantin and A. Shamir, “A practical attack on broadcast RC4.” in Proceedings
of Fast Software Encryption – FSE’01 (M. Matsui, ed.), no. 2355 in Lecture Notes
in Computer Science, pp. 152–164, Springer-Verlag, 2001. [p. 122]

350. G. Martinet, “RSA-OAEP and RSA-PSS.” Public report, NESSIE, 2001.
NES/DOC/ENS/WP3/007. [p. 209]

351. G. Martinet, “The security assumptions.” Public report, NESSIE, 2001.
NES/DOC/ENS/WP3/005. [p. 172]

352. J. L. Massey, “Shift register synthesis and BCH decoding.” IEEE Transactions
on Information Theory , vol. IT-15, pp. 122–127, 1969. [p. 105]

353. J. L. Massey, G. Khachatrian, and M. K. Kuregian, “Nomination of SAFER++
as candidate algorithm for the New European Schemes for Signatures, Integrity,
and Encryption (NESSIE).” Primitive submitted to NESSIE by Cylink Corp.,
Sept. 2000. [p. 5, 47, 50, 68]



322 References

354. M. Matsui, “Linear cryptanalysis method for DES cipher.” in Proceedings of Eu-
rocrypt’93 (T. Helleseth, ed.), no. 765 in Lecture Notes in Computer Science,
pp. 386–397, Springer-Verlag, 1993. [p. 16]

355. M. Matsui, “Specification of MISTY1 - a 64-bit block cipher.” Primitive submit-
ted to NESSIE by E. Takeda, Mitsubishi, Sept. 2000. [p. 4, 45]

356. M. Matsui and A. Yamagishi, “A new method for known plaintext attack of
FEAL cipher.” in Proceedings of Eurocrypt’92 (R. A. Rueppel, ed.), no. 658 in
Lecture Notes in Computer Science, pp. 81–91, Springer-Verlag, 1992. [p. 16]

357. U. M. Maurer and Y. Yacobi, “Non-interactive public-key cryptography.” in Pro-
ceedings of Eurocrypt’91 (D. W. Davies, ed.), no. 547 in Lecture Notes in Com-
puter Science, pp. 498–507, Springer-Verlag, 1991. [p. 322]

358. U. M. Maurer and Y. Yacobi, “A non-interactive public-key distribution system.”
Designs, Codes, and Cryptography , vol. 9, no. 3, pp. 305–316, 1996. Also available
from http://www.crypto.ethz.ch/~maurer/publications.html, final version of
[357]. [p. 248]

359. L. May, M. Henricksen, W. Millan, G. Carter, and E. Dawson, “Strengthening
the key schedule of the AES.” in Proceedings of ACISP’02 (L. M. Batten and
J. Seberry, eds.), no. 2384 in Lecture Notes in Computer Science, pp. 226–240,
Springer-Verlag, 2002. [p. 64, 66]

360. L. McBride, “Q.” Primitive submitted to NESSIE by Mack One Software, Sept.
2000. [p. 4, 86, 87]

361. D. McGrew and S. R. Fluhrer, “LEVIATHAN.” Primitive submitted to NESSIE
by Cisco Systems, Inc., Sept. 2000. [p. 5]

362. W. Meier, “On the security of the IDEA block cipher.” in Proceedings of Eu-
rocrypt’93 (T. Helleseth, ed.), no. 765 in Lecture Notes in Computer Science,
pp. 371–385, Springer-Verlag, 1993. [p. 34, 36, 90]

363. W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream ciphers.”
Journal of Cryptology , vol. 1, pp. 159–176, 1989. [p. 105]

364. A. J. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic curve loga-
rithms to logarithms in a finite field.” IEEE Transactions on Information Theory ,
vol. IT-39, pp. 1639–1646, 1993. [p. 175, 220]

365. A. J. Menezes and N. P. Smart, “Security of signature schemes in a multi-user
setting.” Technical report CORR 2001-63, Department of C&O, University of Wa-
terloo, 2001. Available from http://www.cacr.math.uwaterloo.ca/~ajmeneze/
research.html. [p. 215]

366. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography . CRC Press, 1997. Available online at http://www.cacr.math.
uwaterloo.ca/hac/. [p. 3, 54, 92]

367. R. C. Merkle and M. E. Hellman, “On the security of multiple encryption.”
Communications of the ACM , vol. 24, 1981. [p. 54, 92]

368. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of mod-
ular exponentiation in smartcards.” in Proceedings of CHES’99 (Çetin Kaya Koç
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