CHIME: Status Update

400-800MHz band
 21cm from z ~ 0.8 - 2.5

- Resolution: 1MHz, 13-26'
 3rd BAO peak resolved
- Drift scan, no moving parts
 20,000 deg² coverage
- 1280 Dual-polarization feeds

UNIVERSITY OF

THE

BRITISH COLUMBIA

NRC · CNRC

Cosmic-variance-limited survey

100m

Cylinder Antenna

Cylinder Telescope

Hybrid: 1D Dish + 1D Interferometry

CHIME

1D Dishes + 2D Interferometry

The CHIME Pathfinder

An end-to-end hardware, calibration, foreground suppression, and data analysis proof-of-concept for CHIME

64 dual-pol antennas per cylinder (256 total channels)

Prototype Dishes at DRAO

2 x 8m dishes, propped in a field

Site: DRAO

Feeds, LNAs, Filters

RF-over-Fiber, Digitization, Channelization, Correlation

The Hard Part

(calibrating, storing & analyzing 0.5 YB [5 x 10¹¹ TB] of data)

Correlation state: 256 channels @ 256 freq = 128 MB

21cm BAO Foregrounds 285 290 φ / degrees 300 A 400 f / MHz f / MHz 0.00030 -0.00029

~10⁶ x brighter

Observed sky (from simulated time stream)

~10⁶ x brighter

Signal/Foreground Filtering

ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES

J. Richard Shaw^{1,†}, Kris Sigurdson², Ue-Li Pen¹, Albert Stebbins³, and Michael Sitwell²

Observed sky (from simulated time stream)

~10⁶ x brighter

~ same brightness

~ 3x dimmer

~ 5x dimmer

~ 10x dimmer

~ 70x dimmer

Calibration: Pulsar Holography

- Track pulsars with large dish
- Correlate each feed against those
- Map primary beams & sidelobes

Trial Drift-Scan Pulsar Observation on 8m dishes

Phase

(Daily) Survey Sensitivity

(Daily) Survey Sensitivity

Pulsar Monitoring & Detection

- Daily coverage of ~1/2 sky
- Monitor known pulsars for residuals or dispersions

Detecting new Pulsars & Radio Transients

Every day, CHIME surveys:

- 20,000 deg²
- from 400-800MHz
- for > 10 minutes
- with μs timing
- to < 50 μ Jy noise

Someone who knows what they're doing should really hang a pulsar / transient detection engine off CHIME...

Pathfinder Science

- Will measure HI power spectrum with high S/N in a short period of time
- Should yield the most precise measurement of the BAO scale to date

The End

Spare slides follow

Data Processing

ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES

J. Richard Shaw^{1,†}, Kris Sigurdson², Ue-Li Pen¹, Albert Stebbins³, and Michael Sitwell²
http://arxiv.org/abs/1302.0327

- Observations are periodic in ϕ
- Noise stationary -> m-modes independent
- Map-making can be on m-by-m basis
- Standard max-likelihood estimator

$$\hat{\boldsymbol{a}} = (\mathbf{B}^{\dagger} \mathbf{N}^{-1} \mathbf{B})^{-1} \mathbf{B}^{\dagger} \mathbf{N}^{-1} \boldsymbol{v}$$

- Signal-to-noise Eigenmodes also on m-by-m
- Jointly diagonalize Signal, Foreground covariances
- Generalized Eigenmode problem

$$\mathbf{S}\boldsymbol{x} = \lambda \mathbf{F}\boldsymbol{x}$$

Correlation

Correlation is fundamentally a matrix multiplication. 3D -> 2D projection is also a matrix multiplication.

Graphics Processing Units (GPUs) are correlators! 100-1000x more computational power per \$ than CPUs

As Implemented for a 256-input Pathfinder:

Spatial-Spectral Mode mixing High frequency Low frequency angular direction

Sum along angular direction

Spatial-Spectral Mode mixing High frequency Low frequency angular direction

Sum along angular direction

GPU Correlator

Correlation is fundamentally a matrix multiplication. 3D -> 2D projection is also a matrix multiplication.

Graphics Processing Units (GPUs) are correlators!

100-1000x more computational power per \$ than CPUs, ~8GFLOPs/\$

N² Correlator Implemented (N=256)

Calibration: "Rigidization"

(noise injection)

Correlate against sampled noise to fix relative gains in realtime.

Correlation is expensive

Performance Highlights of the ALMA Correlators, 2012:

Defining the ability of a single correlation machine to process many independent antenna pairs, N, and the bandwidth BW as the product N x BW, the 64-antenna correlator is clearly the largest machine ever built for radio astronomy. With N = 2096 and BW = 16 GHz (see Table 1) this product is about 3.35×10^4 GHz while the current mm-wave interferometers are about 100 to 10 times less powerful. Only the future first design correlator stage of the SKA project with 250 antennas and 1 GHz bandwidth will rival ALMA when it is built.

2012	ALMA	$3.35 \times 10^4 \text{GHz}$
2020 (?)	SKA	$3.13 \times 10^4 \text{GHz}$
2013	Pathfinder	1.31 x 10 ⁴ GHz
2015	CHIME	1.31 x 10 ⁶ GHz

CHIME Status

Prototype, 2 x 8m Dishes

- running since March 2011
 Pathfinder, 2 x 20m x 40m Cylinders
- under construction
 Full CHIME, 5 x 20m x 100m Cylinders
- CFI FUNDED

- GHz ADCs built
- Antennas under R & D
- Cylinders under construction
- Correlators prototyped
- Simulation/Analysis ongoing
- RF-over-Fiber exists

CHIME: Status Update

100m

NRC · CNRC

Keith Vanderlinde CIfAR C&G 2012 AGM

Minimalist Outline

- > CHIME specs
- **≻** Hardware
- > Status
- **→** Calibration
- **→** Pipeline
- **≻** Ancillary

Canadian Units of Measurement

