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ABSTRACT

In this paper, we propose a novel method to efficiently compute
the top-K most similar items given a query item, where similar-
ity is defined by the set of items that have the highest vector inner
products with the query. The task is related to the classical k-Nearest-
Neighbor problem, and is widely applicable in a number of domains
such as information retrieval, online advertising and collaborative
filtering. Our method assumes an in-memory representation of the
dataset and is designed to scale to query lengths of 100,000s of
terms. Our algorithm uses a generalized Holder’s inequality to
upper bound the inner product with the norms of the constituent
vectors. We also propose a novel compression scheme that computes
bounds for groups of candidate items, thereby speeding up compu-
tation and minimizing memory requirements per query. We conduct
extensive experiments on the publicly available Wikipedia dataset,
and demonstrate that, with a memory overhead of 21%, our method
can provide 1-3 orders of magnitude improvement in query run-time
compared to naive methods and state of the art competing methods.
Our median top-10 word query time is 25 ps on 7.5 million words
and 2.3 million documents.

Categories and Subject Descriptors

E.1 [Data]: Data Structures; H.3.3 [Information Systems]: Infor-
mation Search and Retrieval—Search Process

Keywords
Top K, Inner Product, Nearest Neighbor

1. INTRODUCTION

The task of computing the K most similar objects given a query
object where similarity is described as distances in a metric space is
well known as the k-nearest-neighbor (k-NN) procedure [4]. This
procedure is applicable to a wide variety of regression and classi-
fication tasks. However, a naive implementation suffers from high
computation demands, requiring N distance evaluations for each
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test data point. To accelerate this procedure, various space partition-
ing methods such as KD-Trees [3] (among many others) have been
proposed, which provide fast exact K-nearest neighbor retrieval.

However, when similarity between objects are described by inner
products, fast exact top-K retrieval is a much less understood task.
Such tasks are common in collaborative filtering (finding similar
movies or similar users), similarity queries (search for similar im-
ages given a query image) and on-line advertising (display ads that
are most textually similar with the current page). Effective solutions
here can also generalize to several tasks where kernels are used
to define similarity between objects. For instance: graph kernels
can be used for similarity search in a molecule database or a gene
regulatory network database [[13}|12]. Sub-string kernels can be used
for document analysis [2] or biological sequence analysis. In these
cases, the hash kernel method described in [10] can be used to con-
struct an explicit representation of the feature space thus mapping
the task into the top-K inner product regime.

The top-K inner product problem also shares similarities with
the top-K query retrieval problem explored heavily by the Informa-
tion Retrieval (IR) community. Top-K query retrieval techniques
include various TAAT (Term-At-A-Time) or DAAT (Document-
At-A-Time) procedures [7}5,|9} 11} 6], which rely on skip-ahead
heuristics to quickly iterate through the index and inverted index of
the document-word matrix, maintaining an upper bound on each can-
didate. However, the top-K inner product task we are exploring in
this paper differentiates itself from from the query retrieval problem
since the query object is itself a datapoint, and thus can have an un-
bounded number of terms. The assumption that the query length
is small is not justifiable and the emphasis is thus on scalability to
arbitrarily long query lengths without loss of performance.

In this paper we will use text documents as the running example:
letting a collection of text documents be represented as a matrix,
where each row represents a document and each column a word.
The (%, j)-th entry is the count of the number of times the j-th word
appears in the i-th document.

Our running example in this paper focuses on finding the exact
top-K largest inner products given a query word. Such a system
for instance, could be used to find “related words” in a user search.
The rationale for using words as query objects instead of documents,
is to provide a much wider range of query lengths, allowing us to
benchmark the system on both extremely short and extremely long
queries. We define the similarity function between words w; and
w2 as the inner product of the two column vectors w1 and wa:

Similarity (w1, ws) = w{ wa.
Letting D denote the document-word matrix, the task of query-

ing the K most similar words to a query word v is equivalent to
computing the K largest elements of the row vector v D.
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Figure 1: A document collection is represented as a sparse ma-
trix containing arbitrary non-negative values (counts / tf-idf
scores / etc). The matrix is then compressed into a smaller ma-
trix were each element in the smaller matrix represents a block
in the original matrix.

We focus strictly on the in-memory setting, exploring the per-
formance characteristics of different matrix representation formats.
Our method augments the matrix with an additional data structure
containing compressed summaries of the document-word matrix.
We demonstrate that our technique scales well to extremely long
query lengths, and provides /-3 orders of magnitude performance
gains over competing methods for all query lengths. Our method
incurs a memory overhead that depends on the statistics of the un-
derlying dataset and a tunable algorithm parameter, allowing the
user to balance between query speed and memory utilization. For
the query time results previewed above, we observe a 21% memory
overhead over a set of 1 million Wikipedia articles. On the full
dataset of 2.3M articles and 7.5M words, our median top-10 query
time for a randomly selected word query is 25 us.

2. ALGORITHM

Given a query word v, our goal is to quickly compute a list of its
top-K most similar words, i.e., the K words with the largest inner
product (co-occurrence count) with v. (Note that the popular cosine
similarity measure is a variant of inner product similarity and can
thus be computed using the same algorithm.) A naive algorithm
for doing so may proceed thus: first compute an upper bound of
co-occurrence for every word with every other word in D. Then, at
run-time, sort the words by upper bounds, refine the upper bound
for the top candidate, re-insert it back into a max-heap, and repeat.
The algorithm terminates when the first K elements in the heap are
exact co-occurrence counts as opposed to upper bounds. A template
for this algorithm is shown in Alg. [T}

Making this algorithm efficient requires three key conditions.

1. Ideally, the upper bound should be tight, i.e., it should be as
small as possible while remaining an upper bound.

2. The upper bound should be significantly faster to compute
than the actual inner product.

3. The maintenance of a large W sized heap in Alg.[I]is ineffi-
cient. It is necessary to reason about collections of words at
the same time.

4. The procedure must scale well with query length.

Our solution, which satisfies all key conditions of efficiency, in-
volves constructing a “compressed” auxiliary matrix containing
upper bounds of blocks of the document-word matrix. The upper
bounds are established via an extension of Holder’s inequality to the
case of generalized matrix norms. We call the algorithm HComp,
for Holder Compression.

'A long version of this paper is published as a technical report[8].

Algorithm 1: Top-K Algorithm Template

Input: v : Query Word
Input: ubnd(v,w) : A function which upper bounds v7w

H : max heap of (word, value) pairs
foreach w € W do // Upper Bound each Word
| Insert (w, ubnd (v, w)) into H

ReturnWords = { }
while |[H| > 0 do
Pop (w, val) from H
if val was computed using ubnd() then
// Get the true inner product value
L Insert (w, vTw) into H
else
Insert w into ReturnWords
L if |ReturnWords| = K then return ReturnWords

return ReturnWords

2.1 Holder Compression

Holder’s inequality upper bounds the inner product of two vectors
by the product of their norms. Specifically, for any vectors a and b
and scalars p and g such that 1 < p,g < occand 1/p+1/q =1,
Holder’s inequality states that

a’b < |allp|[bl]q; @2.1)

where ||z||, = (32, |#:|?)"/? is known as the p-norm of z.

The solution we propose in this paper is to compress the
document-word matrix into a smaller matrix, each element of which
is an upper bound for an entire block of the original matrix (Fig.[I).

Let A € R"" be a matrix of m rows and n columns whose
elements are non-negative real numbers. Let a;; denote the (¢, j)-th
element of A (i.e., the element at the i-th row and the j-th col-
umn). We define the u-v mixed norm of the matrix A as a function

a,8(A). Wherea > 1,8 > 1,

1/8
¢ a(A) = (Z(Za;’;)ﬁ/a> . (22)
J K2
Essentially, Lg, 5(A) computes the a-norm of each column, then
computes the S-norm of the result footnoteEven though these defi-
nitions require «, 8 < co, analogous forms for the co-norm (max-

norm) can be defined..
Then, the fundamental result:

THEOREM 2.1. Given a query vector v and a matrix A. Then
Sfor any column vector a; in A and for any p, q satisfying the condi-
tions of Holder’s inequality:

v a; < |Jl[pL.0o(A), forallj

The proof for this theorem as well as the choice of Lg ., (fixing
3 = 00) can be found in [8]].

Essentially Theorem allows us to compress the entire ma-
trix A to yield an upper bound. Clearly, the quality of the bound
degrades when when the matrix is larger, resulting in a trade-off
between bound quality and computation efficiency. Furthermore,
the procedure permits multiple levels of compression, allowing the
compressed matrix can be further compressed into an even smaller
matrix while retaining the upper bounding property. The following
corollary summarizes the results of this section.

COROLLARY 2.2. Given query vector v and document-word
matrix D, let ¥ denote the p-compression of the vector v, and D



Algorithm 2: CompressMatrix(D, Ivls, q, r, s): Hierarchical
Compression of matrix A

Input: D : matrix to compress
Input: 1vls : Number of levels. If Ivls = 0, no compression is performed
Input: q : Choice of column norm
Input: r : height of the compression block.
Input: s : width of the compression block.
if [vis = O then return /D]
Make empty matrix D’. This will be the compression of D
// D' has height [height of D/r] and width
[width of D/s]
for i = 1 to height of D’ do
for j = 1 to width of D' do
L Let C' be the submatrix in D associated with Dg,j

D = L5 (C)

// Recursively Compress D’
return [D, Compress(D’, vls -1, q, 1, s)]

Algorithm 3: CompressVector(w, 1vls, g, r): Hierarchical Com-
pression of query column vector w

Input: v : vector to compress

Input: 1vls : Number of levels. If 1vls = 0, no compression is performed
Input: p : Choice of column norm

Input: 7 : height of the compression block.

return CompressMatrix(v, s, p, 1, 1)

denote the q-compression of the matrix D. Let d; denote the j-th
column of D, and D ;y the corresponding compressed blocks. Then

’Ude S f)D(j).

Moreover, © and D can be further compressed to yield looser but
more computationally efficient upper bounds.

2.2 HComp Algorithm

We now provide a complete definition of the complete HComp
algorithm. Firstly, a pair of p, ¢ that satisfies Holder’s inequal-
ity are chosen. Next, a row compression factor r and a column
compression factor s are chosen. The optimal choice of r and s
depends heavily on the both the dataset and the properties of the
underlying matrix representation. Then, given an input matrix D,
the CompressMatrix function in Alg.[2]is used to generate the
compression hierarchy.

At query time, the query word/vector v is similarly hierarchically
compressed using the CompressVector function in Alg.[3] Then
the top-K algorithm in Alg. []is called. The algorithm in Alg. [
begins by using the coarsest compression of the original matrix to
provide upper bounds on ranges of words which are then stored in
a max-heap. Elements are then popped from the heap, and if the
element is a range, the range is refined by expanding it to the next
finer compression level, splitting the range into a series of smaller
ranges. If the element is a single word, it must be larger than all
other upper bounds and therefore belong in the top K set.

We observe that to implement the HComp algorithm requires only
a matrix representation with the ability to compute v D where
D®isa contiguous range of columns in D. In the next section, we
explore two different in-memory representations with this property.

3. IMPLEMENTATION

We implemented the HComp algorithm above under two different
matrix representation formats, the Jagged Column Store as well
as the Jagged Row and Column Store. The implementation is
written in C++, using standard STL containers. Both documents

Algorithm 4: HComp(): HComp Top-K Algorithm

Input: lvls : Total number of levels of compression

Input: Dg - - - Dyys where Dy is the full document-word matrix and
the rest are successively higher levels of compression using a
Lg o mixed-norm

Input: vg - - - vyyis © Where vg is the full query word vector, and the rest
are successively higher levels of compression using a p-norm
where p, g satisfies Holder’s condition

ReturnWords = {}

// [colidx, level] identifies a specific column
at a compression level. When level is 0,
the column represents a single word

H : max heap of ([colidz, level], value) pairs

// Construct initial bound using highest level

FirstBound = wl?ls Diyis

for i = 1 10 |FirstBound| do

| Insert ([z, Ivls], FirstBounds ) into H

while |[H| > 0 do

Pop ([idx, [], val) from H

if { > O then

I'!’=1—1// refine by one level

Let ¢ be the range of columns in level | — 1 associated with
column ¢dx in level

for i in ¢ do

L Insert ([i, 1], v Dy ()Y into H

else if { = O then
Insert idx into ReturnWords
| if |ReturnWords| = K then return ReturnWords

return ReturnWords

and words are identified by sequential 32-bit integers. Values in
the matrix are also represented as 32-bit integers. libboost’s
unordered_map is used as a hash table when needed.

We make the choice of (p = 1, ¢ = oo) for the HComp algorithm.
This choice is partly motivated by the result in [8] that suggests that
the (1, 0o) pair is optimal for binary data.

3.1 In-Memory Matrix Representations

Jagged Column Store: In the Jagged Column Array representa-
tion, the document-word matrix is represented as a vector of word
vectors, where each word vector is a sorted vector over documents
containing the word. We will use the acronym CS to identify algo-
rithms implemented with the Jagged Column Store.

Jagged Row And Column Store: In this representation, the
document-word matrix is represented in both column format and
row format. The row representation essentially acts as an inverted
index. We will use the acronym R&CS to identify algorithms
implemented with the Jagged Row and Column Store.

3.2 Data Ingress

We assume that the data is organized so that ingress into memory
can be performed one document at a time. Both matrix representa-
tions are computationally efficient and permit linear time insertion of
documents. The hierarchical compression of the matrix is performed
as a final post-processing pass.

3.3 Algorithms

We implement the following procedures:

Naive Top-K Algorithm: As a baseline for both matrix represen-
tations, we first implement the naive approach to computing top-k
word co-occurrence. Given the document-word matrix D and a
query vector v, the naive approach simply computes the entire ma-
trix vector product v” D, returning the top-K entries in the resultant
vector. To computing v” D in the CS representation we simply eval-



Rows (Documents) 1,000,000

Columns (Unique Words) 4,604,909
Non-Zero Elements 217,426,595

| || Mean | Stddev. | Median |

Words Per Doc 501.35 | 82045 252

Unique Words Per Doc 162.74 | 209.89 99
Documents Per Word 55.2 1,911.77 1

Unique Documents Per Word 3535 | 1,011.02

Number of Queries 10,000
Mean Query Length 563.02

Stddev. Query Length 4,897

Median Query Length 16

Largest Query Length || 203,248
Table 1: Wikipedia Dataset Statistics

uate inner products of v against every column, while In the R&CS
representation we use the reverse index to iterate through documents
containing the query word accumulating a weighted sum.

mWand: We also implement the Wand algorithm described in
Broder et al. [5]] with the in-memory mWand optimization in Fon-
toura et al. [7]. While not designed for long query lengths, it pro-
vides a reliable evaluation baseline. The Wand Iterator uses the
inverted index and uses a clever upper bounding strategy to skip and
ignore some of entries in the inverted index. For the purposes of this
evaluation, we configure Wand to provide exact top-K.

HComp Top-K Algorithm: As noted in Sec.[2.2} the HComp
algorithm only requires the matrix representation to provide the
ability compute inner products against contiguous ranges of columns
in D. While this is trivially provided by the CS representation, this
restriction operation in R&CS requires an additional binary search
to locate the start of the range.

4. EVALUATION

To evaluate HComp, we use a set of 1 million randomly selected
Wikipedia articles with common stop words removed. The statistics
of our 1M wikipedia dataset are shown in Table[T}

Compared to the dataset evaluated in Fontoura et al. [[7]], which
has 454M non-zero elements, the Wikipedia dataset is roughly half
the size. However, since we are solving the transposed problem,
the problem statistics are significantly different. In particular, we
have a smaller average number of unique terms per candidate (35.35
vs 130.33), but with a much larger standard deviation (1011.02 vs
103.86); our task has much larger variation in candidate sizes.

We generate a query set by extracting 10,000 random columns
from the matrix. The statistics of the query set are shown in Table T}
Most notably, we observe that we have queries lengths ranging from
1 term to over 200,000 terms. Our evaluation task is to return the
exact top-10 other words co-occuring with the words in the query
set. We compare against naive strategies for both CS and R&CS
matrix representations as well as the mWand procedure.

4.1 Effect Of Compression Block Shape

Since the effect of varying the compression block size and shape
can be dataset dependent, we first evaluate the optimal choice of
compression block shape. We do so by computing the median
runtime of random queries on a 5% subsample of the documents
varying the size and shape of the compression block (using only one
compression level).

In Fig. 2(a)]and Fig.[2(b)] we plot the median runtime of varying
both compression block size and compression block shape, respec-
tively for CS and R&CS representations. We observe from Fig. 2(a)]

that the choice of compression factor does not impact performance
under the CS representation). However, the R&CS representation is
significantly faster with smaller compression block sizes and wider
block shapes (more words than documents). Smaller block sizes
improve performance by improving the quality of the upper bound,
while wider block sizes decreases the number of binary searches re-
quired by maximizing the number of expanded words in each search
(each restriction operation incurs a binary search. See Sec.[3.3).
For the remaining experiments, we pick a compression ratio of
1000:1, mapping 1 doc x 1000 words into a single entry—the fastest
parameter setting for both CS and R&CS representations.

4.2 Performance

For both matrix representation strategies, we evaluate the effec-
tiveness of using hierarchical compression. Fig. 2(c)]plots the query
performance as the number of compression levels are increased
when the CS matrix representation is used. Fig.[2(d)| provides the
same but for the R&CS representation. We observe that, for the
CS representation, adding the first level of compression provides
significant performance gains, but adding the second level provides
almost no performance gain for short queries, and only a small
gain for large queries. On the other hand, the R&CS representation
demonstrates consistent uniform performance gains across all query
lengths as the compression hierarchy is increased.

Finally, in Fig. 3(a)] we plot the combined performance of all ma-
trix representations for all algorithms: Naive, HComp and mWand.
We summarize our observations here:

mWand vs Naive CS: We observe that the mWand algorithm is
faster than Naive CS for short queries, but when the query length
exceeds 1000, the overhead of the mWand algorithm starts to be-
come evident and ends up slower than the Naive algorithm. For
short queries (less than 100), mWand does provide about a factor of
4 speedup over the naive CS implementation which is inline with
the performance gains observed in Fontoura et al. [[7].

HComp CS vs Naive CS: The HComp CS algorithm provides
a small performance gain on small queries (about the same as the
mWand algorithm), but as query length increases, the performance
gain widens to 2-3 orders of magnitude for queries with length
exceeding 10,000.

HComp R&CS vs Naive R&CS: HComp provides a consistent
1 order of magnitude performance gain over all query lengths above
the Naive method using the R&CS representation. This gain is
consistent on the transposed problem (see [8]]).

In summary, HComp provides between /-3 orders of magnitude
performance gain depending on query length and matrix representa-
tion. The performance figures in Fig. 3(a)] demonstrates an incredi-
ble 4 orders of magnitude of performance differences between the
fastest and the slowest algorithms, with HComp R&CS consistently
being the fastest algorithm.

Finally, to demonstrate the performance of the HComp algorithm,
we evaluate on 10,000 randomly generated word queries on the
full Wikipedia dataset comprising of 2,312,594 documents and
7,574,761 unique words. The median top-10 query time is 25 us,
and 95% of all queries complete within 200 us.

4.3 Query Memory Utilization

A concern with large datasets is the amount of memory required
to complete a given query. For instance, implementations based
directly off of the algorithm template in Alg. will require O(W)
memory per query which can be extremely large. The HComp
algorithm compacts the heap size by letting each heap element
represent the equivalent of a range of words, expanding the range
only when necessary. This strategy is extremely effective in practice:
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we observe that using the R&CS representation with two levels
of compression on the complete dataset, the heap never exceeds a
capacity of 4807 elements on all evaluated queries.

S. RELATED WORK

DAAT / TAAT: The most directly comparable prior methods are
two families of algorithms known as document-at-a-time (DAAT)
and term-at-a-time (TAAT). These techniques typically assume rel-
atively short queries of 10s of terms and do not scale well with
query length. The need to manage extremely large query lengths is
a fundamental necessity for k-NN inner product search.

Space Partitioning Trees: Space partitioning techniques such as
KD-Trees provide fast exact K-nearest neighbor retrieval in settings
where candidates can be represented as a point in an Euclidean or
metric space. These typically depend on the triangle inequality and
do not easily extend to the top-K inner product setting.

Locality Sensitive Hashing: Locality Sensitive Hashing covers
a broad class of approximate techniques to solve this problem [[1]]
with strong approximation guarantees on both distance and inner
products. Our approach solves the exact top-K retrieval problem.

6. CONCLUSION

In this paper, we present a novel algorithm for computing top-
K inner product similarity statistics called HComp which works
by constructing a hierarchy of smaller compressed matrices, using
Holder style matrix inequalities to provide bounds on the larger ma-
trix. The matrix compression scheme can be incrementally updated,
permiting streaming/online insertion of new documents.

We demonstrate that the HComp algorithm can provide 1-3 orders
of magnitude performance gains as compared to mWand and naive
methods while requiring only a small increase in memory footprint.
Furthermore, query-time memory utilization is extremely small,
empirically requiring a heap size of only thousands for a vocabulary
size in the millions. Finally, HComp scales well from short queries
to extremely long queries with over 100,000 terms.
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