
The CJK package for LATEX2ε —
Multilingual support beyond babel

Werner Lemberg
Kleine Beurhausstr. 1
D-44137 Dortmund
Germany
a7971428@unet.univie.ac.at

Abstract

With Mule (multilingual Emacs) you can write texts in multiple languages. This
editor is especially designed to handle the various encodings and character sets
of Asian scripts such as Big 5 and GB for Chinese, JIS for Japanese, etc. Even
more, you can use multiple CJK character sets simultaneously which enables
e.g. Chinese users to write simplified (jiǎnťız̀ı 简体字) and traditional Chinese
characters (fánťız̀ı 繁體字) at the same time.

The CJK package is the analogue for LATEX2ε (to be run under standard
TEX). Most of the CJK (Chinese/Japanese/Korean) encodings are implemented;
an interface between Mule and LATEX2ε is provided by an output encoding filter
for Mule. CJK is of course not restricted to Mule. Any editor/environment which
is able to handle double byte encodings can be used.

If you restrict babel to (7-bit) ASCII as the input encoding it is possible to
embed babel into CJK seamlessly. Using Mule’s output filter, you even don’t need
enter LATEX-specific accent macros; the accented characters will be converted
automatically.

Included in the CJK package are auxiliary programs which can convert CJK
TrueType and bitmaps fonts into pk files.

Introduction

TEX (and thus LATEX) is an extremely flexible text
formatting system which supports some multilingual
features since the final version 3, mainly by allow-
ing 8-bit input and fonts. But for CJK languages
(Chinese/Japanese/Korean) this is still not enough
because all encodings have more than 256 characters
each.

The aim of the CJK package is to provide multi-
byte encoding support for LATEX2ε without any spe-
cific extensions of TEX. It contains modules for GB
and Big 5 (Chinese), JIS and SJIS (Japanese), and
KS (Korean) encoding, to name a few. In section
“Unicode” on page 219 you’ll find some notes on
the pros and cons of Unicode in relation to TEX.

As far as I know there is only one freely avail-
able editor which is capable to display multiple char-
acter sets at the same time: Mule, the multilingual
extension of Emacs.1 A special output filter for Mule
converts the internal encoding of Mule directly into

1 The next major releases of the various Emacs flavours
(GNU Emacs and XEmacs) will merge the features of Mule back
into Emacs.

something LATEX can understand. See the section
“The interface between Mule and CJK” on page 220
for more details.

Among other utilities two font converters called
hbf2gf and ttf2pk are provided to convert CJK
fonts into pk and tfm fonts; both programs are dis-
cussed in another paper of the proceedings ([8]).

The latest version of CJK can be found on
CTAN in the directory language/chinese/CJK; var-
ious basic bitmap font packages are provided in
fonts/CJK.

CJK encoding schemes

It is not possible to represent CJK character sets
with one byte per character. At least two bytes are
necessary, and most of the common CJK encoding
schemes (GB, Big 5, JIS, KS, etc.) use a certain
range for the first byte (usually 0xA1 to 0xFE or a
part of it) to signal that this and the next byte rep-
resent a CJK character. As a consequence, ordinary
ASCII characters (i.e., characters between 0x00 and
0x7F) remain unaffected.

214 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting



The CJK package for LATEX2ε — Multilingual support beyond babel

encoding 1. byte 2. byte 3. byte

GB 0xA1–0xF7 0xA1–0xFE —
Big 5 0xA1–0xF9 0x40–0xFE —
JIS 0xA1–0xF4 0xA1–0xFE —
SJIS 0xA1–0xFE 0x40–0xFC —
KS 0xA1–0xFD 0xA1–0xFE —
UTF 8 0xC0–0xEF 0x80–0xBF 0x80–0xBF
CNS 0xA1–0xFE 0xA1–0xFE —

Figure 1: encoding schemes implemented in CJK

Some notes on the various encodings given in
table 1:

• SJIS, also known as MS-Kanji, consists of two
overlayed character sets: the so-called halfwidth
Katakana (JIS X0201-1976, 1-byte characters
encoded in the range 0xA1 to 0xDF) and the
(fullwidth) JIS character set (JIS X0208-1990,
mapped to the remaining code points).

• Some encoding schemes (Big 5, SJIS) have gaps
in the range of the second byte.

• UTF 8 (Unicode Transformation Format 8),
also called UTF 2 or FSS-UTF, is a special
representation of Unicode (resp. ISO 10 646).
It uses multibyte sequences of various length,
but only 2-byte and 3-byte sequences are imple-
mented in CJK. ASCII characters will be used
as-is—without this property it would be im-
possible to use UTF 8 with TEX.

• CNS is defined to have 16 planes with 94 × 94
characters. Currently 7 planes are assigned
(CNS 1 to CNS 7, an eighth plane has been
said to be under development).

• It’s difficult to input Big 5 and SJIS encoding
directly into TEX since some of the values used
for the encodings’ second bytes are reserved
for control characters: ‘{’, ‘}’, and ‘\’. Re-
defining them breaks a lot of things in LATEX;
to avoid this, preprocessors are normally used
which convert the second byte into a number
followed by a delimiter character.

For further details please refer to [10]; Lunde
discusses in great detail all CJK encodings which
are or have been in use. See also section “Input
encodings, output encodings, character sets” below.

The CJK package in detail

An example. Here a small lucullic text:
\documentclass{article}

\usepackage{CJK}

\usepackage{pinyin}

\begin{document}

\begin{CJK}{Bg5}{fs}

我很喜歡吃中國飯。

\Wo3 \hen3 \xi3\huan1 \chi1

\Zhong1\guo2\fan4.

I like to eat Chinese food

very much.

\end{CJK}

\end{document}

The result looks like this:

我很喜歡吃中國飯。
Wǒ hěn x̌ıhuān ch̄ı Zhōngguófàn.
I like to eat Chinese food very much.

This example shows that basically only two
steps are necessary to write Chinese: loading CJK
with \usepackage{CJK} and opening a CJK envi-
ronment. Bg5 selects the Big 5 encoding for Chinese
written with traditional characters, fs the font to
be used (in this case it is fǎngsòngťı 仿宋體). The
procedure is slightly different if you use cjk-enc.el
and will be described below in the section “The in-
terface between Mule and CJK” on page 220.

\usepackage{pinyin} loads the pinyin package
which is also part of CJK. It enables input of p̄ınȳın
syllables, the transcription system of Chinese used
in Mainland China (see also the section “The pinyin
package” on page 221).

Basic concepts. To understand how CJK works
behind the scenes some basic concepts have to be
introduced.
Input encodings, output encodings, charac-
ter sets. Since the arrival of NFSS input and out-
put encodings are clearly separated in LATEX. With
CJK encodings the situation is a bit more compli-
cated because some encodings are input and output
encodings at the same time. To make things even
more confused, they can form a character set also!

Consider as an example Big 5. This is a charac-
ter set developed by software companies in Taiwan
for Chinese written with traditional Chinese charac-
ters. It is common practice to describe CJK charac-
ter sets in rows, usually (but not necessarily!) rep-
resented by the first bytes of the output encoding.
For Big 5 we have 94 rows of 157 characters each.
Not all rows are fully occupied: 94 × 157 = 14 758
characters are possible, but only 13 053 characters

TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting 215



Werner Lemberg

are really defined in the basic form of Big 5.2 This
character set can be split into three parts: 408 sym-
bols (rows 1–3), 5 401 Level 1 hànzi (rows 4–38), and
7 652 Level 2 hànzi (rows 41–89). Level 1 contains
the most frequent characters, Level 2 is an exten-
sion for rarely used characters occurring mainly in
names.3 With hànzi (漢字, kanji in Japanese, hanja
in Korean) all ideographic glyphs derived from the
Chinese script are denoted.

Row 1 of the Big 5 character set is mapped to
0xA1 as the first byte in Big 5 encoding, row 2 is
mapped to 0xA2 etc.

You may ask: “Why only 157 characters per
row? Table 1 would imply that 191 characters are
available for each row.” The answer is simple: due
to historical reasons the range for the second byte of
Big 5 input encoding (we are no longer talking about
the Big 5 character set!) is split into two subranges:
0x40–0x7E and 0xA1–0xFE. And for convenience, al-
most all fonts providing the Big 5 character set can
be accessed with an output encoding identical to the
Big 5 input encoding.4

The counter example is the SJIS input encod-
ing. Here we have two distinct Japanese charac-
ter sets (JIS X0201 and JIS X0208) which will be
accessed as two different fonts in the CJK package
having a 1-byte and a 2-byte output encoding re-
spectively.
The CJK macro layers. CJK makes all characters
above 0x7F active (except 0xFF). The macro level
assigned directly to the active characters is called
‘binding’ (stored in files with the extension bdg).
The binding decides whether only the current byte,
the next byte with the current byte or possibly the
next two bytes together with the current byte rep-
resent a CJK character (example: JIS encoding has
only 2-byte characters, SJIS has 1-byte and 2-byte
characters).

The next level chooses the encoding of the CJK
font and the output encoding of the subfonts (called
‘fontencoding’; see also the sections “Subfonts” and
“CJK font definition files” below for further informa-
tion); the corresponding macros are stored in files
with the extension enc. Here the proper subfont

2 See [10] for a complete description of the extensions to
Big 5.

3 Chinese names cause a great problem for electronic data
processing since every year new characters are invented; this
is quite common especially in Hong Kong.

4 This has changed with the propagation of TrueType
fonts where e.g. fonts with a Big 5 character set can be ac-
cessed as Unicode encoded and as Big 5 encoded, provided
the font has mapping tables for both encodings. The same
is true for the so-called CID PostScript fonts which also can
use multiple mapping tables for a particular font.

together with some font offsets will be selected and
passed as arguments to the next level.

Macros from the third and last level (stored in
files with the extension chr) finally select the proper
character, check whether it is a special character
etc., and print it out.

User selectable are only the encoding and font-
encoding, the other levels are chosen automatically.
‘Preprocessed’ mode. Big 5 and SJIS encoding
can’t be handled well within TEX due to some char-
acters in the range of the encodings’ second bytes
which interfere with the TEX control characters ‘{’,
‘}’, and ‘\’. It is possible to redefine them (and the
CJK package provides two environments, Bg5text
and SJIStext, which exactly do that), but many com-
mands of LATEX don’t work inside of them. Another
annoying fact is that second bytes smaller than 0x80
are affected by case changing commands, altering
the CJK characters!

Thus I have decided to program small prepro-
cessors written in C5 to convert the encodings into a
form which won’t cause problems: the second byte
of an encoding will be converted into its decimal
equivalent, followed by 0xFF as a delimiter charac-
ter.

This approach works for all encodings except
UTF 8. CJK simply checks the presence of the
\CJKpreproc command inserted by the preproces-
sor at the very beginning of the output file: if it is
defined, another set of macros connecting the ‘bind-
ing’ and ‘fontencoding’ level is used. If it is un-
defined, \MakeUppercase is disabled for Big 5 and
SJIS encoding.

Subfonts. What has been said about output en-
codings in a previous section is not the truth. It’s
a “little white lie”, to cite a famous computer sci-
entist whose name I can’t remember yet.6 To make
large CJK fonts work with TEX we must split them.
I’ve chosen the most compact subfont layout, i.e.,
256 characters per subfont, but due to the modular
concept of CJK it was not difficult to support other
subfont schemes (like poor man’s Chinese which uses
one subfont per leading byte).

The number of subfonts per font is large. A
JIS encoded font for example needs 35 subfonts, a
Big 5 encoded font even 55. See below the section

5 Former versions of CJK contained these preprocessors
written in both TEX and C, but under web2c it is impossible
to \write out real 8-bit characters larger than 0x7F to a file;
you will always get the ^^xx notation which fails in verbatim
environments.

6 Nevertheless, it is the truth for Ω which can handle fonts
with more than 256 characters.

216 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting



The CJK package for LATEX2ε — Multilingual support beyond babel

“CJK font definition files” for the naming scheme of
subfonts.

The interaction with NFSS. Today I’m suprised
by myself how simple it has been to adapt NFSS
to subfont selection; only one internal macro of the
LATEX2ε kernel, namely \pickup@font, must be re-
defined to gain the additional subfont functionality
needed by CJK.7 Here is the version as implemented
in CJK.sty:8

\def\pickup@font{

\ifx\CJK@plane \@undefined

% old definition

\expandafter\ifx\font@name \relax

\define@newfont

\fi

\else

% CJK extension

\expandafter

\ifx\csname \curr@fontshape/\f@size/

\CJK@plane\endcsname \relax

\define@newfont

\else

\xdef\font@name{

\csname \curr@fontshape/\f@size/

\CJK@plane\endcsname}

\fi

\fi}

\CJK@plane is only defined inside of a CJK
macro on the character level. It will contain the sub-
font plane to be used. The only purpose of the small
extension in \pickup@font is to define or check a
new \font@name by appending \CJK@plane to the
name LATEX would construct.

CJK font definition files. Font definitions for
CJK fonts are basically similar to other fonts. The
main difference is that you define classes of subfonts
instead of a single font.
Subfont names. The default name of a CJK sub-
font is the font family name plus a running decimal
number (normally consisting of two digits). Exam-
ple: b5ka1201, b5ka1202, etc. Unicode encoded
fonts have two running hexadecimal digits appended
instead, and some Japanese and Korean fonts follow
other naming conventions. For all declarations in
font definition files you have to specify the font fam-
ily only; in our example this would be b5ka12.
Size functions. A suite of additional font size func-
tions which take care of the subfonts has been de-

7 \selectfont will also be changed slightly; nevertheless,
it is not for the subfont selection but rather for the support
of boldface emulation for CJK fonts.

8 Please note that almost all files in the CJK package start
with \endlinechar -1 to avoid percent signs at the end of a
line if we must suppress the newline character. The other TEX
macro code fragments in this document assume the same.

fined. Most of them have a ‘CJK’ prefix or postfix
to standard LATEX size function names (CJK, sCJK,
CJKsub, . . . ) to indicate a similar behaviour. Addi-
tionally some CJK size functions have a ‘b’ postfix
to select ‘poor man’s boldface’, as I have called the
emulation of bold fonts by printing a non-bold char-
acter thrice with small offsets.9 Providing a bold-
face emulation proved to be necessary because most
of the freely available CJK fonts are available in one
series only.

Here a sample entry for a GB encoded pixel
font:

\DeclareFontFamily{C10}{fs}{}

\DeclareFontShape{C10}{fs}{m}{n}{

<-> CJK * gsfs14}{}

\DeclareFontShape{C10}{fs}{bx}{n}{

<-> CJKb * gsfs14}{\CJKbold}

\CJKbold sets an internal flag to switch on
boldface emulation.
NFSS font encodings. Since version 4 of the CJK
package all NFSS font attributes are supported. To
achieve that it was necessary to have an NFSS font
encoding for each CJK encoding. Figure 2 shows
some of the currently available font encodings; all
encodings defined by CJK start with an uppercase
‘C’, followed by two digits.

language environment NFSS encoding

Chinese: Bg5 C00
GB C10
CNS1–7 C31–37

Japanese: JIS C40
JIS2 C50
SJIS C40 (fullwidth)

C49 (halfwidth)
Korean: KS C60 (hanja)

C61 (hangul)
Unicode: UTF8 C70

Figure 2: The correlation between CJK
encodings, CJK fontencodings, and NFSS font
encodings. Only the most important encodings are
listed here.

Some CJK encodings need more than one NFSS
font encoding, as can be seen in the table (not listed
here is the support for HLATEX fonts where four
NFSS encodings are necessary); the first digit usu-
ally represents the CJK encoding, the second digit
(except for CNS encoded fonts) the specific subfont
layout.

9 An explanation for the very reason of having extra size
functions for bold face emulation is beyond the scope of this
(already too long) article. It can be found in the documenta-
tion files of CJK.

TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting 217



Werner Lemberg

The macro which internally maps the CJK en-
coding to one or more NFSS font encodings also
calls \DeclareFontSubstitution with an empty
font name macro to fake the fall-back mechanisms
of NFSS.10

Nevertheless, you never access the NFSS font
encodings directly; this will be done automatically
if you open a CJK environment or use a \CJKenc
command (see below).

CJK commands and environments. In this sec-
tion you will find some important CJK commands
not discussed elsewhere in this paper.

Additionally to the CJK environment CJK* will
be provided: the starred form suppresses spaces af-
ter a CJK character (using \ignorespaces) which
don’t appear in texts written with Chinese or Japa-
nese as the main language. To ‘switch’ from CJK to
CJK* without leaving the environment you can use
the \CJKspace command (and \CJKnospace for the
other direction).

To access a CJK character directly you can use
the \CJKchar command; it takes the first and sec-
ond byte (represented as a number) of the character
code together with an optional encoding string as
parameters. This is the most portable form since no
input characters larger than 0x7F are used.

Four commands will control encodings and font
encodings: \CJKenc, \CJKfamily, \CJKencfamily,
and \CJKfontenc. To change the encoding inside
of a CJK environment, use \CJKenc. It will always
use the font encoding for a certain encoding which
has been selected with \CJKfontenc. To change
the font family you have two alternatives: The first
is to define a family for a specific encoding with
\CJKencfamily. If this encoding is chosen, the fam-
ily defined in this way will be taken. The second is to
specify a family for all encodings with \CJKfamily,
overriding all \CJKencfamily commands. You must
explicitly say ‘\CJKfamily{}’ to reactivate any font
definitions done with \CJKencfamily. Here is a (hy-
pothetical) example:

\CJKencfamily{GBt}{hei}

\CJKfontenc{JIS}{dnp}

\begin{CJK*}{Bg5}{fs} % this is equal to

% \begin{CJK*}{}{}

% \CJKenc{Bg5}

% \CJKfamily{fs}

10 The latest version of HLATEX has introduced ‘HFSS’ (the
‘H’ stands for Hangul), a font selection scheme to be run in
parallel with NFSS, basically having an identical interface.
A lot of advantages can be gained, mainly higher speed and
better error handling.

..Text in Bg5 fangsong..% c00fs.fd used

\CJKenc{GB}

..Text in GB fangsong.. % c10fs.fd used

\CJKfamily{kai}

..Text in GB kai.. % c10kai.fd used

\CJKenc{JIS}

..Text in JISdnp kai.. % c42kai.fd used

\CJKfamily{}

\CJKenc{GBt}

..Text in GBt hei.. % c20hei.fd used

\end{CJK*}

‘dnp’ is the abbreviation for Dai Nippon Print-
ing (大日本印刷), a big printing company in Japan
providing Japanese TEX fonts. ‘GBt’ stands for GB
traditional encoding (GB 12 345)—as far as I know
no GB 12 345 font is freely available.

In case you get overfull \hboxes caused by CJK
glyphs the macros \CJKglue and \CJKtolerance
will help. The former is used for Chinese and
Japanese encodings, defining the glue between CJK
glyphs. Its default value is set to \hskip 0pt plus
0.08\baselineskip. The latter makes sense for
Korean; the default value for \CJKtolerance is 400.

Only a subset of the commands available has
been introduced here. For a complete description
please refer to the various CJK documentation files.

CJK typography rules

Some special CJK characters should not start or end
a line, e.g. various kinds of parentheses and many
interpunctuation characters. In Japanese there is
additionally a set of Hiragana and Katakana char-
acters which are not allowed to start a line (kinsoku
shori 禁則処理); both are supported automatically
by CJK (but can be controlled if necessary). The
mechanism to achieve this is quite tricky: usually
you have some breakable glue (using \hskip) be-
tween two consecutive CJK characters (with other
words, you need intercharacter spacing for Chinese
and Japanese). Every character will be checked
against encoding specific lookup tables whether it is
a character not allowed to start or to end a line. In
the former case, the glue before the character must
be made unbreakable, otherwise the glue after the
character.

No space will be printed after or before a CJK
interpunctuation mark in Japanese and Chinese, but
in Korean spaces are used between words11 and after
interpunctuation marks (which are in most cases the
same as in Western languages).

11 which are written as a combination with Hanja and
Hangul (한글), the Korean syllable script. No intercharacter
glue is used but \discretionary{}{}{} instead; additionally
\tolerance is increased to \CJKtolerance.

218 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting



The CJK package for LATEX2ε — Multilingual support beyond babel

As explained above we have macros for all CJK
characters. How can we test whether the previous
character was a CJK character, maybe even a spe-
cial one? It’s impossible to use \futurelet or other
such commands because this only works on TEX’s
macro level, not on horizontal lists which are even-
tually output to a dvi file.

The solution I’ve found finally uses \lastkern
to check the amount of the last kern.12 If the cur-
rent character is an ordinary one, a kern of 1 sp is
emitted (do you remember TEX’s smallest unit?), if
no break should occur between the current and the
next character, a kern of 2 sp is used instead. Now
the next character will be processed. If it is a CJK
character, \lastkern is tested whether it is 1 sp or
2 sp, and the appropriate action is executed.

Another typographic rule in CJK text process-
ing is the use of different spaces, depending on con-
text. Between a CJK character and a non-CJK
character (e.g. an English word to be cited or a
number) only a space having the quarter width of
a (fullwidth) kanji should be typeset, and between
non-CJK characters the default space has to be
used. This quarter space is called shibuaki (四分
あき). Some Japanese standards define more so-
phisticated rules where to print which space, but
even the simple problem with having two different
space widths can’t be solved automatically in stan-
dard TEX. There exist Japanese adaptations of TEX
which handle this internally, but you can’t use these
programs with other CJK languages. Nevertheless,
it is solvable within Ω; see [6] for a short discussion
on this topic.

The only way to manage shibuaki is to insert
them manually. For this purpose I’ve redefined the
tilde character to insert a quarter space instead of
an unbreakable space (this will be still available as
\nbs, a shorthand for \nobreakspace). The com-
mand \CJKtilde activates it; here an example:

中國飯\ food 中國飯 中國飯 food 中國飯
中國飯~food~中國飯 中國飯 food中國飯

‘~’ is defined as
\def~{\hspace{.25em plus .125em minus .08em}

The effect of ‘~’ seems to be minimal, but in
underfull boxes it is really an optical enhancement.

The Chinese Encoding Framework (CEF)

Christian Wittern, a former employee of IRIZ
([1]), now working at the University of Göttingen,

12 Un Koaung-Hi (殷光熙), the author of HLATEX ([12]) for
Korean, uses a different solution: he modifies the space factor
of specific characters to indicate a break point.

has developed CEF. Its primary aim is to access
seldom used CJK encodings (most notably CNS)
in a platform independent way using SGML macros
of the form ‘&<encoding>-<code>;’. Examples for
valid encoding values are ‘C3’ for CNS plane 3, ‘C0’
for Big 5, ‘U’ for Unicode; the code is given as a
hexadimal number (see [15] for a detailed descrip-
tion).

He has also developed KanjiBase for Windows,
an input tool for CEF which accesses a large CJK
character database (which I consider the very heart
of the whole system). It is also described in [15].13

A small example from an old Zen text (The
Records of Zhàozhōu 趙州真際禪師語錄, taken from
the IRIZ ZenBase CD 1) shows how it works:

0304a12

¡¶Ý.�ãÒëî�

BOÍn¬1.�Q�Òãñ%SRï³wbS÷{&�

1ÊS÷�â÷�:�gk�ÐUOg�â÷�×�

Þ�Ë;erE"�1�Ý|ç�k�Ä¢u�\��

5öW�dµ*�������1��Ð1�&C3-3847;ØS

÷�Ð1�â²à�1`Þâ²�S÷6`ð2ýj�

�1¿¥�0±��Õ(���1"���r�S÷"��

And here the same text with the appropriate
CNS character:

0304a12

¡¶Ý.�ãÒëî�

BOÍn¬1.�Q�Òãñ%SRï³wbS÷{&�

1ÊS÷�â÷�:�gk�ÐUOg�â÷�×�

Þ�Ë;erE"�1�Ý|ç�k�Ä¢u�\��

5öW�dµ*�������1��Ð1��ØS

÷�Ð1�â²à�1`Þâ²�S÷6`ð2ýj�

�1¿¥�0±��Õ(���1"���r�S÷"��

The punctuation marks have been inserted by
the editors and are not present in the original text.

CJK provides a small preprocessor to convert
CEF macros into \CJKchar macros.

Unicode

Characters encoded in Unicode can’t be used di-
rectly with TEX because the encoding is 16-bit wide.
Instead, you have to use UTF 8 (see table 3 for the
relationship between Unicode and UTF 8).

This multibyte representation has some impor-
tant advantages: it is completely transparent for
ASCII characters, you can always find the beginning
of a multibyte sequence because the leading byte is
unambiguously defined, and it is “reasonably com-
pact in terms of number of bytes used for encoding”,
to cite from appendix A.2 of [13].

13 You can find the latest version in [14] which also provides
some online access and conversion.

TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting 219



Werner Lemberg

UTF 8
Unicode

byte 1 byte 2 byte 3

00000000 0b6b5b4b3b2b1b0 0b6b5b4b3b2b1b0 — —
(U+0000 – U+007F)

00000b10b9b8 b7b6b5b4b3b2b1b0 110b10b9b8b7b6 10b5b4b3b2b1b0 —
(U+0080 – U+07FF)

b15b14b13b12b11b10b9b8 b7b6b5b4b3b2b1b0 1110b15b14b13b12 10b11b10b9b8b7b6 10b5b4b3b2b1b0

(U+0800 – U+FFFF)

Figure 3: The UTF 8 representation of Unicode

CJK supports the whole Unicode range, not
only the CJK part (provided you have fonts avail-
able), but I think that only the CJK range of Uni-
code makes sense with TEX under normal circum-
stances. The main reason is that you can have nei-
ther kerning nor automatic hyphenation if two ad-
jacent characters come from different fonts, and this
is almost inevitable because the number of (precom-
posed) latin characters with diacritics exceeds 700,
and composition doesn’t help either since the usage
of \accent prevents kerning and hyphenation. . .

Another reason is that most of the currently
available Unicode encoded CJK fonts provide one
glyph shape per code point. However, this is not
enough for typographically correct output. In fig-
ure 4 you can see the same character in three differ-
ent shapes. Ken Lunde shows in [9] that for a Uni-
code CJK font which really satisfies Chinese, Japa-
nese, and Korean users about 40% more glyphs than
code points are needed—this would further increase
the number of TEX subfonts to be accessed simulta-
neously because the order of characters (or glyphs)
in the CJK section of a Unicode font does not fol-
low the character frequency but rather the order in
a famous Chinese dictionary (Kāngx̄ı z̀ıdiǎn 康熙字
典).

逸 逸 逸
Figure 4: The Unicode character U+9038 in
Japanese, Chinese, and Korean form (from left to
right)

The interface between Mule and CJK

Handa Ken’ichi (半田剣一), the main author of
Mule, constructed a Lisp code frame for an inter-
face between Mule and CJK which I filled with the
needed values. It can be integrated into AUCTEX
([11]) without any great problems, making it a very
convenient multilingual environment for LATEX.

The interface (stored in the file cjk-enc.el)
has the form of a Mule output encoding. This means
that you load a file into a Mule buffer, change the
name of the buffer to the target file name, select ‘cjk-
coding’ as the output encoding and save the file.

Look at figure 5. It shows a small multilin-
gual example where Japanese is mixed with Ger-
man and Czech.14 As you can see, babel ([2]) is
used for the two European languages; a CJK envi-
ronment together with proper encoding switches is
inserted automatically by the output encoding; ac-
cented characters are translated into LATEX macros
also without any additional work.

It’s not necessary to open a CJK environment
inside of the document (it can even cause errors).
Nor is it necessary to load the CJK package itself.
The output filter uses \RequirePackage to load CJK
and \AtBeginDocument to start a CJK environment
with empty arguments; proper \CJKenc macros are
inserted immediately before an encoding change.
The most convenient way to specify CJK font shapes
is then to use \CJKencshape in the preamble.

Now consider the word ‘Dvořák’ as an illus-
tration of the hidden mechanism of the interface.
Mule’s internal representation of this word is ‘Dvo
^^82^^f8^^82^^e1k’ (^^xx denoting real 8-bit val-
ues); ^^82 is a leading byte representing the Latin-2
character set, ^^f8 and ^^e1 are the ‘̌r’ and ‘á’ in
Latin-2 encoding.15 After applying the ‘cjk-coding’
output encoding (as defined in cjk-enc.el), the
Czech name looks like this: ‘Dvo^^8051^^ffr^^ff
^^8020^^ffa^^ffk’. The active character ^^80 has
basically the following definition (in MULEenc.sty

14 The text has been taken from a synchronoptical transla-
tion of the libretto of Antońın Dvořák’s opera Rusalka. The
left column is printed in Czech (the original language), the
middle column in German, and the right column in Japanese.

15 This is a bit sloppy. To speak correctly I had to say
that the right-hand part of Latin Alphabet Nr. 2 (as defined
in ISO 8859/2 and registrated as IR 101 in [4]) is mapped
to the GR (Graphic Right, 0xA0 to 0xFF) area. See [3] for
a concise description of the terms necessary to understand
Mule’s internal and external code representations.

220 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting



The CJK package for LATEX2ε — Multilingual support beyond babel

Figure 5: A screen snapshot of Mule

which will always be \input at the very beginning
of the output file):

\def^^80#1^^ff#2^^ff{...}

The first parameter is an index to an accent
macro, the second is the letter (or character macro)
to be modified. A number is used as the index;
this has the advantage that it works in verbatim
environments equally well as in case modifying com-
mands. After expanding the macros \mule@51 and
\mule@20 (defined with \csname) are called which
finally expand to \v and \’. Great care has been
taken to assure that really only expansion occurs to
retain kerning.

Besides the common Latin and CJK character
sets the Mule interface supports Vietnamese ([7]); it
is planned to extend it to Thai and Russian soon.

Other tools

The pinyin package. This style file (which can be
also used with plain TEX) enables the input of p̄ınȳın
syllables with tones. An example of its usage was
given on page 215.

Some additional notes:

• Mandarin Chinese has basically four tones (s̀ı
shēng四聲) but sometimes it is referred to have
a fifth, unstressed one. In the Chinese syl-
lable script zhùȳınfúhào (注音符號) this fifth
tone is indicated with a dot, but has no cor-
responding tone mark in p̄ınȳın. On the other
hand, the first tone will be marked with a hor-
izontal line in p̄ınȳın but remains unmarked in
zhùȳınfúhào.

With the pinyin package you can write e.g.
‘\ma5’ to emphasize that you really mean an
unstressed syllable— the result is equal to ‘ma’.

• In [16] a different approach to writing p̄ınȳın
has been described; ligatures are used to com-
pose vowels with tone marks, e.g. ‘nu:v’e’r’ to
get nǔ̈u’ér16 (女兒, the Chinese word for daugh-
ter). The advantage is the avoidance of any
macros to produce the accented letters. The
disadvantage is that you need virtual fonts to

16 The quote character is used to denote the syllable
boundary in ambiguous cases.

TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting 221



Werner Lemberg

realize the ligatures which are not as easily in-
stalled as a macro package because you have to
create them first if you want to use a new font.

The ruby package. To cite Martin Dürst17 who
wrote a proposal for ruby in HTML documents:

Ruby are small characters used for annota-
tions of a text, at the right side for vertical
text, and atop for horizontal text, to indicate
the reading (pronounciation) of ideographic
characters.

[. . . ]
The name ruby is the name of the 5.5 point

type size in British terminology; this was the
size most used for ruby.

[. . . ]
Ruby are in most cases set at half the size

of the main letters, resulting in a possible two
ruby characters per main character, and tak-
ing up half of the width of the main charac-
ters. However, at least up to five ruby char-
acters per main character are possible (an

example is u-ke-ta-ma-wa-ru (
うけたまわ

承る, to listen
respectfully), and so various solutions, from
leaving white space in the main text to having
the ruby overlap the next characters of the
main text, are possible (the latter is possible
in Japanese especially because in many cases,
the characters around an ideograph with ruby
are syllabic, and therefore the assignment of
ruby to main characters poses no problems
for the reader).

[. . . ]
Ruby are particularly frequent in Japa-

nese, because of the way CJK ideographs are
used in Japanese. Ideographs can have many
different readings (pronounciations) because
different readings were taken over from dif-
ferent regions of China and at different times
when the characters where adopted in Japan.
Also, these characters are used to write in-
digenous Japanese words, and many readings
may be possible because the ideograph might
cover many different concepts distinguished
in the Japanese language. [. . . ] The main
use of ruby today is in magazines of all levels,
and of course in educational material. Ruby
are also used in educational material in China
and Taiwan.

In Japan, the term furigana (ふりがな) is
also used instead of ruby. ‘Furigana’ is com-

posed of the verb furu (
ふ

振る, to attach, sprin-
17 His email address is mduerst@ifi.unizh.ch.

kle, . . . ) and gana (
が

仮
な

名, either hiragana or
katakana, one of the two Japanese syllabaries
usually used for ruby).

The ruby
うけたまわ

承 of the above citation has been in-
put as \ruby{承}{うけたまわ}; the first parameter
is the base character and the second the ruby itself.

To avoid lines sticking together the ruby pack-
age sets \lineskiplimit to 1 pt. It may be neces-
sary to increase this value for larger font sizes.

Whether a ruby overlaps with the surrounding
characters or not can be controlled with the over-
lap and nonoverlap options. There are a number of
possibilities how ruby can interact with other CJK
characters in both cases.
• The ruby has a smaller width than its base char-

acter: the behaviour is identical to an ordinary
CJK character.

• The ruby has a greater width than its base char-
acter:

– Overlapping ruby:
∗ If the previous or next character is

a CJK character (ordinary or punc-
tuation), insert unbreakable glue be-
tween.

∗ If the previous or next character is a
ruby, handle both ruby as non-over-
lapping and insert unbreakable glue
between.

∗ A ruby at the beginning of a para-
graph will be treated as if the nonover-
lap option had been set. To force an
overlapping ruby you have to start the
paragraph with a \leavevmode com-
mand.

– Non-overlapping ruby: if the previous or
next character is a CJK character (ordi-
nary or punctuation), insert unbreakable
glue between.

ruby.sty introduces a third variation of a small
kern (3 sp) to inform the next CJK or ruby macro
that the previous character was an overlapping ruby
with the ruby’s width greater than its base charac-
ter. The global variable \ruby@width then contains
this width.

The interface to the koma-script package

One of the greatest deficiencies of the current imple-
mentation of the standard document classes is the
inflexibility in handling captions which follow non-
English conventions. But even English captions can
cause trouble if they are non-standard. Consider
“Chapter Two” vs. “Second Chapter”: the former

222 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting



The CJK package for LATEX2ε — Multilingual support beyond babel

is supported, the latter isn’t. With ‘supported’ I
mean that it is not necessary to rewrite any inter-
nal LATEX commands, and that even a novice user
can change it. Besides this, many languages, espe-
cially in Asia, follow different conventions how to
numerate sections, figures etc. A Chinese example:
‘Chapter 5’ is ‘第五章’. ‘第’ (d̀ı) is a prefix which
converts the following Chinese number from a nu-
meral into an ordinal, ‘第五’ (d̀ıwǔ) thus means ‘the
fifth’. ‘章’ (zhāng) means chapter.18

Markus Kohm, the maintainer and developer
of the koma-script package ([5]), has extended the
package’s document classes with a flexible hierarchi-
cal captioning model which consists of three levels,
one level deeper than in standard LATEX.

Level 1 are the well known standard macros
\figurename etc. Language specific packages or
options usually replace the English names with the
right ones.

Level 2 is the modification of sectioning coun-
ters like \thesection. In the above example Chi-
nese numbers should be used instead of Arabic dig-
its.

Level 3 finally enables full control over the ex-
act placement of spaces, counters, and other text in
captions. All macros of this level have ‘format’ as
postfix, e.g. \chapterformat; they are directly used
by \chapter, \section etc.

A simplified definition for a Chinese chapter
heading macro would be:

\newcommand\CJKnumber[1]{

\ifcase#1\or

一\or二\or三\or四\or五\or

六\or七\or八\or九\or十\fi}

\newcommand\prechaptername{第}

\newcommand\postchaptername{章}

\renewcommand\thechapter{

\prechaptername

\CJKnumber{\value{chapter}}

\postchaptername}

\renewcommand\chapterformat{\thechapter}

The CJK package supports this interface and
provides caption files for Chinese, Japanese, and Ko-
rean. To activate, say \CJKcaption{xxx} inside of a
CJK (or CJK*) environment; then the language mod-
ule xxx.cap will be loaded. The names of the mod-
ules usually mirror the encoding, e.g., the Chinese
caption file in Big 5 encoding is named Bg5.cap.

18 Often it is written like ‘第 五 章’ (第\ \ 五\ \ 章) in
chapter headings, but the form without spaces is used in the
table of contents.

Conclusion

The CJK package works best if you write a document
in a non-CJK language as the main language. Many
typographic features needed for native CJK script
support can’t be handled automatically due to lim-
itations in TEX itself (the abovementioned shibuaki
problem, vertical typesetting,19 and others).

Another not yet mentioned problem is speed.
Due to the many (sub)fonts you have to change the
font for almost each character— if your document
consists entirely of, say, Chinese, you have more
than enough time to drink a cup of coffee to for-
mat 50 pages on a moderately fast computer.

The future for CJK multilingual text processing
with LATEX is definitely Ω, but until someone will
have found time to provide CJK support (it is highly
probable that this person is me again), it may not be
the worst choice to use the CJK package meanwhile.

References

[1] Urs App, editor. ZenBase CD 1. Interna-
tional Research Institute for Zen Buddhism
(IRIZ), Hanazono University (花園大学国際
禅学研究所), Kyōtō, 1995. A CD-ROM
with a large collection of Chinese Buddhist
texts. Additionally it contains KanjiBase for
Windows, the input tool for CEF, and a
lot of other utilities useful for East Asian
studies. Cf. http://www.iijnet.or.jp/iriz/
irizhtml/irizhome.htm.

[2] Johannes Braams. An update on the babel sys-
tem. TUGboat, 14(1):60–62, April 1993.

[3] European Computer Manufacturers’ Associa-
tion (ECMA). Standard ECMA-35. Character
code structure and extension techniques. Avail-
able electronically from ftp://ftp.ecma.ch as
the file E035-PSC.EXE, December 1994. This
standard is completely identical to ISO-2022.

[4] International Organisation for Standardization
(ISO). International register of coded character
sets to be used with escape sequences, October
1994.

[5] Markus Kohm. The koma-script package. Avail-
able from CTAN, macros/latex/contrib/
supported/koma-script, 1997.

[6] Werner Lemberg. Merging Babel and CJK un-
der Ω. In Proceedings of the First Interna-
tional Symposium on Multilingual Information
Processing, 1996. Hold March 25–26, 1996, in
Tsukuba, Japan.

19 Something which I’ve almost forgotten to say: CJK con-
tains an experimental package for vertical typesetting with
Big 5 encoded characters.

TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting 223



[7] Werner Lemberg. The vncmr package. Avail-
able from CTAN, fonts/vietnamese/vncmr,
1996.

[8] Werner Lemberg. New font tools for TEX. In
Proceedings of TUG 97, July 1997.

[9] Ken Lunde. Creating fonts for the Unicode
kanji set: Problems & solutions. In Unicode
Implementers’ Workshop 6. The Unicode Con-
sortium, 1994. Hold September 8–9, 1994, in
Santa Clara, California.

[10] Ken Lunde. Online companion to “under-
standing Japanese information processing”.
Available from ftp://ftp.ora.com/pub/
examples/nutshell/ujip/doc/cjk.inf,
1996.

[11] Kresten Krab Thorup. GNU emacs as a front
end to LATEX. TUGboat, 13(3):304–308, Octo-
ber 1992.

[12] Un Koaung-Hi (殷光熙). The HLATEX package.
Available from CTAN, language/korean, 1997.

[13] The Unicode Consortium. The Unicode Stan-
dard, Version 2.0. Addison-Wesley, 1996. The
latest versions of the various tables plus addi-
tional cross references can be found on ftp.
unicode.org.

[14] Christian Wittern. The KanjiBase home
page. Available from http://www.gwdg.de/

~cwitter.
[15] Christian Wittern. The IRIZ KanjiBase. The

Electronic Bodhidharma (電子達摩), 4:58–62,
June 1995. All articles in this journal are writ-
ten both in Japanese and English.

[16] Wai Wong. Typesetting Chinese pinyin using
virtual fonts. TUGboat, 14(1):8–11, April 1993.

224 TUGboat, Volume 18 (1997), No. 3—Proceedings of the 1997 Annual Meeting


