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Abstract

Azriel Levy (1934-) did fundamental work in set theory when it was transmuting into a modern, sophisticated field of
mathematics, a formative period of over a decade straddling Cohen’s 1963 founding of forcing. The terms “Levy collapse”,
“Levy hierarchy”, and “Levy absoluteness” will live on in set g, and his technique of rela# constructibilityand connections
established between forcing adefinability will continue to be basito the subject. What follows is a detailed account and analysis
of Levy’s work and contributions to set theory.
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Azriel Levy (1934-) did fundamental work in set theory when it was transmuting into a
modern, sophisticated field of mathematics,oanfative period of over a decade straddling
Cohen’s 1963 founding of forcing. The terms “Levy collapse”, “Levy hierarchy”, and “Levy
absoluteness” will live on in set theory, and his technique of relative constructibility and
connections established between forcing and definability will continue to be basic to the subject.
Levy came into his prime at what was also a formative time for the State of Israel and has
been a pivotal figure between generations in the flowering of mathematical logic at the Hebrew

,1“\ Nl University of Jerusalerh There was initially Abraham Fraenkel, and then Yehoshua Bar-Hillel,

\ lm\\\ B Abraham Rbinson, and Michael Rabin. With Levy subsequently established at the university in

“ ] the 1960s there would then be Saharon Shelah, Levy’s student and current university president
Menachem Magidor, and Ehud Hrushovski, all together with a stream of students who would achieve worldwide
prominence in set theory.

What follows is a detailed account and analysis of Levy’s work and contributions to set theory. Levy’s work has
featured several broad, interconrestthemes coincident with those in thmneering work of Fraenkel: Axiom of
Choice independences using urelements, the investigatiarioms and the comparative strengths of set theories,
and the study of formal defindity. To these Levy brought in concerted usdsmodel-theoretic reflection arguments
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and the method of forcing, and he thereby played an importd@tin raising the level of set-theoretic investigation
through metamathematical means to a new height of sophistication.

Already in his M.Sc. work under Fraenkel's supervision, Le®3][ used urelemet models toestablish
independences for several definitions of finiteness. Levy’s ground-breaking 1958 Hebrew University dissertation
Contributions to the metamathematics of set thgoryHebrew with an English summary), under the joint supervision
of Fraenkel and Robinson featured work in three directions: relative constructibility, reflection principles, and
Ackermann’s set theory. Each of these is discussed in turn in the first three seStmtion 4discusses Levy’s
hierarchy of formulas of set theorgnd his well-known absoluteness result. This work as well as the further
development of the thesis topics were undertaken when Levy was a Sloan postdoctoral fellow at the Massachuse
Institute of Technology 1958-1959 and a visiting assistant psdfet the University of California at Berkeley 1959—
1961. At Berkeley Levy through shared interests associated particularly with Robert Vaught. From 1961 Levy hac
academic positions at the Hebrew University, eventually becoming professor of mathematics there while continuing
to have active visiting positions in the United States.

In the early 1960s Levy focused on independence results, first with Fraenkel's urelement approach as developed |
Mostowski, and as soon as it appeared, with Cohen’s method of forcing. These are disc&es®drnis 5and6, and
in Sectbns 7and8 Levy’s work on definability using forcing is presented. The latter section is focused on the Levy
collapse of an inaccessible cardinal, an&attion %his further work on large cardinals, measurable and indescribable
cardinals, is described. Levy put capstones to his work in different directions in the late 1960s, and these are taken (
in Section 10 Thereremains an envoi.

In such an account as this it is perhaps inevitable thatrtbee basic results are accorded more of an airing and
the sibsequent developments are summarily sketched, giving the impression that the latter are routine emanatior
This is far from the case, but on the other hand a detailed analysis of basic results becomes a natural undertaki
when discussing Lwy/’'s work, since one sees and wants to bring out how they have become part and parcel of our
understanding and investigation of set theory.

1. Relative constructibility

Set th@ry was launched on an independent course as a distinctive field of mathematiocslels®@iork [63,64)]
on the inner modell of constructiblesets. Not only did this work establish the relative consistency of the Axiom of
Choice (AC) and the Generalized Continuum Hypothesis (GCH), but it promoted a new relativism about the notion
of set as mediated by first-order logic, which beyond its sufficiency as a logical framework for mathematics was seel
to have considerableperational efficacy. @del’'s work however stood as an isolated monument for quite a number
of years, the world war having a negative impact on mathematical progress. In retrospect, another inhibitory facto
may have been thformal presetaion of L in Gédel's monographd5]. There he pointedly avoided the use of the
satisfaction predicate and, following John von Neumann'’s lead, used a class theory to cast, in effect, definability
This presentation ok, however, ¢nded to obfuscate the metamathemaiidaas, especially the reflection Skolem
closure argument for the GCH. Levy’s work in general would serve to encourage the use and exhibit the efficacy o
metamathematical methods in set theory.

In the next generation, Ands'Hajnal, Joseph Shoenfield and Levy came to generatidel tonstruction in order
to establish conditional ingeendence results. Their presentations would be couched in the formalisodef [B5],
but the metamathematical ideas would sb@come clear and accessible. Hajitd 74] in his Hungarian dissertation
essentially formulated for a given sAtthe constructible closure [A), the sm#est inng modelM of ZF such that
A € M. To sunmarize, for any structurd and subsey of its domain\y is definable over N ifthere is a (fist-order)
formulay (vo, v1, v2, ..., vy) in the free variables as displayed amd ay, . . ., an in the domain ofN suchthat

y={zINEvy[z,a,...,anl}

whereN = [z, a1, ..., an] asserts that the formula is satisfied inN whenug is interpreted ag and eachy; is
interpreted as; fori > 1. For any sek now define

def(x) = {y C x | y is definable ovetx, €)}.
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Finally, with tce(x) denoting the transitive closure of setdefine:

Lo(A) = tc({A}D; Lat+1(A) = def(Lo(A); Ls(A) = U Lo (A) forlimit § > O;

a<$

and

L(A) = UyLa(A).

L(®) is just Gidel's L, and the geeral construction starts instead withy(A) as an “urelement” basis. Although
L(A) is indeed an inner wdel of ZF, unless 1¢ A}) has a well-ordering il (A), L (A) does not satisfy the Axiom of
Choice. This general situation was not broached by Hajnal, who useds#tsrdinals to estdish the first relative
consistency results about cardinal arithmetic afted@. Hanal showed that irL(A), if A € «™, then br every
cardinalr > «, 2@ = AT, thecaser = « requiring some refinement ofddél’s original argument. In particular,
if the Continuum Hypothesis (CH) fails, one can useArc w, coding®, sets ofnatural numbers and injections:
o — w1 for everya < wp (SO thatw'z‘(A) = wp and (2% = 2% = )L (M) to establish CoZFC + —CH) implies
Con(ZFC+ —CH + Va > 1(28% = R, 1)), or more dramatidly, if one can prove 30 =£ &, or 2% £ 281 then one
can prove the Continuum Hypothesis.

Levy [1,8] on theother hand developed for a given classhe inner modelL[ A] of setsconstructible relative to
A, i.e. the smallest inner modeM such that for everyx € M, AN x € M. While L(A) realizes the lgebraic idea
of building up a model starting from a basis of generatdsfsA\] realizes the idea of lilding up a model usingA
construed as a predicate. Let

defA(x) = {y C x | y is definable ovetx, €, AN X)},
incorporatingA N x as a unary relation for definitions. Now define

Lo[Al = LatalAl = def*(Lo[AD); Ls[Al = | JLalA] for limit § > 0;

a<$

and

L[A] = U Lo[A].

For setsA, unlike for L(A) what remains ofAisonly AN L[A] € L[A], so tha for exampleL[R] = L for the reals
R. L[A] is more constructiveinceknowledge ofA is incorporated through the hierarchy of definitions, and like
L[A] satisfies the Axiom of Choice for eveny. Levy pointed out an important absoluteness, that wite: ANL[A],
L[A] = L[A].

Shoenfield 111,117 had separatg sketched a special case of this constiautto establish partial results toward
the conditonal independence CGAFC + V # L) implies CofZFC+ GCH+ V # L). Levy [8] then esablished
this result by refining Boenfield’s argument to show that the full GCH can be proved in an appropfiafe

The work of Hajnal and of Levy on constructibility elied some interest in the correspondence between Paul
Bernays and @del [71, 151-5])? Although differing in their formal presentations, since Hajnal and Levy both
worked with setsA of ordinals so that [A] = L(A), distinctions would surface only later. Because of its intrinsic
absoluteness, Levy’s constructibfiA] would become basic for the inner model theory of large cardinals. Hajnal’s
constructionL (A) has also become basic, panlarly with the constructible closure of the real§R) becoming the
focal inner model for the Axiom of Determinacy.

2. Reflection principles
Reflection has been an abiding motif in set theauiyh its first appearancie a proof occurring in @del’s proof

of the GCH in L. G6dd himself saw roots in Russell’s Axiom of Reducibility and in Zermelo’s Axiom of Separation,

2n later correspondence, Bernayso@@®&! [71, 199]) referred @del to a review of Levy]] by Shepherdson 110, but amusingly this review is
mistitled and is actually a review of another paper drawn from Levy’s dissertation, vy [
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writing [66, 178] that: “..since an axiom of redudllty holds for constructible sets it is not surprising that the
axioms of set theory hold for the constructible sets, bectngsaxiom of reducibility or its equivalents, e.g., Zermelo’s
Ausonderungsaxiom is really the only essential axiom of set theory”. A heuristic appearing early on for reflection was
that any particular property attributable to the class of all ordinals, since its extent is not characterizable, should alread
be dtributable to some cardinal. This heuristic was at work in the early postulations of large cardinals, cardinals tha
posit structure in the higher reaches of ttumulative hierarchy and prescribesthown transcendence over smaller
cardinals. The weakest of the now standard large cardinals ameabesssiblecardinals, those uncountable regular
cardinalse such ifa < «, then 2 < «, so that in he rank hierarchy/, models ZFC.

The formalization of reflection properties was one of the early developments of model-theoretic initiatives in set
theory. With the basic concepts and methods of model theory being developed by Tarski and his students at Berkele
Richard Montague95] in his 1957 Berkeley dissertation had studied reflection properties in set theory and had shown
that Replacement is not finitely epnatizable over Zermelo set theory in a strong sense. Lexty][then eploited
the model-theoretic methods to establish the broader significance of reflection principles and the close involvement o
the Mahlo hierarchy of large cardinals.

The ZFReflection Principledrawnfrom Montague 95, 99] and Levy P, 234], asserts that for any (first-order)

formulag(vy, ..., vy) in the free variables as displayed and any ordthahere isalimit ordinalae > 8 such ttat for
anyxi, ..., Xn € Vg,
eIx1. ... Xl iff @¥e[x1, ... Xn].

where as usua™ denotes the relativization of the formuldo M. The ideds to carry out a Skolem closure argument
with the collection of subformulas @f. Montague showed that the principle holds in ZF, and Levy showed that it is
actually equivalent to the Replacemerh®ma together with the Axiom of Infiniiy the presence of the other axioms
of ZF. Through this work the ZF Reflection Principle has become well-known as making explicit how reflection is
intrinsic to the ZF system.

Levy [9] took the ZF Reflection Principle as motivation for stronger reflection principles. The first in his hierarchy
asserts that for any formuavy, . . ., vn), there is an inaccessible cardinasuch ttat for anyxy, ..., Xy € Vg,

Q[X1, ..., Xn] iff @V[Xq, ..., Xn].

Levy showed that this principle is equivalent to the aserthat the class of inaccessible cardinals is definably
stationary, i.e. every definable closed unbounded class @ifials contains an inaccebl cardinal. Paul Mahlo
[90-92] had stidied what are now known as tieaklyMahlo cardinals, those regular cardinalsuch ttat the set of
smaller regular cardinals is stationaryni.e. every closed unbounded subset abntains a regular cardinal. Levy’s

work thus established an evident connection between Mabbkrdinals and structural principles about sets. Levy
recast Mahlo’s concept by replacing regular cardinals bgdessible cardinals. On the other hand, whereas Mahlo had
entertained arbitrary closed unbounded subsets, Levy'’s principle is restricted to definable closed unbounded class
Be that as it may, it would be through Levy’s work that Mahlo’s cardinals would come into use in modern set theory
cast as thestrongly Mahlocardinals, those regular cardinalsuch ttat the set of smalleinaccessiblecardinals is
stationary inc.3

Levy proceeded to develop a hierarchy of reflectiomgiples, the next principle being the one above with
“inaccessible” replaced by “strongly Mahlo”. Mahlo himskHd developed a hierarchy of his cardinals, and Levy’s
work recast it as reflecting reflection: A reflection schemers formulated and is then itself reflected. In this way,
Levy showed how the iterative formalization of reflection illuminates Mahlo’s original scheme, formulated a half-
century before.

Levy also substantiated how various reflection prindgiae proof-theoretic transcendence over each other. He
had formulated the following, drawing on his dissertation work (cf. Ledly: [For theoriesTg € T in the same
language and subsuming enough of arithmetic to encode formal consisterscgssentially reflexivever Ty if for
any sentence, T - o — Con(To+o0). Thisis an elgant formulation of the transcendence of one theory over another;
note that no consistent extensionTofs finitely axiomatizable overp, since for any, if Top 4+ o were to extend’,
we would haveTp + o + Con(Tp + o). Montague 95] had shown in #ect that ZF is essentially reflexive over

3 See Kaamori B3, Sectons 1, 6].
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Z, Zermelo set theory. Levyl[)] considered “partial” refleion principles weaker than the ZF Reflection Principle
and studied 15] their minimal models of formv,; Levy—Vaught [L2] showed hat these patrtial principles are also
essentially reflexive over Z. IriLfl] L evy showed that each of the strong reflection principles in Bjsjerarchya la
Mabhlo is essentially reflexive over the previous. Moreover, Léi} §howed hat between any two of these reflection
principles there is a whole spectrum of theagach essentially reflexive over the previous.

In further ramifications, to a volume dedicated to Fra¢wokethe occasion of his 70th birthday Levy contributed
a pager [14] that ompared the Axiom of Choice with its global form, i.e. there is a class choice function for all sets,
and showed that the set consequences of the global foiowk from his reflection priciple down to inaccessible
cardinals. The elder Bernay5( also mntributed a paper to that volume, one in which, inspired by Levy’s work
on reflection, he developed reflection principles based on second-order formulas which were seen to subsume all
Levy’s principles.

The ZF Reflection Principle was foreshadowed imd@I's remarks§7]; he there introduced the ordinal-definable
sets, and to develop their theory requires reflection in some form @feld69, 146]). In his expository article on
Cantor’s Continuum Problem, @lel [68, 521] mentioned the Mahlo cardinals in connection with the proposal to
search for new large cardinal axioms that would settle @ntinuum Hypothesis. Beays cited the paper Levy
[9] in aletter of 12 October 1961 to @del (Gidel [71, 196ff]), and Gidel noted in a letter of 13 August 1965 to
Cohen (Gdel [71, 385ff]), in a discussion about evidence for inaccelescardinals, that “Ley’s principle might be
considered more convincingah analogy [with the integers]”. What presumably impressedebivas how reflection,

a persistent heuristic in his own work, had been newly marshaled to account for Mahlo’s cardinals. Find#y, G~
wrote in a letter of 7 July 1967 to Robinsonq@el [72, 195]):

.. . | perhaps stimulated work in set theory by my epistemological attitude toward it, and by giving some
indications as to the furthelevelopments, in my opinion, to be expected and to be aimed at. | did not, however,
give any clues as to how these aims were to be attained. This has become possible only due to the entirely ne
ideas, primarily of Paul J. Cohen and, in the area of axioms of infinity, of the Tarski school and of Azriel Levy.

3. Ackermann’s set theory

Ackermann 5] formulated a distinctive axiomatic theory of sets and classes, and this theory quickly came under
the scrutiny of Levy whosextanded analysis did a great deal to bring itithe foldof the standard ZBxiomatization.
Much of the analysis was already present in Levy’s dissertation and was subsequently extendedShdreltygvy—
Vaught [12]. Godel wrote to Bernays in a letter of 30 September 1958dgh 71, 155]): “Of the results announced
in the introduction to Levy’s dissertation, the most interesting seems to me to be that on Ackermann’s system of set
theory. That really looks very surprising”.

Ackermain’s theory A is a first-order theory that can be cast as follows: There is one binary redafiom
membership and one constawt the objects of the theory are to be referred to as classes, and membéraof
sets. The axioms of A aredtuniversal closures of:

(1) ExtensionalityVz(ze x <> ze€y) — X =Y.

(2) Comprehension: For each formufanot invdving t, 3tVz(zet «— ze V A ¢).

(3) Heredityx e VA(texVvtCx)—teV.

(4) Ackermann’s Schema: For each formujain free variablesxy, ..., Xy, z and having no occurrence &f,
Xt, ..., Xn € VAVZ(Y - ze V) — Jt e VVz(zet < ).

This last, a comprehension schema for sets, is characteristic of Ackermann’s system. It forestalls Russell's Parado»
and its motivation was to allow set formation through preigsiindependent of the whole extension of the set concept
and thus to be considered sufficiently definite and delimited.

Ackermann 5] himsdf argued that every axiom of ZF, when relativized\¥g can be proved in A. However,
Levy [5] found a mistake in Ackermann’s proof of the ReplacenSehema, and whether Replacement can be derived
from Ackermann’s Schema would remain an issue for some.tifaward a closer correlation with ZF, Levy came to
the idea of verking with

A*: A together with the Axiom of Foundation relativized¥o
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As for ZF, Foundation focuses the sets with a stratification into a cumulative hierarchy.%]eshojved hat,leaving

aside the question of Replacement,éstablishes substantial reflection principles. On the other hand, he also showed
through a sustained axiomatic analysis that for a sentenokset theory (so withouV) : If o relativized to V is
provable inA*, theno is provable in ZF. The thrust of this work was to show that Ackermann’s Schema can be
assimilated into ZF — this is presumably whabd&! found surprising — and that ZF and Aave almost the same
theoremdor sets.

Levy—Vaught 2] later observed by an inner model argument that, as for ZF and Foundation, if A is consistent,
then so is A. They then went on to confirm that the addition of Foundation to A was substantive; they showed
that Ackermann’s Schema is equivalent to agetfbn principle in the presence of the oth&r axioms, and that A
establishes the existence{&} and the power classéx(V), P(P(V)), and sdorth.

Years later, returning to the originadsie éout Replacement, William ReinhardtQ3 in his 1967 Berkeley
dissertation under the supervision of Vaught built on Levy—Vaui#itfo estallish for A* what Ackermann could
not establish for AEvery axiom oZF, when redtivized to V, can be proved i8*. Thus, A* and ZF @ have gadly
the same therems for sets. Reinhardt also developed a theory of natural models; diése ae connected to the
indescribable cardinals (s&ection 9 and led to @irther large cardinal postulatiofis.

4. Levy hierarchy and absoluteness

In his first work in a distinctive dirg@n from his dissertation, Levy irf], and much later in full expositior2g],
formulated the now standard hierarchy of first-order formulas of the language of set theory. He showed thal
the hierarchy provides the scaffolding for an efficacious analysis of logical complexity, getting to a substantial
absoluteness result that cast reflection in a new light.

For formulding his hierarchy Levy struck on the key idea of discountimgindedquantifiers, those that can be
rendered a¥v € w or Jv € w, an idea pdraps novel at the time in set theory but now subsumed into its modern
sensibilities. There was an anteaad in the discounting of the bounded numerical quantifiérs< n and3k < n
in Stephen Kleene's8f] formulation of the arithmetical hierarchy over theaursive predicates, but the motivations
were rather different, and Levy had to make aaeptual leap because oRlarbitrariness of sets.

In brief, a formula of set theory i85y and Il in the Lewy hierarchy if its only quantifiers are bounded. Recursively,

a formda is Y41 if it is of the form Jv1 ... Juke Whereg is I, and Il if it is of the form Vvy . .. Yukp where

@ is 2. The chssification of definable concepts in this hierarchy depends on the governing theory. For a set theon
T, afamulag is X iff for someX, formulag’, T + ¢ < ¢’; and sinilarly for 17 . X% and I17F formulas are
equivalent to formulas with blocks of like quantifiers contracted into one through applications of the Pairing Axiom.
Also, bounded quantification does not add to complexity in Zkz i§ 547 (respectively[77F), thenso is3v € we

andvv € wg. This depends on Replacement to “push” the boundedtifieas to the right and is a crucial point about

the Levy hierarchy. Finally, thaY?oT formulas are wide-ranging yet absolute for transitive models of weak set theories
T has become a basic feature of the semantic analysis of set theory.

Levy [6] pointed out that his hierarchy is proper in ZF, i.e. there are formuldgih— £%F and in 227 — 1127
for everyn > 0, and that ZF establishes the consistency, for any partioutarZermelo set theory plus Replacement
restricted toX}, formulas. Levy P5,28] worked out for eaclm > 0 a X, (respectively,lI,) saisfaction formula for
the X, (respectively,/l;) formulas and thereby got careful hieshy results. The antecedent was Lﬁ,% universal
predicate for theE,? predicates in the Kleene arithtiwal hierarchy, built directly on the normal forms of recursive
predicates. Levy laid out satisfaction sequenada Tarski level-bylevel, once again drawing metamathematical
methods into set theory.

The main advance of Levy6] was a now wé-known and basic absoluteness result. Shoenfiéj[ had
established an absoluteness result seminal for modern descriptive set theory; he showed that, as we now say, ev
):% set of eals isw1-Suslin in a constructible way, and concluded in particular that every (Iight@%‘;s}at of ratural
numbers is inL. As detiled in [28] Levy wove in the $ioenfield idea to establish in ZF together with the Axiom of
Dependent Choices (DC) that any sentence (without parametgiis)his hierarchyif holding inV, alsoholds inL.

More formally, we have th&hoenfield—Levy Absoluteness Lemma

4 See Kaamori B3, Sedion 23].
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For anyX; senences, ZF+DC + o < ot.

Levy readily concluded that an¥; or II; theorem of ZF+ V = L is already a theorem of ZF DC, so that any
uses of e.g. GCH in a proof of such a sentence can be eliminated. Gleagt{ially pointed out thdt can be replaced
by a countabld., fixed for all o, so that any¥; sentence is absolute for every transitMe 2> L),.5 Levy’s proof,
starting with a¥); senenceo, first appealed to DC to reflect down from the universe to a countable transitive model
of o. He then got a countable, modelingo by applying Shoenfield’s main idea of relying on the absoluteness of
well-foundedness, i.e. the equivalence of no infinite descending chains and the existence of a ranking. One can viev
the Shoenfield and Levy absoluteness results as two sidlee sdme cai, one in the context of descriptive set theory
and the other in the context of general set theory, with either one readily leading to the other.

The Shoenfield—Levy Absolutenessrhma can be seen as an effective refinement of the ZF Reflection Principle
that reflects a restricted sentence down to some countghland as seh it would find wide use in effective contexts
like admissible set theory. Even just Levy’s initial reflectidown, in effect into the domai of hereditarily countable
sets, vould become basic to admissible set theory ad #hey Absoluteness Principlen his book on admissible set
theory Bawise [47, 77] wrote: “One of the main features of this book (at least from our point of view) is the systematic
use of the Levy Absoluteness Principle to simplify results by reducing them to the countable case”.

5. Independence with urelements

From the begining Levy had a steady interest in the independence of choice principles and in the pre-Cohen
era established penetrating results based on the Fraenkel-Mostowski method. To establish the independence of A
Fraenkel had come to the fecund idea of starting withaments, objects without members yet distinct from each
other; building a model of set theory by closing off undet-theoretic operations; areploiting automorphisms
of the model induced by permutations of the urelements. FraeBfgir{ one construction statl with urelements
A = {an | n € w} and considered a generated model in which for anyk dbkere is a finites £ A with the following
property:x is fixed by any audmorphism of the model induced by a permutationAathat fixes each member of
and at most interchanges pairs within the céds,, aon+1} for n € w. Therecan then be no choice function for the
countable set of pairffaon, agnt+1} | N € w} in the model, sine for anypurported such function one can take some
agn, agn1 Not in its support and apply a permutation interchanging them.

Andrzej Mostowski §7] developed Fraenkel's constructions by imposing algebraic initiatives. First, the set of
urelements can be structured e.g. with an ordering; second, a model is built based on invariance with respect to
specifiedgroup of permutations, group in the algebraic sense with respect to composition; andubpipdrtsof sets
are closely analyzed, a support of a set to be a set oémehts such that if a perrtation fixes each, the induced
automorphism also fixes the set. Mostowski in particular established that there is a model in which AC fails but the
Ordering Principle(OP) holds, where:

(OP) Every set can be linearly ordered.

He began with a countable set of urelements ordered in the ordertype of the rationals; built a model based on the
group of order-preserving permutations; established that every setddsasst finite support; and showed by these
means that the set of urelements cannot be well-orderetig@hodel itself has a class linear ordering. Levy’s initial
work [2,3,7] in this diredion was directly based on dtowski's model for OP.

Coming into his own, Levy16] constructed a model in whichholds for every natural numbaryet C_y, fails,
where

(Co) Every set consisting of sets of cardinalityx has a choice function

(C<x) Every set consisting of sets of cardinality « has a choice function
and moreover théxiom of Multiple ChoicéMC) holds, where

(MC) For any sek there is a functiorf onx such that for any non-empty € x,

f (y) is anon-empty finite subset of.

3 In modern termsy can be taken to be the least stable ordinal, wiesestable iff Ly <7 L, i.e.Lg andL sdisfy the same¥y formulas with
parameters front 5.
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Levy began with a countable set of urelemeAtpartitioned as_j, ., Pk, wherePx = {a'l‘, cee, a‘gk} with px thekth
prime. Letry be that permutation oA fixing everymember ofA — P and sub thatm((aik) = aikJrl forl<i < px

andn(a‘gk) = a'l‘. Levy then bok the group of permutations generated bythend generated a model based on finite
supports. As in the Fraenkel model described above, thigédtk € w} does not have a choice function sox fails.

That MC holds Levy affirmed with an argument also applicable to the Fraenkel model. Finally, the specifics of Levy’s
model came into play when he showed with algebraic arguments about cyclic permutationg tiedd<Cfor every
natural numben. That OP implies C_y, is simple to see, so that OP must fail in Levy’s model. Hansdlili [88]

built another model in which Cy, holds yet OP fails.

Notably, it was later observed that in ZF, MC actually implies AChus, Levy’s work shows that having
urelements can separate these principles. L&y gubsequently applied hid§] model in a considerable analysis
of some graph-theoretic propositiossidied by Mycielski. Also, Levy 26] devebped transfinite versions of his
algebraic methods and argued e.g. that @oes not imply ¢ for limit alephsk.” However, this seems to be the
single instance when Levy was proved wrong, but even the error stimulated fesults.

Levy [22] estaliished ndependence results for various choice principles indexed by ategjghislech 81, 119ff)):

(DCy) Suppose thak is a set and a binary elation such that for every < « ands.a — X there is ay € x
satisfyings r y. Then here is a functiorf : k — x suchthat f |« r f () for everya < «.
(AC,) Every setx with |x| = « has a choice function.
(W,) Every setx is comparable with, i.e.|X| < k ork < |X]|.

With DC, Levy generalized the Axiom of Dependent Choices, which isP®V, generalizes the proposition that
every infinite set has a countable subset, which '@WDCK implies both AG and W,. Levy wasexpanding on work
of Mostowski [98], who showed that there is a model satisfyingCyx, + DCy, (and, as notied later—~Wy, ).

After drawing implications amng these principles for various, Levy estabshed severalridependences. He
constructed a basic model by starting withurelements, considering all permutations, and working with supports
of cardinality < . For a singular cardinal, taking = ®,, as a typicality one getssACy, + DCy, + V& <
Ry (W) + —|wal. For a siccessor cardinal, taking= X1 one gets:

Vi (AC,) + DCy, + =Wy, (and so—-DCy,).

In particular, Well-ordered Choicé« (AC, ) does not imply D, . Jensen§Z] later established the surprising result
Vi (AC,) implies DGy, that Wél-ordered Choice actually implies Dependent Choices.
Levy constructed an interesting, second model, assuming=2%; and starting with a set of urelements ordered
in the ardertype of the reals. He then used the group of order-preserving permutations and supports generated by tl
“Dedekind cuts"(—oo, r) to get:

Vi (AC,) + ﬁDCxl + le + ﬁWNZ-

Thus, DG, and W, were separated.

Already in the work on conditional independence results via relative constructibility there was an air of anticipation
about possible independences from ZF. This became giddain the work on choice principles by Fraenkel-
Mostowski methods with, e.g. Levg®, 145] writing: “Even the independence of the axiom of choice itself is still an
open problem for systems of set theory which do not admit urelements or non-founded sets. Thus we can hope, for tt
time being, to prove the above mténed independence results only for a set theory which admits either urelements
or non-founded sets”. Of course, independence with resped twas what was really wanted, and this would come
about in a dramatic turn of events.

6see ach B1, 133]; the observation was first made by David Pincus in his 1969dfddissertation. Working in the post-Cohen era, Pincus’s
resuts there (cf. Pincus101]) also showed how totfansfer” Levy’s result to get the consistency relative to ZF gft@lds for every natural
numbem and Cy,, fails.

7 Levy [26] was a summary of Fraenkel-Mostowski methods given at a 1963 symposium; in that summary (p. 225) Levy pointed out the open
problem of whether 2m = mfor all infinite cardinalsmimplies AC, and eventually kistident Gershon Sageel(J4] estallished that it does not.

8 paul Howard T9) later established that in every Fraenkel-Mostowski modelyCalready implies “Go", i.e. that every set consisting of
well-orderable sets has &aice function. Pincuslp2 and Sgeev [L04] independently established the ZF independencesgff@m C_y.

9Actudly, Levy [22] worked with a more involved proposition (k), which has the property that Wis equivalent to Kk) together with
VA < k(W)y).
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6. ZF independence

Paul @hen p2,53) in 1963 established the independence of fé@n ZF and the independence of the CH from
ZFC. That is, complementing @glél's relative constency results withL Cohen established that Con(ZF) implies
Con(ZF + —AC) and that Con(ZFC) implies C6BFC + —CH). These were, of course, the inaugural examples of
forcing, aremarkably general and flexible method, with stramigitive underpinnings, for extending models of set
theory. If Gddel's construction of had launched set theory as a distinctieddiof mathematics, then Cohen’s method
of forcing began its transformation into a modern, sophisticated one. Cohen’s particular achievement lies in devising
a mncrete procedure for extending well-founded models tfsory in a minimal fashion to well-founded models of
sd theory with new properties but without altering the io@ls. Set theory had undergone a sea-change, and beyond
simply how he subject was enriched, it is difficult to convey the strangeness®f it.

Cohen circulaté a prepint [51] in April and soon started to give talks on his results. Already evident in the
preprint were two features of forcing that resonated with Levy’s work: Cohen relied on relative constructibility to
extend a mdel of V = L to one satisfying GCH- V # L, and Cohen used in effeet refection argument to
show that his beginning with a countablemodd of ZF was formally unnecessary for getting consistency results
relative to ZF. Levy first heard the details of Cohen’s results at a July model theory conference at Berkeley, and later
that summer fully assimilated forcing working with Solomon Feferman. Feferman had been extensively consulted by
Cohen at Stanford when he was coming up with forcing, and FeferB&b7 was the first #ier Cohen ¢ estalish
results by forcing. In quick succession several abstracts appearedntibes of the Aerican Mathematical Society
Levy [18], Feferman—Levy19], Levy [20], and Levy [21], all received September 3, 1963 and soon after, Halpern—
Levy [23], which was actually noted as received August 29, 1963. With this work Levy became the first after Cohen
himself to exploit forcing in a sustained fashion to establish a series of significant results. We attend to the AC
independence results through the rest of this sectiangtiers, on definability, were seeds for papers which are
discussed in the next section. Throughout, we assume faityileith forcing and give only scant descriptions of the
models.

Cohen had shown how to “collapse” a cardinal, i.e. adjigereric bijection to a smaller ordinal. Feferman—
Levy [19 startedwith a model of ZFC+ GCH and adjoined separageneric bijections betweety, andRg for every
natural numben. In the resulting generated model the form®y, becomes the new; sothat it is singular, and
moreover the reals are a countable union of countable setg, #@s fails, and it is seen in a drastic way how that
principle is necessary to develop Borel and Lebesgue measure. In Cohen’s own expb5jtigt8] the Feferman—

Levy model was presented in some detail.

James Halperrip,76] in his 1962 Berkeley dissertatidhhad shown that thBoolean Prime Ideal Theore(BP!I)

holds in the Mostowskiq7] model for OP, where:

(BPI) Every Boolean algebra has a prime ideal.

The significance here is that BPI had becomeaafahoice principle, one that implies OP. Lew/[ had cealt with
BPI, observing that it fails in hisljg] model. Halpern’s argument required a new sophistication, with a Ramsey-type
partition theorem being brought into play.

When Cohe’s work appeared, Halpern—Levg3] showed hat in the original Cohen model for the independence
of the AC, OP and in fact thKinna—Wagner Selection Princip{(&W) holds, where:

(KW) For any sei there is a functiorf such tlat whenevey € x has at least
two elementsf (y) is anon-empty proper subset gf

Kinna—Wagnerg5] had faomulated KW, a weak form of MC which they showed equivalent to: For any shere

is an odinal @ and a bijection betweer and a subset dP(«). KW implies OP, and though Halpern—Lev33
emphasized the new independence of AC from OP, therdveo observations about their getting KW which are
worth mentioning: As noted earlier, the stronger MC implies AC in ZF. Also, KW was effectively unattainable through
Fraenkel-Mostowski methods, as Mostows$k[hadobserved that KW fails in every Fraenkel-Mostowski model in
which the urelements anot well-orderable.

10gee Moore 96] on theorigins of forcing and for what follows.
11 Halpern [76] wrote that his dissertation was written under the “supermisi Levy; Levy visited Berkeley in the academic years 1959-1961.
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Cohen’s original model for the independence of AC waes rsult of adjoining countably many Cohen reals and
the setx consisting of these, so thathas no well-ordering in the resulting model. Halpern—Le34] in effect
argued in the Cohen model with the Cohen reals acting like urelements. Cofyed0] moreover acknowledged
the similarities between his AC independence result and the previous Fraenkel-Mostowski models. In any case, tt
revelatory Halpern—Levy work initiated the process of “transferring” consistency results with Fraenkel-Mostowski
models to ZF consistency results via forcing by correlating urelements with generic sets.

For the BPI, there as no routine transfer of the Halpeit€] independence of AC from BPI. Levy saw the need for
a drengthened, “tree” Ramsey-type partition theorem to effect a ZF independence result. HafjpetiHZ 7] then
duly established this result. Finally, Halpern—Le®p| by 1966 had established that in Cohen’s original model, BPI
holds. This Halpern—&tichli-Levy collaboration established a new level of sophistication in effecting a transfer from
the Fraenkel-Mostowski coent to the @hen one. Work at this level would soon be pursued by Jech, Sochor, Pincus,
and others, and the Halpernadichli partition theorem would lead to an important extension by Richard L&8%r [
one also applied to forcing.

7. ZF definability

The abstracts Levy1[8,20,21] had to do with formal definability, and the papers Le?y,B4] provided extended
accounts in a context of appropriate generality for the praafvy probed the limits of ZFC definability, establishing
consistency results about definable sets of reals and well-orderings and in descriptive set theory.

Heraldedby Levy [18], Levy [27] estallished the relative consistency of ZFREGCH together with there being a
non-constructible real yet every definable set is constructible. Here, “definable” meant the broad notion of hereditarily
ordinal-definable. A set is ordinal-definable iffthere is aformulay (vo, .. ., vn) in the free variables as displayed
and ordinalsyy, . .., oy suchthatx = {y | ¥[y, a1, .. ., an]}. A setx is hereditarily ordinal definable ifthe transitive
closure of{x} is ordinal definable. The ordinal-definable sets were introduceddle@@67] as mentbned inSection 2
and their theory was developed by John Midnd Dana Scott by 1964 (cf. Myhill-Scott () with explicit appeal
to the ZF Reflection Principle, with which one can replace the informal satisfactior=0fy | ¥[y, a1, ..., an]} by:
for someV, and ordinalsrs, ..., an € Vg, X = {y € Vy | xpVa[y, a1, ..., an]}. OD denotes the (thus definable) class
of ordind-definable sets, and HOD, the class ofdwitarily ordinal-definable sets.

Fefeman [b6,57] had shown that in 6hen’s model which is the result of starting from a modeVot L and
adjoining a Cohen real there is no set-theoretically definable well-ordering of the reals, i.e. no formula in two free
variables that dfines such a well-ordering. Levg2T] showed hat the model actually satisfiéé % L = HOD, so
that in particular there is no definable well-ordering of the reals even if ground model parameters are allowed in the
definition. The crux is that the partial order of conditions for adjoining a Cohen reahimgeneouis the sense that
for any pair p, g of conditions there is an automorphigof the partial order such that ande(q) are compatible.
Hence, for a formula (v, ..., vy) of the forcing language and sets, ..., X, in the ground model, any condition
forcesp(Xy, ..., Xn) exadly when all con@ions do. That HOD= L follows by induction on rank. Levy’s appeal to
homogeneity and automorphism, related to his earlier work with urelements and realigned by the work of Cohen ani
Feferman, would become a basic motif that connects forcing with definability.

In an eventual sequel, Lev@4] workedout his main delimitative results. He first considered Cohen’s model which
is the result of starting with a model & = L and coIIapsingolL, i.e. adpining a generic bijection betweenand
a)'l‘. As befoe one hasv # L = HOD, but this now easily implies thavery OD well-ordering of reals is at most
countable This confirmed an announcement in Leiy].

With his next theorem Levy B4] provided an important delimitation for descriptive set theory, confirming an
announcement in Levy2[). Classical descriptive set theory, in its probing into the first levels of the projective
hierarchy, had pushed against the limits of axiomatic set thorgvy presumably had assimilated this work in
large partfrom John Addison at Berkeley (cf. Addiso#ad]), but in any case Levy quickly saw how to apply forcing
to illuminate the central issue of uniformization. For binary relatiérend B,

Ais uniformizedby B iff
BC A A VXAEY(X,y) e A — 3lYy((x,y) € B)).

1256 Kaamori B3, Sections 12—14] for the background and basic concepts of descriptive set theory.
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3! abbreviates the formalizable “there exists exactly one”, and so this asserfs thatbe refined to a functioB.
That every relation can be uniformized is a restatement of the Axiom of Choice. A high point of classical descriptive
set th@ry was the result of Motokiti Konal[87] that, in terms of theprojective hierarchy, everM% relaion on reals
can uniformized by d‘[% relaion. This implied via projection that every% relation on reals can be uniformized
by a):% relation, and by looking at complements that not evHé/relation on reals can be uniformized byl'!aizl
relation. Whether every[% relation on reals can be uniformized by a aijve relation had remained open. Bringing
in axiomatics Addison46] estallished hat assuming/ = L, for anyn > 2 every):% relation on reals can be
uniformized by ax} relation, so that in particular everfI3 relaion on reals, bein@3, can be uniformized by &3
relation. In contradistinction, Levy estabiiisd the relative consistency of there being[%on reals that cannot be
uniformized by any prective relation.

Levy considered Cohen’s model which is the result of starting with a modélef L and adjoining (a sequence
of) wlL Cohen reals. Taking the cue from ordinal-definability, say that ax Setreal-ordinal-definable iffthere is
a formulay (vo, . .., vn, vn+1) in the free variables displayed,\4, a realr € V,, andordinalsay, ...,an € V,
suchthatx = {y € V, | ¥Ve[y, a1, ..., an, r1}. That is, a eal parameter is to be allowed in the definition. Levy
considered the relatioA on reals defined by¢f,g) € Aiff g ¢ L[f]. This rehtion, formulated in terms of his
notion of relative constructibility, isl'[% by an elaboration of an argument in Addisatg]. Suppose now thaB is
a real-ordinal-definable relation on reals. By a definability argument the real paramietehe definition can be
taken to be one coding countably many of the Cohen reals. There is thersahthat (r, s) € A. If howewer there
were ans suchthat (r, s) € B, thens, like B, would be real-ordinal-defirtde with real parameter. But then, a
homogeneity argument shows tleat L[r]. Consequently, no real-ordinal-definable relation, and consequently no
projective relation, can uniformizA.

8. Levy collapse

The theory of large cardinals was revitalized by pivotal results in the early 1960s, and with Cohen'’s forcing large
cardinals would enter the mainstream of set theory by providing hypotheses and methods to analyze strong set
theoretic propositions. Levy’s earlier work on reflection pijhes had established a ceaitplace for Mahlo cardinals;
in the post-Cohen eflaevy made basic contributions to the fast growing theory of large cardinals.

In the last of the 1963 abstracts Le&/1], Levy announced a result that depended on what we now call the Levy
collapse. In general terms, for infinite regular cardinails «, Col(A, «) is the partial ordefor adjoining a«-sequence
of surjections. — « for @ < «. If « is inaccessible, then C@l, x) has thec-chan conditiont3; herce,x becomes
the successor™t of A in the generic extension. The forcing with Col«) is then called d.evy collapsef « to A™.

Already in the first flush of forcing LevyZ1,34] used the Levy collapse of an inaccessible cardinabjao establish
the relative consistency of:

(%) Every real-ordinal-definable well-ordering of reals is at most countable.

Forcingw; to be countable had led to the consistency of every OD well-ordering of reals being at most countable;
forcing everyx below an inaccessible to be countable provides enough closure to achielevy also onsidered
the proposition:

(%) Every real-ordinal definable set of reas dther countable or of cardinality™2.

The Levy collapse of an inaccessibledg entails CH so that«x*) is vacuous, but Levy showed that in any further
extenson where may Cohen reals adjoine@*) continues to hold, this already inherent in the early abstedgt [

In deploying an inaccessible cardinal Levy was a pioime¢aking the modern approach to large cardinals: They
are not novel hypotheses burdened by ontological commitment but are the repository of means for carrying out
mathematical arguments. Cohesb] 147] acknowledged this use of an inassble cardinal. As pointed out by
Levy [34, 131-2], either(x) or (xx) implies that thew; (of the universe) is an inaccessible cardinal in the sense
of L. So, Levy's work was party to the first instance of an important phenomenon in set theory, the derivation

13Actueily, that Col(A, «) has thec-chain condition only requires, by a so-called delta-system argumenty that implies thate <* < «. Full
inaccessibility is typically required in other parts of an argument using the Levy collapse.
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of equiconsistency results based on the clementary methods of forcing and inner mod&sAfter this heady
introduction the Levy collapse would become standard fare in the theory of large cardinals, the way to render a larg
cardinal accessible yet still with substantial propertiesstalgish the relative consistency of strong combinatorial
propositions low in the cumulative hierarchy.

Levy's model was used by Robert Solovay to establish a now famous relative consistency result. Solovay playe
a prominent role in the forging of forcing as a general method, and he above all in this period raised the level
of sophistication of set theory across its breadth from forcing to large cardinals. Already in the spring of 1964
Solovay [116117 exposed what standard of argument was possiliemshowing that if an inaccessible cardinal
is Levy collapsed tav;, every real-ordinal-definable set of reals is Lebesgue measuyahlkt proceeding to the
corresponding inner model HROD of the hereditarily real-ordinal-definable sets, that

HROD &= DC + “Every set of reals is Lebesgue measurable”

That this model satisfies Dependent Choices bolsters ittama fideone for mathematical analysis. Solovay thus
illuminated the classical measure problem of Henri Lebesgue with the modern technique of forcing. Solovay alsc
showed that the reals in this HROD model have several other substantial properties, one being the perfect set propert
Every set of reals is countable or else has a perfect subi$is. refined Levy’s result withixx) above, any perfect

set of reals having cardinality®®, and esthlished the equiconsistency of the perfect set property with the existence
of an inaccessible cardin&!.For quite some years, it was speculated that an inaccessible cardinal can be avoided for
getting all sets of reals to be Lebesgue measurable. However, in 1979 Steghedtalished hat DC+ “Every set

of reals is Lebesgue measurable” implies thais inaccessible ir., vindicating Solovay’s use of the Levy collapse

for theLebesgue measurability result.

Solovay [L17, 2] announced a joint result with Levy which eventually appeared in Levy—Sol®@yllevy and
Solovay built on the structure uncovered by Solovay in the Levy collapse model to establish a further “regularity”
property about sets of reals, being the union offarsequence of Borel sets. In the classical investigation of the
projective hierarchy, though the second Ie)ZéIseemed complicated, Sierski [114] hadestablished thaivery):%
set of reals ighe union ofRk1 Borel sets.Of course, if CH holds, then every set of reals is the uniotkpBorel
sets, namely the singletons of its members. It came to light with the emergence of Martin’s AxionCiHabgether
with the convers of the Serpiiski resit, that every union of; Borel sets ist1, is relatively consistent (Martin—
Solovay P3, Sedion 3]).

Considering arbitrary sets of reals, Levy and Solovay first noted with a simple construction via transfinite recursion
that ZFC+ —CH implies that there is a set ofals which is not the union of anyy Borel ses, and tha went on
to show that some substantial use of AC is necessary. As with Lévy)s Solovay [L17] had shown hat, with V;
the Levy collgpse model and/,; a further extension where many Cohen reals are adjoined, the propositions about
Lebesgue measurability and so forth for real-ordinal-definable sets that hwlddontinue to hold inV,, thereby
establishing the further relative consistency of having a large continuum. Levy—So88lappwed hat in any such
V>, everyreal-ordinal-definable set of reals is the uniorkgfBorel sets. Secifically, such a set of reals is the union
of Borel sets coded iy, and wth CH holding in Vi, there ae only X1 such Borel sts. Thus, Levy and Solovay
established the relative consistency of ZFC-CH + “Every real-ordinal-definlle sets of reals is the union 8f
Borel sets”. Passing to the inner HROnodel Levy and Solovay then established the relative consistency of DC
“Every well-ordering of reals is at most countable™Every set of reals is the union ¢f; Borel sets” In this way
the pioperty of being the union af; Borel sets was adjoined to the regularity properties of sets of reals illuminated
by the Levy collapse model.

9. Measurable and indescribable cardinals

In addition to their collaborative work on the Levy collapse model, L&A} fnd Solovay 115 independently es-
tablished a general result about large cardinals that would become much cited in connection with the Continuum Prok
lem. As is well-known, @del [68, 520] had speculated that large cardinal postulations might decide CH. He himself

14 566 Kaamori B3, 135ff].
15Solovay [L17, 45ff] wrote: “Our proof that every [real-oidal-definable] subset of [the reals] isuntable or contains a perfect subset is,

essentially, a slight refinement of the following result of LeS¢]f Every uncountable [real-ordinal-definia] subset of [the reals] has powdio?.
Compare Levy 34, 140ff].
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took CH to be false and made remarks amounting to the observation that those large cardinals consisteat with

cannot disprove CH. Addressing this issue, Levy—Solog28ghowed hat measurable cardinalsemain measurable

in “mild” forcing extensions, those via partial orders of cardinalityc. That his betokened what would become a

widely applied observation, that inaccessible large cardintgrtheir characteristic propées in mild forcing exten-

sions, is often regarded as springing from Levy—Solo#} fhough they themselves wrote that this was well-known

for many large cardinals. At the time there was a particular point in that Sbe® had diamatically established

that the existence of a meaabte cardinal contradict¢ = L, and Levy—Solovay 29 pointed out that measurable

cardinals, though loosened from the miags of constructibility, cannot decide CH and other issues like Suslin’s

Hypothesis. In years to come, the growing success of theryhof large cardinals led to more and more allusions to

“Godel’'s Program”. The Levy—Solovay result would be consistently cited as a watershed, if only to point to a delimita-

tion to be superseded by other, more subtle invocations of large cardinals in connection with the Continuum Problem.
Levy’s last major contribution to the theory of large cardinals dealt with natural extensions of his earlier reflection

principles (cf.Section 2 set in a ligher order context of/" and Z™ formulas*® William Hanf and Scott in their

abstract 78] considered higher-order reflection properties for struct{ivgse, R) wherex is a cardinal andR < V,

and thereby provided a hierarchical scheme for large cardinalQFather /7" or 2T,

k is Q-indescribable ifffor any R C V, andQ senenceyp
suchthat(V,, €, R) = ¢, there is
ana < k suchthat(Vy, €, RNV, E ¢.

Including R C V, sufices to bolster the concept to accommodgareral relational structures; ¥s is closed under
paring, the definition is equivalent to one wheReis replaced by any finite number of finitary relatiofsHanf—

Scott [78] observed that, with " the leastZ\"-indescribable cardinal arg" the least."-indescribable cardinal, for
m > 0: 7" < 7], and ifn > 0, thenz" is not £™-indescribable. They also pointed out that #fi¢-indescribable

cardinals are exactly the welglcompact cardinals and theneasurable cardinals ai‘éf-indescribable. This provided
probably the earliest proof that below a measurable cardinal there are many weakly compact cardinals1V¥gught [
subsequently pointed out that below a measurable cardinal there is caiifiradescribable for evern, n € w. The
evident onnection between Levy's earlier reflection principles and the indescribable cardinals had an interconnecting
node in the work of Bernay$p], who had extended Levy’s principles by positing, in effect, fiindescribability
for everyn € w of the dass of all ordinals.

Levy [36] carried out a systematic study of the sizes of indescribable cardinals, extending aspects of a combinatoria
study of large cardinals in Keisler—Tarsl84]. The starting point of Levy’s approach was that various large cardinal
properties are not only attributable to cardinals, but to their subsetX Eok andQ either /7" or 2",

X is Q-indescribable inc iff for anyR C V,, andQ senénceyp
suchthat(V,, €, R) &= ¢, thereis
ana € X suchthat(V,, €, RNV,) E ¢.

This leads to the considerationfoX C « | « — X isnot Q -indescribable i}, which wheng is Q-indescribable is
a (poper) filter, theQ-indescribable filter over.18
Using universal satisfaction formulas Levy showedttthese definable filters have a crucial propdfty:m, n > 0
and Q either/ZI\" or I, the Q-indescribable filter over is normal.Recall that a filter= over acardinalc is normal
iff it is closed under diagonal intersections, i.e. whené¥er| o < «} C F, {&§ <« | & € ma<g Xy} € F. The
previously known normal filters were the closed unbounded filters over regular uncountable cardinals and normal

16 Higher-order languages have typediahbles of every finite type (or order), quantificationfsthese, and beyond the atomic formulas specified
by the languageX € Y andX =Y for any typed variablexX andY. In the intended semantics, I is the domain of a structure, type 1 variables
play the usual role of first-order variables, type 2 variables range BY&), andgenerally, type + 1 varisbles range oveP' (D) whereP'
denotesd iterations of the power set operation. A formulalZ§" iff it starts with a block of universal quantifiers of type+ 1 variabes, followed
by a block of existential quantifiers of type + 1 variabks, and sdorth with at mostn blocks in all, followed afteward by a brmula containing
variables 6type at mosim + 1 andquantified variables of type at most A formula is X[ iff it starts instead with existential quantifiers. Of
course, formulas containing only type 1 variables barconstrued as the usual first-order formuldss classification of formulas is cumulative
because of the “at most”: any" or " formula is also/Z{ and % for anyr > m, orr = mands > n.

17 Hanf-Scott ¥8] formulated their concept for inaccessikl@nd withk in place ofV,, but the dference is inessential as tiecan codev, .
18 Levy himself called the mmbers of his filter weakly Q-enforceablat«, but we fdlow the formulation in Kanamorig3, Sedion 6].
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ultrafilters found over a measurable cardinal. Levy further establisheddhat« | « is P-indescribable it} is in

the Q-indescribable filter over, where: (a)P is I} and Q is Hnl+1; or (b)m > 1 andn > 0, Pis XM andQ is

I or (c)m > 1andn > 0, P is II}", andQ is Z". These vaous results showed in concert that, just as normal
ultrafilters over a measurable cardinabpide intinsic senses to how large meaahle cardinals are as had been
shown in Keisér-Tarski B4], e.g. normal ultrafilters are closed under Mahlo’s Operation, so too do indescribable
cardinals have inherent transcendence over smaller cardapatsfically those in the indescribable hierarchy itself.
The technique of ascribing large cardinal properties of cardinals also to their subsets has become an important part
large cardnal theory and has been used in particular by James Baumgat8¢o [estaltish important hierarchical
results about tha-sultle andn-ineffable cardinals.

10. Capstones

In the later 1960s, Levy capped his investigations in various directions with papers reflective of previous theme:
and techniques but also distinctive in how they resolve basic issues in axiomatics.

Levy’s last result applying the Fraenkel-Mostowski method concerned Cantor’s very notion of cardinality. The
problem of cardinal definability in set theory is how to assign to everyxsetset|x| such that for everyx, y we
have|x| = |y| iff x ~ vy, i.e. there is a ipection betweerx andy. Of course, with AC the initial (von Neumann)
ordinals construed as Cantor’s alephs serve as |sticBut even without AC, one can use the “trick” of ScadtOf to
formulate|x| as the set of sets of least rank bijective with_evy [32], in a 1966 conference proceedings, established
that relative to ZF, Z Foundatiort “There is no set-theoretic termsuch that for everyx, y we haver (x) = 7(y)
iff x &~ y”is consistent in several strong sen$&#n this distinctive setting withoufoundation the interplay between
urelement constructions and forcing is not pertinent. dtbeen known for over a decade that the Fraenkel-Mostowski
method with urelements can be recast, following Speckeg[and Mendelson 94], in ZF — Foundation with sets
a = {a} in the role of urelements. Levy ultimately relied on this recasting, but worked directly with urelements
and automorphisms. In one model he usedurelements and generated amér model in which they become a
proper class; in another, he proceeded simyjilatit started from Mostowski’s model for GR.With the appearance
of the forcing method, one might have thought that Fraenkel-Mostowski methods would be superseded, but in th
years to come, there would be a continuing cottage industry investigating Fraenkel-Mostowski models as intrinsically
interesting constructions in their own right.

Levy and Georg Kreisel in their3[] provided a detailed exposition that established a central place for proof-
theoretic reflection principles in the comparative investigation of theories. Levy brought together his work on the
transcendence of theories through set-theoretic reflectianiptes, and the inimitable Kreisel, whose hand is evident
in the sections with the many italicizations, brought to beaititiatives in the proof theorgf arithmetic and analysis.
The main unifying motif was the proof-theoretimiform Reflection Principle

(URP(S)) vpvn(Prows(p, s('g!, n)) — ¢(n)).
Intended for theories sufficient to carry oub@l numbering, Pray(x, y) is to assert that is the Gidel number of a
proof in the theory S of the formula with@@el numbery; s('¢!, n) is the Gidel number of the sentence obtained by
substituting the numeral of the natural numbéor the one free variable af; and findly, the uniformity has to do
with having the parametrization with the numerical variable&)RR(S) is an assertion of soundness; instantiating to a
¢ refutable in S, URP(S) implies that something is not provable and hence the formal consistency of S. As Kreisel-
Levy [30, Setion 1] pointed out, URP(S) actually subsumes both the assertiarainsistency for S and a general
form of induction.

Kreisel and Levy established a strong, general result about how URP(S) leads to transcendence over S in terms
quantifier canplexty: If U is a theory in the same language &and URP(S)is a theorem of U, then br no set)’
consisting of sentences of bounded quantifier complexity are the theoréinzrafable inS + Y. For set tkeories,

19 This was also done, in a strong sense, by Robert Ga@iitt [

20pincus [LOZ] later addressed the issue of cardiredreentativesi.e. having a setheoretic ternr such that for every x, y we haver (x) = t(y)
iff X ~ y, and maeover |x| ~ x. Trangerring from Mostowski’'s model foOP Pincus showed thatlaive to ZF it is consistent to have ZF
“There are no cardinal representatives”. Rather surprisingly, he atsweshbyan iterated forcing argument that relative to ZF it is consistent to
have ZF+ —AC + “There are cardinal representatives”.

2lgee Howard—RubingQ].
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Yn in the Lewy hierarchy typifies a set of formulas of bounded complexity. LesiyHad already announced a result
that implied that formny natural number, no mnsistent extension of ZF can be obtained by adjoining to Zermelo set
theory any set of., senteges. As noted, various results from Levy’s previous wet@,[L1], which hadthe &ove

form except that the’ was a firite set of sentences, couldw be stragthened. The general result was moreover
applicable to Peano Arithmetic, Second-Order Arithmetinglysis), and the like to show that these theories cannot
be axiomatized over weaker theories using any set of axioms of bounded quantifier complexity.

In the last sectionXKreisel-Levy BQ] estallished direct conneatins between URP(S) andlemas of transfinite
induction. By the classical work of Gerhard Gentzéd][ Peano Arittmetic (PA) establishes the coded schema
of transfinite induction up to any particular ordinal less tlanthe kast ordinakx suchthata®” = « in ordinal
arithmetic, yet PA does not establish the schema of transfinite induction &pitelf. Kreisel and Levy showed
that over PA, URP(PA) is equivalent to transfinite induction uggpand that over Second-Order Arithmetiq,Z
URP(Z,) is equivalent to transfinite induction up tg. These reults provided eleant characterizations that connect
two formulations of the consistency of well-known theories.

Levy [25,37] invedigated the logical complexity, in terms of his héechy of formulas, of basic statements of set
theory like AC, GCH, and/ = L. His resit on AC typifies the articulation and argumentation, made possible by
forcing. The Axiom of Choice is evidentlif,. Levy shaved that AC is not X in the followingstrong sensefor any
Y» senenceo, if ZF+ o — AC, thenZF ~ —o. The fdlowing is the argument in brief:

Suppose that is Yo, sayaxVye(X, y) with ¢ beingXp, and ZF— ¢ — AC. The fdlowing can then be formalized
to establish ZF- —o: Assume to the contrary that there is axgeguchthatvVye(xo, y). Let M be a transitive structure
with xo € M and modeling enough of set theory to construct a transitive forcing exteNsiowhich AC fails and the
ZF axioms that went into a proof af — AC hold. Sincevyg(Xp, ¥) holds (in the universe) andis X, Vy¢(Xo, ¥)
and hence holds inN. But then, his contradicts having that ZF proof f— AC.

This argument not only featured forcing as a model-theoretic method within a proof but also forcing over
uncountable structures, for the above could be arbitrary. Modern set theory would come to incorporate many
such tailored uses of forcing, and Levy’s application to definability was a remarkably early instance.

Levy [33] provided an analysis af; staements of set theory in a different direction, one that addresses effectivity
in terms of witnessing terms. Suppose tRaByx (X, y) is Iz, with x (X, y) being Xy, and recall that t¢x) denotes
the transitiveclosure ofx. Levy established that if ZF Yx3yx (X, y), then here is a setheordic termz (u) suchthat

ZF F Vx(3finite u C tc(x) A x (X, T(U))).

Note that one cannot do much better for the AC assertigBy(x = ¥ v y € x). Levy also estdished hat if ZFC
F vx3yx (X, y), then here is a setheordic termt (u) suchthat

ZF = Vxvr (r is awell-odering of tdx) — x (X, ©(r))).

In his final aticle [40] Levy came full circle back to the bedrock dofie main compreheion schemas of
ZF to investigate their forms anew. He began with the ZF axioms as most often given, as bi-conditionals with
e.g.vuayvx(x € y «— x C u) for the Power Set Axiom. He first addressed the issue of the parameters allowed in
the Separation and Regdement schemas. Leg 8enote the Separation schema restricted to formutaswith one
free variablex, Yuayvx(x € y <— X € U A ¢(X)). By a clewer coding argument Levy established the positive result
that, over a weak subtheory (Extensionality, Pairs, Union, and a weak form of PowerSgipli®s full Separation.

He established an analogous result for Repment. Hence, those universal quantifications of parameters, distracting
when learning or teaching set thepase not formally necessary after all.

Levy’'s main, negative results addressed another issue of self-refinement in axiomatics and showed that his
aforementioned positive result is reasonably sharp. In thegmce of Separation the generative axioms are sometimes
given parsimoniously in a weaker, conditional form, &g3yvx(x € u — X € y) for the Paver Set Axiom. With
his positive reult, the sefl consisting of the usual ZF axioms, buitlvthe Separationchema replaced b$ and
the Replacement schema rapdd by the conditional version, is an axiomation of ZF. Levy established that full
Separationdnot a consequence ofif the Power Set axiom is weakened to the conditional form. He also established
the analogous results for the conditional versiblJnion and the conditional version of Pairing.

Levy established these delimitative results by, ireeff taking Cohen’s original AC independence model and
building appropriatesubmodels. In this he appealed to the Halpern—L&%)york on the Cohen model, the work that
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effected the first substantial transfer from the Fraenkel-Mostowski context to the Cohen context. Levy’s sophisticate
results on the independence of Separation are a fitting coda, one that resonates with the work of F5&emked [

long ago and far away, steeped in the Hilbertian axiomatic tradition, established the independence of Separation fro
Zermelo’s other axioms.

11. Envoi

Looking back over Levy’s researches in set theory, we see a steady and in fact increasing exploitation of model

theoretic reflection and the method ofdong to establish substantial resudtisout definability and axiomatizations.

Levy often saw and developed potentialities after d@tiahground-breaking move made by others, and had a way

of establishing a full context with systematic, magisteresults. With his work set theory reached a new plateau in
the direction of understanding the scope and limits of forarptessibility and derivability. Wh this assimilated, set
theory would move forward over a broad range from the analysis of fine structure to a wealth of objectifications and
principles provided by large cardinal hypotheses, becoming infused with more and more combinatorial arguments &
well as sophisticated techniques involving forcing and inner models.

Around 1970 Levy turned to the writing of books, works that would establish a broad standard of understanding
about set theory. The clas$toundations of Set Theoby Fraenkel and Bar-Hillelg0] had become outdated because
of the many advances made in the 1960s, and so a “second revised edition” Fraenkel-Bar-HilleBd avas|
brought out. Fraenkel was by then deceased, and Levy irtéaded out an almost complete rewriting of the second
chapter. One section was gighed separately as Levy]]. Throughout the discussion of the axiomatic foundations
one sees how the subject has become more elucidated by Levy’s own work.

Levy’s distinctive bookBasic Set Theorf42], largely written when he was a visiting professor at Yale University
1971-1972 and at the University of California at Los Angeles 1976-1977, provided a systematic presentation o
the broad swath of set theory between elementary beggsrand advanced topics. Levy deliberately set out the
extent of set theory before the use of model-theoretic methods and forcing, working out the extensive combinatoria
development in a classical setting as rigorized by axtmrfaundations. In a way, it is quite remarkable that Levy
forestalled the inclusion of most of his own work by insisting on this middle way. On the other hand, the book is a
singular achievement of detailed exposition about what there etitheory up to the use of the satisfaction predicate.
The account of trees is typical, on the one hand a bit igiogatic in dealing with generalities but on the other hand
broaching an interéisig concept, that of ¢hin tree: Trees that have been studied on uncountable cardinals
usually have the property that theith level has cardinality2 but Levy raised the issue about having cardinality at
most|«|. Throughout the book, the specialist is treated to a reckoning of the historical sources for the concepts. Anc
the studat finds full and patient treatment of topics on which other texts might leave one queasy, like the set theorist’s
view of the reals. Descriptive set theorists from early on converted from the traditional construal of the real numbers
as the continuum to the function sp&te of functionsiw — w, and Levy explained in extensive detail the topological
and measure-theoretic connectionsoagthe various “real” spaces. What isrhaps most notable is the appendix to
the book, where at last Levy’s own rigorous and axiomatic apgin to set theory casts a telling light. There, he allayed
another source of queasiness in accounts of set theory by showing, in some of the most thoroughgoing arguments
the book, that introduced class terms can be formally eliminated in regression back to the primitive language of se
theory.

In the development of a mathematidald, a modest turn of events sotimes has an unforeseen effect and
achieves a folkloric distinction. Shelah had considerably developed his general congeptesfforcingby theearly
1980s, a concept amenable to iteration schemes and having remarkably wide applications. Shelah lectured at t
Hebrew University orproper forcing, and Levy took systematic notes. These notes, refined and edited, eventually
became the bulk of the first three chapters of the monograph SHé)ahand of the subsequent book Sheldlo§
as therein acknowledged. For a generatioreptiseorists the Levy exposition was the eritrfo poper forcing; once
drawn in, the return of Shelah’s inimitable hand in subsequent chapters led to new realizations.

In later years, Levy wate two texts 43,44] in Hebrew on mathematical logic. The writing of books is an important
venture for the advancement of mathematical fieldsl aone who has written a book knows well, it is a difficult
and time-consuming undertaking, especially when op&@sto codify mathematical knowledge over a broad range
and to make its many facets avdila to succeeding generations.
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Turning at last to his teaching and administrative workhet Hebrew University, there is a remarkable legacy of
renowned students, as listed below. Levy himself has served as the Dean of the Faculty of Science and the Chairman
Institute of Mathematics and Computer Science, anmthg postions both in the university and with the academic
union. And, as mentioned before, his student Menachem Magidor is currently president of the university.

Soon after his 60th birthday, a 1996 issue of &rehive for Mathematical Logi¢vol. 35, no. 5-6), was dedicated
to Levy, with the following words in the dedication (p. 279):

Azriel, besides being the important mathematiciand) is abo aunique human being. His friends know him

as the epitome of wisdom. He can always be approached for good advice, which is given without any personal
interest, but purely out of a desire to help. His contribution to the public are innumerable. In any capacity he has
held—University administrator, in the educational system in Israel, as a member of usual important editorial
boards—you could always rely on his common sense, wisdom and devotion. Azriel is a symbol of intellectual
honesty and integrity. His former students will alwagsnember him as a devoted and inspiring teacher.

To this we add the words of Ecclesiastes 9:7-9 (King James Version):

Go thy way, eat thy bread with joy, and drink thy wimnith a merry heart; for God now accepteth thy works.
Let thy garments be always white; and let thy head lack no ointment.
Livejoyfully with the wife whomthoulovestall thedays. .. which he hath given thaender the sun ...

Doctoral studentsof Azriel Levy

Dov Gabbay,Non-classical logics1969.

Shlomo Vinner, Some problems in first order predicate calculus with numerical quantiti®@vr1l. Second
supervisor: Haim Gaifman.

Gadi Maran,Size direction games over the real lii®72.

Menachem Magido®n supercompact cardinald.972.

Gerdion SageeAn independence result concerning the axiom of chdigg3.

Moti Gitik, All uncountable cardinals can be singu)dr979. Second supervisor: Menachem Magidor.

Uri Abrahamsomorphisms of Aronszajn trees and forcing without the generalized continuum hypdt®ésis
Seond supervisor: Saharon Shelah.

Aharon Beller Applications of Jensen’s coding techniq@@80.

Ami Litman, Comhinatorial characterization of definable properties in the constructible univei881. Second
supervisor: Menachem Magidor.

Hannah PerlTeaching mathematics in high school with graphing calculat@302.
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