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Classrooms and other notes

Our classrooms are in the following buildings:

• Physics (building 38 on your campus map)—Rooms H121, H122, H123, and H240A.
• Psychology (building 44)—Rooms S102, S103, and S105
• Vollum (building 36)—lecture hall.

Recall that our dorms are building 13, 14, and 15, and the computer lab is in building 42.
The times listed in this packet are correct for Tuesday–Friday. Monday and Saturday are differ-

ent; see the attached Week 1 schedule for details.

9am Classes

Things You Need to Know: Methods. (∗, Nina, Dan, week 1 of 1)
This class covers many of the topics and material that will be assumed in all the other classes

at camp. Please see the orange “Things You Need To Know” sheet in your folder!

Prerequisites: None.

Homework: Required.

Related to: Most classes at camp.

Required for: Every class at camp!
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Finite Automata. (∗–∗∗, Alice, week 1 of 1)
Computer scientists use a variety of different models to think about how computers work and

what they can do. Many of these models were actually invented before computers themselves—as
early as 1822. (When they finally built the 1822 model in 1991, it worked just as described!)

One theoretical computer is the Turing machine, a long tape containing a series of symbols and
a machine that reads and writes symbols to the tape. What’s remarkable about a Turing machine
is that despite its simplicity it can solve any problem solvable by a modern computer.

In this class, we’ll look at “finite automata”, which are the first step to understanding Turing
machines. Here’s what a finite automaton might look like:

We will then look at an alternate representation called regular expressions, and finally, we’ll work
our way up to Turing machines and what it really means to “compute”.
Prerequisites: None
Homework: Required
Related to: Computability and Complexity (Weeks 1–3); Boolean circuits (Week 2)

Introduction to Group Theory. (∗∗, Mark, week 1 of 2)
How can you analyze the symmetries of geometric figures, like regular or star polyhedra, or

the workings of Rubik’s cube? How do physicists predict the existence of certain elementary
particles before setting up expensive experiments to test those predictions? Why can’t fifth-degree
polynomial equations, like x5 − 3x + 17 = 0, be solved using anything like the quadratic formula,
although fourth-degree equations can? The answers to all these questions depend on group theory;
knowledge of some group theory is at least helpful and often crucial in other areas of mathematics,
such as number theory and topology. So come find out what group theory is all about! Week 1 of
this class will provide a basic introduction; we’ll try to at least cover fundamental concepts (and
examples), permutation groups, and Lagrange’s theorem. In week 2, Nina will be using some of
the ideas from week 1 to work in detail on the very first question above!
Prerequisites: None.
Homework: Recommended.
Required for: Noneuclidean geometry (Superclass, Week 4); Algebraic topology (Superclass, Week
4); 3rd week of Knots, Labelings, and Algebra (Week 3)

Graphs on Surfaces. (∗∗–∗∗∗, Marisa, week 1 of 2)
Take five points (vertices) on the plane and connect them with curves (edges) so that each vertex

is connected to every other vertex. Move the vertices around until they’re in a position to give
you the least possible number of edge crossings. Can you get the number down to zero, or is there
always a crossing? The answer comes in the form of Kuratowski’s Theorem. Would it help to draw
them on the torus instead of the plane? What about on the projective plane?

In these two weeks, we’ll talk about embeddings (a “successful” drawing), minimum number of
crossings (a drawing that’s “good enough”), and colorings (does the four-color theorem work on
the torus?).
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Prerequisites: I’ll define terms as I use them, but you’ll get more out of the class if you’re already
familiar with basic graph theory vocabulary and facts: Euler’s formula, for instance.
Homework: Strongly encouraged.
Related to: Basic Graph Theory (Week 4); Point-set Topology (Weeks 1–2); Imagining the Real
Projective Plane (Day 1); Noneuclidean geometry (Superclass, Week 4)

Measure Theory and Lebesgue Integration. (∗∗∗∗, Miranda, week 1 of 1)
Riemann integration can do lots of things, but not everything. For example, what happens if we

want to integrate a function which is discontinuous everywhere? Or what if, instead of integrating
over an interval, we want to integrate over the Cantor set? There are many functions that we come
across that we can’t integrate with a Riemann integral. In this class we will learn a more abstract
kind of integral called the Lebesgue integral. This is a powerful, yet beautiful construction that lets
us integrate a much broader class of functions. In order to define the Lebesgue integral we will learn
about measure theory, which will provide a rigorous definition of what it means for something to
have a “length”. Beware: this class will look a lot more like a set theory class than a calculus class:
although we will learn how to integrate almost anything, we won’t actually integrate anything at
all!
Prerequisites: Some prior experience with calculus will be helpful, but is not required
Homework: Required.
Related to: The Vitali Set (Day 1); Real Analysis (Weeks 1–2)

10am Classes

Things You Need to Know: Theory. (∗, Dan, Nina & others, week 1 of 1)
This class covers many of the topics and material that will be assumed in all the other classes

at camp. Please see the orange “Things You Need To Know” sheet in your folder!
Prerequisites: None.
Homework: Required.
Related to: Most classes at camp.
Required for: Every class at camp!

Linear Algebra. (∗∗, Mira, week 1 of 1)
Linear algebra is the area of math that deals with vectors and matrices. It is one of the most

useful methods in mathematics, both within pure math and in its applications to the real world.
One could argue that most of what mathematicians (and physicists, and engineers, and economists)
do with their time is try to reduce hopelessly complicated non-linear problems to linear ones that
can actually be solved. Thus for many applied fields, the most important math to know is not
calculus, but linear algebra.

We’re going to start out on the plane, where linear algebra springs out of geometry. We’ll define
linear maps and give an intuitive preview of one of the central themes of linear algebra—eigenvectors
and their eigenvalues. Then we’ll leave our two-dimensional pictures behind and introduce the more
general concepts of vector space, linear independence, dimension, inner products, orthonormal
bases, and diagonalization. (If you don’t know what any of these words mean, that’s great: come
to the class! If you know all of them, then you don’t need this class—but you might be interested
in the class on applications of linear algebra next week.)
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The class will culminate in a big theorem about eigenvectors of symmetric matrices, the Spectral
Theorem. This result is fundamental to a variety of applications. We’ll explore a few of them—such
as population genetics and image processing—in the “Cool Applications of Linear Algebra” class
in Week 2.

Prerequisites: None.

Homework: Required, daily.

Required for: Differential equations and mathematical modeling (Weeks 2–3); Cool applications
of linear algebra (Week 2); Quantum Mechanics (Week 3); Quantum Computation (Weeks 3–4);
Linear Programming (Week 3); Planar Algebras (Superclass, Week 4); p-adic numbers (Weeks 2–3)

Numbers of the form x3 + y3 modulo p. (∗∗–∗∗∗, Noah, Mon)
Which numbers are cubes modulo 7? Well, we can easily compute that 13 = 23 = 43 = 1, that

33 = 53 = 63 = 6, and that 03 = 0. So which numbers are the sum of two cubes modulo 7? Well,
only 0, 1, 2, 5, 6 can be, 3 and 4 cannot. It turns out that 7 is very special this way. For any other
prime p, every number can be written as a sum of two cubes modulo p. There is a very cute proof
of this fact due to Dan Shapiro that I’ll be explaining in this talk.

Prerequisites: You should know when a is invertible modulo m.

Related to: Number Theory.

John Conway. (Anywhere from ∗ to ∗∗∗∗, Tues–Sat)

Real Analysis. (∗∗∗, Mike, week 1 of 2)
Suppose you wanted to define a function that’s continuous, but nowhere differentiable, find a

1-dimensional curve that fills up n-dimensional space, or define the fractal dimension of a set?
What if you want to add up

∑∞
n=1

1
n2 , or find sums that can be rearranged to add up to anything?

What if you want to study the convergence of Fourier series, or define what it means to be half-
differentiable? If you’ve had some calculus, you’ve learned how to compute limits, infinite sums,
derivatives, and integrals, but defining them rigorously can be tricky business.

To do these things (and prove what you say!), you need the basics of real analysis. In this
class, we’ll build the real number system from scratch, and investigate sets, sequences, limits, and
functions. We will answer questions like: What does it mean for a sequence of numbers to converge?
How about a sequence of functions, or an infinite sum or product? What does it mean to be a
continuous function? A differentiable or integrable one?

If you aren’t fluent in ε-δ proofs, this class is the place to learn!

Prerequisites: None.

Homework: Required.

Related to: Measure Theory and Lebesgue Integration (Week 1); Dynamical Systems (Week 3)

Required for: Almost All (Week 4); Dynamical Systems (Week 3)

Advanced Problem Solving. (∗∗∗∗, Gregory Galperin, week 1 of 4)
See the “Problem Solving” section on page 10.
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11am Classes

Visualizing 4D. (∗, Mira, Mon)
On Monday afternoon, we’re all going to be making a huge Zometool structure in the main

lounge: a three-dimensional projection of a four-dimensional polytope. But what does this actually
mean? How do we think about geometry in higher dimensions at all? We’ll start by focusing on
n-dimensional cubes and ask questions like: How many vertices does a 17-dimensional cube have?
How many edges? How many faces? How many 3- or 4- or 13-dimensional faces? Then we’ll say a
few words about how different kinds of projection work and what we would expect a 3D projection
of a 4D polytope to look like.

Prerequisites: None.

Homework: None.

Related to: Monday’s Zometool Workshop; George Hart’s 4D geometry (Fri)

Mechanical Puzzles. (∗, George Hart, Tues)
I will bring a variety of original geometric assembly puzzles. Some are made of plastic on a rapid

prototyping machine. Others are paper constructions made with a robotic paper cutter. See if you
can discover the underlying mathematical ideas and assemble these puzzles! The paper ones are
visually interesting and yours to keep.

Prerequisites: None.

Homework: None.

Related to: Platonic Solids; the two Zometool workshops

Platonic Solids. (∗, Marisa, Weds)
Tetrahedron. Hexahedron. Octahedron. Dodecahedron. Icosahedron. What is it, exactly,

that makes these the Platonic Solids—the only five convex regular polyhedra? We’ll describe their
elegant and simple classification using an observation from topology and some clever counting. And
probably some chalk.

Prerequisites: None.

Homework: None.

Related to: George Hart’s Zometool Workshops; Basic Graph Theory (Week 4); Graphs on Surfaces
(Weeks 1–2); Basic Group Theory (Weeks 1–2)

Zometool Workshop. (∗, George Hart, Thurs)
If you don’t know a truncated icosahedron from a stellated dodecahedron, then come and learn

about 3D geometry and polyhedra in this hands-on Zometool Workshop. We’ll make lots of cool
models along the way.

Prerequisites: None.

Homework: None.

Related to: Friday’s Zometool workshop; Platonic solids (Weds); Archimedean Solids (Sat)
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Four Dimensional Geometry. (∗, George Hart, Fri)
Learn about hypercubes, simplexes, and why there are only six regular polytopes in 4D. We will

use Zometool to make many kinds of 3D models of 4D polytopes. By the end, you’ll also have a
deeper appreciation for Monday’s large polytope construction.

Prerequisites: None.

Homework: None.

Related to: Thursday’s Zometool workshop; Visualizing 4D (Mon)

Archimedean Solids and Beyond. (∗–∗∗, Anti, Sat)
After the Platonic Solids, the next simplest convex polyhedra are the semi-regular ones, whose

vertices are all identical, and whose faces are regular polygons but not all identical. They were
discovered by Archimedes, except for one (of somewhat questionable status) which wasn’t discovered
until the 20th century. There are between 13 and 16 of them (depending on how you count) plus
two infinite families. Using some easy tricks from counting and geometry, we’ll describe all of them
and prove that there aren’t any more.

Prerequisites: Platonic Solids (Weds)

Related to: Zometool workshops.

Homework: None.

SL2(Z). (∗∗, David, Mon–Tues)
What do lattices, elliptic curves, modular forms, hyperbolic surfaces, tessellations and fractals

have in common? SL2(Z)! It is the set of 2×2 matrices
(

a b
c d

)
with a, b, c, d integers and ad−bc = 1.

We will begin the process of understanding how SL2(Z) ties all of these topics together by looking
at how it acts on the complex plane.

Prerequisites: None.

Homework: None.

Required for: Helpful for The Banach-Tarski Paradox (Wed–Sat)

The Banach-Tarski Paradox. (∗∗–∗∗∗, Emina Alibegovic, Wed–Sat)
I got a square piece of paper and was asked to cut it any way I wanted to and make an isosceles

triangle. Piece of cake:

 

 

I got a square piece of paper and was asked to cut it any way I wanted to and make and isosceles 

triangle. Piece of cake:   

 

 

 

 

 

 

 

You might say “Hold on, there. Maybe cutting with scissors makes it all fine, but mathematically 

there are things you’re not telling me. For instance, each point in the square is just one point. If I 

cut along the diagonal where do these points go? To which triangle are they assigned? The 
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But here we also have a problem, because if we glue these two sides together, we have lots of 

pairs of points that become one!” Well, fine, I’ll take one of those lines and move it over so that 

it covers the missing diagonal. “Nonsense”, you say “You don’t have enough points”: 

 

 

 

 

 

 

 

It may appear so. But, there are plenty of points there. Some reshuffling may be necessary. And 

no magic will be involved. In fact, I could take a pea and cut it up, reassemble it and make a sun. 

At least theoretically! We’ll find out how.  
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But here we also have a problem, because if we glue these two sides together, we have lots of
pairs of points that become one!” Well, fine, I’ll take one of those lines and move it over so that it
covers the missing diagonal. “Nonsense”, you say “You don’t have enough points”:
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It may appear so. But, there are plenty of points there. Some reshuffling may be necessary. And 

no magic will be involved. In fact, I could take a pea and cut it up, reassemble it and make a sun. 

At least theoretically! We’ll find out how.  

It may appear so. But, there are plenty of points there. Some reshuffling may be necessary. And
no magic will be involved. In fact, I could take a pea and cut it up, reassemble it and make a sun.
At least theoretically! We’ll find out how.

Prerequisites: SL2(Z) (Mon–Tues) would be helpful.

Homework: Required.

Combinatorial Calculus: from Taylor Series to Feynman Diagrams. (∗∗∗, Theo, week 1
of 1)

A Feynman diagram is many things (a picture, a process, an event, a morphism). For me, a
Feynman diagram is a combinatorial integral. This class will explain some of the beautiful combi-
natorics that underlies calculus, beginning with derivatives and Taylor’s theorem, and concluding
with integrals and Feynman Diagrams. For example, the generalized Chain Rule (dn[f(u(x))]/dxn

in terms of df/du and du/dx) also generalizes the number of partitions of n objects. Along the
way, we will develop some multi-variable calculus—certainly not a whole course, but whatever is
needed to get at the full combinatorial elegance.

Prerequisites: High school calculus is strongly recommended.

Homework: Recommended.

Rational numbers . . . in space! (Or, Diophantine approximations via geometry). (∗∗,
Noah, Mira, Dave, week 1 of 4)

The most exciting mathematics is often the result of surprising and unexpected relationships
between completely different subjects. Exploiting such a connection, mathematicians attack prob-
lems in one field using the intuitions and results from another field. Sometimes this translation will
turn a difficult question into an easy one. Here we’ll study one such connection between a topic in
number theory known as Diophantine approximation and ordinary plane geometry. That is, you’ll
answer questions like “How well can you expect to approximate a number like π using a fraction?”
with geometric techniques. Similarly you’ll prove some fundamental results in elementary number
theory and the theory of continued fractions using geometry.

Homework: Required—this is a Moore Method Class. This means that instead of us explaining
math to you during class, you’ll be explaining math to us during class! You will be given a series
of problems, and although we’ll be around to help, you’ll be expected to figure things out yourself!
We’ve already handed out the first problem set, so make sure you get a copy if you’re interested in
taking the class.

Prerequisites: You should understand the Euclidean Algorithm, or you should simultaneously enroll
in Intro Number Theory.

Related to: Intro Number Theory.
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Point-set Topology. (∗∗∗∗, JR, week 1 of 2)
We see sets everywhere in mathematics. One familiar example is the set of points lying one unit

away from the origin in 3-dimensional space (the sphere). The points making up such a set are
not just strewn about randomly; they are stuck together in a very delicate fashion. Some of them
are very close together, and others are farther apart. Sets with such an organization are called
topological spaces.

What does it mean to say that a space is connected (that is, all in one piece)? How can we
make sure a function on a space is continuous (that is, does not tear the points of the space apart)?
When we ask these sorts of questions, we are asking about the topology on our space. Come to
this class to learn what a topology is, what it can do for you, and how to build your very own
topological spaces!

Prerequisites: None.

Homework: Recommended.

Required for: Algebraic topology (Superclass, Week 4); Almost All (Week 4)

Related to: Graphs on surfaces (Weeks 1–2)

1:10pm Classes

Introductory Problem Solving. (∗∗, Gregory Galperin, week 1 of 4)
See the “Problem Solving” section on page 10.

Introduction to Number Theory. (∗∗, Mark, week 1 of 2)
How do you find the GCD of two large numbers without having to factor them? What postages

can you get (and not get) if you have only 8 cent and 17 cent stamps available? What is the
mathematics used when you send confidential information, such as your credit card number, over the
Internet? Besides the answers to such questions, number theory offers insight into many beautiful
and subtle properties of our old friends, the integers. For thousands of years professional and
amateur mathematicians have been fascinated by the subject (by the way, some of the amateurs,
such as the 17th century lawyer Fermat and the modern-day theoretical physicist Dyson, are not
to be underestimated!) and chances are that you, too, will enjoy it quite a bit.

Prerequisites: If you haven’t seen modular arithmetic, you should also go to “TYNTK: Modular
Arithmetic” on Thursday.

Related to: Almost anything related to number theory or abstract algebra.

Required for: Analytic Number Theory (Week 3); Rational numbers. . . in space! (Weeks 1–4; see
its description)

Homework: Recommended.
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Computability and Complexity. (∗∗∗, Dan, week 1 of 3)
What can a computer do? What can’t a computer do? We’re going to explore the limits of

computation by setting up a mathematical framework that encapsulates computers’ abilities.
You might be surprised to learn that there are simple, easy-to-state problems that no computer

can solve, no matter how fast. No matter what program you try to write, you computer might
never get an answer. We’ll explore these limitations, prove their intractability, and take the first
step towards developing a hierarchy of unsolvable problems.

The second question we’ll try to answer is what problems computers can solve when they have
limited resources. If you want an answer to a problem in a reasonable amount of time, can a com-
puter do it? This leads to some of the deepest questions of mathematics, including the millenium
P vs. NP problem (it’s worth a million dollars, but that’s not why it’s interesting!). This funda-
mental question captures not just important mathematics, but also a philosophical point about the
difference between finding a solution efficiently and verifying someone else’s solution.

This will all be accomplished through Turing machines, mathematical models of computation
that allow us to formalize computation and prove fascinating theorems.

Although the class has no prerequisites, you should set aside plenty of time for homework. Past
students have reported that they got the most out of working these graduate-level questions, and
they’ll be essential to keeping up with the material.

Prerequisites: This class has no actual prerequisites, but the material gets somewhat technical, and
Finite Automata (Week 1) may be helpful for dealing with the notation and details.

Homework: Required.

Related to: Finite Automata (Week 1), Quantum Computing (Weeks 3–4), Boolean circuits (Week
2), graph theory classes (Weeks 1–2, 4)

Required for: None.

Knots, Labelings, and Algebra. (∗∗, Susan, week 1 of 3)
Take a piece of string. Put it into your washing machine. What comes out, not surprisingly,

is a tangled mess. If we then glue the ends of the string together, this tangled mess becomes a
mathematical object we call a knot. In this course, we will explore how our seemingly messy knots
are related to highly structured algebraic objects. We will see how systems of linear equations can
be used to differentiate between knot types, and how each knot can be labeled with group elements
which generate the fundamental group of its complement in the 3-dimensional sphere.

In week one, we will be getting a feel for what knots are and how we work with them. We’ll start
by manipulating actual, physical knots. Over the course of the week, we will develop the tools we
need to study knots on a deeper level. For instance, how can we prove that a given knot can not
be untied? We can try to untie a given knot for hours and fail miserably, but that doesn’t mean
it’s impossible. Maybe if we put in ten more minutes of effort, we would succeed. We can often
solve this kind of problem with a special class of properties called knot invariants.

If you’re looking for a one-week introduction to knot theory, feel free to hop in for just the first
week. If you’ve had an introduction to knot theory and are interested in doing some more exploring,
join us starting in week two.

Homework: Recommended.

Prerequisites: None for week one. For week three, some background in group theory is needed;
attending Intro Group Theory (Week 1) should be sufficient.

Required for: Some exposure to knot theory, such as provided by week one, will be required for
Javier Arsuaga’s Superclass on DNA Topology in Week 4.
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Related to: Algebraic topology (Superclass, Week 4)

Reflection Groups. (∗∗∗∗, David, week 1 of 4)
How can one describe a group with 696729600 elements using only an 8 × 8 matrix? Come see

how to describe symmetries as products of reflections, and learn about the fascinating structures
that one can find using this structure. We will use the tools of group theory and linear algebra to
study reflection groups, learning a ton along the way.

This course is Moore Method. In other words: you will do all the work. You will receive handouts
with definitions, motivation, and a list of theorems and exercises, but without a single proof. You
are expected to work daily on preparing those proofs, which you will then take turns presenting in
class. The class will then discuss the proofs together until we get a completely rigorous proof for
every statement, with (hopefully) minimal help from us. Group work is encouraged, and we will be
always available for help at TAU, but you are forbidden from consulting any book. I want to allow
you the pleasure of “discovering” the results on your own, even if other people have done it before.

We will begin with a review of basic linear algebra and group theory. Since we will want to cover
these topics relatively quickly, having seen them before will be useful. We proceed then to some
needed linear algebra and group theory topics and then use our newfound tools to classify all finite
reflection groups. With the classification theorem in hand, we will move on to topics of interest
to the class, which may include infinite Coxeter groups and affine reflection groups, polynomial
invariants or Weyl groups of Lie algebras.
Prerequisites: None, but some exposure to linear algebra and/or group theory would be helpful.
Homework: Required.

Problem Solving Classes

In Week 1, both the advanced and the introductory problem solving courses will cover similar
topics; the problems presented to students on these topics will differ. The topics this week are:

(1) Introductory problems: Finding a one-to-one correspondence between finite sets (logical
problems); True/False statements: liars, knights, dodgers; Pouring; Weighings; Pigeon-
Hole Principle (PHP): (a) divisibility; (b) additional considerations; (c) geometry. More
problems.

(2) Unusual Examples and Constructions: glue a polyhedron with given faces; the sum equals
the product; increasing geometric progression with rational and irrational numbers; big/small
triangles; intersection of two polygons; the “×” and “+” in geometry (a “deformed check
board”); four pills ABAB and nine pills ABCABCABC; Egyptian fractions; dissection
of polygons; an unusual pyramid; one figure inside another (a triangle inside a triangle;
a pyramid inside a pyramid; nested convex polygons; a luggage problem; an impossible
calendar; the Conway’s sequence. More examples.

(3) One Step Problems: dancing; engaged parallelograms; a trapezoid with angles 37◦ and 53◦;
sticks; a tetrahedron and two disjoint triangles; which angles is bigger?; a bent strip inside
a circle; a digital cube; a property of a trapezoid; pierced napkins; make a parallelogram
from a given quadrilateral; the area of a regular octagon; the sum of 13 integers; the “quazi-
Gelfond” problem; ax+ by+ cz; “the game of gods”; one map on the top of another. More
problems.

(4) Integers and Algebra: Problems from different Olympiads.
(5) Geometry: Problems from different Olympiads.
(6) Problems from the Moscow and the St. Petersburg math Olympiads, from the “Tournament

of Towns”, and from the USAMO of different years.
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(7) “Impossible Problems” and some ideas from modern mathematics.

Colloquia (4–5pm)

The Reeb Foliation of the 3-Sphere. (Dan, Mon)
The one-sphere, S1, lives inside two-dimensions, and is defined by the equation x2 +y2 = 1. The

two-sphere, S2, lives inside three-dimensions, and is defined by the equation x2 +y2 +z2 = 1 (this is
the sphere you know and love; it is called the two-sphere because, up close, it just looks like a curved
plane). What if you generalize this? You get the three-sphere, S3, defined by x2 +y2 + z2 +w2 = 1,
which lives inside four dimensions. If you look up close, it looks like a curved... well, a curved
three-dimensional space, just like the one we live in.

So how do you study an object that you can’t really see? That will be our motivating question,
and from there we’ll find all kinds of crazy things. In one hour, I’ll take you on a wild tour of this
fascinating space. Thanks to lots of careful pictures, you should get a good intuition for generalizing
to the strange world of “3-manifolds.”

John Conway. (Tues, Weds, Fri)
NTBA.

Playing Pool with π. (Gregory Galperin, Thurs)
I will construct a very simple “billiard machine” (created by the speaker) that calculates the

number π with any precision you wish. The billiard machine consists of two billiard balls located
on a semi-line.

If the time allows, I will describe the two Sinai’s billiard problems concerning the topic.

Monday’s Zometool Workshop

Zome Polytope. (George Hart, Mon)
We will attempt to build the world premiere of the four-dimensional object sometimes known

as the “canti-truncated 600-cell”. Actually, we will make just a three-dimensional shadow of this
4D object. This will be a five-foot diameter construction containing 10800 plastic parts. It is one
of fifteen uniform polytopes in the H4 symmetry group. The other fourteen have been constructed
previously and this is the one remaining which has never physically existed. Everyone can drop in
and participate for any length of time!

Visitor Bios

Emina Alibegovic. (University of Utah)
Emina Alibegovic works on geometric group theory, a field of mathematics that lies at the

crossroads of geometry, algebra, and topology. However, Emina uses geometric group theory to
solve problems in. . . logic! You might think this is backwards: certainly, logic can help us solve
problems in algebra and geometry, but what can algebra or geometry tell us about logic itself?
Well, it turns out that problems don’t care which methods you use to solve them, as long as they
get solved!
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Emina is very interested and invested in education and spends time doing mathematics with
high-school teachers. She is looking forward to working with high-school students as well.

John Conway. (Princeton University)
One of the most creative thinkers of our time, John Conway is known for his ground-breaking

contributions to such diverse fields as knot theory, geometry of high dimensions, group theory, trans-
finite arithmetic, and the theory of mathematical games. Outside the mathematical community,
he is perhaps best known as the inventor of the “Game of Life.”

Gregory Galperin. (Eastern Illinois University)
A professor of Eastern Illinois University; Ph.D. in 1979 at Moscow State University (under A.N.

Kolmogorov’s supervision); an author of more than 50 publications in mathematics and about that
number of publications on “elementary math” and education in “Kvant”, “Quantum”, “Focus”,
and some other journals; an author of math books, among which are “Moscow Mathematical
Olympiads”, “Billiards”, “Chaos and Billiards”; a former member of Russian Math Olympiads
(Moscow and National: 1970–1990); a member of the problem committee of the USA MO (1999–
2008); a deputy leader of the USA team for the IMO in 2003 (Japan).

George Hart. (SUNY Stony Brook—computer science)
George Hart is both a professor of computer science and a mathematical sculptor. At Mathcamp,

he leads hands-on workshops in which participants explore the geometry of three- (and four-)
dimensional space using the mathematical construction set Zometool.

Theo Johnson-Freyd. (UC Berkeley)
Theo, a former Mathcamp staff member, studies mathematical physics: he does a little analysis,

a little combinatorics, a little topology, and not enough of any of these to call it his focus. He’s also
an avid cook and an occasional (these days) dancer. Ask him about quantum mechanics, west-coast
swing, and vegetarian cuisine.
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