Identifying an Appropriate Link and Family for Generalized Linear Models

ISPOR 20th Annual International Meeting

May 19, 2015

Henry Glick

www.uphs.upenn.edu/dgimhsr

Generalized Linear Models (GLM)

- As Jalpa has indicated, to use generalized linear models, need to identify a link and a family
- OLS in GLM framework uses an identity link and a gauss family
- · Log link/gamma family most commonly in literature
 - Log link: mean cost = $exp(\sum \beta_i X_i)$
 - Gamma family: variance increasing in magnitude $% \left({{{\rm{B}}}_{{\rm{B}}}} \right)$ a function of the square of the mean
- No reason to believe that universal use of log/gamma combination is substantially better than universal use of any particular link/family combination

Extended Estimating Equations

- One approach for identifying appropriate links and families is Basu and Rathouz's (2005) extended estimating equations (EEE) (implemented in Stata)
 - EEE estimates link function and family along with coefficients and standard errors
- Strongly recommend implementing EEE with your data; however:
 - Tends to need a large number of observations (thousands not hundreds) to converge
 - Can't identify a link and family with EEE and use the resulting link and family with a simple GLM command
- Our recommendations apply when can't use EEE or EEE won't converge

Outline

- Introduce primary dataset used in examples
 2 other datasets used to make specific points
- Methods for identifying optimal family
 Modified Park test
- Methods for identifying link function
 - Pregibon link test
 - Pearson correlation test
 - Modified Hosmer and Lemeshow test
 - AIC, BIC, Log likelihood
 - Informal summary measures (don't think we'll get to)

Explanatory	Rx0	Rx1	
variables	(N=250)	(N=250)	P-value
dissev	0.349 (0.112)	0.346 (0.113)	0.73
blcost	1630 (773)	1639 (770)	0.90
blqaly	0.784 (0.140)	0.787 (0.151)	0.85
race	0.516 (0.5)	0.496 (0.5)	0.72
Outcome			
cost1	3015 (1583)	3233 (1169)	
Outcome	· · · ·	()	0.

Family for GLM

- Specifies distribution that reflects mean-variance relationship
 - Gaussian: Constant variance (OLS/Log OLS)
 - Poisson: Variance proportional to mean
 - Gamma: Variance proportional to square of mean
 - Inverse Gaussian or Wald: Variance proportional to cube of mean
- Use of latter 3 families relaxes assumption of homoscedasticity

Implications of Heteroscedasticity for OLS

- · Coefficients remain linearly unbiased, but...
 - No longer have minimum variance
 - Resulting variance estimate is biased
 - "Only in some special cases...can it be determined whether the usual estimator...is biased upwards or downwards."

Kennedy, A Guide to Econometrics

Modified Park Test

- "Constructive" test that recommends a family conditional on a particular link function
- Implemented after GLM regression that uses particular link
- Test predicts square of residuals as a function of log of predictions by use of a GLM with a log link and gamma family

Implementing Modified Park Test

- Run glm with a link you are interested in (e.g., identity) using some family
 - No rule about initial family used in MP test
 - Gauss or gamma probably least tempermental
- Predict yhat and residuals
- Calculate log of yhat (Inyhat) and square of residuals (res2)
- Estimate:
 - glm res2 lnyhat,link(log) family(gamma) robust
- If using weights, clustering, or "if" statement in original GLM, use same weights, clustering, and "if" statement for modified Park test

Recommended Family, Modified Park Test

- · Recommended family derived from coefficient for Inyhat:
 - If coefficient ~=0, Gaussian
 - If coefficient ~=1, Poisson
 - If coefficient ~=2, Gamma
 - If coefficient ~=3, Inverse Gaussian or Wald

glr	n res2 lr	nyhat, linl	k(log) f	amily(ga	amma) robust
res2	Coef	Std Err	z	P> z	[95% Conf Int]
Inyhat	1.3459	0.3354	4.01	0.000	0.6886 to 2.0032
_cons	3.3234	366.11	1.25	0.212	-1.8960 to 8.5428
test l	nyhat = 0 chi² (1)	= 16.11; p	= 0.000	1	
test l	nyhat==1				
	chi ² (1)	= 1.06; <mark>p</mark> =	= 0.30		
test l	nyhat==2				
eeict2011r.dta	chi ² (1)	= 3.80; p=	0.05		Signal States

Issues

• Coefficients <0

- If coefficient ≤ -0.5, consider subtracting all observations from maximum-valued observation and rerunning analysis
 Works sometimes, but not always
- Coefficient > 3.5
 - Continue to use inverse Gaussian for larger coefficients ???

SEs for Poisson Family

- When using poisson family, for both Stata and SAS, SEs for coefficients can be improbably small
 - E.g.,0.0000 for all variables
- In Stata, correct by use of variance-covariance matrix of the estimators (VCE) option:
 - glm depvar indepvars,link[xxx] family(poisson) vce(bootstrap, [strata(treat)] reps(200) nodots)

_						
		Mod	ified Pa	ark Test,	Different Links	
-	Link	Family	Coef	P-value	Power links of 0.0 a	nd
-	-0.7	Gamma	1.6777	0.24	0.1 demonstrate tos	ss-
	-0.6	Gamma	1.6469	0.20	ups	
	-0.5	Gamma	1.6175	0.17	 Recommended fam 	ily
					may not run	
	-0.1	Gamma	1.5150	0.09	 1.6 won't run for 	
	0.0	P/G	1.5378	0.15	(recommended)	
	0.1	P/G	1.5163	0.13	poisson family, b	ut
	0.2	Poisson	1.4954	0.12	will for gauss	
					 May be no recom- 	
	1.4	Poisson	1.3039	0.38	mended family	
	1.5	Poisson	1.2997	0.39	 1.7 won't run for 	any
	1.6	Poisson	1.1528	0.63	family	H (Rostle
	1.7					A)
eeict	2011r dta					States Sed

Link Function

- Link function directly characterizes how linear combination of predictors is related to prediction on original scale
- While log link is most commonly used in literature, need not be best fitting link
- SAS and Stata power links allow generation of wide variety of named and unnamed links, e.g.,

 $\hat{y} = \beta_i X_i$

 $\hat{y} = (\beta_i X_i)^2$

 $\hat{y} = \exp(\beta_i X_i)$

power 1 = Identity link

•

- power .5 = Square root link
- power 0 = log link
- power -1 = reciprocal link $\hat{y} = 1/(\beta_i X_i)$

Selecting a Link

- Literature is mixed on whether there is a single statistic that can be used to identify an optimal link
- Manning et al. proposed selection should be based on a combination of at least 3 tests: Pregibon link test, Pearsons correlation test, and modified Hosmer and Lemshow test
- Hardin and Hilbe have suggested use of links with (smaller) AIC or BIC statistics or links with (larger) log likelihood statistics
- In what follows, discuss Manning's suggestion, but return to AIC and BIC

Link Tests

- Pregibon link test evaluates linearity of response on scale of estimation
 - e.g., if log or square root link is used, evaluates response on log and square root of cost scales, not cost scale
- Pearson's correlation test evaluates presence of systematic bias in fit on raw scale
 - e.g., on cost scale
- Modified Hosmer–Lemeshow test also evaluates systematic bias in fit on raw scale (write for details about implementation)

Implementing Pregibon Link Test

- · Run glm with a link and family
- Predict $(\sum_i \beta_i X_i)$ and $(\sum_i \beta_i X_i)^2$ on scale of estimation
- · Estimate:

glm depvar $(\sum_i \beta_i X_i) (\sum_j \beta_i X_j)^2$,link([xxx]) family[xxx]) robust (family[xxx] and link[xxx] represent link and family used in initial glm)

- P-value on coefficient for $(\sum_i \beta_i X_i)^2 <\!\! 0.05$ indicates lack of linearity
- If using weights, clustering, or "if" statement in original GLM, use same weights, clustering, and "if" statement for modified Park test

glm	n cost1 x	b xb2, lir	nk(log)	family(g	amma) robust
res2	Coef	Std Err	z	P> z	[95% Conf Int]
xb	9.9140	3.9930	2.48	0.013	2.088 to 17.740
xb2	-0.5546	0.2476	-2.24	0.025	-1.040 to -0.069
_cons	-35.787	16.0917	-2.22	0.026	-67.326 to -4.248
	•				
eeict2011r.dta					

Implementing Pearson Correlation Test

- Run glm with a link and family
- Predict cost (ŷ) and cost residuals (res)
- Estimate:

corr ŷ res

- In stata: pwcorr ŷ res,sig
- P-value for correlation <0.05 indicates lack of fit
- If using weights, clustering, or "if" statement in original GLM, use same weights, clustering, and "if" statement for modified Park test

		pwcorr pcost r	es,sig	
		pcost	res	
	pcost	1.0000		-
	res	-0.0665	1.0000	
		0.1378		
eeist2011s die				
eeict2011r.dta				- College

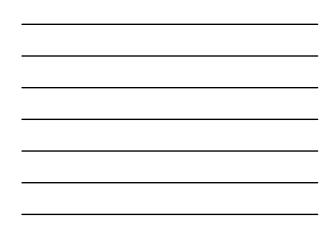
		Dia	gnosing	a Link
Link	Pears	Pregib	mHM	 No link is least
0.4	.6842	.1422	.6426	significant for all 3
0.5	.7091	.2040	.6434	tests (i.e., dominant)
0.6	.7399	.2850	.4615	 1.1 link dominates all
0.7	.7772	.3872	.701	links except 1.2 and 1.3 links
0.8	.8213	.5111	.8777	1.5 11185
0.9	.8729	.6556	.5906	
1.0	.9323	.8168	.7636	
1.1	.9999	.9885	.9193	
1.2	.9239	.8375	.9298	
1.3	.8391	.6703	.9725	
1.4	.7455	.5186	.785	
1.5	.6433	.3888	.7608	- A
				Say Carlos

			AIC, B	IC, Log	Likelihood
·	Link	AIC	BIC	LL	 AIC, BIC, LL yield a
	0.4	445.449	214752	-111356	similar, but not
	0.5	444.854	214455	-111208	identical solution
	0.6	444.354	214205	-111083	
	0.7	443.951	214004	-110982	<u>Issues</u>
	0.8	443.648	213852	-110906	Unstable across
	0.9	443.445	213751	-110855	recommended
	1.0	443.348	213702	-110831	families
'	1.1	443.359	213707	-110834	 AIC and BIC don't
	1.2	443.481	213769	-110864	always agree
	1.3	443.721	213889	-110924	
	1.4	444.085	214070	-111015	
	1.5	444.581	214318	-111139	
					AND

AI	C, BIC	C, Log Like	elihood U	Instable A	Across Lir	ıks
-	Link	Family	AIC	BIC	LL	
-	-0.7	Gamma	18.0677	-2990.45	-4510.78	
	-0.6	Gamma	18.0666	-2990.71	-4510.65	
	-0.5	Gamma	18.0661	-2990.96	-4510.53	
	-0.1	Gamma	18.0645	-2991.78	-4510.12	
	0.0	P/G	448.760	216408	-111942	
	0.1	P/G	447.793	215924	-111724	
	0.2	Poisson	446.92	215487	-111723	
	0.9	Poisson	443.45	213751	-110855	
	1.0	Poisson	443.35	213702	-110830	B653B
	1.1	Poisson	443.36	213707	-110833	\mathbf{A}
eeict2011r.dta						AR STREET

Continuous Families

- · EEE already uses continuous families
- Once this feature becomes part of glm software, we won't be able to distinguish changes in log likelihood, AIC, BIC, and deviance statistics that were:
 - Due to better fit OR
 - Due to changes in family


Link	LL	AIC	BIC
64	-9	-9	-9
63	-5931.4072	17.299584	-3378.90
62	-5931.2616	17.299160	-3378.66
61	-5931.1228	17.298756	-3378.41
6	-5930.9913	17.298373	-3378.17
59	-5930.8676	17.298013	-3377.92
5	-5930.2011	17.296073	-3375.7923
49	-5930.1868	17.296031	-3375.5701
48	-5930.1864	17.296030	-3375.3522
47	-5930.2004	17.296071	-3375.1392
46	-5930.2291	17.296155	-3374.9312
45	-5930.2731	17.296283	-3374.7287

Zeros

- Since log of 0 is undefined, in log OLS either:
 - Use 2-part model (prediction of any cost (yes/no) followed by prediction of log cost among those with any cost), or
 - Add arbitrary small quantity to all observations
 - Exclude observations of 0 from analysis
- No problem including observations of 0 when using glm with log link
 - However, presence of large fractions of zeros can make it hard to identify stable link/family combinations
 As with OLS, two-part models can avoid problems posed by large fractions of zeros

1 V		isson) vc		strap,str	power 1.1) ata(treat)
Cost1	Coef	Std Err	z	P> z	[95% Conf Int]
treat	759	243	3.13	0.002	284 to 1235
dissev	9842	1017	9.68	0.000	7849 to 11,835
blcost	.973	.224	4.35	0.000	0.534 to 1.411
blqaly	-1804	996	-1.81	0.070	-3756 to 148
race	-1812	274	6.61	0.000	-2349 to -1274
_cons	3950	936	4.22	0.000	2156 to 57
eeict2011r.dta					and the second s

How Not to Calculate Between-Group Predicted Cost Differences

- For all multivariable models, INAPPROPRIATE to calculate predicted between-group differences in means by:
 - Running regression (OLS, GLM, Logit, etc.)
 - Making prediction for each observation
 - Calculating mean of predictions for groups 0 and 1
 - Subtracting group 0's mean of predictions from group 1's
- Reintroduces between group differences in covariates that were controlled for in multivariable model

Calculating Between-Group Predicted Cost Differences

- For OLS, can use sample means for covariates and treatment group indicator to estimate adjusted mean for each group
 - NOTE: sample means are same for each treatment group
- For multiplicative models (e.g., log, power 1.1, logit), CAN'T use this approach
 - Mean of retransformations ≠ retransformation of mean

Recycled Predictions

- · Should instead use method of recycled predictions to create an identical covariate structure for each group by:
 - Generating a temporary 0/1 variable that equals the treatment status variable and including it in model
 - After running model, assigning 0s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₀, predicted cost had everyone been in treatment group 0
 - Assigning 1s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₁, predicted cost had everyone been in treatment group 1
 - Stata "margins" syntax: margins r.ib(last).treat

Link	Family	ΔC	SE	P-value
T-test		218	124	0.08
Identity	Gauss	215	108	0.046
Identity	Poisson	304	103	0.003
Log	Gamma	337	109	0.002
power 1.1	Poisson	310	101	0.002

	Link Fit Sta	tistics	
Link	Pregibon	Pearson	M-H&L
Identity/Gauss	0.702	1.00 *	0.375
Identity/Poisson	0.817	0.932	0.764
Log/Gamma	0.025	0.138	0.416
power 1.1/Poisson	0.989	0.999	0.919

* For identity/gauss, Pearson statistic=1.0 by definition

ct2011r.dta

Link	%
-1.4 to -0.1	4.1
0 to 0.7	20.9
0.8	5.83
0.9	6.83
1.0	7.66
1.1	8.85
1.2	11.76
1.3	9.55
1.4	8.29
1.5	5.91
1.6+	10.33

Summary

- Log/gamma not always preferred link/family
- Need to conduct diagnostic tests to identity appropriate link/family
- Establish criteria for choice of preferred link/family prior to unblinding data
 - Fact that one model gives a more favorable result should not be a reason for its adoption
- Report sensitivity of results to different link/family specifications

