

DAT

Mälar

TA MANA
EMBE

School o

rdalen Uni

AGEMEN
EDDED R

Andr

of Innovati

iversity Pre
No. 125

NT IN CO
REAL-TI

reas Hjerts

2012

ion, Design

ess Dissert

OMPON
ME SYS

ström

n and Eng

tations

ENT-BA
STEMS

ineering

ASED

DAT

Mälar

TA MANA
EMBE

School o

rdalen Uni

AGEMEN
EDDED R

Andr

of Innovati

iversity Pre
No. 125

NT IN CO
REAL-TI

reas Hjerts

2012

ion, Design

ess Dissert

OMPON
ME SYS

ström

n and Eng

tations

ENT-BA
STEMS

ineering

ASED

Copyright © Andreas Hjertström, 2012
ISBN 978-91-7485-064-2
ISSN 1651-4238
Printed by Mälardalen University, Västerås, Sweden

Mälardalen University Press Dissertations
No. 125

DATA MANAGEMENT IN COMPONENT-BASED EMBEDDED REAL-TIME SYSTEMS

Andreas Hjertström

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

fredagen den 1 juni 2012, 13.00 i Gamma, Mälardalen University, Västerås.

Fakultetsopponent: Prof. Michel R.V. Chaudron, Universiteit
Leiden, Leiden Institute of Advanced Computer Science

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 125

DATA MANAGEMENT IN COMPONENT-BASED EMBEDDED REAL-TIME SYSTEMS

Andreas Hjertström

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

fredagen den 1 juni 2012, 13.00 i Gamma, Mälardalen University, Västerås.

Fakultetsopponent: Prof. Michel R.V. Chaudron, Universiteit
Leiden, Leiden Institute of Advanced Computer Science

Akademin för innovation, design och teknik

Abstract
This thesis presents new data management techniques for run-time data in component-based embedded
real-time systems. These techniques enable data to be modeled, analyzed and structured to improve data
management during system development, maintenance, and execution. The foundation of our work is
a case-study that identifies a number of problems with current state-of-practice in data management for
industrial embedded real-time systems.

We introduce two novel concepts: the data entity and the database proxy. The data entity is a
design-time concept that allows designers to manage data objects throughout different design and
maintenance activities. It includes data-type specification, documentation, specification of timing and
quality properties, tracing of dependencies between data objects, and enables analysis and automated
validation.

The database proxy is a run-time concept designed to allow the use of state-of-the-art database
technologies in contemporary software-component technologies for embedded systems. Database
proxies decouple components from an underlying database residing in the component framework. This
allows components to remain encapsulated and reusable, while providing temporally predictable access
to data maintained in a database, thus enabling the use of database technologies, which has previously
excluded, in these systems.

To validate our proposed techniques, we present a tool implementation of the data entity as well as
implementations of the database proxy approach, using commercial tools, the AUTOSAR standardized
automotive software architecture, and automotive hardware. Our results show that the presented
techniques can contribute to the development of future component-based embedded real-time systems,
by providing structured and efficient data management.

ISBN 978-91-7485-064-2
ISSN 1651-4238

Abstract

This thesis presents new data management techniques for run-time data in
component-based embedded real-time systems. These techniques enable data
to be modeled, analyzed and structured to improve data management dur-
ing system development, maintenance, and execution. The foundation of our
work is a case-study that identifies a number of problems with current state-of-
practice in data management for industrial embedded real-time systems.

We introduce two novel concepts: the data entity and the database proxy.
The data entity is a design-time concept that allows designers to manage data
objects throughout different design and maintenance activities. It includes
data-type specification, documentation, specification of timing and quality pro-
perties, tracing of dependencies between data objects, and enables analysis and
automated validation.

The database proxy is a run-time concept designed to allow the use of state-
of-the-art database technologies in contemporary software-component tech-
nologies for embedded systems. Database proxies decouple components from
an underlying database residing in the component framework. This allows
components to remain encapsulated and reusable, while providing temporally
predictable access to data maintained in a database, thus enabling the use of
database technologies, which has previously excluded, in these systems.

To validate our proposed techniques, we present a tool implementation of
the data entity as well as implementations of the database proxy approach,
using commercial tools, the AUTOSAR standardized automotive software ar-
chitecture, and automotive hardware. Our results show that the presented tech-
niques can contribute to the development of future component-based embedded
real-time systems, by providing structured and efficient data management.

iii

Swedish Summary - Svensk
Sammanfattning

Inbyggda realtidssystem blir allt vanligare i de produkter och tjänster vi använ-
der. Utvecklingstakten går allt fortare och programvaran blir allt mer komplex.
Inbyggda system finns idag i t.ex. mobiltelefoner, bilar, flygplan och robo-
tar, där programvaran kan utgöras av flera miljoner rader kod och tusentals
dataelement som är distribuerade över ett stort antal datorer ihopkopplade i
nätverk. Utveckling och underhåll av dessa komplexa system medför en allt
högre kostnad. För att utveckla elektroniksystemet är kostnaden, i en modern,
avancerad bil idag, omkring 40% av den totala utvecklingskostnaden. Inom
fordonsindustrin drivs denna utveckling av framför allt hårdare miljökrav, nya
funktioner samt krav på bättre aktiv och passiv säkerhet.

För att hantera utvecklingen av dessa system försöker man göra informa-
tionen om systemet mer överblickbar genom att gruppera funktioner i olika
komponenter som kan kommunicera genom ett förutbestämt gränssnitt. Denna
teknik kallas för komponentbaserad utveckling. Komponentbaserade tekniker
som används idag fokuserar främst på att hantera funktioner, och saknar bra
metoder för att hantera den stora mängd data som utväxlas mellan komponen-
terna. Nya metoder för att effektivt hantera data har stor potential att göra både
utvecklingen och exekveringen av inbyggda system enklare och mer kostnads-
effektiv.

Denna avhandling introducerar nya koncept för hantering av data under
utveckling, underhåll och exekvering av inbyggda komponentbaserade realtids-
system. Resultaten i denna avhandling baserar sig på en fallstudie som visar på
stora problem med att hantera data inom industrin. Dessa resultat visar tydligt
att hanteringen av data måste prioriteras mer och ingå som en integrerad del av
utvecklingen av hela systemets arkitektur.

v

vi

För hantering av data under utvecklings- och underhållsfaserna introduc-
erar vi konceptet data entity. En data entity möjliggör för utvecklare att mod-
ellera och dokumentera varje dataelement i systemet korrekt redan i ett tidigt
skede av utvecklingsfasen. Därutöver är det också viktigt att på ett enkelt
sätt kunna skapa dokumentation och bedöma egenskaper, samt att visualisera
dataflöden och beroenden mellan data för att öka den totala kunskapen om sys-
temet. Tekniker för att hantera stora och komplexa datamängder i ett inbyggt
system finns tillgängliga i form av databaser. Problemet är att de komponent-
baserade teknikerna och databaserna är fundamentalt olika. Här finns ett ty-
dligt glapp, vilket vi försöker överbrygga i denna avhandling. För hantering av
data under exekvering introducerar vi konceptet database proxy, som möjlig-
gör användandet av en databas utan att bryta mot grundläggande principer inom
komponentbaserad utveckling. Syftet med detta är att komplettera den bris-
tande datahanteringen inom komponentbaserad utveckling genom att utnyttja
de beprövade tekniker som finns tillgängliga i en databas. Avhandlingen in-
nefattar även ett antal implementationer av verktyg samt evalueringar av de in-
gående koncepten för hantering av data. Embedded Data Commander (EDC)
innehåller en samling verktyg för att integrera och hantera "data entities" i en
komponentmodell. Vidare har verktyg för konfigurering samt generering av
"database proxies" i komponentmodellen SAVE har implementerats och eval-
uerats. Slutligen så har "database proxies" implementerats och evaluerats på
hårdvara i ett AUTOSAR kontext.

To my Beloved Family

Acknowledgements

This thesis marks the end of a great journey and at the same time the beginning
of something new. To say that this has been an entirely smooth ride would be
to lie to myself and others. There have been ups and downs, although the up
side has by far exceeded the downside.

Two people have been by my side this entire journey, my supervisors Dr.
Dag Nyström and Prof. Mikael Sjödin. Thanks for your excellent support and
guidance, both in your role as my supervisors as well as "offline"! Dag, it
has been a privilege to work with you. You have always been there for me
(probably more than required) and when problems have arisen, your vision
and never ending stream of new input and positive thinking carried me forward.
Mikael, your ability to concretize and guide me to bring out the essence of my
research and paper writing, is amazing.

A special thanks to my friend Peter Wallin. If you would not have started
your PhD studies and so warmly recommended it, I would probably have
missed this great opportunity. An additional thanks to Mimer Information
Technology AB and ArcCore AB for the cooperation and input to the project.

I would also like to thank Jörgen Lidholm for the good discussions and be-
ing a great friend. Many people at the department have made this journey more
enjoyable, thanks to Fredrik Ekstrand, Karl Ingström, Lars Asplund, Mikael
Ekström, Kaj Hänninen, Stefan Cedergren, and all the other wonderful people.
In addition, a special thanks to all the administrative people that have helped
me with traveling arrangements, paper work, and being great companions.

To the whole Progress gang, Hans Hanson, Tomas Nolte, Ivica Crnkovic,
Paul Pettersson, Hüseyin Aysan, Farhang Nemati, Moris Behnam, Mikael Ås-
berg, Severine Sentilles, Johan Kraft, Yue Lu, Stefan Bygde, Jan Carlsson,
Aneta Vulgarakis and all others who have been great traveling companions,
friends, and that have provided a lot of input to my work.

ix

x

Most important, I thank my loving family, Anna, my son Felix, and my
daughter Livia for supporting me and making my life wonderful. I love you.
You are my everything!

This work has been supported by the Swedish Foundation for Strategic Re-
search within the PROGRESS Centre for Predictable Embedded Software Sys-
tems.

Andreas Hjertström
Västerås, June, 2012

List of Publications

Papers Included in the Thesis
Paper A: Design-Time Management of Run-Time Data in Industrial Embed-

ded Real-Time Systems Development, Andreas Hjertström, Dag Nys-
tröm, Mikael Nolin and Rikard Land, 13th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), Ham-
burg, Germany, September, 2008

Paper B: A Data-Entity Approach for Component-Based Real-Time Em-
bedded Systems Development, Andreas Hjertström, Dag Nyström and
Mikael Sjödin, 14th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Palma de Mallorca, Spain,
September, 2009

Paper C: Data Management for Component-Based Embedded Real-Time
Systems: the Database Proxy Approach, Andreas Hjertström, Dag Nys-
tröm and Mikael Sjödin, Journal of Systems and Software, vol 85, nr 4,
p821-834, Elsevier, April, 2012

Paper D: Introducing Database-Centric Support in AUTOSAR, Andreas Hjer-
tström, Dag Nyström and Mikael Sjödin, 7th IEEE International Sym-
posium on Industrial Embedded Systems (SIES), Karlsruhe, Germany,
June, 2012

Paper E: Data Management in AUTOSAR: a Tool Suite Extension Approach,
Andreas Hjertström, Dag Nyström and Mikael Sjödin, MRTC Report,
submitted for conference publication

xi

xiii

Additional Papers by the Author
INCENSE: Information-Centric Run-Time Support for Component-Based Em-
bedded Real-Time Systems, Andreas Hjertström, Dag Nyström, Mikael Åker-
holm and Mikael Nolin, Proceedings of the Work-In-Progress (WIP) Session,
14th IEEE Real-Time and Embedded Technology and Applications Symposium,
p 4, Seattle, United States, April, 2007

Information Centric Development of Component-Based Embedded Real-Time
Systems, Andreas Hjertström, Licentiate Thesis, Mälardalen University Press,
December, 2009

Database Proxies for Component-Based Real-Time Systems, Andreas Hjer-
tström, Dag Nyström, Mikael Sjödin, 22nd Euromicro Conference on Real-
Time Systems, p 79 - 89, Brussels, Belgium, July, 2010

Database Proxies: A Data Management Approach for Component-Based Real-
Time Systems, Andreas Hjertström, Dag Nyström and Mikael Sjödin MRTC,
technical report

Contents

I Thesis 1

1 Introduction 3
1.1 Problem Description . 5
1.2 Thesis Outline . 6

2 Background and Utilized Techniques 7
2.1 Embedded Systems . 7
2.2 Embedded Real-Time Systems 8
2.3 System Modeling and Development 8
2.4 Data Management . 13

3 Research Summary 19
3.1 Technical Contributions . 19
3.2 Research Process . 22
3.3 Problem Description, Restated 25
3.4 Thesis Contributions . 26

4 State-of-the-Art 31
4.1 Automotive Systems . 31
4.2 Design-Time Tools for Automotive Data Management 34

5 Conclusions and Contingency 37
5.1 Conclusions . 37
5.2 Contingency . 39

xv

xvi CONTENTS

II Included Papers 47

6 Paper A:
Design-Time Management of Run-Time Data in
Industrial Embedded Real-Time Systems Development 49
6.1 Introduction . 51
6.2 Research Method . 52
6.3 Design-time Data Management 56
6.4 Observations and Problems Areas 60
6.5 Remedies and Vision for Future Directions 65
6.6 Conclusions . 67
6.7 Future Work . 68

7 Paper B:
A Data-Entity Approach for Component-Based Real-Time
Embedded Systems Development 73
7.1 Introduction . 75
7.2 Background and Motivation 77
7.3 The Data Entity . 79
7.4 The Data Entity Approach 82
7.5 The ProCom Component Model 84
7.6 Embedded Data Commander Tool-Suite 85
7.7 Use Case . 87
7.8 Conclusions . 90

8 Paper C:
Data Management for Component-Based Embedded Real-Time Sys-
tems: the Database Proxy Approach 95
8.1 Introduction . 97
8.2 Motivation . 100
8.3 Background . 102
8.4 System Model . 105
8.5 Database Proxies . 109
8.6 Implementation . 119
8.7 Performance Evaluation . 123
8.8 Conclusions . 129

CONTENTS xvii

9 Paper D:
Introducing Database-Centric Support
in AUTOSAR 135
9.1 Introduction . 137
9.2 Background and Motivation 138
9.3 System Model and Related Techniques 139
9.4 AUTOSAR Concept Overview 142
9.5 Database Proxies . 143
9.6 Integrating Database Proxy Support in AUTOSAR 145
9.7 System Design and Implementation 150
9.8 Evaluation . 152
9.9 Conclusions and Future Work 156

10 Paper E:
Data Management in AUTOSAR: a Tool Suite
Extension Approach 161
10.1 Introduction . 163
10.2 System Development Roles 167
10.3 Data Management Tool Suite Extension 167
10.4 Conclusions and Future Work 171

I

Thesis

1

Chapter 1

Introduction

The evolution of embedded systems affects us all. Embedded systems are
nowadays included in almost everything that surrounds us in our daily life.
This has mostly to do with our increased demand for new functionalities that
cannot be built, or are not practical to build, using traditional mechanics. Mo-
bile phones, medical equipment, kitchen appliances, home entertainment sys-
tems, cars, and cameras are examples of such systems. Some of these are
highly complex, and huge amounts of software are used to realize the different
functionalities. In addition, the current trend is that systems are evolving from
closed stand-alone devices to highly dynamic systems interconnected with the
surrounding environment.

Developing these kinds of systems is a challenging task. Today, 90% of the
innovations in a premium car are related to electronics and software. In addi-
tion, as many as 2500 software functions, sometimes dependent on each other,
are distributed throughout a highly interconnected architecture with up to 80
Electrical Control Units (ECU) [1]. Furthermore, there is a more frequent mix
of critical functionalities, such as breaking assistance, and non-critical func-
tionalities, such as an infotainment system. Developing these kinds of systems
is often associated with high cost [2].

From this evolution towards more complex and interconnected systems
arises the need for more efficient means to manage data, perform diagnos-
tics, and to provide predictable and dynamic data access. However, this thesis
shows that the current state-of-practice of data management is not sufficient to
cope with tomorrow’s embedded systems. Therefore, the development of new
techniques that deal with/can control data management are needed.

3

4 Introduction

This thesis contributes to the future of embedded-systems develop-
ment by identifying problem areas in the current state-of-practice,
and by introducing new techniques for the development of compo-
nent-based embedded real-time systems. These techniques com-
prise a holistic approach to data management by providing design-
time support for modeling, management, documentation and anal-
ysis of run-time data, as well as run-time mechanisms for extract-
ing, structuring, and the secure sharing of data.

Design-time data management: A case-study, presented in this thesis, shows
that developers are not provided with adequate techniques that enables efficient
and up-to-date management of documentation of run-time data. The growing
information volume, lack of tool support, poor routines, and the sometimes
inadequate documentation, especially concerning internal data in nodes, are
becoming an increasing problem. This has for example led to (i) obsolete doc-
umentation, (ii) redundant and stale data (data that is not removed due to un-
known dependencies), and (iii) companies becoming highly dependent on the
undocumented knowledge of individual developers.

The data-entity approach is presented in this thesis as a solution to facilitate
efficient design-time management of run-time data. This approach has been
evaluated and implemented into a tool-suite.

Run-time data management: In the development of functions, elevating the
abstraction level and providing efficient tool support, is commonly used ap-
proaches to manage complexity. One such approach, which is increasingly
used by industry today to raise productivity and reduce complexity, is Compo-
nent-Based Software Engineering (CBSE). Structured development, standard-
ized architectures, and reuse are mentioned as key factors for success. The
CBSE focus lies on specifying and developing a component or a set of reusable
components with certain functionality. However, CBSE does, so far, not pro-
vide structured support for managing data. This has in turn led to highly unco-
ordinated and ad-hoc management of data in many complex distributed systems
[1, 2, 3].

Instead of reinventing data management techniques or developing ad-hoc
solutions using internal data structures, the use of existing techniques should
be promoted.

1.1 Problem Description 5

Outside the embedded community, a well-proven data management tech-
nique that offers standardized interfaces, efficient data management, dynamic
access to data, user access control, and effective tool support is available,
namely DataBase Management Systems (DBMS). Over the last few years,
the use of DBMSs in embedded systems has increased. For example, many
control-systems, and virtually all premium mobile phones, such as Apples
iPhone and Android-based phones contain databases. However, the use of
Real-Time DataBase Management Systems (RTDBMS) within industrial em-
bedded real-time systems is still quite limited, even though there are a few
commercial RTDBMSs available [4, 5]. Moreover, this is especially true for
component-based systems.

Although both CBSE and RTDBMSs aim to reduce complexity, the co-
existence between the techniques is non-trivial since their design goals are
fundamentally different (i) within CBSE, decoupling of components from the
context in which they are deployed is vital, whereas an RTDBMS provides a
blackboard architecture that requires specific database knowledge to be em-
bedded within components in order to access data, (ii) direct access to shared
data introduces hidden dependencies between components, thereby violating a
fundamental aim of CBSE.

The combined approach, to not only manage the functional complexity of
the application and specifying components, but to also utilize the available
tools and techniques offered by an RTDBMS, is a research area that is not
well established.
Database proxies are presented in this thesis as a technique to close the gap
between CBSE and RTDBMSs. Furthermore, database proxies have been im-
plemented and evaluated as an approach to manage run-time data in the auto-
motive initiative, AUTomotive Open System ARchitecture (AUTOSAR).

The research results presented in this thesis are applicable to many indus-
trial application areas which depend on the efficient development of complex
embedded real-time systems with a mix of critical and less critical functions.
However, the focus of this thesis is automotive systems from which we borrow
the technical background and terminology and apply our results to.

1.1 Problem Description
The continuous increase of complexity and new requirements on data man-
agement enhances the challenges with respect to performing design-time and
run-time data management in a predictable, efficient and structured manner.
Developers need new tools and techniques to aid them with the problems of
today and tomorrow.

6 Introduction

In an effort to understand the problematics concerning data management,
this thesis investigates (i) the current problems within industrial embedded sys-
tems development, (ii) what tools and techniques could facilitate the develop-
ment, as well as how and in what contexts they could be deployed.
To be precise, the thesis focuses on the following:

F1 How is data currently managed in the industry and what are the main
problems concerning design-time and run-time data management?

F2 How can we support design-time data management within CBSE?

F3 How can we support run-time data management within CBSE by utiliz-
ing state-of-the-art RTDBMS technology?

F4 How can real-time data management techniques be integrated into an
industrial development setting?

1.2 Thesis Outline
This thesis consists of two main parts. The first part presents an introduction,
problem description and background to the scientific work carried out. The
second part comprises a collection of published papers, papers A-E.
The remainder of the thesis is structured as follows:

Chapter 2 presents the background to the research including the techniques
and tools that have been used.

Chapter 3 presents the main technical contributions, the research methodol-
ogy, the research process, the problem definition, and a summary of the
contributions. In addition, a summary of the included papers and my
contribution to the results are presented.

Chapter 4 complements Chapter 2 in that we describe the relevant state-of-
the-art, which is related to the work carried out in this thesis.

Chapter 5 concludes the introductory part of thesis and discusses possible
contingency directions.

Chapter 6-10 correspond to the papers that form the basis of this thesis.

Chapter 2

Background and Utilized
Techniques

This chapter presents technical information about relevant areas within the
scope of this thesis, such as embedded systems, real-time systems, component-
based software engineering, and real-time database management systems. In
addition, this chapter presents the major tools and techniques that have been
used within the scope of this work, e.g. Save CCT, ProCom, AUTOSAR and
Arctic Core, COMET, and Mimer SQL Real-Time.

2.1 Embedded Systems
An embedded system is a computer system, typically custom-made to perform
a certain task or small set of tasks by interacting through sensors and actuators.
Nowadays, these embedded systems can be found almost everywhere. They
are used in watches, vehicles, robots, airplanes, and even toothbrushes. Their
purpose is most often to reduce the number of mechanical parts by replacing
them with electronics, in order to add functionality and/or to save costs. Most
of these systems that we encounter in our everyday life are static, i.e. the
software is never modified. However, there is an increase of devices that are
more dynamic and where software can be continuously updated or replaced.
An embedded system is characterized by limited hardware resources such as
memory size and processor performance. Traditionally, embedded systems are
either insolated devices or a part of a larger interconnected system. The current

7

8 Background and Utilized Techniques

trend driven by new demands on functionality and features is to change embed-
ded systems from being stand-alone systems to being interconnected with other
systems. An example of such a system of systems is Car-to-Car (C2C) commu-
nication [6], which allow cars to interact with each other to share information
about, for example, a possible nearby hazard or to access the internet for info-
tainment services. This entails new requirements on how data is accessed and
shared. The important aspects include flexibility, dependability and security.

2.2 Embedded Real-Time Systems
An embedded real-time system has additional requirements, compared to more
general embedded systems, namely not only to perform its task correctly, but
also to perform it predictably and within a predefined time interval: not too
soon and not too late. Real-time systems are not only about performing a
task as fast as possible. I general, real-time embedded systems interact with
the environment where external events are perceived by sensors. These events
are then analyzed and actuated upon, based on the result of the analysis. A
typical example of a real-time system in a vehicle is an air-bag which has to be
inflated within a certain time frame if activated by a collision. If the inflation is
triggered too soon or too late the air-bag could cause the passengers even more
harm than a complete lack of inflation.

Traditionally, real-time systems are divided into two main classes: hard and
soft real-time systems. A hard real-time system should perform its actions be-
fore a defined deadline. A failure in meeting the deadline can have catastrophic
consequences if the system is safety-critical. An air-bag is a typical example
of such a system.

A soft real-time system usually manages less critical applications where a
missed deadline can have a negative, but tolerable, effect on the performance
of the system. Examples of such systems may concern the display of statistical
information, the control of power windows, or to perform diagnostics.

In many applications, combinations of both hard and soft real-time tasks
are used.

2.3 System Modeling and Development
Developing any type of complex software is most often a difficult and time
consuming task. Nowadays, a common solution to manage this problem, is
to develop tools and techniques to raise the level of abstraction, build models,

2.3 System Modeling and Development 9

Sensor Mode

Comp 1

HMI

Actuator

Comp 2

Comp 3

Required interface Provided interface

Pipe

Filter

Figure 2.1: CBSE architectural example

generate code, and to reuse as much as possible. A frequently used technique
within automotive software development is Component-Based Software Engi-
neering (CBSE).

2.3.1 Component-Based Software Engineering

Component-Based Software Engineering aims to achieve a high level of ab-
straction when designing systems by dividing systems into well-defined and
encapsulated building blocks called components. These components have well-
defined communication interfaces that make them reusable entities that can be
assembled to form entire systems. CBSE introduces a possibility to maintain
and improve systems by replacing individual components. In this way, a sig-
nificant amount of development effort and costs can be saved [7].

Figure 2.1 shows an example of a pipe-and-filter [8] component model
where data is passed between components (filters) using connections (pipes).
The entry point for the connection to the components is the interface (port). No
communication outside of its interface is allowed.

A component can have two types of interfaces: required and provided. The
required interface specifies what is needed as input to be able to process (fil-
ter) the data and output the result to the provided interface. Furthermore, a
component can be either a white-box or a black-box component. A white-box
component reveals its internal composition. This can enable developers to di-
rectly change the source code if needed. However, a changed behavior of the
component, i.e., new versions emerges, can make it difficult to propagate, for
instance, bug fixes. A black-box component is typically already compiled and
does not reveal any internal details.

10 Background and Utilized Techniques

There is a great variety of component models which are suitable for dif-
ferent types of systems. COM [9], EJB [10] and .NET [11] are typically used
for PC applications since they are not sufficiently taking important embedded
systems requirements into account, such as timing properties, safety-criticality
and the limited amount of resources available. Examples of component mod-
els aimed to at satisfying the requirements of embedded systems are the Rubus
component model [12], SaveCCT [13], Koala [14], ProCom [15] and AU-
TOSAR [16].

In the following sections we describe component technologies which are
used in papers B and paper C, namely SaveCCT, ProCom, and AUTOSAR.

2.3.2 SaveCCT

The SaveComp Component Technology (SaveCCT) [13] is focused on embed-
ded control software for vehicle systems, with the aim to be predictable and
analyzable. The applications are built by connecting input and output ports of
components by using their interfaces (see Figure 2.2). Components are then
executed using a trigger-based strict "read-execute-write" semantics.

A component is always inactive until triggered. Once triggered it starts to
execute by reading data from its input ports to perform the computations. Data
is then written to its output ports and outgoing triggering ports are activated.
This allows the execution of a component to be functionally independent of
any concurrent activity, once it has been triggered. SaveCCT also supports
composite components. A composite component is a collection of components
that are encapsulated into a single component with the same type of interface
and behavior as a primitive component.

Figure 2.2 illustrates an example of a SaveCCT graphical representation
of a component. There are two inports into the Engine Controller component,
one data port and one trigger port. Data is read by the oilTempIO component
from the oilTempSensor inport which is triggered with a frequency of 50Hz.
Computations are done and results propagated onto the output port. In this case
the output port is a combined trigger and output port.

SaveCCT supports manual design, integrated analysis tools, and automated
activities such as task and code generation which transforms the component
model into the execution model. In addition, an Integrated Development En-
vironment (IDE) tool is provided, from which developers can develop compo-
nents and graphically design the system. A number of tools are also available
in the IDE for the automated formal analysis of components and architectures.

2.3 System Modeling and Development 11

<<Assembly>>
EngineContoller

<<SaveComp>>

oilTempIO
50 Hz

oilTempSensor

<<SaveComp>>

oilTempIO
50 Hz50 Hz

oilTempSensoroilTempSensor

Figure 2.2: Save graphical application design

In the SaveIDE, component development as well as architectural and system
modeling, is performed manually while system synthesis, glue-code genera-
tion and task allocation are fully automated. Resource usage and timing are
resolved statically during the synthesis.

2.3.3 ProCom

The ProCom component model [15] extends SaveCCT by addressing key con-
cerns in the development of control-intensive distributed embedded systems.
ProCom provides a two-layer component model and distinguishes between a
component model used for modeling independent distributed components with
complex functionality (called ProSys) and a component model used for mod-
eling smaller parts of control functionality (called ProSave).

In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems. Distribution is modeled explicitly, meaning that the physical
location of each subsystem is not visible in the model. ProSys is a hierarchical
component model where composite subsystems can be built out of other sub-
systems. This hierarchy ends with the so-called primitive subsystems, which
are either subsystems coming from the ProSave layer or non-decomposable
units of implementation (such as Commercial-Off-The-Shelf (COTS) or legacy
subsystems) with wrappers to enable compositions with other subsystems.

A subsystem is specified by typed input and output message ports, express-
ing what type of messages the subsystem receives and sends. Message ports
are connected through message channels. An example of this is illustrated in
Figure 2.3, where a message channel is connected to three subsystems. A mes-
sage channel is an explicit design entity representing a piece of information

12 Background and Utilized Techniques

Figure 2.3: ProSys Component Model

that is of interest to one or more subsystems. The message channels make it
possible to express that a particular piece of shared data will be required in the
system, before any producer or receiver of this data has been defined. This will
in addition allow information to remain in the design even if, for example, the
producer is replaced by another subsystem.

2.3.4 AUTOSAR
The Automotive Open System Architecture (AUTOSAR) [16] is a consortium,
where several of the main Original Equipment Manufacturers (OEM), sup-
pliers and software developers within the automotive domain, are members.
AUTOSAR defines a standard component model and middleware platform for
the automotive electronic architecture. One of the fundamental characteristics
of AUTOSAR is the layered architecture that separates the underlying infras-
tructure from the applications which consist of interconnected software com-
ponents. Among other things, these abstraction layers enable hardware to be
replaced without the need for software updates.

The strategy is to achieve a competitive market for vendors where an OEM
can use components and whole applications from "any" supplier. The idea is
also that as much as possible can and should be reused to save cost and to
reduce time-to-market.

AUTOSAR employs the CBSE approach, where software is encapsulated
as components which communicate via well-defined interfaces. The commu-
nication between components is managed by a Virtual Function Bus (VFB),
which acts as a virtual abstraction of the underlying hardware. This enables
early component integration in the development process as they are indepen-
dent of the ECU hardware. The realization of the VFB when configuring the
final target system is the Run-Time Environment (RTE). The RTE represents
the concrete implementation of the VFB. The RTE acts as a communication
center for both internal Electronic Control Unit (ECU) communication and in-
formation exchange between ECUs in the system.

2.4 Data Management 13

2.3.5 ArcCore

Arccore AB [17] is a provider of the open-source Arctic Core embedded AU-
TOSAR platform developed in Eclipse [18]. The open-source solution, to be
used for education and testing, includes Arctic Core and Arctic Studio which
is an Integrated Development Environment (IDE). The commercial solution
offers a number of licensed professional graphical tools to facilitate develop-
ment of a complete AUTOSAR system. Arctic Core includes build scripts and
services such as, network communication, memory, and operating system. In
addition, drivers for different microcontroller architectures are also provided.

Components and their port-based interfaces are developed using the Soft-
Ware Component Builder tool. The Extract Builder tool is used to add selected
components to the ECU, connect ports and to validate the extract. The Run-
Time Environment Builder models the VFB and generates a run-time imple-
mentation of the component communication. The configuration of the target
platform is done in the Basic Software Builder tool which also generates the
configuration files. Since Arctic Core is provided as open source, it is possible
to extend it to also include additional functionalities.

2.4 Data Management

Data management is defined by the Data Management Association (DAMA)
as:

"the development, execution and supervision of plans, policies,
programs and practices that control, protect, deliver and enhance
the value of data and information assets" [19].

All computer systems involve the usage of data in some way. As both the
amount of data and its use increase in an area, an increase of complexity is often
unavoidable. Routines for the documentation, storage, retrieval and security of
data thus become particularly important.

In this thesis we distinguish between two types of data management: design-
time data management and run-time data management. This can be exempli-
fied by an embedded system, where design-time data management refers to
how run-time data is organized and documented during the design and devel-
opment phase. Run-time data management refers to how data is organized and
accessed in memory during execution of the system.

14 Background and Utilized Techniques

2.4.1 Design-Time Data Management

Design-time data management is the interactive link between a designer and
the underlying data management system. Management of data at design-time
has been and still is a fundamental part for managing the complexity of large
scale and data intensive systems in order to decrease time-to-market, costs, and
to increase the quality of the system. A key factor is having up-to-date and cor-
rect information about data residing in the system available during the whole
development cycle. Proper documentation and structure allow for easy access
to information, such as properties that can specify unique naming, type, size
and where the data is used. In addition, this usually includes version handling
of all design information and providing support for multiple user interactions.

The number of dedicated design-time tools for managing data in embedded
real-time systems is quite limited. Most tools focus on the properties of indi-
vidual data elements and how to create or define new data types. They do to a
limited extent present an overview of detailed information on how and where
data is used in the system during development [20, 21].

2.4.2 Run-Time Data Management

Run-time data management concerns how data is managed during execution of
the system. Traditionally, most embedded systems developers handle data ad
hoc and/or reinvent new solutions in an effort to meet the requirements of the
system. This is often done using internal data-structures. Many of today’s sys-
tems are developed in a distributed manner, which in turn could lead to many
different solutions and strategies residing in the same system. A result of this
is that large complex systems become less flexible, difficult, and demanding to
maintain and extend.

Outside the embedded community, powerful tools and techniques are well
established and have facilitated data management in complex data-intensive
systems, such as financial markets, where they have been used for decades.

Similar as the techniques used for modeling a system or for the develop-
ment of functions with a component-based approach to accomplish a higher
level of abstraction, techniques to achieve a more dynamic, structured, and
maintainable data management is available [22].

Database Management Systems (DBMS) are used to organize large am-
ounts of data. Figure 2.4 shows a high level picture of a DBMS system. To put
it simply, a DBMS is an interface and abstraction layer that manages access to

2.4 Data Management 15

the physical data stored in memory. A typical application area has so far been
large enterprise systems such as libraries, commercial web-sites and financial
markets. Examples of enterprise mainstream DBMS are Oracle [23], Microsoft
Access [24] and MySQL [25].

One of the main benefits with a DBMS is the ability to access data using
a standard language. The Standard Query Language (SQL) [26] is the most
common database access language, which in addition is supported by many
high-level tools, for uniform data access. In order to access data or manipulate
data in the database, a number of operations such as, SELECT, INSERT, and
DELETE are used. One or several operations that is executed, as a single logi-
cal block of work in the database, is called a transaction. A transaction is either
performed completely by ending its block of operations with a COMMIT. If
the transaction is aborted before the COMMIT, a rollback to its original state
is performed. A successful COMMIT makes the changes permanently stored
in the database and must take the database from one consistent state to another.

App 1 App 1App 1

Database

Management System

Queries Queries

DB

Figure 2.4: DBMS overview

16 Background and Utilized Techniques

To ensure a correct behavior and safe sharing of data, it is often required
that a database transaction should conform to the ACID properties [27]:

• Atomicity: either all information in a database transaction is updated or
none at all.

• Consistency: after a transaction is completed the database will be in a
valid state. If not, the transaction must be rolled back.

• Isolation: changes that are made to the database will not be revealed to
other users until the transaction is committed.

• Durability: any change to the database is permanent. The result of a
committed transaction cannot be reverted.

Most DBMSs use concurrency control in order to enforce the ACID pro-
perties while handling concurrent operations, in order to avoid transaction con-
flicts to achieve logical correctness. The most commonly used algorithm is
Two-Phase-Locking (2PL) [28] and optimistic concurrency-control [29].

The increasing amount of data and growing data complexity have increased
the need for a DBMS also in embedded systems. There are now several com-
mercial embedded DBMSs available that are suited for the specific needs, such
as a small footprint, of embedded systems [4, 5, 30].

2.4.3 Real-Time Database Management Systems
Embedded real-time systems have different requirements compared to large
enterprise systems. CPU usage, footprint and availability are highly important.
Embedded Real-Time DataBase Management Systems (RTDBMSs) is devel-
oped to support real-time constraints in order to provide a deterministic timing
behavior management of data in complex embedded real-time systems. For
safety-critical embedded real-time systems, predictable access to data is one of
the most important requirements [31].

Compared to the concurrency control algorithms used in a general-purpose
DBMS, most RTDBMSs relax the semantics of the ACID properties in order to
fulfill the real-time properties. This is sometimes necessary in order to comply
with domain-specific requirements [32].

A commonly used concurrency control algorithm that enforce real-time
properties is the Two-Phase-Locking, with High Priority abort (2PL-HP) [33]
which favors transactions with high priorities, thus aborting lower prioritized
transactions, in case of a conflict.

2.4 Data Management 17

2.4.4 COMET RTDBMS
The COMponent-based Embedded real-Time database system [34] (COMET
RTDBMS) is the result of a research cooperation between Linköping and Mälar-
dalen University. The focus was on real-time systems in general and vehicle
systems in particular. COMET is a real-time database management system is
intended to be used as a tightly integrated part of the control-system, providing
new techniques and functionalities such as, providing applications with support
for a mix of hard and soft real-time requirements.

COMET implements the database pointer interface [35] which is a hard
real-time database access-method which uses an application pointer variable to
access individual data in an RTDBMS. A key property of the database-pointer
concept is that reads and writes through database-pointers have deterministic
execution-time with bounded and negligible blocking [36]. They also allow
SQL-based soft real-time database transactions to be executed in the back-
ground without any predictability loss due to any concurrent database-pointer
accesses (i.e. no starvation, conflicts, or restarts of transaction can be caused
by database pointers [35]).

To guarantee hard real-time predictability for database accesses while elim-
inating starvation issues for soft real-time SQL queries, COMET uses the 2V-
DBP concurrency-control algorithm [36] that combines versioning and pes-
simistic concurrency control. 2V-DBP is suited for resource-constrained, safety-
critical, real-time systems that have a mix of hard real-time control applications
and soft real-time management, maintenance, or user-interface applications.

Some of the technologies developed for COMET, including the database
pointer concept, has later been adopted by the commercially available real-
time database system Mimer SQL Real-Time Edition [4].

2.4.5 Mimer SQL Real-Time
Mimer SQL Real-Time (Mimer RT) [4] is a commercial RTDBMS intended
for applications such as vehicle systems, process automation and telecommu-
nication systems. Mimer RT supports applications with both hard real-time and
non-real-time requirements to safely share data without putting real-time pre-
dictability at risk. Hard real-time applications utilize the RTAPI interface to ac-
cess data using database pointers while non-real-time applications use standard
SQL interfaces. Mimer RT combines the standard client/server architecture for
SQL queries with an embedded library architecture for real-time access. The
client/server architecture allows standard interfaces and tools to be used to ac-
cess data both locally and remotely.

Chapter 3

Research Summary

This thesis presents a number of scientific contributions to facilitate design-
time and run-time data management within the area of component-based em-
bedded real-time systems. This chapter presents the technical contributions,
presents the research methodology and research process, restates the problem
definition, outlines the thesis contributions, and gives a résumé of the included
papers.

3.1 Technical Contributions

A Data entity is a design entity that encapsulates metadata into a compilation
of knowledge for run-time data items in the system.

Developers are provided with an additional architectural view, the data ar-
chitectural view, which complements the traditional component-based design
approach. The approach enables run-time data to be acknowledged as design
objects during development, as each data item is tightly coupled with proper
documentation and where properties such as usage, validity and dependency
can be modeled. This enables developers to have an increased knowledge and
understanding of the system.

Furthermore, as data entities are defined completely separate from the de-
velopment of components and functions, data entities persist in the system re-
gardless of any component, function or design changes. Figure 3.1 shows the
metadata that is associated with a data entity.

19

20 Research Summary

Figure 3.1: Data entity description

Figure 3.2 illustrates how our approach (right-hand-side) complements the
traditional component-based design approach represented by dotted lines on
the (left-hand side). The component-based approach includes tools for setting
up the system architecture, developing components, and to perform analysis.
The central database in the middle of the figure acts as the communicating link
between the two approaches.

System
Requirements

Data
Architecture
Development

Component
Architecture

Development

Central
Database

Data
Analysis

ToolData
Modeling

Tool

Component
Development

Tool

System
Analysis

Tool

System
Architecture

Tool
Data

Entities

Process Tool Data

Legend

Figure 3.2: The data entity approach

We have developed a tool suite named, the Embedded Data Commander,
that provide support for modeling of data entities to keep track of system data,
present accurate documentation, and a data analysis tool to perform early anal-
ysis on data items. The data entity approach and tool suite serves a direct
remedy to some of the problems identified in Paper A where one of the investi-
gated systems suffered from as much as a 15% overhead because of unused and

3.1 Technical Contributions 21

stale data was being produced. This was due to unknown dependency issues
where hardly anything could be removed due to a lack of knowledge.

The goal is to achieve higher software quality, lower development costs,
and to provide higher degree of control over the software evolution process.

RTDBMS

DB

Proxy

DB

Proxy

Glue Code

Component

Framework

DB Unaware

Component A

Synthesized

Architecture

DB Unaware

Component B

Figure 3.3: Database proxies connecting components to an RTDBMS

The Database proxy concept enables a successful integration of an RTDBMS
into a component-based system. As illustrated in Figure 3.3, a database proxy
is part of the component framework, thus external to the component. The task
of the database proxy is to enable for components to interact with an RTDBMS
using their normal interfaces. The database proxy is placed between the com-
ponent and the RTDBMS and includes pieces of code that translates data from
a components port to a database call and further on to an RTDBMS residing in
the component framework and vice versa. These pieces of code are neither a
part of the component nor a part of the RTDBMS; instead database proxies are
automatically generated glue-code synthesized from the system architecture.

Hard proxies use state-of-the-art database pointers provide predictable ac-
cess to individual data elements, and soft proxies use an SQL interface to pro-
vide flexible access to data. A hard real-time database-pointer provides direct
access to a data element in memory without calling the database server. In
addition, that a hard proxy only translates native data types such as an integer,
character or float, implies that no unpredictable type conversions or translation
of complex data types that require unbounded iterations are allowed.

22 Research Summary

/*** Original code example ***/
void function(){
DisableAllInterrupts();
Read_Value_Port_1(&Port_1_data_1->value);
EnableAllInterrupts();
}
/*** Database proxy code ***/
void function_DBProxy(){
MimerRTGetInteger(DBP_Actuator, &Port_1_data_1->value);
}

Figure 3.4: Differences between regular code and database proxy code

Figure 3.4 illustrated the code differences, using c-code, between an im-
plementation not using, and using hard database proxies. In the original code
example, all interrupts are disabled before the call to read the value is made.
After the value has been read, interrupts are enabled. When using a database
proxy to read the value from the database using a database pointer, the differ-
ence to the original code, is that the interrupt disable is not needed within the
database proxy, since this is managed by the database.

A soft proxy is typically used for graphical interface components, logging
components, and diagnostics components. Therefore, soft proxies emphasize
support for more complex data structures by using an SQL interface, towards
the RTDBMS.

3.2 Research Process
The methodology that has permeated all of the research presented in this thesis
is based on the technology transfer model presented by Gorschek et al. [37]; see
Figure 3.5. However, since this thesis is not a fully integrated industrial project,
steps 5 and 7 have not been included and are left for future work. In addition,
we have used research approaches: techniques and descriptive models, as well
as the validation techniques: implementation, evaluation, and experience tech-
niques described by Shaw [38].

Our research has been guided by the following process (see Fig 3.6), where
each item corresponds to specific elements of the technology transfer model:

• Identifying Problems: A literature study of the state-of-the-art and a
case-study conducted at five industrial companies identified that the cur-
rent status within data management in component-based embedded real-

3.2 Research Process 23

Problem/

issue

Candidate

solu�on

Valida�on

in

academia

Sta�c

valida�on

Dynamic

valida�on

Release

solu�on

Academia Industry 1

2

4 5 6

7

3

22

Problem

formula�on

Study

state of

the art

_
_

 _
_

 _
_

 _
_

 _
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_
 _

_

Figure 3.5: The technology transfer model

24 Research Summary

Literature

studies

Paper A

Case-study

Design-�me

data

management

Ph.D. thesis

Run-�me data

management

Paper B

Data en�ty

Paper C

Database

proxies

Id
e

n
�

fy
in

g

p
ro

b
le

m
s

D
e

v
e

lo
p

in
g

so
lu

�
o

n
s

Paper D

AUTOSAR

implementa�on

Paper E

Arc�c Core

integra�on

E
v
a

lu
a

�
n

g

re
su

lts

D
e

p
lo

y
in

g

re
su

lts

Figure 3.6: Research progression overview

3.3 Problem Description, Restated 25

time systems is indeed becoming an increasing challenge for developers
and system architects. The case-study, which constitutes Paper A, iden-
tifies a number of problem areas and possible remedies. These research
advances correspond to steps 1 and 2 in Figure 3.5.

• Developing Solutions: The continued research, directly targeting the
identified problem areas, was sub-divided into two research directions,
design-time and run-time data management, which resulted in papers
B and C. Paper B presents the data-entity approach that complements
design-time tools and techniques with an additional architectural view
as well as tools for data management. Paper C presents a solution, de-
noted database proxies, for a successful integration of an RTDBMS into
a CBSE setting. Both papers B and C correspond to steps 3 and 4 in
Figure 3.5.

• Evaluating results: In the next phase, to validate our approach in an
industrial setting, the implementation and evaluation of database proxies
in AUTOSAR, a state-of-the-art component-based development archi-
tecture, was carried out. An authentic automotive hardware node was
used in the evaluation. This resulted in Paper D, which corresponds to
step 6 in Figure 3.5.

• Deploying results: Paper E presents techniques for how to integrate
our approach into the commercially available development tool suite,
Arctic Core. The use of an RTDBMS in conjunction with database prox-
ies will be included in the meta-model and presented in the graphical
user interface, as an additional application design option. This final step
corresponds to step 6 in Figure 3.5.

3.3 Problem Description, Restated
The continuous increase of complexity and new requirements on data man-
agement enhances the challenges with respect to performing design-time and
run-time data management in a predictable, efficient and structured manner.
Developers need new tools and techniques to aid them with the problems of
today and tomorrow.

In an effort to understand the problem concerning data management, (i) this
thesis investigates the current issues within industrial embedded systems devel-
opment, and (ii) what tools and techniques could facilitate that development,
i.e. how and in which contexts such systems/tools could be deployed.

26 Research Summary

To be precise, the thesis focuses on the following:

F1 How is data currently managed in the industry and what are the main
problems concerning design-time and run-time data management?

F2 How can we support design-time data management within CBSE?

F3 How can we support run-time data management within CBSE by utiliz-
ing state-of-the-art RTDBMS technology?

F4 How can real-time data management techniques be integrated into an
industrial development setting?

3.4 Thesis Contributions
The present thesis makes the following major contributions to the area of com-
plex component-based embedded real-time systems:

1. A case-study that emphasizes the importance of data management in or-
der to increase the knowledge and understanding of the system. Ten
problem areas within documentation, tool support and routines, as well
as remedies, are presented to achieve a more data-centric development
strategy. This contribution corresponds to research focus F1.

2. The concept of data entity, which enables design-time modeling, man-
agement, documentation and analysis of run-time data. This contribution
corresponds to research focus F2.

3. A technique denoted database proxies, which enables the integration of
an RTDBMS into a component technology. Database proxies are auto-
matically generated glue-code that translates data between component
ports and an RTDBMS that resides in the component framework. This
contribution corresponds to research focus F3.

4. An implementation of tools and techniques for the realization of data
entities into a component-based development suite named Save CCT.
This contribution serves as a validation of contributions 2 and 3.

3.4 Thesis Contributions 27

5. An implementation and evaluation of database proxies in AUTOSAR,
using industrial tools and hardware. This contribution serves as a pos-
sible technology transfer of contribution 3 and corresponds to research
focus F4.

Part II of the thesis contains five papers, denoted Paper A to Paper E. Each
of these papers is summarized below.

My contribution to each of the papers has been to define the different
concepts, implement the tools, perform the evaluations and be the main author.

3.4.1 Paper A
Paper A: Design-Time Management of Run-Time Data in Industrial Embed-
ded Real-Time Systems Development, Andreas Hjertström, Dag Nyström, Mik-
ael Nolin and Rikard Land, 13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Hamburg, Germany, Septem-
ber, 2008

In this paper, we present the results of an industrial case-study conducted at
five companies where we have studied the current state of practice in data
management and documentation in embedded real-time systems. The case-
study identifies a lack of design-time data management, which often results in
costly development and maintenance. It confirms that new processes and tech-
niques for achieving an efficient, up-to-date and satisfactory documentation are
needed. Furthermore, inadequate tools and routines for data management of in-
ternal ECU data results in costly development and maintenance, which is often
entirely dependent on the know-how of single individual experts. Ten specific
problems are identified, four key observations and six suggested remedies are
presented.

3.4.2 Paper B
Paper B: A Data-Entity Approach for Component-Based Real-Time Embed-
ded Systems Development, Andreas Hjertström, Dag Nyström and Mikael
Sjödin, 14th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Palma de Mallorca, Spain, September, 2009

This paper presents our design-time data management approach, denoted the
data entity approach. The motivation for this approach stems from identified
problems presented in Paper A.

28 Research Summary

The approach allows efficient design-time management of run-time data to
be included in component-based real-time embedded systems development as
an additional architectural view that complements the traditional architectural
component inter-connections and development view. The data entity approach
elevates run-time data to be acknowledged as first class objects of the architec-
tural design, and allows data to be modeled and analyzed in an early phase of
the development.

The paper also presents a design-time data management tool suite called
Embedded Data Commander (EDC), where data entities can be created, re-
trieved and modified. Furthermore, they can be associated with design entities
such as message channels created from the ProCom component architecture
development. In addition, the tool allows documentation to be generated from
an ongoing project as well as presenting data dependencies, e.g., who the pro-
ducers and consumers of a data item are. EDC provides tools for data modeling
and analysis.

3.4.3 Paper C

Paper C: Data Management for Component-Based Embedded Real-Time Sys-
tems: the Database Proxy Approach, Andreas Hjertström, Dag Nyström and
Mikael Sjödin, Journal of Systems and Software, vol 85, nr 4, p821-834, Else-
vier, April, 2012

To close the gap between two existing techniques used by the industry to man-
age the complexity and increase the flexibility, of component-based embedded
real-time systems development, we introduce the concept of database prox-
ies. Database proxies are automatically generated glue-code synthesized from
the system architecture and used to decouple components from the underlying
database in order for components to preserve the components encapsulation
and possibility of reuse. A component with direct access to an RTDBMS is
dependent on that specific RTDBMS and may not be useable in an alternative
environment.

The use of an RTDBMS in the component-based setting provides a new
range of possibilities, such as structured data management, as well as flexible
and predictable access to both critical and non-critical data. By using data-
base proxies in conjunction with state-of-the-art database pointer techniques,
developers can employ the full potential of both CBSE and an RTDBMS. With
this approach, developers can focus on application development instead of
reinventing data management techniques or develop solutions using internal

3.4 Thesis Contributions 29

data structures. As proof of concept this work has been implemented in the
SaveCCT framework where a system can be designed with or without a data-
base. In addition, the database proxy properties are generated to glue-code
from its specifications and further to target c-code. Furthermore, an evaluation
of the execution time overhead and additional memory overhead is in the order
of 1-2%.

3.4.4 Paper D
Paper D: Introducing Database-Centric Support in AUTOSAR, Andreas Hjer-
tström, Dag Nyström and Mikael Sjödin, 7th IEEE International Symposium
on Industrial Embedded Systems (SIES), Karlsruhe, Germany, June, 2012

In this paper we take the database proxy concept from research-oriented tech-
niques to an industrial setting by showing how a real-time database manage-
ment system can be integrated into the basic software of AUTOSAR by using
database proxies. The aim with the approach is to show how a database-centric
strategy can facilitate the development and maintenance of an automotive sys-
tem by providing the proven capabilities of an RTDBMS. Database proxies are
used to manage the communication between components on the AUTOSAR
Virtual Function Bus (VFB). The COMET RTDBMS is successfully integrated
into the AUTOSAR Basic Software (BSW), and evaluated on an authentic
automotive hardware node. The evaluation shows that our approach can be
used without components being aware of it, jeopardizing system performance
or safety. Moreover, this greatly simplifies the development of soft real-time
functions that process large data volumes, e.g., for statistics and logging. Our
measurements show that the concept only introduces a CPU overhead in the
order of 4% under typical workload conditions.

3.4.5 Paper E
Paper E: Data Management in AUTOSAR: a Tool Suite Extension Approach,
Andreas Hjertström, Dag Nyström and Mikael Sjödin, MRTC Report, submit-
ted for conference publication

In this paper, our research is transferred from academia to industry as a proof of
concept and to demonstrate the usefulness of our research results. We present
how a database proxy can be integrated into the development of automotive
systems using industrial tools. Our approach enables a clear separation of

30 Research Summary

concerns between the system architect, component developer, and the Data-
Base Administrator (DBA). This separation of concerns allows each part to be
managed and reconfigured independent of each other. Furthermore, a plug-in
approach, developed for the Arctic Core tool suite and an integration of the
Mimer SQL Real-Time [4] database into the basic software of AUTOSAR is
presented.

Chapter 4

State-of-the-Art

The aim with this chapter is to present relevant background information re-
garding the development of automotive systems and we introduce some tools
and techniques that are important in this respect. This chapter complements
Chapter 2 in that we describe the related areas that are mostly orthogonal to the
work performed in this thesis.

4.1 Automotive Systems

Vehicles have in recent years evolved from mechanical systems to advanced
computer-controlled systems where mechanical parts are continuously replaced
by computer-controlled functions to achieve higher safety, less pollution, and
more comfort. In the early phase of this technological transformation, non-
critical tasks such as central locking and parts of the engine-control were han-
dled by small embedded computers. In today’s automotive systems, more and
more safety-critical functionality is replaced by computers that control breaks,
steering, airbags, etc.

In addition, the trend is that automotive systems are evolving from closed
stand-alone systems to highly dynamic systems interconnected and communi-
cating with the surrounding environment. There is a lot of research on new
technologies such as Car-to-Car (C2C), and Car-to-Infrastructure (C2I) [6]
communication. As an example, the system can be used to inform nearby
vehicles of possible dangers that have been discovered and even of its own lo-
cation to avoid a possible collision. In addition, the user demand for integrating
third-party applications, such as smart phones and internet connectivity, poses

31

32 State-of-the-Art

a range of new challenges concerning areas such as secure data access and han-
dling shared data between safety-related and non-safety-related functionalities.

The amount of software in high-end automotive systems is increasing and
is estimated to have reached 1 GB [39]. In addition, an advanced vehicular
system can include more than 80 Electrical Control Units (ECUs) which ex-
change in excess of 2500 signals [40] on several separate bus systems such
as CAN, FlexRay, LIN and MOST [41, 42, 43, 44]. To complicate matters
further, a high-end system can have more than 2000 functions that often are
highly dependent on each other. Consequently, the costs related to software
development and electronics have surged and can reach as much as 40% of the
total development costs of a car [2]. This has increased the need for flexible
platforms that can accommodate entire product lines for several years, in an
effort to reduce development costs [45].

The development of functionality in these complex automotive systems
requires expertise within the areas of infotainment, engine control, safety-
critical applications, etc. As a result of this, Original Equipment Manufac-
turers (OEM), in-house development is increasingly replaced by Commercial-
Off-The-Shelf (COTS) parts from various suppliers with expertise in certain
areas [2]. Integrating heterogeneous subsystems from different sources while
managing their evolution and maintenance constitutes a great challenge [46].
In addition, as stated by Schulze et al. [39] and Saake et al. [3], the ad-hoc
and/or reinvented management of data for each ECU with individual solutions
using internal data structures can lead to concurrency and inconsistency prob-
lems. A standardized and overall data model and management system has great
potential as a solution to deal with the distributed and uncoordinated data in
these complex systems [1].

A lot of focus within the automotive industry is the use of a standardized
software architecture such as the AUTOSAR [16]; see section 2.3.4. Another
approach targeting complexity, cost, time-to-market, etc. when developing au-
tomotive systems is Model Driven Engineering (MDE).

4.1.1 Model Driven Engineering
Model Driven Engineering (MDE) supplies an abstraction of reality by pro-
viding a model of reality that relates to a given aspect of the system. It often
does this by only representing a selected part of the system, thus simplifying
the overall view. To build a model that represents all aspects of reality or of
a system would not only be hard, it would in many respects be impossible to
understand [47]. Within computer science, systems are often divided into mod-

4.1 Automotive Systems 33

els that represent aspects such as requirements, system architecture, validation,
etc. MDE has also evolved modeling from being a quite rudimentary form
of documentation to serving as formal interchange formats used by tools for
precise implementation purposes within computer engineering.

A model must conform to some specified (language and grammar) rules
called meta-model in order to be interpretable. There is also the possibility
to build hierarchical models, i.e., models of models. An important feature of
MDE are to transform one model into another or to generate e.g. code or
reports [48].

In the automotive sector, MDE often uses several different modeling lan-
guages such as EAST-ADL2 [49], TADL [50], MARTE [51] or SysML [52],
which are based on and/or extend concepts from UML.

4.1.2 EAST-ADL2
EAST-ADL2 [49] is an automotive architecture description language, devel-
oped as a UML 2.0 profile [53] within the ATESST project [54]. EAST-ADL2
aims to support the development of complex automotive software by providing
structured system information management at five levels: vehicle level, design
level, analysis level, implementation level and operation level.

1. Vehicle level: focuses on the features visible to the end users, such as
breaks or collision warning. A feature is specified by use cases and re-
quirements to meet, for instance, the configuration of a specific vehicle
variant.

2. Analysis level: provides analysis support of what the system shall do
and describes the functions that enable the available vehicle features.
This allows functions to be integrated and validated before the actual
software and hardware are developed.

3. Design level: includes a behavior description of the functionalities with-
out any implementation constraints in order to meet non-functional con-
straints such as specific supplier concerns or reusability issues. The fo-
cus is on the interaction and behavior of functions.

4. Implementation level: a system description of software components,
middleware etc.

5. Operation level: describes low-level details concerning the deployment
on to hardware.

34 State-of-the-Art

The implementation and operation levels are highly related and comple-
ment the AUTOSAR basic software description. In short, AUTOSAR defines
the final implementation details and EAST-ADL2 defines the logical and func-
tional architecture aspects.

Neither EAST-ADL2 nor any other of the previously mentioned modeling
languages provides specific techniques or support for data management.

4.2 Design-Time Tools for Automotive Data Man-
agement

Design-time data management is a recognized problem in the automotive in-
dustry. Hence, a couple of tools that provide partial solutions to the problem
have been developed. To provide data management support at design-time, the
dSpace Data Dictionary tool [20] holds information about an ECU for calibra-
tion and code generation. It is a central data container for model-independent
data management that is used to share information such as interface variables,
their scalings, typedefs, etc. throughout an entire project.

A data dictionary is also used for managing AUTOSAR properties, along-
side AUTOSAR specification properties at block level in Targetlink [20]. The
input to the dSpace data dictionary is templates generated from Simulink [55].
The data dictionary provides access to information such as specifics on C mod-
ules, function calls, tasks, variable classes, and data variants. In addition, de-
velopers are provided with support to import and export AUTOSAR software-
component XML description-files, which can be used by other tools. The infor-
mation included in the dSpace data dictionary reflects the information included
in the software component templates and does not include information about
the overall system and what data and signals are included. It is also possible to
specify and produce signal lists and spreadsheets with information regarding
data. The start of the development process in this tool is to model components
and their structure. In contrast to the data entity approach presented in this
thesis, the tool does not focus on managing or visualizing the data flow in the
system. Neither does it include analysis techniques to make data dependencies
visible.

The Automotive Data Dictionary (ADD [21]), is an additional tool that
provides a repository solution to centralize data declarations and ensure la-
bel and variable uniqueness for companies. ADD has an interface towards
MATLAB and Simulink and is used to develop ECUs within the automotive
industry. The main goal is to close the gap between software development and

4.2 Design-Time Tools for Automotive Data Management 35

requirements engineering in order to avoid inconsistency throughout the whole
development process. It gives the developers an overview of the data specifi-
cation but does not include any implementation details. Contrary to our data
entity approach, ADD mostly focuses on requirements engineering and unique
labeling and does not cover information about data flow and data dependencies.

Chapter 5

Conclusions and
Contingency

In this thesis, we bring together new techniques in order to take a holistic ap-
proach to data management in the development of component-based embedded
real-time systems.

5.1 Conclusions

This research stems from the rapidly growing complexity when it comes to
the amount of data and data flow between components in today’s embedded
real-time systems. This has so far not been addressed by contemporary devel-
opment techniques. Instead, the focus tends to be on achieving a higher level
of abstraction by encapsulating functionality. Current research shows that the
state-of-practice for managing data on the system level and internally in indi-
vidual nodes is not adequate to meet the increasing complexity when building
the embedded systems of tomorrow. This was also confirmed by the case-study
presented in this thesis.

A starting point was to develop techniques that would enable a Real-Time
Database Management System (RTDBMS) to become a native part of the de-
sign and to manage the data flow between components. The use of an RT-
DBMS within data-intensive applications, with high demands on flexibility
and structured data management, is not new. It has been a natural next step as
systems have evolved and the requirements on data have become increasingly
complex. However, the use of an RTDBMS in an embedded setting, and partic-

37

38 Conclusions and Contingency

ular in real-time systems, is still somewhat unconventional, even though today
there are several commercial RTDBMSs tailor-made for resource-constrained
real-time embedded systems.

To manage data complexity, the use of an RTDBMS in conjunction with
Component-Based Software Engineering (CBSE) is an interesting challenge,
which we have tackled in this thesis. This approach is not obvious since the
design goals of CBSE and RTDBMSs stand in opposition to each other. To
overcome these contradictions we have introduced the concept of database
proxies. In addition, we have shown, through implementations and evaluations
using AUTomotive Open System ARchitecture (AUTOSAR) compliant tools
and automotive hardware, that this approach offers a number of new possi-
bilities at limited cost with respect to execution time overheads and resource
consumption.

Furthermore, this thesis presents a new design-time artifact named data
entity. The idea behind a data entity is to elevate run-time data to becoming
a first-class citizen in the system architectural design and to introduce a data
architectural view. Data entities allow data to be documented, modeled and
analyzed separately from the actual component implementation. Since data
entities are designed in separate, they could be used in other component mod-
els, with channels, regular connections or other design approaches then those
investigated within this thesis.

In this thesis we have implemented support for data-entities within the
SaveComp component technology as well as support for database-proxies with
the ProCom and AUTOSAR component technologies. However, the two con-
cepts have not been designed for use with any particular underlying component
technology and we believe that results could be generalized to most component
technologies that are based on statically configured pipes-and-filter style com-
ponents. As a run-time backend we have use Mimer Real-Time edition; how-
ever any underlying storage-technology could be used with appropriate modi-
fication of our glue-code generators. One should note though, that in order to
achieve hard real-time support, the storage-technology needs to hard real-time
primitives.

It is our firm belief that new, adequate data management techniques are cru-
cial to meet future requirements and to contribute to the evolution of component-
based embedded real-time systems development.

5.2 Contingency 39

5.2 Contingency
There is much work to be done in the area of data management in component-
based embedded real-rime systems. Existing techniques must incorporate data
management as a natural part of the development. In addition, new techniques
and tools have to be developed to keep up with the evolution of systems. In this
thesis we present techniques that could be of use with respect to some aspects
of the development of large complex systems. However, a lot more research
and many more solutions are needed in an effort to cover the whole area.

Although we have implemented and evaluated database proxies using com-
mercial tools, this has been done in a "controlled" research environment. A
natural next step would be to test the approach in an industrial project to eval-
uate its usefulness in practice and in the development process. This would be a
final step corresponding to steps 5 and 7 in the methodology presented in sec-
tion 3.2. This would require full-scale integration, in for instance Arctic Core,
complete with automatic code generation and validation procedures. Since our
implementation is not entirely complete with all functionalities, additional im-
plementation efforts would be necessary.

Some work has been done on the visualization of data entities, as a con-
tingency of the Embedded Data Commander (EDC) tool, which displays data
dependency graphs and analytic information. This is an interesting continua-
tion that should be developed and evaluated against other tools and approaches
to evaluate its usefulness in an industrial development project.

An additional venue of research, which we have not yet touched upon, is
the relation between our proposed techniques and contemporary techniques
for model-based development (MBD). While we don’t anticipate any conflicts
between MBD and our proposals, it remains to be studied, e.g., how and where
our data-modeling with data-entities fits into the workflow of an MBD-process.

EDC allows timing requirements to be modeled. However, to validate this
type of requirements it would be useful to relate these requirements to timing
requirements onto the execution of producers and consumers of data. It would
therefore be interesting to map data-timing requirements to Timing Augmented
Description Language (TADL) [50] descriptions to allow automated validation
through scheduling-analysis.

Bibliography

[1] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas
Stauner. Software Engineering for Automotive Systems: A Roadmap.
Future of Software Engineering, pages 55–71, 2007.

[2] Manfred Broy. Challenges in Automotive Software Engineering. In ICSE
’06: Proceedings of the 28th International Conference on Software Engi-
neering, pages 33–42. ACM, 2006.

[3] Gunter Saake, Marko Rosenmuller, Norbert Siegmund, Christian Käst-
ner, and Thomas Leich. Downsizing Data Management for Embedded
Systems. Egyptian Computer Science Journal, pages 1–13, 2009.

[4] Mimer SQL Real-Time Edition, Mimer Information Technology, Upp-
sala, Sweden. http://www.mimer.se, 2012.

[5] eXtremeDB in-Memory Database, McObject. Issaquah, WA USA.
http://www.mcobject.com/extremedbfamily.shtml.

[6] AUTOSAR Open Systems Architecture. http://www.car-to-car.org.

[7] Ivica Crnkovic. Component-based Software Engineering - New Chal-
lenges in Software Development. In Software Development. Software
Focus, pages 127–133. John Wiley and Sons, 2001.

[8] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John Wiley and Sons,
1996.

[9] D. Box. Essential COM, chapter Microsoft Component Object Model
(COM.

41

42 BIBLIOGRAPHY

[10] EJB 3.0 Expert Group. Enterprise JavaBeansTM,Version 3.0 EJB Core
Contracts and Requirements Version 3.0. Final Release, 2006.

[11] .NET Framework. Microsoft Visual Studio Developer Center.
http://www.microsoft.com/NET/.

[12] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The Rubus Component Model
for Resource Constrained Real-Time Systems. In 3rd IEEE International
Symposium on Industrial Embedded Systems, June 2008.

[13] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
Save Approach to Component-Based Development of Vehicular Systems.
Journal of Systems and Software, 2006.

[14] Rob van Ommering. The Koala Component Model for Consumer Elec-
tronics Software, volume 33, chapter 3, pages 78 – 85. IEEE Computer
Society, Computer archive, 2000.

[15] Tomas Bures, Jan Carlson, Ivica Crnkovic, Severine Sentilles, and Aneta
Vulgarakis. ProCom - the Progress Component Model Reference Manual.
Technical Report, Mälardalen University, 2008.

[16] AUTOSAR Open Systems Architecture. http://www.autosar.org.

[17] ArcCore. Open Source AUTOSAR Solutions, Göteborg Sweden.
http://www.arccore.com.

[18] The Eclipse Foundation, Ottawa, USA. http://www.eclipse.org/.

[19] DAMA International. The DAMA Guide to the Data Management Body
of Knowledge. Technics Publications, 2009.

[20] dSPACE Data Dictionary, dSPACE Tools. http://www.dspaceinc.com.

[21] Visu-IT, Automotive Data Dictionary. http://www.visu-it.de/ADD/.

[22] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, June 1970.

[23] ORACLE, Database Solutions. http://www.oracle.com.

BIBLIOGRAPHY 43

[24] Access - Database Management System, Microsoft.
http://www.http://office.microsoft.com/en-us/access/.

[25] MySQL Database, Oracle. http://www.oracle.com/us/products/mysql.

[26] ISO SQL 2008 standard. Defines the SQL language.
http://www.iso.org/iso/home.htm, 2009.

[27] Fred R. McFadden, Mary B. Prescott, and Jeffrey A. Hoffer. Modern
Database Management. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[28] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. The Communi-
cations of the ACM, 19(11):624–633, November 1976.

[29] H. T. Kung and John T. Robinson. On Optimistic Methods for Con-
currency Control. ACM Transactions on Database Systems, 6:213–226,
1981.

[30] Polyhedra In-Memory Database. http://www.enea.com, Sept 2011.

[31] Dag Nyström. Data Management in Vehicle Control-Systems. PhD thesis,
Mälardalen University, October 2005.

[32] Barbara Gallina and Nicolas Guelfi. SPLACID: An SPL-Oriented,
ACTA-Based, Language for Reusing (Varying) ACID Properties. Soft-
ware Engineering Workshop, Annual IEEE/NASA Goddard, 0:115–124,
2008.

[33] Robert K. Abbott and Hector Garcia-Molina. Scheduling Real-Time
Transactions: a Performance Evaluation. ACM Trans. Database Syst.,
17:513–560, September 1992.

[34] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[35] Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen
Hansson. Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the 9th International
Conference on Real-Time and Embedded Computing Systems and Appli-
cations, pages 623–634, 2003.

44 BIBLIOGRAPHY

[36] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, 2004.

[37] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson. A Model for Technol-
ogy Transfer in Practice. Software, IEEE, 23(6):88 –95, nov.-dec. 2006.

[38] Mary Shaw. The Coming-of-Age of Software Architecture Research. In
Proceedings of the 23rd International Conference on Software Engineer-
ing, ICSE ’01, pages 656–, Washington, DC, USA, 2001. IEEE Computer
Society.

[39] Sandro Schulze, Mario Pukall, Gunter Saake, Tobias Hoppe, and Jana
Dittmann. On the Need of Data Management in Automotive Systems. In
Johann Christoph Freytag, Thomas Ruf, Wolfgang Lehner, and Gottfried
Vossen, editors, BTW, volume 144 of LNI, pages 217–226. GI, 2009.

[40] Nicolas Navet. Trends in Automotive Communication Systems. In Pro-
ceedings of the IEEE, volume 93, pages 1204–1223, June 2005.

[41] Robert Bosch GmbH. CAN Specification. Bosch, Postfach 30 02 40
Stuttgart, version 2.0 edition, 1991.

[42] FlexRay Consortium. http://flexray.com.

[43] Local Interconnect Network. http://www.lin-subbus.org.

[44] Media Oriented Systems Transport (MOST).
http://www.mostcooperation.com/home/index.html.

[45] Håkan Gustavsson and Jakob Axelsson. Evaluating Flexibility in Em-
bedded Automotive Product Lines Using Real Options. In SPLC ’08:
Proceedings of the 2008 12th International Software Product Line Con-
ference, pages 235–242, Washington, DC, USA, 2008. IEEE Computer
Society.

[46] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas
Stauner. Software Engineering for Automotive Systems: A Roadmap.
In FOSE ’07: 2007 Future of Software Engineering, pages 55–71, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

BIBLIOGRAPHY 45

[47] J. Rothenberg. The Nature of Modeling. pages 75–92. John Wiley &
Sons, Inc., New York, NY, USA, 1989.

[48] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transfor-
mation Approaches. IBM Syst. J., 45(3):621–645, July 2006.

[49] The ATESST Project, East-ADL Specification. http://www.atesst.org.
March, 2012.

[50] The TIMMO Consortium. TADL: Timing Augmented Description Lan-
guage, Version 2. TIMMO (TIMing MOdel), Deliverable 6, October 2009.

[51] MARTE Specifcation Version 1.0 (formal/2009-11-02).
http://omgmarte.org. March 2012.

[52] OMG: UML Profile for SysML. http://www.omgsysml.org. March, 2012.

[53] The Object Management Group. Unifed Modeling Lan-
guage:Superstructure. Version 2.0, OMG document formal/05-07-
04, 200.

[54] Advancing Traffic Efficiency and Safety through Software Technology
(ATESST). http://www.atesst.org. March, 2012.

[55] The MathWorks. http://www.mathworks.com.

