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The Born-Oppenheimer approximation

1 Re-writing the Schrödinger equation

We will begin from the full time-independent Schrödinger equation for the eigenstates of a
molecular system
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(1)
The m index runs over electrons, and n over nuclei. Here I have ignored relativistic corrections
to the HamiltonianH, and assumed that the nuclei are pointlike. The Hamiltonian contains no
spin-dependent terms, and so the eigenstates |Ψ〉 will be factorizable into spin and coordinate
parts from now on, I will ignore the spin state and deal with wavefunctions Ψ(R; r)〉 where R
and r are the set of nuclear and electronic positions respectively. This is obviously an insoluble
problem without making approximations. To get started, consider the solution of the problem
if the nuclei were fixed
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φ(r) = Eφ(r)

(2)
This Hamiltonian will produce a complete orthogonal set of eigenstates φR

s (r) with energies
Es(R), where s labels the eigenstate and R reminds us that the eigenstates will be dependent
on where we have fixed the nuclear positions.

It is important to see that if R is changed, the eigenstates φR
s (r) will change continuously,

so that eigenstates of the same s at different R are linked, and form a ‘family’ of states – see
Figure 2. We only run into problems if the families get very close to each other at any point
– this is one of the criteria by which the Born-Oppenheimer approximation can break down.
Note that for now, we don’t actually care about this continuity of families issue, it only arises
when we make the adiabatic approximation later. So, as φRa

s (r) is a complete basis set for
electrons if the nuclei are fixed at Ra, any state with such fixed nuclei can be written

Ψa(R, r) =
∑

s

csδ(R−Ra)φ
Ra
s (r). (3)

Don’t panic about the δ-function: this is just saying that the nuclei are fixed at certain
postitions. Now, for our real system in which nuclei can move, a general state will be a
sum over all possible Ψa(R; r) with appropriate coeficients (i.e., we take a superposition of
all possible locations where the nuclei could be). As Ra is a continuous variable, our sum
becomes an integral

Ψ(R, r) =

∫
dRa

∑

s

cs(Ra)δ(R−Ra)φ
Ra
s (r). (4)

1



!"#$%

#%

&'()*+%,-%!,"#$%

&'()*+%.-%!."#$%

&'()*+%/-%!/"#$%

Figure 1: Electron energy eigenvalues as a function of nuclear separation. Note that that they exist in continuous
‘families’.

Don’t panic about the δ-function: this is just saying that the nuclei are fixed. Now, for our real
system in which nuclei can move, a general state will be a sum over all possible Ψa(R, r) with
appropriate coefficients (i.e., we take a superposition of all possible locations where the nuclei
could be). As Ra is a continuous variable, our sum becomes an integral:

Ψ(R, r) =

�
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�

s

cs(Ra)δ(R − Ra)φ
Ra
s (r) (4)

Note that the factor cs(Ra) varies with position of the nuclei – this allows the wavefunction to
vary with Ra, both in terms of its total magnitude and the relative contributions of different s
states. The δ-function does it’s usual job within the integral, and we are left with:
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φR
s (r)ψs(R). (5)

So far, we have made no approximations, and I have renamed cs(R) as ψs(R) as we now have
something that looks like a wavefunction for the nuclei.

The next step is to substitute Equation 5 into Equation 1:
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Figure 1: Electron energy eigenvalues as a function of nuclear separation. Note that that they
exist in continuous ‘families’.

Note that the factor cs(Ra) varies with position of the nuclei – this allows the wavefunction
to vary with Ra, both in terms of its total magnitude and the relative contributions of different
s states. The δ-function does its usual job within the integral, and we are left with

Ψ(R, r) =
∑

s

cs(R)φR
s (r) =

∑

s

ψs(R)φR
s (r) =

∑

s

φR
s (r)ψs(R). (5)

So far, we have made no approximations, and I have renamed cs(R) as ψs(R) as we now
have something that looks like a wavefunction for the nuclei. The next step is to substitute
Equation 5 into Equation 1, giving
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I have simply split the Hamiltonian into two and swapped the order of summations. Help-

fully, we know that φR
s (r) are eigenstates of the second part of the Hamiltonian, so
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φR
s (r)ψs(R) +

∑

s

Es(R)φR
s (r)ψs(R) = E

∑

s

φR
s (r)ψs(R). (7)

But where do we go from here? It would be nice to get rid of the φR
s (r) – we can try to

do this by multiplying by φ∗Rs (r) and integrating through with respect to r, as we know that
the different φR

s (r) are orthogonal at given R. Mathematically, this can be expressed as
∫

drφ∗Rs′ (r)φR
s (r) = δs,s′ . (8)

When we do this, the summation and φR
s (r) are indeed eliminated from the second two

terms of Equation 7. Unfortunately the first remains difficult, particularly as Pn is a differential
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operator. Therefore

∑
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[∫
drφ∗Rs′ (r)
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φR
s (r) + Es(R)δs,s′

]
ψs(R) = Eψs′(R). (9)

2 The adiabatic approximation

Now comes our first approximation. We would like the sum in Equation 9 to disappear – if
you remember, this sum comes from the sum in Equation 5. Could we justify getting rid of
the sum here? In general, the nuclei are far more massive than the electrons, and hence will
move comparatively slowly. We make the approximation that the nuclei move so slowly that
the electrons respond ‘adiabatically’.
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Figure 2: Adiabatic approximation for (a) a particle in a well and (b) electrons in a diatomic molecule. If the
walls/nuclei move slowly enough, the particle / electrons will remain in a given continuously connected family of
states. In other words, at the end of the process they will be in a state of the new system which corresponds to
the state of the old system in which they started.

Now, what does this mean when we want to consider the nuclei as part of the system, rather
than an external potential? Let us imagine we start in a state which contains contributions from
only one s-state family, which we shall call s = 0:

Ψ(R, r) = ψ(R)φR
0 (r) (11)

What happens as time progresses? This is not necessarily an eigenstate of the whole system,
and so the state will tend to change. However, having made the adiabatic approximation, we
know that allowing the nuclei to move will not cause the electrons to change which s-family they
are in! So we know that the Hamiltonian does not connect different s-families, and therefore
that eigenstates will be confined to one s-family. In other words, we can write that a general
eigenstate of the system is necessarily given by:

ΨE
s,t(R, r) = ψs,t(R)φR

s (r). (12)

Here, s and t label the particular eigenstate – we have the tth eigenstate of the s-family of electron
states. So we have got rid of our sum, which is what we wanted. Now Equation 9 becomes:
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Figure 2: Adiabatic approximation for (a) a particle in a well and (b) electrons in a diatomic
molecule. If the walls/nuclei move slowly enough, the particle / electrons will remain in a
given continuously connected family of states. In other words, at the end of the process they
will be in a state of the new system which corresponds to the state of the old system in which
they started.

Remember the particle in a box from elementary QM. Now imagine changing the location
of the walls – if we do this slowly enough, it seems reasonable enough to assume that a particle
in the groundstate of the system will continuously evolve into the new groundstate. Of course
it’s energy will not be constant – in fact, it is doing work on whatever is moving the walls
in place. But the point is that it moves between continuously connected groundstates. The
Wikipedia page for ‘Adiabatic theorem’ is quite good, if you want more details. The argument
also holds for any state, provided that energy levels do not get too close and that the change
in Hamiltonian is slow enough.
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How is this relevant to us? Let us step back, and view the nuclei as an external potential
acting on the electrons. We already have a set of electronic eigenstates φR

s (r) for any configu-
ration of nuclei. By making the adiabatic approximation, we are saying that the nuclei move
slowly enough that the electrons will not change which family of states they are in when this
movement occurs (i.e., the s index does not change). This is shown graphically in Figure 2.
Or, mathematically, if the nuclei move from R→ R′, electrons in an eigenstate will change as

φR
s (r)→ φR′

s (r) (10)

Now, what does this mean when we want to consider the nuclei as part of the system, rather
than an external potential? Let us imagine we start in a state which contains contributions
from only one s-state family, which we shall call s = 0

Ψ(R, r) = ψ(R)φR
s (r) (11)

What happens as time progresses? This is not necessarily an eigenstate of the whole system,
and so the state will tend to change. However, having made the adiabatic approximation, we
know that allowing the nuclei to move will not cause the electrons to change which s-family
they are in! So we know that the Hamiltonian does not connect different s-families, and
therefore that eigenstates will be confined to one s-family. In other words, we can write that
a general eigenstate of the system is necessarily given by

ΨE
s,t(R, r) = ψs,t(R)φR

s (r) (12)

Here, s and t label the particular eigenstate – we have the tth eigenstate of the s-family of
electron states. So we have got rid of our sum, which is what we wanted. Now Equation 9
becomes [∫

drφ∗Rs (r)

(∑

n

P 2
n

2mn

)
φR
s (r) + Es(R)

]
ψs,t(R) = Es,tψs,t(R). (13)

3 Fully simplifying the equation for diatomic molecules

The first term is still a bit annoying – it contains a differential operator on nuclear positions,
which is acting on both φR

s (r) and ψs,t(R). It would be nice to be able to assume that
∇Rφ

R
s (r) = 0 so that we could take the differential operator out of the integral (which would

then simply be unity), leaving

[(∑

n

P 2
n

2mn

)
+ Es(R)

]
ψs,t(R) = Es,tψs,t(R), (14)

which looks like a Schrödinger equation for nuclei, with a potential dependent on electronic
configurations.

For a diatomic molecule, we can describe the two nuclei using only a relative coordinate
in the reduced mass formalism (here we are assuming that the centre of mass frame is the
centre of mass frame of the nuclei - reasonable, given how light the electrons are). The centre
of mass evolution is then separable and trivial, and I shall ignore it. In this case, Equation 13
reduces to [∫

drφ∗Rs (r)

(−h̄2∇2
R

2µ

)
φR
s (r) + Es(R)

]
ψs,t(R) = Es,tψs,t(R), (15)
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with R now representing the relative coordinate of the nuclei, and µ the reduced mass. Note
that the electronic energy an only depend on the separation of nuclei in the diatomic case.
We can also split the differential operator into radial and angular parts

−h̄2∇2
R

2µ
=
−h̄2∇2

R

2µ
+

L2
R

2µR2
, (16)

where LR is the orbital angular momentum of the nuclei. Physically, we know that the distance
between nuclei in a molecule varies very little, and so the nuclear part of the wavefunction
will be very strongly peaked around some |R|. By contrast, the electronic state φR

s (r) will
be relatively insensitive to |R| in this region: the electron orbitals will care very little about
these small changes in nuclear separation. So it seems reasonable that the radial component
of the differential operator would essentially only act on ψs,t(R).

What about the angular part? We can’t say that the nuclear wavefunction is strongly
peaked around one direction of R. However, let us consider the total orbital angular mo-
mentum of the system, K = LR + Lr (with Lr being the orbital angular momentum of the
electrons). Then

L2
R = K2 − 2Lr.LR − L2

r. (17)

We can substitute this expression into Equation 16, and then into Equation 15. First of all,
we note that K2 is a conserved quantity of the system because there is no external torque and
so we can choose are eigenstates such that

K2φR
s (r)ψs,t(R) = h̄2K(K + 1)φR

s (r)ψs,t(R) (18)

where K is the angular momentum quantum number of the state in question. What about[∫
drφ∗Rs (r) (Lr.LR)φR

s (r)

]
ψs,t(R)? (19)

To treat this, we note that only the component of Lr along the internuclear axis R is a
conserved quantity, because the potential experienced by electrons is only symmetric about
the R axis. However, the angular momentum of the nuclei is necessarily zero along this
internuclear axis (the nuclei have zero moment of inertia about this axis). We can then
make an argument analogous to the vector model in atomic physics to claim that the whole
expression is zero. What about the final term[∫

drφ∗Rs (r)
(
L2

r

)
φR
s (r)

]
ψs,t(R)? (20)

We cannot argue that this is zero. However, the part within square brackets is not a differential
operator. In fact, it is simply a function of R and s (the expectation of L2

r for a given s should
not depend on the internuclear orientation, just like Es(R)). Therefore this term can simply
be swallowed into a slightly modified Es(R), E ′s(R).

Our equation for ψs,t(R) has substantially simplified to
[−h̄2∇2

R

2µ
+
K(K + 1)h̄2

2µR2
+ E ′s(R)

]
ψs,t(R) = Es,tψs,t(R). (21)

The operator on the LHS of the above equation is purely radial. We can therefore split up
the radial and angular parts of the wavefunction, ψs,t(R) = ρs,t(R)Ωs,t(Θ,Φ). The radial part
obeys [−h̄2∇2

R

2µ
+
K(K + 1)h̄2

2µR2
+ E ′s(R)

]
ρs,t(R) = Es,tρs,t(R), (22)

and the angular part is such that Equation 18 is obeyed, which was assumed when we wrote
down Equation 21. Note that Ωs,t(Θ,Φ) is not an eigenstate of nuclear angular momentum,
which is not a conserved quantity.
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4 The end result

Thus we have arrived at the much simpler (and physically meaningful) equations of the Born-
Oppenheimer approximation. We first solve for the electronic eigenstates φR

s (r) fixed nuclear
positions (Equation 2), and then use the eigenvalues to find nuclear eigenstates ψs,t(R) (Equa-
tions 18 and 22). Having found φR

s (r) and ψs,t(R), our overall eigenstates are simply

ΨE
s,t(R, r) = ψs,t(R)φR

s (r) (23)

At this stage, our approximations are the adiabatic assumption, and that the nuclear
wavefunction depends much more strongly on |R| than the electronic configuration. To go
further, we assume that the potential well E ′s(R) is approximately quadratic about R = Rs,
and that deviations from Rs are small, giving us our energy spectrum

Es,t = E ′s(Rs) +
Kt,s(Kt,s + 1)h̄2

2µR2
s

+ h̄ωs

(
νt +

1

2

)
(24)

The s and t labels indicate quantities that depend on which electronic configuration and
nuclear wavefunction you are in, respectively. They can be left out if this distinction is not
required. It is important to remember that the K quantum number is for the total orbital
angular momentum of the molecule, not just the nuclei. In practice, when analysing energy
levels, this is often not that important. However, because the nuclei cannot have angular
momentum along the vector between them, the component of electronic angular momentum
along this axis (quantum number Λ) is particularly important. If Λ > 0, then it is impossible
to have K = 0 because we know that there is angular momentum along this axis. In fact, you
should be able to convince yourself that K ≥ Λ. Therefore the permissible values of K are
limited by the electronic state φR

s (r).

5 Electric dipole transitions in diatomic molecules

We are interested in the electric dipole matrix element

|M21|2 = e2|〈Ψ2|
(∑

n

ZnRn −
∑

m

rm

)
.E |Ψ1〉|2 = e2|〈Ψ2|D.E |Ψ1〉|2. (25)

Substituting in using Equation 12, we have

M21 = e
∫ ∫

dr dRψ∗s2,t2(R)φ∗Rs2 (r) (D.E)ψs1,t1(R)φR
s1

(r)

= e
∫

dR
[∫

drφ∗Rs2 (r)DφR
s1

(r)
]
.Eψ∗s2,t2(R)ψs1,t1(R)

= e
∫

dR (d21(R).E) ψ∗s2,t2(R)ψs1,t1(R).

(26)

The above equation defines the useful quantity d21(R). How will this quantity depend on R?
Firstly, as we did in deriving the energy levels, we could assume that electron states are less
sensitive to |R| than the the nuclear wavefunctions, because the nuclei are assumed to vibrate
only a little. Thus d21(R) ≈ d21(Θ,Φ) and we can write

M21 = e

(∫
dRR2ρ∗s2,t2(R)ρs1,t1(R)

)(∫
dΘdΦ sin Θ (d21(Θ,Φ).E) Ω∗s2,t2(R)Ωs1,t1(R)

)
,

(27)
where I have used the splitting ψs,t(R) = ρs,t(R)Ωs,t(Θ,Φ) introduced when the nuclear equa-
tion was discussed. Why bother to do this?
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• The first factor in Equation 27 is the Frank-Condon factor, which tells us that when
we transitions between different electronic configurations, the strength depends on the
overlap of the vibrational wavefunctions.

• Our result therefore seems to forbid ro-vibrational transitions if the electronic state does
not change. However, the simplification that d21 is R-independent is not quite true. As
a result, we do get ro-vibrational changes within the same electronic configuration, with
±1 being the most likely.

It is also worth noting that homonuclear diatomic molecules cannot have transitions involving
no change of electronic state. When the nuclei are identical,

∑
n ZnRn = 0 and hence the

dipole operator D has no R dependence. It is then simply an odd function of the electronic
coordinates. If the electronic state does not change, d21 is then an integral of an odd function
(as the electronic states have definite parity in a homonuclear molecule) and necessarily zero.

Further selection rules can be obtained through considering the conservation of angular
momentum.
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