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Tauberian Theorems

For a series
∑∞

n=0 an of complex numbers, the convergence statement∑∞
n=0 an = A means that the n-th partial sum sn =

∑n
k=0 ak as a sequence

of complex numbers converges to the complex number A. There are more
general ways to define the convergence of a series

∑∞
n=0 an to A.

For example, Cesàro convergence (named after Ernesto Cesàro) which is
defined as the convergence of the Cesàro sum

σn =
s0 + s1 + · · ·+ sn−1

n

as a sequence to A. Cesàro convergence implies the usual convergence but
not vice versa.

Another even more general way to define convergence is Abel convergence,
which is defined as the convergence of

∞∑
n=0

anx
n

to A as x → 1−. Abel convergence implies Cesàro convergence but not vice
versa.

By Abel’s summation by parts the power series
∑∞

n=0 anx
n can be rewrit-

ten as
∞∑
n=0

anx
n = a0 +

∞∑
n=1

(sn − sn−1)x
n

= a0 +
∞∑
n=1

snx
n −

∞∑
n=1

sn−1x
n

= a0 +
∞∑
n=1

snx
n −

∞∑
n=0

snx
n+1

=
∞∑
n=0

snx
n −

∞∑
n=0

snx
n+1

=
∞∑
n=0

sn(1− x)xn.
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We can interpret the construction of the Cesàro sum σn and the Abel sum

∞∑
n=0

anx
n =

∞∑
n=0

sn(1− x)xn

as different ways of taking some weighted average of the sequence (sν)ν∈N∪{0}.
The original sn can be regarded as the (n-dependent) weighted average of the
sequence (sν)ν∈N∪{0} by assigning all the weight to sn and just zero weight to
the other sν with ν ̸= n. The Cesàro sum

σn =
s0 + s1 + · · ·+ sn−1

n

can be regarded as the (n-dependent) weighted average of the sequence
(sν)ν∈N∪{0} by assigning the weight 1

n
to each of s0, s1, · · · , sn and the zero

weight to the other sν with ν > n.

The Abel summation assigns the weight (1− x)xn to sn for n ∈ N ∪ {0}.
This weight is x-dependent for 0 < x < 1. The sum

∞∑
n=0

(1− x)xn

of the weights (1−x)xn for n ∈ N∪{0} is 1 from the summing of the geometric
series

∑
n=0 x

n. We have a family of weights ((1− x)xn)∞n=0 indexed by the
parameter 0 < x < 1. Abel convergence means that the weighted average

∞∑
n=0

sn(1− x)xn

of the sequence (sn)
∞
n=0 approaches A as the parameter x in the family of

weights ((1− x)xn)∞n=0 approaches 1 from below.

The original theorem of Tauber of 1897 gives the sufficient Tauberian
condition of an = o

(
1
n

)
for the more general Abel convergence to be reduced

back to the stronger usual convergence. Nowadays a Tauberian theorem
means a statement which uses an appropriate Tauberian condition to guar-
antee that a given way of taking weighted average (or weighted integral) gives
the usual limit when the parameter in the given family of weighted average
(or weighted integral) goes to an appropriate limit value. A way of taking
weighted average can also be referred to as a kernel.
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In this set of lecture notes on Tauberian theorems, we will do the follow-
ing.

(1) Prove the original theorem of Tauber of 1897. The proof is completely
analogous to the proof of its boundedness version presented as Lemma 2.3
on pp.84-85 in the book on Fourier Analysis by Stein and Shakarchi.

(2) Prove the theorem of Littlewood of 1911 which weakens the condition in
Tauber’s original theorem of 1897 from an = o

(
1
n

)
to an = O

(
1
n

)
and also

prove the related theorem of Hardy-Littlewood of 1914 stating that Abel
convergence implies Cesàro convergence if sn ≥ 0. We will use the very
elegant simple method of Karamata of 1930 to prove both.

(3) Introduce the three related families of weighted averages:

(i) 1
ζ(z)

1
nz from Riemann’s zeta function, with n ∈ N as the summing

variable and z as the parameter variable.

(ii) ze−zt from Laplace transform, with 0 ≤ t < ∞ as the integrating
variable and z as the parameter variable.

(iii) zx−z−1 from Mellin transform, with 1 ≤ x < ∞ as the integrating
variable and z as the parameter variable.

We will then use the Tauberian theorem for the family ze−zt from Laplace
transform to present Newman’s 1980 simple proof of the Prime Number The-
orem.

At the end a remark will be given concerning Wiener’s approach to Taube-
rian theory and its interpretation in terms of Gelfand representation. How-
ever, we will not go into the details, because we have not yet introduced
Lebesgue’s theory of integration and Fourier transforms for integrable and
square integrable Lebesgue measurable functions.

First, let us state and prove the original theorem of Tauber of 1897.

Theorem of Tauber of 1897. Let an ∈ C for n ∈ N∪{0} and A ∈ C such that
the Abel sum

∑∞
n=0 anx

n → A as x→ 1−. Assume in addition the Tauberian
condition an = o

(
1
n

)
. Then sn → A as n→ ∞.
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Proof. For 0 < x < 1 let N be the integral part of 1
1−x so that N ≤ 1

1−x and

N + 1 > 1
1−x . Since N → ∞ as x→ 1−, it suffices to prove that

∞∑
n=0

anx
n −

N∑
n=0

an → 0

as x→ 1−. Rewrite

∞∑
n=0

anx
n −

N∑
n=0

an =
∞∑

n=N+1

anx
n −

N∑
n=0

an(1− xn).

Given ε > 0, there exists N0 such that |nan| < ε for n ≥ N0 and there exists
δ > 0 such that N ≥ N0 if 1− δ < x < 1. Then for 1− δ < x < 1,∣∣∣∣∣

∞∑
n=N+1

anx
n

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

nan
xn

n

∣∣∣∣∣
< ε

∞∑
n=N+1

xn

n
≤ ε

N + 1

∞∑
n=0

xn

=
ε

(N + 1)(1− x)
< ε

and ∣∣∣∣∣
N∑
n=0

an(1− xn)

∣∣∣∣∣ =
∣∣∣∣∣
N∑
n=0

an(1− x)(1 + x+ · · ·+ xn−1)

∣∣∣∣∣
≤

N∑
n=0

|nan| (1− x)

< Nε(1− x) ≤ ε.

Thus ∣∣∣∣∣
∞∑
n=0

anx
n −

N∑
n=0

an

∣∣∣∣∣ < 2ε

for 1− δ < x < 1. Q.E.D.

Now we introduce the method of Karamata of 1930 to prove the theorem
of Hardy-Littlewood of 1914 and the theorem of Littlewood of 1911 in that
order.
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Theorem of Hardy-Littlewood of 1914. Let an ∈ R for n ∈ N∪{0} and A ∈ R
such that the Abel sum

∑∞
n=0 anx

n → A as x→ 1−. Assume in addition the
Tauberian condition sn ≥ 0 for all n ∈ N ∪ {0} (where sn = a0 + · · · + an).
Then σn → A as n→ ∞ (where σn is the Cesàro sum s0+···+sn−1

n
).

Proof. We follow Karamata’s very elegant simple proof of 1930 whose idea
consists of the following three steps.

(i) Replace x by xk with k ≥ 1 in

∞∑
n=0

sn(1− x)xn =
∞∑
n=0

anx
n → A as x→ 1−.

Take an R-linear combination of the result over a finite number of k’s
to replace xn by a polynomial of xn.

(ii) Sandwich a piecewise continuous function g by two polynomials with
the L1 norm of the difference of the two polynomials approaching 0.

(iii) Choose g to achieve the effect of a characteristic function so that the
infinite sum

∑∞
n=0 sn(1−x)xn essentially becomes σN (with some factor

of normalization).

The Tauberian condition sn ≥ 0 is needed when the sandwiching of g by the
two polynomials is multiplied by sn.

The precise argument is as follows. From

∞∑
n=0

sn(1− x)xn =
∞∑
n=0

anx
n → A as x→ 1−.

it follows with the replacement of xk+1 (with k ∈ N ∪ {0}) that

∞∑
n=0

sn(1− xk+1)xn(xn)k → A as x→ 1−.

Using

lim
x→1−

1− xk+1

1− x
= lim

x→1−

(
1 + x+ · · ·+ xk

)
= k + 1 =

∫ 1

t=0

tkdt,
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we get

(1− x)
∞∑
n=0

snx
n(xn)k → A

∫ 1

t=0

tkdt as x→ 1−,

from which we get, by taking a linear combination over a finite number of
k’s,

(1− x)
∞∑
n=0

snx
nP (xn) → A

∫ 1

t=0

P (t)dt as x→ 1−

for any polynomial P (x). This is the same as saying that

(1− x)
∞∑
n=0

snT (x
n) → A

∫ 1

t=0

T (t)dt as x→ 1−

for any polynomial T (x) without constant term. Note that we cannot allow
any constant term in T (x), otherwise T (x) ≡ 1 would have required the
condition

(1− x)
∞∑
n=0

sn → A as x→ 1−.

Our formulation of using P (t) instead of T (t) simply means factoring T (t) =
tP (t) so that we remove the restriction of no constant term from P (t) and
make its use in the sandwiching process easier.

We now come to the sandwiching process. For any piecewise continuous
function g(t) on [0, 1] and any ε > 0, we can find polynomials Pε(t) and Qε(t)
with Pε ≤ g ≤ Qε on [0, 1] such that∫ 1

t=0

(Qε(t)− Pε(t)) dt < ε.

From

(1− x)
∞∑
n=0

snx
nPε(x

n) → A

∫ 1

t=0

Pε(t)dt as x→ 1−

it follows that there exists δ1 > 0 such that

(1− x)
∞∑
n=0

snx
nPε(x

n) ≥ −ε+ A

∫ 1

t=0

Pε(t)dt ≥ −2ε+ A

∫ 1

t=0

g(t)dt
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for 1− δ1 < x < 1. From

(1− x)
∞∑
n=0

snx
nQε(x

n) → A

∫ 1

t=0

Qε(t)dt as x→ 1−

it follows that there exists δ2 > 0 such that

(1− x)
∞∑
n=0

snx
nQε(x

n) ≤ ε+ A

∫ 1

t=0

Qε(t)dt ≤ 2ε+ A

∫ 1

t=0

g(t)dt

for δ2 < x < 1. Since sn ≥ 0 for n ∈ N ∪ {0}, it follows that

(1− x)
∞∑
n=0

snx
nPε(x

n) ≤ (1− x)
∞∑
n=0

snx
ng(xn) ≤ (1− x)

∞∑
n=0

snx
nQε(x

n)

and

−2ε+ A

∫ 1

t=0

g(t)dt ≤ (1− x)
∞∑
n=0

snx
ng(xn) ≤ 2ε+ A

∫ 1

t=0

g(t)dt

for 1−max(δ1, δ2) < x < 1. Thus,

(1− x)
∞∑
n=0

snx
ng(xn) → A

∫ 1

t=0

g(t)dt as x→ 1−

for any piecewise continuous function g(t) on [0, 1].

Let us explore a good way of choosing g(t). For any givenN ∈ N we would
like to choose a piecewise continuous function g(t) on [0, 1] and 0 < xN < 1
with xN → 1 as N → ∞ such that

∞∑
n=0

snx
n
Ng(x

n
N) =

N∑
n=0

sn.

For this purpose, we want xnNg(x
n
N) = 1 for n ≤ N and xnNg(x

n
N) = 0 for

n > N . Since xnN < xNN if and only if n > N , this means that we would
like to have tg(t) = 1 for t ≥ (xN)

N and g(t) = 0 for t < (xN)
N , which

means g(t) = 1
t
χ[(xN )N ,1], where χ[(xN )N ,1] is the characteristic function of the

interval [(xN)
N , 1]. We need also to use∫ 1

t=0

g(t)dt =

∫ t=1

t=(xN )N

1

t
dt = −N log xN .
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A good way is to normalize
∫ 1

t=0
g(t)dt to be 1 by setting −N log xN = 1 so

that xN = e−
1
N and (xN)

N = 1
e
. We end up with the choice of g(t) = 1

t
χ[ 1

e
,1]

so that
∫ 1

t=0
g(t)dt = 1 and

∞∑
n=0

snx
n
Ng(x

n
N) =

N∑
n=0

sn.

We apply

(1− x)
∞∑
n=0

snx
ng(xn) → A

∫ 1

t=0

g(t)dt as x→ 1−

to x = xN as N → ∞ to get

lim
N→∞

(1− xN)
N∑
n=0

sn = A.

Now

lim
N→∞

N (1− xN) = lim
N→∞

1− e−
1
N

1
N

= 1,

because

lim
u→0

1− e−u

u
= − d

du
e−u
∣∣∣∣
u=0

= 1.

Hence limN→∞ σN = A. Q.E.D.

Remark. In the Theorem of Hardy-Littlewood of 1914, the condition sn ≥ 0
for n ∈ N can be weakened to sn ≥ −C for some C > 0 and for n ∈ N,
because the condition sn ≥ −C can be strengthened to sn ≥ 0 by simply
replacing a0 by a0 + C.

Now we prove the theorem of Littlewood of 1911 again by the method of
Karamata.

Theorem of Littlewood of 1911. Let an ∈ R for n ∈ N ∪ {0} and A ∈ R
such that the Abel sum

∑∞
n=0 anx

n → A as x→ 1−. Assume in addition the
Tauberian condition an = O

(
1
n

)
(or even the weaker condition nan ≥ −C

for some C > 0 and for n ∈ N. Then
∑N

n=0 an → A as N → ∞.
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Proof. Again we follow Karamata’s very elegant simple proof of 1930 whose
idea consists of the following three steps.

(i) Replace x by xk with k ≥ 1 in

∞∑
n=0

anx
n → A as x→ 1−.

Take an R-linear combination of the result over a finite number of k’s
to replace xn by a polynomial of xn.

(ii) Sandwich a piecewise continuous function g by two polynomials with
the L1 norm of the difference of the two polynomials approaching 0.

(iii) Choose g to achieve the effect of a characteristic function so that the
infinite sum

∑∞
n=0 amx

n essentially becomes σN (with some factor of
normalization).

The Tauberian condition an ≥ −C is needed in the inequality from the
sandwiching of g by the two polynomials is multiplied. We now implement
these three steps.

By replacing x by xk for some k ≥ 1 in

∞∑
n=0

anx
n → A as x→ 1−,

we obtain
∞∑
n=0

an(x
k)n → A as x→ 1−,

because xk → 1− if and only if x → 1−. By taking an R-linear combination
for 1 ≤ k ≤ m with coefficients bk, we get

∞∑
n=0

anP (x
n) → AP (1) as x→ 1−

for any polynomial P (t) =
∑m

k=1 bkt
k without constant term, because P (1) =∑m

k=1 bk. Note that unlike the case of Theorem of Hardy-Littlewood of 1914

where the limit isA
∫ 1

0
P (t)
t
dt, in our present notation of P (t) without constant
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term, involving the integral
∫ 1

0
P (t)
t
dt instead of the limit AP (1) here which

involves only the value of P at one point 1. Since the sandwiching the
piecewise continuous function g(t) by polynomials with approximation only
in the L1 norm, integrals have to enter picture. Here we have only the
pointwise value P (1) and integrals would have to come in sometime later.

Unlike in the proof of the theorem of Hardy-Littlewood of 1914, where the
polynomial without constant term is put in the form tP (t) so that there is no
constraint of no constant term anymore for P (t), here we keep the constraint
of no constant term for P (t). So when we do the sandwiching and approx-
imation of g(t) by P (t) in the proof of the theorem of Hardy-Littlewood of
1914, the function tg(t), which is approximated by the polynomial tP (t),
should yield the characteristic function to give the partial sum sN . Thus
there we choose g(t) = 1

t
χ[ 1

e
,1], but here we use P (t) instead of tP (t) and as

a result we are going to choose g(t) = χ[ 1
e
,1] instead of g(t) = 1

t
χ[ 1

e
,1]. Again

we choose xN = e−
1
N as the link between the two variables x and N so that

N∑
n=0

an =
∞∑
n=0

ang (x
n
N) ,

because xnN = e−
n
N ≥ 1

e
if and only if n ≥ N .

In addition to the constraint P (0) = 0 (that is, no constant term), we
impose the addition constraint P (1) so that in the limit statement we have

∞∑
n=0

anP (x
n) → A as x→ 1−

instead of
∞∑
n=0

anP (x
n) → AP (1) as x→ 1−.

When we approximate a piecewise continuous function in L1 norm by a poly-
nomial, we would like to remove all the constraints on the polynomials so that
we have the approximation we want. In the theorem of Hardy-Littlewood of
1914, the only constraint is P (0) = 0 and we can get rid of it by using tP (t)
so that P (t) is without constraint, that is, we divide P (t) by t to remove the
constraint. Now we are going to remove the two constraints by dividing by
t(1 − t) instead of just by t, but P (1) = 1 does not mean that P (t) has 1
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as root. If we use P (t) − 1 so that t = 1 is a root, the polynomial P (t) − 1
does not have t = 0 as a root. One way to make both t = 0 and t = 1 roots
is to use P (t)− t so that with the condition P (0) = 0 and P (1) = 1, we can

divide P (t) − t by t(1 − t) to define the polynomial Q(t) = P (t)−t
t(1−t) . In other

words, P (t) = t+ t(1− t)Q(t).

We now define the piecewise continuous function h(t) = g(t)−t
t(1−t) so that we

can approximate it by polynomials Q(t) without constraints and get P (t) =
t + t(1− t)Q(t) as a polynomial with constraints P (0) = 0 and P (1) = 1 to
approximate g(t) = t+ t(1− t)h(t).

Given ε > 0. We can find a polynomial Qε(t) such that h(t) ≤ Qε(t) for

0 ≤ t ≤ 1 and
∫ 1

t=0
(Qε(t)− h(t)) dt < ε. Let Pε(t) = t+ t(1− t)Qε(t). Since

both t and 1 − t are nonnegative for 0 ≤ t ≤ 1, we have g(t) ≤ Pε(t) for

0 ≤ t ≤ 1. The L1 estimate
∫ 1

t=0
(Qε(t)− h(t)) dt < ε can now be rewritten

as ∫ 1

t=0

(
Pε(t)− t

t(1− t)
− g(t)− t

t(1− t)

)
dt < ε,

which is the same as ∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt < ε.

The polynomial Pε(t) gives only one side g(t) ≤ Pε(t) of the sandwiching and
we are going to use this side of the sandwiching to prove that

lim sup
x→1−

∞∑
n=0

ang(x
n) ≤ A.

The other side of the sandwiching will analogously give

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ A

so that both sides of the sandwiching together will give

lim sup
x→1−

∞∑
n=0

ang(x
n) = A.

To verify

lim sup
x→1−

∞∑
n=0

ang(x
n) ≤ A,



Math 212a (Fall 2013) Yum-Tong Siu 12

since

lim sup
x→1−

∞∑
n=0

anPε(x
n) = A,

we consider

∞∑
n=0

ang(x
n)−

∞∑
n=0

anPε(x
n) =

∞∑
n=0

an (g(x
n)− Pε(x

n)) .

We have to link this back to ε through∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt < ε.

For this purpose, we make use of−nan (Pε(xn)− g(xn)) ≥ C (Pε(x
n)− g(xn))

from nan ≥ −C and Pε(x
n)− g(xn) ≥ 0 and write

∞∑
n=0

ang(x
n)−

∞∑
n=0

anPε(x
n) = −

∞∑
n=0

an (Pε(x
n)− g(xn))

≤ C

∞∑
n=0

1

n
(Pε(x

n)− g(xn))

≤ C

∞∑
n=0

1− x

1− xn
(Pε(x

n)− g(xn))

= C

∞∑
n=0

(1− x)xn
Pε(x

n)− g(xn)

xn(1− xn)

= C
∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)
.

At this point, one key ingenious observation is that by interpretation in terms
of limits of Riemann sums,

(♮) lim
t→1−

∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)
=

∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt.

We now assume (♮) first and continue with the verification of

lim sup
x→1−

∞∑
n=0

ang(x
n) ≤ A
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and then return to the verification of (♮) afterward. From

∞∑
n=0

ang(x
n) ≤

∞∑
n=0

anPε(x
n) + C

∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)

it follows that

lim sup
x→1−

∞∑
n=0

ang(x
n) ≤ lim

x→1−

∞∑
n=0

anPε(x
n) + C lim

x→1−

∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)

= A+

∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt ≤ A+ ε.

Since ε > 0 is arbitrary, we conclude that

lim sup
x→1−

∞∑
n=0

ang(x
n) ≤ A.

For the proof of the other direction

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ A,

we choose Q̂ε(t) ≤ h(t) for 0 ≤ t ≤ 1 such that
∫ 1

t=0

(
h(t)− Q̂ε(t)

)
dt <

ε. Let P̂ε(t) = t + t(1 − t)Q̂ε(t). Then P̂ε(t) ≤ g(t) for 0 ≤ t ≤ 1 and∫ 1

t=0

(
h(t)− Q̂ε(t)

)
dt < ε can now be rewritten as

∫ 1

t=0

(
g(t)− t

t(1− t)
− P̂ε(t)− t

t(1− t)

)
dt < ε,

which is the same as ∫ 1

t=0

g(t)− P̂ε(t)

t(1− t)
dt < ε.

To verify

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ A,
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we consider
∞∑
n=0

anP̂ε(x
n)−

∞∑
n=0

ang(x
n) =

∞∑
n=0

an

(
P̂ε(x

n)− g(xn)
)
.

We have to link this back to ε through∫ 1

t=0

g(t)− P̂ε(t)

t(1− t)
dt < ε.

For this purpose, we make use of−nan
(
g(xn)− P̂ε(x

n)
)
≥ C

(
g(xn)− P̂ε(x

n)
)

from nan ≥ −C and g(xn)− P̂ε(x
n) ≥ 0 and write

∞∑
n=0

P̂ε(x
n)an −

∞∑
n=0

ang(x
n) = −

∞∑
n=0

an

(
g(xn)− P̂ε(x

n)
)

≤ C
∞∑
n=0

1

n

(
g(xn)− P̂ε(x

n)
)

≤ C
∞∑
n=0

1− x

1− xn

(
g(xn)− P̂ε(x

n)
)

= C
∞∑
n=0

(1− x)xn
g(xn)− P̂ε(x

n)

xn(1− xn)

= C
∞∑
n=0

(
xn − xn+1

) g(xn)− P̂ε(x
n)

xn(1− xn)
.

Again we leave to handle later the statement that

(♮̂) lim
t→1−

∞∑
n=0

(
xn − xn+1

) g(xn)− P̂ε(x
n)

xn(1− xn)
=

∫ 1

t=0

g(t)− P̂ε(t)

t(1− t)
dt.

and continue with the verification of

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ A

and then return to the verification of (♮̂) afterward. From

∞∑
n=0

ang(x
n) ≥

∞∑
n=0

anP̂ε(x
n)− C

∞∑
n=0

(
xn − xn+1

) g(xn)− P̂ε(x
n)

xn(1− xn)
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it follows that

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ lim

x→1−

∞∑
n=0

anP̂ε(x
n)− C lim

x→1−

∞∑
n=0

(
xn − xn+1

) g(xn)− P̂ε(x
n)

xn(1− xn)

= A−
∫ 1

t=0

g(t)− P̂ε(t)

t(1− t)
dt ≤ A− ε.

Since ε > 0 is arbitrary, we conclude that

lim inf
x→1−

∞∑
n=0

ang(x
n) ≥ A.

We now handle (♮) and (♮̂). Since both (♮) and (♮̂) are completely analogous,
we will only do (♮). Take an arbitrary η > 0. Let Bε be the supremum of the
absolute value of the piecewise continuous function

Pε(t)− g(t)

t(1− t)

for 0 ≤ t ≤ 1. Then by using the partition of [0, 1] by an infinite number of
points xn for n ∈ N we get∣∣∣∣∣

∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)
−
∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt

∣∣∣∣∣
≤

∞∑
n=0

∣∣∣∣Pε(xn)− g(xn)

xn(1− xn)

(
xn − xn+1

)
−
∫ t=xn

t=xn+1

Pε(t)− g(t)

t(1− t)
dt

∣∣∣∣
≤

∞∑
n=0

(
sup

s,t∈[xn+1,xn]

∣∣∣∣ Pε(s)− g(s)

s(1− s)
− Pε(t)− g(t)

t(1− t)

∣∣∣∣
) (

xn − xn+1
)
.

Since there is only one jump discontinuity of the function

Pε(t)− g(t)

t(1− t)

on [0, t] (which is at t = 1
e
), there exists δη,ε > 0 such that if 1− δη,ε < x < 1,

then

sup
s,t∈[xn+1,xn]

∣∣∣∣ Pε(s)− g(s)

s(1− s)
− Pε(t)− g(t)

t(1− t)

∣∣∣∣ < η
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for n ∈ N except when 1
e
∈ [xn, xn+1], which can only occur for at most 2

values of n. Hence
∞∑
n=0

(
sup

s,t∈[xn+1,xn]

∣∣∣∣ Pε(s)− g(s)

s(1− s)
− Pε(t)− g(t)

t(1− t)

∣∣∣∣
) (

xn − xn+1
)

≤ η

∞∑
n=0

(
xn − xn+1

)
+ 4Bε (1− δη,ε) .

Since η > 0 is arbitrary, we conclude that

lim
x→1−

∞∑
n=0

(
xn − xn+1

) Pε(xn)− g(xn)

xn(1− xn)
=

∫ 1

t=0

Pε(t)− g(t)

t(1− t)
dt.

This finishes the verification of (♮) and the proof of the theorem of Littlewood
of 1911.

We now discuss Newman’s 1980 simple proof of the Prime Number Theory
which uses a Tauberian theorem. The Tauberian theorem used is formuated
in terms the Laplace (or equivalent the Mellin) transform. The family of
weights used to take the weighted average is ze−zt for the Laplace transform
version (with 0 ≤ t < ∞) and is zx−z−1 in for the Mellin transform (with
1 ≤ x < ∞). The two are related by x = et. The precise statement of the
Laplace transform version of the Tauberian theorem is the following.

Theorem (Laplace Transform Version of Tauberian Theorem). Let F (t) for
0 ≤ t <∞ be a bounded, piecewise continuous function. Let

G(z) =

∫ ∞

t=0

F (t)e−ztdt,

which is automatically holomorphic on {Re z > 0}. If G(z) can be extended
to a holomorphic function on an open neighborhood U of {Re z = 0} in C
(as the Tauberian condition), then

∫∞
t=0

F (t)dt as the limit of
∫ λ
t=0

F (t)dt is
equal to G(0).

Remark. Let us put this Laplace transform version of the Tauberian theorem
in the context of (the series version of the Tauberian theorem as given in)
Tauber’s theorem in 1897 (and its later refinement by Littlewood in 1911)
by the following tabulated analogy.
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Laplace Transform Version Series Version

F (t) an
0 ≤ t <∞ 0 ≤ n <∞

G(z) =
∫∞
t=0

F (t)e−ztdt
∑∞

n=0 anx
n

Re z > 0 0 ≤ x < 1
Tauberian Condition: Tauberian Condition:
G(z) holomorphic in

∑∞
n=0 anx

n continuous
neighborhood of on x ∈ [0, 1] and an = o( 1

n
)

{Re z > 0} in C
(
or Littlewood′s an = O( 1

n
)
)

Conclusion: Conclusion:

limλ→∞
∫ λ
t=0

F (t)dt = lim z→0,
Re z>0

G(z) limN→∞
∑N

n=0 an = limx→1−
∑∞

n=0 anx
n

λ→ ∞ N → ∞

Before its application to the proof of the Prime Number Theorem the
Laplace transform version of Tauberian theorem will be changed to the fol-
lowing Mellin transform version of Tauberian theorem.

Theorem (Mellin Transform Version of Tauberian Theorem). Let f(x) be a
nonnegative, piecewise continuous, nondecreasing function for 1 ≤ x < ∞
such that f(x) = O(x) as x → ∞. Denote by g(z) the Mellin transform of
f(x) so that

g(z) = z

∫ ∞

x=1

f(x)x−z−1dx,

which is automatically holomorphic on {Re z > 1}. If for some complex
number c the function g(z)− c

z−1
can be extended to a holomorphic function

on an open neighborhood U of {Re z = 1} in C (as the Tauberian conition),

then f(x)
x

→ c as x→ ∞.

The Laplace transform version of Tauberian theorem and the Mellin
transform version of Tauberian theorem are related by F (t) = e−tf(et) − c.
In its application to the proof of the Prime Number Theorem, the second
Chebyshev function ψ(x) =

∑
n≤x Λ(n) will be chosen as f(x), where Λ(n)

is the von Mangoldt function whose value is 0 unless n = pk for some prime
number when its value is log p.
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We now prove the Laplace transform version of Tuaberian theorem by
applying Cauchy’s integral formula to verify that G(0)−Gλ(0) → 0 as λ→
∞, where

Gλ(z) =

∫ λ

t=0

F (t)e−ztdt

and the kernel 1
z
in Cauchy’s integral formula is changed to

eλz
(
1

z
+

z

R2

)
while the contour for the Cauchy integral formula is chosen to be the bound-
ary of {Re z > −δ, |z| < R } for some appropriately chosen R > 0 and δ > 0.

Proof of Laplace Transform Version of Tauberian Theorem. Since F (t) is
bounded on { 0 ≤ t < ∞}, without loss of generality we can assume that
sup0≤t<∞ |F (t)| = 1. For λ > 0 let

Gλ(z) =

∫ λ

t=0

F (t)e−ztdt,

which is automatically holomorphic on all of C. We are going to prove the
conclusion

lim
λ→∞

∫ λ

t=0

F (t)dt = G(0)

by applying Cauchy’s integral formula to verify that G(0) − Gλ(0) → 0 as
λ→ ∞, where

Gλ(z) =

∫ λ

t=0

F (t)e−ztdt.

The straightforward application of the original form of Cauchy’s integral
formula would read

G(0)−Gλ(0) =

∫
C

(G(z)−Gλ(z))
1

z
dz,

where C is a simple closed curve in U enclosing a neighborhood of 0 in U .
In order to estimate the contour integral∫

C

(G(z)−Gλ(z))
1

z
dz
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as λ→ ∞, we need to estimate G(z)−Gλ(z) for z ∈ C. Let z = x+ iy. By
definition

G(z)−Gλ(z) =

∫ ∞

t=λ

F (t)e−ztdt

so that

|G(z)−Gλ(z)| ≤
∫ ∞

t=λ

e−xtdt =

[
−e

−xt

x

]t=∞

t=λ

=
e−λx

x
=

∣∣e−λz∣∣
Re z

if x = Re z > 0. For x = Re z > 0 the factor e−λx =
∣∣e−λz∣∣ is decaying

exponentially as λ → ∞. In order not to waste such an exponential decay,
we modify the kernel 1

z
in the Cauchy integral formula to eλz

z
to offset this

wasted exponential decay so that the factor eλx =
∣∣e−λz∣∣ coming from the

new kernel eλz

z
can be used to our advantage in the part of the contour C

where x = Re z < 0 when λ→ ∞.

Though the domain U where G(z) is holomorphic contains {Re z = 0 },
yet we have no control how close the boundary of U is to the origin z = 0.
In the above estimate

|G(z)−Gλ(z)| ≤
∣∣e−λz∣∣
Re z

the denominator Re z would make things difficult when z is close to 0. An
important technique which Newman introduced is that since on |z| = R,

1

z
+

z

R2
=

z̄

zz̄
+

z

R2
=

z̄

R2
+

z

R2
=

2Re z

R2
,

the disadvantage of having Re z in the denominator of
|e−λz|
Re z

can be offset by
the advantage of having Re z in the numerator of 2Re z

R2 at least on { |z| = R }
if we modify the Cauchy kernel 1

z
to 1

z
+ z
R2 . Combining the two considerations

together, Newman ended up with replacing the usual Cauchy kernel 1
z
by the

new Cauchy kernel

eλz
(
1

z
+

z

R2

)
which like 1

z
is holomorphic on C as a function of z except a simple pole at

z = 0 with residue 1. Now we use the modified Cauchy integral formula

G(0)−Gλ(0) =

∫
C

(G(z)−Gλ(z)) e
λz

(
1

z
+

z

R2

)
dz

to verify that G(0)−Gλ(0) → 0 as λ→ ∞.
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Now we come to the choice of the contour C. With the new modified
Cauchy kernel we can offset the disadvantage of Re z in the denominator by
the advantage of Re z only on the circle { |z| = R }. For that reason we want
the contour C to be as close to the circle { |z| = R } as possible. However,
though the domain U where G(z) is holomorphic contains the right half-plane
{Re z > 0 }, we have no addition information about it other than its being
a neighborhood of the imaginary axis {Re z = 0 } in C.

The best we can do to make the contour C as close to the circle { |z| = R }
as possible is to set it to be the boundary of { |z| < R, Re z > −δR } with
δR > 0 chosen (as a function of R) so that { |z| ≤ R, Re z ≥ −δR } is
contained in U . Because of the dependence of C on R and δR in such a
choice, we denote C by CR,δR . To do our estimate of the new modified
Cauchy integral formula, we need to differentiate the different cases according
to which part of CR,δR the variable z lies. For that reason we break up the
contour CR,δR into three parts. The first part is the right half-circle of radius
R which we denote by

C+
R = { |z| = R, Re z > 0 } .

The second part is the union of two circular arcs on the left half-plane which
we denote by

AR,δR = { |z| = R, −δR < Re z < 0 } .

The third part is the vertical line segment on the line {Re z = −δR } in the
left half-plane which we denote by

LR,δR = { |z| < R, Re z = −δR } .

To do the estimate, we start out with an arbitrary ε > 0. We will first
choose R ≥ Rε. Then we will choose 0 < δR ≤ δR,ε. Then we will choose
λ ≥ λR,δR,ε to make |G(0)−Gλ(0)| less than some universal constant times
ε when λ ≥ λR,δR,ε.

On the first part C+
R of the contour CR, from

|G(z)−Gλ(z)| ≤
∣∣e−λz∣∣
Re z

and
1

z
+

z

R2
=

2Re z

R2



Math 212a (Fall 2013) Yum-Tong Siu 21

it follows that∣∣∣∣(G(z)−Gλ(z)) e
λz

(
1

z
+

z

R2

)∣∣∣∣ ≤
∣∣e−λz∣∣
Re z

eλ(Re z) 2Re z

R2
=

2

R2
.

Thus ∣∣∣∣∣
∫
C+

R

(G(z)−Gλ(z)) e
λz

(
1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ πR
2

R2
< ε

for R ≥ Rε if Rε is set to be 2π
ε
.

Now we fix an R ≥ Rε and choose δR > 0 small enough so that CR,δ
together with the domain it encloses is contained in the domain U where
G(z) is assumed to be holomorphic. On the second and third parts AR,δR
and LR,δR of the contour CR,δR , we are going to do the estimate separately for
G(z) and Gλ(z) instead of doing it at the same time for G(z)−Gλ(z). The
reason is that on the right half-plane we have the explicit integral formula

G(z)−Gλ(z) =

∫ ∞

t=λ

F (t)e−ztdt

which we use to get our estimate on the first part C+
R of the contour CR,δ,

but on the left half-plane, while we still have the explicit integral formula

Gλ(z) =

∫ λ

t=0

F (t)e−ztdt

for Gλ(z), we have no integral formula for G(z) except that we know that
G(z) is independent of λ. In our separate estimates for Gλ(z) and G(z), in
the case of Gλ(z), we use its explicit integral formula and in the case of G(z)
we use the fact that G(z) is independent of λ.

Since Gλ(z) is holomorphic on all of C, by Cauchy’s theorem∫
AR,δR

+LR,δR

Gλ(z)e
λz

(
1

z
+

z

R2

)
dz =

∫
|z|=R,
Re z<0

Gλ(z)e
λz

(
1

z
+

z

R2

)
dz.

From the explicit integral formula

Gλ(z) =

∫ λ

t=0

F (t)e−ztdt



Math 212a (Fall 2013) Yum-Tong Siu 22

for x = Re z < 0 we have the estimate

|Gλ(z)| ≤
∫ λ

t=0

e−xtdt =

[
−e

−xt

x

]t=λ
t=0

=
e−λx − 1

−x
≤ e−λx

−x
=

∣∣e−λz∣∣
−Re z

and on { |z| = R, Re z < 0 },∣∣∣∣Gλ(z) e
λz

(
1

z
+

z

R2

)∣∣∣∣ ≤
∣∣e−λz∣∣
−Re z

eλ(Re z) −2Re z

R2
=

2

R2
.

Thus ∣∣∣∣∣
∫
AR,δR

+LR,δR

Gλ(z) e
λz

(
1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ πR
2

R2
< ε

for R ≥ Rε =
2π
ε
.

We now handle the estimate for G(z) on AR,δR + LR,δR . We do this for
AR,δR first. Since

∣∣eλz∣∣ ≤ 1 on the left half-plane {Re z < 0 }, for fixed R,
clearly there exists sompositive number δR,ε such that∣∣∣∣∣

∫
AR,δR

G(z) eλz
(
1

z
+

z

R2

)
dz

∣∣∣∣∣ < ε

for 0 < δR ≤ δR,ε.

We now fix R ≥ Rε and then fix 0 < δ ≤ δR,ε and let λ vary in the
estimate of ∣∣∣∣∣

∫
LR,δR

G(z) eλz
(
1

z
+

z

R2

)
dz

∣∣∣∣∣ .
Here the only dependence on λ is through eλz. On {Re z = −δR } we have∣∣eλz∣∣ ≤ e−λδR

which goes to 0 as λ→ ∞. Hence there exists some λR,δR,ε > 0 such that∣∣∣∣∣
∫
LR,δR

G(z) eλz
(
1

z
+

z

R2

)
dz

∣∣∣∣∣ < ε

for λ ≥ λR,δR,ε. This concludes the proof of the Laplace transform version of
the Tauberian theorem. Q.E.D.
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We now prove the following Mellin transform version of the Tauberian
theorem.

Theorem (Mellin Transform Version of Tauberian Theorem). Let f(x) be a
nonnegative, piecewise continuous, nondecreasing function for 1 ≤ x < ∞
such that f(x) = O(x) as x → ∞. Denote by g(z) the Mellin transform of
f(x) so that

g(z) = z

∫ ∞

x=1

f(x)x−z−1dx,

which is automatically holomorphic on {Re z > 1}. If for some complex
number c the function g(z)− c

z−1
can be extended to a holomorphic function

on an open neighborhood U of {Re z = 1} in C (as the Tauberian conition),

then f(x)
x

→ c as x→ ∞.

Proof. First of all we would like to remark that the growth condition f(x) =
O(x) as x→ ∞ is needed to obtain the complex-analyticity of

g(z) = z

∫ ∞

x=1

f(x)x−z−1dx

on {Re z > 1} because of the need to handle the improperness of the integral
as x→ ∞.

Secondly we would like to point out that though the Laplace transform
version of the Tauberian theorem is related to the Mellin transform version
of the Tauberian theorem by the change of variables x = et, in the Mellin
transform version of the Tauberian theorem the Tauberian condition is that
for some complex number c the function g(z)− c

z−1
can be extended to a holo-

morphic function on an open neighborhood U of {Re z = 1} in C, whereas
the Tauberian condition for the Laplace transform version involves only the
holomorphic extension of G(z) to an open neighborhood U of {Re z = 0} in
C without any subtraction of a principal part.

The introduction of the principal part c
z−1

to the meromorphic extension
of g(z) to an open neighborhood U of {Re z = 1} in C is necessitated by
its application to the proof of the Prime Number Theorem. Because of this
principal part c

z−1
in the meromorphic extension of g(z), the relation of f(x)

and F (t) needs something more complicated than the change of variables
x = et to reduce the the Mellin transform version of the Tauberian theorem
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to the Laplace transform version of the Tauberian theorem. Since∫ ∞

0

e−ztdt =
1

z
for Re z > 0,

in order to handle the complication from the principal part c
z−1

in the mero-
morphic extension of g(z) it suffices to introduce

F (t) = e−tf(et)− c

in the use of the change of variables, where the factor e−t is to take care of
the Jacobian in the integral from the change of variables and the constant
−c is to take care of the principal part c

z−1
in the meromorphic extension

of g(z). Note that the growth condition f(x) = O(x) implies that F (t) is
uniformly bounded for 0 ≤ t <∞.

Let G(z) be the Laplace transform of F (t). To relate G(z) to g(z), with
the change of variables x = et we have

G(z) =

∫ ∞

t=0

F (t)e−ztdt

=

∫ ∞

t=0

(
e−tf(et)− c

)
e−ztdt

=

∫ ∞

x=1

(
1

x
f(x)− c

)
x−z

dx

x

=

∫ ∞

x=1

f(x)x−z−2dx− c

z

=
1

z + 1

(
g(z + 1)− c

z
− c
)
.

Since the Tauberian condition in the Mellin transform version of the Taube-
rian theorem gives the holomorphic extension of g(z + 1) − c

z
to an open

neighborhood of {Re z = 0 } in C, it follows that G(z) can be holomorphi-
cally extended to an open neighborhood of {Re z = 0 } in C.

By the Laplace transform version of the Tauberian theorem, the integral∫ ∞

t=0

F (t)dt =

∫ ∞

t=0

(
e−tf(et)− c

)
dt =

∫ ∞

x=1

(
f(x)

x
− c

)
dx

x
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is finite. We are going to use the nondecreasing property of the function f(x)
to conclude from the finiteness of the integral∫ ∞

x=1

(
f(x)

x
− c

)
dx

x

that f(x)
x

→ c as x → ∞. Of course, if f(x)
x

− c is bounded from below by
a positive number (or bounded from above by a negative number) on some
subset of infinite length in [1,∞), there is a contradiction of the finiteness of
the integral ∫ ∞

x=1

(
f(x)

x
− c

)
dx

x
,

but we need to get a contradiction for the stronger statement that the subset
of [1,∞) where f(x)

x
− c is bounded from below by any positive number is

bounded (and also the subset of [1,∞) where f(x)
x

− c is bounded from above
by any negative number is bounded). The nondecreasing property of f(x) is

used to conclude from f(x0)
x0

− c ≥ ε at some 1 ≤ x0 < ∞ that there is some

interval of length Ix0,ε in [x0,∞) where f(x)
x

− c ≥ ε
2
so that

ε

2

∫
Ix0,ε

dx

x

has a positive lower bound as x0 → ∞, yielding a contradiction to the finite-
ness of the integral ∫ ∞

x=1

(
f(x)

x
− c

)
dx

x
.

In order to get an interval Ix0,ε from a point x0, the key point is that the

positive lower bound ε in the inequality f(x0)
x0

− c ≥ ε is replaced by the

positive lower bound ε
2
in the inequality f(x)

x
− c ≥ ε

2
. Here is the precise

argument.

Suppose ε > 0 and f(x0)
x0

−c ≥ ε for some 1 ≤ x0 <∞. Define the interval

Ix0,ε =

[
x0,

c+ ε

c+ ε
2

x0

]
.

By the nondecreasing property of f(x), for x0 ≤ x ≤ c+ε
c+ ε

2
x0 we have

f(x) ≥ f(x0) ≥ x0(c+ ε) ≥ x
(
c+

ε

2

)
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so that f(x)
x

− c ≥ ε
2
on the interval Ix0,ε. We compute∫

Ix0,ε

dx

x
=

[
log x

]x= c+ε
c+ ε

2
x0

x=x0

= log

(
c+ ε

c+ ε
2

)
.

From ∫ c+ε
c+ ε

2
x0

x0

(
f(x)

x
− c

)
dx

x
≥ ε

2

∫
Ix0,ε

dx

x
=
ε

2
log

(
c+ ε

c+ ε
2

)
we get a contradiction from

lim
x0→∞

∫ c+ε
c+ ε

2
x0

x0

(
f(x)

x
− c

)
dx

x
≥ ε

2
log

(
c+ ε

c+ ε
2

)
> 0

and the finiteness of ∫ ∞

x=1

(
f(x)

x
− c

)
dx

x
,

if for some ε > 0 there exists a sequence 1 ≤ x0 < ∞ going to ∞ with
f(x0)
x0

− c ≥ ε.

Likewise, if for some ε > 0 there exists a sequence 1 ≤ x0 < ∞ going to
∞ with f(x0)

x0
− c ≤ −ε, then we can define the interval

Jx0,ε =

[
c− ε

c− ε
2

x0, x0

]
.

By the nondecreasing property of f(x), for c−ε
c− ε

2
x0 ≤ x ≤ x0 we have

f(x) ≤ f(x0) ≤ x0(c− ε) ≤ x
(
c− ε

2

)
so that f(x)

x
− c ≤ − ε

2
on the interval Jx0,ε. From∫

Jx0,ε

dx

x
= log

(
c− ε

2

c− ε

)
.

and ∫ x0

c− ε
2

c−ε
x0

(
f(x)

x
− c

)
dx

x
≥ ε

2

∫
Jx0,ε

dx

x
=
ε

2
log

(
c− ε

2

c− ε

)
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we get a contradiction from

lim
x0→∞

∫ c+ε
c+ ε

2
x0

x0

(
f(x)

x
− c

)
dx

x
≥ ε

2
log

(
c− ε

2

c− ε

)
> 0

and the finiteness of ∫ ∞

x=1

(
f(x)

x
− c

)
dx

x
.

This finishes the proof that f(x)
x

→ c as x→ ∞. Q.E.D.

Riemann Zeta Function as Mellin Transform of Integral Part Function. For
Re z > 1, the Riemann zeta function

ζ(z) =
∞∑
n=1

1

nz

can be written as the Riemann-Stieltjes integral

ζ(z) =

∫ ∞

t= 1
2

t−zd⌊t⌋

(where t−z means e−z log t and ⌊t⌋ means the largest integer not exceeding t)
which after integration by parts becomes

ζ(z) =

[
t−z⌊t⌋

]∞
t= 1

2

+ z

∫ ∞

t= 1
2

⌊t⌋t−(z+1)dt = z

∫ ∞

t=1

⌊t⌋t−(z+1)dt.

This means that on {Re z > 1} the Riemann zeta function is representable
in the following formula as the Mellin transform of the integral part function
t 7→ ⌊t⌋.

ζ(z) = z

∫ ∞

t=1

⌊t⌋t−(z+1)dt.

Instead of using the Riemann-Stieltjes integral, the formula

ζ(z) = z

∫ ∞

t=1

⌊t⌋t−(z+1)dt,

which expresses the Riemann zeta function as the Mellin transform of the
integral part function t 7→ ⌊t⌋, can be directly derived by summation by parts
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as follows. On {Re z > 1} we have

z

∫ ∞

t=1

⌊t⌋t−(z+1)dt = z
∞∑
n=1

n

∫ n+1

t=n

t−(z+1)dt

= z
∞∑
n=1

n

[
−t

−z

z

]t=n+1

t=n

=
∞∑
n=1

n

(
1

nz
− 1

(n+ 1)z

)
=

∞∑
n=1

n

nz
−

∞∑
n=1

n

(n+ 1)z

=
∞∑
n=1

n

nz
−

∞∑
n=2

n− 1

nz

=
1

nz
+

∞∑
n=2

n

nz
−

∞∑
n=2

n− 1

nz

=
∞∑
n=1

1

nz

= ζ(z).

Meromorphic extension of Riemann Zeta Function by Comparison with Mellin
Transform of Identity Function. The formula

ζ(z) = z

∫ ∞

t=1

⌊t⌋t−(z+1)dt,

which expresses the Riemann zeta function as the Mellin transform of the
integral part function t 7→ ⌊t⌋, holds only on {Re z > 1}, because the order
of growth of the integral part function t 7→ ⌊t⌋ is like t, which cancels one
order in the denominator of t−(z+1). If we can somehow remove one order
from the integral part function t 7→ ⌊t⌋, then we can get a formula for the
Riemann zeta function ζ(z) on {Re z > 1}. For this purpose we can consider

z

∫ ∞

t=1

(⌊t⌋ − t) t−(z+1)dt
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on {Re z > 1} which is equal to

z

∫ ∞

t=1

⌊t⌋t−(z+1)dt− z

∫ ∞

t=1

t−zdt

= zζ(z)− z

[
t−z+1

−z + 1

]t=∞

t=1

= zζ(z)− z

z − 1
.

That is,

ζ(z) = 1 +
1

z − 1
+ z

∫ ∞

t=1

(⌊t⌋ − t) t−(z+1)dt.

Since the integral ∫ ∞

t=1

(⌊t⌋ − t) t−(z+1)dt

defines a holomorphic function on {Re z > 0}, it follows that

ζ(z) = 1 +
1

z − 1
+ z

∫ ∞

t=1

(⌊t⌋ − t) t−(z+1)dt

defines the meromorphic extension of the Riemann zeta function ζ(z) to
{Re z > 0}, which is holomorphic except at z = 1 where it has a simple pole
with residue 1.

Nonvanishing of Riemann Zeta Function on Line of Abscissa 1 by Mertens
Auxiliary Function and Completion of Squares. We are going to prove the
nonvanishing of the Riemann zeta function ζ(z) on the line {Re z = 1} of
abscissa 1 by using

(i) the completion of squares

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2 (1 + cos θ)2 ≥ 0,

(ii) the Mertens auxiliary function

h(x) = ζ(x)3ζ(x+ iy)4ζ(x+ 2iy).
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From
log |ζ(z)| = Re log ζ(z)

= Re log
∏

p prime

1

1− p−z

= Re
∑

p prime

log
1

1− p−z

= Re
∑

p prime

∞∑
n=1

p−nz

n

it follows that

log |h(x)| = 3 log |ζ(x)|+ 4 log |ζ(x+ iy)|+ log |ζ(x+ 2iy)|

=
∑

p prime

∞∑
n=1

p−nx

n
Re
(
3 + 4p−iy + p−2iy

)
=
∑

p prime

∞∑
n=1

p−nx

n
(3 + 4 cos(y log p) + cos(2y log p))

=
∑

p prime

∞∑
n=1

p−nx

n
2 (1 + cos(y log p))2 ≥ 0.

Thus
|h(x)| = |ζ(x)|3|ζ(x+ iy)|4|ζ(x+ 2iy)| ≥ 1.

Suppose ζ(1 + iy) vanishes for some y ∈ R. Then y ̸= 0, because z = 1 is a
simple pole with residue 1 for ζ(z). We get a contradiction from

|h(x)| = |ζ(x)|3|ζ(x+ iy)|4|ζ(x+ 2iy)| ≥ 1

as x → 1+, because |ζ(x)|3 blows up of order 3 and |ζ(x + iy)|4 vanishes to
order 4 whereas |ζ(x + 2iy)| remains bounded. More precise description of
the argument leading to the contradiction is as follows. From the vanishing
of ζ(1 + iy) we have

lim
x→1+

∣∣∣∣ζ(x+ iy)

x− 1

∣∣∣∣ <∞,

which contradicts

1

x− 1
≤ |h(x)|
x− 1

= |(x− 1)ζ(x)|3
∣∣∣∣ζ(x+ iy)

x− 1

∣∣∣∣4 |ζ(x+ 2iy)|
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as x→ 1+, because the left-hand side goes to ∞ while the right-hand side is
bounded by some finite number. Here

lim
x→1+

|(x− 1)ζ(x)| <∞

is used, which is a consequence of the fact that z = 1 is a simple pole of ζ(z)
with residue 1.

Meromorphic Extension of Negative of Logarithmic Derivative of Riemann
Zeta Function to Neighborhood of Line of Abscissa 1. By putting together
the following statements, we can conclude that − ζ′(z)

ζ(z)
admits a meromorphic

extension to an open neighborhood of {Re z ≥ 1} in C with 1 as the only
pole and the principal part at 1 is 1

z−1
.

(i) The product formula

ζ(z) =
∏

p prime

1

1− p−z

for the Riemann zeta function for Re z > 1 (which comes from the
unique factorization of any positive integer into a product of prime
numbers) shows that ζ(z) is holomorphic nowhere zero on Re z > 1.

(ii) The formula

ζ(z) = 1 +
1

z − 1
+ z

∫ ∞

t=1

(⌊t⌋ − t) t−(z+1)dt

on {Re z > 1} shows that ζ(z) can be meromorphically extended to to
{Re z > 0}, which is holomorphic except at z = 1 where it has a simple
pole with residue 1.

(iii) The nonvanishing of ζ(z) on {Re z = 1} from the argument of the
Mertens auxiliary function and the completion of squares shows that
− ζ′(z)

ζ(x)
is holomorphic at every point of {Re z = 1} − {1}.
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Negative of Logarithmic Derivative of Riemann Zeta Function as Mellin
Transform of Second Chebyshev Function. From the product formula

ζ(z) =
∏

p prime

1

1− p−z

for the Riemann zeta function for Re z > 1 (which comes from the unique
factorization of any positive integer into a product of prime numbers), by
taking the logarithmic derivative of both sides, we get

−ζ
′(z)

ζ(z)
=
∑

p prime

p−z log p

1− p−z
=
∑

p prime

∞∑
n=1

p−nz log p =
∞∑
k=1

1

kz
Λ(k),

where ψ(x) =
∑

n≤x Λ(n) and Λ(n) is the von Mangoldt function whose value

is 0 unless n = pk for some prime number when its value is log p.

We now use summation by parts to replace the use of the von Mangoldt
function Λ(k) by the use of the second Chebyshev function

ψ(x) =
∑
k≤x

Λ(k).

Recall the formula for summation by parts is

a1b1 + · · ·+ anbn = s1(b1 − b2) + s2(b2 − b3) + · · ·+ sn−1(bn−1 − bn) + snbn,

where sk = a1 + · · ·+ ak. By application of summation by parts, we get

N+1∑
k=1

1

kz
Λ(k) =

N∑
k=1

ψ(k)

(
1

kz
− 1

(k + 1)z

)
+ ψ(N + 1)

1

(N + 1)z

Since clearly ψ(x) ≤ x log x, it follows that for Re z > 1,

lim
N→∞

ψ(N + 1)
1

(N + 1)z
= 0

and
∞∑
k=1

1

kz
Λ(k) =

∞∑
k=1

ψ(k)

(
1

kz
− 1

(k + 1)z

)
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Thus from ∫ k+1

t=k

t−(z+1)dt =

[
−t

−z

z

]t=n+1

t=n

=
1

z

(
1

kz
− 1

(k + 1)z

)
we conclude that

−ζ
′(z)

ζ(z)
=

∞∑
k=1

1

kz
Λ(k)

=
∞∑
k=1

ψ(k)

(
1

kz
− 1

(k + 1)z

)
=

∞∑
k=1

ψ(k)z

∫ k+1

t=k

t−(z+1)dt = z

∫ ∞

t=1

ψ(t)t−(z+1)dt.

In other words, the negative of the logarithmic derivative of the Riemann
zeta Function is the Mellin transform of second Chebyshev function.

Linear Bound of Second Chebyshev Function from Argument of Powers of
2. We are going to verify the linear growth bound for the second Chebyshev
function, that is, ψ(x) = O(x). The verification is done in the following three
steps.

(i) Bound of sum of log prime between n and 2n, with the use of binomial
coefficient

(
2n
n

)
.

(ii) Bound of sum of log prime not exceeding a power of 2, by breaking up
primes not exceeding a power of 2 into intervals bounded by consecutive
powers of 2.

(iii) For a number x greater than a prime p, differentiate between the case
of x greater than the square of p and the contrary.

Here are the details for the three steps.

Step One. The statement for this step is∑
n<p≤2n,
p pime

log p < 2n log 2.
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The key argument is that∏
n<p≤2n,
p pime

p ≤ (n+ 1)(n+ 2) · · · (2n)

but p ≥ n cannot divide any of the numbers 2, 3, · · · , n so that∏
n<p≤2n,
p pime

p ≤ (n+ 1)(n+ 2) · · · (2n)
2 · 3 · · ·n

=

(
2n

n

)
< (1 + 1)2n = 22n,

because
(
2n
n

)
is an integer and (n + 1)(n + 2) · · · (2n) = n!

(
2n
n

)
. We get our

statement ∑
n<p≤2n,
p pime

log p < 2n log 2

by taking the logarithm of ∏
n<p≤2n,
p pime

p < 22n.

A special case of this statement is that when n = 2m, we have∑
2m<p≤2m+1,

p pime

log p < 2m+1 log 2.

In words, this statement says that the sum of the logarithm of primes between
two consecutive powers of 2 is less than the larger power of 2 times log 2.

Step Two. The statement for this step is∑
p≤2m,
p pime

log p < 2m+1 log 2.

In words, this statement says that the sum of the logarithm of primes not
exceeding a power of 2 is less than that power of 2 times 2 log 2. This state-
ment just follows from the special case in Step One by dividing up [1, 2m]
into the disjoint union of intervals whose end-points are consecutive power
of 2. ∑

p≤2m,
p prime

log p ≤
m∑
ℓ=0

∑
2ℓ<p≤2ℓ,
p prime

log p <
m∑
ℓ=0

2ℓ log 2 = 2m+1 log 2.
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Step Three. The second Chebyshev function ψ(x) is defined as the sum of
log p with p prime and pk ≤ x for some k ∈ N. Thus for a given prime p the
number of log p occurring in the sum for ψ(x) is precisely the in integral part
⌊ log x
log p

⌋ of log x
log p

. The formula for ψ(x) is

ψ(x) =
∑

p prime

⌊
log x

log p

⌋
log p.

For any prime p ≤ x, we differentiate between two cases
⌊
log x
log p

⌋
= 1 and⌊

log x
log p

⌋
> 1. When

⌊
log x
log p

⌋
> 1, we have

⌊
log x
log p

⌋
≥ 2 and log x

log p
≥ 2, which

means that x ≥ p2 and
√
x ≥ p. When we consider only those primes p with⌊

log x
log p

⌋
> 1 in the sum for ψ(x), we get

∑
p prime,

⌊ log x
log p⌋>1

⌊
log x

log p

⌋
log p ≤

∑
p prime,
p≤

√
x

⌊
log x

log p

⌋
log p

≤
∑

p prime,
p≤

√
x

log x

log p
log p

=
∑

p prime,
p≤

√
x

log x

= π(
√
x) log x.

On the other hand, When we consider only those primes p with
⌊
log x
log p

⌋
= 1

in the sum for ψ(x), we get∑
p prime,

⌊ log x
log p⌋=1

⌊
log x

log p

⌋
log p =

∑
p prime,

p≤x

log p.

For any given x ≥ 2 there exists a unique nonnegative integer m such that
2m < x ≤ 2m+1. From Step Two we have∑

p≤2m+1

log p ≤ 2m+2 log 2 ≤ 4x log 2.
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Hence ∑
p prime,

⌊ log x
log p⌋=1

⌊
log x

log p

⌋
log p ≤ 4x log 2.

Putting the two cases together, we get

ψ(x) ≤ π(
√
x) log x+ 4x log 2

=
√
x log x+ 4x log 2

=

(
log x√
x

+ 4 log 2

)
x

= O(x).

Growth Order of Second Chebyshev Function as Prime Number Function
Times Logarithmic Function. The statement is that ψ(x) ≈ π(x) log x, under

the assumption that limx→∞
ψ(x)
x

= 1, so that the proof of the Prime Number

Theorem limx→∞
π(x)

x
log x

= 1 is reduced to limx→∞
ψ(x)
x

= 1. One direction of

the comparison

lim sup
x→∞

ψ(x)

π(x) log x
≤ 1

is straightforward and does not require the assumption limx→∞
ψ(x)
x

= 1,
because

ψ(x) =
∑

p prime

⌊
log x

log p

⌋
log p

≤
∑

p prime,
p≤x

log x

log p
log p

=
∑

p prime,
p≤x

log x

= π(x) log x.

For the other direction of the comparison

lim sup
x→∞

π(x) log x

ψ(x)
≤ 1,

the trick is to cut the number of primes p ≤ x by breaking the counting into
the following two parts for an appropriate y < x and then relate the second
part to ψ(x) by using log y < log p for the primes y < p ≤ x.
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(i) The number of primes p ≤ y.

(i) The number of primes y < p ≤ x.

We have
π(x) =

∑
p prime,

p≤x

1

=
∑

p prime,
p≤y

1 +
∑

p prime,
y<p≤x

1

= π(y) +
∑

p prime,
y<p≤x

log p

log p

≤ π(y) +
1

log y

∑
p prime,
y<p≤x

log p

≤ y +
ψ(x)

log y
.

Let us investigate how we should choose y in the inequality

π(x) ≤ y +
ψ(x)

log y

in order to conclude that

lim sup
x→∞

π(x) log x

ψ(x)
≤ 1.

Rewrite the inequality

π(x) ≤ y +
ψ(x)

log y
as

π(x) log x

ψ(x)
≤ y log x

ψ(x)
+

log x

log y
.

Since we assume as known limx→∞
ψ(x)
x

= 1, to get our conclusion an obvious
way is to have

lim sup
x→∞

log x

log y
≤ 1

and

lim sup
x→∞

y log x

x
≤ 0.

We can achieve both by setting y = x
(log x)γ

for any γ > 1, for example, γ = 2.
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Proof of Prime Number Theorem from Applying to Second Chebyshev Func-
tion Mellin Transform Version of Tauberian Theorem. The proof of the
Prime Number Theorem now is a consequence of the following steps which
we have obtained above.

Step One. The second Chebyshev function ψ(x) =
∑

n≤x Λ(n) is clearly
nondecreasing and piecewise continuous. We have checked that its growth
order is at most linear, i.e., ψ(x) = O(x) as x→ ∞.

Step Two. We have also checked that the Mellin transform of ψ(x) is − ζ′(z)
ζ(z)

which is meromorphic on an open neighborhood of {Re z ≥ 1} with 1 as the
only pole and 1

z−1
as its principal part.

Step Three. We can now apply the Mellin Transform Version of Tauberian
Theorem to

f(x) = ψ(x), g(z) = −ζ
′(z)

ζ(z)
, and c = 1

to conclude that

lim
x→∞

ψ(x)

x
= 1.

Step Four. We have also checked that

lim
x→∞

ψ(x)

π(x) log x
= 1

so that we can obtain the conclusion of the Prime Number Theorem which
is

lim
x→∞

π(x)
x

log x

= 1.

Wiener’s Approach to Tauberian Theory. On R we consider a special kind
of family weights for taking average. One starts with a single function h(t)
on R which is absolutely integrable, say piecewise continuous (actually after
the introduction of Lebesgue theory, just Lebesgue measurable). The family
indexed by x ∈ R is just the family of translates h(t− x) of h(t) to the right
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by x. For a bounded, piecewise continuous function f(x) on R, we can form
the function

x 7→
∫
t∈R

f(t)h(x− t)dt,

from the weights indexed by the variable x, which of course is just the con-
volution f ∗ h of f and h. If we would like to talk about weighted average,
we can require that

∫∞
t=0

h(t)dt = 1, but it is not important.

The principle of Tauberian theorems is the relation between convergence
in using two different families of weights when an appropriate Tauberian
condition is fulfilled. Instead of just one single h(t), we take another function
g(t) so that we have two different families, one defined by h(t) and the other
defined by g(t). We ask under what Tauberian condition is the convergence
of the function

x 7→
∫
f(t)h(x− t)dt

to A as x→ x0 implies the convergence of the function

x 7→
∫
f(t)g(x− t)dt

to A as x → x0. Since we want to forego the condition
∫
h(t)dt = 1, as

explained above, we will always choose A = 0. We use x → ∞ as x → x0.
The Tauberian condition which Wiener obtained in 1932 is that the Fourier
transform of h has no real zeroes. That is,∫

x∈R
h(x)eiξxdx ̸= 0 for all ξ ∈ R.

The conclusion of Wiener’s Tauberian theorem is that under such Tauberian
condition, if the limit of the function

x 7→
∫
f(t)h(x− t)dt

as x→ ∞ is equal to

A

∫
R
h(x)dx

and if g(x) is another piecewise continuous function absolutely integrable
function on R, then the limit of the function

x 7→
∫
f(t)g(x− t)dt
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as x→ ∞ is equal to

A

∫
R
g(x)dx.

Again after the introduction of Lebesgue’s theory of integration, the condi-
tion of piecewise continuity for f, g, h (which is used to guarantee the local
integrability of f(t)h(x− t) and f(t)g(x− t) as a function of t on any interval
of finite length in R) can be replaced by f , g, h being Lebesgue measurable.

The idea of proof is replace h by its translates and take linear combina-
tion and then approximate any given g by linear combinations of translates
of h. As a matter of fact the proof is close to Karamata’s method which first
replaces xn by xkn (for fixed k and variable n) and then take a linear com-
bination and approximate some function defined by characteristic functions
by such linear combinations. The replacement of xn by xkn (for fixed k and
variable n) is the same as performing a translation n → kn with respect to
the group law of multiplication for integers.
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Wiener’s Tauberian theorem Littlewood’s Tauberian theorem

f(t) an
t ∈ R 0 ≤ n <∞∫

t∈R f(t)h(x− t)dt
∑∞

n=0 anx
n

(h uniformly bounded on R)
x ∈ R 0 ≤ x < 1

Tauberian Condition: Tauberian Condition:∫
t∈R f(t)h(x− t)dt→ 0 an = O( 1

n
)

as x→ ∞ (or Karamata′s infn∈N nan > −∞)
Conclusion: Conclusion:

limx→∞
∫
t∈R f(t)g(x− t)dt→ 0 limN→∞

∑N
n=0 an exists and equals

for all g in L1(R) limx→1−
∑∞

n=0 anx
n

x→ ∞ N → ∞
Wiener’s method of proof: Karamata’s method of proof:
(i) Replace h by translate (i) Replace xn by translate xkn

x 7→ h(x− y) by y by k in multiplicative group law
(ii) Take linear combination (ii) Take linear combination

x 7→
∑

j bjh(x− yj) xn 7→
∑

j bj(x
n)k

(iii) Approximate g(x) by (iii) Approximate some function
x 7→

∑
j bjh(x− yj) from characteristic function by

with approximate choice of bj’s xn 7→
∑

j bj(x
n)k

with approximate choice of bj’s

There is a Fourier series version of Wiener’s Tauberian theorem instead
of the Fourier transform version. There are three equivalent formulations for
it.

In order to state these formulations, we introduce the vector space ℓ1(Z)
over C which consists of all (an)n∈Z with

∑
n∈Z |an| < ∞. We introduce

multiplication into the C-vector space ℓ1(Z) by using convolution so that
the product of a = (an)n∈Z and b = (bn)n∈Z is c = (cn)n∈Z with cn =∑

k∈Z akbn−k. We use the notation c = a ∗ b to denote the convolution c
of a and b. Note that when a ∈ ℓ1(Z) and t = (tn)n∈Z is only a bounded
sequence and not an element of ℓ1(Z), we can still form the convolution a ∗ t
and get a sequence, but the sequence a ∗ t is in general not an element of
ℓ1(Z) and is only a bounded sequence.
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The ring ℓ1(Z) is naturally isomorphic to the ring of all absolutely con-
vergent Fourier series

∑
n∈Z ane

inx on R where addition and multiplication
are defined as the usual addition and multiplication for functions. The ab-
solutely convergent Fourier series

∑
n∈Z ane

inx corresponding to the element
(an)n∈Z of ℓ1(Z) is called its Fourier transform.

The three equivalent formulations of Fourier series version of Wiener’s
Tauberian theorem are as follows.

(1) For an element a = (an)n∈Z of ℓ1(Z), the span of its translates (by
multiplication) is dense in ℓ1(Z) if and only if its Fourier transform â
has no real zeroes.

(2) If the Fourier transform of an element a = (an)n∈Z of ℓ1(Z) does not
have any real zeroes and if for some bounded sequence t the convolu-
tion a ∗ t as a bounded sequence approaches zero at infinity, then the
convolution b∗t as a bounded sequence also approaches zero at infinity
for any element b = (bn)n∈Z of ℓ1(Z).

(3) If a function f on R with period 2π whose Fourier series is absolutely
convergent has not zeroes on R, then its reciprocal 1

f
has absolutely

convergent Fourier series.

The first formulation is related to Karamata’s method of proof, which uses
approximation by linear combinations of translates of the kernel (or the
weighted average). The second formulation is along the lines of the his-
toric Tauberian theorems involving taking limits for two different kernels (or
ways of taking weighted averages). The third formulation is assigned as a
homework problem.

Israel Moiseevich Gelfand in 1941 introduced the language of commuta-
tive Banach algebras, multiplicative linear functionals, maximal ideal space,
and the Gelfand representation to interpret the Tauberian theory of Wiener.
Gelfand’s work led to fundamental developments in the theory of harmonic
analysis and Fourier analysis on locally compact abelian groups.


