

Developing and Managing
Mobile Applications

with SyncML and Funambol

September, 2007

Table of Contents

Preface 3

1. Mobile Application Development and Management 4

2. Advantages of Synchronization 6

3. SyncML: The Open Mobile Alliance Standard 8

4. Funambol: The Open Source Mobile Application Platform 23

5. References 28

About Funambol 29

 2

Preface

Why a book on mobile application development and management?

Because mobile is the next big thing. Over one billion mobile devices will be sold this
year. Half of the population on earth will have a mobile device by the end of the year.
The diffusion of mobile devices will surpass by every measurement that of personal
computers. If the Internet enabled an explosion of web applications, the new era of
wireless will create incredible demand for mobile applications and services.

How will developers build these applications? As they did for the web, they will use
standards. SyncML is to mobile applications what HTML and HTTP are to web
applications. SyncML allows you to build an application that works even when a device
is disconnected – a key usability factor for mobile applications.

What will developers use to build mobile applications? They will use open source. Open
source is freely available, it supports more devices than proprietary software and it is
widely used, resulting in more expertise and resources from a global community.

Many mobile applications are being built using Funambol, the leading mobile open
source project in the world. Funambol had been downloaded over one million times,
with downloads exceeding 70,000 per month.

We hope you enjoy reading this document, learning about mobile application
development, the Open Mobile Alliance (OMA) Data Synchronization (DS) and Device
Management (DM) standards (aka SyncML) and the Funambol open source project.

 3

1. Mobile Application Development and Management

One of the primary challenges mobile operators, enterprises, and end users encounter
with mobility is synchronizing the data accessed or used by a wireless device.

There has recently been an impressive increase in the number of personal devices.
Many people own more then one desktop PC, a VCR, a DVD player, a satellite set-top
box, Tivo, etc. When traveling, they often carry a cell phone, laptop, PDA and MP3
player. These devices partially share the same data yet keeping their information in
sync is a difficult task. For example, few users have the phone numbers in Outlook
consistent with the ones in their mobile phone.

If we extend the concept of data synchronization to multiple mobile devices and
corporate servers, we begin to see the magnitude of the problem. Synchronization is a
fundamental component in every wireless project: -- data must be consistent when
accessed by multiple users who are not always connected. Data changed in one device
should be reflected in all others. When a customer phone number is added in
someone's mobile device, it should be reflected in the corporate CRM system and in
their colleagues' cell phones as well.

A key reality, sometimes obscured by marketing, is that wireless devices are not always
connected. Coverage is not yet universal, connections often get dropped and roaming is
expensive and difficult. New network technologies are expected to bring the always-
connected dream to users. However, as it happens in the wired world, a user might not
be willing to download all of their applications and data on the fly.

One of the reasons behind the failure of network computing is that users prefer to have
their data and applications on the device they own versus leaving it on a machine
owned by someone else. Further, they do not want to rely on the network, even if it is
highly reliable. If the network computing idea did not work well in the wired world, it is
even less likely to succeed on devices that have limited memory and processing power.
In particular, if a mobile operator’s revenue model is based on charging per byte or
minute (i.e. the more applications or data downloaded, the more the user pays), users
will naturally prefer downloading once and syncing over paying per each access.

Synchronization is crucial: the data I own is on my device and I update it when I want
(manually, scheduled, application controlled, etc.). I only pay for downloading
information I really need. Applications need to work offline and synchronize with the
world when they are back online. Real-time access is left to specific transactions that
require immediate action.

 4

An even greater challenge for IT managers will be to remotely provision a device with
the proper applications as well as ongoing configuration management. This must occur
in an increasingly complex environment with a plethora of varying devices and operating
systems. A smartphone has become a tiny personal computer with software that needs
to be installed, updated and configured remotely and on the fly. If a mobile device gets
lost, its critical data should be erasable with a remote command.

In sum, the requirements for a mobile application include:
• Data Synchronization

o Offline use
o Multi-directional synchronization on demand

• Device Management
o Application Provisioning
o First installation based on device characteristics
o On-the-fly application upgrade (e.g. bug fixes deployed)
o Remote personalization and customization of devices
o Remote monitoring of devices (e.g. are they working properly?)
o Remote device repair

The three aspects of the equation – data synchronization, application provisioning and
device management – are often approached separately. They are, however, intrinsically
part of a common goal: keeping a device synchronized with the data, applications and
configuration stored on a remote server.

With this in mind, the open source Funambol platform includes a server coupled with
small footprint clients specific to different devices as well as connectors to various data
sources.

Funambol is based on SyncML (Synchronization Markup Language), the Open Mobile
Alliance (OMA) standard for Data Synchronization (DS) and Device Management (DM).
Many leading device manufacturers now include a SyncML client in their new devices.
This is driving the need for a synchronization infrastructure based on the SyncML
protocol.

Funambol is the leading mobile open source project in the world, with more than one
million downloads by 10,000 contributors in 200 countries. Usage by so many people
combined with the continuous community feedback inherent in open source projects
guarantees high quality software and fast development cycles. In parallel with open
source licensing, Funambol software is also available under a commercial license that
removes open source restrictions (such as sharing code changes).

 5

2. Advantages of Synchronization

Connecting to a network when working outside the office is not always feasible. It is
often difficult to maintain a voice call while traveling along some of the most common
highways; data coverage is even worse. Add to this poor coverage in buildings and it
quickly becomes apparent that 100% network connectivity is still a long ways off.

As a result, the best solution for companies that need to deploy mobile applications is to
keep them up-to-date and operational even when not online. Additionally, these
applications can take advantage of a mobile device's processor and memory, delivering
superior responsiveness versus a browser-based application. Sync sessions can occur
in the background when connectivity is available, transferring only the information that
has changed since the last sync.

Why Synchronization’s Time Has Arrived

If a local application that synchronizes is more effective then a network only application,
why are they not more widespread? It’s basically a hardware issue. To gain the
advantages of synchronization, you need to keep the bulk of data and the application
itself on the device and only distribute the changes. For many applications, this requires
that the mobile device be capable of storing and processing hundreds of megabytes of
data.

Notebooks have had this capacity for years but only recently have smartphones and
other mobile devices become available with this type of power. This pace of change is
accelerating with smartphones with more storage and processing capacity.

In addition to more powerful hardware, synchronization is becoming more common due
to the inclusion of SyncML in hundreds of millions of mobile devices. This means that
sync software does not need to be downloaded to the device over the air or using
cables, making it much easier and quicker to synchronize data.

SyncML-based Mobile Applications

Here are several examples of mobile applications that involve syncing data.

Telcos. Obvious consumer applications include mobile backup, PIM sync and mobile
email. In addition to these basic services, several others can be provided via a SyncML
server. For example, mobile operators can offer over the air (OTA) firmware upgrades
and device management. Consider this example: an mobile virtual network operator
(MVNO) distributes a generic mobile phone. When a user connects for the first time, the
device automatically receives branded wallpaper, ringtones and a welcome message.
The MVNO can also provide personal management services such as frequent flyer
applications with flight schedule updates, currency converters with up-to-date rates,
infotainment distribution of sports, news, movie schedules and much more.

 6

Insurance. Brokers need to access a vast amount of information on customers as well
as pricing and features of their products. Such information can change daily, hence the
advantage of an application that can be updated in the morning and used throughout
the day, whether online or offline.

Real Estate. Agents need to be out of the office most of the time to show houses and
meet customers. At the same time, they need a variety of information with them:
searchable lists of houses on the market, pictures, maps and client information. This
information needs to be updated often. After every appointment, the agent has to insert
into the company system new customer requirements, final contract items and
download an updated list of properties that may change every few hours.

Sales Force Automation. Salespeople are primary users of mobile applications. To
enhance their productivity, it is critical to relay orders to corporate as well as to receive
product catalog and pricelist changes while in the field. They cannot wait to get back to
the office to have the most current information.

Field Maintenance. Crew productivity at big industrial sites can be greatly enhanced by
mobile applications. Crews need all the information about the tickets they are going to
work on. When they are done, they need to update the status of the job so it can be
closed or redirected to somebody else. Less time spent on paperwork means more time
solving problems. Up to the minute status means fewer truck rolls to problems that have
already been solved.

Intranets. The use of portals and intranets as a source of organizational information and
policies in everyday corporate life has become common practice. Unfortunately, access
to them usually stops at the entrance to the building. By extending their reach to mobile
devices outside of the office and onto personal mobile phones, the corporation’s
resources are leveraged.

Vending Machine Automation. Vending machines management benefits greatly from
remote synchronization. A SIM can be installed in each machine and programmed to
store all the transactions, inventory levels and error conditions. Daily, the machine can
sync with a central server, allowing the main office to be aware of its status and to tune
maintenance and re-stocking schedules. This is the last mile of just-in-time
manufacturing and distribution.

Delivery Fleet Management. Delivery personnel need to track their trips and the
packages they are delivering and picking up. Often, deliveries are made to locations
outside of data connectivity range. The tracking system needs to be always available,
yet updated when possible.

 7

3. SyncML: The Open Mobile Alliance Standard

In December, 2000, Ericsson, IBM, Lotus, Motorola, Nokia, Palm, Psion and Starfish
Software formed the SyncML initiative to accelerate the market's vision of ubiquitous
data access from any networked device. Their goal was to create a common
synchronization protocol that could be used industry-wide. They worked with end users,
device manufacturers, data providers, infrastructure developers, application developers,
and service providers to define a common mobile data synchronization protocol which
would satisfy the resource constraints of mobile devices and wireless networks and still
provide the extensibility to support a range of applications and data types. The result
was SyncML.

In 2002, the original SyncML initiative was consolidated into the Open Mobile Alliance
(OMA) under the Data Synchronization Working Group (OMA DS) and Device
Management Working Group (OMA DM). The OMA is “the leading industry forum for
developing market driven, interoperable mobile service enablers”. OMA was formed in
June 2002 by nearly 200 companies including the world’s leading mobile operators,
device and network suppliers, information technology companies and content and
service providers.

The mission of the Open Mobile Alliance is to facilitate global user adoption of mobile
data services by specifying market driven mobile service enablers that ensure service
interoperability across devices, geographies, service providers, operators, and
networks, while allowing businesses to compete through innovation and differentiation.

SyncML Data Synchronization (OMA DS)

SyncML Data Synchronization is defined as "the process of making two sets of data
look identical"[Error! Reference source not found.]. To achieve this goal, starting from
a coherent initial state (for example after synchronization). the two sets of data need to
be modified accordingly and a conflict resolution policy must be followed. A conflict
arises when the same data element is modified in both sets in an inconsistent way.

What is a synchronization protocol? First of all, it is a way to communicate the
modifications between different data sets over a period of time.

The primary characteristics of a synchronization protocol are the addressing of the data
sets (or database) and single records (in order to identify a particular database or a
single record in a database), the definition of the standard commands needed to
communicate modifications and the definition of the ways these modifications can be
exchanged (required features, transport protocols and so on).

SyncML is "an initiative to develop and promote a single, common data synchronization
protocol that can be used industry-wide". Moreover, SyncML is a specification for a
common data synchronization framework based on the exchange of XML-based

 8

messages between networked devices. SyncML is sponsored by companies like
Motorola, Nokia, Ericsson, IBM and many others.

The SyncML specifications include:
• A representation protocol, which defines the XML messages format
• A synchronization protocol which defines how SyncML messages shall be combined

together in order to accomplish a synchronization session
• The binding for different transport protocols (HTTP, OBEX)
• A protocol for device management

Client Modifications

Server Modifications

Figure 1 - SyncML Client and Server

SyncML Client and Server

Figure 1 shows a simple case where a cellular phone is a client connecting to a server.
The phone transmits to the server a SyncML message, including the most recent
modifications; the server synchronizes its data set (based on the changes received by
the client, in terms of commands like Add, Delete, and Replace) and responds with a
SyncML message including its own modifications. This is a trivial example but it is
useful to show the role assumed by the two devices during synchronization.

The SyncML Client contains a synchronization agent and typically sends its
modifications first. The SyncML Server is the device implementing both the server-side
synchronization agent and the synchronization logic including the procedures to
interpret the modifications, to discover and manage conflicts and to generate return
messages.

Synchronization Modes

SyncML defines seven synchronization modes.

Two-way sync: the most common synchronization mode whereby client and server
exchange modifications on their data. The client sends the modifications first and then
the server returns its own.

Slow sync: this is a special case of two-way sync whereby all the client database
records are compared, field by field, with the ones on the server. That means the client
sends the full database to the server which in turn analyzes all records detecting

 9

missing items that need to be sent back to the client. It is typically used to recover from
a situation where it is impossible to resolve synchronization conflicts and to re-set to a
consistent state between the client and the server. Another case when slow sync is
used occurs when client and server detect that they are out of sync so that a correct
state must be recreated from scratch.

One-way sync from the client only: the client sends its modifications to the server but no
records from the server are expected or returned.

Refresh sync from client only: the client sends its entire database to the server which
replaces its database with the data sent from the client.

One-way sync from the server only: the server sends its modifications to the client but
no client modifications are expected in return.

Refresh sync from server only: the server sends its entire database to the client. The
client replaces the local set of data with the received one.

Server alerted sync: the server sends a synchronization alert to the client notifying it of
the synchronization mode to be used.

SyncML Basics

In the following, we will discuss the basic elements needed to understand data
synchronization in general and SyncML synchronization in particular. The following
concepts will be presented:
• Sync Anchors
• ID Mapping
• Conflicts
• Security
• Addressing
• Devices and Services Addressing
• Databases Addressing
• Item Addressing
• Device Capabilities

Sync Anchors: to allow a sanity check on the synchronization state between two
devices (was the last synchronization successfully completed?), SyncML makes use of
two synchronization anchors, next and last. Each database “owns” the anchors that are
sent to the other device during the synchronization initialization. Last represents the last
synchronization successfully performed. Usually it is a timestamp, but it could be a
different identifier such as a session identifier. Next is a tag representing the current
synchronization. Client and server exchange their anchors at the beginning of the
synchronization process and are required to store the next anchor of the counterpart at
the end of the sync process. Using this information, the server can detect if the last
synchronization encountered problems and did not end correctly. For example, if the

 10

given Last is equal to the stored anchor, the last synchronization was successfully
terminated; if the anchors do not match, client and server are out of sync and need to
take action to resolve the issue. For this to work, it is important that the next anchors are
saved into the local repository only at the end of a successful synchronization.

ID Mapping: in a multi-device scenario, client and server must be able to create and
deal with local item ids independently. Therefore, the server and client may use a
different identifier for the same item. Meanwhile, the server needs to keep a mapping
table between the client Local Unique Ids (LUID) and the server Global Unique Ids
(GUID) (Figure 2).

Client Device Server Device

Scooter44
Truck33
Bike22
Car11
DataLUID

Scooter404040
Truck303030
Bike202020
Car101010
DataLUID

44404040
33303030
22202020
11101010
LUIDGUID

 Figure 2 - LUIG-GUID mapping example

Note that LUIDs are always created by the client device and only later communicated to
the server with the SyncML command Map.

Conflicts: A modification conflict arises when the same item has been modified on both
server and client. When this happens, the synchronization engine has the responsibility
to resolve the conflict. The client is notified of the error condition by means of a status
code. For example, the following message represents a case where the server notifies
the client about a conflict resolution:
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>2</CmdRef>
<Cmd>Replace</Cmd>
<SourceRef>1212</SourceRef>
<Data>208</Data> <!-- Conflict, originator wins -->
</Status>

 11

Security: SyncML mandates two authentication methods, basic and MD5.

Addressing: Defines the way entities involved in synchronization (databases, items,
etc.) can be addressed. This is achieved using a naming convention based on URIs.

For example a typical server addressing URI might be:
<Source>
<LocURI>http://sync.syncml.org/sync-server</LocURI>
</Source>

A client could use a different addressing identifier such as its IMEI number:
<Source>
<LocURI>IMEI:493005100592800</LocURI>
</Source>

A database is addressed with a URI as described in the SyncML specifications ([Error!
Reference source not found.] and [Error! Reference source not found.]). Note that
the URIs can be either absolute or relative:
<Sync>...
<Target>
<LocURI>./calendar/james_bond</LocURI>
</Target>
...</Sync>
<Sync>
<Target>
<LocURI>http://www.syncml.org/sync-server/calendar/james_bond</LocURI>
</Target>
...</Sync>

Finally, even a single item of a database can be identified with the same method:
<Item>...
<Source>
<LocURI>101</LocURI>
</Source>
...</Item>

Device Capabilities: SyncML defines how devices can exchange information about their
capabilities during the initialization phase. Note that the synchronizing devices are not
required to send their capabilities unless requested by their counterpart. The device
capabilities exchange is very useful at the server side, because the server can apply
proper optimizations according to the remote device resources and features (e.g.
database types, available memory, transmission speed). One thing to consider in this
context is that capabilities information can be quite large. For this reason, the device
capabilities should be sent only if requested. In addition, the information should conform
to the capabilities of the counterpart. For example, if the client notifies the server that it

 12

does not support the data format vCard3.0, the server should not insert in its response
the vCard3.0 properties it supports.

SyncML Synchronization

The complete SyncML synchronization process is shown in Figure 3.

The process consists of a three step sequence: initialization, modifications and client
mapping. Each step of the synchronization process is a packet, which can be composed
of multiple messages. This is necessary to meet the particular requirements of the
transport protocol and to support connection and device limitations.

Client Server

Sync Initialization
Modifications

Client Mapping

Figure 3 - Complete SyncML synchronization process

SyncML specifies that before sending data modifications, the synchronizing
counterparts exchange an initialization packet specifying the device characteristics and
the synchronization requirements (for example, which databases need to be
synchronized, which type of sync is needed or which protocol features are supported).
Note that the initialization packet can be merged with the modification package, thereby
reducing the chattiness of the communication. The drawback is that the synchronization
process cannot be optimized as it could be if the information capabilities were available
before performing the synchronization analysis.

A SyncML message is a well formed XML document (but not necessarily valid) with the
element <SyncML> as root element and container for all the other tags. A single
message is represented by a header within the element <SyncHdr> and a body
enclosed in a <SyncBody> element (Figure 4).

 13

Note that since the XML message is not validated, the XML declaration and prolog can
be omitted. The header contains routing information, database addressing and protocol
versioning (Figure 5), while the body contains one or more synchronization commands.

<SyncML>
<SyncHdr>
…
</SyncHdr>
<SyncBody>
…
</SyncBody>
</SyncML>

Figure 4 - A SyncML message

Each command is represented by a specific XML element, which can be a container for
sub-elements, data items or meta information. SyncML commands can be divided into
request commands and response commands (Figure 6).

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>GWQKAKA</SessionID>
<MsgID>msg21</MsgID>
…
</SyncHdr>

Figure 5 - SyncHeader example

 14

Request commands include Add, Alert, Atomic, Copy, Delete, Exec, Get, Map, Put,
Replace, Search, Sequence and Sync. Response commands include Status and
Results.

<SyncBody>
<Add>
<CmdID>cmdABC</CmdID>
…
<Item>…</Item>
</Add>
</SyncBody>

Figure 6 - SyncBody example

Note that the protocol does not specify any semantic for these operations. As a result,
an Add operation could have a different meaning on a different device.

For a brief description of each command, see the table below:

Add Add items to a database
Alert Notifies counterpart of intention to synchronize a particular database
Atomic All items included in an Atomic command must either all succeed or fail
Copy Copy the items into the destination database
Delete Delete the included items from the destination database
Exec Execute a program on the destination device
Get Request information from the remote device
Map Update LUID-GUID mapping
Put Send information (such as capabilities) to the device
Replace Replace the included items into the destination database
Search Specify a search on the other device
Sequence The included commands must be executed sequentially
Sync The container for the modification commands
Status Status notification for execution & interpretation of any other command
Results Contains Get or Search results

 15

Example Synchronization. Here is a request message for a two-way sync:

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->
</Status>
<Status>
<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>5</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./dev-contacts</TargetRef>
<SourceRef>./contacts/james_bond</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
<Item>
<Data>
<Anchor xmlns='syncml:metinf'><Next>200005022T093223Z </Next></Anchor>
</Data>
</Item>
</Status>
<Sync>
<CmdID>3</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>
<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>
<CmdID>4</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</Type></Meta>
<Item>
<Source><LocURI>1012</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
</Sync>
<Final/>
</SyncBody>
</SyncML>

 16

Notes:

The request header contains the version number of the protocol, the DTD utilized, the
session and message ids and the addressing of the target server. Target indicates the
destination server and Source indicates the client identifier.

The body starts with a <Status> command. Note that the reported message is a
modification message; we are assuming the initialization already took place.

The next <Status> responds to an <Alert> command requesting the synchronization of
the server database ./contact/james_bond.

Note the use of the next anchor as described earlier.

The next command is a <Sync> command containing the synchronization operations to
perform. <Target> and <Source> specify the databases, while the <Meta> element
includes information regarding the client status.

Finally, the command <Replace> represents the required operation -- replace the inner
items with the data contained in <Data>. Note that the <Meta> element specifies the
data type of the data to be stored.

 17

This is an example of a response:
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>
</Status>
<Status><!--This is a status for the client modifications to the server.-->
<CmdID>2</CmdID>
<MsgRef>2</MsgRef><CmdRef>3</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Status>
<CmdID>3</CmdID>
<MsgRef>2</MsgRef><CmdRef>4</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Sync>
<CmdID>4</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Replace>
<CmdID>5</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</type></Meta>
<Item>
<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
<Add>
<CmdID>6</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</type></Meta>
<Item>
<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Add>
</Sync>
<Final/>
</SyncBody>
</SyncML>

 18

Notes:

The structure of the message is similar to the request message.

The <Status> command with <CmdId> equals to 2: it is the status of the synchronization
process, 200 in this case, which indicates that the synchronization completed
successfully.

The server modifications (one <Replace> and one <Add>) are embedded in the <Sync>
command addressed to the database ./dev-contacts.

The Final command indicates that the message is the last in the packet. The server
therefore expects no further messages from the client.

SyncML Device Management (OMA DM)

Configuring a mobile device is a difficult task, even for the expert user. Network
parameters change from phone to phone, visual interfaces are difficult to use and
understand, and mobile operators all have different configurations. Moreover, mobile
devices are becoming “smarter” every day. New features are preinstalled on the device
and new applications are downloaded and installed by the user. As a consequence, the
task of configuring a mobile device is getting even more complex. Consumers, IT
personnel and operators are looking for a platform that allows remote management of
devices in a convenient and effective way.

To address this need, some companies are starting to offer device management
implementations for the mobile world. However, the available solutions are based on
proprietary implementations. A proprietary platform exposes end users, mobile
operators, device manufacturers, and IT departments to a serious risk of insufficient
interoperability and associated cost implications. In the long run, it means being locked-
in with a vendor and a technology, while the market is moving towards adopting
standards.

The OMA Device Management (DM) protocol is an open, universal industry standard for
remote device management of networked devices. Device management is the generic
term used for a technology that allows third parties to carry out the difficult procedure of
configuring mobile devices on behalf of the end user. Third parties would typically be
wireless operators, service providers or corporate IT departments.

Through device management, an external party can remotely set parameters,
troubleshoot service problems and install or upgrade software. In broad terms, device
management consists of three parts:
• The protocol used between a management server and a mobile device
• The data made available for remote manipulation e.g. browser and mail settings
• The policy specifying who can manipulate a particular parameter or update a

particular object in the device

 19

In a wireless environment, the crucial element for a device management protocol is the
need to efficiently and effectively address the characteristics of mobile devices,
including low bandwidth and high latency. The OMA DM protocol has been built with
these requirements in mind.

OMA DM device management scope includes device configuration (i.e. modify or read
operating parameters); software maintenance; inventory (i.e. read from a device its
current operating parameters, list installed or running software, determine hardware
configurations); and diagnostics (i.e. listen for alerts sent from a device, invoke local
diagnostics on a device).

OMA DM Protocol

The OMA DM Protocol is relatively simple from a messaging sequence standpoint. The
message sequence is essentially broken into three parts (Figure 6):
• Alert Phase: Used only for server initiated management sessions
• Setup Phase: Authentication and Device Information Exchange
• Management Phase

Device Push Proxy
Gateway

SyncML DM
Server

Transaction 1

Transaction 1 (Continued)

Transaction 2

Transaction 3

Transaction 4

Transaction 5

Figure 1 - DM session sequence diagram

 20

Transaction 1: Alert Phase. This phase is optional, with data flowing only from server to
client. The server sends a notification package to the client requesting it to start a new
management session. This is usually done with a WAP push message sent by a Push
Proxy Gateway on behalf of the DM server which acts as the WAP Push initiator agent.

Transaction 2: Set-up Phase (from Client). This phase is always required, with data
flowing from client to server. It consists of a request from the client and the response
from the server. The initial client request contains three primary pieces of information:
• Device Information: Data such as device id, manufacturer, model tag, phone

language and DM protocol version
• Client Credentials: Used for authentication purposes
• Session Alert: Specifies whether the incoming session is client or server initiated

Transaction 3: Setup Phase (from server). The server responds to the initial client
request with server credentials with the goal of identifying the server to the client for
authentication and identification purposes. The server also sends user interaction and
the first management command with the response.

Transactions 4 and 5: Device Management. These two transactions represent the core
of the management session. If the server sends a management command to the client
in Transaction 3, the client responds with data and status. Afterwards, the server can
issue new management commands or simply return status information. The
management session ends when the server sends neither additional management or
user interaction commands.

Device Management Tree

Device configuration data is organized in a hierarchical structure called the device
management tree. Sub-trees are called device management nodes and a leaf, usually a
single configuration parameter, is called a manageable object. Device objects can be
anything from a single parameter to a splash screen GIF file to an entire application.
The device management tree is essentially mapped to permanent or dynamic objects as
an addressing schema to manipulate these objects. Permanent objects can be thought
of as objects that are built into the device at the time of manufacture and typically
cannot be deleted. Dynamic objects are objects that can be added or deleted (e.g.
network parameters, ring tones or wallpaper).

The Device Management Node ./DevInfo

As previously mentioned, the initial request from the client always contains device
information whereby the data is retrieved from the ./DevInfo sub-tree. The ./DevInfo
node is only part of the overall device management tree structure, and it maps to basic
device parameters that will allow initial operations and inspection of the device by
customer service personnel. The ./DevInfo object (Figure 7) is a standardized object, so
that any compliant device exposes the same basic information in the same structure.

 21

The management sub-tree in the figure is a good example of how management objects
are organized. ./DevInfo is the main node, which includes sub-trees (other management
nodes) and leafs (manageable objects). Ext, for example, is a sub-tree where any
vendor implementation can expose vendor specific information. All the other entities
represent manageable objects: DevId contains the device id (such as the IMEI code for
a phone device); Man is the device manufacturer identifier; Mod represents the device
model identifier; DmV specifies the OMA DM client version; finally, Lang is the current
language setting of the device. In addition to the manageable object value, each
manageable object has properties. These properties define metadata information about
an object to allow things such as access control etc. These properties are:

Figure 2 - The ./DevInfo standardized objects

• Access Control List (ACL): Defines who can manipulate the object. (required)
• Format: Specifies how object should be interpreted e.g. if object is a URL for a

management server, the Format may be defined as character (required)
• Name: The name of the object in the tree (required)
• Size: Size of object in bytes (required for Leaf Objects, not for Interior Nodes)
• Title: User-friendly name of the object (optional)
• Tstamp: The time stamp of the last modification (optional)
• Type: MIME type of object (required for Leaf Objects, optional for Interior Nodes)
• VerNo: The version Number of the object (optional)

Management objects can be manipulated via SyncML messages with these commands:
• Add: Add an Object (Node) to a tree
• Get: Returns a Node name based on the URI passed with the GET request
• Replace: Replaces an Object on the tree
• Delete: Deletes an Object on the tree
• Copy: Copies an Object on the tree
• Exec: Execute a device-defined command on an Object on the tree

 22

4. Funambol: The Open Source Mobile Application Platform

Funambol includes both a SyncML Data Synchronization (DS) and SyncML Device
Management (DM) solution.

Funambol Data Synchronization

Funambol DS includes three main components: Funambol Server, Funambol
Connectors and Funambol Clients

Funambol Server

Funambol Server is implemented as a standard Java 2 Enterprise Edition (J2EE)
application so that it can be deployed on top of any J2EE compliant application server,
such as JBoss, IBM WebSphere or BEA WebLogic. Since many organizations have
already standardized on J2EE for building applications, in many cases the Funambol
Server can simply be added to the infrastructure that is already in place. If no
application server is already deployed, the Funambol Server can be delivered bundled
with the JBoss open source application server, avoiding high initial licenses costs for the
application server . Thanks to these architectural choices, the server can run on
Windows and Linux/Unix operating systems. Scalability, reliability, and speed are key
aspects of the solution.

A version of the Funambol Server, to be run in a Servlet container (such as Tomcat), is
also provided primarily for use in a development environment.

Figure 3: Funambol Server architecture

The Funambol Server is designed with modularity and flexibility in mind, as this is a key
requirement for application deployment.

 23

Figure 3 shows the main modules that comprise the Funambol Server.

The core is represented by the Funambol Server engine which makes use of add-on
pluggable modules. The Transport Layer module implements transport specific SyncML
bindings. In the case of the HTTP protocol, it is a J2EE web module. Other transports
have their specific implementations. The SyncML module is responsible for the
encoding/decoding of SyncML messages. The Protocol module implements the SyncML
synchronization protocol which describes how SyncML messages are combined to
represent a complete synchronization session. The Services module provides a variety
of horizontal services such as authentication, security, configuration, logging and so
forth. Funambol Connectors facilitate integration with external and legacy systems.

Funambol Connectors

The SyncSource API allows customers to build Funambol Connectors to external
systems. Funambol includes a number of company and community supported
connectors to external data sources e.g.:
• Exchange Connector (community project): Provides access to Microsoft Exchange

Personal Information Management (PIM) data such as contacts, calendar, tasks and
notes.

• Domino Connector (community project): Provides access to Lotus Domino PIM data.
• File System Connector: Transfers data from and to the Funambol Server in XML or

ASCII files (e.g. CSV format) with a flexible transformation mechanism.
• Web Services Connector: Provides access to Web Services using the SOAP

protocol. Data is exchanged with the Funambol Server in XML format.
• LDAP Connector: Provides access to a standard LDAP server, extracting contacts

information.

Funambol Clients

Leveraging open standards, the Funambol is able to communicate out-of-the-box with a
wide variety of SyncML compliant clients. The majority of the latest mobile phones from
Nokia, Motorola and Sony Ericsson include clients capable of transferring common
personal data such as contacts, calendar and tasks. For devices without a standard
SyncML client, Funambol provides a variety of stand-alone clients for Windows mobile
(Pocket PC and Smartphones), Java-enabled devices and email clients such as
Outlook. The Funambol community also provides plug-ins for BlackBerries and Palms
that sync PIM data.

Below are descriptions of some of the Funambol clients and plug-ins.

 24

The Funambol Java client API allows developers to build vertical Java applications that
seamlessly synchronize with backend systems. The API supports two methods of
access for maximum flexibility: full data access where the Funambol Client takes care of
updating the data in the local database and no data access, where the Funambol Client
requires the application to access the data, thus allowing the developer to post-process
the data before storage (e.g. filtering or combining records). Thanks to the portability of
the Java language, the API can be used wherever a Java Virtual Machine (JVM) is
available, such on laptops, Tablet PCs, PDAs and Java-enabled (Java ME) mobile
phones.

Funambol also provides a Java ME client that enables Java-enabled handsets to get
push email and to synchronize contacts and calendar data with a Funambol Server. The
Funambol Server, in turn, can use connectors to access email from Yahoo! Gmail, AOL
and POP/IMAP email servers and services.

The Funambol C++ client API is designed to be embeddable on mobile devices where
size and speed matter most; it can be recompiled on different platforms.

The Funambol Outlook plug-in is an end user application which when installed on a PC
allows Outlook PIM data to be synchronized with a Funambol Server.

The Funambol Windows Mobile plug-in enables an end user using a PocketPC or
SmartPhone to synchronize all PIM data and email with a Funambol Server.

The Funambol Palm plug-in is a community project for Palm OS devices that enables
PIM data including contacts and calendar to be synchronized with a Funambol Server.

The Funambol BlackBerry plug-in is another community project that enables PIM data
such as the address book and calendar to sync with a Funambol Server.

The Funambol iPod plug-in is A PIM application for iPod devices which updates the
contacts and calendar on the device. The data is synchronized with a Funambol Server.

Funambol Device Management (DM) Framework

Funambol DM has two components, a DM Server and a DM Client API.

Funambol DM Server

The Funambol DM Server implements the OMA DM protocol and an extensible
framework for the development of DM applications. The server is based on the
Funambol platform and an open source implementation of the SyncML protocol.

 25

Funambol DM Server Architecture. The architecture of the Funambol DM Server is
depicted in Figure 4. The system implements DM functionality and supports a variety of
extensions to the management engine with custom features. In the diagram, the orange
colored blocks represent functionality that developers can extend and plug into the
framework. The main components are described below.

Notification Engine

Device ManagerDevice ManagerManagement
Processor

Management Engine

Processor
Selector

Device Inventory

Management Console

Management
Panel

Management
Panel

Management
Panel

Infrastructure

Customizable
components

Figure 4 - Funambol Device Management Server architecture

The management engine is the core of the management server. It is responsible for
understanding and interpreting the OMA DM protocol. It delegates the management
logic to an external (and customizable) management processor component. Since many
management processor components can be configured in the server, which one will be
used is chosen by the processor selector at runtime. The selector itself is customizable,
allowing logic to be adjusted based on the specific situation.

The notification engine implements management server notifications of mobile devices
to start a new DM session. For example, in the case of WAP push enabled devices, it
builds a binary WAP push message which is delivered to the device as specified by
OMA specifications. The notification engine supports both bootstrap and device
management notification messages. The former are used to store in the device initial
connection and authentication data, the latter is used to trigger a server initiated OMA
DM session.

The device Inventory is the repository of Device Descriptor Framework (DDF)
descriptors. The DDF framework is part of the OMA DM specification and is meant to be
a dynamic discovery mechanism that a server can use to gather information on the
device's management tree objects. This is particularly useful to discover a device's
specific management tree and objects. The management engine makes use of this
repository to store the DDF read from the devices and to gather information about
already discovered phones.

 26

The management console is used by helpdesk staff to interact with the management
server and, therefore, with the devices.

A management panel controls each management processor. It is plugged into the
Funambol SyncAdmin console. The panel implements the user interface through which
staff interact with the device, using a specific management processor object.

The management processor is responsible for the specific management code that
implements particular device management logic. When the server receives an OMA DM
message, the management processor selects the processor best suited to handle the
request. This task is performed by a customizable Processor Selector component,
which implements the logic for the selection logic for the DM application. Examples are
selecting a processor based on:
• device details (e.g. device id, manufacturer, model)
• the state of the current DM session
• external configuration/interaction/events

Management processors can be as complex or simple as a DM application requires. To
simplify the work of developers, an easy-to-use management processor based on a
scripting language is provided. With it, writing a management processor is as simple as
writing a BeanShell (http://www.beanshell.org) script.

Funambol DM Client APIs

Funambol DM Client APIs support the development of OMA DM applications that can
be remotely managed by an OMA DM server. It consists of several layers:

Database Layer: represents the device's local database.

SyncPlatform Store (SPS) Layer: abstracts database access. It is not specifically related
to DM but it can be used by the framework to access the local database in a generic
way. SPS is an optional component in a Funambol application.

SyncPlatform Data Synchronization (SPDS) Layer: abstracts the complexity associated
with the OMA DS protocol from extension developers, who simply need to call a few
methods of the synchronization manager to kick off the synchronization process.

SyncPlatform DM (SPDM) Layer: the core layer of the OMA DM implementation. The
main component in this layer is called device manager. It is responsible for storing and
reading the management trees and nodes and for exposing to the application code
hooks to start and handle the DM session. All protocol details and complexity are
abstracted for the mobile application developer.

 27

http://www.beanshell.org/

5. References

1. SyncML – "Building an Industry-Wide Mobile Data Synchronization Protocol",
 White Paper, 2000

2. SyncML – “SyncML Sync Protocol, version 1.1”, 2002

3. SyncML – “SyncML Representation Protocol, version 1.1”, 2002

 28

About Funambol

Funambol is the leading provider of mobile 2.0 messaging software, powered by open
source. Funambol open source software has been downloaded over one million times
by 10,000 contributors in 200 countries. The software is used is used by thousands of
organizations around the world, and the company's commercial software is used by
mobile operators, OEMs, ISVs and device manufacturers, including Earthlink and
Computer Associates. Funambol is backed by top-tier venture firms. The company has
partnerships with leading open source and commercial technology organizations.

Funambol is based in Redwood City, CA, with an R&D center near Milano, Italy. To
learn more, visit www.funambol.com or call +1 650 701-1450 (U.S.)
or +49 30-700140-411 (Germany/Europe).

© Copyright 2007 Funambol, Inc. All rights reserved. Funambol is a trademark of Funambol, Inc.
Other names may be the trademarks of their respective companies.

 29

http://www.funambol.com/

