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4.1. Introduction 

 

Parasites live in an intimately close relationship with their hosts, either inserted within their 

anatomic structures or securely attached onto their surface. Therefore, we expect biotic effects 

– such as host individual, population and community characters – to influence all features of 

parasite communities, including richness (Poulin, 2008). In contrast, physical features of the 

abiotic environment, such as temperature, humidity, etc. are not usually expected to influence 

communities of parasites directly. The direct influence of the physical environment may be even 

less pronounced in terrestrial than in aquatic habitats because the terrestrial environment is less 

habitable for the free-living stages of parasites. Not surprisingly, major textbooks on parasite 

ecology rarely discuss the effects of abiotic environmental factors on terrestrial parasite 

assemblages (but see Bordes et al., 2010). 

 

Currently, the ideas linking changes in abiotic factors and their influence on parasitism are 

associated with climate change. Global climate change is considered to be the principal abiotic 

environmental effect in ecological literature (Karl & Trenberth, 2003; Rosenzweig et al., 2008). 

Whether partially anthropogenic or not, climate change produces shifts in the distributions and 
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abundances of populations and species (Parmesan & Yohe, 2003) and poses a major extinction 

risk to many species (Thomas et al., 2004). 

 

In this chapter we consider the relationship between host range shifts and parasite 

diversification. Earlier authors have repeatedly emphasized two major points: (1) the ongoing 

loss of non-parasite diversity decreases parasite diversity (Lafferty, 2012); and (2) periods of 

expansions of hosts’ geographical ranges promote host-switches (Hoberg & Brooks, 2008). 

Below we outline a scenario that adds three further aspects:  

 

1. We separately discuss the characteristic processes of the leading edge versus the 

rear edge of the moving margins of the hosts’ range. 

 

2. We show that both relatively high or relatively low parasite richness of an invasive 

host population may facilitate invasion success under different circumstances. 

 

3. We analyse the role of sexual selection in parasite speciation in relation to their 

geographic position. 

 

 

4.2 Changing parasite communities and shifts in hosts’ geographic ranges 

 

4.2.1 Shifting host distributions 

 

Host geographic ranges relentlessly change due to natural processes; however, human-induced 

effects, such as environmental pollution, deforestation, agriculture, desertification, overfishing of 

marine and overgrazing of terrestrial ecosystems, and climate change in particular, may force 

them to make unusually quick shifts. A global metaanalysis indicates that free-living species 

shift their ranges poleward at an average speed of 6.1 km per decade, likely due to climate 

warming (Parmesan & Yohe, 2003). Therefore, understanding the interactions between host 

range shifts and parasite speciation and extinction events is crucial for making predictions about 

future parasite and pathogen assemblages of humans, domestic animals and wildlife. Imagine a 

virtual host population whose geographic distribution is gradually shifting in one direction, say, 

withdrawing from the south and extending into the north. Following a simple idea introduced by 
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Hampe and Petit (2005) we discriminate between leading edge effects on the north and rear 

edge effects on the south. 

 

 

4.2.2 Leading edge populations 

 

Environmental changes may render large and formerly uninhabitable areas open to colonization 

for many species, e.g. climate change may facilitate poleward range shifts, particularly in cold 

and temperate regions. In a typical model of colonization that became almost a central 

paradigm in phylogeography, the process involves rare and accidental long-distance dispersal 

events followed by exponential growth of isolated host populations. The population genetic 

bottlenecks explain the low level of genetic diversity observed both within and among these 

leading edge populations (Hewitt, 2000). Moreover, founding events are also likely to decimate 

the richness of their parasite and pathogen assemblages. Not only species richness, but also 

genetic diversity of the few co-colonizing parasite species is reduced within the founder 

populations. According to the Enemy Release Hypothesis (ERH) (Keane & Crawley, 2002; 

Torchin et al., 2003), introduced invader species harbour significantly poorer pathogen faunas 

than their source populations; thus they may often outcompete locally endemic rival species that 

carry rich parasite faunas causing higher metabolic burdens. 

 

Consequently, at the leading edge of the host range, the genetically homogeneous populations 

that harbour species-poor parasite and pathogen assemblages may exhibit exponential 

population booms. Predictably, these leading edge populations will be susceptible to host-

switching parasites and pathogens carried by the host species they encounter in their expanded 

range (Hoberg & Brooks, 2008). Subsequently, as the metabolic advantages of their relatively 

parasite-free state is gradually eroded by switches from the local parasite and pathogen fauna, 

they fail to grow further in numbers or may even collapse and disappear.  

 

Host-switching is a sudden change in the host-specificity of a particular parasite lineage, often 

accomplished by only a very few founder individuals that colonize a host species that has not 

been regularly utilized formerly. Obviously, most such switches result in immediate extinction of 

the switching parasite lineage. In a few rare cases, however, the invaders succeed in 

establishing a viable population on the new host species. Assuming that parasite transmission is 

largely restricted within the boundaries of the host species, such as in the case of sexually or 
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socially transmitted pathogens, a reproductively isolated host race emerges that may 

subsequently give rise to a separate parasite species. The parasites’ source population is not at 

all affected by this process but keeps on parasitizing its original host species. In the case of 

colonizing host populations, the success of host-switches is enhanced by the growing size and 

low genetic diversity of the host population, and the low species richness and low genetic 

diversity of their pathogen community.  

 

In this age the human species (Homo sapiens) exhibits an unprecedented geographic 

expansion. Humankind continuously increases its range and invades habitats and ecosystems 

more extensively and intensively than ever before. Thus, humans establish contact with more 

and more species; consequently, emerging infectious diseases of zoonotic origin are expected 

to occur more frequently at the periphery of the advancing front (Reperant, 2010; Murray et al., 

2012).  

 

In human historical geography, ‘McNeill’s law’ (McNeill, 1976) postulates an alternative 

scenario. It assumes that the successful expansion of certain nations to conquer rivals has been 

facilitated by their superior pathogen richness (McNeill, 1976). This hypothesis presumes that 

large and spatially central populations of humankind share a long coevolutionary history with 

rich pathogen assemblages, unlike the long-isolated, small and peripheral populations that 

harbour species-poor parasite assemblages. Therefore, invasions from the centre to the 

marginal populations may be facilitated by the rich co-invasive pathogen assemblages. 

Members of peripheral populations are less able to develop appropriate immune reactions. They 

are not only more susceptible to infections, but also the pathogens are selected to increase 

virulence once circulating in immunologically naive populations (Ewald, 1994). Indeed, 

European nations colonizing other continents were able to populate regions of Siberia, the 

Americas, Australia and New Zealand – exactly those areas whose aboriginal populations were 

founded by relatively small groups of founder individuals and later developed in long isolation 

from the main, central human populations (Diamond, 1997).  

 

Although McNeill’s law was originally postulated to describe the pathogen-mediated relationship 

among human (i.e. conspecific) populations, closely related host species may also engage in 

similar relationships. One can find several examples of pathogen mediated negative interactions 

(also as ‘parasite-mediated competition’ or ‘apparent competition’) among different host species 

in the literature (Hudson & Greenman, 1998; Tompkins et al., 2002; Ricklefs, 2010). Essentially, 
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the co-invasive pathogen is less virulent and more transmissive in the invasive species than in 

the host they mutually displace. 

 

There appears to be a contradiction between this generalized form of McNeill’s law and the 

ERH. Are the invasions of certain populations or species facilitated by the parasites they 

distribute to their competitors or, alternatively, by low species richness and genetic diversity of 

parasites on the invaders? Here, we propose that both scenarios may occur depending on the 

modes of invasion. 

 

Pioneer-based invasions are initiated by rare, long-distance migrants that establish distant and 

isolated populations far away from the source population. Host genetic diversity, parasite 

species richness and genetic diversity are all reduced in their founder populations even long 

after a subsequent increase of population size. Most introduced exotic species appear to fit this 

scenario, and we predict they will also fit the ERH. Other invasions, however, are characterized 

by a sudden mass inflow of migrants, thus no founder effect occurs. For example, soon after the 

technological development enabled Europeans to cross the oceans, a mass of European people 

colonized distant, formerly isolated continents. As ‘McNeill’s rule’ predicts, they displaced native 

people partly because they carried a species-rich and genetically diverse pathogen 

assemblage. Similarly, the current mass transportation of materials – such as ballast water 

carried by ships – has enabled many species to make mass inflows into formerly isolated, 

distant areas. Moreover, the mass introduction of domestic, feral and game animals may also fit 

this pattern. Such non-native mass invaders are likely to carry the (nearly) full genetic diversity 

of source host populations along with their species-rich and also genetically diverse parasite 

faunas. In such cases, we expect successful invaders may obtain a competitive advantage 

within the context of parasite-mediated competition. 

 

Apparently, sudden mass invasions are rare and mostly human-induced events. Therefore, we 

consider pioneer-based invasions followed by an exponential growth of isolated, pathogen-poor 

populations to be the main mode of colonization at the leading edges of host area expansions. 
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4.2.3 Rear edge populations 

 

At the rear edge of a gradually shifting range, host populations face an increasingly inhospitable 

environment. Some of the rear edge populations become completely extirpated, along with the 

entire parasite fauna they harbour. Others – whenever a heterogeneous topography allows – 

become relict populations inhabiting small and isolated habitat patches that may provide refugia 

for long-term survival (Hewitt, 2000; Petit et al., 2003). These rear-edge relict populations are 

restricted to habitat islands embedded within a matrix of already unsuitable landscapes. Being 

small and isolated through long periods, their within-population genetic diversity decreases 

while they also exhibit high levels of genetic differentiation among each other. Selection for local 

adaptation rather than for vagility and variability results in the development of distinct ecotypes 

(Dynesius & Jansson, 2000). Even though some relict populations are surprisingly persistent, 

they gradually shrink in size and eventually disappear long after being isolated from the main 

host distribution. Given the long evolutionary period of host population size decline, some 

parasite species may have a chance to gradually abandon the shrinking host population by the 

process of ‘host-shifting’. 

 

Although the terms ‘host-switch’ and ‘host-shift’ are routinely used as synonyms in the literature, 

we refer to them as two different processes. Hereafter, the term ‘host-shift’ is used to signify a 

parasite species’ gradual abandonment of a shrinking host population (Figure 4.1). Apparently, 

most parasite species parasitize more than one host species (Poulin, 2008). One (or a very few) 

host species act as primary hosts supplying the majority of the parasites’ reproductive success, 

thus the parasite must be well adapted to it. Most parasites also utilize secondary host species. 

They are much less adapted to these secondary hosts and their reproductive success is 

depressed on them. A permanent flow of parasite spores, eggs or larvae prevents isolation 

between the parasite populations living on different host species and, therefore, prevents 

improvement of parasite adaptation to the secondary hosts. The position of primary versus 

secondary host species – their relative role from a parasite’s perspective – may change through 

time. Provided the primary host gradually becomes scarcer and less accessible for parasite 

transmission, a gradually increasing proportion of the parasite population will be forced to utilize 

the secondary hosts. Selective pressures to increase adaptation to the secondary host will 

reduce adaptation to the primary hosts due to a trade-off between the two alternative adaptation 

repertoires. Finally, the former secondary host becomes a primary one, while the former primary 

host may either become a secondary host or even become totally abandoned. This process, 



7 
 

which we call host-shifting here, is not a sudden, stochastic and highly unpredictable event, but 

rather a slow and gradual evolutionary process. 

 

 

         

Figure 4.1 Host-switch (left) is a sudden, random colonization (vertical line) of a new, formerly unused host species 

by a few parasite individuals. It does not affect the further fate of the conspecific parasites on the donor host species, 

may accidentally cross large taxonomic gaps between the donor and the recipient hosts, and it may lead to parasite 

speciation. Host-shift (right) is a gradual change of the relative role of a particular host species as primary versus 

secondary host in the case of a potentially multi-host parasite. Horizontal lines represent frequent cross-infections 

between the two host species. The former primary host either becomes a secondary host or becomes totally 

abandoned by the parasite. This process is a gradual change that does not increase parasite diversity. Host-switch is 

more likely to occur in a growing host population, and host-shift is more likely to occur in a shrinking host population. 
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Figure 4.2 A schematic representation of the characteristic processes shaping the pathogen community harboured by 

a host taxon with moving (here: south!north) geographic area. At the leading edge of the host’s main geographic area 

(1), an environmental barrier (2) blocks northward invasion, so that only a very few pioneer individuals may cross it to 

establish a small and isolated population (3) that has a reduced genetic diversity and a species-poor and genetically 

homogenous parasite fauna. Subsequently, this host population may enjoy a competitive advantage against 

members of the local fauna (not illustrated here) because of their reduced parasite burden. Consequently, the 

invasive founder population may increase its size (4), increasing the chance of host-switches (5). Another 

environmental barrier (6) may suddenly disappear to enable a mass inflow of invaders from the source population. 

According to McNeill’s law, such genetically diverse and pathogen-rich mass invasions may either outcompete a 

conspecific population (7) or populations of other species (8) harbouring a species-poor parasite assemblage. 

Meanwhile, at the rear edge of the moving area, certain host populations get isolated from the main area and 

gradually shrink in size and genetic diversity. Members of their parasite faunae may either go extinct (9) or shift their 

host range to abandon the shrinking host population and utilize others (10). 
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4.3. Sex, speciation and virulence at the speciation centre: a case study with lice and pocket 

gophers 

 

 

4.3.1 Background 

 

The complex view that arises from the mosaic of the abovementioned processes (Figure 4.2) 

still lacks an influential factor affecting parasite speciation, i.e. the presence or absence of 

closely related parasite species, subspecies and populations. 

 

We presume that the availability of closely related host lineages is an important factor in 

parasite speciation because host-shifts and host-switches are more likely to occur between 

them than is expected by chance (Krasnov et al., 2004). 

 

The geographic distribution of several higher taxa of free-living animals can be characterized by 

a centre of speciation. These speciation hotspots are geographic areas where the formation of 

new species is particularly intensive and, consequently, a high number of closely related taxa 

occur sympatrically. Below, we investigate whether host and parasite populations’ spatial 

position at the speciation centre versus at the speciespoor peripheries influences levels of 

sexual selection and speciation in parasites. Since this question is not addressed in the 

currently available literature, we take the liberty to delineate a formerly unpublished comparative 

study below. Only preliminary versions of this study have previously been briefly described in 

Hungarian (Rózsa, 2005). 

 

Sexual reproduction in free-living organisms is thought to have originated and maintained as an 

adaptive response to parasitism (Hamilton et al., 1990). However, parasites themselves tend to 

reproduce sexually too. Sexual selection occurs when mating success is influenced by different 

genotypes. While sexual selection is accepted as a major force of evolution (including 

speciation) of free-living species (Anderson, 1994), and pathogens’ influence on host sexual 

selection has been studied intensively in recent decades, effects of sexual selection in parasites 

is still poorly understood. 

 

We compare sexual size dimorphism, sex-ratio and measures of male and female genitals and 

secondary sexual characters across a large number of closely related taxa as an indirect way to 
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compare different levels of sexual selection (House & Lewis, 2007). Increasing levels of sexual 

selection increase the proportion of nutrients allocated in the making of sexual organs. Being 

the largest group of insects that complete the entire life-cycle as parasites, the parasitic lice 

(Insecta: Phthiraptera) offer an opportunity to outline and measure sexual characters in 

contagious pathogens. Like all insects, lice possess an articulated body structure consisting of 

distinctive body parts specialized for different functions; thus the size measures of body parts 

are more exact than in non-arthropod parasites or pathogens.  

 

Since female lice may copulate several times throughout their life and they can also store sperm 

in their spermatheca, the male sex is likely to be subjected to sperm competition (Tryjanowski et 

al., 2009). Larger-bodied males, or those with relatively larger and more complex genitals, can 

produce more sperm to dilute the sperm of rivals and thus are more competitive. In Ischnoceran 

lice, the male antennae are often enlarged and serve to grasp females during copulation. 

Therefore, males with larger and more complex antennae can copulate for longer periods of 

time to prohibit other males from copulating subsequently. Finally, in species characterized by a 

higher level of sperm competition, female genitals are also predicted to be relatively larger and 

structurally more complex (House & Lewis, 2007). 

 

Obviously, the intensity of sperm competition is influenced by the proportion of males within the 

population. Skewed sex-ratios are common in lice, apparently originating from local mate 

competition (Clayton et al., 1992). This arises when a population is frequently and temporarily 

divided into several small subpopulations where inbreeding is pronounced (Hamilton, 1967). 

Lice tend to complete severallife-cycles on a single host individual while being isolated from 

conspecifics living on other hosts. Thus, females can maximize their breeding success by 

reducing the proportion of the more competitive sex (usually the male) to decrease sexual 

competition among the offspring. On the other hand, outbreeding favours the production of 

sexually competitive offspring. 

 

Below, we quantify sexually selected morphological characters and sex-ratios in a diverse group 

of lice so as to investigate the relationships among sexual selection, geographic distribution, 

speciation and virulence. For this purpose we describe the co-variation of sex-ratio with sexually 

competitive morphological features, and the co-variation of environmental factors (such as 

geographical position and intensity of infection) and levels of sexual competition. Finally, we 

interpret these patterns in relation to parasite speciation and the evolution of virulence. 
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Epidemiological measures, such as prevalence (Read et al., 1995a), mean intensity (Read et 

al., 1995b; Poulin, 1997a; Rózsa, 1997), and even host sociality (Rózsa et al., 1996) may co-

vary with pathogen sex-ratios. Moreover, sex-ratio is correlated with sexual size dimorphism in 

parasitic nematodes (Poulin, 1997b) and sexual size dimorphism is also useful as a proxy of 

sexual selection in parasites (Poulin & Morand, 2000; Tryjanowski et al., 2009). These findings 

were all interpreted within the context of sexual selection in parasites. Our present analysis, 

however, involves a much larger set of sexual characters and also takes geographical positions 

into account. 

 

 

4.3.2 Methodology 

 

Lice (Phthiraptera: Ischnocera: Geomydoecus spp., Thomomydoecus spp.) of pocket gophers 

(Mammalia: Rodentia: Geomyidae) were described by three co-working authors using large 

sample sizes (54 250 lice from 3574 gophers) and consistent morphometric methodologies 

(Price, 1975; Hellenthal & Price, 1980; 1984; 1988; 1989a; 1989b; Price & Hellenthal, 1975a; 

1975b; 1976; 1979; 1980a; 1980b; 1980c; 1981a; 1981b; 1988a; 1988b; 1989a; 1989b; Price et 

al., 1985; Timm & Price, 1979; 1980). We excluded a few erroneous or incomplete records, 

some small tropical samples collected south of Mexico, and samples of small size (<25 

parasites or <5 hosts). Similarly, we removed apparently parthenogenetic (sex-ratios <5%) 

strains as outliers. In total, we included in the analyses 92 louse species and subspecies 

occurring on species and subspecies of pocket gophers broadly distributed over North and 

Central America. Because gopher diversity had been falsely inflated by giving subspecific ranks 

to local populations that differ only in size and coloration, but not divergent from others 

genetically, we united conspecific gopher ‘subspecies’ whenever they were not isolated 

geographically, following Hall (1981); Patton and Smith (1990); Hafner (1991); and Demastes et 

al. (2002). Host taxonomy follows Wilson and Reeder (1993). 

 

Several louse species and subspecies are divided into two or more strains occurring on different 

gopher species or subspecies, and many gopher subspecies harbour two or more different 

strains belonging to different louse taxa. Overall, a total of 189 different strains can be identified. 

This complicated host–parasite system is also known to exhibit significant degrees of 

cospeciation (Hafner & Nadler, 1988; Hafner et al., 1994). 
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The following measures were obtained from the species descriptions to characterize parasite 

taxa: 

 

1. Sex-ratio is the number of adult males divided by the total number of adults. After excluding 

apparent parthenogenetic strains, strain sex-ratio ranged from 0.34 to 0.79. 

 

2. Log-transformed male total body length is expressed as a linear function of log-transformed 

female total body length, then sexual size dimorphism (SSD) is expressed as residuals from this 

function (Ranta et al., 1994). 

 

3. Female genital size is expressed as the length of female genital sac relative to total body 

length and is calculated similarly to SSD. 

 

4. Male genital size is expressed as the width of male genital parameral arch relative to head 

width and is calculated similarly to SSD. 

 

5. Male grasping organ size. The first segment of the male antenna is an enlarged grasping 

structure called the scape. Since males use it to fix the female thorax during copulation, we 

quantify male scape length in relation to conspecific female prothorax width. Scape length is 

calculated similarly to SSD. 

 

6. The structural complexity of female genitals is the number of genital sac ‘loops’. The function 

of these structures is not understood; we simply regard the genitals containing more loops to be 

structurally more complex than those with fewer loops. Character states are ordered as in Page 

et al. (1995). 

 

7. Structural complexity of male genitals is quantified as the number of genital sac spines. The 

function of these structures is also unknown. Character states are ordered as in Page et al. 

(1995). 

 

8. The structural complexity of the male grasping organ. The scape may come with or without a 

large protuberance. We interpret the presence of this structure as a manifestation of greater 

structural complexity. Character states are ordered as in Page et al. (1995). 
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9. Finally, mean intensity is the number of parasites divided by the number of infected hosts, 

log-transformed. The random noise in these data is inherently high because most lice were 

collected from museum skins for taxonomic purposes only (Roger D. Price, personal 

communication). Given the very large sample size, they may still carry some information about 

true intensity values. 

 

A few of the early species descriptions do not contain all of the above characters, thus not all 

data types were available for all taxa and thus sample sizes may differ among comparisons. 

Following Felsenstein (1985), we control for the potential effects of louse phylogeny. A cladistic 

tree produced by Page et al. (1995) provides an estimation of louse phylogeny; however, there 

is logical circularity in using it because some of the characters we analyse in this study were 

used directly in the construction of the tree itself. This error may not be large, however, as the 

sexually selected characters had a rather low character weight (as compared to all other 

characters) and had a weak influence on tree topology; sexually relevant morphological 

characters are nonconservative but show several independent cases of parallel evolution in 

gopher lice. 

 

Nevertheless, to control for this potential error, we reconstructed the tree in Mesquite (Maddison 

& Maddison, 2011) by excluding the characters analysed here from the original Page et al. 

(1995) data set. Given the large number of taxa, we performed a heuristic search for the most 

parsimonious tree using treelength as a criterion and SPR (Subtree Pruning and Regrafting) as 

the rearranger method. The consensus tree of the ten equally parsimonious trees was used in 

subsequent analyses along with the original Page et al. (1995) tree. We used phylogenetic 

generalized linear models as described by Freckleton et al. (2002) to control for phylogenetic 

non-independence. This method incorporates a phylogenetic variance–covariance matrix within 

a linear model. The assumptions of phylogenetic linear models were evaluated by diagnostic 

plots. Analyses were carried out by the ‘caper’ package (Orme et al., 2011) in R 2.14.0 (R 

Development Core Team, 2011). 

 

 

  



14 
 

4.3.3 Results and discussion 

 

When interpreting species characters as statistically independent events, thus applying no 

control for phylogeny, sex-ratio correlates positively with mean intensity, SSD and all the 

measures of the size and the structural complexity of female and male genitals, and male 

attachment organs (Table 4.1). 

 

When applying phylogenetic control along the two trees mentioned above, sex-ratio correlates 

significantly with intensity (N = 92; slope = 0.08, r2 = 0.06, p = 0.012 for our tree and slope = 

0.06, r2 = 0.05, p = 0.023 for Page et al.’s (1995) tree) and with male genital complexity (N = 92; 

slope = 0.02, r2 = 0.05, p = 0.014 and slope = 0.01, r2 = 0.05, p = 0.020, respectively). 

Furthermore, sex-ratio correlates significantly with relative male scape length in our tree, but this 

relationship is lost in the Page et al. (1995) tree (N = 84; slope = 0.49, r2 = 0.07, p = 0.007 and 

slope = 0.19, r2 = 0.01, p = 0.19, respectively). 

 

In a multiple regression model, the significant explanatory variables (sex-ratio as response) 

were intensity (slope = 0.09, p = 0.007) and relative male scape length (slope = 0.52, r2 = 0.14, 

p = 0.003) in our tree; and intensity (slope = 0.05, p = 0.046) and male genital complexity (slope 

= 0.01, r2 = 0.08, p = 0.040) in Page et al.’s (1995) tree. 

 

 

 

Table 4.1 Co-variation of sex-ratio with mean intensity and sexually selected morphological characters across gopher 

louse species or subspecies (Spearman’s correlations). All correlations lead into the direction predicted by the 

hypothesis that sperm competition is an influential agent of evolution in gopher lice.  

 

Co-variation with     N   r   p 

 

Mean intensity     92   0.2787   0.0071 

SSD      92   0.2575   0.0132 

Female genital size    78   0.3842   0.0005 

Female genital structural complexity  92   0.3658   0.0003 

Male genital size     91   0.3687   0.0003 

Male genital structural complexity   92   0.4021   <0.0001 

Male grasping organ size    84   0.2702   0.0129 

Male grasping organ structural complexity  92   0.3492   0.0006 
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We believe that outbreeding is likely to be more pronounced at higher intensities, and thus 

mean intensity predictably co-varies positively with male-to-male sexual competition. The 

direction of all correlations matches those predicted by the hypothesis that sexual selection is 

responsible for the emergence of these patterns. 

 

Alternatively, these correlations can also be interpreted as a result of sampling bias. Because 

the larger-bodied parasites are easier to find than smaller ones, we expect sampling bias to 

yield an apparent correlation between SSD and sex-ratio. Furthermore, since SSD is correlated 

to all other morphological characters investigated here (details not shown) sampling bias could 

also explain correlations between apparent sex-ratio and all the morphological characters as 

mediated by SSD. However, the clear biogeographic pattern of sexually selected variability in 

gopher lice – as shown below – makes this latter hypothesis unlikely. In the absence of exact 

geographic coordinates, we use the political boundaries of the member states of Canada, the 

USA and Mexico to identify geographic locations. 

 

The distribution of gopher lice sex-ratios exhibits a clear geographic pattern. Female-biased 

populations, and particularly the parthenogenetic ones, tend to occur on the periphery of the 

distribution. Conversely, male-biased populations are mostly found in the apparent speciation 

centre of gophers and gopher lice; i.e. roughly along the western side of the Great Basin Divide 

and along the Continental Divide in the south (Figure 4.3). 
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Figure 4.3 Geographic pattern of gopher louse sex-ratios. Each state is characterized by the mean of sex-ratios of the 

louse strains occurring there (provided that sample size >=25 parasites and >=5 hosts for each strain). 

Parthenogenetic strains (stars) are excluded from calculations. 

 

Moreover, after characterizing each member state of Canada, the USA and Mexico by the 

number of parasite strains per unit area, a significant positive correlation emerges between the 

density of louse strains per unit area and the mean of the sex-ratios of the strains. High sex-

ratios tend to occur together with high strain density per unit area (Figure 4.4). 
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Figure 4.4 Parasite sex-ratios co-vary with strain density. Each circle represents a member state of Canada, the USA 

or Mexico. States are characterized by the number of parasite strains (different host-parasite species or subspecies 

pairs) per unit area, and the mean of parasite sex-ratios of strains occurring there. Spearman r = 0.4466 (corrected 

for ties), p = 0.0006. 

 

 

 

Two alternative hypotheses may explain this co-variation. First, comparative evidence suggests 

that sexual selection often plays an important role in speciation of free-living animals (Panhuis 

et al., 2001). It is reasonable to assume that speciation and, thus, species richness may also be 

inflated by intense sexual selection in parasites and pathogens. Second, an opposite causality 

may also explain the patterns described above; high speciation rates may increase sexual 

selection. Speciation involves populations gradually diverging from each other, thus – before 

genetic isolation is completed – multiple infections originating from genetically different 

populations increase outbreeding and favour the production of sexually competitive offspring. 

This effect is less pronounced between genetically similar populations. Obviously, these two 

hypotheses are not mutually exclusive. In areas that permit high speciation rates for hosts and 

thus also for parasites, the two effects may interact as an autocatalytic process. 

 

Another alternative is to presume that the interaction between geographic range and louse 

sexual characters is mediated by host characters (for example, body mass or longevity) 

unexplored by us. This hypothesis implies that the sex-ratio difference between strains of 

parasite A on host taxon 1 versus 2 should predict the sex-ratio difference between strains of 
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parasite B on host taxon 1 versus host 2. Moreover, on a finer scale, the sex-ratio difference 

between local strains of parasite A on host local populations 1 versus 2 should predict the sex-

ratio difference between louse strains of parasite B on host populations 1 versus 2. Pairwise 

comparisons across our data set do not support this prediction (details not shown), suggesting 

that the patterns presented above are not directly host-mediated. 

 

In short, we are arguing that sexual competition may effectively shape the genitals and 

secondary sexual characters, sex-ratios and perhaps even speciation in gopher lice and that 

this process takes place within a strict biogeographic context. Intensive sexual selection is 

characteristic in the speciation centre, while sexually non-competitive forms (including 

parthenogenetic strains) occur on the periphery of the distribution. 

 

Assuming that the same situation holds for other parasites and pathogens, the consequences 

are potentially far-reaching. Virulence is defined as the parasites’ ability to reduce the survival 

and reproduction of infected hosts, and parasite population growth rate is a major component of 

it (Ewald, 1994). Our results suggest that a decrease in sexual competition on the periphery of 

the distribution results in female-biased sex-ratios and thus higher levels of population birth 

rates. However, their offspring predictably show lower survival rates due to their reduced 

genetic variability caused by inbreeding or parthenogenesis. Indeed, there is a strong, positive 

correlation between sex-ratio and intensity, indicating that higher birth rates come with lower 

parasite burdens in peripheral populations. The strength of sexual selection is known to co-vary 

with life history strategies interpreted along a classical r–K continuum in free-living species 

(McLain, 1991). Similarly, parasites seem to trade birth rates against survival rates on the 

peripheries and vice versa in the range centre. Apparently, high parasite birth rates (indicated 

by the large proportion of females) represent only one component of virulence, while high 

parasite survival rates (due to a greater offspring genetic diversity) represent another 

component. Thus, we argue that different virulence components are traded against each other 

in different biogeographical positions, at least in the lice of pocket gophers, and perhaps in other 

pathogens as well. 
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4.4 Concluding remarks 

 

There is now ample evidence that climate change is reshuffling the geographic distributions of 

animal species worldwide (Parmesan & Yohe, 2003). Several authors have emphasized that 

these distributional changes create new contact zones between parasites and formerly isolated 

hosts, enabling host-switches to new hosts, including humans. Not surprisingly, the case of 

emerging new parasites, pathogens and diseases is a major issue in current epidemiological 

thinking. 

 

In our arguments above, we add further details potentially useful in the interpretation of current 

epidemiological processes and even in the prediction of future ones (Reperant, 2010). First, we 

do not lump all host-switch and host-shift events together. Rather, we typify host-switches as 

more characteristic at the leading edge of expanding host ranges, potentially resulting in 

parasite speciation. In contrast, host-shifts occur more often at the rear edge of the expanding 

host range and usually do not result in speciation. This latter process has not been 

characterized formerly, although its epidemiological role may well be important. Taking Central 

Africa as an example, where humans and non-human primates co-occur through long 

evolutionary periods, our hypothesis predicts that the recent gradual shrinking of ape 

populations may exert a selective pressure on their pathogens to abandon them and shift 

towards humankind. 

 

Second, we differentiate between two alternative modes of host populations’ forward 

advancement at the leading edge of an expanding range and thus resolve an apparent paradox 

about high pathogen burdens versus low pathogen burdens enhancing invasions. We argue that 

invasions initiated by few long-distance dispersive pioneers and followed by exponential growth 

of isolated host populations are enhanced by a competitive advantage due to invaders’ species-

poor and genetically homogenous pathogen assemblage. In contrast, sudden mass invasions – 

occurring both in human history and also in nature due to anthropogenic effects – may result in 

McNeill’s effect. In this case, the invaders carry diverse pathogen burdens that they coevolved 

with through long periods and distribute these parasites to naive populations or species, causing 

high mortality and morbidity. 
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Finally, by using a complex system of rodents and their parasitic lice as an example, we showed 

that parasite speciation may be facilitated by sexual selection – a factor neglected by most 

former authors. Accordingly, the leading edges of the moving host distribution may not equally 

facilitate parasite host-switches and speciation in different areas. Taking the poleward shift of 

host distribution edges as an example, it is rather safe to assume that the advancing northern 

margins in the north temperate and cold zones rarely coincide with the speciation centres of 

major pathogen taxa. Thus we cannot agree with former arguments claiming that emerging 

parasitic diseases are expected to originate particularly from temperate and colder northern 

latitudes (Mas-Coma et al., 2008). Conversely, the leading edges may often come into direct 

contact with pathogen speciation centres in tropical and subtropical zones, and these are the 

areas from which we expect the new pathogens and parasites to emerge – partly due to host-

switches and host-shifts occurring here. 

 

Some of the arguments described above are admittedly hypotheses awaiting validation or 

falsification by future empirical tests. It is also not quite clear how far these arguments may be 

generalized. For example, certain host invasions are not of a geographical nature, but rather 

cross the line of demarcation between major habitat types. We already know that avian and 

mammalian clades’ shifting from terrestrial to aquatic habitats decimates the richness of their 

original parasite faunae (Aznar et al., 2001; Felső & Rózsa, 2006), creating long-lasting 

unsaturated parasite communities; however, we cannot know whether or not there are also 

other similarities to invasions in the geographical sense.  
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