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Quasicrystals and Penrose patterns

Eric A. Lord

The classification of periodic structures in three dimensions by Fedorov, Schoenflies and Barlow, a
century ago, brought the geometrical understanding of perfect crystalline structures into a final,
definitive form; there were just 230 possible types, and the topic appeared to be closed. The
discovery of quasicrystals in recent years has opened up new and exciting possibilities. Extended
structures in space can be orderly and systematic without being periodic. A rather surprising
situation surrounding this topic is the amount of theoretical understanding that had already been
gained even before any actual quasicrystals were discovered. In particular, Penrose’s tiling patterns
are two-dimensional quasicrystals. This article introduces the reader to the beautiful geometrical
properties of these patterns and describes a three-dimensional generalization.

Quasicrystals

A crystalline structure is an arrangement of atoms that
is periodic in three directions—it has three translational
symmetries. One can imagine it in terms of a partition
of space into identical unit cells, each containing an
identical arrangement of atoms; the unit cells and their
contents are related to one another by translations. In
particular, a crystalline structure can be thought of in
terms of a lattice: the unit cells are then parallelepipeds
obtained by partitioning space by three families of
equally-spaced planes. For elementary geometrical
reasons, the only point symmetry groups that cry-
Stalline structures can have are subgroups of the
symmetry group of a cube or a hexagonal prism; in
particular, they cannot have any fivefold symmetry axis.

In 1984, an alloy of aluminium and manganese was
discovered! whose X-ray diffraction patterns consisted
of sharp spots, like the diffraction patterns produced by
crystals. But the point symmetry of the atomic
arrangement, that these diffraction patterns indicated,
was the symmetry of an icosahedron, which has six
fivefold axes. So the new alloy (Schechtmanite) could
not be a crystal in the usual sense. Since its discovery,
other ‘quasicrystals, have been found. The fascinating
question arises: if the atoms in these substances are not
arranged periodically, how are they arranged?

By an amazing coincidence (an instance of Jung’s
‘synchronicity’?), while Schechtman and his colleagues
were obtaining the baffling diffraction patterns, Levine
and Steinhardt? had been, quite independently, investi-
gating some intriguing geometrical structures, and
computing diffraction patterns from them. They turned
out to be practically identical to the diffraction patterns
of the new alloy. It is now generally accepted that a
quasicrystal can be understood as a systematic (but not
periodic) filling of space by unit cells of more than one
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kind. The Steinhardt-Levine structure is a space-filling
by two kinds of rhombohedron. It is a three-
dimensional generalization of an aperiodic tiling
pattern discovered by Penrose.

Periodic tiling patterns

The rich decorative possibilities of periodic tiling
patterns have been explored and exploited by every
culture, since the beginnings of civilization. The in-
genuity and inventiveness of medieval Islamic architects
is especially remarkable, and often quite astonish-
ing®>~3. Some of their geometrical methods have
recently been rediscovered by Chorbachi®. The example
shown in Figure 1 occurs in the mausoleum of I'tamad
al-Dawla, at Agra. It employs four tile shapes. The
dotted line indicate a unit cell.

Aperiodic tiling patterns

An aperiodic set of tiles is a set of shapes with the
property that, though the whole Euclidean plane can be

313




GENERAL ARTICLES

covered by non-overlapping replicas of the shapes, no
periodically repeating tiling pattern can be constructed
from them. In 1966, Berger’ demonstrated the existence
of an aperiodic set of tiles, thereby disproving ‘Wang’s
conjecture’ that any set of tiles capable of tiling the
whole plane could tile it periodically. Berger’s first
aperiodic set contained over 20,000 tile shapes. He was
later able to reduce the number to 104. In 1971,
Robinson® discovered an aperiodic set consisting of
only 6 shapes; an alternative aperiodic set of six tiles
was found independently by Penrose® in 1974. Finally,
Penrose found aperiodic sets with only two different
shapes!®t1.

Kites and darts

Two quadrilateral tile shapes (a kite and a dart) can be
obtained by dissecting a regular decagon as in Figure 2.
The subdivisions of the decagon radii are ‘golden
sections’. The golden ratio 1:7 is defined by the golden
number t=3}(1+./5)=2cos (n/5)=1.6180..., which
satisfies the important relations t*=t+1 and
1~ '=1—1. The golden ratio is the ratio of the side of a
regular decagon to its circumradius, and also the ratio
of the side of a regular pentagon to its diagonal.

Figure 2.

Of course, many periodic tiling patterns can be
constructed from the kites and darts. Penrose’s
aperiodic kite and dart patterns are formed by marking
the tiles in some way and introducing a matching rule,
to be obeyed when composing a pattern, that forbids
periodic arrangements. The simplest way of doing this
is to distinguish two kinds of vertex (red and green
vertices, or more conveniently, black and white vertices)
and to insist that when patterns are built up from the
tiles, vertices have to match when placing two tiles edge
to edge (Figure 3). A pattern constructed in compliance
with this matching rule is a ‘Penrose kite and dart
pattern’. An alternative, but equivalent, way of
forbidding periodicity is to abandon straight lines for
the tile edges so that the tiles interlock like jigsaw
puzzle pieces. Using this approach, Penrose was able,
with considerable ingenuity, to modify the kite and dart
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Figure 3.

patterns to obtain aperiodic patterns of interlocking
tiles in the shape of two chickens! (Figure 4).

Figure 4.

Another way of marking the kites and darts is shown
in Figure 5 (the subdivisions used in constructing the
markings are golden sections). When a Penrose kite and
dart pattern is marked in this way, the markings form
the edges of another Penrose kite and dart pattern, with

smaller tiles (the reduction factor is © ~'=14(,/5—1));
we have a decomposition rule for Penrose kite and dart
patterns. Inflation of a pattern is the simultaneous
application of decomposition and expansion by a
factor 7. By repeated inflation of any patch of a pattern,
one obtains a sequence of larger and larger patches, the
size of the tiles remaining the same. This establishes
that the whole of the plane can be covered by a Penrose
kite and dart pattern. The inverse of decomposition is
recomposition. The markings on the tiles in this case are
the short diagonals of the darts and the long edges of
the kites; when a Penrose kite and dart pattern is
marked in this way the markings form the edges of

Figure 8.
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another such pattern, with larger tiles (the enlargement
factor is 7). This enables us to prove that every Penrose
kite and dart pattern is aperiodic: Suppose there existed
a periodic Penrose kite and dart pattern with a period
length I Recomposition would give another periodic
pattern with a period length I, but with bigger tiles;
continued iteration would eventually give a periodic
Penrose kite and dart pattern, with period length [ but
with tile edges longer than [—which is absurd! Hence
the kite and dart, with an appropriate matching rule, is
an aperiodic set. In particular, Penrose’s two chickens
are an aperiodic set of tile shapes.

The Penrose kite and dart patterns have been studied
extensively. The reader who wishes to find out more
about their strange properties should consult Martin
Gardner’s lucid Scientific American article'!, or the
chapter on aperiodic tilings in Griinbaum and
Shephard’s book Tilings and Patterns'?.

Penrose rhombs

Let the kites and darts of a Penrose pattern be marked
as in Figure 6. The markings then form the edges of a
different aperiodic tiling pattern, consisting of two kinds
of rhombus: a ‘fat rhomb’ with an angle 27/5 and a
‘thin rhomb’ with an angle n/S. A matching rule to be
obeyed when building a pattern from these two rhombs
can be imposed by putting single arrowheads and
double arrowheads on the tile edges as in Figure 7, and
insisting that arrowheads have to match when tiles are
placed edge to edge.

We have shown how a rhomb pattern can be derived
from a kite and dart pattern. The inverse procedure is
simple: the long diagonals of the fat rhombs and the
double-arrowheaded edges of the thin rthombs form the
edges of a kite and dart pattern. This correspondence

Figure 6.
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Figure 7.
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between the two kinds of pattern shows that the two
(marked) rhombs constitute an aperiodic set.

When building up a Penrose pattern, a degree of
arbitrary choice is involved in the placing of tiles:
randomness is a characteristic feature of the structure of
these aperiodic patterns. But the structure is also highly
systematic. It is the complex interplay between
randomness and order that makes these patterns so
intriguing.

Observe that the tile edges of a Penrose rthomb pattern
have only five possible orientations. The five families of
parallel edges are parallel to the five symmetry axes of a
regular pentagon. The patterns are said to have long-
range orientational order, with fivefold symmetry. Note
that fivefold symmetry is impossible in a periodic two-
dimensional pattern. We have here a clue to the
understanding of the nature of the fivefold axes of
quasicrystals.

If all the edges carrying double arrowheads are
deleted from a rhomb pattern, what remains is an
aperiodic tiling pattern formed from a set of three
different tiles (Figure 8), which we shall call starfish, ivy
leaf and hex. The matching rule for assembling patterns
from this set is provided by the arrowheads on their
edges (Figure 9). Restoration of the rhomb pattern
by re-inserting the lines with double arrowheads
is obvious. It follows that any Penrose rhomb can be
obtained by assembling prefabricated ‘supertiles” a
starfish consisting of five fat rhombs, an ivy leaf
consisting of three fat rhombs and a thin rhomb, and a
hex consisting of a fat rhomb and two thin rhombs.

Figure 8.

Figure 9.

Penrose’s first pattern

The six marked tiles in Figure 10 are an aperiodic set, if
we impose the matching rule that the lines marking the
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tiles have to continue across tile boundaries (to form
lines that run right through the pattern). This set is
equivalent to the first aperiodic set discovered by
Penrose, who showed that an equivalent matching rule
can be imposed by giving the tiles wiggly interlocking
edges, instead of marking them®.

Figure 11 shows a patch of pattern formed from the
marked set, with markings deleted for clarity. Figure
12 reproduces a diagram from Kepler’s book Harmo-
nice Mundi, published in 1619. The resemblance is
surprising. Even more surprising are Kepler’s remarks
about his tiling scheme: he concluded that the pattern
would never repeat, there would always be “surprises”?.
The four shapes in Kepler’s pattern are not in fact an
aperiodic set; a periodic pattern using the same shapes
can be devised!?. Nevertheless, it cannot be denied that
Kepler had anticipated the concept of aperiodic tiling
patterns, by about 350 years!

Figure 11.

Figure 12.

Penrose’s six marked tiles lead to aperiodic patterns
consisting of four tile shapes: a pentagon, a five-pointed
star, a rhombus, and “a kind of three-pointed half-
star™®. These aperiodic patterns can alternatively be
derived from the rhomb patterns by marking all the
rhombs ds in Figure 13. The construction of the
markings uses golden section of two of the edges of
each thomb and perpendicular bisection of the other
two edges. Conversely, a rhomb pattern can be recovered
from a pattern of the kind we have introduced: join the
mid-points of every pair of adjacent pentagons; we get a
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Figure 13.

pattern of starfish, ivy leaves and hexes, which can then
be dissected into rhombs.

A one-dimensional quasicrystal

Take a two-dimensional lattice of squares, and cut from
it a strip exactly wide enough to contain one of the
squares (Figure 14). Project all the lattice points
contained in the strip on to a line parallel to the strip.
The result is a sequence of intervals on the line, of two
different lengths. It is quite clear that if the tangent of
the angle between the strip and a lattice direction is
irrational, the sequence will never repeat, however long
we make the strip. We have an aperiodic tiling of a one-
dimensional space, using two kinds of tile. A parti-
cularly important and interesting case arises when the
angle of the strip is chosen so that the ratio of lengths
of the two ‘tiles’ is the golden number 7. Denoting the
length of the long tile by A, and the length of the short
tile by B, we get an aperiodic sequence... ABAAB
ABAABAAB... 1t 1s called the Fibonacci sequence.
Consider the distance of a particular lattice point from
the top edge of the strip. It is clear that no other lattice
point can be at precisely that distance—that would
imply that the sequence repeats. But if we simply ask
for another lattice point whose distance approximates
to that of the given point, within an arbitrarily chosen
degree of accuracy, there will always be an infinite
number of such points. It follows from this that the
Fibonacci sequence has a very strange property: any
portion of the sequence will occur again somewhere in
the sequence, at another position (in fact, at an infinite
number of other positions!). This result has an analogue
for two-dimensional Penrose patterns; if we take any
finite patch of an infinite Penrose pattern, exact replicas
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Figure 14.
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of it must occur (infinitely many times) somewhere else
in the pattern!

Note that moving the strip in Figure 14 relative to the
lattice, keeping it parallel to its original position, simply
shifts the sequence. The pattern of As and Bs on the line
is replaced by a different part of the same infinitely long
Fibonacci sequence.

The Fibonacci sequence can be generated iteratively
by starting from the single symbol A and then applying
the rule A—>AB, B—A. We get

A, AB, ABA, ABAAB, ABAABABA,...,.

This is a decomposition rule for the one-dimensional
tiling patterns, analogous to the decomposition rules for
Penrose tilings of the plane.

The sequence is called the Fibonacci sequence for the
following reason. The term Fibonacci sequence is also
used to denote the number sequence 112358
1321... in which each term is the sum of the two
preceding terms. (The ratio of two successive terms
approaches 1, in the limit). In 1202, Fibonacci discussed
this number sequence in connection with the prolifer-
ation of rabbits. Let 4 denote a pair of adult rabbits,
and let B denote two baby rabbits. Suppose that, in
some fixed period of time, every adult pair gives birth
to two babies. (A—AB) and every baby becomes adult
(B—A). This rule is identical to the decomposition rule
for generating the sequence of one-dimensional tiles!
The number sequence gives the total number of pairs,
after the elapse of 1, 2, 3,... time periods (starting from
two baby rabbits).

When the tiles in figure 10 are assembled into a
pattern, the marks become lines running across the
pattern. These lines are called Amman bars. We get five
families of parallel Amman bars, exhibiting the long-
range orientational order of the pattern. The bars of
one family are not equally spaced; there is a wide
spacing A and a narrow spacing B that occur in a
seemingly random sequence (Figure 15). But the
sequence is not in a fact random; it is a Fibonacci
sequence. One can relate the Amman bars to the
Penrose rhomb patterns. We then find that all the fat
rhombs of the pattern are marked identically by the
bars, as are all the thin rhombs. The rhombs with

Figure 15.
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Figure 16.

Amman bar markings are shown in Figure 16.

The fact that any Penrose tiling pattern has this hidden
structure revealed by the Fibonacci sequences of its
associated Amman bars, is acknowledged in the
terminology: the Penrose patterns are now usually
referred to as ‘quasiperiodic’ rather than simply
‘aperiodic’.

The various analogies that exist between the
JFibonacci sequence and Penrose tiling patterns are not
fortuitous. They are related to the fact that the Penrose
rhomb patterns can be obtained as projections from a
slice of a hypercubic lattice in five dimensions!

Patterns in three dimensions

An icosahedron has 6 fivefold axes, 10 threefold axes,
15 twofold axes and 15 reflection planes.

The 30 midpoints of the edges of an icosahedron are
the vertices of an icosidodecahedron; its faces are
twenty equilateral triangles and twelve regular penta-
gons. The rhombic triacontahedron is its dual (Figure 17),

+ Figure 17.

Through every edge of the icosahedron, imagine a plane
perpendicular to the radius through the midpoint of the
edge; the thirty planes cut out a rhombic triaconta-
hedron. Its thirty faces are congruent rhombuses with
diagonals in the ratio 1:t. Fifteen pairs of opposite
faces are parallel to the fifteen reflection planes; every
edge is parallel to one of the fivefold axes; the faces
having an edge parallel to a given fivefold axis form a
zone of ten faces. The face diagonals are parallel to the
twofold axes.

A rhombohedron is a parallelepiped bounded by six
congruent rhombuses. It has two opposite vertices at
which the three face angles are equal (ie. it has a
threefold symmetry axis). It is said to be acute or obtuse
according to the nature of these angles'*.

A rhombic triacontahedron can be built out of
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Figure 18.

twenty rhombohedra, of two kinds; ten acute and ten
obtuse (Figure 18). This was pointed out by Kowalewski
in 1935'% The two rhombohedral units will be called
Kowalewski units. They can be constructed as follows:
Choose any three of the fivefold axes of an icosahedron.
For a given edge length, there is a unique rhombo-
hedron with edges parallel to these three axes. This is
one of the Kowalewski units. The other is obtained
from the other three fivefold axes (Figure 19). Curiously,
it does not matter how the set of six axes is split into
two sets of three: we always get the same two shapes
differently oriented. The faces of the two Kowalewski
units are rhombuses with diagonals in the ratio 1:1.

P

Figure 19.

3

According to MacKay'?, it was Robert Amman who
first recognized that the two Kowalewski units are the
three-dimensional analogues of the Penrose rhombs.
From what we have said above, it should be apparent
that, if we build a three-dimensional tiling pattern from
Kowalewski units placed face to face, all the faces will
be parallel to reflection planes of an icosahedron, all the
edges will be parallel to fivefold axes, all the face
diagonals will be parallel to twofold axes and all the
symmetry axes of the units will be parallel to threefold
axes. Nets for an aperiodic set of four marked units*®,
two acute and two obtuse, are shown in Figure 20 (white
circles have to coincide with black circles when two
units are placed face to face). The Levine-Steinhardt
models are aperiodic tilings of space by Kowalewski
units. They have a long range orientational order with
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icosahedral symmetry. They also have a quasiperiodic
property, characterized by parallel sets of ‘Amman
planes’ with Fibonacci spacing.

A quasiperiodic structure can account for the sharp
spots in the diffraction patterns of quasicrystals. Recall
that the sharp spots in diffraction patterns of ordinary
crystals are a manifestation of the periodic structure;
they arise from constructive interference of X-rays
reflected from equally-spaced parallel layers of atoms,
at certain angles (Bragg diffraction). Fourier analysis
shows that the same thing happens for layers spaced
quasiperiodically—in particular, for layers with Fibo-
nacci spacing.

A crystal in six dimensions

Fivefold symmetry is forbidden for periodic structures
in two and three dimensions. This is not so in higher
dimensions. For example, the set of all points whose
coordinates are integers is a cubic lattice. In five
dimensions, a fivefold symmetry of the cubic (more
correctly, hypercubic) lattice is given by cyclically
permuting the five coordinates. The symmetry trans-
formations of an icosahedron permute its six fivefold
axes. We can define a group of rotations and reflections
in a six-dimensional space by simply applying the same
permutations to the six coordinates. Thus, the cubic
lattice in six dimensions has an icosahedral symmetry.
This idea leads to an important method of computing
the vertices of a Levine-Steinhardt pattern. We have
seen how a one-dimensional quasicrystal can be
obtained by projecting a strip of a two-dimensional
square lattice on to a one-dimensional space. Similarly,
a three-dimensional quasicrystal (a Levine-Steinhardt
pattern of Kowalewski units) can be obtained by
projecting a slice of a six-dimensional lattice on to a
three-dimensional space?’.

The twelve points in 3-space with coordinates (0 &1
x1), (7 0 £1), (£1 £7 0) are the vertices of an
icosahedron. Pick out six of them to represent the
fivefold axes and write them as columns of a matrix, for
example

CURRENT SCIENCE, VOL. 61, NO. 5, 10 SEPTEMBER 1991
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A=v 0 -1 0 T T 1
T

Now think of the rows of this matrix as vectors in a six-
dimensional space. If the normalization factor is chosen
to be y=1/[2(1+1?)]?, they are orthonormal. They lie
in a three-dimensional space which we call p-space.
The matrix

/5 1 -1 -1 1 1]

1 ys 1 -1 -1 1

SRR S ot B SRVE RS B
25 |-1 -1 1 s 1

-1 =1 15 1

AR U U U RV

projects points of the six-dimensional space on to p-
space. The images of the six coordinate axes are six
lines arranged like the fivefold axes of an icosahedron.
The image of a unit cube in 6-space, parallel to the
cubes of the lattice of points with integer coordinates, is a
rhombic triacontahedron in p-space! If we eliminate from
the six-dimensional lattice all the vertices that project
to points outside this triacontahedron, we are left with
a slice of the six-dimensional lattice. It is analogous to
the strip of two-dimensional lattice in Figure 14. The
three-dimensional space orthogonal to p-space will be
called g-space. Projection on to g-space is achieved by
the matrix Q=1 — P. The image in g-space of any three-
dimensional facet (ordinary cube) of a lattice hypercube
is a Kowalewski unit in g-space. Moreover, it turns out
that the projection on to g-space of all the three-

. . . . irae -
dimensional facets contained in the slice gives a Lev

Steinhardt aperiodic pattern in g-space!

A similar method exists for computing P
rhomb patterns, by projection on to a plane of
dimensional cubic lattice. We simply start with a
matrix A whose columns are the coordinates O
vertices of a regular pentagon centred at the origin.
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Optimum nutrition

Mahtab S. Bamji

Recommended dietary allowances, or dietary standards, are amounts of essential nutricy .
considered necessary for normal physiology and health of individuals of a defined population. ¥344q
the question of optimum nutrition is complex, and the current recommendations are at best tentcitig-o+

Nutrition has been defined as the ‘science of food as it
relates to optimal health and performance’. Though
mankind has always been interested in food which
would ensure health, reproductive vigour and well-
being, both of human beings and domestic animals, it

Mahtab S. Bamji is in the National Institute of Nutrition, Jamai
Osmania PO, Hyderabad 500 007.

CURRENT SCIENCE, VOL. 61, NO. 5, 10 SEPTEMBER 1991

was only towards the turn of this century thut { hwe
subject of nutrition shifted from the realm of My e
beliefs and dogmas to a systematic science. Discovcry . of
vitamins and minerals as essential food factog.
enzymes as biocatalysts, and the elucidaticyny '

metabolic pathways laid the foundation of both :;:f
sciences of biochemistry as well as nutrition. Tily t:hi.

middle of the present century, the two sciencey W g
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