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Factor and Simplex Models for Repeated Measures: 
Application to Two Psychomotor Measures of 
Alcohol Sensitivity in Twins 
D. I. B o o m s m a ,  1 N. G. Mart in,  2 and P. C. M.  Molenaar  3 

As part o f  a larger study, data on arithmetic computation and motor 
coordination were obtained from 206 twin pairs. The twins were measured 
once before and three times after ingesting a standard dose of  alcohol. 
Previous analyses ignored the time-series structure of  these data. Here 
we illustrate the application of  simplex models for the genetic analysis 
o f  covariance structures in a repeated-measures design and compare the 
results with factor models for the two psychomotor measures. We then 
present a bivariate analysis incorporating simplex processes common and 
specific to the two measures. Our analyses confirm the notion that there 
is genetic variation affecting psychomotor performance which is 
"switched on" in the presence of  alcohol. We compare the merits o f  
analysis o f  mean products versus covariance matrices and confront some 
practical problems that may arise in situations where the number of  sub- 
jects is relatively small and where the causal structure among the latent 
variables places a heavy demand on the data. 
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INTRODUCTION 

Martin et al. (1985) obtained data on psychomotor performance and phys- 
iological responses from 206 twin pairs, who were measured once before 
and three times after ingesting a standard dose of alcohol. Their aim was 
to see whether there was evidence for genetic variation in psychomotor 
sensitivity to alcohol. To do this they fitted factor models with and without 
a genetic factor loading only on the three alcohol measurements. A sig- 
nificant increase in likelihood with this factor was taken as evidence for 
alcohol specific gene action, and this was detected for most of the mea- 
surements in their psychomotor battery. 

They ignored, however, the temporal structure of their data, which 
are better suited to a time-series approach. It has recently been shown 
how simplex models for time-dependent processes may be incorporated 
in a genetic and environmental model for repeated measures in twin data 
(Eaves et al., 1986; Boornsma and Molenaar, 1987; Hewitt et al., 1988). 
Here we apply these models to the data of Martin et al. (1985) and show 
how a more elegant mathematical model can illuminate the physiological 
processes at work. 

Because most psychomotor variables were independent of each 
other, Martin et al. (1985) reported only univariate analyses for these 
measures. We selected two variables, arithmetic computation (AKT) and 
motor coordination (VDA), because of their moderate correlation. These 
variables were first analyzed separately with factor analysis and simplex 
models and a hybrid model of factor and simplex structures. Then we 
performed a bivariate analysis of the four measures for each task in which 
we modeled simplex processes common and specific to arithmetic com- 
putation and motor coordination. Martin et al. presented extensive factor 
analyses of these data, so in this paper we restrict ourselves to the formal 
presentation of univariate and bivariate simplex models. 

Some numerical problems that were encountered during minimiza- 
tion are discussed. These numerical problems formally are small sample 
problems but are, in most cases, more a problem of a large system than 
of a small number of observations (Theil and Laitinen, 1980). In our ap- 
plications numerical problems arose when covariance matrices of Twin 
1 and Twin 2 were used as input for LISREL instead of matrices of mean 
cross products and, more specifically, when a simplex model was fitted 
to these matrices. We discuss how to cope with these problems and the 
merits of alternative data summaries. 

DATA 

Twins aged 18-34 years (mean, 23 years) were trained to plateau on 
psychomotor apparatus, measured when sober and 1, 2, and 3 h after 



Factor and Simplex Models for Repeated Measures 81 

drinking a standard dose of alcohol (0.75 g EtOH/kg body weight). There 
were 43 monozygotic (MZ) female, 42 MZ male, 44 dizygotic (DZ) female, 
38 DZ male, and 39 unlike-sex twin pairs. Here we analyze the data from 
two of the psychomotor tasks: (i) Arbeit und Konzentration Testgrate 
(AKT)--the number of correct addition and subtraction computations 
completed in 2 min; and (ii) Vienna determination apparatus (VDA)--the 
number of correct responses within 1 s to 100 presentations of visual and 
auditory stimuli to which the subject had to give specific button or foot- 
pedal responses. Details of subjects and measurements are given by Mar- 
tin et  al. (1985). 

M O D E L S  

The LISREL model consists of two parts: the measurement model 
and the structural equation model (J6reskog and S6rbom, 1986). The mea- 
surement model describes how latent variables are related to observed 
variables and can be conceived of as a confirmatory factor analysis model. 
In our applications to twin data we usually employ for an observed vari- 
able y, with latent variables G (genotype). E (individual environment), 
and C (shared environment) and measurement error e, the following mea- 
surement model: y = h G  + eE + cC + ~. 

In the univariate case h, e, and c are loadings of observed variables 
on latent factors, while in the multivariate case h, e, and c become vectors 
of factor loadings on common factors and e becomes a vector of mea- 
surement errors. Depending on the number of observed variables, one or 
more common and unique factors can be specified that may be indepen- 
dent or correlated. 

To define the units of measurement in the latent variables h, e, and 
c can be fixed at 1 (a one in each column of the matrix of factor loadings, 
A, in the multivariate case), so that the scale of measurement is the same 
as in the observed variables and the variance of the latent factors is to 
be estimated. Alternatively, the latent factors can be standardized to have 
unit variance and the factor loadings estimated. 

The second part of the LISREL model is the structural equation 
model that causally relates latent variables to other latent variables. One 
example of such a structural model is the simplex model (Boomsma and 
Molenaar, 1987); another example is the parent-offspring model of Eaves 
et  al. (1989). A simplex structure defines an autoregressive model where 
latent variables at time i are causally related to latent variables at time i 
- 1. For G, for example (similar structures can be specified for E and 
C), 
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Gi = ~ i G i - 1  + ~i, 

where Gi is the latent genotype at time i (i > 0). 13,. is the regression of 
the latent factor on the previous latent genotype, and ~ represents a ran- 
dom input term (innovation) that drives the genetic process and that is 
uncorrelated with Gi-  1. A n  important conceptual distinction is thus made 
between innovations of latent factors and measurement errors of observed 
variables. The innovations are that part of the latent factor at time i that 
is not caused by the latent factor at time i - 1 but is part of every sub- 
sequent time point i + 1. The e terms are random errors of measurement 
that do not influence subsequent observed variables. 

The parameters of this model are (denoted by their representation in 
the L I S R E L  program and using y and -q variables only) 

(1) ~(g)o = var(Go), the variance of the latent factor at time t = 0; 
(2) q~(g)i = var[~(g)~], the variances of the residuals or innovations 

at time t > 0; 
(3) [3~, the regression of the latent factor at time i on time i - 1 ; and 
(4) | the variances of the measurement errors. 
The above specifications imply that the variances of the innovations 

are estimated in q~ and that the loadings of the observed variables on the 
latent genetic factors are fixed at 1, so that the measurement scale of the 
latent variables is the same as that of the observed variables. With this 
model the A matrix can be used to specify the genetic weights for MZ 
and DZ between and within matrices of mean cross products (Boomsma 
and Molenaar, 1987). �9 and 19 are both free diagonal matrices, and the 
paths from latent variables at time i to time i + 1 are specified in B. 

When covariance matrices of Twin 1 and Twin 2 are used as input 
matrices instead of mean cross-product matrices, the structural model of 
course stays the same, but the estimation using LISREL must be different. 
In this case the variances of the latent factors cannot be estimated in ~ ,  
because �9 needs to be used to specify correlations between latent factors 
for Twin 1 and those for Twin 2. The scale of measurement of the latent 
factors is now defined by standardizing their innovations at unit variance. 
Only the variances of the innovations can be specified, since the covar- 
iance matrix of -q factors is not a free parameter matrix in LISREL.  This 
does not apply to the first latent factor that is itself standardized, because 
it has to be conceived of as an innovation (at the initial measurement 
occasion the first factor cannot be explained by factors associated with 
an earlier point in time). Factor loadings of observed on latent variables 
are estimated in A. These loadings in A correspond to the square roots 
of the �9 variances. The estimates in B, however, have to be conceived 
of  as scaled regression coefficients. Hence their absolute values have to 
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be interpreted with care. As shown below, these estimates will look quite 
different f rom those in the first estimation procedure,  without, of course,  
affecting the goodness of fit. 

ANALYSIS 

Two data summaries are commonly employed and we compare their 
merits in this paper. If  there are g groups and v variables, then we calculate 
ei ther 2g v x v mean products matrices of g 2v x 2v covariance matrices. 
Most  work to date, including the original analysis of these data by Martin 
et  al. (1985), has employed mean products  matrices. This has the advan- 
tage that input and parameter  matrices are smaller, and this can be im- 
portant  when using PC-LISREL,  which has size restrictions. 4 On the 
other  hand, it is easier conceptually to specify models for covariance 
matrices and these may be computed from raw data by PRELIS  or using 
the RA card in L ISREL.  Nevertheless,  it is possible to run into severe 
numerical  problems with the covariance matrix formulation, as we shall 
see below. 

Between-pair  and within-pair mean products  matrices were com- 
puted for all five twin groups. Each 4 x 4 matrix has 10 unique statistics, 
providing a total of 10 x 10 = 100 df. To the A K T data we fitted factor 
models,  simplex models, and a hybrid model of factor and simplex struc- 
tures.  These  models were also fitted to the same data summarized as 
covar iance  matrices of Twin 1 and Twin 2. These 8 x 8 matrices have 
36 unique statistics, so for this analysis we have 5 x 36 = 180 df. Factor  
and hybrid models were also fitted to mean product  matrices for VDA 
data. For  the bivariate analysis, models were fitted to mean product  ma- 
trices of  the four AKT and four VDA measures.  There were thus ten 8 
x 8 matrices,  providing a total of 360 df for the bivariate analysis. 

RESULTS 

Arithmetic Computation (AKT) 

Table I shows some results of model fitting to the AKT data using 
mean product  matrices as input. The first factor model (a) consists of a 
general genetic and a general environmental  factor with unique environ- 
mental  factors.  Which L I S R E L  matrix was used for estimation is indi- 
cated in Table I. In this case all factor loadings were estimated in A and 

was standardized and used for the weighting of  the genetic and envi- 

4 All analyses reported in this paper were carried out with PC-LISREL on a personal com- 
puter (AT). 
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Table I. 

Boomsma, Martin, and Mo|enaar 

F a c t o r ,  S i m p l e x ,  a n d  H y b r i d  M o d e l s  F i t t e d  to  M e a n  P r o d u c t  M a t r i c e s  f o r  A r i t h -  
m e t i c  C o m p u t a t i o n  ( A K T )  in Al l  F i v e  T w i n  G r o u p s  a 

(a) Basic factor  model 
(from Martin et  al., 1985) 

(b) a plus alcohol genetic factor  
(from Martin et  al., 1985) 

E E G 

G, 
General  Unique General General Unique General  Alcohol 

A A A A A A A 

6.40 7.76 15.12 6.57 6.37 15.75 - -  
6.16 6.40 15.15 6.19 6.34 14.50 4.43 
6.34 5.43 15.11 6.34 5.38 14.44 4.49 
7.47 5.91 14.80 7.40 6.00 14.31 3.81 

xz(88) = 96.33, p = .255 • = 85.08, p = .477 

(c) Simplex models for E and G 

E, G, E, 
simplex simplex simplex 

(d) c p lus  u n i q u e  E v a r i a n c e  

E~ 
unique 

O 

G, 
simplex 

62.52 - -  278.51 - -  54.43 - -  32.92 243.73 
65.18 .384 8.21 .916 4.53 .776 32.92 19.29 
47.26 .474 .0 b 1.000 .0 b 1.035 32.92 3.58 
46.50 .457 .0 b 1.035 .0 b 1.202 32.92 2.32 

• = 148.52, p = .000 • = 88.35, p = .440 

.943 

.971 

.978 

(e) Hybrid  model factor structure for  E and simplex for G 

E G simplex 

General Unique 
A �9 �9 [3 

6.78 40.19 244.94 - -  
6.14 39.18 18.32 .933 
6.22 29.18 2.20 .991 
7.61 29.58 4.73 .971 

• = 84.26, p = .502 

a The four variables are measurements before ingesting alcohol and 1, 2, and 3 h after ingestion. 
b Constrained at  zero. 

ronmental factors. A thus is a 4 x 6 matrix, consisting of factor loadings 
of the four observed variables on the general genetic and environmental 
factors and the four unique environmental factors associated with each 
variable. ,tr is the 6 x 6 correlation matrix of these latent factors and its 
diagonal elements are used to specify the weighting of the genetic and 
environmental factors: 
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M Z B : ~  = dia[2 1 1 1 1 1], 
MZW: ~ = dial0 1 1 1 1 1], 
DZB: �9 = dial1.5 1 1 1 1 1], 
D Z W : ~  = dia[0.5 1 1 1 1 1]. 

Martin et  al. added to this model a second genetic factor. This model (b), 
with two general genetic factors, is identified because the first loading on 
the genetic alcohol factor is constrained at zero. Martin e t  al. (1985) in- 
terpreted the significant likelihood-ratio chi-square (11.25 for 3 dr) from 
the comparison of these two models as evidence for alcohol-specific gene 
action. However, the constraint on the first loading of t h e "  alcohol genetic 
factor" could also be applied to any of the other loadings (i.e., at any 
other time) without changing the fit of the model, although the interpre- 
tation of these other models would be complicated. 

No such indeterminacy or rotation problems arise with a simplex 
analysis, because than a natural causal structure among the latent vari- 
ables obtains. 

Model c, with a simplex structure for both G and E, does not fit the 
data, however. This is because no allowance has been made for mea- 
surement errors or unique E factors. If we allow for measurement errors 
in | (model d) which is the variance/covariance matrix of measurement 
errors, we get a proper fit. Error variances were constrained to be equal 
across measurements, because there is an indeterminacy associated with 
the "outer"  variables in a simplex model (in this case times 1 and 4). 
Because preceding (at time I) and subsequent (at time 4) observations 
are lacking for the outer variables, additional constraints are needed for 
identification of parameters (J6reskog and S6rbom, 1986, p. III.74). In a 
repeated-measures design the most natural way to eliminate these inde- 
terminacies is to constrain error variances to be equal (although it would 
be sufficient to set 01 = 02 and 03 = 04) .  For both simplex models some 
parameters were constrained at zero because the unconstrained models 
gave small, negative variance estimates. 

The zero residuals for the environmental simplex structure indicate 
that E tends toward a common factor structure. Table I (e)shows the 
result of fitting a hybrid model where the E simplex structure has been 
replaced by a general environmental factor. Unique environmental vari- 
ance for each variable and a simplex structure for the genetic influences 
are also specified. This last part of the model shows most clearly how 
the genetic variance after alcohol ingestion is composed of a part that is 
shared with the latent G factor at time 1 and a part that comes into play 
after the ingestion of alcohol. 

Table I shows how the same data can be fitted almost equally well 
by different models. The reason that a factor model fits these data as well 
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as a simplex (or a combination of both) is that a factor model can accom- 
modate  a simplex structure if the number of  repeated observations is 
small. In fact, with four observed variables the fit of  a two-factor model 
is identical to the fit of  a simplex model. Although the present  genetic 
application is more complex, the small number of  repeated observations 
leads to a convergence of the factor model to the simplex. Alternatively, 
a simplex model may be seen as a factor model with as many correlated 
factors as observed variables. When the correlation between these factors 
is one, we have the same factor across all occasions and thus a common- 
factor  model. 

Next  we tried to repeat the above analyses using covariance matrices 
of  Twin 1 and Twin 2 as input for L I S R E L  but we encountered serious 
problems during minimization when we tried to fit a simplex or hybrid 
model.  Before discussing the reasons and possible solutions for these 
problems,  we first illustrate for female twin pairs the use of  covariance 
matrix input and discuss differences in estimates from those obtained in 
the mean product  formulation of the problem. 

Table II shows the L I S R E L  estimates (a) for the hybrid model fitted 
to input matrices of mean cross products between and within female MZ 
and DZ twin pairs and (b) for the same data input as covariance matrices 
of  Twin 1 and Twin 2. It is clear that the squared factor loadings of b are 
the same as the variances of the latent factors in a. Notice,  however ,  that 
estimates in Beta are highly dissimilar, whereas the standardized esti- 
mates are the same in a and b. Both estimation procedures  must, of course,  
lead to the same conclusions, and the explanation for this difference is 
as follows. For  both formulations the total genetic variance at time point 
i, i > 0, is computed as var(Gi) = hiz([~3i 2 var(Gi_ 1) + var(~;)]. In for- 
mulation a, )t is fixed at one, so this expression reduces to var(G;) = [3i 2 
var(Gi_ 1) + ~,-, where ~i is the variance of  the innovations. This leads 
to total genetic variances var(G1) = 227.25, v a r ( G 2 )  = 0.9152 * 227.25 
+ 18.03 = 208.30, var(G3) = 0.9722* 208.30 + 3.34 = 200.14, and 
var(G4) = 1.0222 * 200.14 + 4.64 = 213.68. 

For  formulation b, the total genetic variance is computed as vat(G;) 
= ~ki2[[~i  2 var(Gi_ 1) + 1], since the variance of the innovations was stan- 
dardized; the term in parentheses represents the variance of  G at time i. 
So we get var(G1) = 15.082 = 227.41 and var(G2) = 4.212 (3.272 * 1 + 
1) = 17.72 * 11.69 = 207.24, because the variance of  the first latent genetic 
factor  was 1. The genetic variance at the third and fourth measurement  
points is now vat(G3) = 1.712 (2.41 z * 11.69 + 1) = 2.92 * 68.89 = 201.15 
and var(G4) = 2.202 (0.792 * 68.89 + 1) = 4.84 * 43.99 = 212.96. 

When the hybrid model was fitted to the male covariance matrices 
and to all five twin groups, we found it impossible to obtain a proper  fit, 
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Table II. Compar i son  of  Hybrid  Model Fitted to Mean  Product  Versus  
Covar iance  Matrices of  Ari thmetic  Computa t ion  (AKT)  Data  

87 

(a) Fit ted to two 4 x 4 mean  product  matr ices  (females) 

E G, simplex 

General  Unique  
A �9 �9 13 [3 (standardized) 

4.57 44.08 227.25 - -  - -  
6.29 36.53 18.03 .915 .956 
6.80 31.53 3.34 .972 .992 
5.70 29.85 4.64 1.022 .989 

X2(25) = 17.54, p = .861 

(b) Fit ted to two 8 x 8 covariance matrices females) 

E G, simplex 

General  Unique  
A A A t3 [3 (standardized) 

4.43 6.65 15.08 - -  - -  
6.25 6.08 4.21 3.27 .956 
6.75 5.66 1.71 2.41 .993 
5.84 5.47 2.20 .79 .989 

• = 46.48, p = .893 

(c) Fit ted to 8 x 8 covariance matrices for all 5 twin groups us ing 
robustification technique as described in text  

E G, simplex 

General  Unique  
A A A [3 13 (standardized) 

3.90 7.10 16.06 - -  - -  
5.45 6.23 4.04 3.70 .965 
6.28 5.27 1.52 2.61 .995 
6.06 5.80 1.92 .80 .992 

X2(165) = 183.81,p = .150 

as unreasonable  pa ramete r  est imates were  obtained after 250 iterations. 
Since we already know f rom Table I that the hybrid model  will fit these 
data  when  they are summarized  as mean product  matrices,  this state of  
affairs can be due only to numerical  problems with the optimization of 
the likelihood function when the data are summarized  as covariance ma- 
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trices. One obvious difference is that the dimensions of covariance ma- 
trices are double those of the corresponding mean product matrices. More 
specifically, the following problems can be discerned. 

(1) Covariance matrices associated with highly intercorrelated re- 
peated measures can become nearly singular. This means that the smallest 
eigenvalue divided by the average of all eigenvalues is almost zero. If the 
ratio in question is too small (where the bounds are determined by the 
precision of the floating-point representation of reals during computation), 
then numerical optimization of the likelihood is ill conditioned. One way 
out of this problem is to robustify the estimation of covariances (cf. J/5- 
reskog and S6rbom, 1986, p. I29), preferably by invoking a robust esti- 
mator that is specially devised for the employment in structural analysis 
of covariance (e.g., Theil and Laitinen, 1980). Another, more direct way 
to tackle this problem is to perturb the smallest eigenvalue(s) slightly away 
from zero and then reconstruct the covariance matrix (Boomsma et  al., 
1989). However,  even if one of these procedures leads to better-condi- 
tioned numerical optimization, one would still expect the chi-square sta- 
tistic to be positively biased (in contrast to parameter estimates, which 
are generally unbiased). The reason is that the chi-square statistic depends 
on the minimum of the fitting function F, where F is defined by 

F -- l n [ ~  I + t race[S~- ' ]  - l n ] S l  - p, 

where S and E denote the observed covariance matrix and its expectation, 
respectively. Roughly speaking, the determinant l e t  depends on the 
product of the largest eigenvalues of S, whereas the determinant [ S ] 
equals the product of all eigenvalues of S. Hence, if S has been only 
slightly perturbed away from singularity (the mentioned procedures 
should not distort the available information too much), the difference in 
In ] E I - In ] S ]is large, as is the resulting chi-square statistic. 

(2) Even if there are no singularity problems, the doubling of dimen- 
sions inherent in a covariance analysis entails the addition to the likelihood 
function of several nuisance parameters which relate to the population 
variances of the observed variables (in an analysis of mean cross-products 
matrices, the latter are assumed to be equal within twin pairs). This bas- 
ically nonessential increase in the dimensionality of parameter space can 
give rise to a serious flattening of the likelihood function (Box and Tiao, 
1973), thus leading to indeterminacies in the computation of local gra- 
dients during the iterative search for its maximum value. The situation 
here resembles the occurrence of collinearity in regression analysis, which 
usually is counteracted by the invocation of ridge regression (e.g., Mardia 
et  al. ,  1982, pp. 253-254). Loosely speaking, in ridge regression the pro- 
jection onto the parameter space is brought into sharper focus (at the cost 
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of slightly biasing the obtained estimates) by means of a small perturbation 
of the diagonal of the projection operator. A similar approach can be used 
in LISREL by (i) the addition of a small positive constant to the diagonal 
of the observed covariance matrix and (ii) the model correction for this 
perturbation by fixing the diagonal of | at the same positive constant; 
this is the approach we have taken. 

In the present application the covariance matrices do not appear to 
be near-singular, so we tried to counteract the numerical problems by 
increasing the variances for all groups by 2 (i.e., adding 2 to the diagonal 
elements of all input covariance matrices). At the same time we specified 
| as a diagonal matrix with variances fixed at 2, in order to correct for 
the perturbation in the data matrices. Using | in this way to ensure a 
numerical solution means that measurement errors have to be accounted 
for differently; the unique variances normally estimated in the diagonal 
| matrix can be estimated instead as loadings on unique A factors. The 
estimates obtained by this method are shown in Table II (c). In contrast 
to the alternative estimates from the female data (a and b), these estimates 
for all five twin groups differ considerably from their counterparts in Table 
I (e) even after one has taken squares or square roots to convert 
appropriately. 

The difference is most likely caused by the DZ male data, in which 
the differences in variances between Twin 1 and Twin 2 were largest and 
where, in addition, these variances were also larger than in any of the 
other groups. Fitting the hybrid model to all groups except the DZ males 
resulted in a X 2 of 128.5 (df = 129, p = .496) and estimates that resembled 
those in Table I (e) much more closely. 

VDA DATA 

To avoid the problems encountered above we restrict ourselves to 
input of matrices of mean cross products in the analysis of the motor 
coordination data for all five twin groups. These data showed a marked 
increase in variance after alcohol ingestion. Table IIi shows (a) the final 
factor model of Martin et al. (1985) and (b) a model where the common 
genetic factors have been replaced by correlated genetic influences across 
time. Although both models seem to fit the data equally well, they offer 
different interpretations for the increase in variance. According to the 
factor model the increase in variance at time 2 (1 h after ingesting alcohol) 
is mainly environmental, while the simplex model indicates that all of the 
increase is genetic and is accompanied by a decrease in shared environ- 
mental variance. The estimate of 1.248 for [3 implies that part of this 
increase is due to amplification of genetic variance at the first measure- 
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Table HI. 

Boomsma, Martin, and Molenaar 

Factor and Hybrid Models Fitted to Motor Coordination (VDA) Data Mean 
Product Matrices for All Five Twin Groups 

(a) Factor model of Martin et al. (1985) 

E G 

Total variance 

C, Total 
General Unique General General Alcohol genetic Total 

A A A A A variance variance 

6.45 9.23 9.01 13.96 - -  194.88 402.86 
10.3l 9.50 10.96 12.97 6.48 210.21 526.88 
12.28 5.32 7.91 15.74 6.19 286.06 527.73 
9.52 7.70 6.93 15.81 4.72 272.23 470.18 

• = 79.40, p = .53 

(b) Hybrid model with genetic simplex process Total variance 

E G, simplex 
C, Total 

General Unique General genetic Total 
A xp A ,Is [3 variance variance 

6.88 78.47 10.07 176.03 - -  176.03 403.08 
9.70 79.71 6.05 38.55 1.248 312.71 523.10 

12.12 26.32 8.61 19.69 .910 278.64 526.00 
9.49 59.79 9.02 2.66 .919 237.99 469.20 

• = 77.11,p = .602 

ment occasion, while a smaller part (38.55, or 12%) is caused by the 
innovation term. For the other time points, more or less the same con- 
clusions for the division of the total variances follow from the factor and 
the simplex model. 

BIVARIATE MODEL 

The AKT and VDA variables are correlated about .3 at each mea- 
surement occasion. Since genetic simplex processes underlie the corre- 
lation of successive measurements for both AKT and VDA, we wanted 
to see the extent to which the same simplex process underlies the genetic 
continuity of the two variables. A bivariate model that specifies a simplex 
process common to both AKT and VDA is depicted in Fig. 1. In addition 
to a common underlying genetic time series, where both VDA and AKT 
load on the genotype specific to each time point, separate time series are 
specified for both variables. There are two separate individual environ- 
mental factors, one on which the four AKT measures load and a second 
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Fig. 1. Bivariate model and LISREL estimates for VDA and AKT data. At each mea- 
surement occasion both variables load on a common genetic series (G), on a genetic series 
(g) that is specific to each variable, and on general individual environmental factors (E) that 
are specific to each variable. VDA also has loadings on a general common environmental 
factor (C). ~'s are the innovations of the genetic process that are standardized to have unit 
variance. The e's are measurement errors/unique environmental influences. Variances of 
eo.1.2.3 were 78, 75, 26, and 58 for VDA and 41,31,28, and 27 for AKT. Values of transmission 
parameters in parentheses are standardized regression coefficients. 
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one for VDA. The four VDA measures also have loadings on a common 
environmental factor. The correlation between VDA and AKT at each 
point in time thus is explained by their loadings on the same genetic series 
and the genetic variance that is not shared between them by the unique 
genetic series. For the identification of the model these unique series have 
to start at the second measuring point, because their effects cannot be 
disentangled from the common series at the first occasion. Although each 
autoregressive process in the model is assumed to occur at each occasion, 
the mere fact that measuring has to start at a particular point in time 
precludes the complete identification of all these processes. 

The LISREL set up for this analysis is given in the Appendix (Fig. 
A1). In A are the loadings on the latent genetic and environmental factors. 

is a diagonal matrix that contains the variances of the three environ- 
mental factors and, as the genetic factors are correlated across time, the 
variances of the genetic innovations. In this analysis �9 was standardized 
and used for the weighting of the latent factors. In | is that part of the 
environmental variance that is unique to each variable as well as to each 
measuring occasion (and is also uncorrelated within twin pairs). The B 
matrix, finally, gives the estimates of the influence of latent genotypes 
on subsequent latent genotypes for the common genetic and the two 
unique genetic series. As 'I~ was used to standardize the variances of the 
genetic innovations, the unstandardized estimates of the regression coef- 
ficients again have to be interpreted as scaled estimates (see above). 

In Fig. t are the estimates of the transmission coefficients (with their 
standardized values in parentheses) and estimates of the factor loadings. 
To obtain the total amount of environmental variance at each occasion, 
these factor loadings are squared and added to the unique environmental 
variances estimated in | The genetic variance at i > 0 (for the common 
genetic process) and at i > 1 (for the unique genetic processes) is again 
computed as var(Gi) = Xi2[~i 2 var(Gi_ 1) + 1]. The standardized [3's for 
the genetic process that is common to both VDA and AKT approach unity 
and the innovations of this process are small. In contrast, the [3's of the 
unique series go up for VDA and go down for AKT. The chi-square for 
this model was 351 with 319 df (p = .1). 

DISCUSSION 

The examples given above demonstrate how LISREL can be used 
to represent and compare different models for the same data set. These 
different LISREL models can be employed in the genetic analysis of re- 
peated-measures or longitudinal data. When analyzing longitudinal data 
that are not as close together in time as the repeated observations that 
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were analyzed in this study, it is likely that factor models will no longer 
fit the data very well and that an autoregressive model is needed for an 
adequate representation. More importantly, also when the number of re- 
peated observations increases, factor models will not fit this type of data 
because a factor model does not recognize the time-dependent structure 
of the data, wheras a simplex model does. In general, with a small number 
of observations that are positioned closely together, there is not enough 
time for the process to develop. 

As we saw in the analysis of the VDA data, factor and simplex models 
can offer radically different interpretations, while fitting the data equally 
well. Therefore, criteria other than goodness of fit have to be considered 
when choosing between these models. As a simplex model specifies a 
time-dependent structure, an explanation of the increase in total variance 
after alcohol ingestion by an increase in the genetic variance seems to be 
the more likely alternative. 

Our last analysis shows how, for multivariate time series, more elab- 
orate models can be fitted. As most longitudinal studies usually collect 
multivariate data sets, this kind of analysis of developmental patterns 
seems worthwhile to consider. 
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APPENDIX 

MZBETWEEN FEMALES VDA & AKT C=FACTOR El=FACTOR + SPECIFIC, G=SIMPLEX 
DA NG=I0 NI=8 NO=42 MA=CM 
LA 

'VDA0' 'VDAI' 'VDA2' 'VDA3' 'AKT0' 'AKTI' 'AKT2' 'AKT3' 
CM SY 
<DATA> 
MO NY=8 NE=I3 PS=DI,FI LY=FU,FI BE=FU,FI TE=DI,FR 
LE 

'GIBOTH' 'G2BOTH' 'G3BOTH' 'G4BOTH' 'CVDA' 'EVDA' 'EAKT' 
'G2VDA' 'G3VDA' 'G4VDA' 'G2AKT' 'G3AKT' 'G4AKT' 
ST 2.0 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 2.0 PS(1O,10) PS(II,II) PS(12,12) PS(13,13) 
ST 2.0 PS(5,5) 
ST 1.0 PS(6,6) PS(7,7) 
FR BE(2,1) BE(3,2) BE(4,3) 
FH BE(9,8) BE(10,9) BE(12,11) BE(13,12) 
FR LY(I,I) LY(2,2) LY(3,3) LY(4,4) 
FR LY(5,1) LY(6,2) LY(7,3) LY(8,4) 
FR LY(I,5) LY(2,5) LY(3,5) LY(4,5) 
FR LY(I,6) LY(2,6) LY(3,6) LY(4,6) 
FR LY(5,7) LY(6,7) LY(7,7) LY(8,7) 
FR LY(2,8) LY(3,9) LY(4,10) 
FR LY(6,11) LY(7,12) LY(8,13) 
ST 9.0 ALL 
ST .9 BE(2,1) BE(3,2) BE(4,3) 
ST .9 BE(9,8) BE(10,9) BE(12,11) BE(13,12) 
OU NS SS ES TM=5000* 
GROUP2 MZWITHIN FEMALES 
DA NO=43 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP3 MZBETWEEN MALES 
DA NO=41 
CM SY 
<DATA> 
MO NY=8 NE~I3 LY~IN PS-DI,FI BE=IN TE=IN 
ST 2.0 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 2.0 PS(10,10] PS(II,II) PS(12,12) PS(13,13) 
ST 2.0 PS(5,5) 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP4 MZWITHIN MALES 
DA NO=42 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP5 DZBETWEEN FEMALES 
DA NO=43 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 1.5 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 1.5 PS(10,10) PS(II,II) PS(12,12) PS(13,13) 
ST 2 . 0  PS(5,5) 
ST 1.0 PS(6,6) PS(7,7) 
OU 

Fig. A1. Appendix. Bivafiate model. 
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GROUP6 DZWITHIN FEMALES 
DA N0=44 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 0.5 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 0.5 PS(10,10) PS(II,II) PS(12,12) PS(13,13) 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP7 DZBETWEEN MALES 
DA N0=37 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 1.5 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 1.5 PS(10,10) PS(II,II) PS(12,12) PS(13,13) 
ST 2.0 PS(5,5) 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP8 DZWITHIN MALES 
DA NO=38 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 0.5 PS(I,1) PS(2,2) PS(3,3) PS(4,4] PS(8,8) PS(9,9) 
ST 0.5 PS(10,10) PS(II,II) PS(12,12) PS(13,13) 
ST 1.0 PS(6,6) PS(7,7) 
OU 
GROUP9 DZBETWEEN OP-SEX 
DA N0=38 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE=IN TE=IN 
ST 1.5 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 1.5 PS(10,10) PS(iI,II) PS(12,12) PS(13,13) 
ST 2 . 0  PS(5,5) 
ST 1.0 P8(6,6) PS(7,7) 
OU 
GROUP]0 DZWITHIN OP-SEX 
DA N0=38 
CM SY 
<DATA> 
MO NY=8 NE=I3 LY=IN PS=DI,FI BE-IN TE-IN 
ST 0.5 PS(I,I) PS(2,2) PS(3,3) PS(4,4) PS(8,8) PS(9,9) 
ST 0.5 PS(10,10) PS(II,II) PS(12,12) PS(13,13) 
ST 1.0 PS(6,6} PS(7,7) 
OU 

*Longer times lead to drifting solutions, 
because of finite arithmetic precision 

F~.  A1. (Con~nued) 
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