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Abstract

this is a test.

1 Two Geometric Problems

Throughout this paper, we will be interested in local problems; therefore, we
will take the base manifold X to be contractible unless otherwise noted.

Given a connection ∇ = d+ω with corresponding curvature F = dω+ω∧ω,
the Bianchi identity states that the covariant derivative of F vanishes:

0 = ∇F = dF + ω ∧ F

What does the Bianchi identity tell us about the 2-form F? In the abelian
case of G = C∗, the wedge products vanish and we find that

∇F = dF = 0

so that F is simply a closed C-valued 2-form. We can then find an antiderivative
ω ∈ Ω1(X; C) with

curv ω = dω = F

since the ω ∧ ω term in the curvature is again zero. Finally, ω is unique up to
the replacement ω 7→ ω + d logψ for any function ψ ∈ C∞(X,C∗).

Of course, this is nothing more than the classical Poincaré lemma, in the
following form:

Lemma 1.1. Let X be a manifold and A an abelian Lie group with correspond-
ing Lie algebra a. Then

0 // A // C∞X (A)
d log // Ω1

X(a) curv // Ω2
X(a) d //// . . .

is an exact sequence of sheaves.
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Note the slight abuse of notation: when the sheaf is of groups rather than
rings, exact means that each sheaf acts on the next sheaf to the right and two
sections have the same image if and only if they are in the same orbit of this
action. In particular, the constants C∗ act on C∞

X (C∗) by multiplication and
the sections f ∈ C∞

X (C∗) act on the connection forms A ∈ Ω1
X(C) by

A 7→ A+ d log f

****** pictures of abelian versus nonabelian bianchi identity? ******
In the nonabelian case, we still have a truncated version of the Poincaré

lemma, roughly corresponding to the fundamental theorem of calculus on Lie
groups.

Lemma 1.2. Let X be a manifold and G a Lie group with Lie algebra g. Then

1 // G // C∞X (G)
∗θ // Ω1

X(g)

is an exact sequence of sheaves, where ∗θ denotes the pullback of the Maurer-
Cartan form:

f∗θ = f−1df

Furthermore, if 0 = dω + ω ∧ ω = curv ω then ω = f∗θ, where f is unique up
to left multiplication by a constant. However,

1 // G // C∞X (G)
∗θ // Ω1

X(g) curv // Ω2
X(g)

is not exact: there exist connections ω1, ω2 such that curv ω1 = curv ω2 but ω1

and ω2 are not gauge equivalent, even locally.

Here, the action of constants on sections is by left multiplication, and sec-
tions act on connections by

ω 7→ f−1ωf + f∗θ

Note the slight abuse of terminology: by exact, we will mean each sheaf acts
on the next sheaf to the right, and that the level sets of the outgoing map are
equal to the orbits of this action.

This paper is concerned with the problem of extending this sequence one
more term to the right. Unfortunately, the obvious necessary condition for F
to be the curvature of some connection ∇ = d+ ω is the Bianchi identity

0 = d∇F = dF + ω ∧ F

which cannot even be formulated without already knowing the antiderivative
ω for F .
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2 Lifting to Path Space

Recall that connections are in 1-1 correspondence with parallel transport op-
erators. Formally, this gives us a way of replacing a degree-1 object on X (the
connection form) with a degree-0 object on PX (the transport). By systemat-
ically lifting our geometric objects into path space, we might hope to turn the
curvature form into a degree-1 object and deal with it in simpler terms.

Let us first analyze the abelian case of G = C∗ to pinpoint the features we
would like to find in the nonabelian case.

We wish to single out a subset of the forms on path space which behave
nicely with respect to the underlying path structure. There are source and
target maps s, t : PX ⇒ X, so given compose-able paths α, β with vectorfields
V ∈ TαPX, W ∈ TβPX such that

dt(W ) = ds(V )

we can define the composition vectorfield V ◦W ∈ Tα◦βPX. A k-form ω on PX
is called functorial if, for all compose-able vectorfields Vi ∈ TαPX, Wi ∈ TβPX
we have

ωα◦β(V1 ◦W1, . . . , Vk ◦Wk) = ωα(V1, . . . , Vk) + ωβ(W1, . . . ,Wk)

Since we will mainly be concerned with this functorial property, Ωk
PX will refer

to the sheaf of functorial k-forms on PX, while Ak
PX will be used for the sheaf

of general k-forms.
To clarify notation, lowercase roman letters (vi, wi, . . . ) will be used for

vectorfields on X, while uppercase roman letters (Vi, Wi, . . . ) will be reserved
for vectorfields on PX.

Given a k-form on X, there is the transgression map τ : Ωk+1
X (C) −→

Ωk
PX(C) given by

(τω)γ(v1, . . . , vk) =
∫

γ
iv1∧···∧vk

ω

The transgression map has an inverse ε : Ωk
PX −→ Ωk+1

X called infinitesimal
evaluation which works as follows: to compute

(εω)p(v0, . . . , vk)

we find a parametrized path γ : [0, 1] −→ X such that γ(0) = p and γ′(0) = v0.
Then, defining γt = γ|[0,t] we have

(εω)p(v0, . . . , vk) = lim
t→0

1
t
· ωγt(v1, . . . , vk)

Theorem 2.1. ε is a well-defined map from Ωk
PX to Ωk+1

X which is a two-sided
inverse to τ .
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Proof. Throughout this proof, let ω̃ be any lift of ω into the sheaf of k-forms
on the parametrized path space of X.

It follows from functorality ωp = 0, where p is the constant path at p. We
now show that εω does not depend on the choice of γ. Define the function
f : PX −→ R by

f(γ) = iv1∧···∧vk
ωγ = ωγ(v1, . . . , vk)

Then
(εω)p(v0, . . . , vk) = dfp(v0)

which does not involve any arbitrary choices.
The preceding argument proves that ε is well-defined, but it remains to be

shown that εω is antisymmetric. It suffices to verify that

(εω)p(v1, v1, v2, . . . , vk) = 0

First, extend v1 to a parametrized curve γ : [0, 1] −→ X, extend the vectors vi

to vectorfields ṽi along γ and use the previous computation to write

ωγ(ṽ1, . . . , ṽk) =
∫ 1

0
γ′ · (εω)γ(t)(γ

′, ṽ2, . . . , ṽk) dt

*****

Corollary 2.2. By writing ω ∈ Ωk
PX as ω = τεω, any functorial k-form may

be realized as

ωγ(v1, . . . , vk) =
∫ 1

0
κγ(t)(γ

′, v1, . . . , vk) dt

where κ = εω.

Transgression and infinitesimal evaluation allow us to move forms between
X and PX. It might be expected that they intertwine the exterior derivatives
on X and PX, but this is not quite true. By expanding the composition

Ωk
PX

ε−→Ωk+1
X

d−→Ωk+2
X

τ−→Ωk+1
PX

we may derive the formula

(τdεω)γ =
∫ 1

0

(
Lγ′(εω)

)
γ(t)

dt− (dω)γ

= (εω)t(γ) − (εω)s(γ) − (dω)γ

This is another sort of exterior derivative, applicable only to functorial forms,
which we will denote

d = τdε : Ωk
PX(C) −→ Ωk+1

PX (C)
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It follows immediately that d2 = 0, leading to the functorial cohomology

Hn
fun(PX; C) = ker(Ωk

PX(C) d−→Ωk+1
PX (C))/im (Ωk−1

PX (C) d−→Ωk
PX(C))

Lemma 2.3. Transgression is a morphism of complexes of sheaves:

0 // C∗
X

ι //

τ

��

C∞X (C∗)
d log //

τ

��

Ω1
X(C) d //

exp τ

��

Ω2
X(C) d //

τ

��

. . .

0 // 0 // C∗
PX ι

// C∞PX(C∗)
d log

// Ω1
PX(C)

d
// . . .

Stated in more geometric language, this lemma means that flat C∗-connections
on PX are equivalent to arbitrary C∗-connections on X. In the more general
case of X not contractible, the holonomy of this flat connection corresponds to
the monopole charges of the related 2-form on X.

The idea of relating curvature forms on X to connections on PX in the
nonabelian case will be the focus of the rest of this paper. A connection on
PX is closely related to the notion of surface transport — that is, transport of
a quantity from one boundary curve of a surface to the other, preferably in a
parametrization-invariant manner.

3 Nonabelian Surface Transport

Throughout this section, suppose that S is a surface in X bounded by two
curves γ0, γ1 connecting x0 to x1.

We may think of a 2-form F ∈ Ω2
X(C) as an assignment to each infinitessimal

surface element an infinitessimal element of C∗. Then we could compute a
surface-ordered product

PF (S) = exp
∫

S
F

In the language of the last chapter, if F is the curvature of a connection A then
PF = exp τA, so PF is independent of the surface S connecting γ0 to γ1 exactly
when dF = 0.

Now consider the nonabelian case F ∈ Ω2
X(g). We are unable to define a

surface-ordered product easily due to the lack of natural ordering on S. Without
this ordering, the nonabelian product of G prevents us from defining a surface-
ordered product unambiguously.

As a first approximation to a solution, we might allow G to be a bigroup: a
set carrying two operations ·, ◦ such that it becomes a group under each, with
the same identity. Then if S is the image of a homotopy

h : [0, 1]× [0, 1] −→ X h(s, 0) = γ0(s), h(s, 1) = γ1(s)
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we could use one product for multiplication in the ∂t direction, and the other
product for multiplication in the ∂s direction. This surface-ordered product is
well-defined as long as the exchange identity

(g4 ◦ g3) · (g2 ◦ g1) = (g4 · g2) ◦ (g3 · g1)

holds in G.

Lemma 3.1. (Eckmann-Hilton) If G is a bigroup which satisfies the exchange
identity then · = ◦ and both products are abelian.

Proof. To see that the products agree,

x · y = (x ◦ 1) · (1 ◦ y) = (x · 1) ◦ (1 · y) = x ◦ y

Knowing that · = ◦,

x · y = (1 · x) · (y · 1) = (1 · y) · (x · 1) = y · x

Rather than flail around for a weakened notion of bigroup which will work
for surface transport, we take a detour into abstraction and let categories do
the work for us.

4 Categorified Groups

In order to have a surface-ordered product, we need something which acts like
a group (for horizontal multiplication of surface elements) but also supports a
notion of composition (for vertical multiplication). There is a general procedure
called internalization in category theory for doing just this sort of hybridization.

Given two kinds of mathematical objects K1, K2, let C be the category of
K1s and let D be a set of diagrams which define K2 axiomatically. Then a K2

internalized in K1 is a realization of D as diagrams in C. Rather than dwelling
on the details of this abstraction, we will simply present two examples before
continuing.

Example 4.1. Let D be the diagram defining a direct sum (⊕). Then inter-
nalizing ⊕ in Groups gives the direct sum of groups, while internalizing ⊕ in
the divisibility poset of N gives the notion of least common multiple.

Example 4.2. Groups may be defined by diagrams, so we can internalize the
notion of “group”. A group internalized in FinSets is a finite group, and a group
internalized in Top is a topological group.
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Now, we are after a group which has a notion of composition. Composition
is codified in the notion of a category, and categories may themselves be defined
entirely by diagrams. So the type of object we are after is a 2-group1: a category
internalized in Groups. Such a 2-group G is a category with a group of objects, a
group of arrows, and all maps (source, target, identity, composition) are group
homomorphisms.

Structurally, such a 2-group G consists of a group H of objects and a group
G of arrows with source at 1 ∈ H, along with a target map t0 : G −→ H and
an action α : H −→ Aut(G) which satisfies the intertwining property

G
α(h) //

t0
��

G

t0
��

H
Ad(h) // H

and the Peiffer identity
G

t0
��

Ad

##GGGGGGGGG

H
α // Aut(G)

Given such a 2-group G, H is the group of objects and Gnα H is the group
of arrows. The source and target maps are given by

s(g, h) = h, t(g, h) = t0(g) · h

The identity arrow associated to the object h is

idh = (1, h)

and composition is given by

(g2, t(g1) · h) ◦ (g1, h) = (g2 · g1, h)

The intertwining property and the Peiffer identity ensure that G satisfies the
axioms of a category.

The fact that ◦ is a homomorphism means that any 2-group satisfies the
exchange identity, verified by a straightforward but messy computation using
both the intertwining property and the Peiffer identity:

((g3, t(g1)h1) ◦ (g1, h1)) · ((g4, t(g2)h2) ◦ (g2, h2)) =
= (g3g1, h1) · (g4g2, h2) = (g3g1 · α(h1)(g4g2), h1h2)

1In this paper, we only deal with strict 2-groups, also called crossed modules. A weaker notion
of 2-group may be achieved by internalizing groups in Cat and demoting identities to isomorphisms.
This is studied extensively in [2] and [1].
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((g3, t(g1)h1) · (g4, t(g2)h2)) ◦ ((g1, h1) · (g2, h2)) =
(g3α(t(g1)h1)(g4), t(g1)h1t(g2)h2) ◦ (g1α(h1)(g2), h1h2) =

(g3g1α(h1)(g4)g−1
1 , t(g1)h1t(g2)h2) ◦ (g1α(h1)(g2), h1h2) =

(g3g1 · α(h1)(g4g2), h1h2)

In other words, 2-groups are exactly the sort of object which can be consistently
multiplied over a surface, just as (1-)groups are exactly the sort of object which
can be consistently multiplied over a path.

Example 4.3. One of the most common 2-groups is the automorphism 2-
group AutG of a group G. The object group is Aut(G) and the arrow group is
G nα Aut(G), where the action α is evaluation. The target map is t0 = Ad :
G −→ Aut(G).

Closely related is the adjoint 2-group AdG of G. This is the subcategory of
AutG connected to the identity — in other words, exactly like AutG but with
Inn(G) replacing Aut(G).

Example 4.4. Given pointed topological spaces X, Y with Y ⊂ X, there is
the long exact homotopy sequence

. . . πk(X)
q−→πk(X;Y ) ∂−→πk−1(Y ) i−→πk−1(X) −→ . . .

Associated to this sequence is the fundamental 2-group with object group
π1(Y ), arrow group π2(X;Y ), target map t0 = ∂ and action of π1(Y ) on
π2(X;Y ) by basepoint change. Historically, this was the first known exam-
ple of a 2-group and captures nonabelian homotopy information even though
π2(Z) is always abelian (again by the Eckmann-Hilton argument!).

Example 4.5. Given any group G there are two natural ways to construct a
2-group. The first is to use the 1-element group as the group of objects and
G as the group of arrows. On the other hand, there is a unique 2-group SkG

called the sketch of G such that G is the group of objects and Hom(g1, g2) is a
single element for all g1, g2.
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