
Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

PROTOCOL BASED PROGRAMMING OF
CONCURRENT SYSTEMS

César Augusto Ribeiro dos Santos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

2014

Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

PROTOCOL BASED PROGRAMMING OF
CONCURRENT SYSTEMS

César Augusto Ribeiro dos Santos

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

Dissertação orientada pelo Prof. Doutor Francisco Cipriano da Cunha Martins
e co-orientada pelo Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

2014

Acknowledgments

This thesis would not have been possible without the amazing support of a lot
of people.

My family, first and foremost. I thank my father for not even letting me think
about dropping all of this and spending the rest of my life working at McDonalds.
I am still not sure if that would not have been the right choice. I would also like to
thank my mother, who supported me the whole time, even when I wanted to drop
all of this and go working for McDonalds.

A special thank-you goes to my late grandfather, who was a major inspiration
in my life, and without whom I might not have been able to finish this course.

I would also like to thank my supervisors for the opportunity to do this thesis
and their support. A special thank-you goes out to professor Eduardo Marques,
for constantly changing the format of the VCC export, which in turn forced me to
massively refactor the plugin, greatly improving the quality of the code. I also thank
him for being there in the lab with his students whenever he could, helping even
when I needed.

I thank my friends for always brightening up my day with some good laughs,
with a special thanks to Fernando Alves for actually taking the time to review my
thesis and helping me improve it.

Finally, I thank my girlfriend, for giving me the strength to pull through to the
end, and somehow putting up with my incessant whining about every tool I use
being terrible and nothing working right. I dedicate this thesis to you Solange, it
wouldn’t have been finished without you.

iii

Dedicatória.

Resumo

Desenvolver sistemas de software concorrentes (e paralelos) seguros é difícil. É
muito mais difícil verificar software paralelo do que é fazer o mesmo para aplicações
sequenciais. A Message Passing Interface (MPI) é uma especificação independente
de linguagem para protocolos de comunicação, utilizada para programar computado-
res paralelos e baseada no paradigma de troca de mensagens, seguindo o paradigma
Single Program Multiple Data (SMPD) em que um único pedaço de código é par-
tilhado por todos os processos. Programas MPI apresentam uma séria de desafios
de correção: o tipo de dados trocados na comunicação pode não corresponder, o
que resulta em computações erradas, ou o programa pode entrar numa situação de
impasse resultando em recursos desperdiçados. Este trabalho tem como objective
melhorar o estado-da-arte da verificação de programas paralelos. O estado-da-arte
na verificação de programas MPI utiliza técnicas de verificação de modelos que não
escalam com o número de processos e são tipicamente feitas em tempo de execução,
o que desperdiça recursos e está dependente da qualidade do conjunto de testes.

A nossa abordagem é inspirada em tipos de sessão multi-participante (multi-party
session types). A teoria dos tipos de sessão parte da caracterização da comunicação
entre vários processos de um programa de um ponto de vista global (mensagem do
processo 0 para o processo 1 corresponderia a envio para o processo 1 no processo
0 e recebo do processo 0 no processo 1 localmente). A esta caracterização dá-se o
nome de protocolo. Protocolos bem formados são por construção livres de impasse
e a comunicação é correcta (o tipo de dados enviado é o mesmo que o tipo de dados
recebido). Se for provado que um programa segue um protocolo, então essas mesmas
propriedades (ausência de impasses e correcção na comunicação) são preservadas
para o programa.

Primeiro, um protocolo é especificado numa linguagem desenhada para o efeito.
As primitivas suportadas pela linguagem de protocolos são baseadas nas primitivas
MPI, com a adição de escolhas e ciclos colectivos. Estas primitivas representam to-
madas de decisão colectivas que não recorrerem a comunicação. Tomadas de decisão
colectivas acontecem em programas SPMD porque todos os processos partilham o
mesmo código, e como tal é possível garantir que todos os programas calculam o
mesmo valor num certo ponto do programa se os dados forem iguais. Além disso, foi

vii

adicionada uma primitiva foreach, que expande um pedaço de protocolo para uma
gama de valores. Esta primitiva permite que protocolos sejam paramétricos quanto
ao número de processos. Os dados enviados nas mensagens podem ter restrições
associadas, especificadas recorrendo a tipos dependentes.

Os protocolos são escritos num plugin Eclipse. O plugin valida a boa formação
dos protocolos com base numa teoria, utilizando o SMT solver Z3 da Microsoft
Research para provar certas propriedades, e que as restrições nos tipos dependentes
são congruentes. O plugin foi implementado recorrendo a Xtext, uma framework
para desenvolvimentos de plugins Eclipse.

O plugin, além de validar a boa formação, compila os protocolos para vários
formatos, entre os quais o formato Why. Why é uma das linguagens da plataforma
Why3, uma plataforma para verificação dedutiva de software. A linguagem Why é
utilizada para escrever teorias, e é aliada à linguagemWhyML (inspirada em OCaml)
para escrita de programas.

Foi desenvolvida em Why uma teoria para protocolos, em que protocolos são
especificados como um tipo de dados da linguagem. O ficheiro gerado pelo plugin
especifica um protocolo utilizando os construtores deste tipo de dados. Para espe-
cificar as restrições de tipos dependentes, uma teoria de funções anónimas incluída
com a plataforma Why3 é utilizada.

Além disso, foi desenvolvida uma biblioteca WhyML para programação paralela.
Esta biblioteca inclui primitivas inspiradas em MPI, e primitivas para escolhas co-
lectivas e ciclos colectivos. Estas primitivas têm como pré-condição que a cabeça
do protocolo é a primitiva esperada, e que os dados a serem enviados respeitam a
restrição do tipo de dados a ser enviado. Todas as primitivas têm como parâmetro
o estado actual do protocolo, e na sua pós-condição consomem a primitiva à ca-
beça. Graças a estas anotações é possível saber se o programa segue o protocolo,
confirmando no final do programa se o protocolo foi consumido por completo.

Dado um programa paralelo escrito em WhyML, o protocolo em formato Why
e a teoria de protocolos, o programador pode utilizar o Why3 IDE para verificar a
conformidade do programa face ao protocolo. O Why3 IDE permite dividir a prova
em partes, e provar cada parte com um SMT solver diferente. Caso nenhum SMT
solver seja capaz de provar uma das sub-provas, o programador pode recorrer a um
proof assistant e tratar da sub-prova manualmente.

Além das anotações de primitivas colectivas, o programador também precisa de
por um anotação no final de cada bloco que verifica se o protocolo está vazio naquele
ponto (sem a qual não é possível garantir que o protocolo foi seguido), de marcar
que partes do código correspondem a que expansão da primitiva foreach, e precisa
de adicionar variantes e invariantes aos ciclos.

Em resumo, a nossa abordagem é a seguinte:

viii

1. O programador escreve um protocolo que explicita globalmente a comunicação
que deve ocorrer.

2. Este protocolo, se bem formado, é correcto por construção. A comunicação é
correcta e é livre de impasses.

3. A boa formação do protocolo é feita num plugin Eclipse, que também o compila
para vários formatos, entre os quais o formato Why.

4. O programador escreve o seu programa paralelo em WhyML, recorrendo a
uma biblioteca de programação paralela inspirada em MPI desenvolvida neste
projecto.

5. As primitivas da biblioteca são anotadas com pré e pós-condições que verificam
a conformidade do programa face ao protocolo.

6. Oprograma, aliado ao protocolo em formato Why e a uma teoria de protocolos,
é verificado no Why3 IDE

7. O Why3 IDE permite dividir a prova em partes, e provar cada parte com um
SMT solver diferente. No caso em que nenhum SMT solver consiga tratar
da sub-prova, o programador pode recorrer a um proof assistant e tratar da
sub-prova manualmente.

8. Se o programa passar na verificação, as propriedades do protocolo (correcção
na comunicação e ausência de empasses) são garantidas para o programa.

Estas anotações impõe trabalho extra ao programador, mas são dentro do espe-
rado para este tipo de ferramenta. A nossa solução foi testada com recurso a três
programas MPI, obtidos em livros de texto.

Foram verificados vários exemplos clássicos de programação paralela, adaptados
de livros de texto. Comparativamente à ferramenta mais próxima (que utiliza o
verificador de programas C, VCC), o número de anotações da nossa solução é me-
nor, as anotações enquadram-se melhor com o código e o tempo de verificação é
semelhante.

No entanto, a nossa solução recorre a uma linguagem que não é apropriada para
a industria, a linguagem WhyML. As linguagens C ou Fortran aliadas à biblioteca
MPI são o gold standard para programação paralela de alta performance, e são as
linguagens com que os programadores no ramo estão familiarizados.

Como tal, para trabalho futuro, propomos o desenvolvimento de uma lingua-
gem de alto nível o mais semelhante possível a C ou Fortran, com primitivas de
programação paralela built-in, incluindo escolhas colectivas e ciclos colectivos. Esta
linguagem deverá compilar para código C ou Fortran, convertendo as primitivas da

ix

linguagem em primitivas MPI. Este passo de conversão pode também optimizar o
programa, recorrendo a primitivas de comunicação MPI mais eficientes que as usa-
das, sendo esta uma funcionalidade importante para programação paralela de alta
performance cuja principal preocupação é a eficiência do programa.

Compilando também para WhyML, estes programas podem ser verificados. E
como as primitivas de programação paralela são built-in na linguagem, a grande
maioria das anotações necessárias pode ser gerada automaticamente.

É também necessário suportar mais funcionalidades MPI, incluindo comunicação
assíncrona, topologias e comunicadores.

Palavras-chave: Programação Paralela, MPI, Verificação de Software,
Tipos de Sessão, Sistemas de Tipos

x

Abstract

Developing safe, concurrent (and parallel) software systems is hard. It is much
more difficult to debug or verify parallel software than it is to do the same for
sequential applications. The Message Passing Interface (MPI) [12] is a language-
independent specification for communication protocols, used to program parallel
computers and based on the message-passing paradigm. MPI programs present a
number of correctness challenges: communication may not match, resulting in errant
computations, or the program may deadlock resulting in wasted resources.

This work hopes to improve the state-of-the-art of MPI program verification.
The state-of-the-art in MPI program verification relies on model-checking techniques
which do not scale with the number of processes and are typically done at runtime,
which wastes resources and is dependent on the quality of the test set. Our approach
is inspired by multi-party session types. First, a protocol is specified in a language
designed for the purpose. A well-formed protocol is communication-safe and dead-
lock free. An Eclipse plugin verifies the well-formation of the protocol, and compiles
it to Why, a language of a deductive software verification platform called Why3.
This compiled protocol, allied with a theory for protocols also written in Why, is
used to verify parallel WhyML programs, WhyML being another language of the
Why3 platform. If a program passes verification, the properties of communication
safety and deadlock freedom are preserved for the program. This verification occurs
at compile time and is not dependent on any kind of test set, avoiding the issues of
model-checking techniques.

We verified several parallel programs from textbooks using our approach.

Keywords: Parallel Programming, MPI, Software Verification, Session Types,
Type Systems

xii

xiv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Contributions . 2
1.4 Document structure . 3

2 Related work 5
2.1 MPI . 5
2.2 Multi-party session types . 6
2.3 Why3 . 7
2.4 Xtext . 8
2.5 VCC . 8
2.6 Scribble . 9
2.7 Session C . 10
2.8 ISP . 10
2.9 DAMPI . 11
2.10 MUST . 11
2.11 TASS . 12
2.12 Parallel data-flow analysis . 12

3 Protocol language 13
3.1 The finite differences problem . 14
3.2 Protocol validator . 17
3.3 Why3 Protocol . 19

4 Programming language 23
4.1 Verifying the program . 25

5 Implementation 31
5.1 Protocol validator . 31

5.1.1 Internal representation . 32
5.1.2 Scoping and validation . 33

xv

5.1.3 Generation . 36
5.2 Why3 library . 38

5.2.1 Why3 theory for protocols . 38
5.2.2 WhyML parallel programming library 40

6 Evaluation 43
6.1 Sample programs . 43
6.2 Verification time . 43
6.3 Annotation effort . 44

7 Conclusions and future work 47

Appendixes 49

A Listings 49
A.1 Pi . 49
A.2 Finite differences . 50
A.3 Parallel dot . 52

B Protocols 55

Bibliography 62

xvi

xx

Chapter 1

Introduction

1.1 Motivation

Parallel programming is difficult to get right. The Message Passing Interface
(MPI) [12], a language-independent specification for communication protocols based
on the message-passing paradigm, is the de facto standard for High Performance
Computing (HPC). Some of the challenges in developing correct MPI programs
include: communication that does not match, resulting in incorrect computations,
and deadlocks, which result in wasted time and resources.

High performance computing (HPC) bugs are very costly, high-end HPC centres
cost hundreds of millions to commission, and the machines become obsolete within
six years. On many of these centres, over 3 million dollars are spent in electricity
costs alone each year and research teams apply for computer time through compet-
itive proposals, spending years planning experiments [15]. A deadlocked program
represents an exorbitant amount of wasted money as such situations are hard to
detect at runtime without resource wasting monitors. One must also consider the
societal costs, since there is a reliance on the results of these experiments (weather
simulations for example).

Verifying the correctness of concurrent (and parallel) software systems is also
hard. Several methodologies are employed in the formal verification of MPI pro-
grams, such as model checking and symbolic execution. These approaches typically
face a scalability problem, since the verification state space grows exponentially with
the number of processes. Verifications of real-world applications may restrict the
number of processes in the state space to only a few [33].

1.2 Objectives

This work aims at improving the state-of-the-art of parallel program verification.
Our approach is inspired by multi-party session types [21]. The theory of session

1

Chapter 1. Introduction 2

types allows the specification of a protocol as a type. Such a type describes not
only the data types exchanged in messages, but also the state transitions of the
protocol and hence the allowable sequence of messages. A well-formed protocol is
communication-safe and deadlock free. With session types it is possible to verify, at
compile-time, that participants communicate in accordance with the protocol and,
if so, the properties of communication-safety and deadlock freedom are preserved
for the program.

The idea is as follows: first, a protocol is specified in a language designed for the
purpose. The plugin verifies if the protocol is well-formed and, if it does, compiles
it to a format that can be processed by a deductive program verifier. A parallel
program is then checked against the generated protocol. For that, it is necessary
that all parallel primitives be annotated with pre and post-conditions based on the
current state of the protocol. If all pre-conditions match, and the protocol fully
processed at the end, then program matches the protocol and is therefore type-safe
and free from deadlocks.

This work is included in a larger ongoing project of parallel verification, Advanced
Type Systems for Multicore Programming (PTDC/EIA-CCO/122547/2010), where
verification was carried out on C+MPI code through the usage of a deductive soft-
ware verifier for C, VCC [7]. The C language has very complex operational seman-
tics [27, 32], with many different specifications attempted [27], none of which fully
specifies the language. Because of that it is not possible to guarantee the progression
of a C program according to a protocol.

Programming MPI in C is very error prone and requires many annotations re-
garding concurrency and pointer arithmetic. Using an existing higher level language
with MPI support does not solve the problem, communication primitives must be
a fundamental part of it, otherwise errors like mismatched types in messages and
deadlocks can still occur. We present an implementation of a higher level language
with first class support for parallel MPI-like primitives using WhyML, a language
that is part of Why3 [11] a deductive software verification platform that also features
a rich well-defined specification language called Why. All the primitives are protocol
aware, and using Why3 the programmer can guarantee his program is correct.

Why3 allows the user to split proofs in parts and prove each part using a different
Satisfiability Modulo Theories (SMT) solver. In cases where the solvers cannot
handle part of the proof, Why3 can generate files for use with proof assistants like
Coq [3], allowing the user to handle those parts manually.

1.3 Contributions

The contributions of this work are:

Chapter 1. Introduction 3

1. A plugin for the development of protocols,

2. A compiler of protocols to Why format,

3. A theory for protocols in Why,

4. Verification of sample WhyML programs against a given protocol.

1.4 Document structure
This document is organised as follows:

• Chapter 1 - Introduction: Describes the motivation, objectives and con-
tributions of the work.

• Chapter 2 - Related Work: Describes the tools this work builds upon and
compares it to similar tools.

• Chapter 3 - Protocol Language: Describes the protocol language and the
protocol validator.

• Chapter 4 - Programming language: Describes the programming lan-
guage and verification using Why3.

• Chapter 5 - Implementation: Explains in detail how the various contribu-
tions were implemented.

• Chapter 6 - Evaluation: Describes the results obtained and evaluates them
in comparison to alternatives.

• Chapter 7 - Conclusion: Presents conclusions and possible future work.

Chapter 1. Introduction 4

Chapter 2

Related work

2.1 MPI

MPI [12] is a language-independent specification for communication protocols
used to program parallel computers. Based on the message-passing paradigm, it is
both a programmer interface and a specification for how its features must behave in
any implementation. MPI is not sanctioned by a standards body but it has become
a de facto standard for programming parallel applications that run on distributed
memory systems, such as super computers and clusters. It is the dominant model
in high-performance computing.

MPI programs are typically written in C or Fortran (although there are non-
official bindings for many other programming languages). They consist of one or
more processes, each with its own private memory, that communicate with each
other through various kinds of message exchanges, and follow the Single Program
Multiple Data paradigm (SPMD). In SPMD, multiple processes execute the same
program at independent points. Serial sections of the program are implemented
by identical computation on all processes, rather than computing the result on one
process and sending it to the others. This also means that program control-flow
follows the same path if it is only dependent on data that is known to all processes.
We call these collective control-flow operations collective choices and collective loops.

Participant specific behaviour can be separated with conditionals based on the
participant’s rank, a unique identifier that is attributed to each process. The two
most commonly used types of message exchanges are point-to-point messages (sends
and receives) and collective operations (broadcasts and reductions for example).

Messages can be synchronous or asynchronous, blocking or non-blocking. Block-
ing operations wait until data is transmitted, while synchronous operations wait
until the other party signals it is ready to perform an operation, it is a subtle dif-
ference but it is important to note. This work focuses on blocking synchronous
operations like those in MPI.

5

Chapter 2. Related work 6

1 int main(int argc, char** argv) {
2 int procs; // Number of processes
3 int rank; // Process rank
4 MPI_Init(&argc, &argv);
5 MPI_Comm_size(MPI_COMM_WORLD, &procs);
6 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
7 ...
8 int n = atoi(argv[1]); // Global problem size
9 int lsize = n / procs;

10 if (rank == 0)
11 read_vector(work, n);
12 MPI_Scatter(work, lsize, MPI_FLOAT, &local[1], lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
13 int left = (procs + rank - 1) % procs; // Left neighbour
14 int right = (rank + 1) % procs; // Right neighbour
15 int iter = 0;
16 // Loop until minimum differences converged or max iterations attained
17 while (!converged(globalerr) && iter < MAX_ITER)) {
18 ...
19 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
20 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
21 MPI_Send(&local[lsize], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD);
22 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD, &status);
23 ...
24 MPI_Allreduce(&localerr, &globalerr, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
25 ...
26 }
27 ...
28 if (converged(globalerr)) { // Gather solution at rank 0
29 MPI_Gather(&local[1], lsize, MPI_FLOAT, work, lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
30 ...
31 }
32 ...
33 MPI_Finalize();
34 return 0;
35 }

Figure 2.1: Finite Differences C+MPI program.

MPI also allows processes and communication spaces to be structured using
topologies and communicators. It also supports persistence, user-defined datatypes,
one-sided communications, file I/O, among others. Figure 2.1 shows an example
MPI program written in C.

2.2 Multi-party session types

A session is a series of reciprocal interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing inter-
action. It is based on the message-passing style of parallel programming. Session
types [20] are a type discipline for sessions.

Multi-party session types [21] extend the theory to an arbitrary number of par-
ticipants. Parameterised multi-party session types [9] further extend the theory
to support a parametric number of participants. Multi-party session types begin
with the design of a global protocol which specifies the intended interaction between
participating processes. The global protocol implicitly defines a local protocol for
each participant, through the notion of projection. Figure 2.2 shows the approach
followed by multi-party session types.

A local protocol defines the role a certain participant has in the global interac-

Chapter 2. Related work 7

Figure 2.2: Multi-party session types approach

tion. Well-formed protocols verify, by construction, the properties of type safety,
communication safety and deadlock freedom. These properties extend to the partic-
ipants if they conform to the corresponding local protocol. The approach followed
by this work is inspired by multi-party session types.

2.3 Why3

Why3 [4, 11] is the current generation of Why, a platform for deductive program
verification. It provides a rich language of specification and programming, called
WhyML, and relies on external theorem provers, both automated and interactive,
to discharge verification conditions. It is mainly motivated by the necessity to
model the behaviour of programs and formally prove their properties [4]. WhyML
is used as an intermediate language for the verification of programs in a variety
of languages such as C, Java and Ada [11]. It can also work as a programming
language inheriting features and syntax from ML. WhyML has two components: a
specification component and a programming component.

The specification component is used to write program annotations and back-

Chapter 2. Related work 8

ground logical theories. It is based on first-order logic with rank-1 polymorphic
types [25] and several extensions. The specification language does not depend on
features of the programming language and can serve as a common format for theorem
proving problems as Why3 can dispatch proof obligations to various provers.

The programming component has two important restrictions: it has no higher-
order functions, and does not have a memory model, imposing instead a static
control of aliases. This enables the generation of first-order proof obligations that are
simultaneously tractable for provers and readable for users. Functions are annotated
with pre and post-conditions for normal and exceptional termination, and loops
are annotated with invariants. While-loops and recursive functions can be given
variants to ensure termination. Programs written in C can be verified by modelling
the algorithm in WhyML, and using Why3 to formally verify it [10]. This work uses
Why3 to verify MPI programs written in WhyML.

2.4 Xtext
Xtext [1] is an Eclipse [14] based framework for the development of programming

languages and domain specific languages. It covers all aspects of a complete language
infrastructure: parser, linker, compiler, interpreter and even Eclipse IDE integration.
Xtext provides a set of domain-specific languages and APIs to describe different
aspects of a programming language. The compiler components of the language are
independent of Eclipse and can be used in any Java environment. This includes
the parser, the abstract syntax tree, the serialiser, the code formatter, the scoping
framework, the linker, compiler checks and static analysis and the code generator or
interpreter. The Eclipse plugin for the protocol specification language was created
with Xtext.

2.5 VCC
VCC [7] is a sound verification tool used to check functional properties of con-

current C code. It uses annotations for pre and post-conditions, invariants, state
assertions and ghost code. VCC tests each method in isolation solely based on the
contracts of the said method. When running VCC, after the given C source code
is analysed and deemed valid, it is translated to Boogie code [2], an intermediate
language used by multiple verification tools. That code is verified by the Z3 [8] SMT
solver to assert the correctness of the Boogie/VCC code. The plugin developed as
part of this work can also output protocol in VCC format, an example for the finite
differences problem can be seen in Figure 2.3.

Chapter 2. Related work 9

1 _(pure Protocol program_protocol ()
2 _(reads {})
3 _(ensures \result ==
4 seq(size(\lambda \integer x; x > 1),
5 seq(abs(\lambda \integer p;
6 seq(val(\lambda \integer x; x >= 0 && x % p == 0),
7 seq(abs(\lambda \integer n;
8 seq(scatter(0, floatRefinement(\lambda float* _x4; \integer _x4_length; _x4_length == n))

,
9 seq(foreach(0, p - 1, \lambda \integer i;

10 seq(message(i, (i + 1) % p, intRefinement(\lambda int* _x5; \integer _x5_length; \
true && _x5_length == 1)),

11 skip())
12),
13 seq(loop(
14 seq(bcast(0, intRefinement(\lambda int* _x6; \integer _x6_length; \true &&

_x6_length == 1)),
15 seq(abs(\lambda \integer z;
16 seq(allreduce(MPI_MAX, floatRefinement(\lambda float* _x7; \integer _x7_length; \

true && _x7_length == 1)),
17 skip())
18),
19 skip()))
20),
21 seq(choice(
22 seq(gather(1, intRefinement(\lambda int* x; \integer x_length; (\forall \integer _x9

; (0 <= _x9 && _x9 < x_length) ==> x[_x9] <= 50) && x_length > 0)),
23 skip())
24 ,// or
25 skip()
26),
27 skip()))))
28),
29 skip()))
30),
31 skip()))
32);
33)

Figure 2.3: Protocol in VCC format.

2.6 Scribble
The Scribble language [19] is a platform-independent description language for

the specification of asynchronous, multiparty message passing protocols, built on a
rigorous mathematical basis. Scribble is based on the theory of multi-party session
types. Protocols are specified using the type language of Scribble, which is the most
abstract level of the description layers in Scribble. Conversation models provide a
foundation for design-by-contract through assertions written in a logical language.
Finally there are languages for describing detailed behaviour, reaching executable
descriptions.

Scribble can be used to statically validate parallel applications based on message-
passing, but also dynamic validation (monitoring) of message exchanges which is
useful for protecting against untrusted participants. Figure 2.4 shows a protocol
written in Scribble. Although similar to our approach, Scribble does not follow the
synchronous semantics of MPI, nor does it feature process ranks as identifiers or
collective primitives.

Chapter 2. Related work 10

1 type <xsd> "ProductId" from "ProductId.xsd" as ProductID;
2 type <xsd> "Calendar" from "Calendar.xsd" as Calendar;
3 type <java> "java.lang.Integer" from "rt.jar" as int;
4
5 global protocol BuyerBrokerSupplier(role Buyer, role Broker, role Supplier) {
6 rec START { // Recursion point for the "Redo" scenario
7 // the common initial four steps
8 query(ProductID) from Buyer to Broker;
9 query(ProductID) from Broker to Supplier;

10 price(int) from Supplier to Broker;
11 price(int) from Broker to Buyer;
12 choice at Buyer { // Buyer decides the protocol scenario to follow
13 // "Redo" scenario
14 redo() from Buyer to Broker;
15 redo() from Broker to Supplier;
16 continue START; // Protocol flow returns to START recursion point
17 } or {
18 // "Accept" scenario
19 accept() from Buyer to Broker;
20 confirm() from Broker to Supplier;
21 date(Calendar) from Supplier to Broker;
22 date(Calendar) from Broker to Buyer;
23 } or {
24 // "Reject" scenario
25 reject() from Buyer to Broker;
26 cancel() from Broker to Supplier;
27 }
28 }
29 }

Figure 2.4: Example protocol in the Scribble language

2.7 Session C

Session C [24] is a multiparty session-based programming framework for message-
passing parallel algorithms in C. It follows an approach similar to ours, starting
with the specification of a global protocol (written in Scribble) for a certain parallel
algorithm, from which a projection algorithm generates endpoint protocols, based on
which each endpoint C program is designed and implemented with a small number
of session primitives, which can be statically validated. Our approach does not use
a projection algorithm, relying instead on deductive techniques.

Session C guarantees deadlock freedom, type-safety, communication-safety and
global progress for any well-typed programs. The underlying theory ensures that
the complexity of the toolchain stays in polynomial time against the size of pro-
grams. The biggest limitation is that this approach requires the mastering of a new
API, while our approach targets MPI, the dominant model for high-performance
computing.

2.8 ISP

ISP [30] is a dynamic analyser of MPI programs that employs run-time model
checking methods based on dynamic partial order reduction (DPOR) using a fixed
test suite. ISP can check for deadlocks, violations of assertions placed by the user
and exceptions thrown at runtime. It exhaustively explores all relevant interleavings

Chapter 2. Related work 11

of the given MPI process as determined by DPOR. The first interleaving is chosen
at random by following a standard depth-first search. Afterwards it traverses up
the stack, having DPOR identify points where adding interleavings might be useful,
and continues the search. ISP uses PNMPI [31] instrumentation to trap MPI calls.

Some of the biggest problems with ISP are that it requires restarting from
MPI_Init to explore each new interleaving which causes a huge overhead [36] and it
is only compatible with MPICH2. It is not scalable, not even to a small number of
MPI primitives, and being a runtime verifier, it is dependent on the quality of the
tests. Our approach does not have any of these problems.

2.9 DAMPI

DAMPI [37] is a distributed dynamic analyser of MPI programs, the first that
guarantees scalable coverage of the space of non-determinism. It does so by em-
ploying heuristics to focus coverage to regions of interest. It detects deadlocks and
resource-leaks in real applications using over a thousand processes. It is a followup
to ISP, having a decentralised scheduling algorithm based on Lamport clocks [23].
Much like ISP, it uses PNMPI instrumentation to trap MPI calls. DAMPI cannot
detect the deadlock that occurs when two processes are trying to send a message
to each other, and can give false positives due to the timeout based deadlock de-
tection [18]. Although DAMPI does not require the writing of a protocol or model
and, unlike ISP, is scalable, it is a runtime verifier. As such, it is dependent on
the quality of the tests, unlike our approach. Our approach does not present false
positives.

2.10 MUST

MUST [17, 18], preceded by Marmot [22] and Umpire [5], utilises an approach
similar to DAMPI. Like DAMPI, MUST utilises PNMPI, and focuses on the same
runtime verifications. A big advantage over DAMPI is that it does not have false
positives for deadlock detection and it enables a comprehensive understanding of the
source of the deadlock. It also features local verifications, such as pointer validations,
memory access, and resource leaks. It can handle up to 1024 processes with the full
verification set. MUST has the same problems shared by runtime verifications that
our approach lacks.

Chapter 2. Related work 12

2.11 TASS
TASS [34] is a suite of tools for the formal verification of MPI-based parallel

programs. TASS takes an integer n larger than one and a C+MPI program, and
constructs an abstract model of the program with n processes. The model is explored
using symbolic execution and explicit state space enumeration.

A number of techniques are used to reduce the time and memory consumed.
TASS performs a number of checks: absence of deadlocks, buffer overflows, reading
of uninitialised variables, division by zero, memory leaks and assertion violations;
that the type and size of a message received is compatible with the receive buffer
type; proper use of malloc and free, among others. It can also verify the functional
equivalence between an MPI program and its sequential version. Unlike tools such
as ISP or DAMPI, it can reason about an infinite input space. The biggest problem
with TASS is that it does not scale with the number of processes, which is not a
problem for our approach.

2.12 Parallel data-flow analysis
Parallel data-flow analysis [6] is a compiler analysis framework that extends

traditional data-flow analyses to message passing applications, such as MPI based
applications, on an arbitrary number of processes. Parallel data-flow analysis makes
it possible to analyse the interactions between different processes and to detect
the shape of the communication topology by statically matching pairs of send and
receive operations that may communicate at runtime. The communication model
considers send and receive operations exclusively.

While parallel control flow graphs (pCFGs) may be infinite in size (the number
of possible processes is unbounded), this framework focuses on finite pCFGs that
are bounded to represent only a finite number of process sets. This is sufficient for
some real world applications, which typically divide processes into several groups,
each of which performs a specific role or pattern of communication operations.

The analysis performed by this approach allows for optimisations of the commu-
nication pattern to maximise performance for a given network, constant propagation,
and detection of potential bugs including message leaks and inconsistent types on
the sender and receiver. Unlike our approach it makes no attempts at deadlock
detection, and lacks support for collective MPI operations.

Chapter 3

Protocol language

Our approach for the development of parallel software involves the creation of a
protocol that specifies the communication that is to occur. This protocol, if well-
formed, is correct by construction. The messages exchanged are type safe and it is
not possible to write a protocol that will deadlock. If we can guarantee a program
follows the protocol, we can guarantee those properties for the program as well.

We developed a language for the specification of such protocols. The language
is backed by a theory, and we developed an Eclipse plugin for the creation and
validation of these protocols. That plugin can also compile the protocol into VCC
and Why3 formats. VCC verification is outside the scope of this work.

Compiling to Why3 format allows the programmer to later verify a parallel pro-
gram written in WhyML. The full workflow can be seen in Figure 3.1.

13

Chapter 3. Protocol language 14

Protocol Specification - Part 1

Protocol Editor Protocol Validator

Z3

Why3 GeneratorVCC Generator

Why3 Verification - Part 2

Why3 IDEWhyML Program

Why Protocol
Theory

CVC4

Coq

WhyML MPI
Library

Why Protocol

ProtocolEdits

Uses

Validated by

Compiled by

VCC Header

Generates Generates

Verified in Uses

Imports

Imports

Figure 3.1: Workflow

3.1 The finite differences problem

To illustrate the protocol language and how software is developed using this
methodology we present a parallel program that solves the finite differences problem.
This program is a classic MPI example, and it uses every major feature of the
protocol language.

Finite differences is a method of solving differential equations. The program
starts with an initial solution X0, and calculates X1, X2, X3, . . . iteratively until it
reaches a certain error threshold or a maximum number of iterations are executed.
The problem vector is split amongst all processes, each calculating their part of the
problem, and then joined at the end. The processes are setup in a ring topology

Chapter 3. Protocol language 15

like in Figure 3.2 to exchange boundary values necessary for the calculation of the
differences.

0 1 … procs - 2 procs - 1

Figure 3.2: Processes in a ring topology

Programs in our approach function like MPI, following the Single Program Mul-
tiple Data (SPMD) paradigm. A single piece of code is executed for every process,
with different processes executing different code based on their rank (a process iden-
tifier). Protocols have a global view of the communication, explicitly stating which
processes are communicating when. A protocol for the finite differences problem
can be seen in Figure 3.3.

1 protocol FiniteDifferences p:{x:int | x >= 2} {
2 val n: {x: natural | x % p = 0}
3 scatter 0 float[n]
4 loop {
5 foreach i: 0 .. p - 1 {
6 message i, (p + i - 1) % p float
7 message i, (i + 1) % p float
8 }
9 allreduce max float

10 }
11 choice
12 gather 0 float[n]
13 or
14 {}
15 }

Figure 3.3: Finite differences protocol

Every protocol specification starts with the keyword protocol (line 1), followed
by a protocol name, and a constant that represents the number of processes. The
name of the constant does not have to be the same used in the program, in this
example the constant is given the name p and type {x:int | x >=2}. Types in
the protocol language can be refined, that is, they can have a restriction attached
to them. The type for p means any integer greater than or equal to 2. The language
supports some abbreviations for refined types: natural, which is any number greater
than or equal to 0, and positive, which is any number greater than 0.

The protocol starts by specifying a global value, the size of the work vector. A
global value is known by every process but was not exchanged by communication.
Such values are introduced with the keyword val (line 2). Much like with the
number of processes, the value is given a name, n, and a type restriction, in this
case any natural divisible by the number of processes.

Chapter 3. Protocol language 16

Process 0 performs a scatter operation splitting an array of size n to all pro-
cesses (line 3). Type float[n] is an abbreviation of {x: float[] | length(x)

= n}, it is possible to specify restrictions on the size of the array and every value
it contains. Scatter does not introduce a value as its result is not global and could
not be referred to in the rest of the protocol.

The protocol enters a collective loop (lines 4–10). A collective loop is a loop
where every process reaches the same decision at the same time without exchanging
any message for the purpose. This sort of collective operation is the major difference
between our approach and something like Scribble[19]. Inside the loop is a foreach
operation (lines 5–8). The foreach operation is not a communication primitive, but
a macro that expands its contents for every i between the two bounds. This macro
allows protocols to be parametric regarding the number of processes for example,
or another value known by all processes. If we were to expand it, it would result in
message exchanges like Figure 3.4.

1 message 0, p-1 float
2 message 0, 1 float
3 message 1, 0 float
4 message 1, 2 float
5 message 2, 1 float
6 message 2, 3 float
7 ...
8 message p-1, p-2 float
9 message p-1, 0 float

Figure 3.4: Expanded foreach

Process 0 sends a message to the process on its left, then to the process on its
right (lines 6–7). Process 1 does the same and so on until process p− 1. Note that
there can be messages being exchanged simultaneously, a restriction on the order of
messages being sent or received happens on a per-process level.

The rest of the protocol is simple, the loop has an allreduce operation at
the end (line 9), this operation has every process send every other process its local
error, and then calculates the global error, which is the maximum of all local errors.
Finally, there’s the collective choice, where either process 0 performs a gather

operation in case the solution was found, or no communication occurs (lines 11–14,
{} or skip is the empty protocol). A collective choice, like the loop, has every
process reach the same decision at the same time without exchanging any message
for the purpose.

A full grammar for the protocol language can be seen in Figure 3.5.

Chapter 3. Protocol language 17

T ::= skip empty
| message i , i point-to-point comm.
| broadcast i x : D broadcast operation
| scatter i scatter operation
| gather i gather operation
| reduce op reduce operation
| allgather allgather operation
| allreduce op x : D allreduce operation
| P ; Q sequence
| foreach x : i..i T repetition
| loop T collective loop
| choice T or T collective choice
| val x : D variable

D ::= integer | float | D[i] | {x : D | p} | ... refined types
i ::= x | n | i + i | max(i, i) | length(i) | i[i] | . . . index terms
p ::= true | i ≤ i | p and p | a(i, . . . i) | . . . index propositions

op ::= max | min | sum | . . . functions for reduce

Figure 3.5: Protocol language grammar

3.2 Protocol validator
The protocols are written in an eclipse plugin. This plugin (Figure 3.6) does

syntax highlighting, real-time validation and compilation.
Protocols are validated according to a theory that specifies in what circumstances

a protocol is well-formed. For example, Figure 3.7 shows the rules for the well-
formation of each MPI primitive and datatypes. The syntax is not the same as
the one used in the plugin, as that is made to look more familiar to C developers.
Whenever a value is introduced by a primitive, which only occurs for primitives
where the value ends up being known by all processes, it is placed on the context (a
symbol table from variables to datatypes). Primitives that introduce a value have
the rest of the protocol as a continuation. Primitives that do not are joined using a
sequencing operator (T ; T). An explanation for some of the rules follows:

• The rule for val states that the value sent must be a valid datatype, and that
value will be propagated to the rest of the protocol by placing it in the context
and moving to the continuation.

• The rule for reduce states that the rank of the root process must be between

Chapter 3. Protocol language 18

Figure 3.6: MPI Sessions plugin

0 and the number of processes, sat meaning this restriction must be proved
satisfiable by an SMT solver.

• The rule for message also states that the ranks of the sender and receiver must
be between 0 and the number of processes, but also that they cannot be the
same number. The data exchanged in the message must be a valid datatype,
but that value is not propagated to the rest of the protocol.

• The rule for broadcast also has a rank restriction and a value introduced.

• The rule for gather has a restriction on subtyping (<:), the data exchanged
must be a subtype of an array.

• The rule for foreach introduces a value into the context with a range of values
and then checks the body.

• The rule for skip, which signifies the empty protocol, checks that there are no
inconsistent refinements and no repeated names in the context.

• The rule for sequence (T ; T) checks all the sub protocols in order, the rule for
looping (T ∗) checks the loop body, and the rule for choice (T +T) checks both

Chapter 3. Protocol language 19

Type formation, Γ ` T : type

Γ, x : D ` T : type
Γ ` val x : D.T : type

Γ ` 1 ≤ i ≤ p sat
Γ ` reduce i : type

Γ ` 1 ≤ i1, i2 ≤ p ∧ i1 6= i2 sat Γ ` D : dtype
Γ ` message i1 i2 D : type

Γ ` 1 ≤ i ≤ p sat Γ, x : D ` T : type
Γ ` broadcast i x : D.T : type

Γ ` 1 ≤ i ≤ p sat Γ ` D1 <: D2 array
Γ ` gather i D1 : type

see gather
Γ ` scatter i D : type

Γ, x : {y : integer | i1 ≤ y ≤ i2} ` T : type
Γ ` foreachx ∈ i1..i2 doT : type

Γ : context
Γ ` skip : type

Γ ` T1 : type Γ ` T2 : type
Γ ` T1; T2 : type

Γ ` T : type
Γ ` T ∗ : type

Γ ` T1 : type Γ ` T2 : type
Γ ` T1 + T2 : type

Datatype formation, Γ ` D : dtype

Γ : context
Γ ` integer : dtype

Γ : context
Γ ` float : dtype

Γ ` D : dtype
Γ ` D array : dtype

Γ, x : D ` p sat
Γ ` {x : D | p} : dtype

Proposition formation, Γ ` p : prop

Γ ` p1 : prop Γ ` p2 : prop
Γ ` p1 and p2 : prop

Γ ` i1 : integer Γ ` i2 : integer
Γ ` i1 ≤ i2 : prop

Γ ` i1 : float Γ ` i2 : float
Γ ` i1 ≤ i2 : prop

Context formation, Γ : context

· : context
Γ : context Γ ` D : dtype x /∈ Γ, D

Γ, x : D : context

Figure 3.7: Formation rules

alternatives.

3.3 Why3 Protocol

Compiling the protocol to Why3 format generates a Why3 theory containing the
protocol as a constant of a Why3 datatype, Figure 3.8. That datatype is speci-
fied in the theory sessiontypes .Protocols (Figure 5.7, chapter 5, section 3). Theory
sessiontypes .ConstantArrays is for immutable arrays. We had to make that theory

Chapter 3. Protocol language 20

1 theory Fdiff
2 use import int.Int
3 use import int.ComputerDivision
4 use import real.RealInfix
5 use import HighOrd
6 use import sessiontypes.Protocols
7 use import sessiontypes.ConstantArrays
8
9 axiom size_ref: size >= 3

10 constant p : int = size
11
12 constant fdiff_protocol : protocol =
13 Val (CInt (\n. n > 0) (\n.
14 Scatter 0 any_array_float (
15 Loop (
16 ForEach 0 (p - 1) (\i.
17 Message i (if i > 0 then i-1 else p-1) any_float (
18 Message i (if i < p-1 then i+1 else 0) any_float (
19 Skip))
20)(
21 AllReduce Max (CFloat (\x.true) (_x4.
22 Skip)))
23)(
24 Choice (
25 Gather 0 any_array_float (
26 Skip)
27)(
28 Skip
29)
30 Skip))))
31 end

Figure 3.8: Protocol in Why3 format.

because Why3 does not support arrays on the theory side (only on WhyML pro-
grams), and protocols may have arrays as values. The other imported theories are
part of the Why3 Standard library.

The constructors of the datatype match those of the protocol language except
that they appear capitalised. The big difference is in how values are introduced
and how the protocol is sequenced. For example, the constructor Val has as its sole
parameter a datatype. Since Val introduces a value to the protocol, the datatype
must have a continuation so that the value can be referenced on other primitives.
Other constructors like Gather do not introduce a value, and have the remainder of
the protocol as a parameter (the first parameter to Gather being the root process
just like in the protocol). The datatype passed should only have a predicate and
not a continuation.

There are eight possible constructors for datatypes, all of which have a predicate
attached to specify a restriction. This predicate is implemented as a higher order
function. The first four constructors (Int , Float, ArrayInt, ArrayFloat) only have
a restriction, while the other four, with a capital C in the name (CInt, CFloat,
CArrayInt, CArrayFloat), have a restriction and a continuation. This continuation
is a higher order function that takes a value as a parameter and returns a protocol.
It is thanks to this that it is possible to refer to values previously exchanged in later
parts of the protocol. Depending on the primitive and whether the value exchanged
is known or not by all processes, either set of constructors should be used.

Chapter 3. Protocol language 21

The plugin takes care of generating the correct constructors, protocols should
not be written directly in Why3 as it is possible to write invalid protocols with the
constructors available. If there is no restriction on the value exchanged the predicate
should simply have the result true.

Chapter 3. Protocol language 22

Chapter 4

Programming language

For the development of parallel programs, we need a high level language that
supports specification as well as programming. The specification part needed to be
powerful, including support for first class anonymous functions (needed for contin-
uations), algebraic datatypes (needed to represent the protocol) and pre and post
conditions on functions. The only platform with support for all of this that we could
find was Why3.

Why3 features two languages: Why, a language for theories and WhyML, a
programming language that is very similar to OCaml. WhyML cannot be used to
write a fully functional program directly, as it has no input or output capabilities,
but it can compile to OCaml where such things can be added. Random values
should be generated whenever input is required during verification, and changed in
the OCaml output as needed.

Figure 4.1 shows an implementation of the finite differences problem in WhyML.
A WhyML program following our approach must import 3 libraries: the theory for
protocols (line 3), the parallel communication API (line 4) and the protocol in Why
format (line 5). The constant max_size is the size of the work vector (line 7).

The first thing a program needs to do is initialise the protocol state. This state
holds the current state of the protocol as the program is verified. This is done with
a call to init which initialises the protocol (line 10).

In line 11, we have an apply operation. It is an identity function, returning the
same value it is passed, but it checks that the head of the protocol is a Val and
checks that the value passed matches the predicate. If the match fails the program
does not follow the protocol, if it succeeds, apply updates the state by passing the
value to the continuation in the protocol. The apply operation is necessary to state
which variables are known in the protocol.

Every primitive works the same way, checking that the state is the expected and
updating it accordingly, as it is the case of scatter in line 14 which equally splits the
work array amongst all processes. Lines 16–17 calculate the rank of the process to

23

Chapter 4. Programming language 24

the left and the right respectively. Each process has its own rank, with nprocs being
the total number of processes (which is unknown, but restricted by the protocol).
In a ring topology, process 0 has to its left process nprocs−1, the last process.

Lines 18–19 have two annotations. inloop checks that the current state of the
protocol is a collective loop, and returns the loop body, updating the state to be
the next part of the protocol. This body is used to verify that the while loop body
follows the protocol. The copy operation is used to store the original body state, as
it will be changed during the loop.

Lines 21 is a loop invariant which specifies that the state being changed during
the loop remains the same in every iteration. The loop variant in line 22 proves that
the loop terminates. Variants and invariants are necessary for computer programs
to perform proofs that feature loops. It is not possible for a computer problem to
know the end result of a loop without them, save for certain obvious cases.

If a computer program could always tell if a loop terminates without any addi-
tional information, you could write a program that checks if another program (or
itself) will end. This is called the halting problem and has been proven to be impos-
sible to solve by any turing complete machine [35] (computers are turing complete).

Line 23 calls the foreach function, which checks that the head of the protocol
is a foreach loop and returns a function of integers to protocols. This is because
foreach is actually a sort of macro that returns a protocol given an integer value.
The foreach is projected inside the message exchange part (lines 24–29) using the
proj function. The is_skip function is used to check that the state has an empty
protocol.

The is_skip function must be called for every projection of foreach, for every loop
body, choice alternatives, and at the end of the program for the main state. This
guarantees that the protocol is fully consumed and no communication is ignored.
Between the two there are message exchanges: each process sends a value to the
process on its left and right, and receives a value from each of them.

Line 33 resets the inner loop state to be the original protocol loop body, so that
every iteration of the while loop checks. Line 35 calls the choice function to obtain
the two possible alternative states, which are then checked inside the if (lines 36–42).
Finally the main state is checked to be empty.

Chapter 4. Programming language 25

1 module Fdiff
2 ...
3 use import sessiontypes.Protocols
4 use import mpi.Mpi
5 use import fdiff.Fdiff
6
7 constant max_size : int = 100000
8
9 let main () =

10 let s = init fdiff_protocol in
11 let psize = apply max_size s in
12 let work = make 0.0 max_size in
13 ... (* init work with random values *)
14 let local = scatter 0 !work s in
15 ...
16 let left = mod (nprocs + rank - 1) nprocs in
17 let right = mod (rank + 1) nprocs in
18 let loopbody = inloop s in
19 let inbody = copy loopbody in
20 while !globalerror >=. max_error && !iter < max_iter do
21 invariant { inbody = loopbody }
22 variant { max_iter - !iter }
23 let fbody = foreach inbody in
24 let f = proj fbody rank in
25 send left local[1] f;
26 send right local[lsize] f;
27 local[0] <- recv left f;
28 local[lsize+1] <- recv right f;
29 is_skip f;
30 ...
31 globalerror := allreduce Max !localerror inbody;
32 iter := !iter + 1;
33 reset inbody loopbody;
34 done;
35 let (l,r) = choice s in
36 if (!globalerror <. max_error) then (
37 gather 0 local l;
38 is_skip l;
39)
40 else (
41 is_skip r;
42);
43 is_skip s;
44 end

Figure 4.1: The finite differences program in WhyML

4.1 Verifying the program

After the program is done, the MPI WhyML library, the protocol theory and
the converted protocol should be placed in a folder somewhere, preferably the same
folder where the converted program is. With everything in place, the Why3 IDE
can be opened to verify the program. Although it is a GUI application, it must be
run from the command line, passing the folder of the theories and the program as
inputs. A snapshot of the IDE can be seen in Figure 4.2.

First, the proof should be split, so that we can see step by step what is happening.
Whenever Why3 cannot prove something using an SMT it does not give an error,
instead, it times out after five seconds. Why3 will not be able to verify this program.
There are three problems with it. The first is that SMT solvers cannot handle
division very well, so most modulo operations should be changed to conditionals if
possible, both in the program and the protocol as in Table 4.1.

Chapter 4. Programming language 26

Figure 4.2: Why3 IDE

Original code Fixed code

message i, (p + i - 1) % p float
message i, (i + 1) % p float

message i, (if i > 0 then i-1 else p-1) float
message i, (if i < p-1 then i+1 else 0) float

let left = mod (nprocs + rank - 1) nprocs
let right = mod (rank + 1) nprocs

let left = if (rank > 0) then (rank-1) else (nprocs-1)
let right = if (rank < nprocs-1) then (rank+1) else 0

Table 4.1: Conditionals

The second issue has to do with the foreach primitive. The program as written
will deadlock, as every process will first try to send a message that will never be
received, since the receive operations only happen after all messages have been sent.
The same problem would occur if the operations were shuffled around. The correct
answer to the problem is that there are two special cases, one for process 0 and one
for process nprocs−1. Process 0 should send both messages before receiving, and
process nprocs−1 should first receive both message and then send. This becomes
very clear if foreach is expanded not globally but for every process, see Table 4.2.

The fixed code for this example can be seen in Figure 4.3, it is supposed to
replace that in Figure 4.1, lines 24-28. The code has three cases, like the three
different projections. For every rank, we project foreach in order (0, 1, . . . np− 1)
for every relevant process. That is, we project foreach for the rank of the process,
the rank to the left, and the rank to the right, but always in numerical order. The
first (lines 2–13) are for rank 0.

First we project foreach with 0 which should return two send operations in

Chapter 4. Programming language 27

i Projection Rank 0 Rank 1 ... Rank p-2 Rank p-1

0
message 0, p-1 float
message 0, 1 float

send p-1 float
send 1 float recv 0 float recv 0 float

1
message 1, 0 float
message 1, 2 float recv 1 float

send 0 float
send 2 float

2
message 2, 1 float
message 2, 3 float recv 2 float

...

p-2
message n-2, n-3 float
message p-2, p-1 float

send p-3 float
send p-1 float recv p-1 float

p-1
message p-1, p-2 float
message p-1, 0 float recv p-1 float recv p-1 float

send p-2 float
send 0 float

Table 4.2: Foreach expanded for each rank

process 0 (lines 3–6). Then we project foreach with 1 which should return a recv

in process 0 (lines 7–9). Finally, we project foreach with np− 1 which should also
return a recv in process 0 (lines 10–12). Lines 14–25 are for process np− 1.

Following the numerical ordering we first project for 0, which should give a recv
operation. Then we project for np − 2 which should also return a recv operation.
Finally, we project for np− 1, giving two send operations. For every other process
(lines 26–37), we project the rank before giving a recv, itself giving two send

operations, and then the rank after giving another recv.
With these changes, the program should validate, but it does not. The proof

should first be split, Why3 generates suboptimal verification conditions when using
the HighOrd theory, which the SMT solvers cannot handle. The proof should first
be split into subproofs. After doing so, the program still does not verify. On the
Why3 IDE two sub-proofs fail (Figure 4.4).

The reason for this failure is quite insidious, but it also proves the power of the
tool. The reason Why3 cannot prove that the projection is empty after a recv at
that point, is because it is actually not empty. After projecting foreach there should
not be another communication happening in that case, but there is a case where it
can happen, and that is when you have less than three processes. In that case, the
process to the left is the same as the process to the right, and the projections are
entirely different.

The protocol specified a restriction on the number of processes that they had to
be greater than or equal to two (Figure 3.8, line 8), so the tool must assume that
having two processes is allowed and, in that case, the program is incorrect. Without
any restriction, the minimum number of processes would be one, and in that case a
message exchange is not even valid.

If we change the restriction on the number of processes so that it must be greater
than three (Figure 3.8, line 8, changed to axiom size_ref: size >= 3), the program
verifies, with Z3 handling almost every sub-proof in less than a tenth of a second.

Chapter 4. Programming language 28

1 let body = foreach inbody in
2 if (rank = 0) then (
3 let f1 = proj body 0 in
4 send left local[1] f1;
5 send right local[lsize] f1;
6 is_skip f1;
7 let f2 = proj body 1 in
8 local[lsize+1] <- recv right f2;
9 is_skip f2;

10 let f3 = proj body (np-1) in
11 local[0] <- recv left f3;
12 is_skip f3;
13)
14 else if (rank = np-1) then (
15 let f1 = proj body 0 in
16 local[lsize+1] <- recv right f1;
17 is_skip f1;
18 let f2 = proj body (np-2) in
19 local[0] <- recv left f2;
20 is_skip f2;
21 let f3 = proj body (np-1) in
22 send left local[1] f3;
23 send right local[lsize] f3;
24 is_skip f3;
25)
26 else (
27 let f1 = proj body (rank-1) in
28 local[0] <- recv left f1;
29 is_skip f1;
30 let f2 = proj body rank in
31 send left local[1] f2;
32 send right local[lsize] f2;
33 is_skip f2;
34 let f3 = proj body (rank+1) in
35 local[lsize+1] <- recv right f3;
36 is_skip f3;
37);

Figure 4.3: The fixed message exchange

Considering that Why3 relaunches a new Z3 process for every sub-proof, that is very
fast. The program is guaranteed to be deadlock free and type safe.

Chapter 4. Programming language 29

Figure 4.4: Error detected

Chapter 4. Programming language 30

Chapter 5

Implementation

5.1 Protocol validator
The MPI sessions plugin was developed with Xtext, a framework for the devel-

opment of Eclipse plugins. Xtext provides a structure and utility classes for the
plugin. The relevant components of an Xtext plugin for this work are the Abstract
Syntax Tree (AST), the Switch, the Factory, the ScopeProvider, the Validator and
the Generator.

Xtext grammars are extensions of ANTLR3 grammars. ANTLR [29] is a widely
used parser generator written in Java, which uses LL(∗) [28] parsing. This kind of
parsing has the advantage of being simple and capable of giving good error messages,
but cannot handle left recursion. This limitation makes some aspects of the grammar
more difficult to write and harder to read. The latest version of ANTLR can apply
transformations to the grammar to deal with some cases of left recursion but it is
not supported by Xtext.

By default Xtext uses the Xtend programming language, a JVM language that
compiles to readable Java code. It can easily interop with Java and provides a lot
of useful features like extension classes, anonymous functions, template expressions,
powerful switch expressions and operator overloading. Almost every Xtend feature
was used by this project.

The structure of an Xtext plugin is targeted at enabling simple real-time vali-
dation and compilation of Java programs (or other similar languages). As such, its
components work differently from a standalone compiler.

• The Abstract Syntax Tree is generated from a grammar file of the language
the plugin is designed for. The AST is generated in a semi-automatic way
which can result in sub-optimal representations.

• The Switch is an abstract visitor for every element in the AST.

• The Factory can be used to generate AST nodes at runtime.

31

Chapter 5. Implementation 32

1 Protocol
2 : "protocol" name=ID vardecl=VariableDeclaration size=Datatype body=Type;
3
4 Type
5 : {Message} ’message’ sender=Expression ’,’ receiver=Expression type=Datatype (’;’)?
6 | {Broadcast} ’broadcast’ root=Expression vardecl=VariableDeclaration? type=Datatype (’;’)?
7 | {Gather} ’gather’ root=Expression type=Datatype (’;’)?
8 | {Scatter} ’scatter’ root=Expression type=Datatype (’;’)?
9 | {Reduce} ’reduce’ root=Expression op=ReduceOp type=Datatype (’;’)?

10 | {AllReduce} ’allreduce’ op=ReduceOp vardecl=VariableDeclaration? type=Datatype (’;’)?
11 | {AllGather} ’allgather’ vardecl=VariableDeclaration? type=Datatype (’;’)?
12 | {Val} ’val’ vardecl=VariableDeclaration type=Datatype (’;’)?
13 | {ForEach} ’foreach’ vardecl=VariableDeclaration from=Expression ’..’ to=Expression body=Type
14 | {Choice} ’choice’ left=Type ’or’ right=Type
15 | {Loop} ’loop’ body=Type
16 | {Skip} ’skip’ (’;’)?
17 | {Sequence} ’{’ elements+=Type* ’}’ (’;’)?
18 ;
19
20 ReduceOp
21 : "max" | "min" | "sum" | "prod" | "nand" | "land" | "band" | "lor" | "bor" | "lxor" | "bxoer" |

"minloc" | "maxloc"
22 ;
23
24 VariableDeclaration // Variable declaration
25 : name=ID ’:’
26 ;
27
28 Datatype
29 : BasicDatatype ({ArrayType.content=current} ’[’length=Expression?’]’)*
30 ;
31
32 BasicDatatype returns Datatype
33 : {PrimitiveType} type=(’integer’ | ’float’)
34 | {DerivedType} type=(’natural’ | ’positive’)
35 | {RefinementType} ’{’ vardecl=VariableDeclaration type=Datatype ’|’ proposition=Expression ’}’
36 ;
37 ...

Figure 5.1: Part of the protocol language grammar

• The ScopeProvider returns for every reference in the program which variables
are in scope. It doesn’t work in a top down manner, instead, at the point of
the reference, the provider must travel the AST to figure out which variables
are in scope.

• The Validator has a number of methods to perform different checks on different
aspects of the code. These are also not done in a top down manner, instead,
the corresponding check is done whenever a part of the code changes.

• Finally, the Generator is called whenever the code is saved and is used to
output the compilation result.

Part of the grammar for the protocol language can be seen in Figure 5.1. Each
group defines a different class of AST nodes and the possible instances. The defi-
nition in line 29 shows how left recursion is solved in Xtext, in this case for arrays
with C like syntax.

5.1.1 Internal representation

One problem that occurred during the development of the plugin was that certain
AST nodes had to be changed at runtime, particularly, the refinement types had to

Chapter 5. Implementation 33

be normalised for verification purposes. Unfortunately, due to the way Xtext works
internally, changing an AST node through code resulted in very strange behaviour
and crashes, this happens even if the node is not attached to the main tree. Because
of that an internal representation was created and the AST is converted to this
format at runtime. The Factory is not used and the Switch is used exclusively for
nodes without an internal representation. Some classes used internally to represent
expressions can be seen in Figure 5.2. The @Data annotation makes the classes
immutable.

The plugin works mostly in a functional style, transforming and processing the
internal representation without mutating it. The origin argument associates the
internal representation with the original AST node, which is required to underline
the error in the eclipse window.

5.1.2 Scoping and validation

Due to the presence of dependent types in protocols, the entire protocol must be
validated when the code is changed (all restrictions must be checked for consistency).
The scoping system of Xtext, which assumes that verifications can be mostly self
contained when the code is changed, is not very fitting and was disabled. It works
fine for a language like Java, where changing a variable in an expression only requires
checking that the new variable has the right type. In the case of the protocol
language, changing the restriction on the type of a variable can cause the restrictions
in the types of other variables to become invalid, so they must all be checked.

Scoping was changed to function like in a normal standalone compiler, using
a symbol table and working in a top down manner. Similarly validation had to
be changed, but presented some problems. Due to the way Xtext is designed, the
Validator is the only class that can throw errors and errors can only be thrown on
the check for the particular AST node where it occurred. To allow for top down
validation, the following was necessary:

1. A check for the protocol node is always done first, performing the entire vali-
dation, and storing the errors found in a map of nodes to errors.

2. A check for each type of AST node reads the error list and any errors from
nodes of the same type are displayed.

The validator checks that the types of every expression are as expected, and uses
the Z3 SMT solver to check that there no inconsistencies in the refined typed, and
that certain constraints are respected. For example, a message from a process to
himself is not allowed and the plugin can verify that this does not happen. The

Chapter 5. Implementation 34

1 @Data abstract class SimpleExpression {
2 EObject origin
3 }
4
5 @Data abstract class Literal extends SimpleExpression {}
6
7 @Data class IntLit extends Literal {
8 int value
9

10 new(EObject origin, int value) {
11 super(origin)
12 this._value = value
13 }
14 }
15
16 @Data class FloatLit extends Literal {
17 double value
18
19 new(EObject origin, double value) {
20 super(origin)
21 this._value = value
22 }
23 }
24
25 @Data class BooleanLit extends Literal {
26 boolean value
27
28 new(EObject origin, boolean value) {
29 super(origin)
30 this._value = value
31 }
32 }
33
34 @Data class ArrayLit extends Literal {
35 SimpleExpression[] values
36
37 new(EObject origin, SimpleExpression[] values) {
38 super(origin)
39 this._values = values
40 }
41 }
42
43 @Data class VarRef extends SimpleExpression {
44 String name
45
46 new(EObject origin, String name) {
47 super(origin)
48 this._name = name
49 }
50 }
51
52 @Data class ArrayRef extends SimpleExpression {
53 SimpleExpression left
54 SimpleExpression index
55
56 new(EObject origin, SimpleExpression left, SimpleExpression right) {
57 super(origin)
58 this._left = left
59 this._index = right
60 }
61 }

Figure 5.2: Classes for the internal representation

validation methods follow the theory in Figure 3.7 with some minor changes for
better error messages.

In order to check for consistency in the refined types, they must be flattened.
It is possible to write refinements of refinements, but they are equivalent to the
conjunction of all the predicates with the variable replaced. For example: {x: {

y: natural | y > 10} | x < 100} is equivalent to {x: integer | x >= 0

and x > 10 and x < 100}. The code for the main validation class can be seen

Chapter 5. Implementation 35

1 class Validator extends AbstractValidator {
2 public extension TypeVerifier tv
3 public extension ErrorManager em
4
5 @Check
6 def checkProtocol(Protocol p) {
7 setup(this)
8 println("Starting checks")
9 println("----------------")

10 p.verify
11 println("----------------")
12 println("Checks concluded")
13 }
14
15 @Check
16 def checkType(Type t) {
17 signalErrors(t)
18 }
19
20 @Check
21 def checkDatatype(Datatype t) {
22 signalErrors(t)
23 }
24
25 @Check
26 def checkExpression(Expression exp) {
27 signalErrors(exp)
28 }
29
30 @Check
31 def checkAnnotation(Annotation a) {
32 signalErrors(a)
33 }
34
35 def signalErrors(EObject o) {
36 for(e:errors)
37 if (e.source === o)
38 switch e.kind {
39 case ERROR: error(e.message, e.source, e.feature)
40 case WARNING: warning(e.message, e.source, e.feature)
41 }
42 }
43 }

Figure 5.3: Main validation class

in Figure 5.3. It calls the type validator to check the protocol primitives, which in
turn calls validators for expressions and datatypes. It features a @Check annotated
method for every kind of AST node. Only these methods can throw errors.

The method of the type validator that handles the top level protocol can be seen
in Figure 5.4. Line 4 converts the type of the number of processes to the internal
representation, this conversion takes care of flattening the refinements, including
derived types like natural or positive.

The name size comes from the MPI function MPI_Comm_Size() which returns
the number of processes. If the base type is not integer, an error is returned (lines 5–
6). With a valid number of processes, a constant with the standard name for the
number of processes constant is added to the symbol table with the type specified
(line 8). After that, another constant is added with the name specified in the
protocol, and a refinement type that states it is equal to the number of processes
constant (line 9). The The isValid method is called in line 10 to check that the
type is well-formed, this includes checking that the restrictions in the type of the
constant are consistent. That is, that the type is not something like {x: integer

Chapter 5. Implementation 36

1 def boolean verify(Protocol p) {
2 try {
3 println("Verifying Protocol")
4 var sizeType = p.size.convert
5 if (sizeType.base != INT)
6 return error("Number of processes must be an integer number", p.size)
7 val name = p.vardecl.name
8 put(size.name, sizeType)
9 put(name, refinement(p.size, name, INT, ref(name) == size))

10 if (sizeType.isValid)
11 scoped[|
12 p.body.verify
13]
14 }
15 catch (Exception e) {
16 e.printStackTrace
17 }
18 true
19 }

Figure 5.4: Protocol validation method

| x > 0 and x < 0}. With the type of the number of processes checked, a new
scope is opened and the body of the protocol is checked (lines 11–13).

The whole method is wrapped in a try-catch block because Xtend hides some
exceptions unless they are caught in the code of the validation classes. This is useful
for debugging purposes.

The method for checking expressions with the SMT solver can be seen in Fig-
ure 5.5. The code creates a new Z3 context (line 4) and solver (line 5). Functions
to process the length of arrays are added to Z3 in lines 6–9. These are the basic
functions, for multidimensional arrays other functions are generated as needed. The
code then goes through the entire symbol table, generating assertions from all re-
strictions (lines 11–12). The negation of the expression to be verified is added to
the solver (line 14) and, if Z3 cannot prove it (line 16), then the expression must
be true. Lines 18–21 are for debugging purposes, outputting all the assertions in
SMT-Lib format. Finally the Z3 context is disposed and the result returned.

5.1.3 Generation

Xtext is targeted at generating a single compiled file whenever the program is
saved. The MPI sessions project requires that protocols be converted into multi-
ple formats. For performance reasons automatic compilation was disabled, and a
drop-down button with every compilation option was added. The user may either
compile all outputs, or choose the one he needs. A different compiler was made for
each output (Why3, VCC, C), with the generator calling the appropriate one for
each case. The C compiler was not part of this work. The method for converting
expressions to Why3 format can be seen in Figure 5.6. The wrap method surrounds
expressions with parentheses according to the operator priorities of Why3. The
fixOp is needed to use the right operator for the right type, as the operators for
floating point numbers are different from those for integer numbers in Why3. This

Chapter 5. Implementation 37

1 def isSat(SimpleExpression e) {
2 println(’’’Calling SMT for «e.print»’’’)
3 try {
4 ctx = new Context(cfg)
5 solver = ctx.mkSolver
6 lengths = #{
7 INT_ARRAY -> ctx.mkFuncDecl("length", ctx.mkArraySort(ctx.mkIntSort, ctx.mkIntSort), ctx.

mkIntSort),
8 FLOAT_ARRAY -> ctx.mkFuncDecl("length", ctx.mkArraySort(ctx.mkIntSort, ctx.mkRealSort),

ctx.mkIntSort)
9 }

10 // Go through the symbol table, generating all the assertions
11 for(v:st.domain)
12 solver.add(get(v).proposition.replace(get(v).name, v).smtfy as BoolExpr)
13 // Add the negation of the expression to verify
14 solver.add(ctx.mkNot(e.smtfy as BoolExpr))
15 // Test that Z3 can’t prove the negation (meaning it must be true)
16 var result = solver.check === Status.UNSATISFIABLE
17 // Print all assertions in SMT-Lib format for debugging purposes
18 println("====== Z3 Code ======")
19 for(a : solver.assertions)
20 println(a)
21 println("====== Z3 Done ======")
22 println(’’’SMT returned «result»’’’)
23 ctx.dispose
24 return result
25 }
26 catch (Z3Exception ex) {
27 false
28 }
29 }

Figure 5.5: Method to call Z3

1 def String why3(SimpleExpression e) {
2 switch e {
3 Operation: switch e.op {
4 case "if": ’’’if «e.wrap(e.condition)» then «e.wrap(e.then)» else «e.wrap(e.otherwise)»’’

’
5 case "and": ’’’«e.wrap(e.left)» /\ «e.wrap(e.right)»’’’
6 case "or": ’’’«e.wrap(e.left)» \/ «e.wrap(e.right)»’’’
7 case "=>": ’’’«e.wrap(e.left)» -> «e.wrap(e.right)»’’’
8 case "=": ’’’«e.wrap(e.left)» = «e.wrap(e.right)»’’’
9 case "<=>": ’’’«e.wrap(e.left)» <-> «e.wrap(e.right)»’’’

10 case "not": ’’’not «e.wrap(e.param)»’’’
11 case "-": if (e.params.length < 2) ’’’«e.fixOp»«e.wrap(e.param)»’’’ else ’’’«e.wrap(e.

left)» «e.fixOp» «e.wrap(e.right)»’’’
12 case "length": ’’’«e.param.wrap».length’’’
13 case "/": ’’’div «e.wrap(e.left)» «e.wrap(e.right)»’’’
14 case "%": ’’’mod «e.wrap(e.left)» «e.wrap(e.right)»’’’
15 case "forall": {put((e.name as VarRef).name, rint); ’’’forall «e.name.why3»:int. «e.

proposition.why3»’’’}
16 default:
17 if (e.params.length < 2)
18 ’’’ERROR’’’
19 else
20 ’’’«e.wrap(e.left)» «e.fixOp» «e.wrap(e.right)»’’’
21 }
22 VarRef: ’’’«e.name»’’’
23 ArrayRef: ’’’«(e.left as VarRef).name»[«e.index.why3»]’’’
24 IntLit: e.value.toString
25 BooleanLit: ’’’«e.value.toString»’’’
26 FloatLit: e.value.toString
27 default: ’’’ERROR’’’
28 }
29 }

Figure 5.6: Protocol to Why3 expression converter

mainly implies appending a . at the end of each operator.

Chapter 5. Implementation 38

5.2 Why3 library

To enable the verification of MPI programs with Why3, two libraries had to be
developed. The Why3 Theory for Protocols, which provides a representation for
protocols as a Why3 datatype, with axioms and utility functions, and the WhyML
MPI library, which replicates part of the MPI API with pre and post-conditions
related to the protocol.

5.2.1 Why3 theory for protocols

The Why3 theory for protocols features a representation of protocols as a Why3
datatype. For simplicity, the datatype does not strictly follow the structure of the
protocol language. Every primitive has a continuation except for Skip, continuations
are implemented using the HighOrd theory of Why3 which simulates anonymous
functions. Unlike the protocol language, it is not possible to have a sequence of
skips, and every primitive introduces a variable even if that variable cannot be used
later in the protocol. This means that it is possible to write invalid protocols in
Why3. The reason for this is that it is assumed the programmer uses the plugin
to generate the files, since part of the validation occurs during the creation of the
protocol. Files generated by the plugin are always valid.

The datatype for representing protocols can be seen in Figure 5.7. As explained
before each constructor corresponds to a primitive, with some primitives supposed to
have a continuation (using the datatypes with a continuation) while others directly
sequence the followup protocol. The type pred a used in the datatype constructors
(lines 18–25) is an abbreviation of func a bool, a function of any type to a boolean
(a predicate). Similarly, the type cont a is an abbreviation of func a protocol , a
function of any type to a protocol (a continuation).

To work with the datatypes, there are two main functions: matches which checks
that a value is true for the predicate in the datatype and apply which applies the
value to the continuation. The implementations of these functions can be seen in
Figure 5.8. They are implemented using axioms because otherwise there would be a
type error when calling the predicate or continuation. Doing it this way allows the
functions to remain generic while still verifying correctly.

Other utility functions are implemented, mostly to extract parts of the protocol
like the bodies of Loop, Choice and ForEach, or to get the next primitive in a
protocol.

One interesting function is the head function, which returns the head of the
protocol. Normally the head of the protocol is the primitive at the start (making
the head function unnecessary), but that is not true if the primitive at the start is a
Message. Messages are only relevant for the protocols they refer to, so for unrelated

Chapter 5. Implementation 39

1 type protocol =
2 Val datatype
3 | Broadcast int datatype
4 | Scatter int datatype protocol
5 | Gather int datatype protocol
6 | Loop protocol protocol
7 | Message int int datatype protocol
8 | Reduce int op datatype protocol
9 | Choice protocol protocol protocol

10 | Skip
11 | AllGather datatype
12 | ForEach int int (cont int) protocol
13 | AllReduce op datatype
14 with
15 op = Max | Min | Sum | Prod | Land | Band | Lor | Bor | Lxor | Bxor
16 with
17 datatype =
18 Int (pred int)
19 | Float (pred float)
20 | ArrayInt (pred (array int))
21 | ArrayFloat (pred (array float))
22 | CInt (pred int) (cont int)
23 | CFloat (pred float) (cont float)
24 | CArrayInt (pred (array int)) (cont (array int))
25 | CArrayFloat (pred (array float)) (cont (array float))

Figure 5.7: The Why3 datatype for protocols

1 predicate matches ’a datatype
2 axiom matches_int: forall i:int, p:(pred int).
3 matches i (Int p) = p i
4 axiom matches_float: forall f:float, p:(pred float).
5 matches f (Float p) = p f
6 axiom matches_array_int: forall ai:(carray int), p:(pred (carray int)).
7 matches ai (ArrayInt p) = p ai
8 axiom matches_array_float: forall af:(carray float), p:(pred (carray float)).
9 matches af (ArrayFloat p) = p af

10 axiom matches_cint: forall i:int, p:(pred int), c:(cont int).
11 matches i (CInt p c) = p i
12 axiom matches_cfloat: forall f:float, p:(pred float), c:(cont float).
13 matches f (CFloat p c) = p f
14 axiom matches_carray_int: forall ai:(carray int), p:(pred (carray int)), c:(cont (carray int)).
15 matches ai (CArrayInt p c) = p ai
16 axiom matches_carray_float: forall af:(carray float), p:(pred (carray float)), c:(cont (carray float)

).
17 matches af (CArrayFloat p c) = p af
18
19 function apply ’a datatype : protocol
20 axiom apply_int: forall i:int, p:(pred int), c:(cont int).
21 apply i (CInt p c) = c i
22 axiom apply_float: forall f:float, p:(pred float), c:(cont float).
23 apply f (CFloat p c) = c f
24 axiom apply_array_int: forall ai:(carray int), p:(pred (carray int)), c:(cont (carray int)).
25 apply ai (CArrayInt p c) = c ai
26 axiom apply_array_float: forall af:(carray float), p:(pred (carray float)), c:(cont (carray float)).
27 apply af (CArrayFloat p c) = c af

Figure 5.8: Matches and apply

ranks the message exchanges in the protocol should be skipped. The head function
recursively checks if the start of the protocol is a message, checks if the current rank
is not one of the communicating processes in the message, and removes the message
from the protocol if that is the case (Figure 5.9).

Chapter 5. Implementation 40

1 function head (p:protocol) : protocol =
2 match p with
3 | Message s r _ n -> if (rank <> s /\ rank <> r) then (head n) else p
4 | _ -> p
5 end

Figure 5.9: Function to skip unrelated messages

5.2.2 WhyML parallel programming library

In order to check that the protocol is being followed correctly, each Why3/MPI
primitive was annotated with pre and post-conditions regarding the protocol. Some
example primitives and their annotations can be seen in Figure 5.10.

The foreach primitive receives the current protocol state as a parameter and
has as a precondition that the protocol must have a ForEach operation at the head
(lines 3–7). It ensures that the protocol continues with whatever is after the ForEach
(line 9), and returns a piece of data containing the body of the foreach and its range
(lines 10-14). The proj function takes a foreach_data and an integer i , checking that
the integer is in range (line 17), and returns the projection of the ForEach for that
integer.

The apply primitive is used to introduce global values into the protocol. It works
just like foreach checking that the head of the protocol is a Val, but it also checks
that the value being introduces matches the restriction (line 24). It ensures that
the protocol becomes the continuation of the Val, applying the value (line 28), and
simply returns the result.

The primitive apply_array works the same but for arrays. These array versions
of the primitives are required to convert WhyML arrays into Why3 immutable arrays
using the const function (line 35).

Finally we have the send primitive, which receives a destination, a value, and
the current state. It checks that the destination is a valid process (line 44), and that
there is a Message at the head of the protocol, with the current rank as the source
and the same destination, and that the value being sent matches the restriction
(lines 46–49). The send primitive returns nothing and ensures that the protocol
continues after the message (line 51).

There are many more primitives but they function similarly to these.

Chapter 5. Implementation 41

1 val foreach (s:state) : foreach_data
2 writes { s.protocol }
3 requires {
4 match (head s.protocol) with
5 | ForEach _ _ _ _ -> true
6 | _ -> false
7 end
8 }
9 ensures { s.protocol = next (head (old s).protocol) }

10 ensures { result = (
11 foreach_body (head (old s).protocol),
12 foreach_from (head (old s).protocol),
13 foreach_to (head (old s).protocol)
14)}
15
16 val proj (fd:foreach_data) (i:int) : state
17 requires { let _,f,t = fd in f <= i <= t }
18 ensures { let f,_,_ = fd in result = {protocol = f i} }
19
20 val apply (v:’a) (s:state) : ’a
21 writes { s.protocol }
22 requires {
23 match (head s.protocol) with
24 | Val d -> matches v d
25 | _ -> false
26 end
27 }
28 ensures { s.protocol = continuation (head (old s).protocol) v }
29 ensures { result = v }
30
31 val apply_array (v:array ’a) (s:state) : array ’a
32 writes { s.protocol }
33 requires {
34 match (head s.protocol) with
35 | Val d -> matches (const v) d
36 | _ -> false
37 end
38 }
39 ensures { s.protocol = continuation (head (old s).protocol) v }
40 ensures { result = v }
41
42 val send (dest:int) (v:’a) (s:state) : ()
43 writes { s.protocol }
44 requires { 0 <= dest /\ dest < size }
45 requires {
46 match (head s.protocol) with
47 | Message src dst d _ -> src = rank /\ dest = dst /\ matches v d
48 | _ -> false
49 end
50 }
51 ensures { s.protocol = next (head (old s).protocol) }

Figure 5.10: Example primitives

Chapter 5. Implementation 42

Chapter 6

Evaluation

We adapted a few classic parallel programming examples in WhyML together
with their corresponding protocols, and checked them with Why3. To evaluate the
results, we compare verification time and the ratio of annotations to lines of code.
The most directly comparable work to ours was done with VCC as part of the
Advanced Type Systems for Multicore Programming project, and we will compare
our results with those. The verification times obtained can be seen in Table 6.1.

6.1 Sample programs
The sample programs verified were the following:

• Pi: a toy program that calculates an approximation of pi through numerical
integration, from [16].

• Finite differences: used previously as a running example, the one-dimensional
finite differences problem takes a vector X0 and calculates Xn iteratively using
a recursive formula until either a convergence condition is verified or a certain
number of iterations is reached. The code is adapted from [13]. The original
program had to be adjusted to prevent a deadlock.

• Parallel dot: calculates the dot product of two vectors, from [26].

The code for each example can be seen in Appendix A and their protocols be
seen in Appendix B

6.2 Verification time
As can be seen from the results, Why3 and VCC have similar performance. This

is surprising as Why3 spawns a different Z3 process for each sub-proof. A possible
explanation for the similarity is that each individual sub-proof is substantially easier

43

Chapter 6. Evaluation 44

Program Why3 Sub-Proofs Why3 Time (s) VCC Time (s) Ratio

Pi 27 1,6 2,4 66,7%
Finite differences 374 14,9 16,1 92,5%
Parallel dot 298 7.9 7,4 106,7%

Table 6.1: Results for Why3 and VCC verification times

on the solver, and VCC has to perform more proofs than Why3 due to concurrency
and pointer related proofs.

The results are very good, more so since the proofs can be done in parts as
necessary. The results for annotations can be seen in Table 6.2. The lines of code
(LOC) count ignores library imports, comments and empty lines.

6.3 Annotation effort

Program Why3 LOC Why3 Anot Ratio VCC LOC VCC Anot Ratio

Pi 33 6 18% 42 10 23%
Finite differences 86 29 33% 128 49 38%
Parallel dot 61 11 18% 99 30 30%

Table 6.2: Results for Why3 and VCC annotation requirements

VCC has a more annotations than Why3 due to concurrency and pointer related
annotations, but a lot of these can be automated with an annotator. That said, the
same could be done for Why3, particularly for loops and choices. Instead of writing
regular if and while for both conventional (not related to collective operations) and
for collective operations, ifc and whilec primitives could be added for the collective
operations which would automatically generate the necessary annotations. These
could be implemented as higher order functions in Why3, but syntax considerations
and performance reasons prevented it.

The best option would be an external annotator. The foreach projections could
be joined into one per rank group. The reason they were not is that Why3 does not
allow writing lists using a shorthand syntax, having to write a Cons chain would be
even more convoluted than writing the separate projections, and is not worth the
added complexity. Much like with the collective operations, this could be handled
with an annotator.

The passing of the state through the functions can also be considered a sort of
annotation. VCC avoids this using macros which hide the parameter, but Why3
cannot do the same. This could also be solved through an annotator, reducing the
annotation effort even further.

With all of these changes, the only annotations the programmer would have to
write would be simpler foreach projections, greatly reducing the effort required to

Chapter 6. Evaluation 45

1 module Fdiff
2 ...
3 use import sessiontypes.Protocols
4 use import mpi.Mpi
5 use import fdiff.Fdiff
6
7 constant max_size : int = 10000
8 ...
9

10 let main () =
11 follows fdiff_protocol;
12 let np = size in
13 let psize = apply max_size in
14 let work = make max_size 0.0 in
15 ...
16 let lsize = div psize np in
17 let local = scatter 0 work in
18 let globalerror = ref 999.0 in
19 let iter = ref 0 in
20 let left = (if rank > 0 then rank-1 else np-1) in
21 let right = (if rank < np-1 then rank+1 else 0) in
22 whilec !globalerror >=. max_error && !iter < max_iter do
23 variant { max_iter - !iter }
24 if (rank = 0) then (
25 foreach (0, 1, np-1) is
26 send left local[1];
27 send right local[lsize];
28 local[lsize+1] <- recv right;
29 local[0] <- recv left;
30 end;
31)
32 else if (rank = np-1) then (
33 foreach (0, np-2, np-1) is
34 local[lsize+1] <- recv right;
35 local[0] <- recv left;
36 send left local[1];
37 send right local[lsize];
38 end;
39)
40 else (
41 foreach (rank-1, rank, rank+1) is
42 local[0] <- recv left;
43 send left local[1];
44 send right local[lsize];
45 local[lsize+1] <- recv right;
46 end;
47);
48 let localerror = ref 0.0 in
49 ...
50 globalerror := allreduce Max !localerror;
51 iter := !iter + 1;
52 done;
53 ifc (!globalerror <. max_error) then (
54 gather 0 local;
55);
56 end

Figure 6.1: Fdiff with improved annotations

use this approach. The fdiff example with such changes would look like Figure 6.1.

Chapter 6. Evaluation 46

Chapter 7

Conclusions and future work

We developed an eclipse plugin for the validation and compilation of protocols,
and a programming language for the development of parallel programs by adding
MPI-like primitives to WhyML. These primitives are annotated with pre and post-
conditions that check for conformance with the protocol, based on a Why3 theory
of protocols we also developed. With this approach, we can ensure programs are
free of deadlocks and message exchanges are type safe.

Unlike model checkers (such as TASS [34]), our approach scales to any number of
processes. No costly runtime verification of the software is necessary as in ISP [30],
DAMPI [37] or MUST [17, 18]. These tools do not require protocols or annotations
in the program, but the runtime verifiers require a good test battery which is much
harder to write than a protocol. Unlike Scribble [19], our approach can model MPI-
like programs, including collective choices and loops without communication.

Previous work in the Advanced Type Systems for Multicore Programming project
used VCC [7] to verify C+MPI programs. The approach is very similar to ours, but
requires extra annotations regarding concurrency and pointers. The annotations are
also more complex, while annotations in our approach are more natural and fit with
the code.

Unlike VCC which relies on Z3, our approach can use many SMT solvers. For
programs none of the SMT solvers can handle, the proof can be split into parts.
Those parts can be individually sent to different SMT solvers, and in the unlikely
case no SMT solver can handle a sub-proof, the programmer can manually solve it
using proof assistants like Coq [3].

Besides the annotations, our approach also requires that the programmer avoid
divisions in the protocol, which is a hindrance. The foreach primitive annotations
also require that the user be familiar with how foreach is expanded, but writing
correct programs already implies that sort of mental expansion. The naive approach
results in deadlocks, as in the finite differences example (Figure 4.1). The VCC based
approach also shares these problems.

47

Chapter 7. Conclusions and future work 48

We successfully verified a number of textbook examples of parallel programs,
with verifications taking only a few seconds in the worst case, and none of the
examples required manual proofs.

A major issue with our approach is that WhyML is not an appropriate language
for industry use. While OCaml programs can be extracted from WhyML, OCaml is
not a language typically used in high performance computing. Fortran or C, using
MPI, is the standard.

Performance is the major consideration in high performance computing, and
Fortran and C are the fastest high-level languages available.

To solve these issues, a higher level language should be developed. This lan-
guage, like our WhyML based language, would have first class parallel programming
primitives. It should look and function as much as possible like Fortran or C for
programmer familiarity, and compile to either, guaranteeing similar performance.

The compiled program could use unsafer but faster MPI primitives to improve
performance even further. By also compiling to Why3, it would be possible to verify
that the program is deadlock free and that message exchanges are type safe. Fi-
nally, other MPI primitives need to be supported, like asynchronous communication
primitives, topologies and communicators.

Appendix A

Listings

A.1 Pi

1 module PiP2PTest
2 use import int.Int
3 use import int.ComputerDivision
4 use import sessiontypes.Protocols
5 use import pip2p.PiP2P
6 use import mpi.Mpi
7 use import ref.Ref
8 use import real.RealInfix
9 use import real.FromInt

10 use import real.Abs
11
12 constant pi25dt : real = 3.141592653589793238462643
13
14 val read_intervals () : int
15 ensures {result > 0}
16
17 let main () =
18 let n = ref 0 in
19 let mypi = ref 0.0 in
20 let pi = ref 0.0 in
21 let sum = ref 0.0 in
22 let s = init pip2p_protocol in
23 let fbody = foreach s in
24 if (rank = 0) then (
25 n := read_intervals ();
26 for i = 1 to p-1 do
27 let f = proj fbody i in
28 send i !n f;
29 is_skip f;
30 done
31)
32 else (
33 let f = proj fbody rank in
34 n := recv 0 f;
35 is_skip f;
36);
37 let h = 1.0 /. from_int(!n) in

49

Appendix A. Listings 50

38 for i = 0 to (div !n size) do
39 let x = h *. (from_int(i * size) -. 0.5) in
40 sum := !sum +. (4.0 /. (1.0 +. x *. x));
41 done;
42 mypi := h /. !sum;
43 pi := reduce 0 Sum !mypi s;
44 abs(!pi -. pi25dt);
45 is_skip s;
46 end

A.2 Finite differences

1 module Fdiff
2 use import int.Int
3 use import int.ComputerDivision
4 use import real.RealInfix
5 use import real.Abs
6 use import real.FromInt
7 use import ref.Ref
8 use import array.Array
9 use import sessiontypes.Protocols

10 use import mpi.Mpi
11 use import fdiff.Fdiff
12
13 constant max_size : int = 10000
14 constant max_iter : int = 10000
15 constant max_error : real = 0.0001
16
17 val read_value () : float
18 ensures {result >. 0.0}
19
20 let main () =
21 let np = size in
22 let s = init fdiff_protocol in
23 let psize = apply max_size s in
24 let work = make max_size 0.0 in
25 if rank = 0 then (
26 for i = 0 to (max_size-1) do
27 work[i] <- read_value ();
28 done;
29);
30 let lsize = div psize np in
31 let local = scatter 0 work s in
32 let globalerror = ref 999.0 in
33 let iter = ref 0 in
34 let left = (if rank > 0 then rank-1 else np-1) in
35 let right = (if rank < np-1 then rank+1 else 0) in
36 let lbody = inloop s in
37 let inbody = copy lbody in
38 while !globalerror >=. max_error && !iter < max_iter do
39 invariant { inbody = lbody }
40 variant { max_iter - !iter }
41 let body = foreach inbody in
42 if (rank = 0) then (
43 let f1 = proj body 0 in

Appendix A. Listings 51

44 send left local[1] f1;
45 send right local[lsize] f1;
46 is_skip f1;
47 let f2 = proj body 1 in
48 local[lsize+1] <- recv right f2;
49 is_skip f2;
50 let f3 = proj body (np-1) in
51 local[0] <- recv left f3;
52 is_skip f3;
53)
54 else if (rank = np-1) then (
55 let f1 = proj body 0 in
56 local[lsize+1] <- recv right f1;
57 is_skip f1;
58 let f2 = proj body (np-2) in
59 local[0] <- recv left f2;
60 is_skip f2;
61 let f3 = proj body (np-1) in
62 send left local[1] f3;
63 send right local[lsize] f3;
64 is_skip f3;
65)
66 else (
67 let f1 = proj body (rank-1) in
68 local[0] <- recv left f1;
69 is_skip f1;
70 let f2 = proj body rank in
71 send left local[1] f2;
72 send right local[lsize] f2;
73 is_skip f2;
74 let f3 = proj body (rank+1) in
75 local[lsize+1] <- recv right f3;
76 is_skip f3;
77);
78 let localerror = ref 0.0 in
79 for i = 1 to lsize do
80 let v0 = local[i] in
81 if (rank = 0) then (
82 local[i] <- 0.25 *. (local[i-1] +. 2.0 *. v0 +. local[i+1])
83);
84 localerror := !localerror +. abs(local[i] -. v0);
85 done;
86 globalerror := allreduce Max !localerror inbody;
87 iter := !iter + 1;
88 is_skip inbody;
89 reset inbody lbody;
90 done;
91 let (l,r) = choice s in
92 if (!globalerror <. max_error) then (
93 gather 0 local l;
94 is_skip l;
95)
96 else (
97 is_skip r;
98);
99 is_skip s;

Appendix A. Listings 52

100 end

A.3 Parallel dot

1 module ParallelDot
2 use import int.Int
3 use import int.ComputerDivision
4 use import real.RealInfix
5 use import real.Abs
6 use import real.FromInt
7 use import ref.Ref
8 use import array.Array
9 use import sessiontypes.Protocols

10 use import mpi.Mpi
11 use import paralleldot.ParallelDot
12
13 val read_psize () : int
14 ensures { result > 0 }
15
16 val read_value () : float
17 ensures { result >. 0.0 }
18
19 let main () =
20 let n = ref 0 in
21 let s = init parallel_dot_protocol in
22 if (rank = 0) then (
23 n := read_psize ();
24);
25 n := broadcast 0 !n s;
26 let n_bar = div !n p in
27 let local_x = make n_bar 0.0 in
28 let local_y = make n_bar 0.0 in
29 let fbody = foreach s in
30 if rank = 0 then (
31 let temp_x = make n_bar 0.0 in
32 let temp_y = make n_bar 0.0 in
33 for i = 0 to (n_bar-1) do
34 local_x[i] <- read_value ();
35 local_y[i] <- read_value ();
36 for q = 1 to (p-1) do
37 temp_x[i] <- read_value ();
38 temp_y[i] <- read_value ();
39 let f = proj fbody q in
40 send_array q temp_x f;
41 send_array q temp_y f;
42 is_skip f;
43 done;
44 done;
45)
46 else (
47 let f = proj fbody rank in
48 let temp_x = recv_array 0 f in
49 let temp_y = recv_array 0 f in
50 is_skip f;
51 for i = 0 to (n_bar-1) do

Appendix A. Listings 53

52 local_x[i] <- temp_x[i];
53 local_y[i] <- temp_y[i];
54 done;
55);
56 let local_dot = ref 0.0 in
57 for i = 0 to (n_bar-1) do
58 local_dot := !local_dot +. local_x[i] *. local_y[i];
59 done;
60 let dot = allreduce Sum !local_dot s in
61 let fbody2 = foreach s in
62 if (rank = 0) then (
63 for i = 1 to (p-1) do
64 let f = proj fbody2 i in
65 recv i f;
66 is_skip f;
67 done;
68)
69 else (
70 let f = proj fbody2 rank in
71 send 0 dot f;
72 is_skip f;
73);
74 is_skip s;
75 end

Appendix A. Listings 54

1 p r o t o c o l Pi p : {x : i n t e g e r | x > 1} {
2 f o r each i : 1 . . p−1
3 message 0 , i {x : i n t e g e r | x > 1}
4 reduce 0 sum f l o a t
5 }

Figure B.1: Pi protocol.

1 p r o t o c o l F i n i t e D i f f e r e n c e s p : { x : i n t | x >= 2} {
2 v a l n : {x : n a t u r a l | x % p = 0}
3 s c a t t e r 0 f l o a t [n]
4 l oop {
5 f o r each i : 0 . . p − 1 {
6 message i , (p + i − 1) % p f l o a t
7 message i , (i + 1) % p f l o a t
8 }
9 a l l r e d u c e max f l o a t

10 }
11 cho i ce
12 gather 0 f l o a t [n]
13 or
14 {}
15 }

Figure B.2: Finite Differences protocol.

1 p r o t o c o l P a r a l l e l D o t p : {x : i n t e g e r | x > 1} {
2 broadcas t 0 n : {x : i n t e g e r | x > 0 and x % p = 0}
3 f o r each i : 1 . . p−1
4 message 0 , i f l o a t [n/p]
5 f o r each i : 1 . . p−1
6 message 0 , i f l o a t [n/p]
7 a l l r e d u c e sum f l o a t
8 f o r each i : 1 . . p−1{
9 message i , 0 f l o a t ;

10 }

Figure B.3: Parallel dot protocol.

Appendix B

Protocols

55

Appendix B. Protocols 58

Bibliography

[1] Xtext. http://www.eclipse.org/Xtext/. Accessed: 2013-11-20.

[2] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005,
Revised Lectures, pages 364–387, 2005.

[3] Yves Bertot, Pierre Castéran, Gérard (informaticien) Huet, and Christine
Paulin-Mohring. Interactive theorem proving and program development :
Coq’Art : the calculus of inductive constructions. Texts in theoretical com-
puter science. Springer, 2004. Données complémentaires http://coq.inria.fr.

[4] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paske-
vich. Why3: Shepherd your herd of provers. In Boogie 2011, pages 53–64,
2011.

[5] David Bridges and Shervin Mostashfi. Universal monitoring platform for in-
teractive real-time expansive networks (UMPIRE). In CTS, page 571. IEEE,
2009. doi: 10.1109/CTS.2009.5067529.

[6] Greg Bronevetsky. Communication-sensitive static dataflow for parallel message
passing applications. In CGO, pages 1–12. IEEE Computer Society, 2009. doi:
10.1109/CGO.2009.32.

[7] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and
Wolfram Schulte. VCC: Contract-based modular verification of concurrent
C. In ICSE Companion, pages 429–430. IEEE, 2009. doi: 10.1109/ICSE-
COMPANION.2009.5071046.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008. doi:
10.1007/978-3-540-78800-3_24.

59

http://www.eclipse.org/Xtext/

Bibliography 60

[9] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Pa-
rameterised multiparty session types. Logical Methods in Computer Science,
8(4):1–46, 2012. doi: 10.2168/LMCS-8(4:6)2012.

[10] Jean-Christophe Filliâtre. Verifying two lines of C with why3: An exercise in
program verification. In VSTTE, volume 7152 of LNCS, pages 83–97. Springer,
2012. doi: 10.1007/978-3-642-27705-4_8.

[11] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs meet
provers. In ESOP, volume 7792 of LNCS, pages 125–128. Springer, 2013. doi:
10.1007/978-3-642-37036-6_8.

[12] MPI Forum. MPI: A Message-Passing Interface Standard – Version 3.0. High-
Performance Computing Center Stuttgart, 2012.

[13] I. Foster. Designing and building Parallel programs. Addison-Wesley, 1995.

[14] David Geer. Eclipse becomes the dominant java IDE. IEEE Computer,
38(7):16–18, 2005. doi: 10.1109/MC.2005.228.

[15] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur,
William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg
Bronevetsky. Formal analysis of MPI-based parallel programs. Communications
of the ACM, 54(12):82–91, 2011. doi: 10.1145/2043174.2043194.

[16] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI (2nd Ed.):
Portable Parallel Programming with the Message-passing Interface. MIT Press,
1999.

[17] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski,
and Matthias S. Müller. MPI runtime error detection with MUST: ad-
vances in deadlock detection. In SC, page 30. IEEE/ACM, 2012. url:
http://dl.acm.org/citation.cfm?id=2389037.

[18] Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller.
MUST: A scalable approach to runtime error detection in MPI programs. In
Parallel Tools Workshop, pages 53–66. Springer, 2009. doi: 10.1007/978-3-642-
11261-4_5.

[19] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko
Yoshida. Scribbling interactions with a formal foundation. In ICDCIT, volume
6536 of LNCS, pages 55–75. Springer, 2011.

Bibliography 61

[20] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based program-
ming. In ESOP, volume 1381 of LNCS, pages 122–138. Springer, 1998. doi:
10.1007/BFb0053567.

[21] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, pages 273–284. ACM, 2008. doi:
10.1145/1328438.1328472.

[22] Bettina Krammer, Tobias Hilbrich, Valentin Himmler, Blasius Czink, Kiril
Dichev, and Matthias S. Müller. Mpi correctness checking with marmot. In
Parallel Tools Workshop, pages 61–78. Springer, 2008. doi: 10.1007/978-3-540-
68564-7_5.

[23] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence
of faults. Journal of the ACM, 32(1):52–78, 1985. doi: 10.1145/2455.2457.

[24] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C: Safe
parallel programming with message optimisation. In TOOLS, volume 7304 of
LNCS, pages 202–218. Springer, 2012. doi: 10.1007/978-3-642-30561-0_15.

[25] Atsushi Ohori and Nobuaki Yoshida. Type inference with rank 1 polymorphism
for type-directed compilation of ml. In ICFP, pages 160–171. ACM, 1999. doi:
10.1145/317636.317796.

[26] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[27] N.S. Papaspyrou. A case study in specifying the denotational semantics of c. In
SpyrosG. Tzafestas, editor, Advances in Intelligent Systems, volume 21 of Inter-
national Series on Microprocessor-Based and Intelligent Systems Engineering,
pages 63–74. Springer Netherlands, 1999. doi: 10.1007/978-94-011-4840-5_6.

[28] Terence Parr and Kathleen Fisher. Ll(*): the foundation of the ANTLR parser
generator. In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 425–436, 2011.

[29] Terence John Parr and Russell W. Quong. ANTLR: A predicated- LL(k)
parser generator. Softw., Pract. Exper., 25(7):789–810, 1995.

[30] Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Robert Palmer, Ra-
jeev Thakur, and William Gropp. Practical model-checking method for verify-
ing correctness of MPI programs. In PVM/MPI, volume 4757 of LNCS, pages
344–353. Springer, 2007. doi: 10.1007/978-3-540-75416-9_46.

Bibliography 62

[31] Martin Schulz and Bronis R. de Supinski. A flexible and dynamic infrastructure
for MPI tool interoperability. pages 193–202, 2006. doi: 10.1109/ICPP.2006.6.

[32] Ravi Sethi. A case study in specifying the semantics of a programming language.
In POPL, pages 117–130. ACM Press, 1980. doi: 10.1145/567446.567458.

[33] Stephen F. Siegel and Louis F. Rossi. Analyzing blobflow: A case study using
model checking to verify parallel scientific software. In PVM/MPI, volume 5205
of LNCS, pages 274–282. Springer, 2008. doi: 10.1007/978-3-540-87475-1_37.

[34] Stephen F. Siegel and Timothy K. Zirkel. Automatic formal verification of
MPI-based parallel programs. In PPOPP, pages 309–310. ACM, 2011. doi:
10.1145/1941553.1941603.

[35] Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2, 42:230–265,
1937.

[36] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and
Robert M. Kirby. ISP: a tool for model checking MPI programs. In PPOPP,
pages 285–286. ACM, 2008. doi: 10.1145/1345206.1345258.

[37] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R.
de Supinski, Martin Schulz, and Greg Bronevetsky. A scalable and distributed
dynamic formal verifier for MPI programs. In SC, pages 1–10. IEEE, 2010. doi:
10.1109/SC.2010.7.

	Introduction
	Motivation
	Objectives
	Contributions
	Document structure

	Related work
	MPI
	Multi-party session types
	Why3
	Xtext
	VCC
	Scribble
	Session C
	ISP
	DAMPI
	MUST
	TASS
	Parallel data-flow analysis

	Protocol language
	The finite differences problem
	Protocol validator
	Why3 Protocol

	Programming language
	Verifying the program

	Implementation
	Protocol validator
	Internal representation
	Scoping and validation
	Generation

	Why3 library
	Why3 theory for protocols
	WhyML parallel programming library

	Evaluation
	Sample programs
	Verification time
	Annotation effort

	Conclusions and future work
	Appendixes
	Listings
	Pi
	Finite differences
	Parallel dot

	Protocols
	Bibliography

