THE BILBAO IRON DISTRICT.

No. IV.

The harbour works consist of a pier for the shipment of ore with a canal dredged in front of it 3280 ft . in length and 320 ft . in width. This has not all been sunk to its full depth, but will before long have 18ft. below 902 ft in and admits of four steamers of about 1000 tons each being loaded at one time. The rail level is $29 \frac{\mathrm{ft}}{2}$, above ordinary high-water mark, and is amply high and a convenient level for steamers, but as so high a fall is dangerous to small sailing vessels another special stage has been pro-
vided for them. The pier is of wood, and was erected on contract by Mr. Peter Shade. The piles are of Memel timber 13in. square, driven to a depth of at least 33 ft . below low-water, and until they were capable of sustaining a minimum weight of 15 tons calculated by the formula $x=\frac{\mathrm{B}^{2} h}{(\mathrm{~B} \times \mathrm{P}) e}$ where $x=$ minimum resistance of 25 tons; $\mathrm{B}=$ weight of monkey; $\mathrm{P}=$ weight of pile ; $h=$ fall of monkey $; e=$ distance driven by the last blow. The driving was effected with hand power machings having monkeys weighing 20 cwt . The superstructure is
principally of French pine obtained from the Landes, and principally of French pine obtained from the Landes, and
injected with sulphate of copper. As wooden structures deteriorate rapidly in the Nervion from sea worms, the base of the pier is now being filled with concrete, for effecting which a very complete plant has been laid down. The pier itself cannot be better arranged, and gives every facility'for shipping a large quantity of stuff; perhaps out
of England, it is second only to the Huelva pier of the of England, it is second only to the Huelva pier of the
Rio Tints Company in the south of Spain, but the give more trouble in discharging than they should-their construction is certainly defective in more respects than one. The Bilbao Company have one great advantage over the Diputacion Railway, and the other shipping com-
panies which we have yet to notice, in being close to the entrance of the river. All the other shipping places are

from three to five miles upwards, and as steamers can only move at near high water this often saves a tide, besides weather to go out, whichis another pullin variable weather weather to go out, whichis another puil in variable weather. by winches, fixed upon the upper platform. The shoots by winches, fixed upon the upper platform. The shoots
are arranged to receive the contents of two wagons, weighing about ten tons, at the same time. Owing to the ground swell along the face of the pier when the sea outside is rough an alteration has been made in the mode of raising and lowering the shoots, which is now mode of raising and lowering the shoots, which is now done in such a manner that the weight can be dropped and the shoot hoisted almost instantaneously. The time and the shoot hoisted almost instantaneously. The time
required to hoist the shoot from ordinary loading position as altered is forty-five seconds ; rather more than two minutes is required to lower it to the same position. Two men are needed to lower the shoot, and one only to raise it. The present arrangement consists in fixing the raise it. The present arrangement consists in fixing the
shoot at the upper end, and connecting the extreme shoot at the upper end, and connecting the extreme
point by means of two in. chains passing over pulleys fixed above to a balance weight of two large cast iron chains and weight, as shown below. The ever-varying chains and weight, as shown below. The ever-varying and decrease of weight of the shoot, caused by the variation of the angle of elevation. The accompanying engravings show the arrangement.
The ore is dropped from hopper wagons into a large wooden hopper, lined with iron bars $\frac{1}{2}$ in. thick, to the month of which the iron shoot is attached to conduct the ore to the ship. The largest amount of ore shipped on any one day has been 3300 tons. The greatest thirty minutes. An ample supply of buoys and bollards thirty minutes. An ample supply of buoys and bollards to piles 9 ft . long, screwed in from 10ft. to 16 ft . below the permanent bottom of the canal. A service of fresh water has been provided along the pier for protection against fire. The water is obtained from springs in the tunnel, and pumped into a reservoir 33 ft . above the pier level.

A canal has been dredged in front of the pier. Approximately the quantity to be dredged was 785,000 work has been done by one of Messrs, Tilken and The work has been done by one of Messrs. Tilken and Co.'s
steam central ladder dredgers, capable of lifting 800 tons per day. The monthly wages cost of this dredger is only $£ 5212 \mathrm{~s}$.
ultimately classes of barges have been tried ; the one ultimately adopted has been a hopper barge of French advantage of this form is that the water brought up by the dredger flows over the sides of the barge when it is nearly full, leaving the sand almost dry It will like wise float, although the internal compartment may be filled with water. These barges were built at Bayonne, and shipped in pieces to Bilbao. They cost at Bayonne

The material dredged-sand and mud-is conveyed in the barges to the discharge stage near the centre of the station, and raised 21 ft . above high-water by a hoist driven by one of Robey and Co.'s 12 -horse portable engines. The shafting drives two sets of gearing, work ing each two grooved winding drums with chains coilin in contrary directions, so that whilst one jib is lifting the other is lowering. The skips hold $22 \frac{\mathrm{f}}{\mathrm{ft}}$. of material weighing 1700 lb ., and discharge their contents into tip wagons, working on a platform immediately below.
In a day of ten hours 600 laden skips are hoisted. The spoil is tipped into the original river channel, and the base of the bank is protected by a toe of rubble run ahead of the tip. The face of the toe will be eventually pitched with squared blocks. The actual cost of dredging during seven months is as follows:

> Barging
> Discharging bärges
> Haulage and tipping into banks
> Formation of toe bank of rough ston
> otal cost of work
> Cost excluding toe banks

d $2 \cdot 10$ $1 \cdot 61$ $3 \cdot 41$ $2 \cdot 89$ $2 \cdot 13$ 1.02 70,954 10.00

The mines of the company are:-In the district of Galdames :

In the district of San Pedro de Abanto :-
6. Moruecos ...
7. Cerillo \ldots
8. Vulcan
9. Convenio
10. La Vinerillas
.

148
10
74
62
91
810

Of those at Galdames only the Berango mine has been opened, and is now being worked. Here the lode apparently extends from north-west to south-east, and it can be traced for a distance of 1640 yards. The iron stone crops out of the side of the mountain in vertical cliffs, one of which has an escarpment of 55 yards. At about the centre of the present workings the lode of ore has been traced to a width of 306 yards at the railway level. There is enough ore above this to employ the

transverse section of pier
resources of the company for many years. Generally there is but little covering, and a large portion of this having been removed the ore is being worked in steps. dynamite and common powder in large masses, which are then broken up with wedge and hammer The cheapest and most convenient way of reducing the larger blocks is to insert a third or half of a dynamite cartridge into a hole of from lin. to 2 in. in depth, on the upper face of the block to be broken. A block weighing one or two tons will thus be shaken so that a few blows with the hammer will break it up. This is a simple method of dealing with these masses which we have not seen employed elsewhere, and we may mention another plan practised here, which, though not novel, is rarely resorted to, viz.: in the deep holes which are sometimes bored charge of dynamite is frequently employed to enlarge the chamber so as to take a heavy charge of powder from which, in stoping down the cliffs a better result is obtained than in working with dynamite alone A selfacting incline has been constructed up to the first shelf or level with a gradient of 1 in 6 and a length of 120 yards. Four wagons are sent up and down this incline at a time with about 20 tons of ore.
The surface earth is removed by bridges and shoots, and tipped into the valley at the opposite side of the railway.
The rolling stock consists of six large locomotive
three small locomotive tank engines, made by Manning and Wardle ; and five hundred five-ton hopp
supplied by the Darlington Wagon Company.
The large locomotive engines have ten wheels, sixcoupled, with a four-wheeled bogie in front. The leading
pair of driving wheels are without flanges. The principal dimensions of these engines are :-

These locomotives are capable of taking up the incline trains composed of forty empty mineral wagons, repre senting a gross load of 110 tons; regulation of the service they are only required to tak up trains of thirty wagons. The gross weight of the descending trains, excluding the weight of the engine,
is-load of ore 150 tons, thirty wagons 82 tons, total is-load of ore 150 tons, thirty wagons 82 tons, tota 232 tons. We may add that, notwithstanding the large
traffic and heavy grades on this line, it has been worked traffic and heavy grades on this line, it has been worke
for the last three years with only one trifling accident.

THE SYDNEY EXHIBITION.

 No. IIIThe Exhibition has created fully as much interest and excitement as its most ardent advocates could by possi-
bility have anticipated. In some cases the success has bility have anticipated. In some cases the success has already surpassed expectation. On the opening day the
Exhibition was very incomplete, the British section being Exhibition was very incomplete, the British section being the only large one that was in order; but work was pushed on energetically, and on the first shilling day-Saturday-about 30,000 persons paid at the doors. Mondays and Thursdays are half-crown days, and, in spite of attractive music, are already admitted to be failures. It is extraordinary, after the experience gained at former International Exhibitions, and especially at the crowning instance of the Paris Exhibition of last year, that the directors should have been ill-advised enough to depart from the beautiful simplicity of "one shilling admission." However, they are quite practically minded enough to alter the re
see clearly that it will not pay.
The names of most of the British exhibitors connected with the mechanical arts have been given already in the columns of The Engineer, and we need only add that the section makes a large and handsome display, and that the façade is with excellent taste decorated with the names of the cities and towns of Aberdeen, Belfast, Birmingham, Cork, Dublin, Dundee, Glasgow, Hull, Leeds, Limerick, Liverpool, London, Manchester, Newcastle, Nottingham, and Sheffield; with an ornamentabuilding by the western tower, the British section occupies the whole of one side of the transept to the nave, where in the centre of the bvilding, under the dome, stands the statue of her Majesty, in bronze, by Mr. Marshall Wood. The unveiling of this statue formed a portion of the ceremony, and was naturally hailed by the performance of the "National Anthem."
The manner in which all the arrangements were made for the opening ceremony deserves a few words. The estrade was large, and briliant with Wilton carpet and a
beautiful collection of plants, with a bust of Sir Hercules Robinson, to whom the Exhibition is greatly indebted. Over the heads of the company were the arms of Great Britain and of the colony, and a profusion of gay
bunting. Above was the grand organ, and the gaileries on each hand were filled by the chorus, the ladies being in front, with bright uniform dresses of white with blue sashes. The commissioners have acted, we think, wisely in making music a prominent item in their arrangements; at present there is a popular concert on the shilling days, and select music on the fashionable, but thinly attended, Mondays and Thursdays.
The officials and the representatives of the neighbouring colonies of Australia filled not only the estrade but the greater portion of two platforms, on the right and left of the grand estrade; but the most remarkable features of the assemblage, and that best indicating the success of the Exhibition, were the representatives of foreign countries and other colonies, for whom places were reserved in front of one of these platforms. These representatives included, amongst others, Capitaine Mathieu, commissioner-general for France ; Dr. Rouleaux, commisAustrian tome German Empire ; Consul Schonberger, sioner ; M. Van Schelle, Belgian commissioner ; Mr. Haruo Sakata, Japanese commissioner ; Mynheer J. de Groal Pzn, Dutch commissioner; Signor Oscar Mayer, Italian commissioner; and many other members of the same commission. There were also representatives from Ceylon, Fiji, New Zealand, Tasmania, the Straits SettleCeylon, Fiji, New Zealand, Tasmania, the Straits Settle-
ment, Switzerland, New Caledonia, Portugal, Hawaii, Brazil, Sweden and Norway, Peru and Russia, generally consuls or vice-consuls. Sydney may certainly plume consuls or vice-consuls. Sydney may certainly plume
herself on the fact that the first colonial invitation to herself on the fact that the first colonial invitation to
the nations of the earth has been freely accepted. The presence of the Rhin, the Bismarck, and the Austrian presence of the
troopship Heligoland, in the beautiful harbour, and the civilities and entertainment interchanged amongst the officers and the authorities, are also noticeable features, The Exhibition building, from its proximity to the
charming botanic gardens, has received, officially we charming botanic gardens, has received, offic
believe, the appellation of the Garden Palace. appeared in the Sydney Morning Herald of view, which may be worth quoting. After speaking in the highest terms of the exertions and success of the London Commission, and the various Austratian contributions, the writer says:- curning to the American and sell to us,
courts, we see what foreigners are anxious to sell to and what in their opinion they can sell to advantage. and what in their opinion they can sell to advantage.
They have naturally brought out what they think most likely to tempt us, and if in some matters they have under or over-estimated the market, still the exceptions under or over-estimated the market, still the exceptions
are trifling. Many of these nations come directly in competition with each other . . . and we are set upon examing and comparing with opportunities such as have not
previously been presented. . . . But those who are already engaged in trade here consider themselves uite equal and more than equal to all the wants or the country, and see nothing but loss if other
traders to push in where there is no room traders tried to push in where there is no room
for them. In other words, competition, which is severe, is intensified. The consumer may perhaps gain, but the distributor complains. This, however, is an evil
which will very soon adjust itself. People will not continue to press into a trade where there are no profits that they were wanted. An Exhibition cannot proo nently increase the trade of a country. Our buying powers depend on the success of our own industry, and that of course is the thing that we have to attend to most That we should spend wisely and well is a secondary matter, and yet not unimportant." This is rather of the
nature of a wet blanket, and one might ask, "Why then nature of a wet blanket, and one might ask, "Why then
have had an exhibition?". The writer goes on, however, to say that the Exhibition is extremely interesting to those
who, bornin Australiaand never left it havenot tunity of seeing the great shows which have taken place in Europe and America, and that it will be highly useful to the workmen of the continent by showing them the best specimens of European styles of manufacture
Amongst the British exhibits, that of Messrs. Peter Wright and Sons-of Dudley's anvils, vices, and other smith's tools and accessories-have attracted special
attention, which is not surprising, for these well-designed and well-made tools could not fail to attract the eyes o practical colonists and pioneers. The steel pens of noticed, not only on account of themselves, but also for the commercial tact which has put them up with special designs to please the taste of Germany, Egypt, and other ham, have also wisely hit the taste of the colony with their collection of tapes, rules, levels, and other measuring and surveying necessaries. The "metal tapes," and the the attention of workmen. These articles, well known at home, seem to be new to the colonists. The style, or, in some cases, wo may say, the splentracted much notice The case of Messrs. Greenlees Brothers, of Argyle shire and London, is a very beautiful piece of cabinet
work; and those of Messrs. Clark and Co. and the Clark Thread Company, of Paisley and Newark; of Messrs. J P. Coats, also of Paisley ; of Messrs. Tress and Co., of The United States Court adjoins that of Great Britain, but it is far from complete, which must ever, make an admirable show of hardware, how implements, ironmongery, metal furniture, and electro-plate, much admired, especially the former for their lightness, strength, and neatness. The Vermon send The Waltham Watch Company promise a fine show of their productions,
In the French court the show of Gien faience, and that of Creil and Montereau ware, are at present the most conspicuous, and divide much attention with the adia fro china from England, which is large and excellent. a varied collection of ware made from the clay's of Australia
Germany has but a small portion of her contributions yet visible, and Austria is in the same condition. Holland has a small court quite complete. Italy shows Florentine and other mosaic and inlaid work. Switzerland has a pretty show of watches, carved work, lace and embroidery, all in order. Belgram is not so complete, but her court is a large one, and much of it is arranged. Belgium is one of the few exhibitors of machinery. collection of iron castings. In the French court we should have said, there is a fine collection of bronze castings, and plate of various kinds.
Japan presents a most attractive corner court, an epitome of the superb show made in Paris last year, side by side, and present good specimens of their peculiar productions. Amongst other exhibits, Ceylon shows a curious collection of primitive agricultural her minerals, of her woods manufactured into mosaic and glued on canvas for flooring, and manufactures in jade and other native material. Tasmania has a small but capita show, of which the words tin, tin
represent the most important items.
The Australian colonies have been wisely careful to select the bess of all their products to show their visitors, and a tempting show it is. The courts, with the exception of Queensland, we think, are not finished ; but much is to be seen. About the corn, timber, wool, metals
minerals, wines, and other chief products of Australia it is not necessary to speak ; but the sugar trade is com
paratively new and important; the trophy of the Colonial Sugar Refining Company calls special attenemploys 1000 hands, all Europeans It possesses 100 steam engines and seventr-five boilers, with an aggrebuilt at Pyrmont, at the cost of t125,000 can turn out 600 tons of sugar a week. It has also three large mills on the Clarence River, and another in the course of ducefrom the Tweed River. The Clarence mills progrown cones 6000 tons of sugar annualy y from home to 5000 gallons of white spirit and rum per week. The trophy contains samples not only of the finished products but the sugar in crystals, of which there are many varie-ies-white and yellow-and of the liquors, illustrating he various stages of the process ; molasses, golden syrup, The International show
nsiderable number of farmers and and swine brought a onsiderable number of farmers and wool merchants from all the colonies. England and France are, as far as we yet
know, the only Old World countries that send sheep, and England and America the only contributors of swine.

THE NEW ELSWICK HORSE ARTILLERY GUN, The greatly increased power of infantry fire, as well as the employment of earthworks on an enormously extended scale,
call for more powerful field gans. We have before pointed ut that the superior quality of metal which we now possess, with the required means to attain this end, for we can increase the weight of the projectile and charge in proportion to the carriage. The employment of slow burning powder, and
ir spacing, still further facilitates such a task, for it clearly becomes possible to throw more work on gan and oarriage,
and to cause this work to take the form of a push rather than biow, so that we have simply to deal with a gun having a very violent recoil. This can easily be controlled by means iolently and brought up abruptly by a strong brake does not sufter in at all the same way as a gun acted on by quick
burning powder which expends its force rather on the parThe necessity for slow burning powder and air spacing has not been felt in the case of field guns much litherto, because these guns have not been taxed like the heavy ones; in the present condition of affairs, however, it is ev
available power should be turned to account.
The common form the problem we are considering takes is the production of a gun of about the weight of that existing
in the service, but of much greater power. The 13-pounde experimental gun now issued to two of our batteries is an
example of an improved gun of this kind, its weight being the ame as that of the 9 -pounder, namely, 8 cwt., while its
length- 6 ft . 9.6 Gin. as compared with 5 ft. $8 \cdot 5$. ength-6ft. 96in., as compared with ift. 8 inin.-indicates
the employment of the gradual action of the powder. We have also recently called attention to a notable example of the
successful working out of this problem in another shape, namely, the production of a specially light gun of great power, in the case of the Elswick divided mountain gun. Our
present object is to notice another most striking example of a ight gun of great power just constructed at Elswick, and artillery gun.
This gun was designed in accordance with a suggestion made by Colonel Boyle, R.H.A., and the object aimed at
in the design was to secure with an equipment from 20 to 25 per cent. lighter in weight than the present horse artillery equipment, a gun that should be at least as effective as the
The following are the principal weights :-

Woight of gur " "arriage Completo
 Completo without p Weight of procetile Muzzile velocotity.

The service 9 -pounder horse artillery gun weighs 6 cwt. with its limber and wagon empty it weighs $22 \frac{1}{2}$ cw
34 cwt. The muzzle velocity is 1391 feet-seconds
The following experiments were made to determine the accuracy of the gun and the destructive effect of is shrapnel 1100 yards, and ten rounds were fired without alteration in laying. The following were the results, every shot fired

We give below a diagram of the target.
From an examination of thes figures it we seen that the mean error on a vertical target is $1 \cdot 3 \mathrm{ft}$. in height and nean error of about 10 yards in range and $\frac{\mathrm{fft}}{}$ in deffection.
Upon another occasion, at the Upon another occasion, at the
same distance, the mean error was 0.97 ft . in height and 0.5 sft . in deflection, equivalent to nean error of about 8 yards in range and in. in detlection.
ffter the trial of accuracy, Axperiments were made to
determine the destructive effect of a new description of shrect
nel, specially desinged for use
with fiela or boat this purpose, at the same range targets, 42 ft . in length by 9 ft .
 high by 8 in. thick, was set up; ow, 54 ft . by 9 ft ,, and of the
same thickness, was placed, and again 20 yards in rear was Four rounds were then fired, with of the new shrd rapuel, was beragt.

35 yards short, and the fourth burst 50 yards short. The the fuse was then lengthened a little to burst close up, when the fifth round burst 5 yards beyond the first target, and the sixth fired to burst on graze did so, passing under the foqt, of
the first row. The effect on the targets was then talken, and it was found that there were-

Throngh tho 1st row. \quad, 2nd

Total through three rows $\overline{1210^{*}}$.
or an average of 203 per shell fired. The effect on the first y six shell. A fuyther lot ; on the second and third row ayranged to burst by time fuse, and the bursting of the fuses was observed as follows :-

The effect of the whole sixteen rounds upon the three rows

an average of 229 hits per round fired. The effect produced by these sixteen rounds has never been equalled or even weight of the guns be taken into account.
Each row of targets was divided into vertical bands 9 in wide, and bardly a single one of these bands has escaped penetration over and over again. There is no question that he fuses were excellently set for the peculiar effect het registered, namely, the actual spread of the contents of the hells on targets of limited area. This result was wonderfully well effected, and probably no better test of the efficiency o hrapnel could be instituted. Of course such an effect is too cal for actual employmentin ordmary cases on service, when font of the targets. It was seen that the trace of a man fitt. high had about ninety perforations. We may see, adeed, how easily tremendous showers of bullets may be elivered a little away from the desired point, and how con quently shell fire may become discredited on service owing the want of skill in its use. Nevertheless, the shapne ooner to give the desired distribution for ordinary formations of infantry, while for a bridge, a road, or the like, this is the
We dwell on what does not strictly proper method of action. We dwell on what does not strictly ecent register of effects of shrapnel furnishes us with the
ichen ccasion. We cannot conclude without remarking that such a result is, we believe, unprecedented in this country, and is, ments of any foreign guns.

The Revival in the United States Coal Trade, and soahe of its Financlal Rescuts. - "The remarkable rise in the coal "quite as astonishing mont of November is, says an exchange, xcitement and strong upward tendency on the Stock Exchenge About the middle of October the Reading Company put up it second time this fall and orders began to fall off another advance on the 1st of the month, and it was pretty generally advertised that the companies had got quite enough working for nothing and finding themselves. Orders began to to be full of coal. Every day saw the demand from the fupposed increase, and that amounts to 600 cars a day when all on the line of the Reading Road alone are at work. On the last Saturday in
the month, the Reading Coal and Iron Company issued its circular raising prices from thirty to fifty cents, the lattor stove ;oal; and the line and city agent, Mr. Harris, issued one in which notived all agents not the send any orders for certain collieries had taken the precaution of limiting all orders to the issue of a new circular, so that they got the advantage of the rise almost vere ready at any time to meet the market price. Now the ound their coal going so fast that they had to raise the price sent in just the same, and, although it was impossible for were o be got off this month, they were left subject to the probable rise on stove coal and thenarger sizes was fixed at 1 dols, 40 cent gainst 1 dol. 15 cents the last time, though it has been as low a raised its tolls to Mauch Chunk, so that they are now 75 cents a ton, or 50 per cent. more than they were a fortnight ago. And The Lehigh Valley is putting the price ahead almost every day
and refusing any orders beyond the immediate capacity of its collieries. One of the leading shippers, who has collieries in the
Shamokin district, reports that he never sent away so many customers as he had during the past ten days. In the first place and he would not take more than one or two more orders for next week, and that only at 3 dols. 50 cents. He was booking orders also subject to the price ruling then, and he expected that it would
any advance in tolls, but be fully 4 dols. He would make no contracts to deliver at Christmas for less than 4 dols. 50 cents. Does not this look like a boom? on Monday is 35 cents on chestnut, 25 cents on lump, steamboat and stove, and 10 cents on egg, broken and pea. The increase in
tolls is about 25 cents over the last figures, and 100 per cent, over the minimun of this year. The Reading Company carries about 700,000 tons of coal a month, of which its Coal and Iron Company
mines about 400,000 . Putting the increased tolls at 50 cents a ton, and the advance in the price of coal at the same figure, though it will average more rather than less, and it will be seen that the, in the miners' wages, will be at the rate of fully half a million a month, and that is supposed to be enough to pay all the fixed charges of the company. On the Lehigh Valley the increase in
tolls will be about 75,000 dols, a month, or more than half enouch tolls will be about 75,000 dols. a month, or more than half enough
to pay its annual dividends. The wages of the miners, too, who
never have had such steady work since they have been in the reger have had such steady work since they have been in the
regoon be fully up to the 2 dols. 50 cents basis; last only $\&$ per cent. below. The result of this advance will also
the taking of the Lehigh and Wilkesbarre Coal Company ou
the hands of the receiver by the end of the year if not before.

RAILWAY MATTERS.
The French line from Pondicherry to a point on the Anglo-
Indian railways was recently opened amid the rejoicings of the
French colony. Iv reply to an announcement recently made by the Alta Italia
Railway that 1000 servants. were wanted at If. 80c. per day, 28,000 applications were received.
Amerioas locomotive building advices from Philadelphia state
that nearly 2500 men are now employed at the Baldwin Locothat nearly 2500 men are now employed at the Baldwin Loco-
motive Works in that city. The works have, it is stated, large THE Westinghouse contracts are offered almost daily.
The Westinghouse Brake Company have received an order
to equip the trains of the New York and Philadelphia new line to equip the trains of the New York and Philadelphia new line
with their antomatic air brake. The Central Company of New
Jersey, which'owns the New York end of the line, has hitherto Jersey, which owns the
used the vacuum brake. The frrst lot of "bogie" carriages manufactured in the Victo-
rian colony for the Government railways have lately been rian colony for the Government railways have in the Viately been
deliverel by Mr. Phillip Bevan, of the Melbourne Engineering
Works. The carriages are 43it.. long by 9ft. wide, and are con-
structed chiefly of diferent chiefly of different colonial woods.
In a recent paper read before the London Association of Fore-
men Engineers by Mr. M. Reynolds, on practical engine driving,
the author spoke of the blindingersen men Engineers by Mr. M. Reynolds, on practical engine driving,
the author spoke of the blinding effect of the glowing white light
of the engine fire, a brief glance into which, he said, rendered the person who looked for a time unable to recognise the colours of
Mr . Woons, the Victorian Minister for Railways, has decided
that another effort shall be made to burn "lignite" on the Government Railways. It is found in abundance in Victoria,
but it has not hitherto been much used; as apart from the difficulties of burning it properly in the fire.boxes of the engines
as at present constructed, the cost is officially stated to be about
16 per cent. in excess of imported (N) 16 per cent. in excess of imported (N.S.W.) coal.
IT is now proposed to construct a railway by the Jarentaire
and through the Col du Mont, instead of through Mont Blanc,
by which it is computed that a saving of seven by which it is computed that a saving of seven kilomentres might
be effected. The promoters, however, seem to forget that the object of a third Alpine railway is to compete with the Gothard
line and retain for France the Anglo-Indian traffic ; but from
Clan Calais to Brindisi the distance by Mont Blanc is 22 kilometres
greater than by MIont Cenis, and exceeds by 150 kilometres the
distance between Ostend and Brindisi by the Goth Or the 346 axles which failed the first nine months of the
current year 178 were engine axles, viz, 164 crank or driving, and 14 leading, or trailing; 16 were tender axles, 2 were
carriage axles, 143 were wagon axle, and 7 were axles of salt-
vans. 58 wagons, including the salt-vans, belonged to owners

 headed, 93 were single-headed, 12 were of the bridge pattern, and
13 were of Vignoles section, whilst the section of 1 was not stated; of the double-headed rails, 785 have been turned : 1168 rails were
made of iron, and 209 of steel. A GooD deal has been heard lately of the Government purchase
of railways. Baron von Weber, in considering the argument of
those who support this, that a large amount of administrative those who support this, that a large amount of administrative
expenses might be saved by the concentration of the railroads of
a. country into the hands of the Government, shows that there is a limit to the economy caused by such concentration, and says
that experience shows that the sayings in certain directions are system as large as the large companies of England and Francesay 2500 to 3000 miles-is all that a single administration is
likely to manage economically and effectively, and he supports
his opinion by statistics showing that as railroad systems have his opinion by statistics showing that as railroad systems have
grown the proportion of their expenses to earnings has generally increased, and that it has increased most where the systems have
grown most. Iv writing of the new fast train of the Paris, Lyons, and
Mediterranean Company for Koilinische Z Citurug gives figures to
show that the speed of this new express is not, as asserted the show that the eoneed of this new express is not, as asserted, the
greatest attrined on the Continent, but is exceeded that of
several German trains. The Paris-Marseilles express matkes on

 $71 \cdot 8$ kilometres per hour. On the Potsdam line, between Berlin
and Magdeburg, a distance of 142 kilometres is traversed in
2 hours 7 minues, including stopanes, at 2 hours 7 minutes, including stoppages, at a mean speed of $67^{\circ} \cdot 9$
kilometres per hour. The velocity attanined on this line between Brandenburg and Magde
$69 \cdot 15$ kilometres per hour.
Ir is procosed to construct a railway from Hambantota to Uva,
Ceylon. The present means of transport of the produce of Uva,
 percentage finds an outlet by the Batticaloa road. The great bulk
of the traftic passese over the Ratnapura road to Colombo, which
is 112 miles is 112 miles from Haputale, 136 from Badulla, and 170 from
Madulima. The cost of transport is excessively expensive on
account of the great distance from the seaboard f from the losses that have to be sustained by pranters in in having their coffee stolen
from the carts on the road to Colombo from the deterioration of from the carts on the road to Colombo ; from the deterioration of
the crop by being so long on the road, from the uncertainty of
transport on account of the mortality of bullocks in unhealthy years, and from the stoppoage of traffic by the land slips that are
constantly occurring at Halpé. The Government of Ceylon have surveyed a line of railway from Navalapitiya-the present
terminus of the existing railway - via Nanoo Oya and Happutale tion of the first section will be invited within a month or two but as the present portion of the line from Nanoo and Badulla
will be very heavy, it is, according to a circular by Mr. H. K. Rutherford, not to be proceeded with.
Mr . W. T. Gunsov's improved system of tramways, referred
to in a previous number was again disussed by the members of the Manchester Scientific and Mechanical Society at their meet-
ing on Friday. The president-Mr. although the system was a step in the right direction, there were yet some prace objection would be the amount of skilled labour
adoption.
which would be required in laying, and he thought the smooth surface of the sleepers would be a disadyantage. Mr. A. Jacobs,
borough engineer, Salford, also thought the sleepers would worl borough engineer, Salford, also thought the sleepers would work
smooth, but he chiefly criticised Mr. Gunson's etimates of cont,
which, in his opinion, were considerably below the mark. Mr. which, in his opinion, were consideraby below the mark, Mr.
MroLeod thought adificulty would be found in the expansion and
contraction of the rails, whilst. Mr. Heys thought this would be contraction of the rails, whert. Mr. Heys thought this would be sleepers, added that he did not consider a smooth surface neces-
serily a slippery one. MIr. Savage, Deputy Superintendent of the
Manchester Fire Brigade, thought that the oscilation which he had found caused to the fire ensines in riding through the streets by the present tramway, would be obviated by Mr. Gunson's system.
Mr. Gunson having replied upon the discussion, in which he said no serious objections had been raised to his system, and
having defended the proceedings by observing that four or the different systems of
tramways had already been submitted to the society, but he
thoum though they would agree with him that Mr. Guns.
best they had yet had the opportunity of discussing.

NOTES AND MEMORANDA.
A sniple method of classing steel has been proposed by Herr
Barus in a memoir discussing the thermo-electric properties and Barus in a memoir discussing the thermo-electric properties and
electrical conductivity of steels in relation to their hardening
qualities. He divides steel into two qualities. He divides steel into two classes, One class, which
comprises the harder varieties, he finds to be electro-negative to comprises the harder varieties, he finds to be electro-negative to
copper ; and the other, comprehending the softer varieties, electro

Pror. A. M. Mayon, of the Stevens Institute, records that while a thunderstorm was raging at so great a distance of that
only the illumination of the clouds told when a flash occurred, he attached one wire of a galvanometer to the water pipes and the other to the gas pipes of his bouse, thus connecting a vast system
of metallic conductors, stretching for miles about the city. Galvenever a flash occurred, he records, the ne
ganometer was deflected 10 deg. to 20 deg.
occurrences were simultaneouss, so far as could be determined, occurring at the same instant. The storm was ascertained to
have been tweve miles distant, and the conclusion is drawn that at least 500 square miles of the earth's surface had its electrical
condition changed at each flash of the lightning,"

The glass industries of Pittsburg, which have reached large proportions, are made the subject of editorial comment by the
Chicago Commercial, from which we take the following points of interest:- More than half the glass produced in the country is made there. The output has a value of about $7,000,000$ dols. per annum, and the capital engaged in the manufacture, in ground,
buildings, machinery, \&e., will not fall short of $3,500,000$ dols. The buily hins, machinery, ce., wini not fall 1 hort of t500, 1 he doperatives
city has 79 factories, containing, in all, 690 otas. employed number over 5000 , to whom about $3,000,000$ dols, are paid
every year. Last year, there were consumed in the manufacture
of噱
 SpEAking of the hurricane which swept along the American
Southern Atlantic seaboard on the 18th of August last, the U.S. Weather Bureau reports that the wind velocities were among the
highest, if not the highest, ever recorded. At Cape Lookout, highest, if not the highest, ever recorded. At Cape Lookout, at
6.30 a.m., the barometer falling very rapidly, the anemometer not the maximum velocity of 138 miles per hour. But this was began to passum. away and the barometer to rise, the winm contre
bind
the estimated velocity of 165 miles per hour. An observed velocity of 100 miles an hour was also reported from Cape
Henry. The highest winds attending storms near sea level with
which which these can be compared, says the Scientific American, are,
perhaps, those of the Liverpool storm of February, 1868- from
100 to 120 miles an hour-and those of the rreat Guadeloupe hurricane of $1865-$ from 100 to 130 miles.
AN alloy, containing 70 per cent. of copper and 30 per cent. of
manganese, has been produced by a German tirm, who use it as an addition to brass or bronze, for increasing the density, tensile
strength, and ductility of these metals. The manganese, by its
ready oxidntion in formation of oxides of copperes or tin, which in ordinary practice
impair the value of the product. The same parties fikewise
. imparir the value of the product. The same parties likewise
recommend the use of metallic manganese for the same purposes and affirm that the addition of as little as 1 to 1 per cent. of
metallic manganese, or of $\$$ to 3 per cent. of the manganese-coper alloy, will insure in every case a s solid casting. The addition of a
larger percentage of manganese is said thave ing the metal ; and bronze, with such addition, can, according to our athority, be made to assume a hardness approaching that of
steel. We refer, for the facts herein contained, to the Chemiker
Zeitung.

IN a recent number of the Annolen der Physik und Chemie, Herr v. Wroblewski inquires into the nature of absorption o
gases, by a kinematical method, inferring from the phenomena of motion of gases diffusing in absorbent substances, the condition
in which they exist in these. The phenoment studied, and the author conciudes, inter alin, that the absorption
of protoxide of nitrogen, carbonic acid, and hydrogen by
and caoutchouc is a purely physical process; and the gases retain,
after absorption, their gaseous state and all characteristic atter abserption, tonstant of diffusion of a a gas depends only
properties. The chat on prysical properties, and chiefly its specific gravity, being
apporimately inversely proportional to the square root of this, but the specifically lighter gases show greater constants than this
relation expresses. The constant for protoxide of nitrogen and carbonic acid increages with increase of temperatitre, and ant
10 deg. C . is fifty times smaller than that for carbonic acid in water. A caoutchouc membrane is to be conceived as a porous
plate endowed with gas-condensing and rarefying powera Is preparing brass for the colourless or nearly colourles
lacquer, the goods, after being annealed, pickled, scoured, an lacyuer, the goods, after being annealed, pickled, scoured, an
washed, are either dipped for an instant in in apure commercia
nitrous acid, washed in clear water, and dried in aswdust,
immersed in a mixture of one part of nitric acid with four o immerred in a mixture of one part of nitric acid with four or
water, till a white curd covers the surface, at which moment the
goods are withdrawn, washed in clear water, and dried in Just. In the first case the brass will be bright; in the latter,
dead flat, which is usually relieved by burnishing the promine
parts. Then the goods are dipped for an instant in commercia
nitric acid, and well washed in water containing argol-to pre
serve the colour till serve the colour till lacquered, and dried in warm sawdust. So
prepared, the goods are heated on a plate and varnished. The
varnish used is ounce of shellac dissolved in one pint of alcohol. To this simple varnish are added such colouring substances as red sanders,
dragon's blood, and annatto for imparting richness of colour. To lower the tone of colour, turmeric, gamboge, saffron, Ca
and sandarac are used. The first group reddens, the and sandarac are used. ande irst group rewaens, the second
yellows the varnish, while a mixture of the two gives a pleasing
The following specific gravities at 15 to 16 deg . $\mathrm{C} .=59$ and $60 \cdot 8 \mathrm{deg}$
F. have been recently published as determined by Dr. H. Hager Butter fat, clarified by settling, $0.938-0.940$; do. several months old, $0.936-0.937$; artificial butter, $0.924-0.930$; hog's lard,
fresh, $0.931-0.932$; do. old, $0.940-0.942$; beef tallow, $0.925-$ $0^{0.929}$ shed $1: 1,0.936-0.938$; butter of Cacao, fresh, $0.550-0.952$ do. very old, with carbon disulphide, $1.04-1.015$; do. adalterated with fatty
acids, $1.010-1.011 ;$ do. crystalline, $0.965-0.066$; stearic acid melted and in drops, 0.964 ; do. crystalline ${ }^{\circ}$, yellow and resin
yellow, $0.959-0.962 ;$ do. African, 0.960 ; do. yelo

 white, $0.923-0.924$; Araucaria wax, ${ }^{0} 990$, resin-fr. pine-
yellow transparent, $1.0831 .084 ;$ do whitish, opaque, 1.044
1.047; do. very dark colophony, 1.100 ; shellac, light coloured, $1.1047 ;$ do. very dark colophony, $1 \cdot 100$; shellac, light coloured
$1.113-1.14 ;$ do. darker, $1.123 ;$ do. bleached, $0.965-0.968$ dammar, old, 1.075 ; copal, Kast Indian, 1.063-1.077; do. West
Indinn, $1.070-1.800 ;$ do , very old $1.054-1.055$; benzoin, Siam
$1.235 ;$ do. Penang, $1.45-1.155$, do Boneo 1.160 , 1.170

Ir is expected MISCELLANEA.
IT is expected that ere long considerable quantities of petroleum The New York Stock
ment of aining dock Exchange has decided on the establishA cabLearas from liverpool has, it is stated, been received at
Pittsburr offering 10,000 tons of Beesemer steel blooms to be be
delivered at Baltimore at $\& 8$ sterling per ton, quality guaranteed
for steel rails. for steel rails.
marine ent-plativg continues to acquire favour at the hands of are now being plated by the Plating Company, Stockton, for the
Admiralty
WE are informed that the John Coekerill Company has work
assured to it for six months in advance. A few days since it assured to it for six months in advance. A few dayss since it
obtained orders for 20,000 tons of rails on foreign account. Of these rails 6000 tons were ordered for America at $£ 516 \mathrm{~s}$, per ton Mr Edwats Surux
Wr. EDWard Shipley Ellis, chairman of the Midland Railway, died on Wednesday evening at The Newarke, Leicester, in combe, chairman of the Great Northern Railway, died on the same
evening at his residence

The U.S. Minister to Japan reports that during the past year
the imports from the United States amounted to three and a-half million of dollars, and the exports to the United States seven and a-haat mimon ohat of all the European countries combined, except Great Britain. The commerce of the United States with Japan is rapidly increasing.
ITr is thought that before long the cotton mills in New England increased safety, convenience, and higher speed for machinery A gingham company has tried the experiment, and finds that a
building of that description, covering about an acre, cost $£ 4600$, has saved in gas alone a sum equal to the interest on the cost o A report from the English Consul at Florence draws attention to the decline of some branches of English trade with Italy. In is, he says, pushing England out of the market. Hare, Geis inquiries
lead him to the belief that the greater foresight in regard to the needs of Europe for railway
material than their C. material than their English competitors, and that the benefit they
are now reeeiving is partly due to this cause. He adds that this
foresight is probably nassisted by " "the entinent ar the dowest prices which contracts are given, weekly and exchanging ideas as to prices and rates of freight.
Norrce has been given by the Lower Thames Valley Main
Sewerge Board that they intend ment Board for a provisional order enabling them to put in forco the provisions of the Lands Clauses Consolidation Acts, 1845,
1860 , and 1869 , with respect to the purchase and taking of lands otherwise than by agreement for the purposes for which the
Lower Thames Valley Main Sewerage District was formed, and and works for the purification, utilisation, filtration, and disposal of the sewage of the said district, and for the erection of pumping
and lifting stations, tanks, machinery, and plant, and for any purposes connected
for the said district.
AN American method of casting is being adopted by light iron-
founders, who have felt the introduction of American wares affecting their businessea, Instead of the articles from which the cast is taken being embedded in sand, as upon the English prin-
ciple, they ane now being embedded in plaster of Paris. The sand
"pd odd side" took seeveral hours to make up, lasted only a week,
and cost a few sbillings, the plaster odd-side can be worked
from for months. It costs as many pounds as the other does shillings, but it can be worked from much more rapidly. There is a saving of space in the casting shop and of working utensils
under the new system. The castings are clearer, more easily worked ap, and when of malleable iron the finished work is pronounced equal to wrought iron.
The introduction of American anthracite coal into Switzer-
land has had the effect of directing the attention of the Swiss engineers to their own mines. Americans have taught them that
anthracite is excellent fuel and they have learnt from to use it. They urge that it would be possible to mine the large
amount of coal used by the country (almost 500,000 tons) hitherto imported, from their own anthracite coal basin. In support of of the coal taken from the field which extends from Saint-Manaice
 The proposed Algerian Sea is still discsussed in scientific circles
in France. M. Roudaire, its projector, in a recent letter to M. de Lesseps, gives the following resume of its supposed advantages,
These will be, as we glean from the Popular Science Monthy,
an "an immense amelioration of the climate of Algeria and Tunis,
since the moisture evaporated from this vast expanse of water will be carried by the prevailing southerly winds over these
countries, and must, in consecuence, lessen the intensity of the the night. The proposed sea, also, being navigable for ships of
the largest draught will open districts lying to the south of the Aures and the Atlas range,
while water-courses, which, fron the south, west, and north,
con verge toward the 'shottes,' but which are now dry during the con verge toward the 'shottes,' but which are now dry during the
greater part of the year, will again become rivers, as they once tracts of now desert land on their banks." M. Roudaire, whose faith in the ultimate realisation of this work is unbounded,
estimates its cost, from preliminary surveys, at about 20 million rancs. To form the proposed sea, will, according to M. Roudaire,
simply require a cutting through the narrow isthmus separating
he head of the Guif of Gabes from the ancient lake-bed of E1 the head
Djerrid.
THE total product of the rolling mill and steel works of
Pittsburgh last year was 417,147 net tons, and that of the blast furnaces 217,299 net tons; which show that the furnaces make
only about 50 per cent. of the pig iron consumed by the first two classes of manufactories. The total amount of iron rolled in
Allegheny county last year ineluding railk, was 282,33 net ons,
against 268,486 tons in $1877,247,443$ in $1876,239,069$ in 1875 , and

 year than in any other district in the country except one. In the
Lehigh Valley, where there were fifty-one blast furnaces, 416,307 Cons were made, and in Allegheny county, where there were twelve
completed furnaces 217,599 tons 2 were produced. The other leadng districts made the quantities shown below: Schuylkill Valley,
14458 tons, J. Lower Subquehann V Valley, 137,719 ; Mahoning
Valley 84,547; Hocking Valley, 55,690 ; Hanging Rock, 44,650 .

THE HASSE-SIMON PATENT POWER HAMMER messrs. b. and s. massey, openshaw, manchester, engineers.

We illustrate above a new power hammer, for which it is 120 revolutions per minute. The tup, or hammer-head, is upward movement of the hand lever is sufficient. And when claimed that, although somewhat similar in appearance to lifted by means of a flat bar, the upper part of which is placed the hand is removed it remains suspended in whatever position other power hammers which have been made in England and between two revolving friction rollers. This flat bar is made it has reached. When falling 4 ft . 6 in ., it can be arrested America it what it professes to be-a power hammer applicable, not to increases in thickness from the bottom to the top. Simple as Our engravings explain themselves. Figs. 1 and 2 are eleone class of work, but to all purposes. It is driven by two this inprovement is, the difference that it makes in the work- vations, Fig. 3 is an enlarged view of the compressing gear, belts-one open and one crossed-direct from the main shaft, ing of the hammer is great. Instead of having to put great Fig. 4 illustrates the action of the pulleys in different porwithout any intermediate countershaft, at a speed of about pressure upon the bar, in order to lift the hammer, the lightest tions of the bar, the construction of which is shown by Fig. 5.

PATENT TESTING MACHINE.
MESSRS. DANIEL ADAMSON AND CO., ENGINEERS, DUKINFIELD, MANCHESTER.

ThEsE machines, one of which we illustrate herewith, are punching, or bending tests, and can, when required, be entirely self-contained, and nearly self-registering, and can be arranged for torsional tests. These machines are made in used by any youth knowing the simplest calculations. In the various sizes, from 5 tons to 2000 tons. The illustration is smaller machines the specimen to be tested may be either 4, 5,8 , or 10 inches long, whilst the larger machines are constructed to take a much larger test piece. No preparation of the specimen is requisite, it being simply gripped by means of wedges, thus considerably reducing the cost of preparing the sample. The test strain is produced bya hydraulic ram working in a forged steel cylinder, and put in action by two pumps actuated by a double crank shaft and hand fly-wheel. All the bearing points of the entire lever apparatus are hard knife edges on hard, smooth surfaces, the friction being thus reduced to a minimum. The elongation percentage can be read off by a scale fixed on the wise, and every consition developed by the test can be noted with accuracy and dispatch.
These machines are constructed for either tensile, compression,

that of a 100 -ton machine. The machines are constructed on the decimal system, so that the total force applied is end of the machine is used to restore the ram to its place in
the cylinder by the aid of a weight in a pit below. The diagram shows the arrangement of the levers. One end of the specimen to be tested is gripped in the block B, which is hinged at the knife-edge centre G to the horizontal lever H working on the knife edge fulcrum D; and at the end of this lever is the link K for connecting the lever H to the lever I, working on the knife edge fulcrum D, and the long arm of this lever is connected by a link to an ordinary steelyard lever, provided as usual with an adjustable weight to balance the whole system of levers. The weights W are to give a fixed increase of load as the stress increases. The test by compression is effected by connecting the steel yard block and cross block by stirrups to the actuating ram block at the opposite sides, and then applying the force from the pumps, levers and stel yard as before. Five specimens may be tosted in one hour, and the results given accurately.

SIX-HORSE TRACTION ENGINE.
THE DURHAM AND NORTH YORKSHIRE STEAM CULTIVATION COMPANY, RIPON, ENGINEERS.

The engine which we illustrate herewith, by the Durham and North Yorkshire Steam Cultivation Company, Limited, Ripon, is of 6 -horse power, and presents some novel features, fitted with a liner of hard metal, the space betw. stroke ; the cylinder case forming a steam jacket open to the boiler. The top cover gives direct access to the stop and governor valves, and carries two safety valves fitted with spring balances. The driving gear is of crucible cast steel distributed equally on both sides of the engine. The heating surface of the fire-box and tubes is 135 square feet; the fire-grate area is 5 square feet; the diameter of crank shaft is $3 \frac{1}{2} \mathrm{in}$.; the second motion shaft $33_{4}^{3} \mathrm{in}$., and the road wheel axle 43 in . One of the chief features of the engine is the use of wrought iron side plates as shown, to which all the bearings are fitted.

These plates are bolted to planed angle irons rivetted to the back and front of the shell of the fire-box, and at the top are secured by two cross plates, bolted together at the four corners by planed angle irons, and forming a rigid box in which the crank shaft works. The plates thus fixed receive the strain of the gearing and prevent the liability to leakage common with the ordinary horn plates. They can be easily emoved without affecting the steam or internal arrangements of the boiler, and this is found convenient in case of repairs. The main driving axle is fitted with diferential drum. The main driving wheels of wrought iron are 5 ft . 6 in . diameter, by 16 in . broad, and the front wheels are 3 ft . 6 in . diameter by 10 in . broad. The driving gear is controlled by a single lever, arranged for two speeds, the slow speed being one and a-half miles, and that of the quick being three miles per hour, at the nominal speed of the engine, viz., 150 revs. per minute.

HEINRICHS' ELECTRIC LIGHT REGULATORS

 AND ELECTRIC CANDLESA short time since Mr. C. F. Heinrichs exhibited his new electric lamps to a number of gentlemen assembled at Sage's Commercial-buildings, Gray's-inn-road. The same lamp was tion at Messrs. Tasker and Sons' Works, Sheffield. The lamps which we illustrate herewith were also referred to by Mr. J. N. Shoolbred, in a paper read before Section G of the British Association
The objections to ordinary lamps and candles are for the mpst part (1) the short period during which the lamps will
burn without a fresh supply of carbons, viz., from one to four hours ; (2) the length of time which elapses before a lamp becomes re-lighted after it has from any cause become extinguished, (3) the shadow thrown by the framework of the lamp supporting the mechanism which holds or feeds the
carbons. carbons.
In Heinrichs' regulator and candles the use of curved carbons allows of a large supply of carbon within a small compass. Thus, a ring 12in. in diameter gives a length of ain. of carbon rod, which if rectilineal would be difficult to thickness, will burn for carbon, about 12 millimetres in current of from 1200 to 1800 candle power. Thus the first objection is overcome. In regard to the second, the mechanism described below is employed, by means of which the lamp, should it become extinguished, is relighted in a period of time so short that the eye does not easily detect any cessation of the light. With respect to the third objection, the the arc, so that no shadow is thrown downwards, and there is consequently no loss of light in this direction.

Fig. 1 shows the regulator, in which the semicircular carbons become separated, and are fed by means of a new step by arrangement. The feed of the carbons takes place actual contact whilst burning. The carbons are brought together by the weight of the two metal arms which hold them. These arms are connected, by means of two chains, with the pulley, as shown ; and the latter is in gearing with the spindle to which are fixed the escapement and ratchet wheels. The lever L^{2}, with its pawl, acts upon the ratchet wheel in order to effect the separation of the carbons to the required extent; and the lever , with its two pallets, acts upon the escapement wheel to produce the reed or the carbon by the followapparatus in order to produce the light it penses through the coils of the electro-magnets M and M , passes through the armatures to be attracted and bringing both levers, L and L^{2} into action. The latter, by leaving the position shown by the dotted lines, releases its pawl, and allows it to fall into the ratchet wheel, moving it so as to separate the carbons sufficiently to produce the light. Before, however, this lever $-\mathrm{H}^{2}$-comes to rest, it raises the pawl from the ratchet wheel
by means of the stud s_{1}, thus leaving the wheel free. But at the same time the lever L comes into action, and its outer pallet holds the escapement wheel, thus maintaining the carbons apart. But when by the burning away of the carbons the correspondingly weakened, and the magnet M loses some of its attracting power, and thus allows the spring between the inner pallet and the lever L to press backwards this lever with its outer pallet. This allows the escapement wheel to advance nearly by one tooth; but by the action of the spring the innet pallet, which is pivotted to the upper end of the lever L, is pressed forward and stops the motion. By this advance the carbons come sufficiently together to increase the current, the magnet M gains power, the armature is slowly attracted into its former position, the lever L presses the inner pallet against the stud s, thus allowing it to leave the escapement wheels, and thus the remaining portion of the motion through one tooth is accomplished, and carrange-
ment is ready for the next step in feeding the carbon. But ment is ready for the next step in feeding the carbon. But
should the current fail altogether, both levers will be withdrawn by the action of the spiral spring shown on the magnet M and the spring attached to the armature of M_{1}, and there is then nothing to prevent the carbons from coming immediately into contact. The spiral spring here referred to is so weak that it is able to withdraw the lever L only when no current passes. Thus should the lamp from any cause become extinguished, it is instantaneously relighted by the carbons coming into contact, and by the action of the separating mechanism above described. It will be seen that, although Mr. Heinrichs' carbons are not automatically adjustable with it seems to be exact proporfion to thiently near, approach to practical requirements.

Mr. Heinrichs has also designed the electric candle shown in Fig. 2, in which no clockwork or mechanism is required for feeding the carbons. In this apparatus two sets of the semicrossing each other at right angles ; the arc being produced between the carbons at the point of crossing. The lower carbons are connected to the negative pole of the source when a continuous current is employed; the upper set, which is movable and fixed to the armature as shown, being connected to the positive pole.
When no current passes, the upper carbon rests upon the lower ; but, as soon as the current is transmitted through the apparatus, the upper carbon is raised by the attraction of the armature, so as to separate the carbons to a sufficient distance to produce the arc. The feed of the carbons takes place automatically by the weight of the metal arms which hold them. The two views of the carbons at the point where the arc passes show how they become affected by a continuous points all obtains a pointed form. A candle of this form four be constructed to burn from ten to twenty-four hours without replacing the carbons. In order to obviate the resistance opposed to the current by long carbons, these are electro coated with copper. It is stated that carbons of circular form as manufactured by Messrs. Johnson and Phillips, are not more expensive than those of the ordinary form,

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our

 correspondents.)THE THEORY OF THE COMPOUND ENGINE,
Sir,-Your correspondent "P. H.," being desirous of seeing an example worked out, proposes 280 -horse power, 60 lb . boiler has not, however, stated the speed of piston, so we will continue o use the same 420 ft . per minute. The first thing to consider is he number of expansions. In selecting five the terminal pressure afety, having regard to the higher grades of expansions when educing the power of the engines.
The coefficient of 5 expansions $=522$. Then, observing the usual allowances, we have, allowing for imperfect vacuum, $(60+15-5) \times 522=3655-2 \cdot 54=34 \mathrm{lb}$. the average pressure
due to five expansions. 280×33000
31×420
, adding 20 per cent. $=777 \mathrm{in}$. area of the ow-pressure cylinder, and which would be also the area of the ylinder for a non-compound engine at five expansions,
Having two expansions in the high-pressure cylinder, we have $\frac{5}{2}=2 \frac{1}{2}$ expansions in the low-pressure cylinder. Now it i clear that ratios of 4 to 1 is only true under certain conditions his case. The following rules will be found to suit every pable in condition, and are self-evident. In order, then, to find the ratios so that the strains on the crank pins will be equal at 280 -horse 26418 units of work due to the entire engine

$$
26418=13209 \text { units due to each cylinder. }
$$

Then ${ }^{13209}=17 \mathrm{lb}$. the average pressure in L.P.C. Being two expansions in high-pressure cylinder, the average
pressure will be $70 \times 846=59 \cdot 2-17=42.2 \mathrm{lb}$. Then, taking the other half of the units, $\frac{13209}{42^{* 2}}=313 \mathrm{in}$. = the area of the high-pressure oylinder

$$
\text { The diameters are } 31 \text { inin. L.P.C.C. }
$$

$\frac{777 \times 17 \times 420}{33000}=168-20$ per cent. $=140$ H.P. for L.P.C. $313 \times 42 \cdot 2 \times 420$
$33000-168-20$ per cent. $=$
140 H.P. for H.P.C.
Total
280 H.P.
If it is required to use four expansions in the low-pressure
4. Then $\frac{5}{4}=1 \frac{1}{4}$ and $70 \times 978=68.4-17=514$ $\frac{13209}{514}=257.9 \mathrm{in}$. for H.P.C. $18 \frac{1}{4}$ diameter.
If five expansions in low-pressure cylinder, the $70-17=53 \mathrm{lb}$. $13209=249 \cdot 2 \mathrm{in},=1713$ in all the cases using the same area of ow-pressure oylinder.
Applying these rules to the example in your own article in pressure, 80 lb . boiler pressure, and 420 ft . per minute, we have $\frac{500 \times 33000}{27 \times 420}$
$1455 \times 27=39285$ units of work on entire engine.
$\frac{39285}{2}=19.642 .5$ units due to each cylinder.
$\frac{19642.5}{1455}$
There are two expansions in high-pressure cylinder, so that $80 \times 846=67 \cdot 6-13$.
Taking the other half of the units $\frac{19642 \%}{54}=363 \mathrm{in}$. area of H.P.C. The diameters are 43 in . L.P.C.

$$
\begin{aligned}
& \frac{1455 \times 13.5 \times 420}{33000}=250 \text { H.P. for L.P.C. } \\
& \frac{363 \times 51 \times 420}{33000}=250 \mathrm{H} . \mathrm{P} . \text { for H.P.C. }
\end{aligned}
$$

Total... $500 \mathrm{H} . \mathrm{P}$.
Joseph Henry

11, South Lambeth-road.

Jog Henir.
Srr,-I have somehow had a presentiment that this controversy
would not be allowed to close until the correspondent who "fails to see why there should be any more economy got from a compound engine than from a single cylinder engine" had sent in his contribution, and this has come at last with Mr. Tattersall's letter. It is unfortunately the fact that there are many compound engines at work giving out results far inferior to those given by
many single engines, but this arises from no fault in the principle, many single engines, but this arises from no fault in the principle,
but may be easily traced to the mal-construction and mal-design of the makers. As a case in point I may mention that I had placed in my hands, a day or two ago, a compound engine using plo lb, fuel per horse power per hour with an evaporation of 6 lb .
Mr. Tattersall says, "I should like to see if a compound engine Mr. Tattersall says, "I should like to see if a compound engine
could be made to perform 300-horse power with a less amount of coal and water than a single engine, taking an equal evapora-
tion in each case." 1 answer him by saying that in tion in each case." I answer him by saying that in
every case it can be accomplished, and I will gladly undertake to effect a saving of 25 per cent. by compounding the best single engine at present at work. It is difficult, nay-almost if not actually-impossible to prove by formula why the compound engine is more economical than the single engine; but this much may be said, you get a more equable range of temperature which partially
prevents loss by condensation, as you erect a barrier between the prevents loss by condensation, as you erect a barrier between the the initial pressure from the boiler.
${ }^{-}$.W. F. says that, "One would think some attempt would be made to show that certain ratios of oylinders are the best for
certain pressures or for given rates of expansion by logical reasoning." This Thave gone into in my "Short Treatise on the Compound Engine," but he has surely passed over my formula for
practice as given in your columns in one of my letters, viz., to practice as given in your columns in one of my letters, viz, to
divide the boiler pressure by the constant 5 , and the square root
of the quotient gives at the same time the ratios of the two of the quotient gives at the same time the ratios of the two
cylinders, and the number of expansions in the high-pressure (1) that the power given out by each cylinder will be about equal; (2) the variations of temperature in cach cylinder will be multiplied by their respective initial pressures-will be about
equal. Henry, in fattering himself tbat anything he has written
Mr. delusion. I am sure it must be a matter for regret that he has
occupied your columns, and approached this subject with no
higher aspirations than he would a game at chess, solely to check
mate his neighbour, for we have had no information from him of apy kind whateyer- $\mathrm{P}, \mathrm{Hothing}$ but profitless cavil, the sizes of the high-pressure and low-pressure cylinders, and 60 lb . above atmosphere; steam to be cut off at half stroke in
ster high-pressure cylinder; to be paddle engines ;" and this by a foot note you endorse. But, Sir, after putting to one side "paddle
engines" and "length of stroke", as not being relevant, 1 mus engines" and "length of stroke," as not being relevant, 1 mush
take exception to the small number of expansions in the high pressure cylinder, for the reasons I have already given above
in my few remarks to "W. F.," because the conditions of efficiency in a compound engine are that the horse-power, range ciency in a compound engine are that the horse-power, range
of temperature, and greatest total strain should be equally divided between the two cylinders, or, at all events, practically
so ; but the data furnished by "P. H." would not, from any point of view, give us an economical and otherwise eflicient com-
'ound engine. To apply my rule to this data, which I am asked
ould get $\frac{60}{5}=12$ and $\frac{12}{2}=6$-that is to say, the
high-pressure cylinder would be one-sixth the araa of the low pressure cylinder to give a range of twelve expansions; but to
make the whole question fairly intelligible, we have in the first
place to reason as if we were dealing with a sincle-cylinder engine, so as to determine the size of the condensing cylinder a compound engine, and taking

```
    \(\mathrm{A}=\) area of single or condensing cylinder,
    \(\frac{\mathrm{R}}{\mathrm{H}}=\) total number of expansions \(=12\),
    \(\mathrm{H}=\) byperbolic logarithm of \(\mathrm{R}=2 \cdot 4849\),
    ap \(=\) average pressure \(=75 \frac{1+2 \cdot 4849}{12}=2178\)
```

 \(\begin{gathered}\mathrm{A} \times 420 \times 21 \cdot 78 \\ 33,000\end{gathered}=280\), and consequently \(\mathrm{A}=1010 \cdot 1\)
 which is alike the area of a single engine and condensing cylinder
data
high-pressure cylinder, and it is found in this way : let
$a p=$ average pressure in condensing eylinder,
$=$ ratio of cylinder $=\frac{A}{a}$
$H^{1}=$ hyperbolic logarithm of r,
get

$$
a_{p}=\mathrm{P}_{1} \frac{\mathrm{H} 1 \mathrm{\jmath}}{r-1} \text {, so that if }
$$

$$
\begin{aligned}
& \mathrm{ap}=\mathrm{P} \frac{1+\mathrm{H}}{\mathrm{R}} \\
& a p=\mathrm{P}^{\prime} \frac{\mathrm{H}}{r-1}
\end{aligned}
$$

then $(a p-a p) \times r=a p^{2}=$ average pressure in high-pressure cylinder, and applying these general laws to "P. H.'s" data, we
get $a p=21.78, a p=13 \cdot 438$, and $a p^{1}=50 \cdot 0.52$. To find the power et $a p=2178, a p=18$ sing and $a p^{2}=$ eylinder we have
developed in the condensing

$$
1010.1 \times 420 \times 13.438=172.8 \mathrm{H} . \mathrm{P} .
$$

and the power developed in the high-pressure cylinder

$$
\frac{168.35 \times 420 \times 50.052}{33,000}=107 \cdot 2 \text { H.P., }
$$

which is an umequal distribution of power temperature, and strain; whereas by my rule $\sqrt{\frac{60}{5}}=3 \cdot 464$ wo would get by the above formulæ a $p=21 \cdot 78$, a $p=10 \cdot 9$, and $a p^{\prime}=37 \cdot 68$, and the power in condensing eylinder would then be

$$
=\frac{1010.1 \times 420 \times 10.9}{33000}=140 \mathrm{H.P},
$$

and the power in high-pressure cylinder

$$
=\frac{291.5 \times 420 \times 37.68}{33.000}=140 \mathrm{H} . \mathrm{P} .
$$

being an equal distribution of power and an almost equal range
of temperature and total strain, thus making the diameter of cylinder according to my rule $35_{8}^{2} \mathrm{in}$. and $19 \frac{1}{4} \mathrm{in}$. diameter respectively for a piston speed of 420 ft . per minute ; but as the areas $1010 \cdot 1$ and 2915 depend upon no loss whatever, to make provision
for a reasonable amount of loss brings us once more back to my original rule, viz., I.H.P. $\times 4=\mathrm{A}$, and $\frac{\mathrm{A}}{r}=a=$ area of highpressure cylinder, so that

$$
\frac{1120 \times 420 \times 9.82}{33000}=140 \text { H.P., }
$$

and $\quad \frac{323.3 \times 420 \times 34.02}{33,000}=140 \mathrm{H} . \mathrm{P}$
This allows, you will see, about 10 per cent. of loss in the average pressure due in each cylinder; that is to say, in the condensing cylinder out of a possible average pressure of $10 \cdot 9 \mathrm{lb}, 9 \cdot 82 \mathrm{lb}$,
may be got, and out of a possible average pressure of $37 \cdot 68 \mathrm{lb}$. in the high-pressure cylinder $34: 02$ may be got in practice with the ylinder $37 \$ \mathrm{in}$. and $20 \frac{1}{2} \mathrm{in}$. diameter respectively
John Turnbulu, Jun.

184, Buchanan-street, Glasgow, December 2nd.
Sir,-After your own article to help a workshop student, the excellent letters by Messrs. Smith and Turnbull have placed such of your readers as have mastered them in a more comfortable posi-
tion; but in applying the information given them to their practice tion; but in applying the information given them to their practice
they will now stumble over the lack of knowledge as to the proper they will now stumble over the lack of knowledge as to the proper
relative positions of cranks and valves. Such students need to be informed in what position the low-pressure piston should be at the moment the high-pressure steam begins to exhaust into the low-pressure cylinder, for there will, maybe, be too much "gap"
if the high-pressure steam be only released from the small cylinder when the low-pressure piston of the large cylinder has made nearly one-half its stroke, thus merely filling up a space already left behind by the low-pressure piston,
This question is one more perplex students than the points that have already been explained and discussed.
I trust Mr . Smith and Mr . Turnbull 'will both enlighten practical students on this point.
Liverpool, December 2nd

> it Ienorant of Mathematics.
\qquad

LINKS IN THE HISTORY OF THE LOCOMOTIVE

Sir, - The North Star was constructed for the Northern and Eaetern line, 5 ft. 3in. gauge, and I believe had $13 i \mathrm{in}$. cylinders and double fork reversing gear. The Prince of Wales on the York
and North Midland was a similar engine for the 4 ft . 8 if . gauge, and North Midland was a similar engine for the 4 ft . 8 tin. gauge,
and another made about the same time was No. 70 of the North Midland, 14 in , which had Dodd's patent wedge motion and four coupled wheels. No. 71 was somewhat like this in external appearance, but had link motion. The Hercules and Jupiter, 15in.,
for the York and North Midland; and No. 74 for the North Midland, were the pioneers for the long boiler six-wheel coupled good engines, I think you will find that $15 i n$, cylinders were not
applied to passenger engines at this time, so that your remark
that they were usually 15 in . for that class of engine is incorrect. I am unable to call to mind any uncoupled passenger engine with 15 in . cylinder-unless the four made for the Yarmouth and
Norwich line with outside cylinders had 15in.- prior to the A engine for the gauge experiments, Some outside cylinder engines or the Baden railways were 13 in .; the White Horse of Kent had 4in.; the Newcastle and Darlington coupled engines were 14in. drivers. The Richmond for the Great North of England, by R, and IV. Hawthorn, had 16in, but was not a long boiler ; this was made
in 1846. It may be interesting to add that Mr. W. P. Marzhall, the ex-secretary of the Institution of Mechanical Engineers, was on he North Midiand about 1840 or 41 , when the long boiler plan originated, and has the credit of liaving suggested to Mr.
Stephenson the desirability of patenting the placing of the centres of the three axles between fire-box and smoke-box, which was the patent under which the North Star was b iilt. I am not aware
whether 75 and 76 on the North Midland, built by Hiek, of Bolwhether 75 and 76 on the North Midland, built by Hick, of Bol-
ton, or others subsequently constructed by Rothwell, designed by Mon, or others subsequently constructed by Rothwell, desizned by
Mr. Kearsley, Locomotive Superintendent, Derby, with the axles so placed, were claimed as infringements; they resembled 74, but
had the cylinders inclined below the front axle, Bury's frames and December 3rd.
Sir.-Herewith FIRE-BOX ROOF stays
fre-box roof stay enclose tracing of an arrangement of mine for fire-box roof stays, which I think possesses advantages not
belonging to the plan illustrated in your last week's journal, more

especially for portable and traction engines, as the outer casing
plate is left quite clear for the attachment of the cylinders plate is left quite clear for the attachment of the cylinders, brackets, de., and every stay bolt has a square bearing J. J. Trrerll.
Lincoln, November 25th.
Sir, - In your notice of Leach's method of staying the
crowns of fire-boxes, with an enumeration of its advantages, not crowns of fire-boxes, with an enumeration of its advantages, not
the least being its adaptation to boilers in use, I felt myself con the least being its adaptation to boilers in use, I felt myself con-
strained to blame that insular prejudice which so obstinately strained to blame that insular prejudice which so oostinately
refuses to recognise some of the good things in use with our continental neighbours. In examining this intermediate, or span
plate, I could not help remarking how difficult it is to satisfacplate, I could not help remarking how difficult it is to satisfac-
torily overcome some of the difficulties consequent on radial staying- the different lengths of stayy, their positions, unequal
burdens, differences of expansion, shouldering, \&c. \&c.
flat topped your travelled readers will no doubt have noticed the German railways, and which have yearly grown more into favour, It is this system I would instance as possessing in a far greater degree the advantages claimed for the above-named system, with others equally important in actual practice, viz. : All stays being vertical, ono length, consequently expansions equal, with equal
burdens, uninterrupted discharge of steam globules, easy of access for inspection, cleaning, or repairs ; a desideratunn not sufficiently valued-all these it possesses. But its shape-there is the diffieulty. It is not consistent with English practice, but like the semicircular form, it has been consecrated and stereotyped by long
years of practice ; and if we do diverge and adopt through years of practice; and if we do diverge and adopt through stays
it must be in radial form, with the aggravating addition of dis. torting the crown plates by a cruel system of setting or shouldering, I have had unusual facilities of observing the admirable work done by this class of boiler, and those defects, normal or cumulative, peculiar to most fire-boxes, seemed to be happily avoided. Where bad water is used it is gratifying to see with what ease the
accumulated deposit is swept away; and is in marked contrast accumulated deposit is swept away; and is in marked contrast
to the periodical chipping and grubbing peculiar to the old form. In this esthetical age it would be argued that they are uncomely, but it would be very difficult to find more compact engines than those delivered, for example, by the firm of Kitson
and Co., Leeds, some few years ago to the Alsace and Lorraine Railway, and which moreover for economy in consumption stand most unique in the statistics of locomolive rolling stock
Burton-on-Trent, Nov. 28th
R. Weatherburn.

THE WANDERER

Sm, - With reference to your leading article on the steam yacht make a few remarks, especially as Mr. Spencer is absent in South America
The engines of the steam yacht Wanderer have run 100 revolutions per minute, but were not indicated when so running In the event of failure, only the high-pressure part of the machinery was to be removed, so that the ordinary compound part nominal.
Of the indicated horse-power required to drive the vessel in certain speed I have no reliable data, but the fastest speed I have any return of is 13.66 knots against a strong tide, in one hour and
eleven minutes, between the Cumbraes and the Cloch on the eleven minutes, between the Cumbraes and the Cloch on the minute the first part of this distance, and the latter part up to
100 revolutions per minute. You state, "Mr. Perkins fittel 100 revolutions per minute. You state, Mr. Perkins atted when the Wanderer returned to Falmoutin from her cruise in tho
all that was necessary by sweeping the flues and cleaning the
then proceeded without delay with the owner and his family to Cowes, running, as you state, about 12 knots per hour.
The defects in the slide valve showed themselves from the first, but as this had nothing to do with the "Perkins system" or my company's contract, Mr. Spencer stated correctly that "there Was an entire absence of trouble affecting the system or pressure, meaning that the low-pressure slide had nothing to do with the com pany's contract, as the cylinder and slide were to remain in the
ship if the high pressure part was removed. Nevertheless, the esponsibility of thissure plide wast was thrown upon Mevertheiess, the father than that the machinery should fail, paid all costs of the previous experiments with this slide, in which, however, they
were not allowed the deciding voice, respect to some of them. The slide was eventually cured by adopting a plan which was proposed by me almost from the first.

I enclose in this letter indicator diagrams taken during a fifty hours trial after the alteration; che extreme consumption of fuel uring this trial in any one watch being 490 lb . per hour, and the
indicated horse-power on these cards being 377.51 lb . or 1.29 lb of coal per indicated horse-pewer per hoor, the engines running
steadily during the whole trial. This consumption, I believe, would be decreased after the slide had been some time in use The cards were taken by Mr. W. N. Harris, the ordinary crew of the ship having charge of the boilers and engine. would have been worked up to from 500 to 600 indly tried she power, and that the whole experiment would be under mine or Mr. Spencer's charge-ns provided for wy the contract - when it would have been seen that the boilers had been properly swept
and cleaned, and the whole of the machinery in an efficient conYou state also in your article that 1.9 lb , of coal per here power per hour is a usual consumption in regular work with the
ordinary compound engines at sea. I should be extremely ordinary compound engines at sea.
obliged if you would name a ship fitted with be engines of 120 nomid Y, high-pressure system." Now, this is not really the case. The Wanderer is fitted with a complete apparatus for producing frand water at sea from salt water, and the only result which
would arise from using this water is that the boilers would be would arise from using this water is that the boilers would be boiler, and which does I would and that the Loftus Perkins is a p paddle steamer for carrying passengers on the Tyne-with a Board of Trade certifi-
LoFTCS PERKINs.
cate-and not a tug boat. Queen Victoriastreet,
December 2nd.
[The engines of the "Stag" line ships Eglantine and Camilla
are 130 -horse power nominal, and burn in regular work under are ib eal 2 bb . of coal per horse per hour. In another place wil
particulars of the last run of the Eglantine.-EED. E.]
Str, - In a leading article on the steam yacht Wanderer in last
week's EsGiNEER, you refer to Mr. J. F. Spencer, and in a way week's Exacinere, you refer to Mr. J. F. Spencer, and in a way which seems unfair throw upon him responssel was fitted. Mr
of the Spencer left England last summer to attend to some professional business in South America. He is still absent, and cannot know of your statements or reply to them for months to come. Under these circumstances you will no doubt allow me space for a few Words on the subject. 1 may say first that 1 have not geen the
Wanderer's engines, and did not know till last Saturday that they were to be taken out of the ship; but I had frequent conversations with Mr. Spencer about the engines, both before and after It arranged to adopt the Perkins system.
It was the satiffactory results obtained from a number of
smaller engines working on Mr. Perkina's system that adoption for the Wanderer, but the owner of the yacht and all the parties concerned clearly understocd that the construction of such large engines on the Perkins plan must be regarded as an
experiment.
Mr. Spencer frequently told me that he was adopting in his
plans everything that Mr. Perkins's experience could plans everything that Mr. Perkins's experience could suggest, and and not to him that all the credit was due. On the other band Mr. Perkins assumed all responsibilititye and angrede to tor take the engines out if they did not prove satisfactory. This being so, it does not appear at all likely that any conflict, such as you
indicate, could exist between Mr. Perkins and Mr. Spencer in indicate, could exist wetw.
reference to the drawing.
Competent engineers, who have seen the engines, say they are in all respects excellent examples of design and workmanship. pumps, which appears to have been soon overcome, all the trouble and mischief seem to have been caused by the slide valve of the
low-pressure cylinder. In fact, it appears that it was the cutting up of this valve which proved fatal to the engines. Now, anyone might infer from your article that the cutting of this slide valve clearly arose from faulty design; but there does not seem to be
any proof of this. What was, doubtless, the reat cause, is an any proof of this, What was, doubtless, the real cause, is an
essential part of the Perkins system. In the Perkins engines no lubricating matter can be used for the valves. You did not even the reasonable and clear explanation of all the trouble which was experienced with the main slide. This unfortunate cutting of the
dide valve shows that very large slide valves cannot be safely
worked without lubrication, although small ones made of Perkins metal may be working and wearing well under sych onditions.
It does not prove, however, that the Perkins system for large engines is a failure; other valves which work with less friction
can be used, and it is possible that the complete surcess of Mr. Perkins's engines, which appeared at from to be fully realised in the Wanderer, may yet be
strains on girders.
Sir, - I have attempted, so far as time permitted, to find the reactions, endding mome.
in last week's ExGINERR.
Let A E be the girder of four spans, each $=1$.
Let M_{0}, M_{1}, \&c., $=$ bending moments at A, B, , \&ec., respectively.
Then $M_{0}=0$, and $M_{4}=0$. Let $p_{0} \quad=$ reaction at A, and $M_{1}=0$ $\begin{aligned} \text { Let } p_{0} & =\text { rea } \\ \mathrm{P}_{1}+p_{1} & = \\ \mathrm{P}_{2}+p_{2}^{2} & = \\ \mathrm{P}_{3}+p_{3} & = \\ p_{1} & =\end{aligned}$
P_{1} being taken to the left.
It will be found convenient to call the intensity of lond at A , $w_{1} ;$ at $\mathrm{B}, w_{3} ; \& e$. ; and afterwarde to substitute $w_{1}=0, v_{2}=\mathrm{W}$,
$w_{3}=2 \mathrm{~W}, \& c$ In spand CD, if $M=$ bending moment, distant x from C, we $\mathrm{M}=\mathrm{M}_{2}+p_{2} x-\frac{\mathrm{W}_{9} x^{2}}{2}-\frac{w_{4}-w_{1}}{6 l} x_{2}$
Proceeding in the ordinary way, we shall find the equation
connecting M_{1}, M_{2}, M_{3}, is

$240 \mathrm{M}_{2}+60\left(\mathrm{M}_{1}+\mathrm{M}_{3}\right)+15 w_{3} l^{2}+28 w_{2} l^{2}-13 v_{4} l^{2}=0$. \quad This reduces to This reduces
Similarly, $\quad 240 \mathrm{M}_{3}+60\left(\mathrm{MH}_{1}+\mathrm{M}_{3}\right)+19 w l^{2}=0$.
$240 \mathrm{M}_{3}+60 \mathrm{M}_{2}+49 w v^{2}=0 ;$ and
$240 \mathrm{M}_{1}+60 \mathrm{M}_{2}-11 l^{2}=0$.
Hence-
$\mathrm{M}_{1}=\frac{2}{35}-w l^{2}, \mathrm{M}_{2}=\frac{-19}{420} w l^{2}, \mathrm{M}_{3}=\frac{-27}{140} w l^{2}$.
The reactions are-
$p_{0}=\frac{94}{420} w, \mathrm{P}_{1}+p_{1}={ }_{420}^{420} w l, \mathrm{P}_{2}+p_{4}=\frac{611}{420}$ wo

$$
\begin{equation*}
\mathrm{P}_{\mathrm{a}}+p_{\mathrm{s}}=\frac{1543}{420} v \tau_{\mathrm{p}} p_{\mathrm{t}}=\frac{689}{420} \tag{}
\end{equation*}
$$

hammer slag and other substances into melted phosphoric iron, Heyford pig iron, as phosphoric as that of Cleveland, was practically dephosphorised, and converted into Bessemer metal, possessing all the properties of malleable iron, and this without
the use of a lime lining, or of lime in any form, and without the use of a lime lining, or of lime in any form, and without
either spiegeleisen or manganese. Besides calling attention to either spiegeleisen or manganese. Besides calling attention to
this curous fact in the public papers, I wrote to M. Pourcel, asking him if he could explain the remarkable result, and elucidate its chemical nature. I never received any reply. Possibly the fact might have come into awkward collision with some pet theory and was best let alone. I believe I first started the blow-ing-in system more than twenty years ago, and one of my patents,
viz, foi blowing carbonaceous matters into the converter, is, I think, still in use at some of the continental works.
think, still in use at some of the continental works.
The drawback to the blowing-in of substances
purify the melted cast iron, lies in its tendency to chill the metal and cause it to set in the converter before a sufficient amount of the substances employed can be forced in. Like other difficulties I have no doubt this may and will be overcome, and what to me appears an important step towards this desirable object is
embodied in a patent process recently enrolled by Mr. W. H. Fryer of Coleford for desiccating the atmospheric air employed as a blast for the Bessemer converter or for the blast furnace. At present of course a large amount of moisture is introduced with the blast into the converter, and, therefore, a quantity
hydrogen dissociated with its well known cooling effect. hydrogen dissociated with its well known cooling eifect. the previous desiccation of the blast will, no doubt, occasi
considerable accession of temperature in the converter, affording a far wider scope for the blowing in of materials, as in Mr. Pettitt's process, suitable for dephosphorising or otherwise purifying the melted iron operated upon.
As 1 have mentioned hydrogen, 1 may, perhaps, add that many years ago I pointed out that the cells on honeycombs in cast steel ingots were not caused by carbonic oxide. Torly puent
conceit, as it was then considered, was very properly sat upon, and extinguished at the time; ;nd yet a high continental authority has recently demonstrated that hydrogen, and not carbonic
oxide, is the chief asent in the formation of these cells. Now, Mr. oxide, is the chief agent in the formation of these cells. Now, Mr.
Fryer's process, which deprives the blast of its moisture, deprives it of the hydrogen contained in that moisture, and therefore we may infer that
the cells or honeycombs which are due to the presence of hydro gen, and which constitute in many instances so serious a defect. Cheltenham, December 3rd.
R. F. MusHzs.
wire-rope street railways.
$\mathrm{Sirf}^{2},-\mathrm{In}$ the description of the Clay-street-hill wire-rope railway in this city, given in No. 1241 of your excellent journal, you
mention Mr. A . Hallidie as the engineer of that road. Mr. mention Mr. A. Hallide as the eng is now one of the owner. of it ; but the engineer of the first section of the road was Mr
Wm . Epelsheimer, now Wm. Eppelsheimer, now building a kimilar road in Geary-street,
in this city. I saw, frequently, Mr. Eppelsheimer making the in this city. A saw, frequenty, Mr. Eppeesheimer
drawings and superintending every detail of the road.
E. . MoLrRA,

San Francisco,

> Late Assistant Lt. Ho. Engineer for California, $\Delta \mathrm{N}$ $\mathrm{Sin}^{\mathrm{S}}$,-Can any of the readers of your valuable paper inform me apprenticed to a civil engineer through the medium of apprertisement, foolishly unsupported by any references, I find that
a course of tyranny and gross and abusive language, only to be heard in the lowest slums of London, practiced upon the other pupils by the principal, is directed towards me after the seconc
half of the premium has been paid. Having a little spirit in me haff of the premium has been paid He aving a hitlie spirit in me
not unmixed with self-respect, I refuse to stay and submit to such gross insults on every occasion even where censure may be merited, and as I can get no guarantee that I shall not be
subjected to this injustice in the future, I am anxious to know if there is any remedy. I hope this will serve as a warning to people not put ther fact November 28th.

TENDERS.

DORCHESTER.
Fon supplying and erecting iron columns, girders, \&c., and brewery plant for the new brewery, Dorchester, for Messrs.
Eldridge, Pope, and Co. Messrs. Scamell and Colyer, civil engineers, 18 , Great George-street, Westminster. Quantities
for the iron columrs, girders, \&c., supplied by Messrs. Curtis and Son. Contact No. 1-IBonwork, \mathcal{E}

Westwoud, Rallite, and Co
Horseley Iron Company

Cochrumo and Co,
Handyide and C

Costract No. 2.-Bonirns
Horton and Sons,
Thornowill and Warham (accopted)
Waller and Co.

Waller und Co . (d̈̈neclined)
Seaward and Co.

Str,-The world is not yet supplied with Bessemer steel manufactured from Cleveland pigs, cooked in lime-lined converters,
with Blue Billy sauce. I see, however, a move has been made in the right direction, and a patent has been taken out for blowing lime into the converter, a process which I stould have magined should have preceded that of lime linings, when
the relative specifie gravities of lime and melted iron are talcen into consideration. As the blowing down of air upon the surface of melted pig iron has been superseded by the upward blowing of air through it, so it is reasonable to suppose that lime, forced
through melted phosphoric iron, will prove more effective as through melted phosphos iron, will prove more effective as Some time back I called attention to a process, patented by
Mr. Edwin Pettitt, of Cheltenham; for blowing roll scale o
The points of contrary flexure in each span are obtained by
putting \mathbf{M} (the bending moment) $=0$, and solving the resulting
Max. M in each spau is got by substituting the proper value of x determined by the equation $\frac{d \mathrm{M}}{d x}=0$.
November 19th.
SPECIFICATIONS FOR IRONWORK.
Sir,-I was much pleased to see your article on this subject Specifications are in most cases stereotyped things, and old error are reproduced again and again; but engineers put a quite
different construction on the meaning of a specification from that put by contractors. For example, it is a common thing to
tipulate in bridge work that all angle and tee irons shall be planed at their ends, yet it is a clause very troublesome to enforce Again a specification will say, "all plates are to be planed so as to make close and accurate butt joints." Yet it is impossible to get
floor plates of bridges laid with joints in contact with each other while planing is never dreamt of. A clause will run thus, "Rive contractors will supply what they call "good ordinary rivet iron,"
and if censured, will reply, "Oh, such thing are put in specifications, but are not expected to be given. Another item that they reject bad work they are accused of obstructing the progres they reject bad work they are accused of obstructing the progress
of the work. The following clause is often put in specifications ; "All disputes are to be referred to the engineer, whose decision is to be final, conclusive, and binding both on the owner (or corporation) and on the contractor." Now every lawyer knows this clause is worthless, because in this country no dispute of the kind will be
left to any single umpire to judge especially one interested. Why put such things in? Inspector.
London, November 29th.
spondent on his view of the arbitration clause-ED. E.]
TENDERS.
Sin,-The usefulness of public tenders and the advantages of publishing the results must be very great when we see such a
difference in price as two to one, being the results of the tender for machinery to be put up at Darenth as stated in your last issue Again in your number for Nov. 21st the results of a tender fo sewerage works at Belgrave, the difference is exactly three to one Does the one who tenders at the lowest everget a profit, and does the one who tenders at the highest ever get a contract ? Of course
allowances must be made for locality, price of material \&c., but they are nothing. compared with the great difference of price. Why a contractor in New Zealand cound compete with the highest on the list. In the Belgrave sewerage list it is not one contractor who put such a high price, but there are no less than
eight who go into four figures, The townsfolk of Belgrave may eight who go into four figures, The townsfolk of Belgrave may
now rejoice in the knowledge that they can purchase three now rejoice in the knowledge that they can purchase three
sets of sewage machinery for the price they might have had to pay or one set if they had not gone in for public competition Pcckham, December 1st.
E. S.

Pontifox and Wormact No. 7.-Pite Conelined) Conneotions.
Shears and Son
Lheursence and co..
Liebe and Gormain
Bennett and Son
Pontifex and Son
Oxloy and Co
Blumdell Bro

Lawrence and Contraut (accepted) 8.-Rempraerators,

STANDARD ROLLING STOCK AND PERMANENT WAY, BERGAMO AND LODI TRAMWAY.

SECTIONAL PLAN

FIG.a

SIDE VIEW FROM B

FOREIGN AGENTS FOR THE SALE OF THE

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to public, and intended for insertion in this column must, in all
cases, be cocompanied by a large envelope legibly directed by the cases,
writer to himself, and bearing a $a d$. postage stamp, in order that answers receivea ky us may be forwarded to their destination. No
notice will be taken of communications which do not comply with these instructions.

*We cannot undert

 must therefore request correspondents to keep copiess.* All leters intented for insertion in or
*HE condrensing questions, must ecescorompanied puy the nume and
addross of the writer, not necesarily for pubication, but as a
poof of goo faith. No notice whatever will be taken of
anonymous communications.

emery and glass cloth machinery.
Sin,-Cun any of your readero give me tho address of manufacturers of
manchinery for makign emery colth and glass paper?
London, N.W., December 2nd.
small blowers.
(To the Editor of The Engineer.)
 work 100 double strokes per per
London, November 29th.
baLL-AND-SOCKET JOints For water mains.
 holding a patent tor England, or give us pauticulars.
London, November 27th.
mills' auxiliary buffer.-PAtent No. 1082.

MEETINGS NEXT WEEK.

 the clyde. Society or Telearaph Enoinerrs. - Wednesday, Dec. 10th
The

THE ENGINEER

DECEMBER 5, 1879.

marine engine econom

Low freights and keen competition have rendered economy in the working of steamships a matter of almost national importance. We are just now the ocean carriers of the whole world. How long we shall retain this position rests very much, but not altogether, win ourselves. The people of he the at the magnificent fleets of merchant steamers which belong to Great Britain, of merchant steamers which belong to Great Britain, and on which the American farmer has to rely for the transport of his grain and his wheat to English shores. how many more years are to roll over before American how many more years are so rom over berore Am to share enterprise places merchant steamers on the ocean to share with us, if not to absorb altogether, the proits extravagant now extract from American commerce ? Atantic have done us this good at all events, that they have entirely prevented the building of iron steamers in the United States. But this may not last. By one stroke of the pen the Amerithis may not last. By one stroke of the pen the Amerination for the admission of ship-plates, bars, and angles nation for the admission of ship-plates, bars, and angles
free of duty; and there can be no doubt that were this once done Ámerican enterprise would not be slow to avail itself of its advantages. America has, however, as yet everything to learn concerning the building of oceain steamships and their engines, and some time must at the worst pass away before our own shipowners will have serious competition to contend against. It is none the
less necessary that they should not rest content with past less necessary that they should not rest content with past
achievements, but push steadily on to greater economies and greater successes than they have yet obtained. Not so long ago steam communication with America could only be sustained by the aid of large Government subsidies. On this point the late Dr. Lardner ha been much misunderstood. We hear it stated over and over again that he manntasined
ship was a mechanical impossibity, the truth being that he never said anything of the kind. He did assert that such ships were commercial impossibilities, and according to his lights, he was quite right in this. Whil ships propelled
burning 6 lb . to 8 lb . of coal per horse power per hour, they could not be made to pay. Neither engineers nor speculative capitalists rested content with bridging the tlantic by ships partly maintaind at the cost of the Governmes offect, ind improvement upon improve measure of success, that while Australia and India can be reached by steamer in not much over a calendar month, the consumption of coal has been brought
down to under 2 lb . of coal per horse per hour an example of what has been done very quietly and an example of what has been done very quietly and
unobtrusively by men who build and own and engine what are sometimes contemptuously called cargo boats, we may give here some partuculars of the last
voyage of the steamship Eglantine, one of the Stag" line, from Copenhagen. The ship is 257 ft .
long, by 32 ft . 6 in. beam, and draws about 19ft. She is propelled by compound engines built by the North-Eastern Engineering Company, Sunderland, the engines, designed by Mr. Allan, the manager of the com-
pany, being very similar to those illustrated in THE Engineer for June 9th, 1871. The high-pressure cylinder is 28 in . and the low 54in. in diameter, with a stroke of 2 ft . 9 in . Steam is supplied by two boilers, with two fur naces in each, of the ordinary type. The safety valves nare loaded to 75 lb . The Eglantine left Copenhagen with a fair wind at 8 a.m. on the 26 th ult., and reached Gravesend at 11.40 a.m. on the 29th, thus making some thing like 10 knots the whole way. Her cargo consiste ated very uniformly throughout the runginesind power; the screw which is common, four-bladed, and 13 ft pitch by 14 ft in diameter, making 64 revolutions per minute Th. al a cod, moth ountry was per fully werghed during twelve hours, and was as nearly mightbe 10 tons 5 cmt pertwenty-fourhours Thisis equiva lent to a consumption of but 1.83 lb . per horse-power per hour, and it must be remembered that the ship had been lying in Cronstadt for some time before; and that she ran thence to Copenhagen at slow speed, detained by condition gales. might be got ; and her engineers regard her performance might be got ; and her engineers regard her performance as regards abnormal, or more than they expected, excep have said, a stiff north-easterly wind Wented by, as we to doubt that the performance of the have no reason Eglantine can be parlleld by that of the machinery of other ships, and we may take 2 lb . coal per horse per hou as a basis on which to estimate the chances per hou against securing still further economy
It is not probable that the boilers of the Eglantine evaporated more than 10 lb . of water per pound of coal probably their duty was less, but in any case this give The initial cylinder pressure by the cards ber per hour 72 lb or $72+15=87 \mathrm{lb}$ absolut The bore us is corresponding to this is 318 der The temperature moment the exhaust port opened was 7 lb ., nearly,
absolute, corresponding to a temperature of 177 deg ., and 318 deg . -177 deg . $=141 \mathrm{deg}$., as the range between T the temperature of reception, and t the temperature of rejection. Then 141 deg. $\times 772=108,852$ foot-pounds of work to be had from each pound of steam during expansion, Allowing for clearance we shall not be far wrong if we take the work done by each pound of steam during the full pressure part of the stroke as 57,000 foot-pounds. Then $57,000+108,852$ $1,980,000$ foot-pounds, and $\frac{1,980,000}{105}=11 \cdot 93$, say 12 lb . of steam. That is to say, the weight of 87 lb . steam required to develope one horse-power under the stated conditions would be about 12 lb . But 20 lb . were actually used; what becomes of the difference? It is, no doubt, lost partly by cylinder condensation, and partly by leakage past pistons and glands. If greater economy give a portion of the 8 lb . of steam used per horse-power per hour in excess of the quantity theoretically necessary. We say this because it is improbable that any marine boiler can be made which will, in regular work, evaporate more than 10 lb . of water per pound of coal.
There are just two ways in which a higher duty can be got from each pound of steam. The first consists in augmenting the initial pressure and temperature. Thus with an initial pressure of 400 lb . on the square inch, we have $T=445$, and t may be as low as 170 deg. The range will then be 275 deg, and the relative economy of 87 lb . and 400 lb . steam will be apparently as 141 deg. is to 275 deg . But to get this range 87 lb . steam must be expanded about 12.4 times, while 400 lb . steam must be expanded over sixty-six times. In practice such a range of expansion as this last cannot be adopted wit any hope of success, for no matter what precau and ine taken, the condensation in the cylimer and pipes wald bo no certain that a better result can be got in prac-
tice with an expansion of 7 or 8 to 1 than with any other ratio. It is evident, therefore, that furthe economy in marine engines is to be sought rather in cylinder condensation-whether in the or the jacket-and leakage, than by any attempt to in crease much the pressure and range of expansion. A another time we may return to this subject , we have direction which future developments of steamship direction which f
economy must take.

Water meters in middlesbrough.

Ir has long been said that no such thing as a good water meter exists; and recent events in Middlesbrough go to show that in the opinion of some persons a trustworthy meter has not yet hound its way there. A very remarkable full publicity, hasbensuitted tothe Local Govern Bur Th petition tocinal Board. The petition emanates from the principal wate consumers of the district, and is signed on bul Wilson, Pease, and Co.; Bolckow, Vaughan, and Co.; and eleven other firms of first-rate standing. To make eleven other firms of first-rate standing. To mak matters plain we must explain that the stockton and waterwh Corporations Wa boards happen thathers. Itsonion the the officils of the Water Comere the 1 is and effective explive pus, hery strument until the struir notion the ind theirt to bave ben ind the quanty of water which ought to have been used. In order that our readers may nalo Mr Bon gas company finding that Mr. Smith, Mr. Jones cubie fort on tho li. cubic feet on to anticipated a consumption of 22 in the meters unti accordingly, they would do just what the Middlesbrough Water Board is said to have done

The petition deserves to be placed on record in our pages, as something unique. It is addressed to the President of the Local Government Board, Whitehall, and runs andother persons carryingonmasters, ironimanuacturers the county of Yokshin humbly showeth Thbroun, we the undersigned, all large cown-that whercas trade purposes and that wish or his or wion trade purposes, and that such water has been for many Darlington, in the couty f Durn Dion of the sthe count Murnam, now in the posses and manaed by a brough Corporations Water ; that the said Water works belon in 1877 and ford that the said Water works beloged in 187, and for many years previously, ment and colled the works Company the Stockton and Niadlesbrough Waterpresent Couny, Wing compansold theirenterprise to the servants and officers of the former company bipal re-enged by the of the Board and cany. bering re-engaged by the present Board and carrying on formerly; and whereas we the undersigned hwe ben formerly; and whereas we, h to udersigned, have bee we have used both to the old compay and the wa we have used both to the old company and the new boar purporting to be based upon tho in us quarterly, and purpors po be based uportive registration or the wate meters paced on and pective premises and belonging to teworks officias alone and which wate to prevt cisess to any wich are kept sealed so as to prevent access to any persons other than the saic waterworks oficlals. Now phis petiion showeth that period of occupation by the present Water the whole period of occupation by the present Water Board, an waterworks company, the indexes occupation of the old have been at various frequent times tampered with or
altered by the works offieials in such a way as to cause them to mdicate a greater consumption of water than
would otherwise have been indicated by the meter. That would otherwise have been indicated by the meter. That
the accounts sent in to us from the waterworks have been in accordance with such altered readings of the index and that therefore we have been overcharged and have tions of the indications of the meters were made withou our knowledge or consent; and we have evidence to prov that they were made with the knowledge and consent of some of the leading officials connected with the works Amos, an inspector of the Water Board, admitting that Amos, an inspector of the Water Board, admitting tha
on several occasions he has interfered with the indexes of meveral occasions hanner referred to, by instructions from
of metere superior officers. We submit also correspondence
his hro superior ofticers. We submit also correspondence fully apprised of what has taken place:-That the late directors of the old company refuse to entertain any allegation or claim, and throw all responsibility on the a single case of overcharge ; that they admit that case was proved, and offer compensation for the amount involved tigate any of the other cases of overcharge, or to make or offer restitution for them, although nearly
three months have elapsed since the allegations were in their possession. We believe this failure to do what we consider justice to be largely due to various local free, and impartial inquiry. We now petition your
honourable board, after having perused the evidence we honourable board, after having perused the evidence we missioner, with power to call witnesses and receive any evidence which may be tendered bearing upon this investigation, and if the allegations submitted should be found to be substantiated, that then your honourable bring offenders to justice and to compensate those who may be found to have suffered injustice."
The petition is dated November the
not yet heard what reply has been received. We have tion is, that as we understand, certain members of the Water Boards are actually justifying the action of thei ofticers, while other gentlemen deny the statements of
Amos. However, a small committee of the Board Amos. However, a small committee of the Board,
consisting of the chairman and their solicitor, have proved, and have offered compensation to the injured parties. But they flatly refuse to carry the investigation notice and without a character. It is abundantly clear that Amos has accused the Stockton and Middlesbrough
Water Boards of fraud; it is evident that all those who have signed the petition have repeated the accusation. against the official honour of which so grave a charge has been urged, should, without a moment's delay, rebut the charge, and aemand investigation. We find, howanything like this course. Others do not deny that Amos may be quite right, and assert that the
officials of the company did no wrong when they made a meter show a larger consumption
than it had measured; while two of the Board held a kind of private investigation, admit as a result that Amos only spoke the truth, and having offered compensation, refuse to proceed further in the matter. Was
ever anything like this heard of in England? Let it be supposed that the meters were untrustworthy; then it and replaced by accurate instruments. If it be answered that none more accurate could be had, or that the cost of new meters would have been too great, then the con-
sumers should have been consulted, and they ought to have sumers should have been consulted, and they ought tohave
received notice that the Water Boards were not content received notice that the Water Boards were not content
with the meters, and would push on their hands o make them right. No doubt against such a course the consumers would have indignantly protested; so to
save trouble the Board officials shifted the indices and said nothing about it. If we called things by their proper names we should have to print a very ugly word indeed find it very difficult to refrain. As to the literal truth or falsehood of the charge, we refuse to express any opinion more positive than that it is to the last
degree improbable that fifteen great manufacturing degree improbable that fifteen great manufacturing
firms, composed of shrewd business men, would have sent in such a petition as that we have reprinted above uness they had good reason to believe
that its statements were quite true; yet if we accept this iew, what a picture of official life have we before us? It is much to be desired that the independent investigation
sought for should be made. If the Water Boards are sought for should be made. If the Water Boards are
innocent, they have nothing to fear, and should court the inquiry. Let us hope they will use all their influence to induce Government to grant the prayer of the petitioners,
This would look well at all events. If the charges are proved, we also hope that no false delicacy will induce the Government to spare the guilty. The prosecution of a water
company for fraud on the consumers, would, it is true, be a novel spectacle; but it would teaeh a very valuable
lesson. Nothing encourages the spread of fraud more than immunity enjoyed by the fraudulent'; and companies and boards are disposed to be rather lax in drawing the line between what is right and what is wrong. This kind of thing ought to be checked witha firm hand, and should
the Stookton and Middlesbrough Water Boards be found guilty they ought to be prnished with striet justice for example sake. Meanwhile, perhaps it would be just
as well if somene would invent
offfcers of water boardscould not tamper with. If the meter
moreover, would let its personal equation be calcu-
lated, so that its errors might be estimated with some approach to accuracy, a stumbling-block would be removed from the way of water boards. Can it be possible that the Stockton and Middlesbrough Water Boards enjoy the proud pre-eminence of being the first public body accused of attempting to defraud its cusfear, however, that other bodies supplying water, and even gas, have been silently accused betore artice may thus have been done, After all, it would save boards
of all kinds from some suspicion if consumers felt that they, could say, speaking of a board, "It dare not cheat me," as well as "It would not cheat me.

north-eastern railway works.

Ir will not be unpleasant news to those interested in the
Vorth-Eastern Railway, to find that whilst there is ing an increase in the receipts of the company, there is a prospect of a further reduction in the expenditure on capita the large extent of $£ 232,820$; and in the present half is probable that in future half years there will be a reduction. It is expected that the expenditure on the enlargement of
Leeds new station will cease after the end of the present year ; that the York railways and station expenditure will be complete. There has for some years been expenditure on the hilst the Knottingey line and branches, which will cease, completed, as also the larger works in connection with the Byker and Percy main line. In addition to these, the completion, and the ensuing sixartlepool are approaching of expenditure, will exhanst the estimate; the Monkwearmouth Junction lines should at the current rate of expendi-
ture cease to demand money after January; and the same ture cease to demand money after January; and the same
remark applies to the Castle Eden and Stockton branch. The South Shields Station works and the Leeds and Pontefract and York Cattle Market lines will be completed in the next year, so that there the Whitby, Redear, and Middlesborough Junction, on which £24,600 have been expended up to the end of the last hal year; the current expenditure is at the higher rate of $£ 2800$ remain to be expended. On the Pickering and Seamer bran £1600 only have been spent; the current expenditare is ± 4100 monthly ; and after the close of the year $\pm 124,000$ will
be needed. A series of additions to lines at West Hartlepool will in future half years claim $£ 44,000$, and others between wil in fature half years claim $£ 44,000$, and others between
Newcastle and Heaton a further sum of $£ 99,000$; and of that there are still capital works of moment before the NorthEastern. The growth of trade at west tional accommodation on the Tyne, may cause further works on caedrul; but at present the total estimated expenditur the current half year is $£ 829,705$, so that a very marked
reduction may be expected in thie expenditure on that account reduction may be expected in the expenditure on that account
after the close of the present half year-a reduction brought about chiefly by the completion of works that have long been
in progress. As trade revives there may be, and probably in progress. As trade revives there may be, and probably
will be, further domands for facilities to meet it, especially at the Durham shipping ports to whieh larger steamers wil rade ; but subject to this there will be a very material
reduction in the capital expenditure of the great mineral railway.
the "blowing-uf" argument.
Persiasion by powder is again being practised in the Sherield district. In the days of the notorions William
Broadhead, gunpowder was not so rare an argument as it has been urecain and they heas bou immunity from police discovery; but it has been left for colliers to revive the more emphatic form of outrage which Union Commission. At Birley Colliery, which belongs to the Sheffield Coal Company, 1100 men and boys were employed.
The owners desired to change the system of working the pit, and with that view gave their employés notice. They declined to accept what they regarded as a reduction of 15 per cent.,
but the employers insisted that it really was not 15 per cent., but the employers insisted that it really was not 15 per cent.,
but $7 \frac{1}{2}$ per cent., with a stoppage of what are called "quarter" did "Walter Taylor, and his father-1n-law named Whitaker their conduct gave great offence to their late companim, and midnight on the 26 th ult., Taylor and his family were aroused from slumber by a terrific explosion, and their bedroom was
filled with smoke When they surprise they proceeded downstairs, where they from the can filled with gunpowder had been exploded in the back kitchen, causing much damage. Fortunately the windows
were blown out, otherwise there might have been serions injury to the seven inmates of the house. Two men were
apprehended and brought before the Sheffield magistrate apprehended and brought before the Sheffield magistrates
on a charge of being concerned in this affair, but the evidence was issufficient to support the accusation and they were discharged, He Birley colliers deny that they had himself to which was employed by Broadhead and his sompe argument their victims wore blown up and seriously injured. It does not appear to strike the colliers that it seems very singular that a man should go upstairs to his bed, and then walk down at midnight for the express purpose of blowing himself up again. To other minds the pastime appears so very peculiar aftlicted with a " "twist"" in his humorons faculties, could b found courageous enough to indulge in it with a view to while away the monotony of these dull November days.

contracts and the higher prices.

Evginezrs will do well to note when they tender that it
will be unsafe to reckon unon will be unsafe to reckon upon a continuance of even the maximum. If the iron market does not take a very different direction from that which usually oharacteriges it when it has
gone the length now observable, much higher than the late
existing seale of quotations will soon prevail for both raw and rolled iron. The most satisfactory feature in our reports is
the striking improvement in the demand and the prices
many engineers have of late been accustomed to get their
girder and bridge plates and their angles. Engineers have now to run the plantlet for such iron with the shiphuildere who are getting busy upon the Tyne and the Tees, as welf as upon the Clyde. The result is the prices we this, week cite
from the North. Instances are within our knowledge in which contractors are likely to prove heavy, though not disastrous, losers by contracts entered into about August and September.
They will not all find themselves treated with the engil tion which has been shown to Mr. F. Espley, of Stafford. He had agreed to erect in that county town a new sanitary depôt
at a cost of $£ 5500$. Barely had his offer been accepted before iron commenced to rise, and as he would require a consider-
able quantity of that material, the prospect before him was uninviting, though not especially grave. He applied to the
Pubbic Health Committee of the Corporation to advance the
total total of the tender, and was so successful that the committee prevailed with the Town Council at their meeting on Tuesday
to increase it to $£ 5750$. Mr. Espley is to be congratulated. Nor did the Corporation aot unwisely in the interest of the
ratepayers. But a contractor less known where he may be doing work would be unwise to speculate upon the same
success in a similar application.

LITERATURE.

Bells and Bellfouwling; a Practical Treatise upon Ohureh
Bells. By X. Y. Z. Bristol: J. H. Arrowsmith, QQuay-
street. Is79. The author of this thin octavo of 57 pages, which might be more properly called a pamphlet, appears from
internal evidence to be Mr. John Llewellyn, iun. of the firm of Llewellyns and James, eminent as bellfounders in Bristol, who dedicates his work to "George W. Edwards, Esq., thrice Mayor of Bristol, in consideration of his conEsq., thrice Mayor of Bristol, in consideration of his con-
stant endeavours to promote scientific culture and musistant endeavours to promote scientific culture and musi
cal taste amongst his fellow-citizens." The practice of trade advertising and puffing-the "puff oblique" has been known since the days of the Ciple disguise of scientific brochures, has grown to such dimen dions in the United States that at the first glance we were disposed to think this was an example of the same
degrading device, which had reached our own country degrading device, which had reached our own country,
and to pass it by as unworthy of serious notice. A second and more careful glance, however, showed us that the work, though, perhaps, notquite free from ultimate trading coming from a mind well acquainted, both theoretically and practically, with the subject of bellfounding in its peal," an art which, ancient as it is, has long been and still continues in Great Britain a sort of craft or mystery in the hands of a few master founders or firms, literature ; for such popular treatises as Mr. Denison's and some encyclopædia articles on bellfounding are far from adequately representing in theory and practice an art which, perhaps more fully than any other branch of foundations. The mere casting of one or more bells, sometimes of immense dimensions, came into Europe from the East, where, as in China,
Thibet, and other parts of Central Asia, its origin transcends tradition. Thence it migrated into Christendom, and taking example from the observances of the early Eastern Christian churches, which, as respects
bell-clanging as forming part of worship, continue as barbarous in Russia at the present day as they did 1500 erstition an become almost universal throughout Europe; and their ecclesiastical uses had gradually engrafted upon them many of the strangest idolatrous notions. They were
treated as if living and sentient folks; were baptised church ; special liturgies were instituted for their baphifyal service, and having once received the forma were sung benediction of mitred abbot or bishop, they miraculous powers.
"I call the living, I mourn the dead, I dissipate the thunder," was, as we may learn inter alia from Schiller's medreval bells. We ar ane in assing that some the most ancient bells used in the early Western churche were not cast, but rudely formed of beaten-out plates of
metal rivetted together. Thus the mass bell of St Patrick, which some have placed as early as the fourth century, and which still exists in the archæological colMost of our some account of the enormous bells of Nankin, of Moscorv, Novgorod, de., which number amongst them probably some of the most enormous castings ever ing in weight metal except cast iron; far exceed bronze castings made at a far earlier period, by Hiram or solomon's Temple, two of which, namely, the pillar handed down be correct, have weished nearly 40 to each, and were "loam castings," made in the "clay-land nistruments of barbaric noise was not bellfounding in to highest sense, namely, the casting of large bells in peal that is, so that an entire ring of bells from three to ten, or even more in number, should give forth sounds having ten or more, for while a few church peals to be rung by hand-or, as in the East, by pulling the clapper against hand-or, as in the East, by pulling the clapper against
the bell-have comprised twelve bells, the ancient carillons, of which a noble example exists at Bruges, comprised as many as sixty bells, chimed at intervals by
clockwork. The most ancient bells had their form derived from a simple cylinder, or short wide tube open
at one end and suspended by the other. This form was gradually improved upon, the mouth opened, the lin
diameters of the mouth and the crown arrived at by tentation, until, passing through the long
and nearly cylindrical-shaped, most ancient bells to and nearly cylindrical-shaped, most, ancient bells to
be found still in many parts of the South and
East of Europe, the modern form of church bell was East of Europe, the modern form of church bell was
gradually arrived at ; but there still remained an immense gradually arrived at; but there still remained an immense
gap between this and the establishment upon fixed physical or acoustic principles of the relative sizes of bells like in form, but differing mainly in dimensions, which
should yield sounds differing by regular musical intervals. No doubt the monks who gradually perfected the
far more complex instrument of sound, namely, the church organ, may have made considerable tentative progress towards determining the proportionate sizes of
similar bells to sound in peal before acoustics reached the grade of a branch of physics, and such dimensions could be fixed on a sure scientific basis; but it was not until the seventeenth century that the laws of
elastic solids transmitting their vibrations to the air as the medium of sound were sufficiently established to
enable the bellfounder's art to take rank as one of those resting on scientific principles.

ily situated at Bristol, in

the midst of those sooth western counties of
England which in pre-reformation times formed the wealthy paradise of Churchmen, and of all the arts and artisans that hung upon their skirts; and within the compass of his few pages he gives some interesting
notices of the early bell-founders of the West and of some other parts of England:-The Purdues, of Salisbury ; the of the eastern counties; and Phelps, of London, after wards succeeded by Lester, Pack, and Chapman, the much more of historical information we have no space but to refer to the little work before us. In one respect itinerant bell-founders who wandered through the southern counties of England during the latter half of centuries. These men, some of whom tradition says were gipsies, picked up their old copper and tin how and the back of any suitable clay dyke near the tower carried their "mould-boards" and other tools bells, with them on pack donkeys, and cast the bells close to the bells of the old church of Northtawton, and wich others on the borders of Dartmoor, in Devon, were profrom the beginning of the present century. It is seldom, we ounders' knowledgearefound combined and practical bellMr. Llewellyn's theoretical knowledge enables him to correct a mathematical formula enunciated by the re
doubtable Mr. Denison, in his book on "Clocks and Bells," and another on the part of a gentleman much ess likely to fall into error as a physicist, namely,
Professor S. Haughton, F.T.C.D. On the other hand, or practically, the author's experience and observant would never occur except to one to whom the foundry pit and the melting furnace had been long familiar, nor even to such an one without a more than average power
of observation. Almost all that is to be found in the English language on the subject of bellfounding is comprised in a few articles or notices in encyclopedias or
works of like character, and there we find but little more than the empirical rules and illustrative diagrams arrived at centuries ago. Every section
of a bell in a plane parallel to the lip or mouth
is a circle, that at the crown being half the
diameter of the lip or mouth. Every section diameter of the lip or mouth. Every section
orthogonal to these and passing through the axis of the
bell,consistsof segmenisof the former series of mouth sections, and having a common tangent at each of their own junctions. For the fixing of but for passing in dimensions from one bell to another form is very defective. There would be ample room and it would be very desirable that a man of Mr. Llewellyn's theoretical and practical knowledge should undertake relates historically, acoustically, and practically to bell-
founding, mounting, and ringing. Were it necessary to enforce the importance of such a work, we might point
in the England-that of the bell-tower at Westminster-when at last hung, after abortive attempts at casting, was cracked almost at the first blow of the clock hammer, and
can give out but a shivering and feeble tone, compared with what had been justly expected of it. We find some masterly hints on the mounting and hanging of large tain them-far from needless when we reflect that the celebrated peal of Bow Church, Cheapside, has not been rung for many years, for far that the tower designed the oscillation they produced. On this part of the sub ject some excellent remarks, with designs, illustrative of Continent, may be found in Rondelet's great work, subject that has so many fascinating relations-so much
to interest the man of science, the historian, and poet, and, lastly, the metallurgist and founder.

The Libel on Mr. Weldon.-A memorial to the Home Secretary, praying for the remission of the further imprisonment
of Mr. J. Mortimer, is open for signature at the Figaro Office,
35, Saint Bride-street, London. The principal ground taken is 35, Saint Bride-street, London. The principal ground taken is
that the defendant did not write nor inspire the libellous artiole,
and was not even aware that it had appeared in the columns of and was not even aware that it had appeared in

STEAM TRAMWAYS IN NORTH ITALY.

By R. Geryase Elwes, M, Inst. C.E.

The lines actually at work and visited by the author during his stay in Italy last winter comprise the Milan Saronno, Tradate Tramway; the Milan, Vaprio Tramway
and the Vercelli, Trino Tramway, all worked by steam aner, and the Milan Monza Tramway, at present worked power, and the Milan Monza Tramway, at present worked
by horses. The Milan, Saronno, Tradate line is twentyour miles in length. It was opened to Saronno in June, 1877; to Tradate in August, 1878. It commences in the interior of the city, in the Foro Bonaparte, a street of considerable traffic, runs for some distance along this
street and past the Amphitheatre, round two sides of the street and past the Amphitheatre, round two sides of the
Piazzi d'Armi, and out through the Simplon Gate the Piazzi dArmi, and out through the Simplon Gate, the
total length traversed within the walls being about 1940 ards. There five trains each way daily over this portion of the line in winter, in addition to six extra rains each way on Sundays and holidays. In summer there are short suburban trains every half hour. This frequent passage of the engines and trains does not appear to cause any inconvenience, and the author heard no com-
plaints in Milan of the horses being frightened. The ermanent way in the city and in the towns and villages passed through consists of an ordinary grooved tram rail, carried on longitudinal timbers, which are connected by timber cross ties. The weight of the grooved rail is about 50 lb . to the yard. Outside the city and as far as Saronno the permanent way-except in the townsconsists of a steel Vignoles rail of 24 lb . to the yard, and piked to cross sleepers, placed 0.55 metre apart eaded-bull headed-rails, purchased from the ordinary railway companies, and turned upside down, weighing 72 lb . to the yard, supported in chairs upon cross sleepers 50 metre apart.
The engines employed on the line are nine in number, " which six are of the "Winterthur" class, two of the Munich. The director did not appear completely satisfied with any of these, but on the whole preferred the "Krauss " engine with some modifications. No special means are employed to condense the steam or to prevent noise, but as a matter of fact none of these engines make any objectionable noise, except for a few moments at starting in blowing through the cylinders. These engines nay all be described generally as small locomotives, ward appearance an ordinary car, and having sheet iro shrouding close to the ground, for the triple purpose of concealing the machinery, keeping out mud and dust and preventing any person or child accidentally knocked down from getting under the wheels. The fuel at first mployed was coke, but the director complained that it burned the boilers, probably from unskilful manageives off a little smoke at times, but it is not coal, which by the authorities or the public.
Steam traction was first used on this line at the beginning of October, 1877, so that up to this time about eighteen months' experience has been gained. The irector states that the the acident on the line have met with accidents through their imprudence in mounting or leaving the cars while in motion. The paving in the city and in the streets of the sand, like those employed in the streets of Milan gene rally; but although the grooved rail is laid down in the streets, it is not always accompanied with even thi the macadam. On some places it is simply laid in Vignoles or the double-headed rail is laid the line is ballasted with macadam slightly rounded off at the sides to allow depth below the top of the rail sufficient for the under the rail to allow water to flow off. In certain parts of the line where the road is very wide the comusually set up along the sides of the principal roads in Italy at 10 metres apart-between the tramway and the rest of the road, so that carts cannot conveniently pas long the zone occupied by the tramway. The latte separated from the public road. But where the road is列 being placed at one side, carts do or usually cross th rails except to pass each other when there is not room to do so otherwise. There appears to be no practical difficulty in maintaining a good road surface between the rails, a we have not here the difficulty which occurs with hors riction, that the horses treading always in the same track The traffic arrangements are of the simplest descrip tion. There is a station building at the Milan terminus, with accommodation for the administration and a waiting room for passengers, but at other stopping-places there
are no buildings at all. The line runs through the streets of the villages, and the train pulls up opposite some café are served ut and colleted as are two classes, the fares being 0.08 and 0.12 lire per mile, say $\frac{3}{4} \mathrm{~d}$. and $1 \frac{1}{8} \mathrm{~d}$. The proportion of first-class pas-
sengers is about 25 per cent. of the whole. The total number of passengers carried in 1878 was $1,734,626$. The population of the communes passed through-exclusive This gives about twenty three single journeys per annum for each inhabitant, excluding Milan, or about five single
Jurneys per inhabitant including Milan.
with longitudinal sents, with longitudinal seats, but are furnished with a covered platform at each end giving standing room for eight and are open at the sides, with curtains to keep out sun
and dust. Upon this line the trains are stopped at any divided into sections ; the fare for traversing each section is uniform, and for each unit or section a ticket is given out. Thus, if the passenger travels over five sections he receives five tickets. By this plan only two forms of ticket are required, one for each

The convenience to the public of this tramway is greatly appreciated. The frequent trains, the facility for joining or leaving the train at any point, the pas througn the streets and bere lity and fussiness, and tedious delays attending an ordinary railway journey on the Continent, the speed, comfort, and economy of tramcars as compared with diligences, omnibuses, or private cabs and hired vehicles, all tend to make the tramway exceedingly popular. In fact, while at Milan,
temporary interruption to the traffic caused by the relaying of part of the permanent way, which had been badly laid at first, caused quite a commotion among the people along the line, who complained bitterly of the want of
their accustomed means of transport. Although he studied the local papers daily, and mixed very much with various classes, he did not during three months stay at Milan come across a single complaint or objection against the use of steam on this and the other lines; but on the contrary, he found every one, from the highest authorities downwards, most anxious to see the system largely extended.
As regards financial results, the actual figures for this tramway are not available. It belongs to a Belgian company which is interested in other undertakings, and
 the the returns to the shareholders are no critelar line It appears, however, from figures furnished by the director that the average train mile receipts are about 40d. per mile. The author calculates the train mileage as representing over the whole line an average of about five trains each way per day, or ten trains per day are each mile. As the average earn £1 13s. 4d. or weekly $£ 1113 \mathrm{~s}$. 4d. The director informs him that the working expenses, including administration, \&c., are 40 per cent. of the gross receipts ; this would give a net receipt per mile per day of just $£ 1$, or $£ 365$ per annum. The writer estimates the actual cost of such line, including stations, rolling stock, legal and engineerin expenses, interest during construction, dc., at $£ 3500$ pe must be earning over 10 per cent. The Milan-Gorgonzol Vaprio line is eighteen miles long. It was opened for passenger traffic in June, 1878; for goods traffic in just outside the Porta Venezio and runs for about a mile and a.half along the road to Monza, the busiest and most frequented road out of Milan. For the above distance the Vaptio trains use the same nais as the hors tram.cass Vaing to Monza. The line is up trains, whether drawn by steam or horses, use an line, while all down trains use the other. At Loreto the Vaprio line leaves the Monza road and proceeds along a provincial road to Gorgonzola and Vaprio. In the neighbourhood of Milan, and as far as Loreto, the permanent way is of the "Marsillon" type, that is resembling a Vignoles rail split down the middle. The space between the two rail forms the flo On the Vaprio line the two rails together weigh 50 lb to the yard. This rail is also used within the precincts of Vilages passed though. Elsewhere the rail is an ordinary henoles rail weighing 36 lb . to the yard On the rapported by cross sleepers.
been tried-viz (a) the Winterthur of engine have Bamat (Elm Liga), Milan ; (c), the Henschel engine Cassel ; (d), the Fox of these, the Winterthur engine is said to be the mos conose, the 10 minar engis is sad to be the most others.* The Philadelphian engine having a vertical boiler was found to require more attention than others, and, moreover, was too wide for the road. It has been ransferred to the Vercelli Trino line. The Herschel and Bamat engines are fitted with arrangements for con densing the steam. The other engines make no attempt o prevent the escape of steam into the air, but the Winterthur engine has an arrangement of double and triple exhoust jet before it esaper the ar, all exhaust jef berg nois escair, and prevent the engines are remarkably noiseles. In the and these ramway the an in the olse this which the Tramway Company pays three-fifths of the cost of maintaining the road surface. This cost varies from $£ 48$ to $£ 75$ per mile per annum. There are five side crossings in the eighteen miles, each sixty to eighty metres in length. The population along the line, exclusive of Milan, is about 95,000 , or 3270 per kilometre, and 527 per mile. The cost of construction of the eighteen miles is given as $£ 40,000$, or $£ 2222$ per mile, made up as
follows :-Permanent way and laying, $£ 1184$; rolling follows:-Permanent way and laying, $£ 1184$; rolling
stock, $£ 595$; buildings, stations, and sites, $£ 366$; fitting of workshops, furniture of ondices sce $£ 77$; total £2222. But subsequent additions have been made to not appear to include the preliminary expenses, legal and engineering charges, administration and other expenses during construction, \&c., to which part of the difference between the above figure and my own estimate must be attributed. rom Loreto to Corgonzola the ine, although alongside the road, is separated from it by the usual guard-stones ("paracarri"). Beyond
Gorgonzola, the road being narrower, the rails are
$*$ Thus is the ${ }^{\circ}$
hero.-R. G. E.

STATION, ENGINE SHEDS, AND CURVES, BERGAMO AND LODI TRAMWAY (For description see page 421.)

CENERAL PLAN AND ELEVATION OF ENGINE SHEDS AT BERGAMO

SCREW COUPLINGS AND BUFFERS, BERGAMO AND LODI TRAMWAY.

laid in the road itself, and freely traversed by the ordinary traffic, which, so far as my own observation and the testimony of the conductors enabled one to judge, does not damage the line. But it would be more prudent to give a greater depth of macadam over the cross sleepers, either by employing a deeper rail, or by there is danger of ruts being formed down wet weather sleepers, and, in any case, the depth of macadam over the sleepers is hardly sufficient to bind well. During the very severe weather of the past winter it wasusual to clear out the grooves of the Marsillon section every morning by runnin a trolly over the line in front of an engine, the trolly having movable coulters fitted over each groove, which could be raised or depressed by the men on served to clear out the half-frozen Tud and snow, which would otherwise have caused slipping of the which would otherwise have caused slipping of the
driving wheels. In ordinary weather this precaution is not required. In ordinary weather this precaution on the Milan Saronno Tradate line, already described, except that in this line passengers are not supposed to except that in the train except at fixed points. There are seven intermediate stations, or rather stopping places-
for there are no buildings or platforms-at which the trains always stop, and at certain other points are posts, trains always stop, and at certain other points are posts,
at which the trains stop to take up or set down if required. In practice, however, the conductor, to oblige required. In practice, however, the conductor, to oblige The seven intermediate stations divide the line into eight "tracts," for each of which the fare is : First-class, $0 \cdot 25 f . ;$ second-class, $0.15 f$. ; and the passenger receives as many tickets as the number of "tracts" he desires to
traverse. The goods traffic had only just been organised traverse. The goods traffic had only just been organised at the time of the writer's visit, and it was too soon to
estimate the probable results. The tariff is as follows :-

Charges for delivery from the terminus at Milan are as follows:-Packages not exceeding 20 kilos. each, per package, 0.20 f .; ditto 20 to 100 kilos., $0^{\circ} 30$ f. Beyond The first-class winter carriages are similar to ordinary tram cars ; they are warmed by pipes from a tiny stove, tram cars ; they are warmed by pipes from a tiny stove,
fed with coke, from outside the car. The windows are fitted with Venetian shutters as well as glass sashes, to admit air while excluding sun. The second class (winter) cars have a covered in central portion for sixteen persons and two end plattorms, roofed over but otherwise open, for smokers. These platforms are supposed to have
standing room for twelve men on each, bringing up the standing room cor twelve men on each, bringing of the car to forty; but this is very close packing, and these platforms cannot hold more than eight persons each with comfort. The speed is nominally on several occasions attained much higher speeds, once over eighteen miles per hour. The Vercell Trino line is about twelve miles in length. It " " laid in the ordinary road throughout, without any paracarri.
Vignoles rails, 36 lb . to the yard, spiked to oak cross sleepers, a second rail of the same section being used as a guard rail at crossings of streets. The engines in use are the Henschel, made at Cassel, costing $£ 680$; and the Baldwin, already mentioned, which cost a few pounds less. The managers of this line, who have had previous experience of the Henschel engine on the tramways at Cassel itself, spoke highly of it, as giving more power,
with less fuel, than the Baldwin or other engines. The arrangement of the working parts appears good, being well boxed in below, and protected from dust and mud, while freely accessible to the driver for cleaning and oiling. There are five regular stopping places between Vercelli and Trino. At the time of the author visit the line had only been open a month or two, and that during the worst winter weather known in Italy for twenty years. Nevertheless, the receipts from passengers
only were already about $£ 6$ per mile per week, and only were already about $£ 6$ per mile per week, and
would probably be doubled by the accession of fine weather. The line, however, is intended quite as much for goods as for passengers. Trino is the market and depôt for a very large rice trade, the whole of which will use the line when open for goods. An extension of this line from Vercelli to Gattinara, some twenty-four miles, is in progress, and nearly completed. There are curves on this line of only thirty metres radius-gauge 4 ft . $8 \frac{1}{2} \mathrm{in}$. -over which the Henschel engine, weighing seven tons, drew five loaded passenger cars and a goods truck without difficulty. But the engineer stated that it
was intended to raise the minimum radius of curves to twenty-five metres. The maximum gradient on this line is 2.7 per cent., or 1 in 37 . They were running only three trains per day each way at the time of the author's visit, believe, been increased. An illustration of the Henschel engine, with specimens of the summer and winter cars, will be found at page 416 .

THE BERGAMO AND LODI TRAMWAY. Is our impression for November 14th we announced the opening of a tramway, worked by steam power, uniting
Bergamo-a town about thirty miles from Milan-with Lodi a town in Austrian-Italy. We now illustrate the line, and the rolling stock. The engines were constructed by Messrs. Henschel and Son, of Cassel. The principal dimensions are given below. The carriages are first, second, and third class, both closed and open at the sides, as shown by Figs. 1, 2, 3, and 4, the trucks for the transport of goods being illustrated by Fig. 5. These were made by a Milanese firm. The permanent way is illustrated at page 416. It will be remembered inat the line is laid at the side of the high road
The gauge is the same as all Italian railways-wiz., 1445 The gauge is the same as all Italian railways-viz, 1.445
metre. The rails are of Bessemer steel, and weigh 18.6
examples at the foot of the outside slope, which prevented necessary repairs, were now frequently at the bottom of a valve-pit built on
the inside of the puddle trench in the embankment. These valvethe inside of the puddle trench in the embankment. These valve pits were liable to get out of the perpendicular, and to prevent
the valve rods working ; also the water went half way through the bank in the inner culvert. The draw-off valve was sometimes placed at the foot of the inner slope; it had a sloping face and was worked by rods up the inside slope. The drawbacks were that stones were apt to settle, that there was great thruot on the valve-rods, that there was a want of access to the valve in case of
accident, and that the least cleanly water was drawn off. A culvert terminating in a valve tower of masonry or iron was the best plan, the valves being in duplicate, one set inside, the other outside the tower. The author advocated the tunnel clear the embankment and valve tower as the best and safest plan. A high level supply was taken from the hills above Oxenhope,
from Marywell Springs, and from Skipton district. The Stubden reservoir proving leaky had been abandoned in favour of a tunnel lined with cast iron plates backed with concrete, termi nating in a cast iron valve tower. The embankment was cut down, the original culvert taken out, and the embankment was then made up solid in thin layers, the new tunnel being used run water off during the reconad since been noticed the valve-tower and tunnel being water-tight. The Leemin compensation reservoir for mill owners had been originally made with a circular culvert having a slip joint and iro
shield where it crossed the puddle trench. This culvert wa seriously fractured by the subsidence of the bank, which wa mostly on fractured by the

FIC. 5
kilogs. per running metre. The accessories for fixing the rails were made in Italy. The sleepers are 2.30 by 0.17 by 0.12 metre, and of the best Lombardy oak. The carrying on an average 150 passengers each journey. The goods service is done during the night. At the ex tremities of the line at Bergamo and Lodi, and at Treviglio, there is a passenger station composed of a waiting-room, butfet,
and office for the station master; also sheds for and office for the station master; also sheds for engines and carriages-see page 420 -which occupy an area of about 3000 square mitres. villages. Sig. Ferdinand Pistorius, agricultural engineer Milan, is the proprietor of the line
The eugine weighs 145 centners empty and full, but without condensing water, 165 centners, and with this water 193 centners. The following are principal dimensions of the engines :-

THE INSTITUTION OF CIVIL ENGINEERS At the second meeting of the session, held on the 18th of
November, Mr. W. H. Barlow, F.R.S., vice-president, in the chair, the paper read was on Tunnel Outlets from Storage Reservoirs," by Mr. C. J. Wood, M. Inst. C.E.
The subject was divided into the consideration
direct line through an embankment, and tunsels round the end of the embankment as a distinct work. The author stated that the practice of laying pipes through an embankment, governed by valves at the foot of the outer slope was not satisfactory, first, because of the settlement of the earthwork; and secondly,
because of the subsidence of the puddle, both of which were likely to damage the culvert and create leakage. In crossing the puddle trench, a stone or brickwork pillar had sometimes been used to remedy this difficulty with partial success, and in other cases, a "slip joint," had been made of the portion of the culvert crossing the trench, to allow a slight vertical movement.
In consequence, however, of the uncertain settlement of the In consequence, however, of the uncertain settlement of the
earthwork of the sides of the embankment, this movement might not be vertical. The advantages of a culvert through the em bankment were speed, economy, and the building of the culvert in daylight; these culverts were frequently surrounded by a
coating of concrete, which gave additional security. The study coating of concrete, which gave additional security. The study
of culverts under high railway embankments was suggested, and of culverts under high railway embankments was soggested, and
the author believed it best to leave the bank, if possible, intact, by an alternative method-that of driving a tunnel round or under the end of the empankment in the solid rock as a separate work, the
tunnel to be lined with stone, brick with concrete. The objections to this plan were stated to consist in the work having to be done in comparative darkness, in the a creep of water outside the tunnel, and in the difficulty of backing the crown of the arch satisfactorily. The expens was in favour of the culvert directly through the embankment
the tunnel, though more costly, was safer, as it was not in the tunne, though more costly, was sater, as it was not in
the most dangerous place. The draw-off valves, placed in earlie
reservoir, which was in
Rawlinson's inspection Rawlinson's inspection it was of construction, on Mr culvert already cracked, and to substitute a tunnel outlet the this had been successfully done, the reservoir filled and Stubden had since proved most satisfactory. In two of the above cases the culverts were so damaged as to be a strong argument in favour of tunnel outlets distinct from the embankment.
The remainder of the paper explained the form and construc tion of the type of cast iron tunnel outlet and valve-tower use in these works. The tunnels were mostly driven through York shire grit and shale ; they were 8 ft . 6 in . high, 7 ft . wide, and eac
tunnel had a fall of 1 ft . in its length. The tunnel commenced a the bottom of a shaft, 13 ft . or 14 ft . deep inside the reservoirs, in which the lower part of the valve-tower, cased with concrete was afterwards built. The valve-tower was composed of cas iron rings with socket joints, caulked with iron borings and
salammoniac ; on the top of the valve-tower, at the level of the salammoniac; on the top of the valve-tower, at the level of the top of the embankment, a house was built to protect the valves,
and the tower was connected with the main land by a light wrought iron Warren girder bridge on stone piers. The tunne starting from the bottom of the valve-tower was elliptical in form made in rings, each ring being composed of four segments bolted together and surrounded by concrete ; it extended in a V-shape under one end of the embankment, and was a distinct work; at
the angle of the tunnel an air shaft was sunk, which was subsequently lined with cast iron rings, and formed a ventilating pipe The supply pipes, 2 ft . in diameter, extended through the tunnel and were jointed at the tower to a vertical standpipe, at equa intervals on which branches were cast and sluice valves fixed Connections to the pipes extended from the sluice valves through
the sides of the tower, and were further protected on the outside by flap valyes. Provision was also made for equalising the pressure on the flap valves, and for the expulsion of air when opening one of the flap valves. A wrought iron ladder extended up the tower, and at intervals there were grated floors so as to fford access to the valves and working parts. The connection of iron gland, to the face of which a wrought iron bulkhead was screwed, so as to make the valve-tower water-tight; the upper half of the bulkhead could be removed for entrance to that portion of the tunnel. These valve-towers had proved successful wherever erected. Mr. Binnie was the engineer for carrying ou the works, the author being the resident engineer.
At the first meeting of the session, on the 11th
Mr. W. H. Barlow, vice-president in the chair, it was announce that the council had recently transferred Messrs. J. P. C. Ander son, T. A. Bulkley, R. Crawford, J. Jackson, J. T. Leather,
R. K. MacBride, G. E. Ormiston, G. Palmer, F. F. Smith,
J. Tate, F. A. Upeott, and A. F. Yarrow to the class of nembers ; and had admitted Messrs. T. Adams, H. W. Ander
son, J. T. P. Bassett, E. S. Baylis, H. C. Bowdage. T. Butler A. H. Case, J. A. Dockray. F. H. Edminson, J. W. Fells,
P. M. Gotto, P. Hammond, W. T. Holberton, J, H. Holmes.
C. C. Horsley, A. J. Hudleston, H. J. Johnston, P. E. Keene,
W. Kissack, J. B. Labatt, I. A. Lewin, R. McArthur, W. Max-
well, C. T. Merrick, G. E. N. Pauling, H. Roche, R. B. Rutherwell, C. T. Merrick, G. E. N. Pauling, H. Roche, R. B. Ruther
ford, W. T. Skaife, J. R. Smith, P. Smith, J. S. B. Tarbotton
F. A. Target G. R. Tyndall, and L. A. W allace as students

Society of Engineers.-At the last meeting of the Society of Engineers the following gentlenen were balloted for and duly elected:-As members, Mr. Alfred Penny and Mr. Thomas
Rowland Jordan ; associates, Mr. Charles Clauson and Mr. John Henry Buchan.

THE PATENT JOURNAL Condensed from the Journat of the Commissioners of Patents. \because It has come to our notice that some applicants of the Patent-
oftice Sales Department, for Patent Specifications, have caused much unnecessary trouble and annoyance both to themselves and to the Patent-office officials by giving the number of the page of
THE ExGrsern at which the Specification they require is referred to, instead of giving the propec n number of the Specification.
The mitake hus heen and giving the numbers there found whit place of turning to those pages and finding the numbers of the Specification.]
Grants and Dates of Provisional Protection for Six Months. 3137. Thassuminiso the Details of Plass, \&e., W. H. Arber, Leytonstone, ${ }^{3276}$. STsupriso Our Liskrive, te. S. H. Hodges, R. W. Ashley, and W.

 4374. FAstrexiso Boors and Suots, H. T. Weston, Havelock-square,

 $\xrightarrow{\text { London-- } A \text { comm }}$

 4300 Pazservation with Svosil of Fruits and Pekls, E. H. Hill, Com-

 Germany.
440 TEEEProses,
J. H. Johnson, Lincoln's-Inn-fiolds, London.-A com-

 442. Li.strs, E. Kauffmann, Red Lionsquare, London.-31st October,
1879 , ${ }^{454 . \text { Reveoviriso Csusow and other Guss, B. B. Hotehkiss, Southampton- }}$

 4506. Diociso and Siurimo Pnat, dec. H. Simon, St. Peter's.square, Man45hes. Hor- \boldsymbol{A} E communicatton from C. Schlickeysen, Berlin.

 TSase Wwiruce
road, London
4536
4528
4530

 Westmintorezectric Maciuse, C. W. Slemens, Queen Anne's-gate
 5s8. Cankers for PAckiya Borties, T. Cookcroft and H. B. Fox, Birken${ }^{4}$ head. Davirs, dec., for Cariviso Surs' Boats, W. H. Watling, Midales. brough-o
450. Siso
454. A

Junge, Rotherfild-strcet, Easocroad

55. Comeing Frbres, G. Litio, oids,
ford. Comeing Frbres, G. Littlo, Oldham, and T. C. Eastwood, Brad
SKATES, J. Brown, Manchester.- $7 t_{h}$ Novenber, 1879 .
Lasps, F. WoIff, Randhusstraede, Coponhagen.- \qquad
 Bortces, C. J. Wade and J. W. Dobson, Barnsley.
Hot-A1R Sroves, A. Kohlhofer, Southampton-buildings, London.
Wasiuxc Woot, H. Hlingworth, Bradford.

near Leeds.
Dressing, CoMns, J. Hart, Handsworth
CANTORS for Forsiure , \&. Crowloy, Manchester.

 Nocember, 1876 .
4565. LAMPs, F, T
4565. Layps, F, T. Tyndall, Edinburgh.
4566. Courlisos, de., R, J. Linnes, Northampton.
4567, Drewisg, dcc., Bekes, WiNEs, \&c., E. Bolton, Salford, near Man-
chester.

ham. Looss, d. Bedford, Birstal, and J. Pickering, Batloy,
4571. FAstesmas for Bracklert,

buildings, London.-A communication, from E, Georgo. Berlin.
4574. Prorkcter for Surs, J. E. Liardet, Brakespears-road, Wiekham-
park. Brockley.
4575. Phepanation of Plastic Material, w. R. Henshaw, Tunstall.-
10th Nowewber, IS79.

Tasker, Prestwich.
457s. WAshiso, \&c., Machines, C. Harvey, Preston.
4580. STEEL and other PENE, C. D. Abel, Eout
Lo. Stes. and other Pens, C. D. Abel, Southampton - buildings,
Germany. A communication from E. Hammesfahr, Foche, Gracfrath,
Germany.
45Si, Auticically Ventilatino the Intertors of Buildinos, \&c.,
Ser, Dundce.
STRAM Boilers, ©c., T. Dale, Kirkealdy.
DRAWINo OFF WAtER, F. G. Underhay,
Drawise OfF Water, F. G. Underhay, Crawford-passago, Clerken Electrec Liohtiva, G. P. Harding, Paris.
Kalendars, J. Darling, Glastow
4C94. Drawisa SheEr Merals, F. J. Taylor, Wakefield.

 Brooklyn, U.S. $-12 t h$ Novenber, 1879
4614. Rasisv, \&c. BoATs, J. Darby, Liverpool.
4616. Looss, T. A. Harrison, Lancaster.

Huddersfield. ${ }^{4622 .}$ Tos Prips, J. T. Parlour, Flict-strect, London.
462s. Avtuxistic Smwisi Macnisks, W. R. Lake, Sonthampton-buildings, London.-A communication from T. Carmagnolle, Paris,
4630. FrakeoratEs, W. H. Warman, Bristol, and J. S. Bremnér, Coal-
brookdale. 4632. Dyeind Conton Fspries, J. Clare, Grconfield.
4634. Preskrvise MEAT, dc, A. M. Clark, Chancery-lane, London,--A
communication from Le Comte A. C. do Barbaran, Paris.-13th Nocember, 1879 .
4636. Lasp, D. M. Yeomans, Queen Victoria-street, London.-A communication from C. Bricogne, Paris
me Soria-street, London.-A com-
4638. SEwro Mactives, H. A. Dufrené, South-street, Finsbury, London. - A communication from J. R. V. de Castro, Porto, Portugal. WANES,
4640. OnTrININQ Mortve Powke from tho Mooriov of Smps or WAVE,
H. J. Haddan, Strand, London.-A communtcation from G. Minisini, H. J. Haddan, Strand, London.-A commundcation from
Turin, Italy.
it2. Pockets for Wearino Apparel, C. Levy, Manchester.
4642. Pocketr for Wearino Apparel, O. Levy, Manchester.
64. Water Gavoe Valves, F. H. F. Engel, Hamburg.tion from G. Leser, T. Lesor and W. Loser, Hamburg. road, London.
464s, RBosterfic the Number of Pasgengers in Tramears, J. Wells, 4650. Generbation of Oxyoes, de., Gises, J. Rochford, Water-street, Liverpool.
4652. Treaske of Plants Surfering from Disease, A. Tyam, Kilburn,
London.-14th November 1879.

Invention Protected for Six Months on the Deposit of 4711. Cutring Barbs on Feser Wige A. M. Clark, Chancery-lane, Lon-
don, - A communication from A, Cary, New York, U.S.-10. Notember; don.
1879.

Patents on which the Stamp Duty of d50 has been Paid.

4562. Hollow Bossed Self-luiricatino Wiekl, R. Hadflold, Southamp-ton-buildings, London.-24th November; 1876,
4563. Treatrent of Vegetabie Substances, C. Rands, Holloway.-2sth ${ }_{40}^{\text {Noven Ser, }} 1876$. 4583. Furerlaces and Heat Generators, J. Dean, Oxford.-27th Nocem4610. Looms for Weavisa, J. Collins, Glasgow, N.B. $-29 t h$ November 1811. STuDs, \&c., J. C. W. Joffreys, Tottenham-court-road, London.- 130 458. Lasps, G. A. Ermon and E. Ermon, Eccles,- 27 th November, 1876 ,
4564. Peeling Babley, C. Fiepor, Drosden, Saxony.-27th November, 4597. Ferding Steam Bohers, C. Pieper, Dresden, Saxony,-27ih November, 1876 .
4565. Preservino Meat, H. M. Whitehead, Fenchurch-street, London.499. Roorece tce, J, Hlakey, Leeds.- 28th Nocember, 1876.
4566. SrisNivo, \&c., S. Brooks and G. Harrison, West Gorton, Manches ter. MakINo Up Printio Papens into the Forar of Booss, de., w. Con-

 . H. J. an
 ant

Patents on which the Stamp Duty of $\& 100$ has been Pald 3704. Produciso Reciprocatino Motios, W. T. Hamiltom, Rathmine Dublin.-6ik December, 1872. . F . Hamilton, Rathminos, Dublin.-11th
37bu. CuTriso Doverais, W.
December, 1872 . 3587. Carsule, W. Betts, Wharf-road, City-road, London--28ch November,

Notices of Intention to Proceed with Patents

2024. Holdivg and Cleanino Bits and Stirbups, 8. Elliott, Newbury.184. Suly, 1879 . Foot, Eversholt-street, Camden Town, London.- $24 t$, 3027. VELocipedes, W. Hillman, Coventry,
2025. GIo Mrlus, H. J. Haddan, Strand, from Grosselin, sen. and jun. J. Witell so3s. CABLE HoLDens or Rrms, J. Mitchell and D. J. Cocks, Gordon
street, Glasgow. street, Glasgow
2026. Loosse for Weaviso, J. Bywator and C. Bedford, Birstal, hein 304t. Valve for Boats, J. Cascy, Philpot-lane, London. 3045, Boaisa, \&c, Rock and SroNE, J. D. Brunton and F. H. J. Trier
Great George-street, Westminstor, and A. I. Rapp, Paris,-25th July, 3047. Pristiso in Colours upon Ixdia-Reniere, \&c., W. Q. White, South ampton-buildings, London.
2027. ELAstre Wens for the Sides of Boots, \&c., J. Astili, Lelcester.- $26 i \mathrm{~h}$
July, 1879. July, 1870.
2028. Pyros communication fre Theryoyertend, A. Budenberg, Manchestenta 3061 . CAkE for Hoosks, \&e., G. W. von Nawrocki, Berlin, - A communi
cation from Alfred, Count of Salm. sobs. Sckew and Liver Presses, T. Wrightson, Stoekton-on-Tees, an
J. H. Ladd, Lond

 30sy. Cleanind Safity Lasirs, W. Aekroyd, jun., and Wi. Best, Mivhloy,

 3164. ExTrActivo Mossture from Hops, J. Siddeley, Liveriool, ania A. In
Dearn, Retford.

 1879. Irow and STEEL, A. F. Gussander, Torsaker, Sweden-8th Augut, 1870.
2029. Combined Canteen, Water Botrle, and Cooking apparatus, W
Harrington, Dublin.-1 H231. PAPER BARrELS, \&C., J. H. Darlington and C. E. Sedore, Brooklyn, 3235. Dryiso and Curisg Hops, H. J. Haddan, Strand, London- - A com
mnnication from N. 3240 . Article of Food, J. W. Hayes, Upper Barnsbury-street, Londioh., 3316. Merazilic Beosteads, E. Peyton, Birmingham-16th Aupust, 1879 3438. Deer Ska Fishing or Trawling, J. W. de Caix, Great Yarmouth. 3455. GALVANISINO Wire, de., E. Fox, Castle-stroot, Sheffielth - 27 U 3519. Horse-collans, W. R. Lake, Southampton-bulldings, London.-
communication from E. Fisher.- 2 nd Sqptember, 187e. 3624. Inow and StEEL, H. C. Bull, Southampton-buildiggs, London.
 8687. Supplying Fugl to Fires, dec., N. Macbeth, Bolton, and T. Beeley, Hys. STrreotypino. W. P. Byles and G. Allen, Bradford.-24th Epptem-
 3973. Rollive Meralure Bans, te., E. A. Brydges, Belle Aniairedistrasse,
Berlin.-A communication from the Menden and Schwerto "Eisenin: dustrie" Company, Schwerte, Germany.-3id October, 1879 ,
3995, Glass CapsuL, D. Grant, Water-lane, Queen Vietoria street, Lon 4038. Vinegar, C. Kesseler, Mohren-strasse, Berlin. - A communicatio from V. Michaclis. - 6th October, 1879 . 4149. Valves, \&c., J. Evans, Wolverhampton,
2030. RAILs, \&c., J. P. Spencer, North Shields, and R. Elsdon, Upper 4176. OrNambstisa Metallic Suryaces, D. Littlohales, Birmiogham.
 October, Misia.
2031. Treatrent of Malt, R. Pendergast, Castlemaine Brewery
and Sydney, New South Wales, and R. Free, Mistley.- 27th October, 1879.
2032. AzIMuTr Comasses, A. Louttit, Tollingtom Park, London.-28r, 4394. Explosive Compounds, L. T. O'Shae, Aughton, and C. T. Brooks, 4412. Vilves for Sinale-actina Enaines, R. Whitohead, Cork-streot 4430. Provecino Aluminium Bronze, J. Webster, Edgbaston, near Birmingham
buildings, London-A communication from W. A. Amberg- -318 4454 REVOLVINO CANNoN and other Guns, B. B. Hotehkiss, Southamptonbuildings, London.- $18 t$ Norember,
2033. Cotrox Cords, J. H. Openshaw, Bury.
2034. Cutring GRass and Grais, W. C. Manwaring, Banbury.-40
Noverber, 1879 . Novenber, 1879 . de., Meohanism, C. Sipman, Kayo's Walk, Notting
2035. Doublino, ${ }^{\text {hinkm }}$ Umbrellas and Parasols, A. G. Brown, St. Thomas-strect, South4513. Preventinn Overwinding of Oaoes in Mine Smarts, J. Tańsoin, T Hudson, aud E. Rowe, Darlington.--5th November, 1870.
2036. METALLIC BoxEs and CABEs, Es., R. Whitaker, Birmingham. $-i / \mathrm{h}$ 4547. LLarps, F. Wolff, Raadhusstraede, Copenhagen. $-\boldsymbol{A}$ commumication
from K. H. E. Höybe. from K. H. E. Hoybye.
2037. CRUETs, dC., F.G. Lyne, Manchester. - $8 t h$ November, 1879 .
2038. DRAwINo OrF WATER, F. G. Underhay, Crawford-passago, Clerkon-
 ber, 1870.
462, Treatisnt of Plasts, do. A. Tyam, Kulburn, London.-14th
 Lil. CuTINiNo Barns or Fenck Wiag, A. M. Clark, Chancery-lane,
London.-A communication from A. Cary.-19th Notember, 1879.

All persons having an interest in opposing any ont uf such applicitiofts
should leave particulars in writing of their objections to such application

ABSTRACTS OF SPEOIFIOATIONS.

Prepared by ourselecs expressty for The Enginere at the office of
Her Majestys Commissioners of Patents. 1059. Or Lavps, H. Gavdner.- Datal 18th March, 1379.- (A communaica

 1290. Job Panistisa Presses, II. P, T

 angular frame.
1302. Trextivo Entuy Clivs for tire Manvacture of Bricks, B.

 driving dual screw propeliers.
1348 . Tonsco Pire RAco.

 The board hasa strip of wood or other vibration-conducting material
ubutting against and attached to its edge ell round, and surronded wit s.tril of rubber or other non-conductor of virrations. The bridge
oxtends at both ends to overlap the vibration-conducting rim. 1403. Waтco C.asss, A. M. Clark--Dated Sth Aprih, 1870.- (A cominum

 stem
of duu
1404

 The mechanism - fared raising ing and lowering the safety gate consists of

 the pressure of a fuud admitted to the easi
ting the pressure at the dischargo openim
1410. Pumyrisa Gas, H. J. Haddan.

 cast on the inner part of the wheel, and one of which receives the aftor
wrist pin of the engine, all being slotted to receive bars which slide in
diroction parallel to the shaft, and have a stud for rollers to run on, and 1412. Fastesisos por Skcurisg fue
J. Shanks.-Dated $9 t h$ Aprit, 1870 .

A band of metal with a tongue at ono eond and a aslot in the othor ts ben
 strip of metal, which then passes over the cork
other side, where it is again secured to the band.
413. Fixino Tubes sis Tube Plates, II. Koellgen, -Dated oth Aprit, 1870.

The tubes project through, the plates, the holes in which are larger than
ho circumferenco of the tubes, and are conical. A ferule of soot meotal 414. Sprino Fastenivas for GLoves And Boots AND Shozs, J. Minh Two strips of motal are pitvoted Apri, is7ne odd. where one is formed with no excentric heol to bear upon a spring arnn formed on the other strip
The strips are attached to the sides of the opening to be closed. 1416. Runae Fisder, F. Weldon. - Dated 9 9hh A
T wo reflectors, each adjusted to show an anglo To fixed like thoso of an optical square, or may be formed of a reflecting
rism, the faces of which aro ground to show the same angle. Th venctors aro securod in a case open on one side, and above each is a
penig, through which objects in front of tho observer are viewed
1417. Bescr Ksives on Holdanst Tools, H. Woodburne,-Dated 9h The tool has a bed plato with two pins whith fit into grooves in the
thlo bo bench. The pins are serated so as ato hold firmly, and tho boldwit lever is a metal bar hent at its outer end, andat its extromity formed Thommunication.)- (Not procededed vith) 2 d . a fan is mado to revolve by means of a helitecal spring. The casing has air inlot and outcele openings the latter oponings.
419. LEAD AxD C
419. Lead axd Crayon Holders, J. H. Johnson. - Dated 0th April, 1879

A tubo to receive the lead is formed with spring jaws at one end, and he outside inclined surface of the jaws bearing against the end of outer 120. Semtiva Evelets on Studs in Leatien, IV
 menching die or anvila series of radfil groves sith curved bottoms of
 yyelet tube as the seting tools aro brought togother to clench the oyelet.
In the omewhit loss diameter than the punch, that portion of the end or the
hitter outside the concarve recess beizig so bevelled ns to form an annular surface, slightly conical or inclinind downward and outward, to frrt come
un contict with tho lenther and be pressed into it as the punch is moved

 The process ebnsists of reducing and puififying ores by means of heated
 and condensing or separating metals, nllogs, znd metalloids, or similiar
substances, by the agencies of gravity, centrifugal foree, and abstriction 1422. Dupricativic on Coryina Exaraved or ormer PLates on BLocks, This consists in the use of a cemont composed of of ellow oxide of lead
massicot and
givecrin for the rapid reprodnction of engraved or raised 1423. Savisa Lifg AT SEx, A. Rolands.-Dated $9 t h$ April, 1870.-(Not
 424 Appeitus ron Workino Wire Rores, W. H. Hariteld. - Dated 9 u To ptrop wirc. ropes a wedgo with a groovo on one side is employed
between which and a fixed groove block the rope passes. The other side

426. Castiva STEEL, W. R. Lake. - Dated 0 oh

The processes of melting and pouring the stecl into the ingot mould are
imilar to those heretoforo practised, but instead of leaving the stel to

 128. CaxF Cotrrns, R. Magnard.-Duted 10th April, 1s79.-(Not proAneded weith. 22.2 . or web is made to pass round the lower feed rollor, for the lower feed rollor, pand by advancing the straw orviating the neces.
sity of the feder's hands being placed near the feed rollers.
 mechanism is arranged outsido tho phates, and is coverei with a close
asing

 1431. Candivo Wool, J. Holden. - Dated 100h Aprit, 1879. Gd.
Five, six, or more opening card rollers are employed, and are arranged in
wo tien,

strippers each alternato opening roller is placed on a different lovel to ite
predecessor.

 secured a plato with an arm, from which projects a pin adapted to a
curved slot formed near the uppor end of a dog, the lower portion o

into the space above the fire. In casting the fire-bars a metal chill is
emploged in conjunction with a sand mould.

 machine between the divider and the rotation
and the grain cloared froma that part of the
 and connecting link in the ordinary way. Over this table is the platfort
on which the corn falls and is carried forward to tho binder by means of forks made to project through elots in the platotorm at the necessary
intervals, and near the end of the platiorm is a deflector which turns the arrs of grain towards the centro the machine
1436. Bafety iDmum Guards for Steny Tirashing Mactines, f. J. The drum guard consists of a slici and hood; the former is actuated
by springs and arranged under the feed board, and rests on the top the concave, being hold back from covering tha beaters by bever and
catch The slide is recesed by tho feod board or the hood belng
depressed when it slides out from under the feed board and covers the depresse
beaters.
1437
 A short tube is fitted with a flange, to one side of which fs attached a
tube to close the mouth of the bottlo without closing the first tube, and on the other side is a washer, so that when the thibe is press
upon the stopper the washer will rest upon the lip of the botte.
1439. Dryiso Frerous Sobstances, L. Webste:-Dated 10th April, 1879 Δ colose chamber heated by steam contains a serios of chain pulloys,
over which travel two endless chains. The hanks of yarn are stretclice upon two crosss bard extending across the chamber, and are attachod at -Datel 10th April, 1870.-(Not procecited A celininer is formed with serrations or projections on its surface and
revolves with its axle. whe sant it phaeed above the eylinder, and as it is
ound fulis into a box beneath. 441. Sivituses, W. Turner and E. Hoylc.-Dated 10th April, 1879. 1 (Not A the end of tho saintle where the peg is usually fixed is placed ha,
spindle provided with a collar at right anglos to the axis of the spindto, On one end of the spindle is a spiral spring comprossed between the fit into slots formed in the body of the shuthle, and the collar is shaped
to fit the recessed portion of the shuttle and slide freely theroin. At thi
 bobbin passes on to the stay, and the end of the spindle eat the front of
the collar passes into the hoie in the centre of the bobbin.
 A wheel is connected with a system of gearing and with hands moving
er dials, and denoting instantaneously the measurement of the lino
 A cylinder is formed with a pair of rotary three. way valves for ado head by a rod and two quadrant cams. The exhaust steam is carrietd to neans of a conoidal nozzie, thits croating a vacuum in the cylinder and circular piston slide is fitted to the piston rod and also to the connecting
cod, such slide being fitted within an open cylinder which protects the moving parts. Belts are abolished for driving machinery, a wormed
shaft, gearing with the main shaft and applied direet to the machinery, 1444. Produciso Preparations or Alubinsa, de., W. L. Wise.-Duted Acoording to one metho dime or mink of ilmedis mixed with tho
 uices or fluids.

 447. Contin

An clectric current is applied direot to the brake blocks or to the brake suspended noar tho cheurent passes through the blocks, they boing
witha rotarding force. 149 applinscss for Disoraroina Ordance, J. Vavassur.-Dated The ehargo is ingited at at any deserford point within its mass by means of
olectricity, without any vent or fring orifce being required.
 ginos with passages and valves, which at suitable pofnts in the out
ard strokes of the pistons permit of the flow of the gases from one side of each piston to the other, in order that the remnining prossurano of the 1451. Cleanino Whent, \&c., Higginhotlom and B. Huctinnon Datal This consists of a series of discs or annular ledges either with or without
vanes upon their upper or under surfaces, revolving inside a casing either ond or perforated, and upon which disss the graing inside a casing eithoer
sreo to fall and lio
sil etween the discs and the cusing.
 This relates to the arrangement and construction of a roller or rollors,
on the periphery of frich is placed a series of grooeos or ohn ols or tor
purpose of consolidating clay or like
 455 h the centre of street and other lamps.

 This apparatus consists of three principal parts, via, First, a horizontal
bar or rod bearing anum bor of lopos or break twist dards so arranged on
the bur as to occupy positions in the certer

1458. Wabaiva and Vemthativo, L. H. Hauber.- Dated 15th April, 1879. Adumber of stoves form a contral heating apparatus with a heating
chamber, the stoves botng divd ded into series controlled separatoly, and
chat
 o bo heate

 1480 WTICK ron On LAMrs, J. Freeman and A. B. Webb.-Dated 15th Strips of asbestos (nro arrandedged within a casing of cotton, and drawn 1461
 1482. Prodvotron or Glazed on Enamelled Matertals, J. H. Johnson This consists in the employmont, in the production of glazed o
namelled matoring, not naturan sondstones as a base for the coating oo
plain or decorated glaze or enamel. 463. Swiminx AppARATUS, E. G. Breaer.-Dated $15 t h$ April, 1879.-(Biand res hingod together aro secured to the feet of the swimmer, so that
hon requirod they bear with the greatest surficco on the water, and then

 $1465 . \mathrm{s}$

 1468. Loons, J. Rollinoon and J. Senior -Dated 15th Aprl, 1879. 4d.
 (Not pronsected ditith) $2 d$.
2ixed in a slot in the side of the shutle

 to theo ordinar
duet ottoman.
1470. Mixisa And Kneading, E. Edrardh. - Dated 16h April, 1879.-(Noi
 ho bottom of tho vessse
 This consists in the use of insulated electrical conductors so arranged
on the edgo of tom mangor that tho horese in attempting to gnaw it com-
plotes a circuit and thereby receives a shock.

 rogulating the movemerad.
the second and vice vera.
1473 . Looss,
Two or more barrols and lattices are mounted and carried at suitable
and equal distancos apart by bearing plates or discs, the disces being
arried by or working ont 1474. RAILWAMs AND TuanwAYs, J. Liveesy. - Dated $166 l_{h} A$ pril, 1879 .Thot roceceded nith.e) $2 d$
penso reitas
pith detached or or loose

 the chimney.
478. Telergoves, ©c., I. J. Haddan.-Dated $16 t h$ April, $1879 .-(~$
communication.)

This relates to the combtantion of a telephone and a signalling
 currents for signalling purposes.
1477. Tkerporic AppRavus, H. J. Haddan.-Dated $16 l_{l}$ April, 1879.-
(i communication.)
6d.

 menase
1478
18
 agatare tho utlisastion of the heat produced by such combustion.

 ward motion is imparted to the copping rail. When desired to keep the

curronts below th
rapid ovaporation 1485. Deconarive Paintiso, ©c., F. C. Canicr--Dated 16th April, 1879. This relatos to a process of decoratiog in imitation of all kinds of wood 1488. Renv, agato, do., by a transter process.
(his inmmincoation.) Ed.
arts, and hans rolation principally to the constriction of the furnace to ad sides, which consist of an arch with curved sides, and to its combl

 nidid tho pedoostaan on the opposito side, to ser
tho weight of tho jib and the goods being lifted.

490. Masuracture of Turkey Carprts, de., A. Hildebrandt.-Dated

1491
 ongine gared into and working the traversing motion indepondent
hie winding ongine, instead of haring ane ngine to bo both actions
491. PIAsoronte Actiox, W. A. Waddington,-Dated 17th April, 18

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

From our oon Correspondent.

The upward movement in iron, in iron-making requisites, and in ise in galvanised sheets of $£ 1$ per ton, making sheets of $24 \mathrm{w} \cdot \mathrm{g}$ packed in felt. The week opened with a further rise in Londo othe extent of ls per ton, making Earl Dudleg's furnace coa 10s., and his forge coal 9 s . per ton.
These advances strengthered all other descriptions of iron and
ninerals. Tooday-Thursday-in Birmingham, and yesterday in
Volverhampton merchants Wolverhampton merchants sought to phace, orders, but were desired to buy large lots of marked bars at the current quotation with specifications would look at only small orders accompanied good rise on current rates. For sheets of the latens gauge $£ 1210$ s,
was freely offered if the maker would deliver in February. Thi would make doubles $£ 11$ and singles $£ 910 \mathrm{~s}$, but makers woul
ot accept the terms. Most of the sheet sirms indeed yesterday's terms, which were a rise upon the week of 10 s . pe
 however, hesitated to buy. There were only five sheet iron
makers who would quote at all. Neither hoops nor strips wer to be bought, and only few bars, or angles or rods. Common minimum, and medium bars have risen to within 15s, and occa sionally 10s., of the quotations of the marked bar firms.
Prices Current" on another page. Common plates are steadily rising. This week they are further strengthened by the higher
uotation in the Middlesbrough market, and by the difficulty quotation in the Middlesbrough market, and by the ditficulty
constructive engineers find in buying from the Cleveland district en at the enhanced prices.
The preparations for increasing the output of finished iron last reported continue. Such preparations are the more pushed for
ward because the majority of the firms have still to deliver larg ard because the majory ol the firms have suantities at the late minimum prices. This is equally applicable to the makers of pig iron.
Few of these would to-day accept the prices which they would have taken last Thursday; and those who a few weeks ago were
lamenting their accumulated stocks were to-day rejoicing that hey still had "a few thousand tons left." Already local pig which lately could not secure $£ 2$, are easy to sell at $£ 3$; and othe
kinds for which $£ 2$ 17s. Gd. was taken, are difficult to get a $\& 317 \mathrm{~s}, 6 \mathrm{~d}$. Men who last Thursday, after previous negotiation
ecured good hematite pigs at
$£ 44$, could not later in the them under $£ 45$ s., even on the rapid delivery terms appertaining
to the $£ 4$ contract. This week the higher price was equally im. perative. Furthermore, the high class irons of South Wales are this week dearer by 7s. Gd . per ton than they were a week ago
Tredegar pigs, for instance, have reached 8 8. 6 d . by three equal
stanes a rise of half Saturday, and on Monday. And the progress which this iron has shown from within $£ 3$, as an exceptional minimum, the makers
through their asents warned consumers yesterfay and to-day through their ayents warned consumers yesterday and to-day
will continue till $£ 5$ and even $E 6$ is reached. The Thorncliffe rrand sold yesterday at 7os. best quaity, delivered at stations
This was a rise of 5s. upon the fortnight. Northampton pigs
re similarly advancing. By circular received in this distrie yesterday the Glendon brand was put up 2 s . 6 d . per ton, making No. 4good forge quality $£ 3$ 7s. . .d., and No. 3 or foundry, quanity
$£ 3$ 10s. At this figure Glenden pigs were offered on Change o-day in small lots.
Among the pig-making firms who are getting into full activity gain is that of Messrs. H. B. Whitehouse and Co., all of whose e-opened throughout the estate
has lately distinguished the mineral movenent. It is this wee difficult to get all the Ulverstone ore which consumers require even at $£ 1$ ss. per ton at the pits. The recent minimum was 9s.,
and "Blue Billy," which not long since was plentiful at 3 s . 9 d . per ton at Runcorn,
in limited quantities
All the colliery-owners in the ironmaking localities are following Earl Dudley's lead as to large coal, but they are not all divergence in this particular is due to the fact that most of the ther firms put up their slack to that extent when they, like their
nore powerul neighbour, advanced furnace cal fal from 8s. to 9 s. All the colliers outside the Cannock Chase district have had thei wages advanced by the rise in large coal atint, as to the men working in the thick-coal seams, and 1 d . "per day" as to those working in the thin-coal seams. This
avance makes the total rise in their wages by the lead which the dvance makes the total rise in their wages by the lead wh
Earl of Dudley has tnken, 6 Cd and 3 d . per day respectively
Neither in prices nor in wages is the Cannock
immediately affected by the earl's proceedings. Cannock Chas
leading colliery-owners to quickly advance quotations, All the
collieries open on the Chase keep in active work, and special Thains daily take the coal to the South of England
ill shoughout the ironmaking localities an under supply of coal The meeting of the blast furnace proprietors held here this J. P. Hunt, chairman of the Trade Board. It was unanimously ecided to advance the wages of furnace
dvance to commence from Saturday next
The ironmasters have now definitely determined to postpone he hearing of the men's claim for an arvance until the arbitrato advanco should be awarded it ought to date from the 18th of November, the day subsequent to the notice last handed in. But
he masters seem to be of the opinion that it should date from e expiration of he month's notice. An effort to inely to lead to much difficulty An effort to increase the ranks of the union is being made by
he ironworkers' agent in South Staffordshire among the men is advocated as a necessity. It is proposed that, under the new scheme, 3d, per week should be paid into the
union by each man when puddling is 7 s , per ton, 4 d . when 8 s ,
 hal of lodges at the several works is being determined upon.
ing trictly adhere to the notice which they have given for an advance Hardwares continue to advance. By two successive alteraions of equal amounts the wrought iron tube makers of Wed nesbury and Walsall have lately declared prices up to the extent
of a reduction in discounts of 10 per cent. There is a distinct
ore pper
copper top and hoe manufacturers are not oppressed with work,
Edge too and and many firms would gladly book more orders. This branch
nas not hitherto been much advantaged by the American evival, but that revival will, it is expected, make slightly less ifficult the efforts of the manufacturers to meet the United encouraging some makers to believe that they can produce tools
which, notwithstanding the heavy duty, can be sold in the hich, notwithstanding the heavy duty, can be sold in the
outhern States of the Union below American manufacturers prices.
The
The wrought nail trade is in a very depressed state, and it is
eared, notwithstanding the advance in wages which has just fared, notwithstanding the advance in wages which has just
been secured by the operatives, the coming winter will prove a severe and trying time for them. A difficulty with spike makers has now been arranged satisfactorily.
A notice for an advance in wages, which I last week intimated Notp St fir , he past year. The principal exception is the case of the Earl of ranville, who, it is stated, has not reduced wages since 1877 .

NOTES FROM LANCASHIRE.

(From our ovon Correspondents.)

Ir seems now to be generally conceded that the improvement
the iron trade is settled upon a thoroughly healthy basis. Makers of both raw and finished iron are very firm in their prices, and during the past week there has been very little underexpering on the part of merchants and dealers, some of whom are have made. The cheap lots which were offering in the market hort time back have for the most part disappeared, and as it is becoming increasingly evident that not only are present rate heir alvancing staill furthe that there who have iron to sell are howing a disposition to hold.
ood deal ot iron has market at Manchester on Tuesday, and a enerally being obtained of inquiries for forward delivery, but these sellers will not enter
tain except at a considerable advance upon present rates, whils or prompt delivery there is only a limited quantity of iron now ffering. The den molling mills bein is muc foull of presen hey are all pressing for deliveries. For foundry qualities ther is also more inquiry, the upward tendency of the market inducin consumers when they have secured an order, however small, to
Lancashire makers of pig iron, as I pointed out last week are now so fully sold, particularly in forge, for the next three or are now so
four month
any large p any large parcels at present, notwithstanding the advanced reate
which can be obtained. Rather more than the advance an-
nounced last week is now being asked, and for delivery int Manchester No.. 3 foundry is quoted at, 56 s. per ton less $2 \downarrow$ pe The local market for outside irons is also firmer, and of some all. Lincolnshire and Derbyshire irons piticularly are heare and those who have any lots to sell are asking prices which ar practically prohibitive, $60 \mathrm{~s}, 6 \mathrm{c}$. to 62 s .6 d . per ton less 21 per
cent. being quoted for foundry qualities delivered into the Man chester district. Of north-country iron a considerable quantit hester have been bought at from 52 s . 6d. to 53 s . 6 d . per ton net
cheve thes chester have been bought at from 52s. 6d. to 53s. 6d. per ton net
cash, but for forward delivery 2s. to 3s. per ton above these figures is being asked.
been a good dean however, are now so fully sold-some of them having actual speci-nonths-that fresh orders are difficult to going for consequence are very stiff, $£ 7$ 10s. per ton being now about the orwest figure at which Lancashire bars are quoted for delivery
into the Manchester district. Hops and sheets are also in yood into the Manchester district. Hoops and s.
demand, with high prices asked by makers.
Machinists are gradually getting better off for work. At present it is chiefly in the shape of repairs, rendered necessary by
mills being re-started, but a few orders for new machinery, such as looms, are also now being given out. Engineers, as I have
pointed out in previous reports, are also better employed than Iney were, and some improvement is reported anongst founders.
I understand that the Wigan Rolling Mills, which were lately in liqmidation, are to be re-st.
In the coal trade there is generally a better tone, although the improvement is still only very gradual. The demand has not ret increased to the extent to cause any actual pressure for supplies to be generally felt, and many of the pits are still only working naturally moving off more freely in consequence of the colder weather, and there is also a steady improvement in the demand
from works for the common classes of round coal for stem forge purposes, but burgy and slack are without material chang In prices there has been astiffening up with the commencement of having generally done so this month, and the averace quotations
 common round coal, 5s. 6d. to 6s.; burgy, 3s. 9d. to 4s. 3d.; good Ylack,
For coke an
nees in prices.

The applications for an advance of wages which have been
sent into the Lancashire colliery proprietors by their men expire this week, but from what I can hear there is not much proba-
bility of the matter being entertained, at least for the present.
The demand for hematite pig iron has improved, both on American continental and home account, and as makers are not
in a position to deliver much metal in respect to new orders, prices have had another advance, and now stand at $82 \mathrm{~s}, 6 \mathrm{~d}$. pe Works. Iron ore stands at 20 s , to 22 s. per ton at the mines for
last qualities, and 21 s . to 25 s . for pudding descriptions. Stee has also advanced in value to a commensurate extent; but as
makers are not able to accept contracts requiring early attention, he high quotations in the market do not mean very much. general trade, are better furnished with work than of late. Iron ise is in large consumption, and is still difficult to buy. There
is atfening tendency in coal and coke. With a view of facilitating the transit of material to and from the docks at Workington a new seashore railway has been con-
tructed, which will be found of great advantage. It is reported that last week 25,000 tons of iro
in the Cleator district at 20s. per ton
The Wyndham Company is now putting down a second shaft ore than it came across in its first sinking.
Mr. Stirling is opening out
Mr. Stirling is opening out a new iron ore pit at Crossfield, i
Cumberland. Cumberland.
One of the
One of the furnaces at Parton has been put in blast, and the
other is being prepared. The works have been standing idle for some time.
It is anticipated the new docks at Maryport will cost $£ 100,000$
The Moresby The Moresby Coal Company is contemplating sinking three rigg, and a third at Distington. It is also going to have
branch line of railway from the Walk Mill pit to Rowrah, so to be in a position to supply the mining district there with coal
The third new furnace belonging to Messrs. Bain and Cow was. blown in at Harrington last week. The company intend to
demolish the only old furnace now standing and erect one in its
place.

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)

Althovgh there is still great activity in the iron trade, and
prices are fairly well maintained, I notice a tendency toward less firmness, and some mistrust. I Intici ated some time a aro
that the remarkable reaction which then took place might be
followed by a followed by a temporary lull, and that this change for the worse
would not be of a very general character, and would, in all pro-
bability, be followed by a still greater briskness than had taken place at the time. I think we are on the eve of the temparany
lull of which 1 spoke, but I am informed, in trustworthy quartery,
that it will that it will not be, to any extent, calculated to raise serious
apprehensions of a reverse in trading activity. In fact, a revival
is apparent throughout almost enery is apparent throughout almost every branch of local industry,
except the coal trade. Another signiticant fact is this-that the
increased activity is not merely with America, or Germany, ant with almost all the markets of the world. Rassia, or demand at the advanced prices alreedy noted. Light rods and
bars are but sparingly inquired after. The Parkgate Iron Company, Limited, report that they have
obtained a large shareof the incerased orders in the market, and
smelting furnaces which smelting furnaces, which have for a long time been disusued ard
again in full blast. In rails there is still a very large business
doing. Messrs. Chas Casell contracts for the Indian Government, a and they have anployed on
orders in hand for New South Wales. At other rail mills full
or time is being worked not only on orders for this country, but also
for the Continent and the colonies. All kinds of railway
materials, wheels, tires after.
Bessemer ingots are slowly, rising in value, especially marked
descriptions intended for the cutlery trades descriptions intended for the cutlery trades. The mills in
the district have orders in hand which indicate that the improvea few quotations at the works;-Bessemer ingots, 6610 anex to are

 C10 10s, single sheets, £11 to $£ 13$. Company, Limited, which is o considerable interest to the trade in this district, held its eifhth
general meeting at Frodingham on Thursday. While they admit the eseverity of the depression in the iron trade until the end o gratifying, and, the directors are confident of making a good profit Mr. . Tremw, Trades . Tuion secretary, has sent out a circular to
the ironworkers of Great Britain cantioning men not to emirrate the ironworkers of Great Britain cautioning men not to emigrate
to America with a view to work in the iron trade before they rom a leading ironworker's official. in the quotes a thited Stter resecive which
says that a great number of English, Scotch, and Welsh iron workers who have emigrated have not been able to obtain work It is further stated that delusive hopes are held out to get
British ironowerkers to go to America, thereby having a surplus
of labour, in order to keep down wages of labour, in order to keep down wages. Hundreds of work.
men previously in the iron trade are reported to be waiting in
 Australia, and the Levant trade is just opening. South American
markets are sending forward inquiries which will lead to business within two months.
East Indies, and tile the Suses, report better advices from Canada, and there are indications that stocks
in New Zealand advew Zealand and Australia must be running low. The sudden skate makers to go largely into that branch, and as it is expected
that we are about to have a severe winter, this trade will be that we are about to have a severe winter, this trade will be
exxeedingly protitable and extessive. Last year the stocks were
speedily cleared from the shelves, and the demand which suddenly spang up could not be met. sorts continue to be in demand for the London market and also
for the Eastern counties. On the 1st inst. an advance took place
 the past month of is per cent. A number of houses which for a month past have held theesent rates still adhere to them, and frms
who have not quoted up to this estimate until now have adopted who have not quoted up to
The dispute in the coal trade at Birley-Sheffield Coal Com-
pany-stil remains unsettled, but the masters are slowly filling pany-still remains unsettled, but the masters are slowly filling
up the places of the men with hands from Lancashire and other
parts.

THE NORTH OF ENGLAND.

(From our oon Correspondent.)

Tux trade of the Cleveland district generally has received an additional impetus during the last few days. Pig iron is in
greater demand, and, consequent upon the fact that manufactured
iron makers are able to obtain greatly enhanced prices in their
department, they are willing to and are anxious to buy at once. For immediate delivery No. is selling at 44s, 6 d . net cash, while contracts are being entered
into for delivery over the first three months of next year at 47s.
sell
Me Middlesbrough stores now contain M5,250 tons, and they are receiving from 300 to 500 tons daily
The North-Eastern traffic returns last week showed a genera increase of $£ 2369$. There was a decrease of $£ 1174$ on cattle an
merchandise traffic, but an increase of $£ 2864$ on mineral traffic, and increases on the passenger and dock dues departments.
It is stated that the Norton furnaces, six in number, will shortly be put into blast. They have been out of blast for three years,
Mr. Williams is superintending the renovation of the Linthe Mr. .
furnces, which will probably be ready for blowing in by the pring of next year.
The enginemen and mechanics employed at and about the
Cleveland mines held a meeting on Saturday last at Saltburn, to Cleveland mines held a meeting on Saturday last at Saltburn, to
consider the offer of the mineowners in response to their application for an advance of wages. The enginemen sought an ad vance
tion of 15 per cent., but after discussion reduced the demand to 10 pe accorded to miners paid datal wages, namely, 8 per cent.
sliding scale. This the enginemen and mechanics refused to aceept, and dec⿻inined any terms that did not include a readjustmen hours. The matter is at present no further advanced.
The coal trade presents features of briskness. The first examiscale arrangement has been made. The result is the slidin remain unaltered for the present. Prices are now beginning to advance. The prospect of manufactured ironworks starting earl good demand and is rising in price.
The mate impet
The manufactured iron trade continues to improve. On
Monday night Messrs. Dorman, Long, and Co., who have leased
the Britanit -the West Marsh-lit up twenty pudding furnaces. The intend shortly to increase that number, and in all probability by
Christmas will have nearly sixty working. The Moor Ironwork at Stockton are being prepared for re-starting.
The works of the late company of Mesrs. Jones Bros.
Limited, are being carried on with energy by the liquidator pend in the re-construction of the company, Gilkes, and Co., Limited
The largeconcern of Messrs. Hopkins, Gil in liquidation, is likely to be reeconstructed. I understand the liquidator has under consideration a scheme for re-construction
which will probably end in the fine works of the company being made available for the production and manufacture of iron again The iron shiphuilding trade is brisk, and apart from the sever
rooty weather which is now being experienced and which party weather which stoped work in some oo of the yards, the employment of
abour is very greatly increased. The engineering trades are beginning to experience the benefi
cal change which appears to have gone through the various branches of the iron trade, and are receiving orders and inquirie weeks since. At some of the works additional hands have been
wet on set on.
Messs. Smith and Stoker will commence working at their large
new foundry on Monday. They have plenty of orders on their The Rosedale and Ferryhill works and the Loftus Iron Com
(Toundry on Monday. pany's Works are in the market.
favourable time for disposing of them.
The Witton Park puddling furnaces of Messrs. Bolckow
Vaughan and Co., are working briskly were compelled to apply to Middlesbrough for about 125 puddlers
and underhands.
The returns of the Cleveland Ironmasters' Association for th month of November have just been issued. They do not show
such a favourable state of affairs as the returns of the past two months, but taking into account all circumstances, they bear ou The total make of iron during the month was 169,358 tons, a compared with 164, 084 tons in October, an increase of 5274 tons,
there is an increase in makers' stocks of 2349 tons, an increase in pubics stores of 8455 tons. Warrant stores are assuming great propor
tions.
to 282,48 they now hold 172.536 tonso t total stocks, which amount onill; 287 tons. There are now 93 furnaces in blast out of 105
bumber of furnaces in blast exactly tallies in the
November November, 1878 . Shipments to foreign portts show an increase
of 11,031 tons upon those in November last year, and coastwise an increase of 1547 tons. They are, however over 30,000 tons
less than in October last.

NOTES FROM SCOTLAND

Prom our oum Corrapandent

The pig iron market has been very animated in the course of
the past week, with a large business at advanced prices. Althous the shipments of pigs abroad are about 1500 tons less than in the preceding week's return, the demand on American account is have been secured for forward delivery. The ereat activity in
the various departments of the iron trade has also tended to strengthen the pig iron market. During the past week a very
large delivery of pigs into store took place, and Messrs, Connal and Co. have now under their charge upwards of 390,000 tons. At the ironw
all kept busy.
Business was done in the warrant market on Friday morning one month, the afternoon's transactions being at from 59as. 72d. the market was very strong all day, and a large business was do me in the forenoon at 60s. 6 d . to 61s. cash, and in the
diterno
 60s. 7bd. one month. The market was flat all day on Wednesday
at about 593 . cash. The feeling was comparatively flat to-day at
58s. 7td, one month and 58 as, 4d cash The inquiry for makers' iron has been good, and prices are all
advanced, the increase ranging from 2s. to to 4s. per ton. For all kinds of malleable iron the demand continues very heavy, and the result has been a general advance this week of 10 s.
per ton. Bars now sell at 87 10s., and nail rods at the same tigure per ton. The plate mills are likewise exceedingly busy,
and the manufactured iron trade through all its branches is
experiencing the experiencing the effects of the revival.
There is little improvement in the coal trade as regards the
West of Scotland. The severe weather has induced a better demand for home consumption, but the shipping trade is in a
ery tussatisfactory condition. This state op matters is largely ue to the effect of the wages disputes. In the Eastern mining in the trade, and the complaint is that there is much more activity in the trade, and the complaint is that ships can not be got away
from some of the ports quickly enough. The explanation of the activity here is that the miners' wages have not been advanced, uotations than in the West,
The ironmasters have now
per day in the wages of the miners in their employment, but the enforcing the lateat or third reduction of 6d. for a few days, in
ent
 board, who
employers.

WALES AND ADJOINING COUNTIES.

(From our own Correspondent.)

peculiar condition of trade as that which now ner known such a are eager, and a great deal more business could be done, but regarded with fa

prospects of tha Both in South

 coal are gone up, in many cases 1 s . per ton. Coke, too, is from
2 s . to 2 s . 6 d . per ton higher, and makers have sold all their mak excepting a few who the year at the advanced price, that is some time ago at the minimum price. These movements may be the make of ion has necessitated a fair increase in the consumption of coal.
The exports of coal from Cardiff now exceed those of Newcastle, the foreign exports during October being 60,000 tons more than the northern port. In the month of October the return ust completed show that Cardif sent 364,385 tons of coal, 12,00
tons of iron, 2804 tons of coke, and 9407 tons of patent fuel. It nay be fairly expected that the two first items will be greatly worked with anything like spirit, in consequence of busines we shall in all probability see 400,000 tons a month shipped from The exports of iron are gratifying. Upwards of 5000 tons were sent 2400 . Singularly enough the total manufactured iron sent out was equalled by the total Spanish ore received. Those who and Rhymney, are now receiving the benefit of their foresight for it is difficult to get a cargo even at 17 s . 9 d , the last quota-
tion. This is an advance of 2 s . 9 d. , for prior to the movement in
the iron trade it was possible to buy for 15 s . A gentleman from Quebec visiting Cardiff states that the
American agents in London were too sharp for English and American agents in London were too sharp for English and
Welsh inonmasters. In one inquiry, he said, before the British
public knew what was coming, they had bought to the extent of public knew what was coming, they had bought to the extent of
500,000 tons rails, pigs, and bars. The result of this is that it
will be some time before the flush of trade will result in general benefit. Swansea is putting out its best powers in tin-plate. I saw
the make last week at one of the principal works in the Tawe
Valley, branching from Swansea, and was told the make for Valley, branching from Swansea, and was told the make for
months was sold at an advance of 9 s . per box over the old quotations of $15 s$ s. ordinary coke. The ruling price is from 22 s . to 24 s , 6 d .
ordinary coke, best commands 28 s . There are thirteen tin-plate orders. Swansea has been successful, too, I find, in getting a Steamship Company. The report of this is favourable, and
Steantities are now being sent to Southampton. uantities are now being sent to Southampton.
Newport continues to keep up a good average of coal exports,
hat of last week being 24,000 tons ; and its coastwise shipments are very good.
Messrs. Cory
The masters and men have had another meeting at Cardiff on the subject of an improvement in wages, but with no alteration
of result from the previous meetings. If colliers would consent to the adoption of a sliding scale some benefit might result. As of the men would neutralise their efforts, or render them unproSome of the mills and forges at Booker's Works were started
his week. The furnaces will be put in blast as soon as ther is this week. The furnaces will be put in blast as soon as there is
a sufficient accumulation of material. For the present I note that there is ample pig iron on the banks to keep the mill busy. rails this week.

[^0]PRICES CURRENT OF IRON AND STEEL. The following prices are correctod up to last night, but it should be borne in mind that in many cases makers are prepared to quote differont cerms for special contracts. It is obviously impossible to specify these prices. Roaders should also refer to our correspondents' letters.
In almost all marketa prices are advancing, and the following prices are subject to immediate change.

PIG IRON AND PUDDLED BARS.

The above at Glasgow,
deliverablealongide.
Govan-No. 1
No. 3
Calder-No. 1
At Port Dundas.

Monmouthshire-Tredegar No. 3 tin-plate pig iron, 60s. 0d. at works, Tredegar No. 3 foundry pig ir
Wales-No. 2, f.o.b., Nowport Common pig, at works.
Derbyshire-No. 1, at Sheffield
No. 3
Lancabiure, delivered in Manchester-No. 3
K. H. Messelmoun

Messrs. Whitwele and Co.'s stockton net prices (on trucks) are-
"Thornaby "No. 4 forge, $£ 3$ 10s. Od.; 'B Thornaby," $£ 316 \mathrm{~s}$. 0d. net.
Henatite, at works, $2 \downarrow$ dis. for prompt
Millom "Bossomer 2

Puddled Bar-
Cleveland, delivered ${ }^{\text {and }}$
plate quality, per ton
Lrcasime
Iron Co. Pearson and Knowles Coal and
G
$\begin{array}{lllllll}\text { e4 } & 0 & 0 & \text { to } & 5 & 0 & 0 \\ 3 & 15 & 0 & \text { to } & 3 & 17\end{array}$ 100 to 000 $\begin{array}{cccccc}5 & 10 & 0 & \text { to } & 6 & 0 \\ 7 & 0 & 0 & \text { to } & 7 & 10 \\ 0\end{array}$

MANUFACTURED IRON

Ship Plates

-

Fox, Head, \& Co., at works, cash less $21-$
Ship or bridge plates (A)
Mast platos $\left(\frac{A}{\text { MAST }}\right.$)
${ }_{\text {Best best }}^{\text {Best }}$
Superior do. $\left(\frac{1 A}{\text { MAST }}\right)$
Boiler Plates-
Boiler
Werst
Peaps
Telsh and Knölers, to 5 cwt, each plate Do. best best
treble best
Do. treble
Shoffild
$\begin{array}{llll}6 & 5 & 0 & \text { to } \\ 9 & 10 & 0 & \text { to } \\ 0 & 10 & 0 & \text { to }\end{array}$
$\begin{array}{ccccc}1210 & 0 & \text { to } & 0 & 0 \\ 120 & 0 & 0 \\ 10 & 0 & \text { to } & 12 & 10\end{array}$
2f per cont. discount for cash. The Pearson and Knowles Co.'s prices
of finished iron include delivery at station in Liverpool, Manchester, or Warrington, in lots of not leess than 2 tons, or free alongside at Liverpoo in lots of 10 tons and upward
Terms in each case $2 \frac{2}{}$ dis, for cash in payment of monthly accounts,
or $1 \frac{\downarrow}{4}$ per cent. dis. for cash in lieu of three months bill. The Low Moor Co. and the Bowling Iron Co., Limited, deliver in
London at 10 s ; Liverpool, 7 Fs . 6d.; and Hull, 5 s . per ton extra. Under 24 owt. each
$2 \downarrow$ cwt. and under 3

Plates exceeding 6 ft square form or regular taper, or when over 20 per cent. is cut away, "Bowling" weldless hoops, for strengthening boiler flues,
"Monsoor" (E. T. Wright and Sons). Best, to 5 ewt.,
to 4it. Gin. wide, and to 32 supericial feet, per ton Bet best
Best best
pecial, to best, to 4 cwt
Bariows and Soss-
B.B.H. Bloomfleld plates
Best platos
Best best plates
Fox,", Head, and Co., at works, cash less $2 \ddot{1}$ -
Boiler sholl plates, best boilor

Angle Iron-
Bowling and Low Moor, terms as abovo. per cwt
L and T fron, not exceeding ten united inches
For each additional nch extra per cwt., 18 .
Barrows and Sows-
B.B.H. best angle iron, at works.

Whitwell and Co., less $2 \frac{1}{4}$ discount, per ton

Best beat bolle

Monwoor," at the works, up to eight united inches,
Best
Best

$$
\begin{aligned}
& \text { T-iron, ss above, 108, extra. } \\
& \text { Angle and } T \text { burs, } 8 \text { in. to } 9 \text { in. } 10 \text {, extra. } \\
& , " \text { sin. to } 10 \mathrm{in} \text {., 20s, extra. }
\end{aligned}
$$

Round OAK-
Ordinary
Best
Double best
Treble best

Gussaow, fo.b

27	08.	to	7	10	0
	0	to	8	0	0

Aberdar
Low Moor and Bowlino, terms as for platos, de
Flat, round, or square, to $3 \frac{\mathrm{l}}{\mathrm{cwt}}$.
Do., 5 cwt. and upwards

 $7-16 \mathrm{in}$.
$\begin{aligned} & 516 \mathrm{in} . \\ & 7 \mathrm{in} . .\end{aligned}$
Rïvet, prices as above. Chain iron, $2 \stackrel{2}{2}$.; and best bars
and rods, extra $3 s$. per cwt.
Monyoor Crows" (E. T. Wriout and Sons), at the
works, per
Bars, $\frac{j}{2} \mathrm{in}$. to \sin. round and square, or to 6 in . flat Best
Rivet iron,
Beas
Beal sizé
Barrows and Sons, at works, per ton short-
B.B.H. bars
OUND OAK, Dudiev, $\ddot{\text { per ton- }}$
Single best
Single best
Double best
Noble
Rivet, treble best
Merchant Bars-
Crown quality Best
Ship rivet iron \because
Crown quality, " Thornaby
Best
Best best
Detail specifications from warchouso 0 1os. per ton extra. 10
Common Wolsh bas Best, $£ 515 \mathrm{~s}$, to $£ 65 \mathrm{~s}$.
The Pearson and Knowles Co.-
Flats, from lin. to 6 in. wide by
Rounds und squares from by tin. thick and apwards
Best, 10s.; best best, 308.; treble best, 60 s . per ton extra
Sheet
MonMoor" (E. T. Wright and Sons), to sft. by aft
20 w.g., per ton at works Best
Best best
Barrows and sons-
B.B.H. sheets.:
B.B.H. sheets.
P. and W. Baldwis, per ton, at works-
Brand "Severn," singles to 20 w.g., usual sizc
". "Baldwin-Wildon" B B

Doubles 21 to 24 w.g., 308 , ; and trebles 25 to 27 w.g.,
${ }^{60 \text { s. per ton extra. Terms as usual. }}$
"EP and W B" bost charcoal IC.
Unicorn" charcoal IC
Stour" colse tin
Joseph Tinn, C.E., Ashton Iron Rolling Mills, Bristol-
Export quality, singles, London,
Galvanising and corrugating shests,
d
Working up sheets for kegs and drums
Mild quality steels sheet
Special quality do.
ales-Treforest Tin-plate Works-
Coked tin, at Cardiff,
25 s. in Londo

Swansea Gady's Aberdare coke

Best charcoal
$\begin{array}{llllll}1 & 8 & \text { to } & 0 & 0 \\ 0 & 0 & 0 & \text { to } & 0 & 0\end{array}$
singles, from 1 to 20 B.W.G., and 12 in . to 36 in . wide 910
Best and best for galvanising, 10 s . per ton extra; best best, 30 s ,
Crowther Bros. and Co.
Tin Sheets - "Lion \& Crown," Kidderminster-
Charcoal do.
st charcoal do.
Patent Coated Sheets

Wire-Rylands Brotuers, Limited, Warrington-
Bost (iv) Annealed drawn fencing wire, per ton-

Nall Rods-Glascow, fo.b.
$\begin{array}{cccc}7 & 10 \text { to } & 0 & 0 \\ 5 & 0 & \text { to } & 5 \\ 10\end{array}$
Hoops and Strips-Prarson and Knowles-

Round Oak-
Ordinary, not less than $19 \mathrm{w} . \mathrm{g}$.
Ticble
Treble best
-Heavy rail
Wales-Tredegar Ifon Cömpany
Ordinary quality of iron rails above 50 lb . per yard in 250 ton lots,
For colliery sidings, works, $£ 3$. $15 s$, to d, net cash.

Rallway Chairs-Glasoow, f.o.b. ..Pipes-Glasoow, foob.	310 to 4	0
		410 to	0
Shefyibli-At works- \& s. d. \&s.			
Ordinary cast rods		6 to 21	
Fair average steel	-. 24	0 to 32	
Sheot, crucible		0 to 60	
Sheeta, Bessemer	.. 1210	0 to 1610	
Second-class tool.,		0 to 45	
Bent special steels	48	0 to 75	
R. Mushet's special tool stecl.	,. 140	0 to 224	
Fino rollod, for clock springs, de.		0 to 70	
Rails-Siemens, at works			
Bessomer, ordinary, at works	4	0 to 510	
Do. superior			
Rails, f.o.b, Cardiff or Newport 5150			
Rails, at works, BessemerHeavy			
steel colliory bridge rail, works		0 to 0	

MISCELLANEOUS METALS

Best refined grain nickel, per 1b., less 2t monthly account, 3 s. . sq
nickel, per 1 b ., 2 s . 10d.; inferior qualities, per 1 lb ., 2s. $6 \mathrm{~d} . \mathrm{min}$.

PRICES CURRENT OF TIMBER
Toak, load

yelloh pitch

ak

Dants

CONTENTS
The Enginerr, December 5th, 1879.

IE. Sydney Exhibia	Practical Treatiso on Church
No. IU.	Bells. By J. H. Arrow-
The Elsw	
Gun 410	Stram Tramways in North
Railinay Matters 411	Italy, (Hlustrated)
Notis and Memoranda 411	The bergamo and Lod
Miscellanea.. 411	Trasiway. (Ilustratod)
tie Hasse - Simon Power	The Institution of Civih
Намммеr. (Hlustrated)	neers 421
Adimson's Testino Machine.	Tunnel Outlets prom Storage
(Hlustrated)	Reservotrs 421
Six-Horas Traction Enoine.	The Patent Journal.
(IIlsstrated) .. ${ }^{\text {a }}$	Abstracts of Specifications .. 422
Heinrich's Electric Light	Tur Iron, Coal, and Genzral
Reoulators and Candles.	
Etters to the Editor	Districts
The Theoryof the Compound	Notes from Lancash
Esaine	Notes from the Shepriei
Fire-box Roof Stays. (Illus-	District 425
trated) 414	Notes from Scotland 425
The Wanderer 444	Notes from the North
Strains on Girders 415	England
Tenders 415	Notes from Wales and Adions-
The Bessemer Process.. .. 415	no Countie
Wime Rope Street Railway 415	
Tenders-Dorchester Brewery 415	Paragrap
Leadino Articles	Revival in the United St
Marine Enoine Econo	and Some of the
Water Meters in Midd	Results
biovor	Meetings Next Week 417
North - Eastern Ratlway	The Libel on Mr. Weldon .. 419
Works	The Society of Engincers
The "Blowino-de" Argu-	King's College Engineering
	Society $n \quad \because \quad .$.
Contracts and the Hi	Waterworks in Australia
Monthly List of Prices Current of Iron, Stizl, Fubls, and Timber.	

[^0]: King's College Engineebing Society.-At an ordinary meeta paper on "Lathes and Turning," by Mr. S. E. Blackburn,
 S.1.E.E., hon. sec. to the Society, was read, Professor Shelley, H.I.M.E., \&c., in the chair. The author began by describing some the lathe from the remotest to the present date-the account of for both metal and wood turning-dwelling on those chucks and cutting frames used in ornamental turning. Both the hand-tools and slide rest tools were next described-the points which should
 be attended to when using them - also the different be attended to when using them-also the different metnods for
 supporting the latter. Mr. Blackburn then described the methods of centreing circular work, viz., the ordinary, Mr. Kilburn's, and
 Mr. Hales' methods. He then shat should be joined, and concluded by giving an account of the screwand giving the, describing Sir J. Whitworth's screw-cutting lathe, the same time describing the system. After the reading of the paper, Professor Shelley passed a vote of thanks to Mr. Blackburn , and made a few remarks. The meeting adjourned Shelley for having so kindly taken the chair.
 Waterworks in Australia.-The following return to the
 order of Mr . Simms, giving information and the annual cost of maintenance, with other particulare
 table of the House of Assembly on Tuesday, October 7th :-
 (1) The total expenditure on the Hope Valley Reservoir has
 been $£ 163,000$, and on the Thorndon Park Reservoir $£ 57,700$. contained 32 ft . 4 in . of water. (3) The Government ${ }^{\text {Ger }}$. pose to complete the new reservoir by properlyment do not pro-
 wise repairing it. (4) By otherwill be ready for use at North Adelaide, Magill, Burnside, and
 $\sum 153214 \mathrm{~s}, 5 \mathrm{~d}$. (6) The receipts for the year $1879-80$ amounted to
 $£ 40,54116 \mathrm{~s} .2 \mathrm{~d}$, and the expenditure to $£ 23,3874 \mathrm{~s}$, 4 d , making the total net receipts $£ 17,15411 \mathrm{~s}$. 10 d . The interest paid during
 the year was $£ 23,91418 \mathrm{~s}$. 8d., making a total amount paid on (8) The cost of collection was $£ 1985$, and of management and quantity of water stored in the Hope Valley Reservoir during
 1878.9 was $9,000,000$ gallons on April 28th, 1879, and at Thorndon (10) The quantity of water stored in the Hope Valley Reservoir was, on September 29th, 1879, 264,500,000 gallons, and in that of
 Thorndon Park, 125,450,000 gallons.

