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Abstract

We describe how to convert the heuristic search algorithm A* into an anytime algorithm
that finds a sequence of improved solutions and eventually converges to an optimal solution.
The approach we adopt uses weighted heuristic search to find an approximate solution
quickly, and then continues the weighted search to find improved solutions as well as to
improve a bound on the suboptimality of the current solution. When the time available
to solve a search problem is limited or uncertain, this creates an anytime heuristic search
algorithm that allows a flexible tradeoff between search time and solution quality. We
analyze the properties of the resulting Anytime A* algorithm, and consider its performance
in three domains; sliding-tile puzzles, STRIPS planning, and multiple sequence alignment.
To illustrate the generality of this approach, we also describe how to transform the memory-
efficient search algorithm Recursive Best-First Search (RBFS) into an anytime algorithm.

1. Introduction

A widely-used framework for problem-solving in artificial intelligence is heuristic search for a
minimum-cost solution path in a graph. For large and complex problems, finding an optimal
solution path can take a long time and a suboptimal solution that can be found quickly
may be more useful. Various techniques for modifying a heuristic search algorithm such
as A* to allow a tradeoff between solution quality and search time have been studied. One
approach is to weight an admissible evaluation function to make it non-admissible (Pohl,
1970a, 1970b; Pearl, 1984). In the substantial literature on weighted heuristic search, the
assumption is that the search stops as soon as the first solution is found. Analysis has
focused on characterizing the tradeoff between the time it takes to find the first solution and
its quality. For example, it has been shown that the cost of the first solution found will not
exceed the optimal cost by a factor greater than 1+ε, where ε depends on the weight (Pearl,
1984; Davis, Bramanti-Gregor, & Wang, 1988). There have also been empirical studies of
the tradeoff between search time and the quality of the first solution found (Gasching, 1979;
Korf, 1993).

The starting point for this paper is the simple observation that there is no reason to
stop a non-admissible search after the first solution is found. By continuing the search,
a sequence of improved solutions can be found that eventually converges to an optimal
solution. The possibility of continuing a non-admissible A* search after the first solution
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is found was suggested by Harris (1974), although he did not consider weighted heuristic
search but a somewhat related approach called bandwidth heuristic search. We are not
aware of any other mention of this idea before we proposed it as a strategy for creating an
Anytime A* algorithm (Hansen, Zilberstein, & Danilchenko, 1997; Zhou & Hansen, 2002).
In this paper, we discuss this strategy at length and evaluate it analytically and empirically.

We refer to this strategy as anytime heuristic search. Anytime algorithms are useful for
problem-solving under varying or uncertain time constraints because they have a solution
ready whenever they are stopped (with the possible exception of an initial time period
before the first solution is found) and the quality of the solution improves with additional
computation time (Zilberstein, 1996). Because heuristic search has many applications, a
general method for transforming a heuristic search algorithm such as A* into an anytime
algorithm could prove useful in many domains where good anytime algorithms are not
otherwise available.

The paper is organized as follows. Section 2 presents our approach for transforming a
weighted heuristic search algorithm into an anytime algorithm, and shows how to transform
Weighted A* into an Anytime A* algorithm. To illustrate the generality of this approach,
Section 3 considers Recursive Best-First Search (RBFS), which is a memory-efficient version
of A*, and shows how to transform Weighted RBFS into an Anytime RBFS algorithm.
Section 4 discusses related work, including a related approach to creating an Anytime A*
algorithm that has been recently proposed.

2. Anytime A*

We begin this section with a brief review of the standard A* and Weighted A* algorithms.
Then we describe how to transform Weighted A* into an Anytime A* algorithm. We analyze
the theoretical properties of the resulting algorithm and evaluate its performance in three
test domains; sliding-tile puzzles, STRIPS planning, and multiple sequence alignment.

2.1 A*

The A* algorithm (Hart, Nilsson, & Raphael, 1968) uses two lists, an Open list and a Closed
list, to manage a systematic search for a minimum-cost path from a start node to a goal
node in a graph. Initially, the Open list contains the start node and the Closed list is empty.
At each cycle of the algorithm, the most promising open node is expanded, moved to the
Closed list, and its successor nodes are inserted into the Open list. Thus, the Closed list
contains those nodes that have been expanded, by generating their successor nodes, and the
Open list contains those nodes that have been generated, but not yet expanded. The search
terminates when a goal node is selected for expansion. A solution path can be extracted by
tracing node pointers backwards from the goal node to the start node.

The order in which nodes are expanded is determined by the node evaluation function
f(n) = g(n) + h(n), where g(n) is the cost of the best path currently known from the start
node to node n, and h(n) is a heuristic estimate of h∗(n), the cost of the best path from n
to a goal node. The behavior of A* depends in large part on the heuristic h(n) that guides
the search. If h(n) is admissible, that is, if it never overestimates h∗(n), and if nodes are
expanded in order of f(n), then the first goal node selected for expansion is guaranteed to
be optimal. A heuristic is said to be consistent if h(n) ≤ c(n, n′) + h(n′) for all n and n′,
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where c(n, n′) is the cost of an edge from node n to node n′. If h(n) is consistent and nodes
are expanded in order of f(n), the g-cost of a node is guaranteed to be optimal when the
node is selected for expansion, and a node is never expanded more than once. Note that
consistency implies admissibility, and non-admissibility implies inconsistency.

If h(n) is not consistent, it is possible for A* to find a better path to a node after the
node is expanded. In this case, the improved g-cost of a node needs to be propagated
to its descendants. The way that A* usually does this is by reopening nodes, that is, by
moving a node from the Closed list to the Open list when its g-cost is improved. When the
node is eventually reexpanded, the improved g-cost is propagated to its successor nodes,
which may need to be reopened also. As a result, the same node can be expanded multiple
times. Although rarely used in practice, various techniques have been introduced to bound
the worst-case number of node reexpansions (Bagchi & Mahanti, 1983; Bagchi & Srimani,
1985).

2.2 Weighted A*

For difficult search problems, A* may take too long to find an optimal solution, and an
approximate solution that is found relatively quickly can be more useful. Beginning with
Pohl (1970a, 1970b), many researchers have explored the effect of weighting the terms g(n)
and h(n) in the node evaluation function differently, in order to allow A* to find a bounded-
optimal solution with less computational effort. In this approach, called Weighted A*
(WA*), the node evaluation function is defined as f ′(n) = g(n) + w × h(n), where the
weight w ≥ 1.0 is a parameter set by the user. Sometimes the node evaluation function is
defined as f ′(n) = (1−w′)×g(n)+w′×h(n), but this is equivalent to f ′(n) = g(n)+w×h(n)
when w′ = w

1+w . We use the notation f ′(n) to distinguish a weighted evaluation function
from the unweighted f(n). If w > 1.0, the search is not admissible and the (first) solution
found may not be optimal, although it is usually found much faster. If h(n) is admissible, the
suboptimality of the solution found by weighted heuristic search is bounded: the solution
cost cannot be greater than the optimal cost by more than a factor of w (Davis et al., 1988).
Such a solution is said to be ε-admissible where ε = w−1.0. A weighted heuristic accelerates
search for a solution because it makes nodes closer to a goal seem more attractive, giving
the search a more depth-first aspect and implicitly adjusting a tradeoff between search effort
and solution quality. Weighted heuristic search is most effective for search problems with
close-to-optimal solutions, and can often find a close-to-optimal solution in a small fraction
of the time it takes to find an optimal solution.

Some variations of weighted heuristic search have been studied. An approach called
dynamic weighting adjusts the weight with the depth of the search (Pohl, 1973; Koll &
Kaindl, 1992). Another approach uses a weighted heuristic to identify a subset of open nodes
that can be expanded without loss of ε-admissibility; from this subset, it selects the node
to expand next based on other criteria (Pearl & Kim, 1982; Davis et al., 1988). Weighted
heuristic search has been used with other search algorithms besides A*, including memory-
efficient versions of A* such as IDA* and RBFS (Korf, 1993), as well as Learning Real-
Time A* (LRTA*) (Shimbo & Ishida, 2003), and heuristic search algorithms for AND/OR
graphs (Chakrabarti, Ghosh, & DeSarkar, 1988; Hansen & Zilberstein, 2001).
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2.3 Anytime Weighted A*

We now consider how Weighted A* can be transformed into an anytime algorithm that
finds a sequence of improved solutions and eventually converges to an optimal solution.
The transformation is an example of a more general approach for transforming a search
algorithm that explores nodes in best-first order, such as A*, into an anytime algorithm.
This approach consists of the following three changes.

1. A non-admissible evaluation function, f ′(n) = g(n) + h′(n), where the heuristic h′(n)
is not admissible, is used to select nodes for expansion in an order that allows good,
but possibly suboptimal, solutions to be found quickly.

2. The search continues after a solution is found, in order to find improved solutions.

3. An admissible evaluation function (i.e., a lower-bound function), f(n) = g(n) + h(n),
where h(n) is admissible, is used together with an upper bound on the optimal solution
cost (given by the cost of the best solution found so far), in order to prune the search
space and detect convergence to an optimal solution.

In this paper, we use a weighted heuristic to create the non-admissible evaluation func-
tion that guides the search. That is, we assume that we have an admissible heuristic h(n),
and use it to create a weighted heuristic h′(n) = w × h(n). But this three-step approach
for creating an anytime heuristic search algorithm can use any non-admissible heuristic
that helps A* find an approximate solution quickly; it is not limited to weighted heuristic
search. When the general approach is used to transform A* into an anytime algorithm, we
call the resulting algorithm Anytime A*. In the special case in which the non-admissible
evaluation function is a weighted heuristic, we call the algorithm Anytime Weighted A* or
Anytime WA*.

Algorithm 1 shows high-level pseudocode for Anytime WA*. (Some details that are
unaffected by the transformation of WA* into an anytime algorithm, such as extracting the
solution path, are omitted.) Note that our implementation of Anytime A* tests whether
a node is a goal node as soon as the node is generated and not when it is selected for
expansion, as in A*, since this can improve the currently available solution more quickly.

Besides continuing the search after the first solution is found, Anytime WA* uses bounds
to prune the search space. The sequence of improved solutions found by Anytime WA*
provides a sequence of improved upper bounds on the optimal solution cost. Anytime WA*
tests whether the f -cost of each newly-generated node is less than the current upper bound.
If not, the node is not inserted in the Open list since it cannot lead to an improved solution.
By not inserting suboptimal nodes into the Open list, the memory requirements of the
algorithm are reduced.1 Each time an improved solution is found and the upper bound
decreases, it is possible that some nodes already in the Open list may have an f -cost equal
to or greater than the new upper bound. Although these nodes could be immediately

1. The possibility of using bounds on the optimal solution cost to reduce the number of nodes stored in
the Open list has been suggested at least twice before in the literature. Harris (1974, p. 219) points out
that this can be done when a bandwidth heuristic is used to guide the search, which is a heuristic with
error bounded by an additive constant. Such heuristics may not be easy to obtain, however. Ikeda and
Imai (1994) describe an Enhanced A* algorithm that uses a previously-computed upper bound to limit
the number of nodes stored in the Open list. We compare Enhanced A* to Anytime WA* in Section 2.4.3.
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Algorithm 1: Anytime-WA*
Input: A start node start
Output: Best solution found and error bound
begin

g(start) ← 0, f(start) ← h(start), f ′(start) ← w × h(start)
OPEN ← {start}, CLOSED ← ∅, incumbent ← nil
while OPEN 6= ∅ and not interrupted do

n ← arg minx∈OPEN f ′(x)
OPEN ← OPEN \ {n}
if incumbent = nil or f(n) < f(incumbent) then

CLOSED ← CLOSED ∪ {n}
foreach ni ∈ Successors(n) such that g(n) + c(n, ni) + h(ni) < f(incumbent) do

if ni is a goal node then
f(ni) ← g(ni) ← g(n) + c(n, ni), incumbent ← ni

else if ni ∈ OPEN ∪ CLOSED and g(ni) > g(n) + c(n, ni) then
g(ni) ← g(n) + c(n, ni), f(ni) ← g(ni) + h(ni), f ′(ni) ← g(ni) + w × h(ni)
if ni ∈ CLOSED then

OPEN ← OPEN ∪ {ni}
CLOSED ← CLOSED \ {ni}

else
g(ni) ← g(n) + c(n, ni), f(ni) ← g(ni) + h(ni), f ′(ni) ← g(ni) + w × h(ni)
OPEN ← OPEN ∪ {ni}

if OPEN = ∅ then error ← 0
else error ← f(incumbent)−minx∈OPEN f(x)
output incumbent solution and error bound

end

removed from the Open list, this incurs overhead for searching the Open list every time
the upper bound decreases, and so this step is not included in the pseudocode. (Of course,
if Anytime WA* is close to running out of memory, the overhead for searching through
the Open list for sub-optimal nodes that can be deleted might be justified by the need to
recover memory.) The algorithm shown in the pseudocode simply tests the f -cost of each
node before expanding it. If the f -cost is equal to or greater than the current upper bound,
the node is not expanded. This implies a related test for convergence to an optimal solution:
if the Open list is empty, the currently available solution must be optimal.

Anytime WA* requires more node expansions than A* to converge to an optimal solu-
tion, for two reasons. First, use of a weighted heuristic allows it to expand more distinct
nodes than A*. Second, a weighted heuristic is inconsistent and this means it is possible
for a node to have a higher-than-optimal g-cost when it is expanded. If a better path to
the same node is later found, the node is reinserted in the Open list so that the improved
g-cost can be propagated to its descendants when the node is reexpanded. This means that
Anytime WA* can expand the same node multiple times.

Before considering the empirical performance of Anytime WA*, we discuss two important
theoretical properties of the algorithm: convergence to an optimal solution, and a bound
on the suboptimality of the currently available solution.
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2.3.1 Convergence

An admissible evaluation function, f(n), gives a lower bound on the cost of any solution
path that is an extension of the current best path to node n. Let incumbent denote the
goal node corresponding to the best solution found so far. Then f(incumbent) is an upper
bound on the cost of an optimal solution. Clearly, there is no reason to expand a node
that has an f -cost (i.e., a lower bound) greater than or equal to the current upper bound,
f(incumbent), since it cannot lead to an improved solution. Thus we have the following
convergence test for Anytime WA*, and, more generally, for any anytime version of A*: the
best solution found so far is optimal if there are no unexpanded nodes on the search frontier
(i.e., in the Open list) with an f -cost less than f(incumbent).

We prove the following theorem under the standard assumptions that a search graph
has a finite branching factor and a minimal edge cost c > 0. We also assume that a solution
exists and that h(n) ≥ 0 for all nodes n.

Theorem 1 Anytime WA* always terminates and the last solution it finds is optimal.

Proof: First we show that the algorithm cannot terminate before an optimal solution is
found. Suppose that the algorithm terminates before finding an optimal solution which
has cost f∗. The sequence of upper bounds used during execution of the algorithm is
b0, b1, ...., bk, where b0 = ∞ (the upper bound before any solution is found), b1 is the cost
of the first solution found, and bk is the cost of the last solution found. We know that,

b0 > b1 > ... > bk > f∗,

where the last inequality holds under the assumption that the algorithm terminates before
finding an optimal solution, that is, with a suboptimal solution.

Now consider an optimal path leading from the initial state to a goal state. Under the
assumption that this optimal solution path was not found, there must be some node n along
this path that was generated but not expanded. That is only possible if g(n) + h(n) ≥ bk.
But by the admissibility of h, we know that

g(n) + h(n) ≤ f∗,

and therefore
∀i : g(n) + h(n) ≤ f∗ < bi.

From this contradiction, it follows that the algorithm cannot terminate before an optimal
solution is found.

Next we show that the algorithm always terminates. We have already proved that
before an optimal solution is found, the Open list must include some node n for which
g(n) + h(n) ≤ f∗. Hence,

f ′(n) = g(n) + w × h(n) ≤ w × (g(n) + h(n)) ≤ w × f∗.

This establishes an upper bound on the f -cost of any node that can be expanded by Anytime
WA* before an optimal solution is found. Because there are a finite number of nodes for
which f(n) ≤ w×f∗, the algorithm must run a bounded number of steps before an optimal
solution is found. Once an optimal solution is found, the algorithm will not expand any
node with an f -cost that is greater than or equal to f∗. Because the number of nodes for
which f(n) ≤ f∗ is also finite, the algorithm must eventually terminate. ¤
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2.3.2 Error bound

An important property of this approach to creating an Anytime A* algorithm is that it
refines both an upper and lower bound on the optimal cost of a solution. The upper bound
is the f -cost of the best solution found so far, and is decreased when an improved solution
is found. The lower bound is the least f -cost of any currently open node, and is increased
when all nodes with the smallest f -cost are expanded.

Although it is obvious that the cost of the best solution found so far is an upper bound,
the claim that the least f -cost of any currently open node is a lower bound on the optimal
solution cost requires some justification. First note that if the currently available solution
is not optimal, an optimal solution path must pass through some currently open node.
Although the f -cost of an open node is not necessarily a lower bound on the best solution
path that passes through that node, since the g-cost of an open node may be suboptimal,
it is a lower bound on the cost of any solution path that is an extension of the current path
to that node. Since any improved path to an open node (resulting in an improved g-cost)
must be an extension of some already-found path to another currently open node with lower
f -cost, the least f -cost of any currently open node must be a lower bound on the cost of
an optimal solution path. In other words, the least f -cost of any currently open node is a
lower bound on the optimal solution cost for the same reason that it is a lower bound on
the optimal solution cost in branch-and-bound tree search.

These upper and lower bounds approach each other as the search progresses until they
meet upon convergence to an optimal solution. (Figure 3 shows an example of how the
bounds approach each other.) Before an optimal solution is found, a bound on the difference
between the cost of the currently available solution and the optimal solution cost is given
by the difference between the upper and lower bounds. This error bound can be expressed
as an approximation ratio, such that f(incumbent)

f∗ ≤ f(incumbent)
fL , where fL denotes the lower

bound on the optimal solution cost, f(incumbent) denotes the upper bound, and f∗ denotes
the optimal solution cost. Thus, Anytime A* can be viewed as an anytime algorithm in two
respects. It improves a solution over time, and it also improves a bound on the suboptimality
of the currently available solution.

2.4 Performance and evaluation

We next consider the empirical performance of Anytime WA* in solving a range of search
problems. Its effectiveness depends on the weight used, and how the weight affects search
performance depends on characteristics of both the problem and the heuristic. We set the
weight based on a combination of knowledge of the search problem and trial and error. We
use the same weight from start to end of the search, which has the advantage of simplicity.
It also shows that the technique in its simplest form leads to good performance. It is
possible to change the weight during the search, and weight adjustment together with other
methods of search control has the potential to improve performance further. We postpone
discussion of this to Section 4.1 where we discuss a variant of Anytime A* that has recently
been proposed.

For search problems with unit edge costs, many nodes have the same f -cost and the tie-
breaking rule used by a systematic search algorithm such as A* has a significant effect on the
number of nodes actually expanded. It is well-known that A* achieves best performance
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Figure 1: (a) Performance profiles for Anytime WA* using three different weights, averaged
over all instances of the Eight Puzzle. (b) Average number of nodes stored and
expanded by Anytime WA* over all instances of the Eight Puzzle.

when it breaks ties in favor of nodes with the least h-cost. In all of the experimental
comparisons reported in this paper, A* uses this tie-breaking rule. We note that Anytime
WA* can achieve similar tie-breaking behavior without applying the same rule because
using even a very small weight has the effect of breaking ties in favor of nodes with the
least h-cost. Moreover, Anytime WA* usually finds an optimal solution before it can prove
that it is optimal (that is, before it expands all nodes with an f -cost less than the optimal
f -cost). As a result, it usually does not expand non-goal nodes with an f -cost equal to the
optimal solution cost. For consistency in experimental comparison, our implementation of
Anytime WA* uses the same rule that A* uses of breaking ties in favor of nodes with the
least h-cost. In practice, this tie-breaking rule can be omitted when implementing Anytime
WA* in order to reduce run-time overhead.

2.4.1 Sliding-tile puzzle

The first test domain we consider is a traditional benchmark that lets us illustrate this
technique on a simple and well-understood example. Figure 1(a) shows performance profiles
for Anytime WA* using three different weights, averaged over all instances of the Eight
Puzzle.2 (Performance profiles are commonly used to model the performance of anytime
algorithms, and show how expected solution quality improves as a function of computation
time. For these problems, we define the quality of a solution as 1− f−f∗

f∗ .) A weight of 1.3
seems to result in the best overall performance among these three weights, although it does
not dominate the other performance profiles for all running times.

2. By all instances, we mean all possible starting states and a fixed goal state. The goal state has the blank
in the upper left corner and the tiles arranged in numerical order, left-to-right and then top-down. We
use the Manhattan distance heuristic.
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A* AWA* (weight = 2)
Instance Len Stored Exp Secs Stored Exp Opt % Secs
Blocks-8 14 426,130 40,638 5.2 41,166 41,099 0.2% 3.8
Logistics-6 25 364,846 254,125 4.0 254,412 254,748 6.2% 3.7
Satellite-6 20 3,270,195 2,423,373 151.5 2,423,547 2,423,566 14.3% 138.8
Freecell-3 18 5,992,688 2,693,235 170.0 2,695,321 2,705,421 1.7% 146.2
Psr-46 34 7,464,850 7,141,461 343.2 7,148,048 7,175,275 69.0% 348.0
Depots-7 21 21,027,257 7,761,661 367.8 7,773,830 7,772,091 0.5% 249.1
Driverlog-11 19 22,344,515 6,693,096 407.0 6,702,570 6,699,143 1.4% 281.6
Elevator-12 40 12,748,119 12,734,334 560.6 12,734,636 12,829,775 98.6% 569.7

Table 1: Comparison of A* and AWA* on eight benchmark problems from the biennial
Planning Competitions.

Figure 1(b) shows how many nodes Anytime WA* stores and expands before it con-
verges to an optimal solution, using different weights. (Again, by “converges to an optimal
solution”, we mean that the lower and upper bounds meet and the algorithm has proved
that the solution is optimal.) Using a weight of 1.3, the average increase in the number of
nodes expanded by Anytime WA* is very slight compared to the number of nodes expanded
by unweighted A*. Figure 1(b) also shows that Anytime WA* using a weight of 1.3 or 1.5
stores fewer nodes than unweighted A*. For these weights, the reduction in memory re-
quirements due to using an upper bound to prune the Open list is greater than the increase
in memory requirements due to expanding more distinct nodes.

2.4.2 STRIPS planning

In recent years, there has been considerable interest in using heuristic search for domain-
independent STRIPS planning. Influential examples of this approach are the HSP and
HSPr planners of Bonet and Geffner (2001), which have performed well in the biennial
planning competitions sponsored by the International Conference on Automated Planning
and Scheduling (Long & Fox, 2003). HSP solves STRIPS planning problems using A* to
search forward from the start state to the goal, and HSPr uses A* to search backwards
from the goal to the start state, which has the advantage that it allows the heuristic to be
computed more efficiently. Because many of the benchmark planning problems used in the
planning competition are difficult to solve optimally, WA* is often used to find suboptimal
solutions in a reasonable amount of time.

Using Bonet’s publicly-available implementation of HSPr, we compared the performance
of A* and Anytime WA* on benchmark problems from previous planning competitions that
could be solved optimally by A*, using the domain-independent and admissible max-pair
heuristic described by Haslum and Geffner (2000). We used a weight of 2.0 in our ex-
periments. For all instances, Anytime WA* converged to an optimal solution using less
memory than A*. For most (but not all) instances, it also took less time. Table 1 com-
pares the performance of A* and Anytime WA* (AWA*) on the hardest solvable instances
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AWA* (weight = 5) AWA* (weight = 10)
Instance Exp Opt % Secs Exp Opt % Secs
Blocks-8 42,293 0.2% 3.9 42,293 0.2% 3.9
Logistics-6 274,047 4.6% 3.8 312,726 11.0% 4.3
Satellite-6 2,458,452 8.9% 138.7 2,585,074 13.2% 144.8
Freecell-3 > 35,639,419 N/A > 2,207.6 > 73,712,127 N/A > 4,550.5
Psr-46 7,310,349 10.0% 350.6 7,623,007 4.8% 365.1
Depots-7 7,902,183 0.4% 250.7 8,115,603 1.9% 254.7
Driverlog-11 6,814,696 1.2% 281.1 7,674,956 18.0% 322.4
Elevator-12 12,851,075 76.0% 557.5 13,145,547 21.4% 568.0

Table 2: Performance of AWA* with weights 5 and 10 on eight benchmark problems from
the biennial Planning Competitions.

of eight of these planning problems.3 The CPU time is relatively long for the number of
nodes generated and stored due to significant overhead for generating a node and comput-
ing its heuristic in a domain-independent way. The Blocks and Driverlog domains have the
largest branching factors, and thus the space savings from using an upper bound to prevent
insertion of suboptimal nodes in the Open list are greatest in these domains. In no domain
did Anytime WA* expand as many as 1% more nodes than A*, and usually the increased
percentage of node expansions is a fraction of this.

The column labeled “Opt %” shows how soon Anytime WA* finds what turns out to be
an optimal solution. The percentage is the number of node expansions before finding the
optimal solution out of the total number of node expansions until convergence. This provides
a very rough measure of the anytime performance of the algorithm. It shows that in most
domains, Anytime WA* finds what turns out to be an optimal solution very quickly and
spends most of its search time proving that the solution is optimal. However in two domains
(Psr-46 and Elevator-12), Anytime WA* did not find any solution until relatively late. In
both of these domains, solutions were found sooner when the weight was increased. Table 2
shows the performance of Anytime WA* using weights of 5 and 10. Using these higher
weights, anytime performance is better for the last two problems, especially Elevator-12,
although worse for some of the others. Even with weights of 5 and 10, Anytime WA*
tends to outperform A* in solving the first five problems. The sixth problem, Freecell-3, is
different. With a weight of 5, Anytime WA* cannot find any solution before running out of
memory. With a weight of 10, the number of stored nodes is the same (since it exhausts the
same amount of memory) but the number of expanded nodes (and the CPU time) more than
doubles because there are more node reexpansions as the weight increases. These results
clearly show that the effect of the weight on search performance can vary with the domain.
Given this variability, some trial and error in selecting the weight appears inevitable. But
if an appropriate weight is used, Anytime Weighted A* is consistently beneficial.

3. All our experiments were performed on an Intel Xeon 3.0GHz processor with 2MB of L2 cache and 2GB
of RAM
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2.4.3 Multiple sequence alignment

Alignment of multiple DNA or protein sequences plays an important role in computational
molecular biology. It is well-known that this problem can be formalized as a shortest-path
problem in an n-dimensional lattice, where n is the number of sequences to be aligned (Car-
illo & Lipman, 1988; Yoshizumi, Miura, & Ishida, 2000). A* can outperform dynamic pro-
gramming in solving this problem by using an admissible heuristic to limit the number of
nodes in the lattice that need to be examined to find an optimal alignment (Ikeda & Imai,
1999). However, a challenging feature of this search problem is its large branching factor,
which is equal to 2n − 1. When A* is applied to this problem, the large branching factor
means the Open list can be much larger than the Closed list, and the memory required to
store the Open list becomes a bottleneck of the algorithm.

Two solutions to this problem have been proposed in the literature. Yoshizumi et
al. (2000) describe an extension of A* called A* with Partial Expansion (PEA*). Instead
of generating all successors of a node when it is expanded, PEA* inserts only the most
promising successors into the Open list. The “partially expanded” node is then reinserted
into the Open list with a revised f -cost equal to the least f -cost of its successors that have
not yet been generated, so that the node can be reexpanded later. Use of this technique
significantly reduces the size of the Open list, and PEA* can solve larger multiple sequence
alignment problems than A*. Unfortunately, the reduced space complexity of PEA* is
achieved at the cost of node reexpansion overhead. The tradeoff between space and time
complexity is adjusted by setting a “cutoff value” C, which implicitly determines how many
successor nodes to add to the Open list at a time.

Another way to reduce the size of the Open list is not to insert nodes into the Open list
if their f -cost is equal to or greater than a previously established upper bound on the cost
of an optimal solution, since such nodes will never be expanded by A*. This approach was
proposed by Ikeda and Imai (1999), who call it Enhanced A* (EA*). They suggest that one
way to obtain an upper bound is to use the solution found by Weighted A* search with a
weight w > 1, although they did not report experimental results using this technique.

Our anytime algorithm provides a third approach to reducing the size of the Open list.
We also use Weighted A* to quickly find a solution that provides an upper bound for pruning
the Open list. But because the first solution found may not be optimal, the weighted search
is continued in order to find a sequence of improved solutions that eventually converges to
an optimal solution. This provides a sequence of improved upper bounds that can further
reduce the size of the Open list.

Figure 2 compares the performance of Anytime WA* (AWA*) to the performance of A*
with Partial Expansion and Enhanced A* in aligning five sequences from a set of dissimilar
(and thus difficult to align) sequences used in earlier experiments (Kobayashi & Imai, 1998).
The cost function is Dayhoff’s PAM-250 matrix with a linear gap cost of 8. The admissible
heuristic is the standard pairwise alignment heuristic, and the (almost negligible) time
needed to compute the heuristic is included in the running time of the search.

All three algorithms require much less memory than standard A* in solving this problem.
We found that a good weight for Anytime WA* in solving this test problem is 100

99 , that is,
the g-cost is weighted by 99 and the h-cost is weighted by 100. (Because the cost function
for multiple sequence alignment is integer-valued, we use a weighting scheme that preserves
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Figure 2: Average performance of search algorithms in aligning sets of 5 sequences from
Kobayashi and Imai (1998).

integer f -costs to allow more efficient integer-valued arithmetic.) To create an upper bound
for Enhanced A*, we ran Weighted A* with the same weight of 100

99 and used the cost of
the first solution found as the upper bound.

Figure 2 shows that Anytime WA* runs more than seven times faster and stores about
the same number of nodes as PEA* with a cutoff of C = 0. When PEA* uses a cutoff
of C = 50, it stores 44% more nodes than Anytime WA* and still runs 65% slower on
average. Although Enhanced A* runs about as fast as Anytime WA*, it stores 36% more
nodes. Anytime WA* stores fewer nodes because continuation of weighted search results in
discovery of improved solutions that provide tighter upper bounds for pruning the Open list.
In summary, Anytime WA* not only outperforms standard A* in solving this problem, it
performs better than two state-of-the-art enhancements of A* that were specifically designed
for this problem.

Figure 3 illustrates the behavior of Anytime WA* by showing how the upper and lower
bounds gradually converge. Notice that Anytime WA* finds an optimal solution after only
10% of the total search time, and spends the remaining 90% of the time proving that
the solution is optimal, at which point it converges. Compared to Partial Expansion A*
and Enhanced A*, an important advantage of Anytime WA* is that it finds a suboptimal
alignment quickly and then continues to improve the alignment with additional computation
time. Thus, it offers a tradeoff between solution quality and computation time that can
prove useful when finding an optimal alignment is infeasible.

The weight that we found worked well for this problem may seem surprisingly small,
and one might suspect that a weight this small has little or no effect on the order in which
nodes with different f -costs are expanded, and serves primarily as a tie-breaking rule for
nodes with the same f -cost but different h-costs. Because our implementations of A* and
Anytime WA* both break ties in favor of nodes with the least h-cost, however, the weight
has no effect on tie breaking in our experiments.

There are a couple of reasons why such a small weight is effective for this search problem.
First, the search graph for multiple sequence alignment has non-uniform edge costs. As a
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Figure 3: Convergence of bounds for Anytime WA* in aligning sets of 5 sequences from
Kobayashi and Imai (1998).

result, the range of f -costs is much greater than for our other test problems, which have
unit edge costs. Second, the f -costs and h-costs are much larger for this problem than
for our other test problems – in part, because the edge costs are larger (given the cost
function we used), and, in part, because the search space is deeper. (The protein sequences
being aligned have an average length of about 150, and this means the search is at least
this deep.) For this search problem, the optimal f -costs are around 50, 000. Because the
pairwise alignment heuristic used in solving this problem is very accurate, the largest h-costs
are also around 50, 000. Given h-costs this large and a wide range of f -costs, a weight of 100

99
can have a significant effect on the order of node expansions. This serves to illustrate how
the appropriate weight for Anytime WA* depends on characteristics of the search problem.

2.4.4 Discussion

Our results show that Anytime WA* is effective for a wide range of search problems. In
general, it is effective for a search problem whenever Weighted A* is effective. As others have
observed, Weighted A* can usually find a solution much faster than A* because A* spends
most of its time discriminating between close-to optimal solutions in order to determine
which is optimal (Pearl, 1984, p. 86). Indeed, our test results show that Anytime WA*
often finds what turns out to be an optimal solution relatively quickly, and spends most of
its search time proving that the solution is optimal.

One of the surprising results of our experiments is that Anytime WA* using an appro-
priate weight can sometimes converge to an optimal solution using less memory and even
less time than A*. This is surprising because it is well-known that A* using a consistent
heuristic is “optimally efficient” in terms of the number of nodes expanded (Dechter &
Pearl, 1985). However it is not necessarily optimally efficient by other measures of search
complexity, including memory requirements and running time. Anytime WA* is sometimes
more efficient by these other measures of search performance, even though it requires more
node expansions to find a provably optimal solution. The reason for this is that the im-
proved solutions found by the anytime approach provide upper bounds that can be used to
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reduce the number of nodes stored in the Open list. The resulting savings, both in memory
and in time overhead for managing the Open list, are sometimes greater than the additional
overhead of increased node expansions.

In our experiments, we used relatively low weights that result in fast convergence as
well as good anytime performance. This shows that A* can be transformed into an anytime
algorithm in exchange for little or no delay in convergence to an optimal solution. This
does not mean we recommend that the weight used by Anytime WA* should always be
set low enough to minimize memory use or the time it takes to find a provably optimal
solution. For some search problems, it could be an advantage to use higher weights in an
attempt to find approximate solutions more quickly. In most cases, increasing the weight
used by Anytime WA* allows an approximate solution to be found sooner, but increases
the number of node expansions before convergence to an optimal solution. In the end, the
“best” weight depends on preferences about time-quality tradeoffs.

We have focused on how to use weighted heuristic search to create an anytime heuristic
search algorithm. But in fact, any non-admissible heuristic could be used to guide an
Anytime A* algorithm, as pointed out at the beginning of Section 2.3. It is possible (and
even seems likely) that a more informative, but inadmissible, heuristic could sometimes lead
to better anytime search performance than a weighted admissible heuristic. In this case,
Anytime A* would use two heuristics – a non-admissible heuristic to select the order of
node expansions, and another, admissible heuristic, to prune the search space and detect
convergence to an optimal solution. This is an interesting direction for further exploration.
Our contribution in this paper is to show that an approach as simple as weighting an
admissible heuristic creates a very effective anytime algorithm for many search problems.

3. Anytime RBFS

It is well-known that the scalability of A* is limited by the memory required to store the
Open and Closed lists. This also limits the scalability of Anytime A*. Several variants of
A* have been developed that use less memory, including algorithms that require only linear
space in the depth of the search. We now show how to transform one of them, Recursive
Best-First Search, or RBFS (Korf, 1993), into an anytime algorithm. Besides showing
how to create a linear-space anytime heuristic search algorithm, this helps to illustrate the
generality of our approach by showing that another weighted heuristic search algorithm can
be transformed into an anytime heuristic search algorithm in a similar way, by continuing
the weighted search after the first solution is found.

We begin this section with a brief review of the RBFS algorithm. Then we consider
two approaches to using a weighted evaluation function with RBFS, one that has been
studied before and an alternative that we show has some advantages. Finally, we discuss
how to transform Weighted RBFS into an Anytime Weighted RBFS algorithm. We use
the Fifteen Puzzle as a test domain, which is a larger version of the sliding-tile puzzle that
A* cannot solve optimally because of memory limitations. Because RBFS saves memory
by not storing all generated nodes, it is slowed by excessive node regenerations in solving
graph-search problems with many duplicate paths. As a result, RBFS is not effective (in
terms of time efficiency) for either STRIPS planning or multiple sequence alignment.
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3.1 Recursive Best-First Search (RBFS)

Recursive best-first search, or RBFS (Korf, 1993), is a general heuristic search algorithm
that expands frontier nodes in best-first order, but saves memory by determining the next
node to expand using stack-based backtracking instead of by selecting nodes from an Open
list. The stack contains all nodes along the path from the start node to the node currently
being visited, plus all siblings of each node on this path. Thus the memory complexity of
RBFS is O(db), where d is the depth of the search and b is the branching factor.

RBFS is similar to a recursive implementation of depth-first search, with the difference
that it uses a special condition for backtracking that ensures that nodes are expanded
(for the first time) in best-first order. Instead of continuing down the current path as far
as possible, as in ordinary depth-first search, RBFS keeps track of the f -cost of the best
alternative path available from any ancestor of the current node, which is passed as an
argument to the recursive function. If the f -cost of the current path exceeds this threshold,
called the local cost threshold, the recursion unwinds back to the alternative path. As the
recursion unwinds, RBFS keeps track of the f -cost of the best unexpanded node on the
frontier of the forgotten subtree by saving it in the stored value F (n). These stored values,
one for each node n on the stack, are used by RBFS to decide which path to expand next
at any point in the search. Because F (n) is the least f -cost of any unexpanded node on the
frontier of the subtree rooted at node n, these stored values can be propagated to successor
nodes during successor generation. If a node has been previously expanded, its (propagated)
stored value will be greater than its static evaluation, and RBFS uses this fact to detect
previously expanded nodes and regenerate subtrees efficiently.

Among the advantages of RBFS, Korf points out that it expands nodes in best-first
order even when the evaluation function is nonmonotonic. To illustrate a nonmonotonic
evaluation function, he considers RBFS using a weighted evaluation function.

3.2 Weighted RBFS

Like A*, RBFS can use a weighted heuristic to trade off solution quality for search time.
Algorithm 2 gives the pseudocode for the recursive function of RBFS using a weighted
evaluation function. This is the same RBFS algorithm described by Korf, although the
notation is slightly adjusted to show that the weighted values F ′ are stored on the stack
instead of the unweighted values F , and the local cost threshold B′ is a weighted value.
When RBFS is initially invoked, its three arguments are the start node, the (weighted)
evaluation of the start node, and a cost threshold of infinity. Using a weighted evaluation
function, RBFS expands nodes (for the first time) in order of the weighted evaluation
function, f ′, instead of in order of the unweighted evaluation function, f . Korf (1993)
considers this approach to Weighted RBFS and presents an empirical study of the tradeoff
it offers between search time and solution quality.

To motivate another approach to weighted heuristic search using RBFS, we introduce a
distinction between two search frontiers maintained by RBFS. The stored values, denoted
F (n) or F ′(n), keep track of the best unexpanded node on the frontier of the subtree rooted
at a node n on the stack. We call this a virtual frontier because RBFS does not actually
store this frontier in memory, but uses these stored values to represent and regenerate the
frontier. We introduce the term stack frontier to refer to the frontier that RBFS actually
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Algorithm 2: RBFS (using a weighted evaluation function)
Input: A node n, F ′(n), and a threshold B′

begin
if n is a goal node then output solution path and exit algorithm
if Successors(n) = ∅ then return ∞
foreach ni ∈ Successors(n), i = 1, 2, · · · , |Successors(n)| do

g(ni) ← g(n) + c(n, ni), f ′(ni) ← g(ni) + w × h(ni)
if f ′(n) < F ′(n) then F ′(ni) ← max{F ′(n), f ′(ni)}
else F ′(ni) ← f ′(ni)

sort ni in increasing order of F ′(ni)
if |Successors(n)| = 1 then F ′(n2) ←∞
while F ′(n1) < ∞ and F ′(n1) ≤ B′ do

F ′(n1) ←RBFS
(
n1, F

′(n1),min{B′, F ′(n2)}
)

insert n1 in sorted order of F ′(ni)
return F ′(n1)

end

stores in memory. The stack frontier consists of the nodes on the stack that do not have
successor nodes on the stack.

In weighted heuristic search, the weighted evaluation function is used to determine the
order in which to expand nodes on the frontier of the search. In the approach to Weighted
RBFS shown in Algorithm 2, which is the approach adopted by Korf (1993), the weighted
evaluation function is used to select the order in which to expand nodes on the virtual
frontier. Because this virtual frontier is the same frontier that is maintained in memory by
Weighted A*, using an Open list, this approach to Weighted RBFS expands nodes in the
same order as Weighted A* (disregarding tie breaking and node regenerations).

Algorithm 3 shows the pseudocode of an alternative approach to weighted heuristic
search using RBFS. Like the approach shown in Algorithm 2, it uses a weighted evaluation
function and continues to expand a solution path as long as the weighted evaluation of the
currently-expanding node is not greater than the weighted evaluation of any sibling of one
of the nodes along this path. The difference is that instead of backing up the least weighted
evaluation f ′ of any unexpanded node in the subtree rooted at node n and storing it in
F ′(n), Algorithm 3 backs up the least unweighted evaluation f of any unexpanded node,
and stores it in F (n). If f(n) is an admissible evaluation function, then F (n) is a lower
bound on the cost of the best solution that can be found in the subtree rooted at n. It
follows that H(n) = F (n)− g(n) is an improved admissible heuristic for node n. Therefore,
Algorithm 3 can use the weighted evaluation g(n)+w×H(n) = g(n)+w×(F (n)− g(n)) to
determine the order in which to expand nodes. In this approach to Weighted RBFS, nodes
are expanded in best-first order of the weighted evaluation of nodes on the stack frontier,
instead of in order of the weighted evaluation of nodes on the virtual frontier.

RBFS is a general algorithmic scheme that can use different evaluation functions. Thus,
even when it uses a weighted evaluation function, Korf refers to it as RBFS. To make it
easier to distinguish between these algorithms, we introduce the name WRBFS to refer
to the alternative approach to weighted heuristic search based on RBFS that we propose.
WRBFS expands nodes on the stack frontier in best-first order of the evaluation function
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Algorithm 3: WRBFS
Input: A node n, F (n), and a threshold B′

begin
if n is a goal node then output solution path and exit algorithm
if Successors(n) = ∅ then return ∞
foreach ni ∈ Successors(n), i = 1, 2, · · · , |Successors(n)| do

g(ni) ← g(n) + c(n, ni), f(ni) ← g(ni) + h(ni)
if f(n) < F (n) then F (ni) ← max{F (n), f(ni)}
else F (ni) ← f(ni)

sort ni in increasing order of F (ni)
if |Successors(n)| = 1 then F (n2) ← g(n2) ←∞
while F (n1) < ∞ and g(n1) + w × (

F (n1)− g(n1)
) ≤ B′ do

F (n1) ←WRBFS
(
n1, F (n1), min{B′, g(n2) + w × (

F (n2)− g(n2)
)})

insert n1 in sorted order of F (ni)
return F (n1)

end

F ′(n) = g(n) + w × H(n), instead of expanding nodes on the virtual frontier in order of
the evaluation function f ′(n) = g(n) + w × h(n). Since F ′(n) = g(n) + w ×H(n) improves
during the search, it is not a static evaluation function, and this is another reason for using
the name WRBFS. Note that when w = 1, as in unweighted RBFS, there is no difference in
the behavior of these two algorithms; expanding nodes in best-first order of their evaluation
on the stack frontier is equivalent to expanding nodes in best-first order of their evaluation
on the virtual frontier. There is only a difference when one considers whether to apply a
weight greater than 1 to the heuristic on the stack frontier or the virtual frontier.

Figure 4 compares the performance of these two approaches to Weighted RBFS in solving
Korf’s (1985) 100 random instances of the Fifteen Puzzle. Figure 4(a) shows the average
length of the solutions found by each algorithm, using weights ranging from 1.0 to 5.0
in increments of 0.1. WRBFS finds better-quality solutions than RBFS using a weighted
evaluation function and the same weight, and the difference increases with the weight. But
since WRBFS can also take longer to find a solution, we consider the time-quality tradeoff
offered by each algorithm. Figure 4(b), which is similar to Figure 10 in the article by
Korf (1993), plots solution length versus time (measured by the number of recursive calls)
in solving the same Fifteen Puzzle examples, using solution lengths ranging from 53 to 85
for both algorithms. The time-quality tradeoff offered by the two algorithms is similar, with
a modest advantage for WRBFS. What is striking is that WRBFS offers a smooth time-
quality tradeoff, whereas the tradeoff offered by RBFS using a weighted evaluation function
is irregular. Sometimes, increasing the weight used by RBFS causes it to take longer to find
a solution, instead of less time. A dramatic example is that increasing the weight from 1.0
to 1.1 causes RBFS with a weighted evaluation function to take three times longer to find a
(potentially suboptimal) solution than unweighted RBFS takes to find an optimal solution.

Korf (1993) gives the reason for this irregular time-quality tradeoff. The node regener-
ation overhead of RBFS grows with the number of iterations of the algorithm, which is the
number of times the local cost threshold increases, since each iteration requires regeneration
of subtrees. There is one iteration for each distinct f -cost, or, in the case of RBFS using a
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Figure 4: Comparison of RBFS using a weighted evaluation function and WRBFS in solving
Korf’s 100 random instances of the Fifteen Puzzle. Panel (a) shows solution
quality as a function of heuristic weight. Panel (b) shows the time-quality tradeoff
of each algorithm by plotting the number of recursive calls against solution quality.

weighted evaluation function, for each distinct f ′-cost. The irregular time-quality tradeoff is
caused by fluctuation in the number of distinct f ′-costs as the weight increases, which leads
to fluctuation in the number of iterations. The number of distinct f ′-costs can be as many
as the number of distinct pairs of g-cost and h-cost, but the actual number depends on the
weight, since different pairs of g-cost and h-cost may sum to the same f ′-cost, depending
on the weight. Increasing the weight from 1.0 to 1.1, for example, significantly increases
the number of distinct f ′-costs, and this explains why RBFS using a weighted evaluation
function takes longer to find a solution in this case. An advantage of using WRBFS is
that the stored value of each node on the stack is the minimum f -cost on the frontier of
the subtree rooted at that node, instead of the minimum f ′-cost, and thus the number of
iterations is not affected by any variation in the number of distinct f ′-costs as the weight
is increased. As a result, adjusting the weight creates a smoother time-quality tradeoff.

Both approaches to Weighted RBFS are well-motivated and both offer a useful tradeoff
between search time and solution quality. The original approach expands frontier nodes in
best-first order of the weighted evaluation function f ′(n) = g(n) + w × h(n), and, in this
respect, it is closer to Weighted A*. But as we have seen, the alternate approach has the
advantage that it allows a smoother time-quality tradeoff. As we consider how to transform
each of these two approaches to Weighted RBFS into an anytime heuristic search algorithm,
we will see that the alternate approach has other advantages as well.

3.3 Anytime Weighted RBFS

It is straightforward to transform either approach to Weighted RBFS into an anytime
algorithm. Algorithm 4 shows the pseudocode of the recursive function of Anytime WRBFS.
There are just a couple differences between a Weighted RBFS algorithm such as WRBFS
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Algorithm 4: Anytime WRBFS
Input: A node n, F (n), and a threshold B′

begin
if n is a goal node then return f(n)
if Successors(n) = ∅ then return ∞
foreach ni ∈ Successors(n), i = 1, 2, · · · , |Successors(n)| do

g(ni) ← g(n) + c(n, ni), f(ni) ← g(ni) + h(ni)
if ni is a goal node and f(ni) < f(incumbent) then

incumbent ← ni

save (or output) incumbent solution path
if f(ni) ≥ f(incumbent) then F (ni) ←∞
else if f(n) < F (n) then F (ni) ← max{F (n), f(ni)}
else F (ni) ← f(ni)

sort ni in increasing order of F (ni)
if |Successors(n)| = 1 then F (n2) ← g(n2) ←∞
while F (n1) < f(incumbent) and g(n1) + w × (

F (n1)− g(n1)
) ≤ B′ do

F (n1) ←Anytime-WRBFS
(
n1, F (n1), min{B′, g(n2) + w × (

F (n2)− g(n2)
)})

insert n1 in sorted order of F (ni)
return F (n1)

end

and an Anytime Weighted RBFS algorithm. Most importantly, the condition for termi-
nation is different. After the anytime algorithm finds a solution, and each time it finds
an improved solution, it saves (or outputs) the solution and continues the search. As in
Anytime Weighted A*, the algorithm checks whether a node is a goal node when it is gen-
erated, instead of waiting until it is expanded. It also checks whether the f -cost of a node
is greater than or equal to an upper bound given by the f -cost of the incumbent solution.
If so, this part of the search space is pruned. (Note that before the first solution is found,
f(incumbent) should be set equal to infinity, since there is not yet a finite upper bound on
the optimal solution cost.) Convergence to an optimal solution is detected when the stack
is empty. At this point, backtracking has determined that all branches of the tree have been
searched or pruned. Proof of termination with an optimal solution follows similar logic as
for Theorem 1. The suboptimality of the currently available solution is bounded by using
f(incumbent) as an upper bound on optimal solution cost and the least F -cost of any node
on the stack frontier as a lower bound. (Again, the stack frontier consists of the node at
the end of the current best path, plus every sibling of a node along this path.)

Figure 5(a) shows performance profiles for Anytime WRBFS, averaged over Korf’s 100
random instances of the Fifteen Puzzle. Although weights of 2.0 and 1.5 offer a better time-
quality tradeoff for short amounts of search time, a weight of 1.3 provides better long-term
performance. Figure 5(b) shows the time (measured by the average number of recursive
calls) taken by Anytime WRBFS to find optimal solutions for the Fifteen puzzle, using
weights from 1.0 to 2.0 in increments of 0.1. Using weights from 1.2 to 1.4, it converges
to an optimal solution more quickly than unweighted RBFS. In fact, using a weight of 1.3,
Anytime WRBFS converges to an optimal solution after an average of 25% fewer recursive
calls than unweighted RBFS. Although it always expands as many or more distinct nodes
than unweighted RBFS, reliance on stack-based backtracking to reduce memory use means
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Figure 5: Performance of Anytime WRBFS. Panel (a) shows performance profiles using
three different weights, averaged over Korf’s 100 random instances of the Fifteen
Puzzle. Panel (b) shows the average number of recursive calls required to converge
to an optimal solution, using weights from 1.0 to 2.0 in increments of 0.1, and
averaged over the same 100 random instances of the Fifteen Puzzle.

that both algorithms can revisit the same nodes multiple times. Figure 5(b) shows that
the weighted heuristic used by Anytime WRBFS can reduce the number of recursive calls;
intuitively, this occurs because the greedier search strategy of weighted heuristic search
tends to delay and reduce backtracking. Of course, if the weight is increased enough, the
number of distinct node expansions increases and eventually the number of recursive calls
also increases, as Figure 5(b) shows. Nevertheless, the demonstration that a small weight
can sometimes improve efficiency in finding optimal solutions is interesting.

For comparison, Figure 6(a) shows performance profiles for a version of Anytime Weighted
RBFS that is based on RBFS using a weighted evaluation function, which is the original
approach to Weighted RBFS. In this case, the performance profile of Anytime Weighted
RBFS using a weight of 1.3 is dominated by its performance profiles using weights of 1.5
and 2.0. Figure 6(b) shows the average number of recursive calls taken by this version of
Anytime Weighted RBFS to find optimal solutions for the Fifteen puzzle, using the same
range of weights from 1.0 to 2.0. To ensure fair comparison, we implemented this version
of Anytime Weighted RBFS so that it saves the admissible F (n) values in addition to the
non-admissible F ′(n) values, and uses the F (n) values to prune branches of the search tree
and detect convergence to an optimal solution, instead of using the static evaluation f(n).
Nevertheless, this version of Anytime Weighted RBFS converges much more slowly. The
scale of the y-axis in Figure 6(b) is an order of magnitude greater than in Figure 5(b),
and this reflects the fact that Anytime Weighted RBFS based on this version of Weighted
RBFS takes an order of magnitude longer to converge to an optimal solution than Anytime
WRBFS, using the same weight.

Fluctuations in the length of time until convergence in Figure 6(b) are caused by dif-
ferences in the number of distinct f ′-costs as the weight increases, causing differences in
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Figure 6: Performance of Anytime Weighted RBFS based on RBFS using a weighted evalu-
ation function. Panel (a) shows performance profiles using three different weights,
averaged over Korf’s 100 random instances of the Fifteen Puzzle. Panel (b) shows
the average number of recursive calls to converge to an optimal solution, using
weights from 1.0 to 2.0 in increments of 0.1, averaged over the same instances.
The scale of the y-axis is an order of magnitude greater than for Figure 5(b).

the number of iterations and resulting fluctuations in node regeneration overhead. This is
similar to what we observed earlier of the performance of this approach to Weighted RBFS.
But it does not explain the very large difference in the time it takes each algorithm to con-
verge. There are at least two reasons why Anytime WRBFS converges much faster. One
is more efficient backtracking behavior. Because Anytime WRBFS expands nodes in order
of a weighted evaluation function on the stack frontier, instead of in order of a weighted
evaluation function on the virtual frontier, it searches more greedily at deeper levels on the
stack before backtracking to shallower levels. Since it is more computationally expensive
to regenerate the large subtrees that are rooted at shallower nodes on the stack than the
smaller subtrees that are rooted at deeper nodes, this bias towards backtracking at deeper
levels before backtracking to shallower levels contributes to improved convergence time.

Another reason that Anytime WRBFS converges much faster is that it is more effective
in improving the lower bound on optimal solution cost. As we pointed out earlier, anytime
heuristic search often finds what turns out to be an optimal solution relatively quickly,
and spends most of its time proving that the solution is optimal, which corresponds to
improving a lower bound. In both versions of Anytime Weighted RBFS, the lower bound is
the minimum of the F (n) values stored on the stack frontier. Although an anytime search
algorithm based on the original version of Weighted RBFS is guaranteed to improve the
F ′(n) value of a subtree rooted at node n each iteration, it may or may not improve the F (n)
value (which we assume it also stores). By contrast, an anytime search algorithm based
on WRBFS is guaranteed to improve the F (n) value each iteration. Because it improves
admissible F (n) values, instead of weighted F ′(n) values, Anytime WRBFS is more effective
in improving the lower bound on optimal solution cost, leading to faster convergence.
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4. Related Work

In this section, we consider some closely-related work. We begin by considering a variant
of Anytime A* that has been recently proposed. Then we discuss the relationship between
Anytime A* and other variants of A* that, directly or indirectly, also allow a tradeoff
between search time and solution quality.

4.1 Anytime Repairing A*

Likhachev, Gordon, and Thrun (2004) have recently introduced an interesting variant of
Anytime A*, called Anytime Repairing A* (or ARA*), and have shown that it is very
effective for real-time robot path planning. Their approach follows our approach to creating
an Anytime A* algorithm in many respects. It uses Weighted A* to find an approximate
solution relatively quickly, and continues the weighted search to find a sequence of improved
solutions until convergence to an optimal solution. However, it introduces two extensions
to improve performance. First, after each solution is found, it decreases the weight before
continuing the search. Second, it uses a technique to limit node reexpansions. The first
of these extensions, decreasing the weight as new solutions are found, is easy to consider
independently of the other, and can also be easily combined with Anytime Weighted A*
(AWA*), and so we consider it first.

Decreasing the weight In our experiments, we used a weighted heuristic with a weight
that did not change during the search. We chose this approach because of its simplicity.
Likhachev et al. (2004) argue that better performance is possible by gradually decreasing
the weight during search. After each new solution is found, ARA* decreases the weight
by a small, fixed amount, and continues the search. Experimental results show that this
approach leads to improved performance in their robot path-planning domains.

Of course, relative performance can depend on the initial weight and not simply on
whether the weight remains fixed or decreases. Likhachev et al. report three experimental
comparisons of AWA* and ARA*. In one, they set the initial weight to 3; in another, they
set the initial weight to 10; in the third, they set the initial weight to 30. These weights
are higher than those we found worked well for our test problems. In their experiments,
AWA* never changes this initial weight whereas ARA* decreases it as new solutions are
found. If the initial weight is set too high, this might explain why decreasing it improves
performance. It could also be that setting the initial weight high and gradually decreasing
it is the most effective approach for the robot path-planning problems they consider, and for
similar problems. Even so, it does not follow that it is the best approach for all problems.

We compared Anytime Weighted A* and Anytime Repairing A* in solving the STRIPS
planning problems used as a testbed in Section 2.4.2. Although Likhachev et al. did not
use upper bounds to reduce the size of the Open list in their implementation of ARA*,
it is easy to do so and we included this enhancement in our implementation of ARA* in
order to ensure fair comparison. In addition to decreasing the weight, ARA* uses a special
“repairing” technique to limit node reexpansions. Since this is an independent idea, we
implemented a version of AWA* that decreases the weight during search but does not use
this special technique for limiting node reexpansions. By itself, decreasing the weight during
search only requires recalculating f ′-costs and reordering the Open list whenever the weight
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AWA* (weight = 2, step = 0.1) ARA* (weight = 2, step = 0.1)
Instances Stored Exp Opt % Secs Stored Exp Opt % Secs
Blocks-8 41,166 40,727 0.2% 3.9 41,166 42,141 0.2% 3.9
Logistics-6 254,412 254,390 6.2% 3.6 312,438 364,840 87.1% 5.0
Satellite-6 2,423,547 2,423,489 14.3% 138.6 2,423,547 2,428,325 14.2% 138.4
Freecell-3 2,695,321 2,698,596 1.7% 155.3 4,115,032 5,911,849 68.7% 317.2
Psr-46 7,148,048 7,171,557 69.0% 345.7 7,143,912 11,888,700 35.3% 567.7
Depots-7 7,773,830 7,762,783 0.5% 247.4 7,771,780 7,823,005 0.5% 247.1
Driverlog-11 6,763,379 6,693,441 4.7% 283.3 6,698,404 6,771,651 1.3% 281.3
Elevator-12 12,734,636 12,825,980 98.7% 561.3 12,736,328 12,843,441 97.8% 559.7

Table 3: Comparison of AWA* (with decreasing weight) and ARA* on eight benchmark
problems from the biennial Planning Competitions.

is changed. Table 3 compares the performance of AWA* and ARA* when both use an initial
weight of 2.0 and decrease the weight by 0.1 after each new solution is found. For all planning
instances except Logistics-6, Freecell-3 and Psr-46, there is no significant difference in their
performance or any significant difference between their performance and the performance
of AWA* with a fixed weight of 2.0 in solving the same instances. (See Table 1.) For
these STRIPS planning problems and using this initial weight, gradually decreasing the
weight does not improve performance. Of course, it could improve performance for other
problems. In that case, we note that it is easy to decrease the weight used by AWA* without
implementing the full ARA* algorithm.

Another potential advantage of decreasing the weight, as Likhachev et al. point out, is
that it provides a different way of bounding the suboptimality of a solution. For any solution
found by Weighted A* using a weight of w, one has the error bound, f(incumbent)

f∗ ≤ w. Note
that decreasing this bound requires decreasing the weight during the search.

In Section 2.3.2, we defined a different error bound, f(incumbent)
f∗ ≤ f(incumbent)

fL , where
fL denotes the least f -cost of any currently open node on the frontier. An advantage of
this error bound is that it decreases even if the weight remains fixed during the search.
An additional advantage is that it is a tighter bound. Let nL denote an open node with
f(nL) = fL. Because h(incumbent) = 0 and incumbent was expanded before nL, we know
that

f(incumbent) = f ′(incumbent) ≤ g(nL) + w × h(nL).

Therefore,

f(incumbent)
fL

≤ g(nL) + w × h(nL)
g(nL) + h(nL)

<
w × (g(nL) + h(nL))

g(nL) + h(nL)
= w,

where the strict inequality follows from the assumptions that w > 1 and g(nL) > 0.
Although ARA* performs about the same as AWA* in solving five of the eight planning

problems, it performs worse in solving the other three: Logistics-6, Freecell-3, and Psr-46.
Comparing ARA* to AWA* when both have the same initial weight and decrease the weight
in the same way shows that this deterioration in performance is not caused by decreasing
the weight. We consider next the technique used by ARA* for limiting node reexpansions.
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Figure 7: Comparison of AWA* and ARA* in solving all instances of the Eight Puzzle.
Panel (a) shows the average number of nodes stored and panel (b) shows the
average number of node expansions, both as a function of the initial weight.

Limiting node reexpansions As discussed before, a complication that Anytime Weighted
A* inherits from Weighted A* is that a weighted heuristic is typically inconsistent. This
means it is possible for a node to have a higher-than-optimal g-cost when it is expanded. If
a better path to the same node is later found, the node is reinserted in the Open list so that
the improved g-cost can be propagated to its descendants when the node is reexpanded. As
a result, both Weighted A* and Anytime WA* can expand the same node multiple times.

Likhachev et al. note that the error bound for Weighted A* remains valid even if node
reexpansions are not allowed. Since their ARA* algorithm performs a series of Weighted A*
searches with decreasing weights, they reason that if ARA* postpones node reexpansions
until the current iteration of Weighted A* finishes and the weight is decreased, this will
create a more efficient Anytime A* algorithm. When ARA* finds a better path to an
already-expanded node, it inserts the node into a list called INCONS in order to delay node
reexpansion. When a solution is found and the weight is decreased, ARA* moves all nodes
in the INCONS list to the Open list and resumes the search.

This technique for limiting node reexpansions may improve search performance for robot
path planning and similar search problems, especially when using large weights. But the
relative performance of AWA* and ARA* in solving the Logistics-6, Freecell-3, and Psr-46
planning instances raises a question about whether it always improves performance. For
further comparison, Table 7 shows the average performance of AWA* and ARA* in solving
all instances of the Eight Puzzle. Each algorithm has the same initial weight. AWA* never
changes the initial weight while ARA* reduces it in increments of 0.1 as new solutions are
found. A larger weight makes the heuristic more inconsistent and increases the likelihood
that AWA* will reexpand nodes. Yet the results show that the larger the initial weight, the
more nodes ARA* expands relative to AWA*, and the difference is dramatic. When the
initial weight is set to 3.0, ARA* expands more than four times more nodes than AWA*.

290



Anytime Heuristic Search

In many cases, it takes longer for ARA* to find an initial suboptimal solution than it takes
unweighted A* to find an optimal solution.

One reason for this result is that limiting node reexpansions can cause ARA* to expand
more distinct nodes. (The fact that ARA* stores as well as expands more nodes, as shown
in Figure 7, indicates that it expands and generates more distinct nodes.) Limiting node
reexpansions can lead to expansion of more distinct nodes because it blocks improvement of
all paths that pass through any node stored in the INCONS list. By blocking improvement
of these paths, it can prevent better solutions from being found. One possibility is that
the solution found by Weighted A* passes through a node that is stored in the INCONS
list, which means that reexpansion and propagation of its improved g-cost is postponed. In
that case, the f ′-cost of the solution is greater than it would be if reexpansion of the node
was allowed. Another possibility is that a potentially better solution than the one found
by Weighted A* passes through a node in the INCONS list, and therefore is not discovered
because its improvement is blocked. Either way, the solution found by Weighted A* when
it does not allow node reexpansions can have a greater f ′-cost than if node reexpansions
are allowed. Because Weighted A* must expand all nodes with an f ′-cost less than the
f ′-cost of the solution it finds, more distinct nodes can be expanded whenever limiting node
reexpansions prevents Weighted A* from finding a better solution. As Figure 7 shows, this
effect becomes more pronounced as increasing the weight increases the likelihood that the
first time ARA* expands a node, its g-cost is suboptimal.

Our results show that this effect does not occur for all search problems, at least to
the same degree. It seems to occur primarily for search problems with relatively sparse
solutions, such as the sliding-tile puzzle and the Logistics and Freecell planning domains.
When solutions are sparse, it is easier for all nodes that lead to a good solution to be
expanded with a higher-than-optimal g-cost, and thus more likely for Weighted A* to find a
solution that is worse than it would have found if it allowed node reexpansions. For search
problems with a huge number of solutions of equal or almost equal cost, limiting node
reexpansions in this way is less likely to cause the same problem. The robot path-planning
problems considered by Likhachev et al. are examples of this kind of search problem, and
thus the impressive results they report are not inconsistent with our observations.

There is yet another way in which limiting node reexpansions sometimes makes search
performance worse. So far, we have considered search problems where ARA* expands more
distinct nodes than AWA*. But for the Psr-46 planning instance, ARA* expands many
more nodes than AWA*, but does not store more nodes. This indicates that ARA* does
not expand more distinct nodes than AWA*. Instead, it performs more node reexpansions.
How is this possible when ARA* explicitly limits node reexpansions? It turns out that
limiting node reexpansions in the way that ARA* does can sometimes lead to more node
reexpansions. By the time ARA* decreases its weight and reexpands a node to propagate
improved path information, the reexpanded node can have many more descendants in the
explicit search graph than it did when an improved path to the node was originally found.
As a result, many more nodes may need to be reexpanded to propagate the improved path
information. Again, this does not always happen. But the behavior of ARA* in solving
Psr-46 illustrates this possibility.

Figure 7(b) compares the average number of nodes expanded by ARA* and AWA* in
solving all instances of the Eight Puzzle, but it does not show CPU time. With an initial
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weight of 3, ARA* expands about 4.5 times more nodes than AWA*. The difference in
CPU time is actually greater. ARA* takes 7 times longer to solve these problems than
AWA*, on average. One reason for this is the extra time overhead for recalculating f ′-costs
and reordering the Open list every time the weight is decreased. This time overhead is
negligible for the STRIPS planning problems compared to the much greater overhead for
domain-independent node generation and heuristic calculation. But for the sliding-tile
puzzle, node generation and heuristic calculation are so fast that the time overhead for
recalculating f ′-costs and reordering the Open list has a noticeable effect in slowing the
search. This is another example of how the relative performance of ARA* and AWA* can
vary with the search problem.

In summary, the idea of decreasing the weight during search can be used independently
of the technique for limiting node reexpansions. Although gradually decreasing the weight
did not improve performance for our test problems, it could improve performance for other
problems. However, the additional overhead for recalculating f ′-costs and reordering the
Open list should be considered. The technique for limiting node reexpansions can also help,
but should be used with caution. For some problems, we have shown that it can actually
cause significantly more node reexpansions or expansion of more distinct nodes. For other
problems, it does not have a negative effect. Although it did not show a clear benefit in our
test domains, it could improve performance for robot path planning and similar problems
with many close-to-optimal solutions, especially when using a large weight.

4.2 Real-time A*

An anytime approach to heuristic search is effective for real-time search problems where not
enough time is available to search for an optimal solution. Previous work on time-limited
heuristic search adopts the model of Korf’s Real-time A* algorithm (RTA*) which assumes
that search is interleaved with execution (Korf, 1990). After searching for a bounded amount
of time, the best next action is chosen and the search-act cycle repeats until the goal state
is reached. Similar examples of this real-time search strategy include DTA* (Russell &
Wefald, 1991), BPS (Hansson & Mayer, 1990) and k-best (Pemberton, 1995). Because real-
time search algorithms commit to actions before finding a complete solution, they cannot
find optimal solutions. In contrast, we assume that a search phase precedes an execution
phase and that the output of the search is a complete solution. In other words, real-time
search algorithms try to find the best next decision under a time constraint, whereas our
anytime approach tries to find the best complete solution under a time constraint.

4.3 Depth-first branch and bound and Iterative-Deepening A*

Depth-first branch-and-bound (DFBnB) search algorithms are very effective for tree-search
problems, especially those that have many solutions at the same depth, such as the traveling
salesman problem. For such problems, DFBnB has the behavior of an anytime algorithm.
It quickly finds a solution that is suboptimal, and then continues to search for improved
solutions until an optimal solution is found. It even uses the cost of the best solution found
so far as an upper bound to prune the search space.

A search technique that combines elements of DFBnB and A* is Iterative-deepening
A* or IDA* (Korf, 1985). It is well-known that IDA* performs poorly on problems with
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real-valued edge costs such as the traveling salesman where almost all nodes have distinct
f -costs. For such problems, it may expand only one new node each iteration. To prevent
excessive iterations and node regenerations, several variants of IDA* have been developed
that set successive thresholds higher than the minimum f -cost that exceeded the previous
threshold (Sarkar, Chakrabarti, Ghose, & DeSarkar, 1991; Rao, Kumar, & Korf, 1991; Wah
& Shang, 1994). As a result, the first solution found is not guaranteed to be optimal,
although it has bounded error. After finding an initial solution, these algorithms revert to
DFBnB search to ensure eventual convergence to an optimal solution. This approach to
reducing node regenerations in IDA* has the side-effect of creating an anytime algorithm,
although one that is only effective for problems for which IDA* and DFBnB are effective,
which are typically tree-search problems.

4.4 Bidirectional A*

Another search technique that has the side-effect of creating an anytime algorithm is Bidi-
rectional A* (Kaindl & Kainz, 1997). In this approach, two simultaneous A* searches are
performed, one from the start state to the goal, and the other from the goal to the start
state. When the two search frontiers meet at a node, the two partial solutions are combined
to create a complete solution. Typically, the first solution found is suboptimal and the
search must be continued to find an optimal solution. Thus, a bidirectional search strategy
has the side-effect of finding a succession of improved solutions before convergence to an
optimal solution. In fact, the convergence test used by Bidirectional A* to detect an optimal
solution is similar to the convergence test used by Anytime WA*: an incumbent solution
of cost f(incumbent) is optimal if there is no unexpanded node with an f -cost less than
f(incumbent) in one of the two directions of the search, that is, if one of the two Open lists
is empty. An interesting possibility for improving bidirectional search is to use Anytime A*
(instead of standard A*) to search in both directions.

4.5 Local-search variants of A*

An important class of anytime search algorithms relies on local search in some form to iter-
atively improve a solution. Although local-search algorithms cannot guarantee convergence
to an optimal solution, they scale much better than systematic search algorithms. There
have been a couple attempts to improve the scalability of A* by integrating it with some
form of local search. Ratner and Pohl (1986) propose two local-search variants of A* that
improve a suboptimal solution path by making local searches around segments of the path.
For example, Joint A* divides an initial suboptimal solution path into segments, and, for
each segment, uses A* to search for a better path between the start and end states of the
segment, to reduce overall solution cost. Ikeda et al. (1999) propose a K-group A* algo-
rithm for multiple sequence alignment that performs A* on groups of sequences, instead of
individual sequences, in order to reduce search complexity when the number of sequences
is too large to find optimal alignments. By varying the groupings, a local-search algorithm
is created that gradually improves an alignment in a computationally feasible way (Zhou &
Hansen, 2004). But, like other local-search algorithms, these local-search variants of A* do
not guarantee convergence to an optimal solution.
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5. Conclusion

We have presented a simple approach for converting a heuristic search algorithm such as A*
into an anytime algorithm that offers a tradeoff between search time and solution quality.
The approach uses weighted heuristic search to find an initial, possibly suboptimal solution,
and then continues to search for improved solutions until convergence to a provably optimal
solution. It also bounds the suboptimality of the currently available solution.

The simplicity of the approach makes it very easy to use. It is also widely applicable.
Not only can it be used with other search algorithms that explore nodes in best-first order,
such as RBFS, we have shown that it is effective in solving a wide range of search problems.
As a rule, it is effective whenever a suboptimal solution can be found relatively quickly
using a weighted heuristic, and finding a provably optimal solution takes much longer.
That is, it is effective whenever weighted heuristic search is effective. If the weight is
chosen appropriately, we have shown that this approach can create a search algorithm
with attractive anytime properties without significantly delaying convergence to a provably
optimal solution. We conclude that anytime heuristic search provides an attractive approach
to challenging search problems, especially when the time available to find a solution is
limited or uncertain.
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