
1. Pontryagin Classes

Before we start defining Pontryagin classes, we need a few more lemmas concerning Chern
classes.

Definition 1.1. The complexification of a real vector bundle V is the complex vector
bundle V ⊗R C.

This bundle has a complex structure J and it sends the real subbundle V ⊂ V ⊗RC to JV .
We have that V ∩ JV is the zero section and V + JV = V ⊗R C. Hence we have a canonical
isomorphism V ⊕ JV ∼= V . Also the map J |V : V −→ JV is a bundle isomorphism, hence
we have a canonical isomorphism

Φ : V ⊕ V −→ V ⊗R C, (x, y) −→ x+ Jy.

In particular the complex structure on V ⊕ V sends (x, y) to (−y, x).

Definition 1.2. If π : E −→ B is a complex vector bundle with complex structure J .
The conjugate π : E −→ B of E is the complex vector bundle (E,−J). Equivalently if
Φij : Ui ∩ Uj −→ GL(n,C) are the transition data, where GL(n,C) acts in the usual way
on Cn then the its conjugate has exactly the same transition data Φij but GL(n,C) acts as
follows:

GL(n,C)× Cn −→ Cn, (A, z) −→ A(z).

Lemma 1.3. If V is a real vector bundle then V ⊗RC is canonically isomorphic as a complex
vector bundle to its conjugate.

Proof. Under the canonical ismorphism V ⊕ V −→ V ⊗R C, our isomorphism sends (x, y) ∈
V ⊕ V to (x,−y). �

Lemma 1.4. If π : E −→ B is a complex vector bundle, we have that ck(E) = (−1)kck(E).

Proof. We will first prove this for γ1∞ over CP∞. Define

ι : CP∞ −→ CP∞, [z] −→ [z].

This is a homeomorphism and ι∗γ1∞ is isomorphic to γ1∞ as a complex vector bundle. Hence

ck(γ1∞) = ι∗(ck(γ1∞)). Now ι|CP1 sends CP1 to itself. It is the reflection map and hence

orientation reversing. Therefore ι∗u = −u. Hence c1(γ1∞) = −c1(γ1∞) = −u.
We will now prove our theorem for the canonical bundle γn∞ of Grn(C∞). Let hn :

(CP∞)n −→ Grn(C∞) be the classifying map of ⊕n
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is the ith projection map. Since h∗n : H∗(Grn(C∞)) −→ H∗((CP∞)n) is injective and since
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it is sufficient for us to prove our lemma for ⊕n
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by the Whitney product theorem. Therefore
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Finally we prove our lemma in general. Let f : B −→ Grk(C∞) be the classifying map for
E. Then E ∼= f∗(γn∞)

ck(E) = f∗(ck(γn∞)) = f∗((−1)kck(γn∞) = (−1)kck(E).
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Corollary 1.5. 2ck(V ⊗R C) = 0 for all odd k.

Proof. Since V ⊗RC is isomorphic as a complex vector bundle to V ⊗R C, we get that ck(V ⊗R
C) = ck(V ⊗R C) = −ck(V ⊗R C). �

Therefore ignoring these odd Chern classes, we have the following definition:

Definition 1.6. Let V −→ B be real vector bundle then the ith Pontryagin class is

pi(V ) ≡ c2i(V ⊗R C) ∈ H4i(B).

The total Pontryagin class of V is the class p(V ) ≡ p0(V ) + p1(V ) + · · · .
If X is a complex manifold then we define pi(X) ≡ pi(TX).

Lemma 1.7. If f : B′ −→ B is a continuous map and π : V −→ B is a real vector bundle
then f∗(pi(V )) = pi(f

∗(V )).

Proof. This follows immediately from the naturality property of Chern classes. �

Theorem 1.8. Let V, V ′ −→ B be two vector bundles over the same base then p(V ⊕ V ′) is
equal to p(V )p(V ′) mod 2. In other words, 2(p(V ⊕ V ′)− p(V )p(V ′)) = 0.

Proof. Since 2ck(V ⊗R C) = 2ck(V ′ ⊗R C) = 0 for all odd k,

2(p(V ⊕ V ′)− p(V )p(V ′)) = 2(c(V ⊗R C⊕ V ′ ⊗R C)− c(V ⊗R C)c(V ′ ⊗R C)) = 0

by the Whitney sum formula. �

Lemma 1.9. (Exercise:) Let π : E −→ B be a complex vector bundle and let E(R) be its
underlying real vector bundle. Then E(R)⊗R C is isomorphic as a complex vector bundle to
E ⊕ E.

Proposition 1.10. For any complex n bundle π : E −→ B, the Chern classes of E determine
the Pontryagin classes of E by the following formula:

1− p1(E) + p2(E)− · · ·+ (−1)npn(E) =

(1− c1(E) + c2(E)− · · ·+ (−1)ncn(E))(1 + c1(E) + · · ·+ cn(E).

Hence pk(E) is equal to:

ck(E)2 − 2ck−1(E)ck+1(E) + · · ·+ 2(−1)j−kck−j(E)ck+j(E) + · · ·+

2(−1)kc2k−1(E)c1(E) + 2(−1)k+1c2k(E).

Proof. Since E(R) ⊗R C is isomorphic as a complex vector bundle to E ⊕ E, our theorem
follow from the Whitney sum formula and the fact that ck(E) = (−1)kck(E). �

Let us compute the Pontryagin classes of CPn. We will use the above proposition to do
this. Before we do this we need to compute the Chern classes of CPn first using the following
Lemma.

Lemma 1.11. We have that c(TCPn) = (1− u)n+1 where u ∈ H2(CPn) is Poincaré-dual to
[CP1] ∈ H2(CPn).

Proof. Let ω ⊂ CPn×Cn+1 be the orthogonal complement of γ1n. Claim: (Exercise) TCPn ∼=
HomC(γ1n, ω) (using the same reasoning as with RPn).

Let C be the trivial C bundle CPn × C. Since C ∼= HomC(γ1n, γ
1
n). Then

TCPn ⊕ C ∼= HomC(γ1n, ω ⊕ γ1n) = HomC(γ1n,⊕n
j=1C) ∼= ((γ1n)∗)n.
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Since (γ1n)∗|CP1 = OCP1(−1), we get that c1((γ
1
1)∗) = −c1(γ11) and so c1((γ

1
∞)∗) = −c1(γ1∞).

Hence c(TCPn) = (1− c1(γ1∞))n+1 = (1− u)n+1. �

Hence by the above lemma and the above proposition, we have:

1− p1(CPn) + p2(CPn)− · · · = c(TCPn)⊕ c(TCPn) = (1 + u)n+1(1− u)n+1 = (1− u2)n+1.

Therefore

pk(CPn) =

(
n+ 1

k

)
u2k.

E.g.
p(CP5) = 1 + 6u2 + 15u4.

Lemma 1.12. Let π : V −→ B be an oriented rank n vector bundle. Then the real 2n-plane
bundle (V ⊗R C)R (I.e the real structure underlying V ⊗R C) is isomorphic to V ⊕V and the
natural orientation on (V ⊗R C)R coming from the complex structure gets sent to natural
sum orientation on V ⊕ V if and only if n(n− 1)/2 is even.

Proof. Let J be the natural complex structure on V ⊕RC. If v1, · · · , vn is an oriented basis for
a fiber of V then v1, Jv1, v2, Jv2, · · · , vn, Jvn is an oriented real basis for the corresponding
fiber of (E ⊗R C)R and

v1 ⊕ 0, v2 ⊕ 0, · · · , vn ⊕ 0, 0⊕ v1, · · · , 0⊕ vn
is an oriented basis for the corresponding fiber of V ⊕ V . The orientations of these bases
agree if and only if n(n− 1)/2 is even. �

We have the following immediate corollary:

Corollary 1.13. If V is an oriented rank 2n vector bundle. Then pn(V ) is equal to the
square of the Euler class e(V ).

Let G̃rn(R∞) be the oriented Grassmannian. I.e. the space parameterizing oriented n-
planes inside R∞. Let γ̃n∞ be the corresponding canonical oriented bundle over this Grass-
mannian. We have the following theorem which we won’t prove (see Theorem 15.9 in Milnor
and Stasheff’s Characteristic classes book.)

Theorem 1.14. If Λ is an integral domain containing 1
2 , then H∗(G̃r2k+1(R∞)) over Λ is

generated by the Pontryagin classes

p1(γ̃
2k+1
∞ ), · · · pk(γ̃2k+1

∞ )

and H∗(G̃r2k(R∞)) is generated by

p1(γ̃2k∞ ), · · · pk−1(γ̃2k∞ ), e(γ̃2m∞ ).


