1. Pontryagin Classes

Before we start defining Pontryagin classes, we need a few more lemmas concerning Chern classes.

Definition 1.1. The complexification of a real vector bundle V is the complex vector bundle $V \otimes_{\mathbb{R}} \mathbb{C}$.

This bundle has a complex structure J and it sends the real subbundle $V \subset V \otimes_{\mathbb{R}} \mathbb{C}$ to $J V$. We have that $V \cap J V$ is the zero section and $V+J V=V \otimes_{\mathbb{R}} \mathbb{C}$. Hence we have a canonical isomorphism $V \oplus J V \cong V$. Also the map $\left.J\right|_{V}: V \longrightarrow J V$ is a bundle isomorphism, hence we have a canonical isomorphism

$$
\Phi: V \oplus V \longrightarrow V \otimes_{\mathbb{R}} \mathbb{C}, \quad(x, y) \longrightarrow x+J y
$$

In particular the complex structure on $V \oplus V$ sends (x, y) to $(-y, x)$.
Definition 1.2. If $\pi: E \longrightarrow B$ is a complex vector bundle with complex structure J. The conjugate $\bar{\pi}: \bar{E} \longrightarrow B$ of E is the complex vector bundle $(E,-J)$. Equivalently if $\Phi_{i j}: U_{i} \cap U_{j} \longrightarrow G L(n, \mathbb{C})$ are the transition data, where $G L(n, \mathbb{C})$ acts in the usual way on \mathbb{C}^{n} then the its conjugate has exactly the same transition data $\Phi_{i j}$ but $G L(n, \mathbb{C})$ acts as follows:

$$
G L(n, \mathbb{C}) \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}, \quad(A, z) \longrightarrow \overline{A(\bar{z})}
$$

Lemma 1.3. If V is a real vector bundle then $V \otimes_{\mathbb{R}} \mathbb{C}$ is canonically isomorphic as a complex vector bundle to its conjugate.

Proof. Under the canonical ismorphism $V \oplus V \longrightarrow V \otimes_{\mathbb{R}} \mathbb{C}$, our isomorphism sends $(x, y) \in$ $V \oplus V$ to $(x,-y)$.
Lemma 1.4. If $\pi: E \longrightarrow B$ is a complex vector bundle, we have that $c_{k}(\bar{E})=(-1)^{k} c_{k}(E)$. Proof. We will first prove this for γ_{∞}^{1} over $\mathbb{C P}^{\infty}$. Define

$$
\iota: \mathbb{C P}^{\infty} \longrightarrow \mathbb{C P}^{\infty}, \quad[z] \longrightarrow[\bar{z}]
$$

This is a homeomorphism and $\iota^{*} \gamma_{\infty}^{1}$ is isomorphic to $\overline{\gamma_{\infty}^{1}}$ as a complex vector bundle. Hence $c_{k}\left(\overline{\gamma_{\infty}^{1}}\right)=\iota^{*}\left(c_{k}\left(\gamma_{\infty}^{1}\right)\right)$. Now $\left.\iota\right|_{\mathbb{P P}^{1}}$ sends $\mathbb{C P}^{1}$ to itself. It is the reflection map and hence orientation reversing. Therefore $\iota^{*} u=-u$. Hence $c_{1}\left(\overline{\gamma_{\infty}^{1}}\right)=-c_{1}\left(\gamma_{\infty}^{1}\right)=-u$.

We will now prove our theorem for the canonical bundle γ_{∞}^{n} of $G r_{n}\left(\mathbb{C}^{\infty}\right)$. Let h_{n} : $\left(\mathbb{C P} \mathbb{P}^{\infty}\right)^{n} \longrightarrow G r_{n}\left(\mathbb{C}^{\infty}\right)$ be the classifying map of $\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}$ where $p_{i}:(\mathbb{C P})^{\infty} \longrightarrow \mathbb{C P}^{\infty}$ is the i th projection map. Since $h_{n}^{*}: H^{*}\left(G r_{n}\left(\mathbb{C}^{\infty}\right)\right) \longrightarrow H^{*}\left(\left(\mathbb{C} \mathbb{P}^{\infty}\right)^{n}\right)$ is injective and since

$$
h_{n}^{*}\left(\overline{\gamma_{\infty}^{n}}\right)=\overline{\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}}=\mathbb{Z}\left[u_{1}, \cdots, u_{n}\right]
$$

it is sufficient for us to prove our lemma for $\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}$. Now

$$
c_{k}\left(\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}\right) \sum_{I \subset\{1, \cdots, n\},|I|=k} \cup_{j \in I} c_{1}\left(p_{i}^{*} \gamma_{\infty}^{1}\right)=\sum_{I \subset\{1, \cdots, n,|I|=k} \prod_{j \in I} u_{j}
$$

by the Whitney product theorem. Therefore

$$
c_{k}\left(\overline{\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}}\right)=\sum_{I \subset\{1, \cdots, n,|I|=k} \prod_{j \in I}\left(-u_{j}\right)=(-1)^{k} c_{k}\left(\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}\right)
$$

Finally we prove our lemma in general. Let $f: B \longrightarrow G r_{k}\left(\mathbb{C}^{\infty}\right)$ be the classifying map for E. Then $\bar{E} \cong f^{*}\left(\overline{\gamma_{\infty}^{n}}\right)$

$$
c_{k}(\bar{E})=f^{*}\left(c_{k}\left(\overline{\gamma_{\infty}^{n}}\right)\right)=f^{*}\left((-1)^{k} c_{k}\left(\gamma_{\infty}^{n}\right)=(-1)^{k} c_{k}(E)\right.
$$

Corollary 1.5. $2 c_{k}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)=0$ for all odd k.
Proof. Since $V \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic as a complex vector bundle to $\bar{V} \otimes_{\mathbb{R}} \mathbb{C}$, we get that $c_{k}\left(V \otimes_{\mathbb{R}}\right.$ $\mathbb{C})=c_{k}\left(\overline{V \otimes_{\mathbb{R}} \mathbb{C}}\right)=-c_{k}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)$.

Therefore ignoring these odd Chern classes, we have the following definition:
Definition 1.6. Let $V \longrightarrow B$ be real vector bundle then the i th Pontryagin class is

$$
p_{i}(V) \equiv c_{2 i}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right) \in H^{4 i}(B)
$$

The total Pontryagin class of V is the class $p(V) \equiv p_{0}(V)+p_{1}(V)+\cdots$.
If X is a complex manifold then we define $p_{i}(X) \equiv p_{i}(T X)$.
Lemma 1.7. If $f: B^{\prime} \longrightarrow B$ is a continuous map and $\pi: V \longrightarrow B$ is a real vector bundle then $f^{*}\left(p_{i}(V)\right)=p_{i}\left(f^{*}(V)\right)$.
Proof. This follows immediately from the naturality property of Chern classes.
Theorem 1.8. Let $V, V^{\prime} \longrightarrow B$ be two vector bundles over the same base then $p\left(V \oplus V^{\prime}\right)$ is equal to $p(V) p\left(V^{\prime}\right) \bmod 2$. In other words, $2\left(p\left(V \oplus V^{\prime}\right)-p(V) p\left(V^{\prime}\right)\right)=0$.

Proof. Since $2 c_{k}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)=2 c_{k}\left(V^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)=0$ for all odd k,

$$
2\left(p\left(V \oplus V^{\prime}\right)-p(V) p\left(V^{\prime}\right)\right)=2\left(c\left(V \otimes_{\mathbb{R}} \mathbb{C} \oplus V^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)-c\left(V \otimes_{\mathbb{R}} \mathbb{C}\right) c\left(V^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)\right)=0
$$

by the Whitney sum formula.
Lemma 1.9. (Exercise:) Let $\pi: E \longrightarrow B$ be a complex vector bundle and let $E(\mathbb{R})$ be its underlying real vector bundle. Then $E(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic as a complex vector bundle to $E \oplus \bar{E}$.

Proposition 1.10. For any complex n bundle $\pi: E \longrightarrow B$, the Chern classes of E determine the Pontryagin classes of E by the following formula:

$$
\begin{gathered}
1-p_{1}(E)+p_{2}(E)-\cdots+(-1)^{n} p_{n}(E)= \\
\left(1-c_{1}(E)+c_{2}(E)-\cdots+(-1)^{n} c_{n}(E)\right)\left(1+c_{1}(E)+\cdots+c_{n}(E)\right.
\end{gathered}
$$

Hence $p_{k}(E)$ is equal to:

$$
\begin{gathered}
c_{k}(E)^{2}-2 c_{k-1}(E) c_{k+1}(E)+\cdots+2(-1)^{j-k} c_{k-j}(E) c_{k+j}(E)+\cdots+ \\
2(-1)^{k} c_{2 k-1}(E) c_{1}(E)+2(-1)^{k+1} c_{2 k}(E) .
\end{gathered}
$$

Proof. Since $E(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic as a complex vector bundle to $E \oplus \bar{E}$, our theorem follow from the Whitney sum formula and the fact that $c_{k}(\bar{E})=(-1)^{k} c_{k}(E)$.

Let us compute the Pontryagin classes of $\mathbb{C P}^{n}$. We will use the above proposition to do this. Before we do this we need to compute the Chern classes of $\mathbb{C P}^{n}$ first using the following Lemma.

Lemma 1.11. We have that $c\left(T \mathbb{C P}^{n}\right)=(1-u)^{n+1}$ where $u \in H^{2}\left(\mathbb{C P}^{n}\right)$ is Poincaré-dual to $\left[\mathbb{C P}^{1}\right] \in H_{2}\left(\mathbb{C P}^{n}\right)$.
Proof. Let $\omega \subset \mathbb{C P}^{n} \times \mathbb{C}^{n+1}$ be the orthogonal complement of γ_{n}^{1}. Claim: (Exercise) $T \mathbb{C P}^{n} \cong$ $\operatorname{Hom}_{\mathbb{C}}\left(\gamma_{n}^{1}, \omega\right)$ (using the same reasoning as with $\left.\mathbb{R} \mathbb{P}^{n}\right)$.

Let \mathbb{C} be the trivial \mathbb{C} bundle $\mathbb{C} \mathbb{P}^{n} \times \mathbb{C}$. Since $\mathbb{\mathbb { C }} \cong \operatorname{Hom}_{\mathbb{C}}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$. Then

$$
T \mathbb{C} \mathbb{P}^{n} \oplus \mathbb{C} \cong \operatorname{Hom}_{\mathbb{C}}\left(\gamma_{n}^{1}, \omega \oplus \gamma_{n}^{1}\right)=\operatorname{Hom}_{\mathbb{C}}\left(\gamma_{n}^{1}, \oplus_{j=1}^{n} \mathbb{C}\right) \cong\left(\left(\gamma_{n}^{1}\right)^{*}\right)^{n} .
$$

Since $\left.\left(\gamma_{n}^{1}\right)^{*}\right|_{\mathbb{C P}^{1}}=\mathcal{O}_{\mathbb{C P}^{1}}(-1)$, we get that $c_{1}\left(\left(\gamma_{1}^{1}\right)^{*}\right)=-c_{1}\left(\gamma_{1}^{1}\right)$ and so $c_{1}\left(\left(\gamma_{\infty}^{1}\right)^{*}\right)=-c_{1}\left(\gamma_{\infty}^{1}\right)$.
Hence $c\left(T \mathbb{C P}^{n}\right)=\left(1-c_{1}\left(\gamma_{\infty}^{1}\right)\right)^{n+1}=(1-u)^{n+1}$.
Hence by the above lemma and the above proposition, we have:

$$
1-p_{1}\left(\mathbb{C P}^{n}\right)+p_{2}\left(\mathbb{C P}^{n}\right)-\cdots=c\left(\overline{T \mathbb{C P}^{n}}\right) \oplus c\left(T \mathbb{C P}^{n}\right)=(1+u)^{n+1}(1-u)^{n+1}=\left(1-u^{2}\right)^{n+1}
$$

Therefore

$$
p_{k}\left(\mathbb{C P}^{n}\right)=\binom{n+1}{k} u^{2 k}
$$

E.g.

$$
p\left(\mathbb{C P}^{5}\right)=1+6 u^{2}+15 u^{4}
$$

Lemma 1.12. Let $\pi: V \longrightarrow B$ be an oriented rank n vector bundle. Then the real $2 n$-plane bundle $\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)_{\mathbb{R}}$ (I.e the real structure underlying $\left.V \otimes_{\mathbb{R}} \mathbb{C}\right)$ is isomorphic to $V \oplus V$ and the natural orientation on $\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)_{\mathbb{R}}$ coming from the complex structure gets sent to natural sum orientation on $V \oplus V$ if and only if $n(n-1) / 2$ is even.

Proof. Let J be the natural complex structure on $V \oplus_{\mathbb{R}} \mathbb{C}$. If v_{1}, \cdots, v_{n} is an oriented basis for a fiber of V then $v_{1}, J v_{1}, v_{2}, J v_{2}, \cdots, v_{n}, J v_{n}$ is an oriented real basis for the corresponding fiber of $\left(E \otimes_{\mathbb{R}} \mathbb{C}\right)_{\mathbb{R}}$ and

$$
v_{1} \oplus 0, v_{2} \oplus 0, \cdots, v_{n} \oplus 0,0 \oplus v_{1}, \cdots, 0 \oplus v_{n}
$$

is an oriented basis for the corresponding fiber of $V \oplus V$. The orientations of these bases agree if and only if $n(n-1) / 2$ is even.

We have the following immediate corollary:
Corollary 1.13. If V is an oriented rank $2 n$ vector bundle. Then $p_{n}(V)$ is equal to the square of the Euler class $e(V)$.

Let $\widetilde{G r}_{n}\left(\mathbb{R}^{\infty}\right)$ be the oriented Grassmannian. I.e. the space parameterizing oriented n planes inside \mathbb{R}^{∞}. Let $\widetilde{\gamma}_{\infty}^{n}$ be the corresponding canonical oriented bundle over this Grassmannian. We have the following theorem which we won't prove (see Theorem 15.9 in Milnor and Stasheff's Characteristic classes book.)
Theorem 1.14. If Λ is an integral domain containing $\frac{1}{2}$, then $H^{*}\left(\widetilde{G r} 2 k+1\left(\mathbb{R}^{\infty}\right)\right)$ over Λ is generated by the Pontryagin classes

$$
p_{1}\left(\widetilde{\gamma_{\infty}^{2 k+1}}\right), \cdots p_{k}\left(\widetilde{\gamma_{\infty}^{2 k+1}}\right)
$$

and $H^{*}\left(\widetilde{G r}_{2 k}\left(\mathbb{R}^{\infty}\right)\right)$ is generated by

$$
p_{1}\left(\widetilde{\gamma_{\infty}^{2 k}}\right), \cdots p_{k-1}\left(\widetilde{\gamma_{\infty}^{2 k}}\right), e\left(\widetilde{\gamma_{\infty}^{2 m}}\right)
$$

