
1

Preface

 By Professor Brian Warboys, University of Manchester

It is now some 20 years since the foundations of the VME architecture were laid. The

original objectives were to produce an architecture which would be flexible enough to allow

for the many changes that were inevitable in the market, in the enabling technologies and in

the end-user demands for IT systems. At the same time it was imperative that the

architecture should be constraining enough to control the very long development process

that long life implies.

The result was essentially to define a simple but powerful approach which has basically

remained unchanged during its long life. This is not a tribute to the remarkable foresight of

the many people who contributed to that design but rather confirmation of the long known

but often forgotten maxim that the best solution to mastering complexity is by the

formulation of simple rules.

The basic rules, which are enshrined in the architecture, have not had to be reformulated but

merely extended in order to produce an architecture which meets the modern demands of

Open Client-server systems. The essential architectural simplicity which guided the

development of a complex Operating System throughout the 70's and 80's is as applicable in

the 90's. Moreover this approach has been thoroughly tested over the last twenty years and

there should be no doubt in anybody's mind about the capability of the OpenVME

architecture to manage the complex design issues which confront modern Client-server

systems.

A splendid side effect of this text is that, for the first time, it enumerates, in a readily

digestible form, the thinking behind the VME architecture. This has been long overdue and

has been for a very long time an unsatisfied objective of mine. I should like to congratulate

the author on relieving me of this burden. His text is far superior to any that I would have

produced and I am sure that readers will fully appreciate his efforts.

2

About the Author

Nic Holt is a member of the Systems Architecture group of ICL Corporate

Systems and is responsible for the technical strategy for OpenVME. He joined

ICL in 1972 having gained an honours degree in mathematics at Cambridge. His

subsequent experience with ICL has encompassed system and software design,

distributed processing architectures and formal design methodologies. In 1993 he

became an ICL Distinguished Engineer.

He has worked with several external organisations on collaborative research

projects and is a visiting Professor at Glasgow University. He is a Member of the

BCS and on the editorial panel for the BCS Practitioner Series.

Acknowledgements

Very many people have contributed to the continued evolution of VME since its

inception. This text is founded upon their work.

Particular thanks are due to Brian Warboys, Roger Poole, Eileen Vaughan, Paul

Coates, members of Systems Architecture and OPENframework, and other

colleagues and friends for their help and encouragement.

Product Information

Where information about specific products is given in this document, this is

intended solely to illustrate the technical principles described in the architecture,

and not to assist readers in evaluating or using the products concerned. Products

undergo continuous development and published details can quickly become out

of date. No liability can be accepted for error or omission. For definitive

information, the reader should consult the supplier of the product in question.

Trademarks

UNIX is a Registered Trademark licensed exclusively to the X/Open Company Ltd.

X/Open is a Trademark of the X/Open Company Ltd. in the UK and other countries.

INGRES is a Registered Trademark of the Ingres Product Division of ASK Incorporated.

MICROSOFT is a Registered Trademark of Microsoft Corporation.

ORACLE is a Trademark of ORACLE Corporation, Redwood, California.

The following are Trademarks of International Computers Limited:

 CAFS, MACROLAN, Quickbuild, Series 39, OPENframework, OSLAN, OSMC,

TeamCARE, TeamWARE, Teleservice, Visionmaster, VME

Contents

3

Preface 1

About the Author 2

Acknowledgements 2

Product Information 2

Trademarks 2

Chapter 1 Aims of this document 9

Document scope 9

Purpose of the Architecture 9

Readers 9

Document Structure 10

Chapter 2 Aims of the Architecture 11

Overall aim 11

Major Themes 11

Principles 12

Openness 12

Conformance to Standards 12

Qualities 12

Perspectives 13

Chapter 3 The OpenVME System Architecture 15

Introduction 15

Application Environments 16

Transaction Management 16

Information Management 16

Interworking Services 16

Networking Services 17

Application Development 17

User Access & User Interface 17

Systems Management 18

The Series 39 Hardware Platform 18

Chapter 4 The Fundamental Architecture of OpenVME 19

Introduction 19

Summary 19

The Declarative Architecture: VME Objects 22

Introduction to VME Objects 22

The Catalogue 22

Object selection & currencies 23

Naming and Binding 24

Virtual Resources 25

Block-structured Resource Allocation & Control 26

Object Privacy & Security 27

The Containment Architecture: Virtual Machines 28

Introduction 28

The Virtual Memory Model 28

The Process Model 31

Protection & Privilege 33

The Imperative Architecture: Procedures & Data 35

Procedures and Procedure Linkage 35

4

Procedure Calls & Returns 36

Object Modules and Loading 39

Inter-Process Communication & Synchronisation 43

Events & Interrupts 43

VM & Process Scheduling 47

Shared Memory, Semaphores and Events 47

Timer Facilities 49

Input-Output 50

Basic Concepts 50

Chapter 5 The Structure of OpenVME 53

Introduction 53

Principles of OpenVME Structuring 53

The Virtual Machine Structure 53

The Layered Structure 53

The Subsystem Structure 55

The Nodal Structure 56

The OpenVME Kernel 57

Memory Management 57

Virtual Machine and Process Management 58

Timer Management 60

Hardware Resource Management 60

Miscellaneous Kernel Subsystems 62

The OpenVME Director 63

Physical File Management 64

Catalogue and Security 65

Resource Scheduling and Management 66

Hardware Management 67

Module Loading 68

Logical File management 68

Task, Service & Job management 70

Operator Communications and Journals 72

Shared Memory & Message Passing 73

Transaction Management 75

Communications support 76

System Loading, Initialisation & Checkpointing 76

Director Meters & Statistics 77

Director Error Management 77

Above Director Software 78

User Code Guardian 78

Record Access 78

File Management Utilities 80

System & Job Control 80

Work Management & Scheduling 84

Language Support 87

Protocol Handling 88

Out-of-process Subsystems 89

Introduction 89

Schedulers 90

5

Work Management Tasks 90

Spoolers & Copiers 91

System Management Tasks 91

Miscellaneous System Tasks 92

Sponsors & Communications Protocol Handlers 92

Commands & Utilities 93

Chapter 6 Application Environments 95

Introduction 95

Basic Concepts 95

A Structured View of Application Environments 96

OpenVME Work Environments 97

OpenVME Application Servers 99

Applications, Application Services & Application Servers 101

Establishing Application Environments 101

Open Application Environments 102

The X/Open Common Application Environment: VME-X 102

The VME-X Architecture 103

The X/Open TP Application Environment 109

Chapter 7 Transaction Management 111

Introduction 111

Transactions 111

Distributed Transactions 112

Open Transaction Management 112

The X/Open Transaction Processing Model 112

Distributed Transaction Concepts 113

OpenVME Transaction Management Support 115

Introduction 115

Transaction Management 115

Distributed Application Support 116

The OpenVME TP Management System (TPMSX) 118

Introduction 118

The Structure of a TPMSX service 118

The Distributed Transaction Processing System (DTS) 122

Co-ordinated & Distributed Application Manager (CDAM) 122

Introduction 122

CDAM Concepts 122

Chapter 8 Information Management 125

Introduction 125

Information Models 125

Codasyl Database - IDMSX 127

Relational Databases 131

Oracle RDBMS 132

INGRES Database 134

INFORMIX Database 137

Object Database 137

Use of the CAFS Information Search Processor 138

Flat Files 139

6

Interchange Between Information Management Services 142

Database Definition Interchange 142

Bulk Data Interchange 142

Accessing Multiple Information Management Services 142

Client-server Access to Information Management Services 143

Distributed Data Management 143

Remote Data Management 144

Chapter 9 Networking Services 147

Introduction 147

The Open Systems Interconnection Architecture 148

The OSI Seven Layer Model 148

Overview of the OpenVME Communications Architecture 150

Introduction 150

OpenVME Core Networking services 152

Introduction 152

Data Transmission 152

Data Interchange 152

Supporting Services 153

Gateways 154

Terminal Access 154

The OpenVME Kernel Communications Architecture 155

Director Communications Architecture 159

Network Connection Management (NETCON) 159

Above Director Communications Architecture 162

Application Layer Architecture 162

Application Layer Software Structure 163

Application Layer Services and APIs 165

Out of Process Communications Architecture 166

Out of Process Communications Services 167

Chapter 10 Distributed Application Services 169

Introduction 169

Client-server Architectures 169

Distributed Computing Infrastructure 171

Client-server Interactions 172

OpenVME Distributed Application Services 173

Run-time Services 173

Integration Tools 177

Distributed Application Development 178

Distributed System Management 179

Chapter 11 Application Development 181

Introduction 181

The Data Dictionary (DDS) 181

Application Development Tools 182

QuickBuild 182

Program Master & Programmer's WorkBench 183

Application Development Tools - General 184

Porting of Open Applications 184

7

Chapter 12 User Access & User Interface 187

Introduction 187

Overview 187

Reference Model 188

Client-server Architecture Models 190

Chapter 13 System Management 193

Introduction 193

The System Management Process Model 193

The System Management Functional Model 194

Operational Control 196

Operations 196

Automated System Operation 197

Problem 197

Capacity 198

Introduction & Deployment 199

Generation 199

Distribution 199

Supporting Infrastructure 200

Presentation 200

Management Infrastructure 200

Relationship with other management domains 200

Network Management 200

Workstation Management 201

Chapter 14 Platforms 203

The Series 39 Hardware Architecture 203

Introduction 203

Series 39 Hardware System Components 203

Series 39 Nodal Systems 205

Motivations 205

The CAFS Information Search Processor 208

Chapter 15 Support for Corporate Qualities 209

Performance 209

Introduction 209

OpenVME Performance 210

OpenVME Client-server System Performance 211

Security 212

Summary 212

Introduction 213

Security in OpenVME 213

Security in the Corporate Client-Server System 214

Availability 216

Usability 217

Potential for Change 218

Introduction 218

Transparency Mechanisms 218

Appendix A: Standards 221

Introduction 221

8

Transaction Management 221

Information Management 221

Relational Database 221

IDMSX 222

Application Development 222

Dictionary and CASE 222

4GLs 223

3GLs 223

Distributed Application Services 223

User Interface 224

Networking Services 224

Systems Management 224

Security 225

Appendix B: Glossary of Terms 227

Appendix C: Catalogue Object Types 233

Catalogue Object types 233

Appendix D: List of OpenVME Subsystems 235

Appendix E: Bibliography 239

OpenVME Customer Publications 239

OPENframework Publications 242

X/Open Publications 242

Additional Sources 245

Index 247

9

Chapter 1
Aims of this document

Document scope

The scope of this document is the architecture of ICL's OpenVME system. It

describes the architecture in detail; the benefits that OpenVME brings to

corporate systems, Client-server and distributed systems; and how OpenVME is

able evolve to match the trends in open corporate systems. The architecture is a

specialisation of the OPENframework systems architecture.

The OpenVME System combines the technical and architectural strengths

essential for Corporate Systems with the Open Systems interfaces and

interworking capabilities required to support the current and future standards for

portable applications and distributed computing. OpenVME thus offers excellent

support for open applications within a Client-server or co-operative (distributed)

processing environment, especially where considerations such as scale,

manageability, security and reliability are critical.

Purpose of the Architecture

This architecture provides a framework for understanding the fundamental design

principles, the key attributes, the overall structure and the relationships between

the major components of OpenVME. The architecture can thus be used to guide

the development and exploitation of the features of OpenVME which enable it to

provide exceptional support for applications and services within a corporate

system.

Readers

This document is intended for everyone who wishes to understand the

architecture of ICL's OpenVME system. The OPENframework perspectives from

which the OpenVME architecture is described are primarily those of the Service

Provider, the Application Developer and, to a lesser extent, the User. Readers are

expected to be technical consultants and technicians.

10

Document Structure

Chapter 2 outlines the aims and principles of the OpenVME architecture and

discusses them in terms of the OPENframework Qualities and

Perspectives.

Chapter 3 describes the OpenVME System Architecture, providing an

overview of OpenVME functionality and the open interfaces and

services offered by each element.

Chapter 4 introduces the fundamental architectural concepts and principles on

which the OpenVME architecture is based.

Chapter 5 identifies the structuring principles of the OpenVME architecture

and uses them to provide a description of the major components of

the core OpenVME system.

Chapters 6-14 describe the architecture of the major functional elements of the

OpenVME system in detail, showing how they build upon and

exploit the features of the fundamental architecture. The chapters

correspond closely to the OPENframework elements.

Chapter 15 analyses the OpenVME architecture in terms of the

OPENframework qualities, concentrating on those with particular

relevance for corporate systems.

Appendices include a glossary, a bibliography, a list of relevant standards and

other OpenVME reference material.

11

Chapter 2
Aims of the Architecture

Form: style and arrangement; structural unity [Chambers English Dictionary]

Architecture: structure; the overall design [Chambers English Dictionary]

Overall aim

The overall aim of the architecture is to describe the technical concepts and

principles upon which the design of OpenVME is based. The OpenVME system

provides an environment within which open applications may be easily

developed or ported, executed and managed, and interwork with other open

applications. Particular emphasis is placed upon the ability to support services on

a corporate scale within Client-server systems. In this context, the term "Client-

server" embraces both hierarchic (workstation/server) and peer-to-peer (co-

operative processing) dimensions of distributed computing.

The architecture provides a framework for analysing and designing Client-server

systems in which OpenVME has a role providing an environment for corporate

server applications, and for identifying the OpenVME strengths and how they can

best be exploited in a particular context. A subsidiary aim is to identify those

features and capabilities of OpenVME which are of differential benefit compared

with alternative environments.

Major Themes

The major themes of the OpenVME architecture are:

� Open Application Environments & Services

� Open Client-server & Distributed Computing

� Support for 'Corporate' qualities and scale

12

Principles

Openness

The architecture is an open architecture:

� The architecture provides for application portability by provision of

Application Programming Interfaces conforming to open standards.

Applications written to such standards can then be readily ported to

OpenVME; equally, this approach enables applications developed for

OpenVME to be readily ported to other open environments.

� The architecture provides for an OpenVME system supporting server

applications within a distributed or Client-server computing environment,

using open interworking standards across heterogeneous platforms.

� The architecture provides application development tool interworking to

open standards. This is particularly crucial for distributed systems whose

component applications may be developed and/or executed in

heterogeneous environments.

Conformance to Standards

The ICL OPENframework architecture is used as a basis for the structure of this

document and OPENframework terminology is used where applicable.

There are many and diverse standards (international, industry, de facto) that the

OpenVME system supports. As a general statement, conformance to relevant

X/Open standards is supported where appropriate; these X/Open standards may

evolve with time (e.g. XPG3, XPG4, etc.). The primary networking and

interworking standards are those defined by ISO as part of the Open Systems

Interconnection architecture, together with the Internet set of protocols. The

OpenVME architecture allows support of all networking standards, by use of

gateways where appropriate.

Qualities

General

OpenVME provides the high levels of integrity, availability, performance,

security, ease of use, management and adaptability which are required for

supporting mission-critical corporate applications and services.

13

Potential for Change

IT technology is continuously evolving at an ever increasing rate. New hardware,

operating systems, applications, services and networking facilities may offer

major opportunities for more effective use of IT provided that they can be readily

incorporated within the system. At the same time, business methods are also

evolving, necessarily adapting to external competition and pressures as well as

increased use and integration of IT into business processes. OpenVME is

therefore designed actively to support the interception of these evolutionary

trends.

There is considerable user investment in existing IT systems and the information

they contain. This is particularly true for large organisations in which the use of

IT has become widespread. OpenVME makes it possible to exploit new IT

capabilities and opportunities without significantly diminishing the value or use

of existing IT assets created by this historical investment.

Perspectives

The Service Providers' Perspective

Numerous business and technology trends and influences have resulted in a

massive and continuing growth in the use of various distributed computing

techniques. OpenVME provides excellent support for the interfaces and

interworking capabilities, and the system management facilities necessary to

support the provision of large-scale services within corporate distributed

computing environments.

The Application Developers' Perspective

The support of open standards greatly simplifies the task of the application

developer and allows the use of standard application development tools. The

OpenVME application development facilities can be used, optionally in

conjunction with standard CASE tools, to generate open applications for a wide

range of heterogeneous, distributed computing environments.

The Users' Perspective

The OpenVME architecture is designed to provide support for large-scale server

applications within a Client-server environment. It is expected that users will

increasingly exploit the usability and functionality provided by personal

workstations. Applications executed on workstations can act as clients for

common services executed on one or more OpenVME systems. The users

thereby gain the benefits of advanced user interfaces and personal applications

whilst their roles within the organisation are supported and enhanced by shared

services and information.

14

15

Chapter 3
The OpenVME System Architecture

Introduction

The functionality of OpenVME is grouped into several major areas:

� Application Environments

� Transaction Management

� Information Management

� Interworking Services

� Networking Services

� Application Development

� User Access

� Systems Management

APIs

OpenVME Platform

Hardware Platform

Comms Filestore Processing

Work Environments

Applications

Networking services

Filesystems

Platform Management

Information Management

Interworking Services

Security Services

Application Development

User Access

Application Services

APIs

Transaction Management

Integrity

Availability

Performance

Concurrency

Usability

Security

Application Libraries Portability

Recovery

Manageability

Security

Resilience

Capacity

Qualities
Functions

System Management

VME Catalogue

OpenProprietary

X/Open CAE

Application Environments

MAC, Batch Open TP
etc.

16

These areas are closely aligned with the elements of the OPENframework

Systems Architecture. This chapter provides an overview of the elements of the

OpenVME System Architecture, identifying the open Application Programming

Interfaces and services provided by each element.

Application Environments

OpenVME provides an environment for the support of multiple concurrent

Application Services. An Application Service is implemented as the co-operative

interaction of one or more applications, each executed in the context of its own

Virtual Machine. Each Virtual Machine can be dynamically configured to

provide a tailored application environment with appropriate underlying services

and Application Programming Interfaces.

The Application Programming Interfaces used to access OpenVME system

services conform to open standards where applicable - notably those defined in

the X/Open Portability Guides (XPG). Interfaces to new services are designed to

intercept emerging standards, providing a simple route to early adoption of open

standards. Use of open application interfaces ensures that software can be readily

ported to run on OpenVME, and also that software developed on the OpenVME

system can be ported to any other platform supporting open application

interfaces.

Transaction Management

Transaction management is a major contributor to the support of reliable Client-

server computing. Distributed transaction management is an integral feature of

OpenVME. This is exploited by TPMSX and the Information Management

services to provide an open application environment for distributed TP

applications.

Information Management

OpenVME supports Relational databases, a high performance Codasyl database

(IDMSX) and various file organisations (including sequential and indexed).

Interworking Services

OpenVME Interworking Services build upon lower level networking Services to

establish a framework for linking separate applications together to form coherent

large-scale systems in distributed, heterogeneous environments. A key aim of the

OpenVME Distributed Application Services is to hide the differences between

underlying interfaces from the application and the application programmer. This

is achieved through a combination of Application Development tools and run-

time services.

17

Networking Services

OpenVME Networking Services provide a comprehensive set of communications

capabilities to support Client-server and co-operative processing. This is based

on a fully integrated OpenVME implementation of the International Standards

Organisation OSI architecture, supplemented with the TCP/IP protocol suite

commonly used on UNIX systems. Full interworking with other open systems is

supported.

OpenVME security features control access to networking services and

comprehensive management of the communications system is provided.

Applications access is via the X/Open Transport Interface (XTI) over both OSI

and TCP/IP networks.

Higher level networking is provided for Terminal Access, File Transfer, Mail

and other services, where proprietary protocols are being replaced by the

corresponding OSI standards - VTP, FTAM, X400; in addition, key UNIX

standards are supported (e.g. NFS, ftp and telnet).

Application Development

OpenVME Application Development is based around the OpenVME Data

Dictionary System (DDS). This is an open central repository for corporate

application information. Open interfaces to the data dictionary are provided so

that it can interwork with leading Upper CASE tools. The advanced ICL

QuickBuild application development system generates fully portable Client-

Server applications. Language support is maintained to conform to prevailing

open standards.

User Access & User Interface

The OpenVME User Interface element is optimised to provide access to

OpenVME from standard PC and intelligent workstations, using industry

standard Human-Computer Interfaces - in particular Windows on PCs. PC

interconnection is supported for industry standard PC LAN systems. Advanced

user interfaces are available to users of these systems through the use of

OpenVME Client-server networking facilities, which allow PC based

applications and user interface handling facilities to be used and integrated with

OpenVME based servers. Facilities are also provided to support the connection

of basic terminals.

18

Systems Management

OpenVME Systems Management combines the comprehensive OpenVME-

specific systems management facilities with the ability to access these facilities

over open systems management interfaces and protocols, allowing an OpenVME

system to be managed as part of a network of open systems. Facilities are

provided to allow both the system and critical services such as TPMSX services

to be remotely managed in a distributed network. OpenVME based distributed

management facilities include centralised operations control and fault

management facilities and the archiving of distributed Unix and PC based

systems.

The Series 39 Hardware Platform

The underlying platform is provided by the OpenVME primitive architecture

supported by Series 39 hardware. Extensive features are incorporated into the

OpenVME Kernel and Series 39 hardware to achieve exceptional levels of

security, availability, resilience and integrity.

The Series 39 Nodal Architecture enables integrated processing nodes to be

combined into multi-node systems in which shareable resources are uniformly

accessible, but unshared resources are handled efficiently within a node, thus

eliminating inefficiencies often associated with more closely coupled multi-

processing architectures.

19

Chapter 4
The Fundamental Architecture of
OpenVME

Introduction

The OpenVME Architecture is founded upon a small number of basic concepts.

These are used to describe the structure and operation of the OpenVME system

at all levels. This chapter introduces those ideas and the relationships between

them, establishing a fundamental set of conceptual building blocks from which a

description of the whole Architecture can be constructed.

Summary

VME is an acronym for Virtual Machine Environment. In the OpenVME

architecture, computation proceeds by operations on, and interactions between

VME Objects. A VME object may correspond to some real resource or may be

entirely conceptual, possibly providing the means of accessing other objects.

Fundamental Concepts of the OpenVME Architecture

VME
Object

Virtual
Resource

Uses Is related to

Describes

Is implemented by

Real-world
Resource

VME
Object

Virtual
Resource

Is implemented by

Uses

Operational Descriptive

A Virtual Resource is a scoped, executable representation of a VME object. It

comprises data and a set of associated procedures implementing the operations of

the resource. A Virtual Machine (VM) is a logical container for a set of Virtual

Resources. The Virtual Machine Environment comprises the totality of Virtual

Resources within a Virtual Machine.

20

Object usage is considered in two phases:

� The declarative phase during which an object is selected and made

available to the VM as a Virtual Resource;

� The imperative phase during which the Virtual Resource is used.

Within each VM, the system provides controlled means to acquire and use the

real resources of the system. At the lowest level these include memory, the

processor and external devices. At higher levels these are represented by Virtual

Resources in such a way that each VM appears to have available to it exclusive

use of the resources it requires even though the real resources may be shared, by

the system, between several VMs. Thus the description "virtual" refers to the

temporary, scoped representation of a VME object or resource within a VM.

The VM provides a dynamic environment in which work is performed by the

execution of a process threading through user and system procedures. A stack is

provided for automatic allocation and de-allocation of workspace and to preserve

links between procedures. Each procedure is executed in a particular context: a

process context, related to the dynamic state of the process; and a static context,

associated with a specific Virtual Resource.

An operational OpenVME system supports many applications or services

implemented as sets of related VMs. The architecture provides communication

and synchronisation features which enable VMs to co-operate efficiently with

one another. The fundamental objects which support these features are shared

memory areas and events both of which may be shared between two or more

VMs.

Most applications have some requirement to communicate with external devices -

whether explicitly (e.g. communicating with another system or outputting to a

terminal) or implicitly (e.g. accessing a data file or loading an application). The

OpenVME Input/Output architecture allows each VM to initiate I/O requests

directly, transferring data between the I/O device and a memory area within the

VM; transfer termination is notified, via an interrupt, to the requesting VM.

21

The Fundamental Concepts of OpenVME - an Illustrated Example

Virtual Memory Catalogue

File Access

Application
Program

Loadable
Object

Record
Access

Disc Driver

User
Interface

File Access

Comms
Driver

Interactive
Workstation

Disc Drives

Application

Application
Environment

Logical

Real

File
ObjectFile

Object

Hardware
Object

Hardware
Object

Loadable
ObjectLoadable

Object

Filestore
ObjectFilestore
Object

File
ObjectFile

Object

22

The Declarative Architecture: VME Objects

Introduction to VME Objects

VME Objects play a key role in the OpenVME architecture. A VME object is an

instance of some class of similar objects with defined attributes and behaviour.

An object may an abstract representation of some real resource, providing a

standard, controlled means of accessing that resource (e.g. a hardware device or

physical memory); alternatively, an object may be entirely conceptual (e.g. a file

description), possibly providing the means of accessing or using other objects.

The VME Catalogue records each object known to an OpenVME system and the

relationships between them.

The Catalogue

Catalogued Objects

The Catalogue is a system database which records the complete set of objects

known to an OpenVME system. Users, data files, services, communications

network structure and hardware devices are all examples of catalogued VME

objects. The information recorded in the Catalogue for each object includes

values for some or all of the attributes defined for all similar objects (e.g. a file's

creation date or a hardware device's address). In addition, the catalogue records

relationships between objects; such relationships include relative naming,

ownership and privacy information .

Installation
Node

Hardware
Unit

User /
Person FilestoreService

Comms
Route

Filegroup Library File

Catalogue Objects

Account

Catalogue Relationships

owns

uses

contains

is a route

e.g. user owns a file or an account

e.g. user may use a service, or a filegroup, with specific access

e.g. filestore contains files, libraries

e.g. SAP is a route to a service or a hardware unit

Event

23

For a data file object, for example, the placement of the file data on physical

storage and its file organisation are recorded, enabling a copy of the relevant file

access code to be loaded and particularised for the file. The Catalogue objects

representing the communications network structure (including routing and

addressing) are used by the OpenVME system to determine the protocol handlers

required to support end-to-end communications (e.g. a virtual circuit, or transport

connection). A file description object is a generic template which, suitably

supplemented with the attributes of a particular file, enables a file object of that

description to be created.

Some catalogue objects represent collections of objects with common attributes

so that the objects in the collection need not be individually recorded in the

Catalogue. For example, a Library object represents a collection of several files

all of which inherit the file attributes associated with the Library in the

Catalogue. This technique is highly efficient and also allows new types of

collection (e.g. alternative filesystems) to be incorporated into the system.

Objects are, in general, identified relative to other objects; this results in a

directed graph whose nodes are objects and whose arcs are the relationships

between them; the graph is rooted at the installation node. Each relationship is

labelled with a selector, an identifier which distinguishes that relationship from

other relationships - e.g. the name of a file relative to a filegroup. Thus any

object can be identified by specifying an initial node and a sequence of selectors

identifying the relationships to be traversed to reach the required object; the

initial node of this sequence may be an element of explicit or implicit context, or

the installation node. Each relationship may have security attributes, constraining

the manner in which one object may be accessed relative to another. Each object

may also possess security attributes. The security attributes associated with

objects and their relationships are the basis of the OpenVME security

architecture.

Object selection & currencies

The sequence of selectors used to specify an object selection is known as a

hierarchic name. Although in many cases such a name uniquely defines a

catalogued object two successive selections with the same hierarchic name may

select different catalogue objects - if, for example, a new version of an object has

been created between selections.

The OpenVME system provides a means of establishing an efficient reference to

a particular object, a process known as selection. Such a reference is known as a

currency and represents not merely the selection of an object but also the context

in which it was selected, including the security attributes associated with that

selection. A currency, for its lifetime, always represents a localised, temporary

reference to the same catalogued object; once established, it may also be used as

a starting point for further object selection.

24

Any currency may be used as the starting point for selection of other objects

reachable, via catalogue relationships, from the object represented by that

currency. In addition, the system maintains named contexts for many object

types; a context is a list of objects which may be used as a starting point for

selection; a null context is used as a starting point when none is otherwise

specified. These mechanisms allow the context of object selection to be refined

so that object selection may be performed efficiently; the first provides the means

of establishing an efficient starting point; the second enables the establishment of

a limited (but changeable) set of alternative starting points as a context.

It is also possible to select, in sequence, all the objects of a given type reachable

from a given starting object without knowing in advance the selector of each

object. This is achieved by selecting along a set of objects, each selection being

relative to (the currency of) its predecessor.

Naming and Binding

Naming

As described above, catalogued objects are named by a hierarchic name, a

sequence of selectors, relative to some starting point. Such a name may not

uniquely identify a particular object for all time. For example, filenames may be

qualified with file generation numbers (fgn) and if none is specified the latest

generation is selected; if a new generation of a file is created between one

selection of a named file and the next, different files are selected.

An important naming domain is that of loadable objects which are aggregates of

code and data used by the VME Loader to construct executable representations

of VME objects within a VM. Each loadable object may contain several named

objects as well as references, by name, to external objects. These names are

resolved in the loading environment of each VM, a dynamic set of libraries

which is searched to locate a loadable object by name.

Binding

A name represents a potential reference to a value. When interpreted in a

particular environment or context, the name may refer to a specific value, which

is said to be bound to the name, or be unbound. The association of a name, in a

particular context, with a specific value is termed a binding.

For example, the resolution, via the loading environment, of an external reference

to a named object creates a binding of the object to the name. Similarly, the

selection of an object and acquiring a currency for it is an example of a binding

of the object to the currency.

Binding may take place, in various forms, within the application source, when the

application is compiled, when execution of the application commences or

25

immediately prior to usage of the resource. In general, earlier binding results in

greater efficiency and later binding in greater flexibility.

VME
Object

Virtual
Resource

named
Is implemented by

VME
Object

Virtual
Resource

Operational Descriptive

run-time
binding reference

Virtual Resources

A Virtual Resource is a scoped, executable representation of a VME object. It

comprises data and a set of associated procedures implementing the operations of

the resource. For each object, the Catalogue contains (or indirectly refers to) the

information required by the OpenVME system to create an executable instance of

the object: a Virtual Resource representing the object. When an object is actively

shared by several users, a Virtual Resource may be created for each usage.

Virtual Resource Creation

Creation of an individual Virtual Resource requires the loading of the executable

code required to perform the operations supported by that resource, constant

data, and a dedicated copy of data which may differ between instances.

Resources specific to an application are generally instantiated in the VM of use;

code is loaded into the VM and links established to supporting resources and

memory is allocated and initialised for the per-instance virtual resource data.

A class of similar system resources is often supported by a subsystem whose code

and constant data is pre-loaded, and which maintains per-instance virtual

resource data in pre-allocated tables.

VME
Object

Virtual
Resource

Per instance

data

VME
Object

Virtual
Resource

Shared
data

Per instance

data

Uses

Is implemented by

Is implemented by

Uses

Copied Resources

Shared Resource

26

Copying and Sharing

When an object is to be used, it is first selected and then a Virtual Resource is

created in the appropriate VM. It is possible for there to be more than one

concurrent usage of the same object, either in the same VM or in different VMs.

A separate Virtual Resource may be created for each usage (copying); in some

cases a single Virtual Resource may be shared between some or all usages

(sharing). Since a Virtual Resource may, in general, make use of other Virtual

Resources there may be several points at which the issue of copying vs. sharing

may arise.

The VM as a Context: the OpenVME In-process Architecture

As already described, object selection, the generation of currencies and the

instantiation of Virtual Resources occurs within a VM context. This approach

minimises interactions between VMs and allows direct bindings between Virtual

Resources to be established solely within the VM context. Thus the set of virtual

and real resources associated with each VM, including shared resources, can be

simply accessed and operated upon within the VM. This fundamental

architectural principle results in the VME in-process architecture.

Block-structured Resource Allocation & Control

The previous section described the selection of particular objects, binding them

into the environment and the creation of the corresponding Virtual Resources

within a VM. A VM will often need to establish a new execution context with

associated bindings and Virtual Resources while some activity is undertaken;

when the activity has completed, this context may no longer be required and a

new context may need to be established for a subsequent activity.

Most Virtual Resources are associated, explicitly or implicitly, with real

resources. In any multi-programming environment there may well be contention

for real resources which can lead to deadlock. The system therefore provides a

resource scheduling mechanism which allows an application to allocate the

resources it requires for some activity as a set.

Clearly, some mechanism is required for destroying bindings and de-allocating

resources when they are no longer required. The model adopted by OpenVME is

of nested blocks (or resource allocation blocks): a block is entered when

previously requested resources are available; further resources may be acquired

during the existence of the block; when the block is ended all resources

associated with that block are de-allocated. Resources associated with enclosing

blocks (i.e. blocks previously entered) are unaffected by entering and ending new

blocks. This model provides a means of temporally scoping the allocation of real

resources and the lifetime of bindings and virtual resources.

The formal association of resources with particular blocks has major advantages.

If execution of an application commences in the context of a new block, all the

27

resources associated with that application can be simply de-allocated by ending

the block. In particular, even if the application fails voluntarily to relinquish

resources it has acquired (e.g. as the result of an error) they can be forcibly

released. The orderly management of system resources is therefore not critically

dependent on co-operative or well-behaved applications.

Virtual
Resource

Initial block with resources New block begun
New resources acquired & used

New block ended
Resources released

Initial block
Virtual

Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

Virtual
Resource

New block

The currencies and Virtual Resources associated with some object types may be

explicitly and individually de-allocated. This is essential for certain multi-

threading applications in which there is never generally a point at which all

resources in the current block can be conveniently de-allocated and thus a block

can never be ended.

Object Privacy & Security

Each object and each relationship between objects may possess security

attributes. At any instant, a VM is associated with a single Workgroup or Person

(a User). Traversal of a relationship between objects may be restricted, by the

security attributes associated with that relationship, to certain users, inclusively

or exclusively, and by type of access or usage (which must be specified during

selection). These attributes may be used as the basis of a static discretionary

access control policy.

When an object is selected, there is a potential flow of information between that

object and the VM which is performing the selection; this may, in turn, lead to

information flows to or from other objects. The security attributes of an object

may include properties such as integrities, security level, caveats and codewords

which are checked for compatibility with the security status of the VM. Making a

selection may cause the security status of the VM to be modified. These dynamic

features are used to prevent the possibility of unauthorised flows of information -

e.g. from a high sensitivity object to a low security object. The static and

dynamic security features may be used as the basis of a mandatory access control

policy.

28

The Containment Architecture: Virtual Machines

Introduction

The Virtual Machine is a secure container for a set of virtual resources. This

section describes the architecture of a Virtual Machine, including the Virtual

Memory and Process models, and shows how these models provide a protected

environment for the execution of processes.

The Virtual Memory Model

The instantiation of a virtual resource within a VM is achieved by loading or

creating, in memory, the areas of code and data which constitute an executable

representation of that resource. In the OpenVME architecture each VM is

provided with a Virtual Memory, an address space into which the areas

representing the virtual resources of the VM are mapped. Each VM has a virtual

address space of 232 bytes. A virtual address has the following structure:

Segment Page Displacement

14 bits 8 bits 10 bits

This address space of a VM is structured into segments. Segment numbers are

divided into two ranges: Public segments (8192 - 16383) and Local segments (0 -

8191). Public segments are common to all VMs whereas local segments are

allocated and used independently in each VM. Various fundamental properties

associated with an area of virtual memory are enforced by the architecture at the

level of the segment containing the area. Each segment is further divided into up

to 256 pages to facilitate memory allocation and management and to reduce

memory fragmentation. A segment may be of fixed or variable length.

Segments are the fundamental units of memory allocation and a logical area is

usually mapped within a single segment. A Super-segment is a set of

contiguously addressed segments all of which, other than the last, are of

maximum size. A logical area whose size is greater than the largest permissible

segment can be mapped, transparently, onto a super-segment.

Public Segments

Public segments are used by the OpenVME system to support system resources.

Since these may be used (either concurrently or sequentially) by several VMs,

instantiating them in Public segments ensures that they are uniformly accessible

in any VM which needs to use them. Public segments thus provide space for the

instantiation of system resources commonly accessible by several (or all) VMs.

29

Local Segments

Local segments are used to support virtual resources particular to a VM. They are

only accessible locally to the VM in which they have been allocated. Local

segments thus provide space for the instantiation of the virtual resources required

by a VM.

Global Segments

Some applications may be implemented by the active co-operation of several

VMs. There are two fundamental models for achieving this co-operation:

message passing and shared memory. Global segments provide shared memory

areas across a set of VMs. A shared memory area may made be accessible as one

(or more) contiguously addressed local segments in each VM sharing the area.

The area is not necessarily addressed by the same local segment numbers in each

VM. Shared memory areas are loadable, catalogued objects and access to them is

controlled by catalogue security attributes. Global segments provide a more

selective and flexible way of sharing memory areas than Public segments.

VM 1 VM 3 VM 4

Local Local Local

VM 2

Local

Public Data (accessible in all VMs)

Shared Global

Local

LocalShared Global

Shared Global

Shared Global

Segment & Page Properties

Various properties are associated with an area of virtual memory on the basis of

the segment(s) in which it is located. Segment properties include the size of the

segment, access keys which control the ability to read, write or execute the

contents of the area, and attributes which define paging policy for the segment.

Any segment or page of virtual memory may be present in physical memory,

absent (e.g. when on secondary storage) or unallocated; this status is indicated in

the appropriate segment or page table entry. Other low level properties of virtual

memory are generally defined at segment level - in particular, Access Permission

Field, containing the Access Keys of the segment for execute, read or write

access to a process executing at a particular access level. This protection

mechanism is described in more detail below.

30

Mapping Virtual to Real Memory

The OpenVME system maps this virtual memory onto physical memory. The

mapping process is known as address translation.

Address translation is logically a three stage process. First the segment number is

used to index an entry in a Segment Table; this points to a Page Table for the

pages in the segment. The page number is used to index an entry in the Page

Table; this defines the address, in physical memory, of the start of the page.

Finally the displacement is concatenated with this page start address to yield a

physical address.

Segment Table Bases Virtual Address

Segment PageP

Segment Table

Local

Public

Global

Displacement

Page Table

Physical Address

Access Keys Page Base Address Displacement

Global

Seg Id

Provision is made for areas to be shared between VMs by using Indirect

Segments which are mapped onto Global Segments. The Segment Table entry for

an indirect segment is marked to indicate that, rather than pointing to a Page

Table, it contains a Global segment number; this is used to index a new Segment

Table entry in a Global Segment Table, pointing to the required Page Table.

The virtual memory particular to a VM is that addressed by local segment

numbers (0 - 8191) and hence via segment and page tables rooted at the Local

Segment Table Base (LSTB). A value of LSTB therefore fully defines a VM's

local virtual memory.

31

The Process Model

The execution of code associated with a set of virtual resources within a VM is

termed a Process; the set itself is termed a Process Image and the state of

execution, defined by values of processor registers, is termed the Process State.

The Process State

The Process State comprises:

� a Local Segment Table Base (LSTB), defining local virtual memory

� a Program Counter (PC), pointing to the current instruction

� a Process Status Register (PSR)

� Stack Pointer registers, defining the current stack frame (LNB, SF)

� Address Base registers, used to address simple operands (XNB, CTB)

� an item Descriptor register, used to address complex operands (DR)

� an Index register, used as an operand address modifier (B)

� a variable length Accumulator, holding computed values (ACC)

� an Interval Timer (IT) and an Instruction Counter (IC)

The Stack

Each process is provided with a Stack, an area of Local virtual memory used for

automatic allocation and de-allocation of temporary working space, for

expression evaluation, and for storing dynamic linkage information. A process

automatically has full read and write access permissions to its current stack. The

diagram below shows the major structural concepts associated with the stack.

The stack is divided into regions termed stack frames; the current stack frame is

defined by the LNB and SF registers. At the start of each stack frame linkage

information points to its predecessor; the remainder of the stack frame is used as

temporary, dynamically allocated workspace for the code with which it is

associated. The usage of stack is described in more detail below.

Old PSR

Old LNB

Older PSR

Older LNB

workspace

Temporary

Stack

Front

Stack

Base

Local

Name

Base

Segment

Lexical

Linkage

Old PC

Older PC

workspace

Temporary

32

Operand Addressing

Operands are normally addressed by specifying an Address Base register

(containing a Virtual Address) and a literal displacement; this is termed direct

addressing. For on-stack items, the LNB and SF registers provide the means of

addressing items in the current stack frame. Addressing of other data items can

be achieved using XNB or CTB, or relative to the current PC.

Indirect Addressing: Descriptors

A more powerful means of addressing data items is via a descriptor in DR or in

memory, possibly indexed by a modifier in B or in memory; this is termed

indirect addressing. A data descriptor is a typed reference to a structured data

item and comprises a virtual address pointing to the start of the item together

with information defining the type and size of the item. Descriptors may be used

to refer to scalar items; vectors of scalar items; byte strings; or other descriptors.

In addition various special descriptors are used to mediate entry to or exit from

procedures etc.

Processes & sub-processes

A VM may have multiple processes each of which has its own stack. No more

than one process may be active in a VM at a given instant. New processes are

created by the system when it is necessary for execution to commence on a new

stack. They may also be created by user software, in which case they are termed

sub-processes. Sub-processes provide a facility similar to threads in other

systems.

Process activation & suspension

When a process is inactive, the Process State is stored by the processor on the top

of the process stack. This creates a special stack frame termed a Process State

Dump. The processor provides an activate mechanism which, given a pointer to a

process state dump, causes the processor to resume execution of the process from

the state indicated in the process state dump.

Old PSR

Old LNB

Old PC

Other process

registers

Admin info

Old SF

Pointer to
Process State Dump

33

Information about the state of each process known to the system is recorded in a

protected data structure - the Process Management Table. The entry for each

process includes:

� the Local Segment Table Base (LSTB);

� a pointer to the on-stack process state dump;

� the Instruction Count and Interval Time;

� a pointer to the System Call Index used to decode System Calls;

� the identity of the System Call Table used for in-process interrupts;

� data related to event handling and process suspension.

Protection & Privilege

Virtual Machines

The local virtual memory of one VM cannot be accessed from any other VM

except for segments shared between VMs. This can only occur as a result of

explicit action by both VMs. The access permissions for the shared (Global)

segment can be set independently for each local (Indirect) segment mapped to the

shared segment.

Access Levels

One property of a process, defined in the Process Status Register (PSR) of the

process state, is the Access Level at which it is currently being executed. The

lower the Access Level, the more privileged the process. It is an important

principle of the OpenVME architecture that use, by a process executing with a

certain level of privilege, of more privileged resources should be strictly

controlled.

Many resources are protected by an Access Key. When a process references such

a resource, the process Access Level is compared with the appropriate Access

Key: if AL ≤ AK then access is permitted. Examples of such resources are:

� Virtual Memory, protected by the segment APF

� Privileged Virtual Resources, protected by the System Call Access Key

� Software Events, protected by Cause, Entry & Notify Access Keys

� Attributes of catalogued objects, protected by read & write Access Keys

In the case of virtual memory accesses and System Calls, the enforcement of

access checks is supported by hardware mechanisms.

The means by which the Access Level of a process may be changed is strictly

controlled (by the System Call mechanism, described later). Access Levels are

thus able to provide the basis for protection between virtual resources associated

with different levels of privilege within a VM.

34

Memory Protection

Each segment of virtual memory has an Access Permission Field (APF), defined

in its Segment Table entry, comprising an Execute Permission Bit (EPB) and

Read and Write Access Keys (RAK & WAK). Execution of code is only possible

from a segment with EPB set.

Address Validation

Arbitrary virtual addresses may be formed by a process and subsequently passed

to more privileged software. The processor provides an instruction (VALidate)

which validates whether, and in what mode(s) of access, an area of virtual

memory is accessible to a specified Access Level.

35

The Imperative Architecture: Procedures & Data

This section describes how Virtual Resources are implemented within the

OpenVME architecture.

Procedures and Procedure Linkage

Procedures

The basic unit of execution is a procedure. Formally, a procedure is an encoding

of some algorithm which operates on a set of parameters and may produce a

return value. A procedure is executed in a context comprising two components:

the Static Context and the Dynamic Context.

The Static Context of a Procedure

A procedure may have static data areas uniquely associated with it - i.e. not, by

default, directly accessible from other procedures. It may also reference external

data areas and procedures. These elements of the static context of a procedure are

generally accessed via a Procedure Linkage Table (PLT). Usually several related

procedures and their associated static data areas (some of which may be shared

between several procedures) are combined into a module and share a PLT. The

PLT also contains pointers to procedures within the module which are accessible,

externally, by other procedures or modules.

Instantiation of Virtual Resources

A simple Virtual Resource can be represented as a module with a copy of its

associated static data areas and PLT. Additional instances of this resource only

require further copies of the static data and PLT: the code areas of a module are

sharable between several instances.

PLT

Code for Procedure 1

Code for Procedure 2

Static Data

Proc 1

Proc 2

External proc 1

External proc 2

External data

Incoming
External
References

Outgoing
External
References

Data item 1

Data item 2

The diagram above shows an example of a Virtual Resource with two procedure

entry points - e.g. a queue, with procedures for adding and removing a queue

entry. The queue itself would be represented in the Static Data. An additional

queue can be instantiated by creating further copies of the PLT and the Static

Data, unique to that instance.

36

Procedure Calls & Returns

The Dynamic Context of a Procedure

The stack is used to hold the dynamic context of a procedure. Parameters (and

dynamic linkage information) supplied to a procedure when it is invoked and

additional workspace, temporarily allocated until completion of the procedure,

are stored in a stack frame created for that purpose.

The Procedure Call Mechanism

The Procedure Call Mechanism is the means by which procedures are invoked or

entered. A corresponding mechanism, the Exit Mechanism is used to return or

exit from a procedure when it has completed. There are several different types of

Call but they all have the following outline sequence of steps in common:

1. Create lexical linkage by storing current LNB on top of stack;

2. Create space on top of stack for linkage & PLT info., by raising SF;

3. Store parameters on the top of stack;

4. Establish a new stack frame for the procedure to be entered, by raising

LNB;

5. Store dynamic linkage information at the start of the new stack frame;

6. Enter the called procedure (usually via a descriptor);

7. On entry, the called procedure allocates temporary workspace on the

stack.

Calling Proc's

Stack Frame

Parameters

Space for

PLT descriptor

Calling Proc's

Stack Frame

LNB

SF

Calling Proc's

Stack Frame

Parameters

Space for

PLT descriptor

Space for
Old PSR

Old PC

Old LNBLNB LNB

Linkage info

After step 1 After step 3

LNB

SF

LNB

SF

After step 6

Procedure Exit

The Exit mechanism also has several variants (depending on the linkage

information) but they also have a common outline sequence:

37

1. The returning procedure may place a return value in the Accumulator

(ACC);

2. The current stack frame is collapsed, re-establishing the stack frame of the

calling procedure, by setting SF to LNB and restoring LNB from the link;

3. Resume execution of the calling procedure immediately after the Call,

using Old PC.

Passing Parameters & Return Values

A parameter may be a value (e.g. integer, character, procedure etc.) or a

reference to a value (or to another reference). A Return Value may be a value or

a reference to a data item which will remain in scope after the return.

Parameter Validation

Data referenced by a reference parameter may be changed by a procedure. It is

therefore essential to ensure that the calling procedure is permitted to access the

area of virtual memory specified by such a parameter. The VALidate instruction

enables a called procedure to ensure that the calling procedure is permitted to

access any reference parameters it passes.

38

Types of Call & Return

There are several different types of call which are distinguished by the type of the

descriptor used to reference the called procedure. The type of descriptor is

usually determined by the Loader, when fixing up references between modules

instantiating Virtual Resources, and is dictated by the relative privileges (Access

Levels) associated with the calling and called procedures; a more privileged

procedure is usually an operation associated with a more privileged Virtual

Resource. Each call type has a corresponding return type which restores the

Access Level of the calling procedure; the call types are:

1. Normal Call to a procedure of equal privilege (Access Level unchanged);

2. Inward Call, to a more privileged procedure (decrease of Access Level),

and Outward Return. This is a System Call and is made via a System Call

Descriptor. The called procedure is entered on the current stack and a

normal link is stored, recording the Access Level of the calling procedure;

3. Outward Call, to a less privileged procedure (increase of Access Level),

and Inward Return. This is also a System Call but in this case the called

procedure must be executed on a new stack since otherwise it might

corrupt more privileged data associated with the calling procedure. A

special System Call link is stored in the stack frame on the new stack;

4. Sub-process Call, used to resume execution of a sub-process.

Call types 1 & 2 are normally performed automatically by the processor; types

3 & 4 need system software intervention to effect the switching of stacks.

System Calls

System Calls provide the fundamental mechanism for controlling entry to the

procedural interfaces of more privileged Virtual Resources. A System Call is

performed by executing a procedure call via a System Call Descriptor. A System

Call Descriptor contains values used to identify an entry in a System Call Table,

which is administered by privileged system software. This entry defines:

� the System Call Access Key (SCAK), the maximum permitted Access

Level of the calling procedure;

� the called procedure, defined by a PLT or code descriptor;

� the PSR, including Access Level, to be adopted by the process during

execution of the called procedure.

The combination of SCAK and PSR in the System Call Table entry define a

specific capability for a process executing at one Access Level to enter a specific

procedure at another Access Level. In particular, the SCAK ensures that entry to

privileged procedures is only permitted to processes which are already

sufficiently privileged.

39

Forced Procedure Calls

Various circumstances require the normal execution of a process to be

interrupted by the execution of some procedure not directly invoked by the

process itself. This may be the result of an asynchronous event external to the

VM; it may be the result of a synchronously detected exception condition within

the VM. In all such cases, generally known as interrupts, a forced procedure call

is made to the required procedure, by storing a process state dump on the current

process stack and entering the procedure via a system call. The parameters for

the procedure are usually supplied by the source of the interrupt which may be

hardware or software. When the interrupt procedure exits, the interrupted process

is resumed at the point at which it was interrupted, by using the process state

dump to restore the process state.

Object Modules and Loading

Object Module Format (OMF) Modules

The OpenVME model of execution is based on the interaction of Virtual

Resources. Some of these resources are supported by OpenVME subsystems

directly; others are created by the loading of OMF Modules into virtual memory

and linking them, via names, to other resources. Most modules are loaded into

the Local virtual memory of a VM but a module can be loaded into Public or

Global virtual memory if the resource is to be shared throughout the system or

between specific VMs.

An OMF module contains the information required by Loader to construct the

corresponding Virtual Resource(s) in the execution environment, including

definition and initialisation information for code and data areas; object names;

area, object and name properties; references to external names; and diagnostic

data.

Virtual Memory Catalogue

Loaded
Module

Loadable
Object

File
Object

Is implemented by

OMF
Module

Filestore

Describes

is loaded into
is related toVirtual

Resource

Virtual
Resource

Virtual
Resource

40

OMF Areas

The components of a module required to construct a Virtual Resource are termed

areas. Each area occupies a contiguous region of virtual memory having

particular properties. The OMF representation of an area defines various

properties including its length and may also define initial values for the area

when it is first created in virtual memory.

OMF Objects

Areas are merely convenient containers for code and data generated by a

compiler. They contain executable representations of entities such as procedures

and data arrays. Such entities are termed OMF Objects.

OMF objects have properties which define the ways in which they can be used.

For example, every OMF object has a named point which, for a procedure,

defines the first instruction to be executed and for a data array defines the start of

the array. A procedure may have properties defining the Access Levels at which

it should be executed and from which it may be called, and indicating that a

System Call is required to enter it. In general the properties of an OMF object in

an area are independent of the properties of other OMF objects in the same area.

OMF objects may have names. An object must have a name if it is to be referred

to from outside the module. OMF object names have properties some of which

affect the way in which the name may be used ("bound"), and others which affect

the way in which the named object itself may be used once bound.

Some OMF object names may be designated module keys of the OMF module.

Such names are the means by which the module may be identified for the purpose

of loading. This may occur as the result of an explicit request to load the module

or when an already loaded, executing resource refers to an OMF object in the

module via its keyed name.

Templates

An OMF procedure object which is intended to be directly callable by an

interactive user or from an SCL procedure may have a template which defines the

formal parameters to the procedure and associates them with keywords. Each

parameter may have a default value defined as part of the template. This facility

is used extensively for SCL commands both to help interactive users supply the

correct parameters and to allow parameters to be specified by keyword rather

than position.

External References

Objects in OMF modules may require access to OMF objects in other modules,

either to call procedure objects or to access data objects. These requirements are

expressed as external references from the module. External reference properties

41

determine whether loader attempts to satisfy such a requirement (by loading a

module with a module key corresponding to the required name) when the module

is loaded, or whether resolution of the reference is delayed until it is used. The

mechanism by which external references in module can cause another to be

loaded is known as cascade loading and continues until all references are

satisfied, or have the delayed property, or cannot be satisfied in the current

loading environment. External references may be qualified by a library name

which restricts loader's search to libraries of that name.

Some of the external references of a module may not be satisfied when it is

loaded. In such cases the reference is temporarily satisfied by a special type of

descriptor, known as an Escape Descriptor. If an instruction attempts a reference

via an Escape Descriptor, hardware forces entry to an Escape Routine whose

address is contained in the descriptor. The normal action of the routine is to

re-attempt to satisfy the reference (for example, to an object in a subsequently

loaded module) and the instruction is then restarted.

Virtual Memory Filestore

loaded into

OMF Area

Initialisation Data

OMF Area

Initialisation Data

OMF Area

Initialisation Data

OMF Module

Name

OMF Object

Properties
Name

OMF Object

Properties
Name

OMF Object

Properties

OMF Module

Name

OMF Object

Properties
Name

OMF Object

Properties

external
references

OMF Area

Initialisation Data

OMF Area

Initialisation Data

run-time
bindings

The Loading Environment

OMF modules are stored in filestore, in libraries. Each VM has a loading

environment which defines the libraries to be searched to find a named OMF

object. The loading environment comprises:

� the Level List for modules executed at the current Access Level;

� the Context, for modules executed at a more privileged Access Level;

� the set of resources already loaded in the VM.

The Level List and the Context are each lists of libraries to be searched for a

module containing the requested OMF object. Objects loaded from the Level List

are loaded into the VM as Virtual Resources associated with the current Access

Level. Each library in the Context has a defined Access Level; Objects loaded

42

from the Context are loaded into the VM as Virtual Resources associated with

the Access Level of the library from which they are loaded.

The names of OMF objects are recorded as they are loaded and subsequent

references to those names are, by default, satisfied by the already loaded objects.

Such objects are therefore part of the loading environment. It is possible to

modify this action by associating a property with an OMF object name; each time

an OMF object named with this property is loaded, a new instance of the

resource is created.

Privileged Interfaces and System Calls

Where required, loader establishes System Calls to enable a procedure executed

at one Access Level to enter a procedure executed at a more privileged Access

Level. This happens when a module loaded at one Access Level has an external

reference to a more privileged interface in another module.

Most privileged system interfaces to Kernel and Director are entered by System

Calls which are established during system load. There is a special file, the

steering file, which defines the Access Level from which such interfaces may be

called and at which the corresponding procedures are executed. The steering file

defines a command class for each interface; each library has a command mask

which restricts the command classes that software loaded from the library may

use. In addition, the steering file may restrict the ability to invoke privileged

interfaces to VMs having particular libraries in their loading environment.

43

Inter-Process Communication & Synchronisation

Events & Interrupts

Events

The Event System provides the fundamental means of enabling processes, or

different portions of one process, to be synchronised. An Event is a

synchronisation channel on which only two basic operations can be performed:

� Causing an event: putting an event message into the channel;

� Notifying an event: removal of an event message from the channel.

Each pair of operations, cause and notify, is termed an Event Occurrence.

There are two types of event, characterised by the way in which the event

message can be notified:

� A Flag Event, which holds an event message until a process indicates that

it is ready to be notified by waiting for the event or reading it;

� An Interrupt Event, which holds the message until either it is permitted to

be notified to the process by the transfer of control to a nominated

interrupt procedure (which receives the event message as a parameter); or

it is explicitly read or notified as a flag event before transfer of control is

permitted. When the interrupt procedure exits, the process resumes at the

point and Access Level at which it was interrupted.

Events may be global or local.

� A Global Event is a catalogued object which may be caused or notified in

any VM which has selected the event and connected to it.

� A Local Event is caused and notified in the same VM and can be created

dynamically without a corresponding catalogued object.

Before a process may cause or be notified of an event, it must first establish its

right to do so by connecting to the event; in the case of an Interrupt Event a

descriptor to the interrupt procedure must be supplied. Certain properties

associated with the event connection may also be specified; these are:

� The Cause Access Key (CAK): the Access Level at or below which the

event may be caused;

� The Notify Access Key (NAK): the Access Level at or below which the

event may be notified;

� The Entry Access Key (EAK): the Access Level at or above which a

process must be executing before entry to the nominated interrupt

procedure is permitted.

44

By default, CAK, NAK & EAK are set to the current Access Level of the

process. Setting EAK greater than NAK (known as an unequal entry condition)

ensures that interrupt procedure cannot be entered recursively.

Suspension & Notification of Flag Events

A process may wait for an event (or a list of events) and, if no notification is

already outstanding, the process is then suspended until a notification is received

from (any one of) the event(s). When the notification occurs, the event message

(and, in the case of a list of events, the event currency) are returned to the

process. It is also possible to read an event; in this case, if there is no outstanding

notification the process is not suspended.

When a process waiting for a Global Event is to be suspended, it is added to a

queue of processes waiting for that event; this queue determines which process

receives the next notification for each particular event. When a process waiting

for a list of events has its suspension lifted, any other queue positions associated

with the same wait request are discarded; having dealt with the notification, the

process may wait again to rejoin the queue(s).

Suspension & Interrupt Events

A process may be interrupted to execute an interrupt procedure provided that it is

not currently executing, or suspended at a lower Access Level than the EAK.

Use of Interrupt Events

Unequal Entry Interrupt Events provide a powerful technique for enabling multi-

level structures of Virtual Resources to co-operate asynchronously within a VM

and this is used extensively within the OpenVME system.

As an example, consider a Virtual Resource VR1 which requires the services of a

lower level (and more privileged) Virtual Resource, VR2. Suppose that some

operation supported by VR2 may operate asynchronously. VR1 can pass to VR2

an event currency for an interrupt event which VR2 may cause when the

operation terminates; if VR1 executes at Access Level n, then the CAK must be

≥ n (allowing it to be caused by VR2), the EAK might be n+1 and the NAK

would be n.

45

Suppose that VR1 calls a procedure in VR2 to initiate the operation after which

control is returned to VR1. VR1 may then initiate further operations, voluntarily

suspend itself, or return control to a resource at a higher Access Level. When the

operation terminates, VR2 causes the specified event and eventually the interrupt

procedure in VR1 will be entered at Access Level n. Handling of the event

notification in VR1 cannot be interrupted by a further notification of the same

event until the process voluntarily suspends or returns control to a higher Access

Level. The event system acts as a queuing mechanism allowing virtual resources

at each Access Level to complete the handling of one event before being notified

of the next.

Event

VR1

n

VR2

Suspension

n+1

n-1

Event

VR1

n

VR2

Suspension

n+1

n-1

Event

VR1

n

VR2

Suspension

n+1

n-1
Cause Notify

VR1 calls VR2

VR2 initiates asynch operation

VR1 suspends at AL n+1

Asynch operation terminates

VR2 causes event

Event notified to VR1, EAK = n+1

VR1 enters interrupt proc, NAK = n

In the example above, the asynchronous operation invoked by VR2 might be an

operation on another Virtual resource, whose termination would be notified to

VR2 by an event notification. Recursive use of event in this way allows large

numbers of asynchronous operations to be in progress concurrently, at various

Access Levels, within a VM. Ultimately the lowest level sources of asynchrony

are events caused in other VMs or those associated with hardware interactions.

46

Interrupts

An Interrupt is logically an interrupt event caused by hardware which is used to

notify the occurrence of some hardware detected condition. Such conditions

include:

� Hardware detected system exception conditions

� Hardware detected program exception conditions

� Virtual Memory exceptions (e.g. a page fault)

� Real-Time Clock, process Interval Timer & Instruction Counter

conditions

� Hardware supported inter-VM interrupt

� External interrupts (e.g. from input/output devices)

� Software generated interrupts (e.g. some special System Calls)

Interrupts are notified to the most appropriate VM. In the case of synchronously

detected process conditions or errors, they are notified in the current VM. The

interrupt procedure, an associated value of PSR, and the process in which it

should be executed are always defined by a System Call Table Entry whose

identity depends on the nature of the interrupt. External interrupts are directed to

the appropriate VM and process via a Kernel data structure known as the Unit

Table which also identifies the System Call. In-process interrupts are handled

within the process by a System Call identified by the process's Process

Management Table entry.

In most cases a process state dump is created on the stack of the currently

executing process; all other (suspended) processes will already have such a dump

at the top of their stacks. A forced procedure call is then made to the interrupt

procedure in the process to be interrupted, using the stack frame established by

the process state dump.

Sometimes software at the lowest levels of the system needs to execute a

procedure without being interrupted. Whilst Access Levels can be used to ensure

non-interruptibility within a VM, they have no effect on scheduling between

VMs. A mechanism is therefore provided to allow a suitably privileged process

to become pre-emptive (indicated by the PEP status bit in the process PSR). A

pre-emptive process may not be interrupted; if an asynchronous interrupt

condition arises while the current process is pre-emptive the hardware queues the

interrupt until the process is no longer pre-emptive.

During an execution of an interrupt procedure, software may identify a different

process to be executed on completion of the procedure from that which was

interrupted. A mechanism is provided which allows suitably privileged software

to nominate which process is to be executed on exit from the interrupt. When the

interrupt procedure exits, the hardware resumes the required process by restoring

its state from the process state dump at the top of its stack.

47

VM & Process Scheduling

Events and interrupts provide basic mechanisms for scheduling execution within

a VM. Between VMs, the system operates a priority scheduling system. Each

VM has a priority which can change dynamically. The system schedules the use

of real resources, including processing time and Input-Output requests, between

VMs on the basis of priority algorithms, with fair allocation between VMs of

equal priority. This is to enable high priority VMs to have access, as soon as

possible, to shared resources while allowing lower priority VMs to use the

resources.

The containment of logically related Virtual Resources within a VM ensures that

priority scheduling applies to all activities associated with the work executing in

the VM. This is one of the major benefits of the VME in-process architecture; it

would be much harder to ensure that all execution took place at an appropriate

priority if major functions were performed out-of-process.

Shared Memory, Semaphores and Events

Shared Virtual Resources

In some cases, a Virtual Resource is naturally useful only to the VM in which it

was created. In other cases, especially within the OpenVME system itself, it is

necessary to share a Virtual Resource between several VMs so that the same

Virtual Resource can be used by those VMs. Such sharing is achieved by

arranging that the data area(s) associated with the resource are loaded into Public

or Global segments commonly accessible to the VMs; these are termed shared

data areas.

A shared data area is (part of) a loadable module which is a catalogued object.

Access to a shared data area is therefore controlled by the normal privacy and

security mechanisms controlling selection and use of the catalogued object.

Synchronisation

Use of a shared resource has several potential pitfalls. Consider a shared Virtual

Resource representing a numerical counter; the memory location containing its

current value is in a shared data area. The only operation supported by the

counter is to increment its value and this is achieved, at the instruction level, by

reading its current value, adding one and storing the new value. Two processes

may have their execution of this operation interleaved in such a way that they

both read the current value before either stores a new value; they will both read

the same value, increment it, and store the same new value - only incremented

once - which is clearly not what is intended. To eliminate this problem each

process must be provided with a means of ensuring that its execution of the

read-increment-store sequence cannot be interleaved with any other process

attempting to execute the same sequence concurrently. Such a sequence is known

as a critical region of code.

48

Semaphores

The classic method of protecting critical regions (due to Djikstra) is by the use of

a flag. A flag is a shared data item which may have one of two states: on or off.

Two flag operations are supported: set which turns a flag on if it is currently off;

and unset which turns a flag off if it is currently on. In either case, the operation

is deemed successful if the flag was in the appropriate state before the operation

and unsuccessful otherwise. A critical region can be protected by performing a

successful set operation on a shared flag before entering the critical region and an

unset operation on the flag when leaving the critical region.

When an attempt by a process to set a flag is unsuccessful, it will usually need to

re-attempt the operation. At some later time the process which previously

succeeded in setting the flag will complete its critical region and unset flag.

However there is no obvious way in which the unsuccessful process can know

when this occurs and hence when it is appropriate to re-attempt the operation. For

this reason flags and their associated operations are difficult to use for many

applications.

A more sophisticated approach is to use a semaphore which is a shared Virtual

Resource having similar states (reserved and free) and operations (reserve and

release) to a flag. However a semaphore reserve operation waits until the

semaphore is free, rather than failing, if it has already been reserved. When the

process which has reserved the semaphore releases it, the waiting process

completes the reserve operation successfully. This scheme can be generalised to

allow several processes to queue waiting to reserve a semaphore.

The OpenVME system supports a semaphore scheme similar to that outlined

above; it interacts with priority scheduling mechanisms to ensure that processes

which have reserved semaphores for which other processes are waiting are

optimally scheduled. The scheme uses events to communicate between processes

sharing the semaphore. When a process attempts unsuccessfully to reserve a

semaphore, an event is created for which it waits. When the semaphore is

released the event is caused, notifying the waiting process that it is now deemed

to have reserved the semaphore.

Synchronisation with events

Semaphores are an appropriate method of co-ordination when the patterns of

synchronisation between processes are unpredictable. A common example is

when a Virtual Resource is arbitrarily shared between several otherwise

uncoordinated processes. In many cases a more disciplined pattern of

synchronisation exists and can be more optimally implemented using events. A

particular example of co-ordination by events is message passing.

Consider a Virtual Resource representing a shared message buffer, into which a

process P1 may store a message for subsequent retrieval by some other process

P2. It would be possible to protect the critical code regions which store and

49

retrieve the buffered message by a common semaphore. A more satisfactory

means of co-ordination would be to create two events: one would allow process

P1 to notify process P2 that the buffer was full; the second would allow process

P2 to notify process P1 that it was empty. Neither process would then attempt to

perform an operation on the buffer unless or until it had been specifically notified

that the buffer was in a suitable state.

Event
Full

Event
Empty

Process
P2

Process
P1

Shared
Buffer

Cause Cause

Notify

Empty
Event

Full
Event

Catalogue

Write Read

Loadable
Object

Loadable
ObjectLoadable

Object

Notify

Connect

Load

Load

Connect

The OpenVME system provides several message-passing schemes, each

optimised for a particular style of usage. Wherever possible standard open APIs

are used to drive the message passing facilities; however, some interfaces are

specifically designed for use solely within the OpenVME system. The message

passing APIs include:

� Communications APIs such as the X/Open XTI;

� Inter-process communications APIs such as X/Open Message Queues;

� Proprietary APIs provided for specific internal usage.

Timer Facilities

An important usage of events is for timer channels. An event is associated with

each timer channel and the system provides facilities for requesting that the event

is caused either at an absolute time or after a specified time interval; in the latter

case, the request may specify that the event should be caused once only or

periodically, each time the time interval elapses. The notification of the event is

termed a timer notification. Only one timer request may be established for a timer

channel at a time. The system provides a means of cancelling any extant timer

channel request thus allowing a new request to be established.

In addition to real-time notifications, facilities are provided to request

notification after a specified amount of processing time has elapsed.

50

Input-Output

Basic Concepts

Streams, Devices & Mechanisms

The fundamental architecture has, thus far, only described activity within, and

interactions between OpenVME processes. More generally there is a requirement

to communicate with other processes, possibly executing in a very different

environment. A particularly important example of this is performing Input-output

(IO) operations on external peripheral devices. In many respects, requirement is

similar to that for message passing within the OpenVME system and the

fundamental Virtual Resource used to provide this is the stream.

A stream represents a specialised message passing channel between two

processes. In the case of IO, one process is that performing the IO operation and

the other is (a part of) the external logical device supporting that operation. A

device is not necessarily the same as a single peripheral mechanism (e.g. a disc

drive or a printer). There are several possible arrangements of IO devices with

respect to mechanisms:

� A single mechanism device;

� A multi-access mechanism, shared between multiple devices;

� A multi-mechanism device;

� Multiple mechanisms shared between multiple devices.

Device

Control

Mechanism
Stream

Device

Control

Device

Control

Mechanism

Stream

Stream

Device

Control

Mechanism

Stream

Mechanism

Device

Control

Stream

Single mechanism device

Multi-access mechanism

Multi-access/multi-mechanism

51

Stream Operations

For each Stream, there is an entry in the Unit Table which links the process

initiating an IO operation with the stream. Activation of a stream is achieved by

means of a System Call which enters the stream activation procedure via a PLT

descriptor which points at the relevant Unit Table entry. The Unit Table entry

also contains data identifying the process using the stream together with a value

identifying the System Call Table to be used for notifying interrupts to the

process, when required.

The stream activation procedure has two parameters:

� a unit-dependent value defining the operation to be performed;

� a pointer to a Transfer Control Block.

The Transfer Control Block (TCB) is a data structure containing additional

parameters for the stream operation; for a data transfer to an IO device, this

includes:

� a device command and optional qualifiers;

� a descriptor to the data area (& optional pre- & post-amble areas);

� a response area in which the success (or otherwise) of the transfer is

recorded;

� an optional chain pointer to another TCB.

The stream activation procedure generally performs some checks to ensure that

the caller has sufficient privilege to use the stream and then initiate some

asynchronous activity on the stream. When the activity is completed, the

termination data from the stream is used, by hardware, to generate an interrupt

which is routed, via the Unit Table and a System Call Table, to the correct

process.

Mechanism Sharing

Many mechanisms are implicitly shared, in a time-sharing manner, by several

processes. This sharing can take place at several levels:

1. at the mechanism level by having multi-access mechanism, with each

stream Virtual Resource exclusively allocated to a single process;

2. at the device level, with the stream Virtual Resource shared dynamically

between several processes;

3. at the device level, with the stream Virtual Resource allocated by the

system, in turn, to each process for its exclusive use.

Disc drives are usually driven as single (or multiple) device mechanisms, each

device shared dynamically at the device level. Line printers are usually driven as

single device mechanisms shared statically at the device level.

52

Shared Devices

In practice, most IO transfers involve shared devices. In particular, discs and

communications devices are invariably shared between several VMs. It is

important to note that most IO operations involve several layers of software, with

only the higher layers visible to applications. Some layers multiplex several

concurrent activities onto a single activity in the layer below. Thus what may

appear to in a VM as an unshared Virtual Resource representing the endpoint of a

single, independent connection to an external resource, may, in a lower layer, be

supported by a shared Virtual Resource in common with similar connections in

other VMs.

For example, two VMs accessing distinct files will contain individual virtual

resources for each file but, at lower levels of the system, will share the virtual

resource which performs an IO operation on a stream.

Similarly most networking methods involve several layers of protocol handling,

with only the higher layers visible to applications. OpenVME support for

networking therefore comprises both public resources (which handle the low

level, shared communications devices) and local resources (which handle the

higher level, unshared communications channels). The system provides a set of

public buffers, allowing messages to be passed between the public and local

resources.

53

Chapter 5
The Structure of OpenVME

Introduction

OpenVME is designed and constructed according to a set of structuring

principles. These ensure excellent modularity and encapsulation of system

components as well as a high degree of protection between them. This chapter

describes the structure of OpenVME system in terms of these principles,

identifies the major components of the system and describes their function.

Principles of OpenVME Structuring

The Virtual Machine Structure

The concept of a Virtual Machine as a secure container of Virtual Resources and

the consequent structuring of the system into disjoint sets of Virtual Resources

local to a VM was described in detail in the previous chapter.

The Layered Structure

Levels of Abstraction

The OpenVME system is structured into a number of layers, each a container for

a subset of the Virtual Resources supported by the system. This containment

structure is orthogonal to the VM structure. Higher layers provide increasing

levels of abstraction from low level resources. In general, Virtual Resources in

higher layers make use Virtual Resources in lower layers. An operational

OpenVME system is a layered hierarchy of Virtual Resources with the lowest

layer (the kernel) containing the Virtual Resources which correspond most

closely to real hardware resources.

The Role of Access Levels

It is an important principle of the OpenVME architecture that use, by a process

executing with a certain level of privilege, of more privileged resources should

be strictly controlled. Access Levels are used to enforce this principle: the Virtual

Resources of each layer are associated with a particular Access Level. Lower

layers of the system and the Virtual Resources they contain are associated with

more privileged (lower) Access Levels.

54

Access to a resource is protected by an Access Key. A process performing an

operation on a resource in a layer must be executed at the Access Level with

which the resource is associated. When a process attempts to operate on a

resource, its Access Level is compared with the appropriate Access Key: if

Access Level ≤ Access Key then the operation is permitted. The System Call

mechanism is used to lower the Access Level of the process during execution of

an operation on a more privileged resource. An Access Key is associated with the

System Call itself, representing the Access Key of the resource.

Use of the System Call mechanism also ensures that the particular operations

which may be performed on a privileged resource are restricted to those

explicitly made available via System Calls. As an architectural principle,

resources which support operations which are capable of being invoked from less

privileged Access Levels must validate reference parameters (see previous

chapter).

The association of layers with Access Levels has further ramifications. In

particular, scheduling of processes within a VM and the notification of interrupt

events are closely tied to Access Levels. Within a VM, lower (more privileged)

Access Levels cannot be interrupted by higher (less privileged) Access Levels.

Although these two roles of Access Levels - for protection and for scheduling -

may not immediately seem compatible, both uses are, in fact, a natural

consequence of the structure of OpenVME reflecting different levels of

abstraction. Most importantly the use of Access Levels means that, within a VM,

operations on a Virtual Resource are executed atomically with respect to the

execution of operations on the same or other resources in the same or higher

layers. This greatly simplifies the design and implementation of Virtual

Resources and is a foundation of the integrity and reliability characteristics of the

OpenVME system.

Error Containment

A further benefit of the layered structure of OpenVME is that it ensures that the

effects of errors are prevented from propagating throughout the system. The

layered protection mechanisms prevent corruption of more privileged data by less

privileged software; in addition, the VM structure prevents corruption of data

local to other VMs. Thus the effects of any error or failure is confined to a well

defined and limited part of the system. In most cases a specific Error Manager is

notified when an error occurs enabling it to take appropriate recovery action.

55

The Layers of OpenVME

The major layers of OpenVME are illustrated in the diagram below. These layers

and the functions supported within each layer are described in later sections of

this chapter.

Public Kernel

Nodal Kernel

Lower Director

Upper Director

User Code Guardian

RECMAN

AL 1

AL 2-3

AL 4

AL 5

AL 6

AL 7

SCL

Work Environments

AL 8

AL 9

Superstructure & Applications AL 10+

Physical resources

Logical resources

Nodal Real resources

System Real resources

User error containment

Record Access

Job Control

Nodal

Public

Local /

Global

Layer Resource Types Access Level Scope

Use of Resources in Lower Layers

Although the system is structured into many layers, a request by a process in one

layer to perform an operation on a resource in a lower layer can, subject to

privilege checks, invoke the operation directly, without passing through

intermediate layers. Typically, during the declarative phase of resource usage,

software in several layers may be involved in establishing a direct route from the

requesting layer to the target resource; subsequently, during the imperative phase,

this route allows operations on the target resource to be invoked very efficiently.

The Subsystem Structure

An OpenVME Subsystem is a collection of procedures and data which support a

set of related Virtual Resources. Each subsystem is encapsulated in a manner

which hides internal representation and implementation, and the only means of

accessing the Virtual Resources supported by a Subsystem is via a defined set of

explicitly named procedural interfaces. The concept of a Subsystem is recursive

in that any Subsystem may be constructed from a number of component

Subsystems, although only a limited subset of the total set of interfaces may be

made externally accessible.

56

In general, a Subsystem is responsible for the creation, operational support and

eventual deletion of the Virtual Resources which it supports. The way in which

the Virtual Resources supported by a Subsystem are represented is an internal

concern of that Subsystem. Some Subsystems may represent the state of a

resource as an entry in a (Public or Global) shared area, allowing the possibility

of the resource itself being shared across VMs; others may represent the state of a

resource as a Local data area within the VM using that resource (assuming it to

be unshared).

Considering Virtual Resources as objects, the Subsystem supporting any

particular resource can be considered as providing all the functionality associated

with the class to which the object (resource) belongs.

Encapsulation & Modularity

The Subsystems of OpenVME itself are usually constrained to be associated with

a single Access Level within the layered structure of the system described above.

Subsystems therefore provide an additional, modular, structuring of the

functionality within a layer of OpenVME. Within a layer, the OpenVME

development route itself constrains access to a Subsystem to be solely via named

procedural interfaces, and from higher layers the Access Keys are used to enforce

this restriction.

The encapsulation of functionality which is implied by the Subsystem structure

has important consequences:

� it allows Subsystems to be developed (and evolved) independently,

supporting a stable, defined set of external interfaces;

� it ensures that data associated exclusively with a Subsystem cannot be

accessed except via the defined interfaces; this contributes significantly to

the robustness of the OpenVME system.

The Nodal Structure

The hardware of Series 39 systems comprises one or more processing nodes,

each containing one or more processors and memory. The nodes are linked by an

Input-Output network and an Inter-Node network. There is no physically

common memory, though the Inter-Node network is used to provide a Virtual

Shared Memory. This Nodal hardware architecture has certain implications for

the structure of Kernel (which manages hardware resources). The nodal nature of

the hardware architecture is only visible to Kernel which is responsible for

ensuring that all higher layers are presented with a uniform view of all the

resources of the system. The Nodal Architecture and its implications on Kernel

structure are described in detail in Chapter 14 (Platforms).

57

The OpenVME Kernel

The OpenVME Kernel comprises those subsystems

which directly manage real hardware resources - in

particular: memory, processing resources and routes to

external resources such as Input-Output devices. A

major function of Kernel is to abstract the complexity

of the real hardware resources and their organisation

into an interface which is independent of those aspects

of hardware which may differ between

implementations. Kernel presents a uniform procedural interface - the Kernel

Interface - to all other system software.

Kernel subsystems operate on Nodal, Public and Local data. They execute at

Access levels 1 (Nodal resources), 2 (locked Public resources) and 3 (other

resources).

Memory Management

Virtual Store Manager (VSM)

Virtual Store Manager uses real memory and hardware mechanisms to create

virtual memory. Virtual memory may be:

� Public to all VMs in a node, or to all VMs in the entire system;

� Local to a single VM;

� Global, shared between several VMs.

Virtual memory is created in Segments, contiguous regions of virtual address

space in which all locations have similar properties, such as Access Keys.

VSM is responsible for mapping virtual memory onto real memory. This

mapping is in terms of sub-divisions of a segment, pages, to reduce

fragmentation of real memory. VSM manipulates the page and segment tables

which enable hardware to translate virtual addresses to real addresses.

The virtual memory requirements of the system can exceed the amount of real

memory available. Pages of virtual memory which are not currently mapped onto

real memory are stored on Secondary Storage discs. Hardware Use and Written

bits associated with each page enable VSM to assess page usage. When there is

contention for real memory VSM can discard pages, particularly those which

have been rarely or never accessed, from real memory. Each VM has a

guaranteed minimum quota of real memory and, when necessary, VSM may

reduce its usage of real memory to the quota. If a page to be discarded has been

updated since the last time it was written to secondary storage, the new contents

of the page are written to secondary storage.

Application Environment

Public Kernel
Nodal Kernel

Lower Director
Upper Director

User Code Guardian
RECMAN
SCL

Application

58

Virtual Machine and Process Management

Virtual Machine Manager (VMM)

Virtual Machine Manager is responsible for the basic management of Virtual

Machines including their creation, deletion and low-level & high-level

scheduling.

A Virtual Machine comprises virtual memory, defined by Segment Table Base

Registers, and one or more processes, each defined by a Register Set (process

state dump). Only one process within the VM may be active at a time. VMM

maintains a Process Management Table, which has an entry for each process in

the system, containing:

� the STBR for the process, hence defining the Virtual Machine in which it

is executed;

� a Register Set for the process;

� meters and statistics for the process including elapsed process time and

instruction counts;

� information concerning the scheduling state and suspension Access Level

of the process.

VMM schedules processes eligible for execution according to a multi-level

priority scheme. Time-slicing is used to ensure fair scheduling within a priority of

compute-intensive processes.

VMM schedules VMs to real memory on the basis of their memory quota and

priority and the amount of memory available. If the demand for real memory

significantly exceeds that available then VMM may relocate entire VMs onto

secondary storage to make space available. This action and its inverse, moving a

VM into real memory from secondary storage, are termed roll-out and roll-in

respectively.

VMM is responsible for scheduling VMs to nodes in a multi-node system. A VM

may normally be executed on any node but it is possible to allocate a VM to a

specific node. VMM attempts to balance the demands for memory and processor

time between the nodes by relocating VMs from one node to another. This is

achieved by rolling the VM out from one node and into another.

VMM handles various interrupts that may occur while a process in a VM is being

executed. These include exceptions (such as Program Errors), Interval Timer and

Instruction Counter interrupts (used to measure process time and instruction

counts, and to enforce time-slicing) and System Call interrupts (see the

description of SC, below).

59

VMM provides interfaces to allow communication between the instances of

Nodal Kernel in a multi-node system. These operations are:

� the Broadcast Call which causes a nominated procedure to be executed on

all nodes;

� the Directed Call which is executed within a nominated VM on another

node.

System Call Handler (SC), part of VMM

System Call Handler manages the mechanisms associated with System Calls. It

creates and maintains System Call Tables. Entries in these tables are used to

decode System Calls when they occur. By default, System Calls are decoded by

hardware though under some circumstances SC itself is entered, via an interrupt,

to perform the decode.

System Call Handler provides interfaces enabling software to create System

Calls, establishing the necessary entries in the System Call Tables. Since a

System Call is the primary means by which a process can change its Access

Level to acquire greater privilege, SC enforces checks to ensure that the

subsystem creating a System Call has sufficient privilege to do so.

SC also provides facilities for the creation of sub-processes within a VM. A

sub-process has its own stack and process state. A sub-process may be created by

a (sub-)process at any Access Level provided that the Access Level at which the

sub-process itself is initially executed is at least that of the creator. When a

sub-process is created, SC returns a System Call descriptor to the caller. Control

can then be passed to the sub-process by invoking the corresponding System Call

which causes an entry to SC to schedule it for execution.

Kernel Event Manager (KEVM)

Events are the fundamental means of enabling processes, or different portions of

one process, to be synchronised. Kernel Event Manager provides all the low-

level functions associated with events, including co-operating with VMM when a

process is to be suspended waiting for an event or rescheduled for notification of

an event. Public, global and local events are supported.

Kernel Event Manager provides facilities to:

� create and delete an event;

� connect to an existing event;

� wait for an event;

� cause an event;

� receive notification of an event occurrence.

Kernel Semaphore Handler (KSH)

Semaphores provide a means of co-ordination between processes to ensure that

operations on shared resources can be performed safely, without interference

60

from another process attempting to operate on the same resource concurrently.

When one process attempting to reserve a semaphore discovers that it has already

been reserved by another process a clash occurs.

Kernel Semaphore Handler provides a clash handler which is entered by the

process which detects the clash condition, registering its interest in reserving the

semaphore. KSH allocates an event on which the process waits at the Access

Level of the caller. If the process holding the semaphore has a lower priority it is

given the priority of the waiting process (a technique known as priority

inversion). When the semaphore is subsequently released, the process which had

reserved it detects that another process is waiting to reserve it and enters KSH.

KSH then causes the event, notifying the waiting process that it has now reserved

the semaphore. Where several processes are waiting for the same semaphore, that

with the highest priority is notified.

Timer Management

Timer Manager (TIM)

Timer Manager provides facilities for a VM to request notification at a specified

real time or periodically. The operation of Timer Manager is based on a type of

Virtual Resource known as a Timer Channel.

Operations are provided to create and delete Timer Channels. When a Timer

Channel is created it is associated with a specific event by which all timer

notifications are communicated. Timer Manager provides facilities for requesting

notification of the specified event either at an absolute time or after a specified

time interval; in the latter case, the request may specify that the event should be

caused once only or periodically, each time the time interval elapses. When a

timer notification is requested, an event message is also specified. Only one timer

notification may be established for a timer channel at a time. Timer Manager

provides a means of cancelling any extant timer channel notification thus

allowing a new notification to be established.

Timer Manager also provides facilities for handling process time - the time for

which a process has been being executed. Operations are provided to read the

current process time, and to request a single or periodic notification after a

specified amount of process time has been used. These facilities can be used for

various performance monitoring purposes.

Hardware Resource Management

Kernel Reconfiguration Manager (KRM)

Kernel Reconfiguration Manager maintains details of all permanent hardware

units and the routes linking them, including Nodes, Controllers, IO devices, inter-

node and IO networks. During initialisation, when units are configured in or off,

61

or when routes are changed, KRM orchestrates other subsystems to take the

necessary actions - e.g. loading a microprogram, evacuating all VMs from a node

or changing routing tables.

Various subsystems handle different aspects of unit configuration management,

including:

� OCP Manager (OCPM)

� Multi-Node Manager (MNM)

� Public Write Manager (PWM)

� Public Write LAN Manager (PLAN)

� Node Support Computer Manager (NSCM)

Peripheral Manager (PERM)

Peripheral Manager handles the low-level driving of IO devices. It has several

associated subsystems which operate at two levels:

� Controller Manager (CM) and Device Reconfiguration Manager (DRM)

which manage the peripheral controllers themselves and the streams which

they support;

� Device Access Managers (RDAM, DDAM) which manage access to the

devices supported via streams. The DAMs control the initiation and

termination of IO requests as well as unsolicited reports of status changes.

Different DAMs support serial and random-access devices as well as low-

level access to devices for engineering or other special purposes.

Stream Manager (STM)

Stream Manager is responsible for mapping IO requests onto the underlying IO

Network. A logical IO request, known as a stream transfer, comprises:

� a command and initialisation information;

� optional data, which may flow to or from the IO device;

� status and termination information.

The IO Network is a set of packet-switched LANs. It uses a full transport service

carrying stream transfer requests between the processing nodes and the peripheral

controllers. STM handles the processing node end of this transport service

driving the LANs via the ETH, MLAN & ELAN communications subsystems

(see below).

Communications

The Communications Subsystems of Kernel provide the low-level protocol

handling capabilities of the system. The most important are:

� Network Connection Manager (NCM)

� Network File Handler (NFH)

� Kernel Comms (KC)

62

� Communications Processor Manager (CPM)

� Transport Service Manager (TSM)

� Ethernet LAN Manager (ELAN)

� Macrolan LAN Manager (MLAN)

� ECMA Transport Handler (ETH)

� X25 Handler (X25H) etc..

They are described in detail in Chapter 9.

Miscellaneous Kernel Subsystems

Meters and Statistics (MCM)

MCM provides interfaces to VM and system monitoring facilities operating in

Kernel and above.

Kernel Error Manager (KEM)

Kernel Error Manager handles exception conditions which occur in Kernel. Some

subsystems have recovery mechanisms and if an error occurs in one of these,

KEM enters the appropriate recovery procedure. Otherwise a system dump is

taken and the system is restarted.

Supervisor Loader (SVL)

Supervisor Loader loads Director and many above-director subsystems from

system filestore. Its operation is controlled by a steering file which indicates

which modules are to be loaded, which interfaces are to be made available to

higher level software (and the privilege checks to be applied to use of those

interfaces) and various initialisation options.

Amendments to the software, in the form of repairs, may be included in the

steering file, allowing software corrections to be made without re-issuing the

whole system.

When the System Load is complete, Supervisor Loader passes to the VME loader

information about the system interfaces provided by both Kernel and Director

which are identified in the steering file. These interfaces become part of the

loading environment for subsequent load operations and are, in general, made

accessible to higher level software via System Calls.

63

The OpenVME Director

The OpenVME Director comprises a set of

subsystems which, in terms of the layered structure,

are immediately above Kernel. It controls the

establishment of Virtual Machines and supervises the

allocation of resources between different VMs, as well

as providing loading facilities, catalogue management,

physical file management, operator communications

and journal facilities. The procedural interface

presented by Director is known as the Director Interface.

Director subsystems are the highest layer subsystems which operate directly on

Public data. Subsystems above Director generally operate either on Local data or,

if sharing data between VMs, on Global data. However, a facility is provided to

load the code and read-only data of a subsystem into public segments to obviate

the need to load them separately into local segments in each VM; this mechanism

is exploited by commonly used above-director subsystems. Many "Director

Subsystems" have components above Director. In general, the component within

Director operates on Public resources whilst the above-Director component

provides the Local functionality and maintains the Local context for the

subsystem.

Director is divided into two layers: Lower Director and Upper Director.

Lower Director

Lower Director is mainly concerned with the management of physical resources

accessed via Kernel. The resources are handled by subsystems known as Physical

File Managers. Using knowledge of the physical characteristics of the resources

they provide basic facilities for controlling the resources via files. The two main

groups of resources are:

� magnetic tape and disc physical files;

� communications and slow devices (e.g. Line Printers).

Lower Director is executed at Access Level 4.

Application Environment

Public Kernel
Nodal Kernel

Lower Director
Upper Director

User Code Guardian
RECMAN
SCL

Application

64

Upper Director

Upper Director is concerned with the management of logical resources which are

declaratively referenced by name. The main functions of Upper Director are:

� Selection of Objects referenced by name via the Catalogue and associated

contexts, including enforcement of security;

� Creation of Virtual Resources, within Director subsystems, corresponding

to catalogued objects such as data files;

� Creation of Virtual Resources by loading of OMF modules referenced by

name, and resolution of named references between modules;

� Scheduling of resources to VMs and block-structured resource control;

� Co-ordination of Virtual Machine initialisation in Director and Kernel.

Upper Director is executed at Access level 5.

Physical File Management

Magnetic Physical File Manager (MAMPHY)

The Magnetic Physical File Manager uses knowledge of physical characteristics

of a device to provide the basic facilities for controlling magnetic tape and disc

physical files.

MAMPHY supports transfers directly between user level buffers and the physical

device, eliminating unnecessary movements of data via intermediate buffers. In

each VM MAMPHY supports multiple transfer slots each of which supports a

single transfer request. By using several transfer slots, a VM may arrange for

several transfers to be in progress concurrently.

MAMPHY provides to allow multiple VMs to share update access to a physical

file. Data consistency can be assured by using MAMPHY's block-level locking

facilities or alternative, application-specific mechanisms.

MAMPHY supports plexing of disc partitions allowing several physical copies of

the partition, each known as a plex, to be maintained in step with each other.

Facilities are provided to add and remove plexes dynamically, with newly added

plexes being automatically brought up to date. Plexing has several benefits:

� It provides resilience against failure of a single magnetic device;

� It improves read latency by allowing read accesses to be performed from

any of the plexes;

� An active plex can be removed from active use and is then a precise copy

of the plexed file at the instant at which it was removed; this method can

be used to take "instant archives".

65

Communications and Slow Device Manager (COSMAN)

COSMAN is a collective term covering a group of subsystems which provide

physical file management facilities for locally connected slow devices (such as

line-printers) and communications links. COSMAN is described in more detail in

Chapter 9.

Catalogue and Security

Catalogue Handler (CATHAN)

The Catalogue Handler provides powerful data management capabilities for

storage and retrieval of information in the Catalogue.

Privacy Handler (PV)

Privacy Handler provides secure interfaces to access information in the

Catalogue, ensuring that all accesses are permitted by the Discretionary Security

Policy. It provides facilities for selecting catalogued objects absolutely, using

Full Hierarchic Names or, relative to other objects, using Selectors. It manages

Currencies, efficient references to objects, once they have been initially selected.

Privacy Handler also manages contexts for most types of catalogued object

which, within a VM, define default starting points for relative selections of such

objects. PV has above-Director components.

Security Handler (SCHH)

If the OpenVME High Security Option is installed, Security Handler provides the

basis for maintaining and acting upon dynamic security information. Additional

information is stored in the catalogue for each object defining its security

attributes. When such an object is accessed, SCHH checks that the access is

permitted by the Mandatory Security Policy and adjusts the dynamic security

classification of the VM according to the nature of the access to the object.

Location Manager (LOCM)

OpenVME supports the concept of Locations. Locations are used to group

resources which have some association - most usually they are geographically co-

located. A location is a catalogued object associated with which is a default

language, a civil time displacement (relative to the system clock), and

operational subsetting data. Any hardware unit, SAP, or service may be

associated with a specific location and each job in the system has a default

location. LOCM controls the use of locations and their associated data in the

catalogue.

Other Catalogued Object Managers (UM, NM, UOM)

Various minor subsystems - User Manager (UM), Node Manager (NM) and User

Object Manager (UOM) - provide interfaces to specific types of catalogued

object.

66

Export / Import (EXIM)

The Export / Import subsystem provides facilities to enable the migration of

catalogued objects from one OpenVME system to another.

Resource Scheduling and Management

Resource Scheduler (RS)

Resource Scheduler is the subsystem responsible for co-ordinating the allocation

of real resources amongst VMs in the system. Examples of resources co-

ordinated by Resource Scheduler include a hardware peripheral device, a

magnetic tape or disc volume, a communications connection or a printer with

specific media. Resource Scheduler interacts with the subsystems directly

responsible for managing specific resources to acquire them, including Hardware

Manager, Network Controller, Volume Manager, Media Handler, etc..

Resources are requested by type, specifying in addition any specific attributes

such as media, location, volume name. This allows Resource Scheduler to satisfy

the request with any resource which conforms to the specified requirements.

In order to resolve potential conflicts of resource requirements between VMs,

resources are allocated in sets. When a VM requires resources it registers its

requirements with Resource Scheduler. Eventually it requests Resource

Scheduler to perform a resource reschedule on its behalf. Resource Scheduler

then attempts to acquire all requested resources and the reschedule is only

completed when they are all available. This technique precludes the possibility

of, for example, two VMs with overlapping resource requirements each acquiring

only some of the required resources and being unable to proceed because the

remaining resources are held by the other VM.

Resources are allocated within logical Resource Allocation Blocks. A VM may

request a set of resources before entry to a block; when it then BEGINs a block, a

resource reschedule is performed. The VM then uses the resources and, when it

no longer requires them, it ENDs the block. This causes the resources allocated

to the VM for that block to be de-allocated and made available for use by other

VMs.

Tag Manager (UTM)

Tag Manager provides for recording the usage of resources by a VM with each

Resource Allocation Block. As each subsystem allocates a resource within a VM

it notifies Tag Manager, identifying the type and identity of the resource. When a

Resource Allocation Block is ended, Tag Manager notifies those subsystems

which have recorded the allocation of a resource with the block so that the

resource can be de-allocated. This method ensures that all resources are correctly

de-allocated at the end of a Resource Allocation Block and that only those

subsystems which had allocated resources need be invoked to perform end-of-

block housekeeping.

67

Hardware Management

Hardware Manager (HM)

Hardware Manager provides logical interfaces for the management of hardware

resources including central hardware units, local interconnection, peripheral

controllers and devices. HM maintains in the catalogue a definition of the

permanent hardware configuration and its structure. The configuration is defined

in terms of a hierarchy of named hardware units in which each unit is either

owned by another unit (and has an address relative to that unit), or is part of the

top-level installation. Hardware Manager also manages hardware unit

descriptions for various classes of hardware unit, which define the generic

properties and attributes of each class of unit

Hardware Manager also provides facilities for the dynamic declaration of

hardware units. This capability is used particularly by communications

subsystems such as Network Controller to create the unit hierarchies

corresponding to dynamically established communications links.

Hardware Manager handles unexpected changes in state of units, notifying the

subsystem responsible for managing that unit. Error conditions are notified to the

Error Logging VM (ELVM) which records periodic statistics as well as diagnostic

dumps and error logs. In some cases, the operator is informed, for example, if a

line-printer runs out of paper or a hardware unit failure occurs. The operator is

provided with facilities to alter the configured state of a unit so that it can be

made available or unavailable for use.

68

Module Loading

VME Module Loader (BL)

The VME Module Loader is the subsystem responsible for loading OMF

modules into virtual memory. It is invoked either by a direct request to load a

module (by reference to one of its module keys) or as a result of a dynamic

reference to an external named object during execution of a previously loaded

module.

Loader maintains data recording the names of loaded modules and the names of

visible OMF objects within the modules; the names of externally accessible

Director and Kernel interfaces are also recorded (during system load). Loader

uses this data to satisfy dynamic references to already loaded objects, which can

include resources to be shared between VMs. Where required, Loader establishes

System Calls to enable a procedure executed at one Access Level to enter a

procedure executed at a more privileged Access Level.

Loader also provides facilities for dynamically creating temporary OMF objects

and areas which are subsequently treated as though they had been loaded from

OMF modules.

Logical File management

OpenVME Logical Filestore Organisation

Filestore is regarded, logically, as an organised set of files, each identified via the

Catalogue. Files may be individually catalogued. Each file has a file description

describing the properties of a file including information about the organisation of

data within the files. A Library is a collection of similar files with properties

inherited from the Library description in the catalogue. Files and Libraries may

be grouped together under a Filegroup node in the catalogue.

A file is normally viewed as a logical collection of records. An application

manipulates records via a Virtual Resource known as Record Access Mechanism

(RAM) which hides all details about how the file is stored or handled as a

physical entity. The level of abstraction provided by RAMs has important

consequences allowing, for example, an application to access a serial file

independently of whether it is based on disc, magnetic tape or a communications

connection.

Several types of file are provided, to carry out different functions - for example:

� Serial and Random data files;

� Program files holding OMF (program) modules;

� Journals recording information about individual jobs or system behaviour;

All filestore is associated with some category which defines the manner in which

the physical filestore is managed including, for example, block size, allocation

69

unit size, backup and multi-plexing requirements. Each category may have one or

more partitions, each a discrete area of a disc or magnetic tape volume. Filestore

is allocated to users by means of allocations; each allocation specifies an amount

of filestore within a single specified category.

Each file is placed in a single allocation and comprises one or more file sections,

each comprising one or more extents. Each extent is a set of one or more

contiguous allocation units from the same partition within a category.

PhysicalLogicalManagementUser

Allocation

Allocation

Allocation

Allocation

Allocation

Allocation

Files Allocations Categories Partitions

Category

Category

Category

Category

Category

Files

Files

Files

Files

Files

Files

Volume Manager (VOLM)

Volume Manager is responsible for the management of Volumes and Volume

Descriptions. It maintains dynamic information about Categories and Partitions

and how they are mapped to volumes.

70

File Controller (FC)

File Controller manages the catalogued information about the physical placement

and format of real files, primitive files and file sections. It provides the

declarative interface to files, allowing them to be created (based on file

descriptions), saved, deleted, assigned, released etc.. FC has above-Director

components.

Library Controller (LC)

Library Controller manages libraries and the libraryfiles they contain. It provides

facilities for the description, creation and deletion of libraries. It also provides

the declarative interface to libraryfiles themselves, allowing them to be created

(based on the library description), saved, deleted, assigned, released etc. Library

Controller is invoked, for example, by File Controller when it encounters a

library when attempting to select a file. LC has above-Director components.

Embedded Filestore Manager (EFSM, AL7)

Library Controller provides a mechanism whereby an externally implemented

filestore can be made to appear as an extension of the VME filestore structure.

This is a general mechanism allowing new subsystems to be introduced to access

additional external filestores. EFSM is one such subsystem, enabling the filestore

of a VME-X service to be accessed by VME applications. EFSM establishes a

connection to the VME-X Service VM (subject to the user being allowed to

access the VME-X service) and uses this connection to exchange file access

protocol with the Service VM. EFSM operates in conjunction with the above-

Director components of LC at Access Level 7.

Task, Service & Job management

Jobs

A job is a self contained unit of work. An interactive user session, a database

service run, a request to list or transfer a file, and a batch program run are all

examples of jobs.

Tasks

A Task is a catalogued object which provides a specific autonomous function. An

active instance of a task is established by creating an appropriate collection of

Virtual Resources, defined in the catalogue, within a VM. A task may be unique

in which case only a single active instance of the task can exist; or generic in

which case multiple active instances can exist. Generic tasks are used as support

tasks for common work environments such as MAC, BATCH, Spooler etc.

Active support tasks are organised into task pools, sets of similar tasks managed

by a scheduler task.

71

External communication with a task is achieved by sending task messages via

Task Channels. Task messages may be sent even when the destination task is not

currently active, in which case an active instance of the task is created

automatically.

Services

A Catalogued Service is an object in the Catalogue describing some functional

capability independently of the means by which it is provided. All catalogued

services are named and referenced in a standard manner although the

functionality of each is used via an interface whose nature is dependent on the

particular service provided. Examples of catalogued services are:

� a MAC, VME-X, BATCH or TP work management service;

� an application service provided by an application server;

� a communications service;

� a spooling or file transfer service;

� a database management service;

� a user session management service.

Each catalogued service has a fixed management name and optionally several

service selectors, additional names referring to the service which may be

changed. Various standard attributes apply to all services, whilst others are

specific to a particular service or to a class of services sharing a common service

description. Amongst the common attributes are:

� the service selectors by which the service can be named;

� the mechanism by which use of the service is requested;

� the security mechanisms controlling permission to use the service;

� the communications routes through which the service can be accessed;

� the task(s) responsible for providing the service, including scheduler &

support tasks.

Task Controller (TC)

Task Controller (TC) is the subsystem which manages all aspects of tasks

including cataloguing, starting and stopping tasks, task pools and task messages.

TC also manages operator tags, unique identifiers which are assigned to jobs as

they are requested. TC provides facilities to allow an operator tag to be

associated with the task currently responsible for the job, enabling other tasks to

identify the job and "communicate" with it.

Service Manager (SVM)

Service Manager is the subsystem which manages all aspects of services and

service descriptions including cataloguing, management, starting, stopping and

suspension of services. SVM has above-Director components.

72

Virtual Machine Initialiser (VMI) & VM Description Handler

VDH manages VM description data. VM descriptions are held in virtual memory

rather than the catalogue because they need to be accessed by VMI prior to

connection to the catalogue. A VM description comprises two lists of procedures

to be entered at each Access Level in order to initialise and collapse the VM,

respectively.

Virtual Machine Initialiser initialises the standard components of every VM. This

involves calling the initialisation procedures for each Access Level as defined by

the VM description. VMI provides defaults for these procedures which call the

initialisation procedures for each Kernel or Director subsystem which operates at

Access Levels 3 to 5. A subsystem initialisation procedure creates and initialises

a copy of its in-process data within the VM and amends any public data

accordingly. In some cases subsystem initialisation is dependent on job-related

information which is supplied by subsystems operating at Access Level 9; in

these cases the subsystem is initialised by a subsequent inward call from Access

Level 9 rather than by VMI.

Task Creation & Initialisation

Almost all VMs are created at the instigation of Task Controller according to a

specified task description defined in the Catalogue node for the Task. The initial

creation of a VM is performed by Kernel acting at the request of Task Controller.

Subsequently a set of standard Kernel and Director Virtual Resources are created

in the VM under the control of Virtual Machine Manager (VMM) and Virtual

Machine Initialiser (VMI) subsystems respectively.

Once Kernel and Director initialisation are complete, Task Controller effects the

higher level initialisation of the VM by causing Task Related Initialisation

Procedures (TRIPs), defined in the task description, to be executed within the

VM. These TRIPs create and initialise the Virtual Resources supported by

Above-Director subsystems. Thus the set of Virtual Resources created in a VM

depends on the TRIPs executed and an application environment can therefore be

tailored to particular requirements by specifying suitable TRIPs to create that

environment.

Operator Communications and Journals

Operator Communications Handler (ECFH, OFM and PT))

OpenVME makes provision for operators to monitor and control the state of the

system as a whole and of particular aspects of the system - e.g. the resources at a

particular location. Operator Communication Files (OCFs) are virtual store files

which can be used by subsystems within Director and above to record the system

state. Prompts are messages to an operator notifying some system state or

condition which requires operator action; when appropriate, the operator can

respond to the prompt informing the system what action has been taken.

73

An operator interacts with the system from within an interactive OPER job which

is associated with particular properties such as location; only that subset of the

system corresponding to those properties is visible from the OPER job. The

operator can display OCFs, journals and prompts on the terminal and can

perform system management commands.

A journal is a file which records events occurring within the system, an

application server or a job. System journals record job initiation & termination,

system exceptions, security audit and accounting information. A job journal

records progress of an individual job or task. Many subsystems can be requested

to write information about their usage or diagnostic information to journals.

ECFH provides facilities for journal creation, opening, closing, writing, reading

etc., and controls the mapping of messages according to their type into

appropriate journals. It also provides support for the creation, updating and

reading of OCFs and for the handling of prompts.

Journal messages are stored in parametric form and translated, when required,

into natural language via Message Libraries. This translation is handled by the

Operator File Manager (OFM) and Parametric Translation (PT) subsystems.

Shared Memory & Message Passing

Shared Data Areas

A Virtual Resource can be shared between several VMs by loading the data

area(s) associated with the resource into Public or Global segments commonly

accessible to the VMs. This is achieved by loading the same OMF module in

each VM to create the VM's view of the shared resource. In the OMF module one

or more OMF objects represent shared data areas, with properties indicating that

they are to be loaded into shared segments. The shared segments are created

when the module is first loaded. A subsequent load operation in another VM

causes the segments to be made accessible in that VM and loader's tables to be

updated to record the VM's local view of the loaded module.

Virtual Memory

Is implemented by

OMF

Module

Filestore

loaded into

Virtual
Resource

Describes

Catalogue

Loadable
Object

File
Object

is related to

Virtual Memory

Virtual
Resource

Shared Data Area

Accesses Accesses

74

Address-Space and Region Manager (ASR)

ASR provides the basic mechanisms required to support X/Open Inter-Process

Communications facilities. These are:

� Shared Memory Areas: regions of contiguous shared memory which can

be mapped into the address space of one or more VMs;

� Message Queues: objects which allow messages to be passed between

processes in one or more VMs, notifying interested VMs when messages

arrive;

� Semaphores: objects which allow processes in one or more VMs to

synchronise with each other. Semaphores can be grouped into Semaphore

Sets and a process can perform an operation sequence on the semaphores

in a set, the sequence only terminating when the final operation is

complete.

The shared memory facilities provided by ASR are lower level than those

provided by module loader. ASR facilities are based on the explicit creation of

address spaces and mapping of regions whereas the sharing of data areas loaded

from OMF modules is an entirely implicit mechanism.

ASR supports a public object type known as a Shared Area Context (SAC). A

SAC is owned by the VM which created it; other VMs can gain access to the

objects within a SAC by establishing an association with the SAC using an

interface provided for this purpose by QISH.

A SAC may contain public objects of three types: Shared Areas, Message

Queues and Semaphore Sets. A shared area can only be created by the VM which

owns the SAC but message queues and semaphore sets can be created by any VM

gaining an association with the SAC. Within each VM associated with a SAC,

local objects are created corresponding to each public object to which the VM

requests access, as shown in the table below.

Public Object Local Object

Shared Address Context Group (objects owned by a VM)

 Subgroup (objects owned by a process)

 Address Space

 Shared Area Region

 Message Queue Message Queue Connection

 Semaphore Set Semaphore Set Connection

75

ASR provides the interfaces required to create, modify, delete and establish local

connections to Address Spaces and Regions, Message Queues and Semaphore

Sets; it also provides interfaces for performing operations on these objects. The

interfaces correspond closely to those defined by X/Open for IPC, including

provision for permission checking; however, operations which are defined to

suspend synchronously in the X/Open definition instead return control to the

caller, with a suitable result code.

Quick Intra-System Handler (QISH) and Quick Message Handler (QMH)

QISH and QMH are two related subsystems providing fast message-passing

between VMs using shared memory and events. QMH provides the basic

message passing facilities between VMs whilst QISH makes individual

connections available to higher level subsystems and applications. QISH

provides a mechanism which allows connections to be established and used in the

same way as general communications connections; this is based on intercepting

relevant RS and COSMAN interfaces.

QISH has a minor but important subsidiary role in providing a secure means by

which a VM can perform operations on objects supported by ASR. Above-

Director subsystems and applications cannot do so directly but QISH provides a

secure means for a VM to gain such a capability and create local IPC objects,

allowing it to call ASR directly to operate on those objects.

Transaction Management

The OpenVME transaction management facilities are described in detail in

Chapter 7. This section summarises the role of the Director subsystems

supporting transaction management. These facilities only use global virtual

memory for areas shared between VMs..

Commitment Co-ordinator (COCO)

Commitment Co-ordinator (COCO) links the activities of a set of Resource

Managers (RMs) within a VM so that they can collectively perform transactions

which have the required transactional properties. In terms of the X/Open

architecture, it performs the role of a Transaction Manager.

Application Dialogue Handler (ADH)

Application Dialogue Handler (ADH) provides an efficient method of passing

messages between VMs within a single OpenVME system. ADH uses supporting

interfaces provided by QMH.

Work-In-Progress Store Manager (WSM)

WIP Store Manager handles the data used to roll-back or recover transactions,

sessions, databases etc. In effect, it handles the non-volatile data except for that

managed directly by the Resource Managers themselves.

76

Communications support

Network Controller, Upper Director (NCUD)

NCUD operates in conjunction with the Network Controller Task (NETCON,

described in Chapter 9). Its main function is to support declarative operations

associated with network connections. These operations include:

� the initiation of outward network connection requests by user VMs;

� the initiation of network disconnection requests by user VMs;

� the notification of inward network connections to an appropriate listening

VM;

� the notification of network disconnections to the VM currently using the

connection;

� the buffering of information associated with connection & disconnection

handling.

NCUD provides the interfaces by which Resource Scheduler handles network

connection resources, passing information to or from NETCON as required, via

task messages.

System Loading, Initialisation & Checkpointing

System Load commences with a hardware-dependent mechanism which places a

primitive Kernel in memory and enters a pre-created VM. Kernel then initialises

itself, establishes the hardware configuration. It then enters Supervisor Loader

which loads Director as indicated by the steering file. A new VM, the Director

Initialisation VM (DIVM), is then initialised by VMI, establishing Director

subsystems within the VM. The System Task Watchdog VM is started and it

establishes VMs containing the required set of System Tasks and schedulers;

these in turn create VMs for any required support tasks.

A Full Load can be a very lengthy operation and therefore a checkpoint

mechanism is provided which allows a system which has been almost completely

loaded and initialised, and which has been specialised for the requirements of a

particular installation, to be saved on disc. A subsequent Restart Load can load

the system from the saved checkpoint, considerably reducing the time taken to

establish an operational system. The checkpoint can only contain information

which does not vary between system sessions. Therefore if a file was in use at the

time of the checkpoint and its contents are later changed, or the configuration is

changed, the checkpoint becomes invalid.

Checkpoint Restart Controller (CRC)

Checkpoint Restart Controller controls the functions involved in creating a

restart site on disc and restarting the system from it.

77

Director Meters & Statistics

Standard Monitoring Facility (SMF)

The Standard Monitoring Facility (SMF) provides standardised support for

collection and dissemination of monitoring information from applications. SMF

has components at Kernel, Director and User Access Levels. It is based on the

Managed Object model and supports named monitoring objects which may be

public, local or global and which contain:

� counter meters (containing values which increase in discrete steps);

� gauge meters (containing values that may increase or decrease);

� compound meters (containing arbitrarily typed values);

� further objects (allowing the creation of a hierarchy of objects).

Counters and gauges may have upper and lower thresholds specified.

Applications using SMF are grouped into two classes: Providers and Consumers.

Providers supply information to update monitoring objects and may cause

monitoring events under certain circumstances including changes in status, alerts

and the crossing of a gauge or counter threshold. Consumers can read meters and

elect to be informed of the occurrence of specified monitoring events. RMSV and

VCMS are examples of consumer applications whilst the subsystems providing

transaction management (COCO, WSM) are examples of producers.

Director Error Management

Director Error Manager (DEM)

Director Error Manager handles exception conditions occurring in Director.

Exceptions detected by Director Subsystems are logged to the System Journal as

Software Incidents. Exceptions detected by hardware or Kernel are notified to

Director as contingencies. Some Director subsystems have contingency handlers

which are notified in these circumstances so that recovery from the contingency

may be attempted. Otherwise a diagnostic dump is performed and system crash is

usually forced as the integrity of public Director data is no longer assured.

78

Above Director Software

Above-Director software is divided into 4 layers:

� User Code Guardian, at Access Level 6

� Record Access Manager (RECMAN), at Access Level 7

� File management utilities, at Access Level 7 and above

� The System Control Language environment (SCLS), at

Access Level 8

� Various Job and Application Environment subsystems, at

Access Level 9

User Code Guardian

User Code Guardian (UCG)

User Code Guardian has three main functions:

� Contingency handling

� VM dumping

� Budgeting & Accounting (BUC, ACC)

A contingency is an unanticipated exception condition. Contingencies occurring

at Access Level 6 or above are notified, in the first instance, to UCG. Software

executing at Access Level 6 or above can elect to handle certain contingencies

and UCG provides interfaces to allow an event to be nominated to be caused by

UCG when such a contingency occurs; software handling the event may then

attempt recovery action. Otherwise, UCG has a range of default actions

depending on the nature of the contingency. If no recovery is possible, it

performs a diagnostic dump of the VM to a journal and, depending on the work

environment, may abandon the current application, job or even the whole VM.

Record Access

Record Access Manager (RECMAN)

Record Access Manager is a collection of subsystems which provide record-level

access to file data, independently of the nature of the underlying physical file or

medium. Thus an application may read a sequence of serially accessed records

from a file held on disc, magnetic tape, a communications connection or virtual

store without needing to be aware of any differences.

RECMAN subsystems can be divided into two main groups:

� those implementing record access: the Record Access Mechanisms

(RAMs);

� those establishing and, subsequently, providing common file services to

the RAMs.

Application Environment

Public Kernel
Nodal Kernel

Lower Director
Upper Director

User Code Guardian
RECMAN
SCL

Application

79

A RAM is a Virtual Resource created by RECMAN for accessing a file. The

operations supported by a RAM may include: selecting a record by absolute or

relative position, or by key; reading, modifying, locking, unlocking, adding or

destroying a record; maintaining and sorting indexes; actions specific to

interactive devices such as terminals.

Record Access Mechanisms are provided for the following file organisations:

� Serial (RC), providing record level access to serial, direct serial and

ordered serial file organisations;

� Indexed Sequential (IS), providing record access level access to files of

indexed sequential, hashed random and COBOL relative file

organisations;

� Slow Device (RF), providing record level access to interactive devices,

control programs and bulk input-output devices;

� Block Access (BA), providing access to whole physical blocks on

magnetic media.

� Alternate Key (AK), allowing an Indexed Sequential file to be accessed

by one or more Alternative Keys as well as the primary key;

� Record Transformation (TR), allowing user defined record

transformations.

Supporting services are provided by the following subsystems:

� File Services (FL), which is responsible for reading file descriptions form

the Catalogue, and loading and establishing the required RAM.

� Resource Manager (RM), which allocates and releases resources required

by the RAMs. This includes instances of RAMs (so that they can be

serially re-used) and memory for buffers, file checkpointing and recovery

information.

� Record Access Tag Manager (RT), which tags resources associated with a

particular RAM so that they can released when the RAM is de-allocated

or at the end of the SCL Resource Allocation block in which they were

requested.

� Record Access Error Manager (ER), which deals with unrecoverable

errors detected by the RAMs.

� File Recovery (RR), which provides file checkpointing and recovery

facilities.

� Section Manager (SM), which provides function common for all RAMs to

attach and detach file sections as required.

� CAFS Generator (CG), which generates code for the CAFS search

accelerator, which can be invoked via the Indexed Sequential RAM or

IDMSX.

80

� Direct CAFS Interface (DCI), which provides high level access to CAFS

capabilities, allowing retrieval of records from CAFS-based files

according to specified search criteria. DCI Interfaces can be called

directly from SCL.

� FTAM Virtual Filestore (VFS) supports the Virtual Filestore defined for

FTAM. It provides the basic operations of the Virtual Filestore, and maps

them onto corresponding operations on VME filestore.

File Management Utilities

File Description Handler (FD)

File Description Handler provides facilities for creating and modifying file

descriptions. Descriptions are generally based on standard descriptions but can

have existing attributes modified and new attributes added according to the

supplied attributes. Each description is stored in the catalogue and can be used as

the basis for creating further descriptions.

Resource Interface Manager (RI)

Resource Interface Manager provides a user interface to Volume Manager, File

Controller and Library Controller. e.g. Volume, Allocation, Category, Partition,

File & Library interfaces and commands.

System & Job Control

Interactive control of an operational system, individual jobs and application

servers is performed using statements expressed in the OpenVME System

Control Language (SCL). SCL statements allow the user to call interfaces made

available by applications and by command procedures. Commands are provided

for various classes of usage, including:

� System management;

� Job management;

� File creation, editing, management and deletion;

� Executing applications, including application development tools.

The set of standard commands supplied with the system are termed the General

System Interface (GSI) Commands.

81

The System Control Language (SCL)

SCL combines the functions of a job control language and a programming

language. It is a procedural language designed for both interactive and batch

usage. SCL has facilities for calling system-supplied and user-written procedures,

including the interfaces used to manage the system. SCL procedures are callable

in the same way as any other procedural interfaces in the system.

An SCL procedure is structured as a single procedure whose interface is specified

in a template, which defines the parameters of the procedure, their names, their

data types, keywords which may be used to identify them and default values.

Data declarations in the procedure allow variables and constants local to the

procedure to be defined. Data types include integers, booleans, strings and arrays

of each of these types. The body of the procedure is written using conventional

structured programming facilities such as if then else, case, while and do loops

etc.. SCL BEGIN and END statements create and destroy resource allocation

blocks enabling control over the scheduling of resources from SCL.

SCL procedures can be executed as source files or compiled into a much more

efficient form known as SCL Intermediate Code. Compiled SCL procedures are

stored in OMF modules and can be manipulated and loaded in exactly the same

manner as OMF modules generated by any other compiler. In addition, an SCL

template can be inserted into any OMF module for a procedural interface in that

module, allowing the interface to be called as an SCL command.

It is often desirable for data values to persist between different procedures or

applications. For this purpose SCL Jobspace is provided. Variables can be

declared which persist in Jobspace and which are accessible as external data to

any procedure or program. They are frequently used to record information

specific to a particular job - e.g. a user name, or environment variables.

Interactive SCL

An interactive user can enter SCL statements, including calls to templated

procedures, directly at the terminal. Parameters to procedures can be specified:

� positionally, e.g. Command(parameter_1, parameter_2, . . parameter_n)

� by keyword, e.g. Command(key_1 = value_1, key_2 = value_2, . .

key_n = value_n)

� interactively, by entering parameters into a form.

82

The interactive style of calling a procedure is known as Prompting. It is invoked

by entering "Command?" (where Command represents a named procedural

interface). Similarly, a single "?" can be entered instead of the value of any

parameter. This causes the SCLS Interactive Help system to display help

information about the relevant parameter. The Help system can also be invoked

to display information about a command or various aspects of the system by

entering "Help(Command_Name_or_Topic)". Alternative or additional help files

can be created by the user to accommodate particular requirements.

SCL Programs and Batch Control Files

An SCL Program is a file containing SCL statements with all the facilities

described above though not structured as an SCL procedure; it does not,

therefore, have parameters. SCL programs are interpreted directly from SCL

source files.

Control Programs

Each job has a notional source of SCL statements used to describe the actions to

be performed by the job. This source is handled as a standard file and is termed

the Control Program. Output from interactive jobs is returned to the terminal;

for interactive or batch jobs, output can (also) be written to a job journal.

For a batch job the control program is taken from a standard serial file. The file

contains SCL statements and is read sequentially. Provision is made for

embedding data in the file for applications which read data from the standard

control program source.

In the case of an interactive job (e.g. in a MAC work environment) the control

program is taken from the interactive terminal by means of an interactive

dialogue cycle with the user:

� The user is prompted to enter an SCL statement;

� The user enters an SCL statement which might call an application or

command;

� The SCL statement is executed and any output returned to the interactive

terminal.

When an application or command is being executed in an interactive job, the user

may wish to temporarily suspend execution in order, for example, to examine the

contents of a file or the status of a queue. The user can perform a break-in from

the terminal with a special key combination. Execution of the current SCL

statement is then suspended and a new interactive dialogue cycle initiated. Within

this new dialogue cycle, the user can choose to continue or quit the suspended

SCL statement (thus leaving the new cycle), or to enter a new SCL statement.

Break-ins are handled recursively so that a stack of nested break-ins can be

created up to a system-defined maximum depth.

83

Execution of an SCL statement in a new dialogue cycle does not directly affect

the state of the resources associated with the suspended SCL statement; however

in some circumstances, resources might be shared between them (e.g. files) so

that interactions could occur. This can be exploited very effectively in some

applications: a single Virtual Resource might provide several templated

interfaces to operations which allow its behaviour to be modified or its internal

status inspected. Execution of an application embodying the resource could then

be suspended by break-in and the additional interfaces invoked from the break-in

dialogue cycle.

System Control Language System (SCLS)

SCLS is a multiple Access Level subsystem having two main components,

referred to as the Control Level and the Service Level. The Control Level,

executed at the current job Base Access Level, is the level at which SCL is

executed and the user's Jobspace is manipulated. The Service Level, executed at

Access Level 8, carries out the more privileged functions such as control stream

access, manipulation of data which must be protected from direct access by the

user, SCL syntax analysis and Intermediate Code generation, .

The main functions of SCLS are:

� provision of the SCL environment - jobspace;

� execution of SCL statements, programs and procedures;

� support for block-structured resource allocation and de-allocation;

� support of prompting and help for interactive users;

� support for interactive features such as break-in.

84

Work Management & Scheduling

OpenVME is designed to handle a wide variety of workloads ranging from a

system dedicated to running a single massive OLTP service to a system running a

mixed workload of OLTP, Batch, MAC and other work types. Work is managed

in terms of jobs and for each type of work there is a Scheduler which manages

the allocation of jobs to user VMs which actually execute the jobs.

Schedulers for the common work types are a standard part of the system.

Additional schedulers may be user-written or can be created by using the

customisation features of one of the standard schedulers. The standard schedulers

are:

� The Batch Scheduler (JXS);

� The MAC Scheduler (MXS);

� The OPER Scheduler (OXS);

� The Transaction Processing Scheduler (TPXS);

� The Output Scheduler (OPS), which handles spooling and listfile requests;

� The File Transfer Scheduler (FTS), which handles file transfer requests;

� The Filestore Management Scheme Scheduler (FMS);

OpenVME provides comprehensive facilities for defining the combination(s) of

work which may be running concurrently at any time, known as the workmix. A

workmix definition specifies, for each main type of work, parameters

constraining the behaviour of the relevant scheduler:

� the total concurrency of jobs of that type;

� individual minimum and maximum concurrency levels for each type of

Support Task capable of executing jobs of that type;

At a lower level every task is assigned to one of several policies which define

low-level scheduling characteristics such as time-slicing, range of priorities and

memory requirements.

New jobs are submitted by sending a request to the appropriate scheduler via a

task message. If the system is unable to execute the job immediately because of

insufficient resources or there is no support task currently available, the job is

queued for subsequent execution. Queues are held on permanent storage so that,

in the event of a system failure, queued requests can be recovered automatically.

Various queuing disciplines are supported including first-come-first-serve,

relative-priority and absolute-priority.

85

When a job is started the appropriate scheduler task allocates a support task to it,

if necessary creating a VM in which to run a new instance of the support task,

and then passes details of the job to the allocated task. The support task then

invokes work initialisation procedures to establish the required work environment

for the job. Whilst the job is active the scheduler continues to control certain

aspects of its execution by exchanging task messages with the support task. When

the job is complete, the scheduler is notified by a task message, and the support

task returned to the task pool.

Facilities are provided for a user or operator to communicate with any job in the

system whether it is queued or active. Each job is allocated a unique operator

tag, by which it can always be identified. As responsibility for a job passes

between one task and another (e.g. from a scheduler to a user task), the operator

tag becomes associated with each task in turn. A command or message to a job

identifies the job by its operator tag and is handled by the task with which the

operator tag is currently associated. Standard commands include the ability to

abandon a job or to change its scheduling characteristics.

TP
VM

VME-X

VM

User

Scheduler
MXS

MAC

Scheduler
OPS

Output

Batch

VM

User
Batch

VM
User

MAC

VM
User

VM

Copier
FT

VM

Spooler
Output

VM
Copier

FT

VM
Spooler

OutputTP

VM

VM
System

VM

System

Task Messages to

other schedulers

Task Messages between scheduler tasks & support tasks

Interactive
Service

Requests

Service

Requests

File Transfer

Batch

Scheduler
JXS

TP

Scheduler
TPXS Scheduler

File

Transfer

FTS

Service

Connection
Task
SCT

Work Management interactions between scheduler & support tasks

Work Management (WM, WMX, WMT)

Work Management (WM) is a multi-Access Level subsystem providing various

common support facilities for scheduler tasks. It has components at Access

Levels 5, 8 and 9, and user level. Its most important functions are:

� providing non-volatile queue support for JXS, OPS & FTS;

� providing a means of defining, changing and interrogating permanent

scheduler data;

� providing facilities such as standard tracing.

86

Most of the active functions of managing the workload to conform to the required

workmix is performed in the Workmix Task (WMT). Workmix Task runs the

workmix algorithm and communicates with the schedulers, via task messages, to

inform them of relevant changes to the workmix. Workmix (WMX) provides in-

process interfaces to allow a suitably privileged user to define, change or

interrogate the current workmix. Where necessary, WMX procedures

communicate with WMT via task messages.

Work Introduction (WI)

Work Introduction provides interfaces which enable a VM to communicate, in a

standard manner, with a scheduler VM in order to submit a new job, or with a job

(via its operator tag) to modify or interrogate some aspect of its handling.

Standard routes to the Output and File Transfer schedulers are provided to allow

file listing and transfer requests to be submitted.

Above-Director Subsystem Layering

The diagram below illustrates the layering of Above-Director subsystems within

a VM, and shows the use of task messages for communication between scheduler

and support tasks.

VM Environment

Task Environment

Work Introduction & Outer SCL
AL 9

AL 5

AL 1-4

Application Level Software
AL 10

Director - TC

WI, OSCL

Task Messages

to other VMs

User Code Guardian
AL 6

UCG

SCL Environment
AL 8

SCLS

Kernel

Outer SCL (OSCL)

Outer SCL is the subsystem responsible for establishing the Work Environment

within the support task in a user VM. A user VM is created running a support

task whose initialisation includes execution of standard OSCL procedures which

create the initial OSCL environment. The OSCL environment includes the

mechanisms required to communicate with the scheduler task responsible for the

work type with which the user VM is associated. Default handlers for

contingencies and operator messages (directed to a job tag) are also provided.

87

When a scheduler allocates a user VM to execute a job, it sends a task message

to the support task, which is handled by OSCL procedures. After initialisation

OSCL processing comprises a cycle, the OSCL processor loop, whose main steps

are:

� wait for and receive a job request from the scheduler via a task message;

� begin a new SCL Resource Allocation Block;

� perform any standard job initialisation including journal creation;

establishment of spool and listfile batches in conjunction with the Output

Scheduler; switching to the required User and Account contexts; and

establishing standard file, library and loading contexts;

� execute any standard user-specific job initialisation (USERJOINIT);

� establish the control program - either a magnetic file or an interactive file

associated with a terminal device, as specified in the job request;

� execute the control program for the job itself; this may further extend the

Work Environment by loading and initialising additional Virtual

Resources within the VM before commencing the main part of the job;

� execute any standard user-specific job completion actions

(USERJOFINAL);

� perform any standard job completion actions including requesting journal

listing, completing spool and listfile batches;

� release any remaining resources acquired by the job by ending the

Resource Allocation Block.

Language Support

Language Run-time Libraries

OpenVME language systems generate compiled OMF modules. In most cases the

OMF contains compiler generated references to language-specific routines which

support standard or optional features of the language -e.g. print formatting

routines or mathematical functions. These routines are collected into one or more

additional OMF modules, with named entry points for each routine. The modules

constitute the run-time library for the language and are considered as part of the

language system.

Testing & Diagnostics

The OMF definition provides for detailed diagnostic information to be contained

in an OMF module to enable symbolic debugging and tracing. When a source

module is compiled, the programmer can specify the level of diagnostic

information included in the OMF module. At run-time, part of the standard

Application Programming Support environment is the Object Program Error

Handler (OPEH).

88

The user can specify the level of diagnostic and tracing facilities required,

provided these are compatible with the diagnostic information in the OMF

module. When the application is first entered, compiler generated code invokes

OPEH which then requests UCG to notify contingencies such as Program Errors

to a nominated OPEH procedure. When a contingency arises, OPEH uses the

OMF diagnostic information to generate an error report which can be displayed

to an interactive user or written to a job journal. Similarly, if run-time tracing is

required, the trace can be displayed on a terminal or written to a journal. In either

case, if suitable compile-time and run-time options have been specified,

information is produced in terms of source procedure and variable names, line

numbers etc.

Profiling

The Program Activity Sampler (PAS) can be used to produce a profile an

application's execution. PAS works by periodically interrupting the application

and saving a snapshot of the process state, including the Program Counter and

addresses of operands. When sampling ceases or the application is terminated, an

analysis phase generates a profile of the activity during the sampling period. PAS

uses loader and OMF diagnostic data to report profile information in terms of

source procedure names and data areas.

Protocol Handling

Transport Interface (TI)

The Transport Interface subsystem supports the X/Open Transport Interface

(XTI) which provides access to the OSI and TCP/IP & UDP/IP transport

providers. Libraries are provided in both the X/Open Application Environment

and within the VME C language to map calls in C on the XTI to equivalent calls

on OpenVME Transport Service interfaces.

OSI Application Layer APIs

X/Open conformant APIs are provided to various application layer services, most

notably:

� The X400 Message Access service (MA);

� The X500 Directory service (DIR);

� The OSI Remote Operations Service (ROSE);

� The OSI Object Manager (OM).

89

Out-of-process Subsystems

Introduction

Several major areas of OpenVME functionality provide common services for the

whole system but are not directly part of the in-process application environment.

The subsystems which support these functions are not executed within the

calling VM (or process) but are implemented in separate VMs. This allows the

subsystems to exhibit autonomous behaviour. Such subsystems are termed out-of-

process and are usually executed in dedicated VMs as System Tasks.

Normal inter-VM communications mechanisms, most commonly task messages,

are used by other VMs to request the functions offered by out-of-process

subsystems. Typically a component of the application environment provides an

API which is executed in-process and, invisibly to the calling application, passes

the request to the VM in which the target subsystem is being executed.

The most important classes of functions provided in this way are:

� Schedulers

� Work management tasks

� Spoolers & Copiers

� Communications Protocol Handlers

� Service tasks

Scheduler Tasks Support Tasks
Handlers
CommunicationsManagement

Tasks

MXS, JXS

TPXS, OXS

FTS, OPS

SCT, IXC
WMT, STW

MAC, Batch

TP, etc.

Spoolers

Copiers

NETCON

Protocol

Sponsors

Service VMs

IDMSX

System
Management

CSA, ASC

Director

Above Director

Kernel

FMS Handlers

VME-X

90

Schedulers

Scheduler tasks are responsible for allocating work to appropriate support tasks.

Each scheduler is maintains, according to the current workmix definition, a pool

of support tasks capable of executing the types of work for which it is

responsible. Typically a scheduler receives notification of an incoming request

for a service and allocates an appropriate support task to provide the service. If

the number of requests exceeds the resources available, the scheduler is

responsible for queuing excess requests until resources become available. A

scheduler provides operator interfaces to control its operation and to allow

manipulation of its queues and task pools.

Execution Schedulers

Batch execution scheduler (JXS)

TP execution scheduler (TPXS)

MAC execution scheduler (MXS)

OPER execution scheduler (OXS)

Spooler & Copier Schedulers

Output scheduler (OPS)

File Transfer scheduler (FTS)

Filestore Management Scheme scheduler (FMS)

Work Management Tasks

Service Connection Task handles interactive service requests. It handles user

authentication, service identification and soliciting for any relevant service

options. It then passes the interactive connection to the appropriate scheduler or

VM for execution. An associated task, Index Constructor (IXC), assists SCT in

building a lists of all services accessible to the (possibly authenticated) user. SCT

is also the default listener for all incoming communications connection requests,

and is responsible for passing them to the appropriate scheduler.

Service Connection

Service Connection Task (SCT)

Index Constructor (IXC)

It is often convenient to run multiple interactive sessions from the same terminal,

switching between them from time to time. Concurrent Session Access (CSA)

and Advanced Session Control (ASC) provide such facilities.

Session Management

Concurrent Session Access (CSA)

Advanced Session Control (ASC)

91

Workmix Task (WMT) is responsible for evaluating the current system load and

co-operating with the schedulers to ensure that concurrencies of different types of

workload match the available system resources. System Task Watchdog (STW)

monitors the availability of specified System Tasks, starting them or, in the event

of a failure, restarting them as required. System Task Watchdog , is responsible

for starting other System Tasks and performing a watchdog role over them. If a

System Task which STW has been requested to oversee fails, STW attempts to

start a new instance of the task to take over the functions of the failed task.

Workmix Task (WMT)

System Task Watchdog (STW)

Spoolers & Copiers

File Transfer copier (NIFTP & FTAM)

Filestore Management Scheme (FMS) copier

File Transfer And Manipulation (FTAM) copier

Output Spooler (OSP)

Page Spooler (PSP)

System Management Tasks

The Programmable Operator Facility infrastructure provides a System Task

environment in which customised prompt handling and periodic house-keeping

procedures are run. A POF task is initialised at Access Level 9, declaring the

existence of a programmable operator to the Director subsystem EFCH. ECFH

routes prompts to the appropriate VM, either an interactive OPER VM or a POF

VM, depending on the characteristics of the prompt and the subset of those in

which any potential recipient VM has declared an interest. In the case of

Automated System Operation, the ASO task is based on POF, customised with

procedures of the Automated Operator Facility (AOF).

Other standard system management tasks are described in Chapter 13.

Automated System Operation (ASO)

Error Logging VM (ELVM)

Remote Management System (RMSV)

Remote Management System for VME-X (RMS)

Support and Maintenance (SAM)

Total System Teleservice (TST)

92

Miscellaneous System Tasks

Certain services which are available as part of the application environment in

each user VM have state which must be co-ordinated across all VMs using the

service. The state may also be required to persist even when the service is not

currently in use by any VM. A common way of satisfying these requirements is

for the service to have a Service VM which is permanently active and which

maintains global data, accessible to any VM using the service. Examples of

services with Service VMs are IDMSX (and other data managers accessed in-

process) and VME-X.

IDMSX Service VM

VME-X Service VM

Sponsors & Communications Protocol Handlers

The OpenVME Networking Services architecture is described in detail in

Chapter 9. Below is a summary of the major communications services provided

by out-of-process protocol handlers.

Communications Network Controller (CNC, NETCON)

TCP/IP (XTI), Streams (STR)

Layer protocol handlers (e.g. Yellow Book Transport Service)

OSI TP Gateway (OTP)

X400 Message Transfer Agent (MTA)

X500 Directory Service Agent (DSA)

Remote Session Access (RGT)

Asynchronous Sponsor Service (ASS)

Asynchronous Terminal Handler (ATH)

Virtual Terminal Sponsor (VTP)

Transport Relay (RLY)

X400 Remote Sponsor (X4SP)

93

Commands & Utilities

OpenVME provides a large number of commands for performing various routine

operations. Some of these are built in to the OpenVME system; others are

provided as free-standing, loadable modules; in either case, the commands can be

called in similar ways, whether interactively or by program, A selection of

important commands is identified below to illustrate their range and scope.

Volume & Partition Utilities (VPU)

Volume, Category and Partition management, archiving & recovery

File Utilities (FC, FU, FMSUI etc.)

File creation, copying, deletion, archiving & recovery etc.

File listing, file transfer etc.

Simple File Access (from SCL)

OMF Utilities

Module Amender (MA)

Collector (COLL)

Module Lister (LM)

SCL Compiler

Basic (record) Utilities (BUS)

List Records (LR)

Append Records (AR)

Copy Records (CR)

Match Records (MA)

Merge Records (ME)

Sort Records (SR)

Text File Utilities

Edit (ED) & Screen Edit (SD)

Browse File (BRF)

Catalogue Utilities

Introduce_x

Change_x

Display_x_details

Change_x_permisssions

94

System & Work Management Utilities

Commands to jobs, schedulers, workmix etc.

Tracing and diagnostic control

Performance monitoring

Loadset, checkpoint, catalogue utilities

Hardware management commands

Network Control commands

X/Open Commands & Utilities

Within the X/Open work environment the standard set of Commands and

Utilities defined in the X/Open Portability Guide is provided. Additional

commands and utilities are provided where appropriate - e.g. associated with

optional features beyond the X/Open base definition.

95

Chapter 6
Application Environments

Introduction

An Application is an active (software) component of

system providing functionality or services specific to a

user's requirements. An application is executed in a

context, the Application Environment, which is specific

to the application's particular usage and which provides

supporting services to the application.

This chapter describes the means by which application

environments, including interworking services, are established within a VM. The

facilities for supporting co-operative processing and Client-server relationships

between applications are identified.

Basic Concepts

An Application Environment comprises the Virtual Resources which an

application uses in providing Application Service(s). The Virtual Resources

provide supporting services, invoked via Application Programming Interfaces

(APIs). For example, an application environment supporting transaction

management services creates a Virtual Resource which provides the X/Open

transaction management services, via the TX API.

Application environments are specifically tailored for particular workloads. An

application environment within a VM is established by creating and initialising

the Virtual Resources required to support that environment. Virtual Resources

can be created at the time of VM creation, when an application is first started, or

dynamically during execution of an application.

Many IT Business Solutions require the co-operation of several applications,

invariably making use of underlying interworking services. OpenVME provides

such services at various levels, from simple Networking Services (which the

applications have to use explicitly) to high level Distributed Application Services

(with which the distribution is invisible to the applications). These underlying

interworking services may be provided as part of the application environment

within a VM, as described above.

In any case, co-operation between particular applications may be established in

various ways, notably:

� statically, during application development;

Application Environment

Public Kernel
Nodal Kernel

Lower Director
Upper Director

User Code Guardian
RECMAN
SCL

Application

96

� statically, during application installation or initialisation;

� dynamically, during application execution;

� for each interaction.

In the most general case, the concept of an isolated application becomes less

meaningful as each application may co-operate, dynamically, with other

applications in providing the particular service for which it is responsible. This is

the model of distributed computing or co-operative processing, in which

applications co-operate by using services provided by other applications. In this

model, an application acting in the role of a client is said to use the services of an

application acting in the role of a server, thus establishing a client-server role

relationship between the applications.

A Structured View of Application Environments

The environment in which an application is executed can be considered as

comprising a set of Virtual Resources. The Virtual Resources are organised into

several layers. Each layer is concerned with a different aspect (or level of

abstraction) of the environment in which the application is executed.

Kernel Services

Director Services

The Application

Application Programming Support

Work Environment Services

VM Environment

Interworking with

other Applications

Application Programming Interfaces

(Application Service)

(Work Management Service)

The lower layers are concerned with providing a rich initial VM environment

which is broadly independent of any particular application or application type.

This layer includes the ability to enhance the environment dynamically by

97

"loading" further software modules from a loading environment into the VM,

thus creating additional Virtual Resources.

The next layer provides a Work Environment for the application, controlling the

introduction and subsequent organisation of work within the VM; the facilities

provided by the Work Environment depend on, for example, whether the

application is interactively controlled or not.

The layer closest to the application, Application Programming Support, provides

most of the services associated with open application environments. Together, all

of these layers provide services which may be used directly or indirectly by the

application. The services are invoked via Application Programming Interfaces

(APIs). Wherever appropriate, the interfaces conform to the relevant open

standards.

The concept of an application environment is contextual. An "application" may,

itself, provide elements of (or a complete) application environment to a higher

level "application". This recursive structure extends downwards as well and is a

natural consequence of the generalised manner in which OpenVME allows

Virtual Resources to be dynamically created in a VM, using the services

provided by other, previously created Virtual Resources. Each layer of the

recursive structure, in providing its own services to higher layers, encapsulates

services provided by lower layers.

OpenVME Work Environments

A Work Environment is that part of an application environment which relates to

how work is introduced and subsequently organised. This is not a precise

distinction: rather it is convenient to group applications whose application

environments have these characteristics in common and to support them in a

standard manner. Any particular job, session or application is executed in a work

environment.

OpenVME provides several standard work environments, each designed for a

particular class of work. Additional Work Environments can be constructed by

combining components used to construct the standard Work Environments.

The following list identifies most of the standard Work Environments. It is not

exhaustive and, because of the flexible manner in which Work Environments can

be created, the items are not necessarily exclusive. For example, the Spooler and

Pseudo-job are specialisations of the System Task environment.

Single-threading Work Environments

� The MAC (Multi-Access Computing) work environment provides

facilities for interactive use of VME. It is always associated with an

interactive terminal or workstation. The user can issue SCL commands,

98

invoke applications (which may be interactive) or initiate jobs in other

work environments.

� The VME-X work environment provides an X/Open branded Common

Application Environment for interactive sessions and free-standing

(daemon) processes.

� The Batch work environment provides facilities for work which is not

directly dependent on an interactive terminal. The work is controlled by a

file of SCL commands.

� The Spooler environment provides facilities for input and output spoolers,

and file-transfer copiers, under the control of an appropriate scheduler.

� The TP AVM (Transaction Processing Application VM) work

environment provides transaction management facilities for the support of

TP applications. The AVM is serially re-used, performing one complete

transaction (allocated by the CVM) before the next.

Multi-threading Work Environments

� The TP CVM (Transaction Processing Control VM) work environment

provides scheduling for the support of TP services which interact with

large numbers of terminals or workstations, other (local or remote)

applications, or other transaction sources.

� The CDAM (Co-ordinated & Distributed Application Manager) work

environment provides an facilities for non-TP applications which

nonetheless require transaction management services to co-ordinate their

operation.

� The System Task environment provides an environment in which

OpenVME system services, such as schedulers, system management

sponsors, communications protocol handlers, Service VMs, etc. may be

executed within VMs.

� The Pseudo-job environment (PJE) provides facilities for user-written

System Tasks.

� The Communications Service Infrastructure (CSI) environment provides

facilities for complex communications-based services.

99

OpenVME Application Servers

An OpenVME Application Server is formally described in the catalogue and is

thereby uniquely associated with the provision of certain Application Services. It

is an autonomous unit, operating independently of other servers, and is a unit of

portability between systems. It is responsible for the consistency and availability

of all its resources, notably data. An important consequence of this is that an

individual resource may only be accessed under the control of a single

application server.

An application server comprises:

� Applications providing the functionality of the services offered;

� A set of Resource Managers: databases or organised file services;

� A work-in-progress store;

� The means to interwork with other servers, and the associated routing

tables;

� The dedicated work environments required to support the services offered.

Routing Tables

Shared Resources Work Environments

WIP

Store
CDAM

etc.

Applications

Application Servers

RECMAN

IDMSX

Relational

Interworking Services

MAC, VME-X, . . .

eg RPC, . .

Local OSI TP

Service

TPMSX

100

The concept of an application server provides a convenient encapsulation of a

logical group of functionality into a manageable unit with well defined interfaces.

Application servers conform to certain rules:

� An individual application server exists only on a single OpenVME system

but can be relocated, as a single unit, between systems;

� An application server, its components and structure are formally defined

in the catalogue;

� Each application server is unique in terms of the combination of

application services it offers, their names, the resources it owns and the

data it holds;

� Access to each application service supported by an application server is

through well defined interfaces which allow the server to police the clients

which access it and the actions they perform;

� Access by an application to application services provided by other servers

is through well-defined interfaces;

� An application server is uniquely addressed by its application services;

thus a client need not know where it is actually located.

� An application server is autonomous. It can continue to offer its services

even if other servers in the same system fail;

Server Manager (SMAN) provides facilities for managing an application server.

Application servers are managed in a uniform manner, independently of the

services supported by the server. The server management facilities provided by

SMAN include:

� the means of cataloguing the components and structure of an application

server;

� interrogation of the structure and status of components of a Server (such

as Resource Managers and Work Managers);

� run-time control of a Server, including facility to start and close Servers.

101

Applications, Application Services & Application Servers

An application is executed within the work environment defined by a particular

catalogued service; this service is thus a generic work management service used

by the application. The application may subsequently bind itself to a catalogued

application service (which may be associated with an application server); the

application thus undertakes to provide the application service. The manner in

which an application binds itself to an application service depends upon the work

environment in which it is being executed, the nature of the service it is providing

and the means by which that service may be externally accessed (i.e. specific

interworking mechanisms).

As already described, an application server is uniquely associated with the

provision of certain application services; the essential property that associates

those services is that they access shared resources under the exclusive control of

the application server, which is responsible for maintaining the consistency of

those resources. Furthermore, an application server also provides the means for

applications to access application services provided by applications associated

with other application servers and vice versa.

Moreover, when required and when using suitable interworking methods, the

application server provides the means for applications to co-ordinate with other

applications (which may be associated with other application servers). This

allows co-operating applications to maintain consistency of resources under the

control of multiple application servers.

Establishing Application Environments

An application environment is established by the creation of Virtual Resources to

provide the required services. They are created at various times:

� When a VM is created it is endowed with various scheduling attributes

and capabilities. When it is initialised, it is associated with a particular

work environment and the appropriate Virtual Resources to support the

environment are created.

� When a job or session is first allocated to a specific VM (e.g. by a work

management scheduler), the work environment is initialised for the

specified service and particularised for the job or session.

� When a job or session is active, an application is started and the Virtual

Resources supporting any required APIs are dynamically created. These

resources constitute the Application Programming Support environment.

The block-structured scoping of resources within the OpenVME system enables

resources to be deleted in a manner complementary to their creation. Thus within

a session, the resources created for a particular application are relinquished when

the application is terminated.

102

Open Application Environments

The X/Open Common Application Environment: VME-X

The VME-X application environment is fully X/Open conformant. It provides the

full base set of X/Open System Interfaces (XSI) and libraries together with the

standard Commands and Utilities. ISO standard C and the associated libraries are

provided. VME-X therefore provides an environment into which applications

written to X/Open standards can be simply ported.

VME-X Kernel

VM Environment

VME-X Application

VME-X Libraries

X/Open APIs

X/Open System Interface

VME Base Facilities

Additional functionality

tailoring the VM to support the

Open Application Environment

The VME-X Application Environment comprises:

� A VME-X Service, which is a work management service defining various

aspects of environment specific to that service such as the permitted

service users, filestore, networking services etc.

� A work environment, provided by the VME-X Kernel, which supports the

X/Open System Interfaces. This VME-X Kernel supports multiple

concurrent VME-X processes within a single VM and manages the

sharing of the VM resources between them. Each process executes a

single program.

� VME-X libraries which support the standard X/Open APIs. These

libraries can be bound in to an application program when it is being

constructed during the phase known as linking; alternatively, commonly

used libraries can be shared in which case linking takes place when the

application program is loaded.

� The services of a specific VME-X Service VM. The VME-X Service VM,

via the VME-X kernel, provides overall co-ordination for all VMs

associated with a particular VME-X service.

103

A comprehensive set of features is provided in addition to the mandatory base

facilities. These include: C-ISAM & SQL (Informix), COBOL 85, TCP/IP &

UDP/IP (via sockets & XTI), uucp, mail, ftp, telnet and several Berkeley Unix

and Unix SVR4 features to facilitate practical application portability.

The VME-X Architecture

Basic Concepts

The definition of the X/Open CAE is derived from that of the UNIX operating

system. In the UNIX environment, work proceeds by the execution of processes.

The process is the fundamental unit of software composition in UNIX. Whereas

in other operating systems large applications can be constructed by software

components invoking each other directly, by procedure call, in UNIX this is often

achieved by creating a new process in which the called software component is

executed. A process is defined as:

� an address space in which the process state is represented; this comprises

text (executable code), stack and data (statically or dynamically allocated)

areas;

� a single thread of control that executes within that address space;

� the system resources required by the process.

A process (the parent) can perform a fork which creates a new process (the child)

which is an almost exact copy of the parent process. After a fork:

� a new address space is created, an exact copy of the parent process's

address space;

� a new thread of control is established whose point of execution, at the

time of forking, is exactly that of the parent process;

� system resources available to the parent process (e.g. open files) are made

available to the child process;

� each process can determine whether it is the parent or the child.

Within each process a single program is executed. A process can perform an

exec which causes a process to enter a new program within a re-initialised

address space. After a fork, the child process frequently execs a new program.

104

VME-X Services

A VME-X service is a work management service. An OpenVME system can

support several VME-X services concurrently. Each service resembles a multi-

user UNIX system in its own right, and behaves as a separate open system with

its own resources - in particular, an independent X/Open-compliant filestore.

VME-X services can be protected from each other using VME's security

facilities. Each VME-X service recognises a subset of the people known to the

OpenVME system, and only recognised users are allowed to log into the service.

The VME-X Work Environment

The VME-X Kernel runs mainly at access level 10, partly at 9. In each VM, there

is a separate instance of the VME-X kernel's data, which is all local. The VME-

X kernel has two basic functions:

� it has the ability to load a program in standard UNIX executable file

format (COFF) from VME-X filestore and enter it; the program is loaded

into an address space within the VM and is executed as a VME

sub-process.

� it provides a set of entry points to which the program's kernel calls can be

fixed up. The System Interfaces (the XSI) which the program calls are all

implemented as library routines, but some of these routines issue calls to

the VME-X kernel.

All VME-X application programs execute at Access Level 11. When they call

the kernel, the calls are translated into non-stack-switching system calls to the

VME-X kernel. The process's Access Level drops to 10 while executing in the

VME-X kernel, and perhaps lower still if the VME-X kernel makes inward calls

into the VME operating system. On exit from the VME-X kernel, the Access

Level reverts to 11. The read and write Access Keys of the VME-X kernel's data

are 10, so it cannot be corrupted or read by applications. The VME-X kernel

makes extensive use of interrupt events to detect I/O conditions, timer requests

made by user programs, hardware-detected faults in user programs, and messages

from the VME-X Service VM. The execution Access Key of all these events is

10, so the VME-X kernel can take interrupt events, no matter what the user-level

code is doing. On the other hand, these events do not interrupt the VME-X kernel

itself.

The VME-X kernel implements many system calls directly. In some other cases

the VME-X kernel calls interfaces provided in the underlying VME application

environment. In the remaining cases, the VME-X kernel passes the request to the

VME-X Service VM (see below). Code running in a VME-X environment cannot

call VME system interfaces directly. The usual technique for making a set of

related VME functions accessible is to use a device driver, so that the VME-X

application can use a special file and make stylised calls on standard interfaces

such as write() and ioctl().

105

When the VME-X Work Environment is first established an initial program is

automatically executed. For interactive VMs, this is /etc/init and for daemons,

/etc/initadi. When initialisation is complete, a new process is forked to execute

the initial program specified for the user in the /etc/passwd file.

Kernel Services

Director Services

VM Environment

Work Environment

. . . .

. . . .

VME-X Kernel

Kernel Services

Director Services

VM Environment

Work Environment

. . . .

. . . .

VME-X Kernel

VME-X Service VMVME-X User VMs

Kernel Services

Director Services

VM Environment

Work Environment

. . . .

. . . .

Kernel Services

Director Services

VM Environment

Work Environment

RPC

Handler

Process

Filestore AccessAccess to VME base facilities & shared services

RPC

Handler

Process

RPC

Handler

Process

X/Open APIs

X/Open SI

User Process

VME-X Application

VME-X Libraries

X/Open APIs

X/Open SI

User Process

VME-X Application

VME-X Libraries

VME-X Kernel

VME-X C Kernel

VME-X Kernel

The VME-X Service VM

There are many aspects of a VME-X service which require co-ordination across

all the VMs associated with that service. For example, access to files within a

filesystem owned by the service must be properly sequenced to ensure the

integrity of filestore data. In many cases, the VME-X kernel can achieve this by

suitable exploitation of underlying VME facilities. This is true, for instance, of

all non-disc I/O, pipe handling, most signal processing, and scheduling of

processes within a VM. Some functions which a UNIX kernel normally has to

handle - e.g. virtual store management - can be left entirely to VME. Many others

are supported by specific VME subsystems - e.g. address spaces and inter-

process communication (ASR and QISH).

In other cases, VME alone does not provide adequate co-ordination. In these

cases, the VME-X kernel passes the request to the VME-X Service VM using

VME message-passing facilities. Since there is only one Service VM per service,

inter-VM interference cannot occur. Many of the less critical, more complex

kernel calls are processed in the Service VM, as are certain disc I/Os.

106

Process scheduling takes place at two levels. Each VM is scheduled by VME

according to its priority. Within each VME-X VM, whether user VM or Service

VM, the VME-X kernel schedules the processes using the sub-process call

mechanism. When a process issues a request to the Service VM, the VME-X

kernel will not allow it to run again until the Service VM replies. In the meantime

it will schedule other processes in the VM if possible. In theory, a terminal user

can have two VMs on two different processors, working simultaneously. The

VME-X kernel also reschedules processes if the current process exceeds its

timeslice or if it sleeps.

The C Kernel

The Service VM has a VME-X kernel, but does not obey /etc/init or /etc/initadi.

Instead it loads a COFF program called the C Kernel. Each request from another

VM in the service is passed to the C kernel for action, and the VME-X kernel

issues a reply when the action is complete. Much of the source of the C Kernel is

derived directly from UNIX System V source code obtained under licence from

Unix System Laboratories Inc. (USL).The advantages of using USL source are

lower development costs and accurate conformance to the System Interface

definition as well as any unwritten folklore that applications ported from UNIX

may rely on.

The C kernel's interface to the VME-X kernel is quite different from the

UNIX-like interface of user VMs. Processes are also handled differently; there is

a pool of processes, allocated on demand to handle each incoming request from a

user VM. For instance, if a user VM issues a file read request, this is passed to

the Service VM, which allocates a process. Several physical transfers may be

needed, and the process remains allocated until the last of these is complete. Each

process in the Service VM has its own stack but, in contrast with user VMs, there

is only one copy of the static data. This reflects the fact that the C kernel is

modelled on parts of the UNIX System V kernel, which expects to operate on

only one instance of most of its data.

Device Drivers

A UNIX System V kernel has standard internal interfaces known as the DDI &

DKI into which Device Drivers, subsystems designed to drive particular types of

hardware devices, can be inserted. The UNIX kernel expects all drivers to

present it with a common interface; this is the DDI. The drivers themselves may

use the facilities of the generic kernel by calling functions in the DKI. The VME-

X kernel in VME-X also supports device drivers. Its device driver interface

resembles the system V DDI, but is slightly different in form. Device drivers are

compiled and constructed as ordinary VME programs, not as VME-X COFF

files, and they have the entire VME application environment directly available to

them. Each driver is a distinct executable file separate from the VME-X kernel,

and linked from it using VME loading mechanisms when the user logs in.

107

Libraries, Commands & Utilities

Standard libraries (e.g. for C, standard IO etc.) are provided together with

corresponding C header files. Library routines can be incorporated by statically

linking them into the application program. Commonly accessed libraries are also

supplied as Shared Libraries in which case the application is linked to a shared

copy of the library when it is loaded; this greatly reduces the size of the

application program file and hence the time taken to load it.

Standard Commands and Utilities are provided, based closely on the UNIX

System V source.

VME-X Filestore

The VME-X filestore is closely modelled on the UNIX System V filestore. Each

VME-X service can access up to 100 filesystems, each of which is implemented

as a single VME file with permissions to the username which owns the VME-X

service (and under which the Service VM runs). Permissions to individual UNIX

files are enforced by the VME-X system itself. Several VME-X services can

share access to a single filesystem (subject to permission checks) provided only

one has write access.

VME-X Access to VME Resources

VME SCL commands can be invoked by interactive users, and they can be used

in pipelines just like any other command. Calls can also be made to other

services, such as TPMSX services, but in this case the output cannot be

redirected or piped.

VME files can be accessed, using the syntax "/dev/vme/vme-filename". The file

is assumed to be a VME serial character file in the usual VME format and

character encoding. A binary view of the same file can be obtained by using

/dev/rvme instead of /dev/vme. The user's access rights to a VME file are

evaluated just as if the file had been accessed from a VME service.

VME Access to VME-X Resources

A user of an interactive OpenVME service such as MAC can issue VME-X

commands on VME-X services to which the user has suitable access permissions.

The VME-X commands are issued as input to whichever program is registered as

the user's initial shell. Input and output can easily be directed into native VME

files.

Similarly, an OpenVME user or application using a non-VME-X service can

specify a VME-X file in any context where it could have specified a native VME

file. The syntax is:

 "other-service!/usr/lib/..." or "other-service!my_directory/my_file".

In the latter example, the user is accessing my_directory/my_file in the user's

home directory. If specially requested, a binary view of the file will be given;

108

otherwise the file will be assumed to contain character data and it will be

automatically presented to the VME application in ICL EBCDIC record format.

Administration

Each VME-X service can have a separate administrator, so different departments

within an organisation can each have their own service. The administrator is

provided with a menu-driven package for performing routine tasks, including the

recording of users, the allocation of users to file systems, mounting and

unmounting of file systems, daemon control, setting of service parameters, and

control of the uucp suite and NFS. The administrator's job is simpler than the

equivalent job on most UNIX systems, as only a software service is being

controlled, not a physical machine.

Some administrative tasks have to be carried out by the VME system manager.

This includes the allocation of disc space for file systems, and the management of

IP addresses, and OSI network and transport addresses, installing VME-X

releases, and rationing the amount of processing resource each service may use.

The automatic file security systems of OpenVME can be used to maintain

backups. With these systems, the backup tapes are controlled solely by the VME

system manager, and the users never need to know about them, even when a file

is being retrieved. The VME-X service administrator periodically creates disc

archives containing files needing to be secured, and the OpenVME system

automatically secures them. If preferred, an entire file system can be backed up,

and this is particularly useful for the root file system. If the system is part of a

network containing UNIX machines VME-X can manage backups for them too.

109

The X/Open TP Application Environment

The Open TP application environment provides support for the X/Open model of

transaction management via the appropriate X/Open APIs. The Open TP

environment therefore provides an environment into which applications written

to X/Open TP standards may be simply ported. Equally, applications developed

to run under Open TP can be ported to X/Open conformant TP environments on

other systems.

The Open TP application environment comprises:

� A TPMSX Service which is a work management service defining the major

characteristics of the service(s) supported by the application;

� A work environment provided by TPMSX which establishes and manages

the VMs required to support the TP service and provides the basic

transaction management facilities;

� the TPMSX Application Programming Support environment which

provides Open APIs for TP applications;

� the services of shared resource managers such as databases;

� the means to interwork with other applications.

Applications are written in standard C or COBOL using open transaction

management APIs. Support for the APIs is provided by the VME Open TP

application environment. Distributed applications are supported using the

X/Open APIs and standard transaction co-ordination facilities allow such

applications to perform distributed transactions.

A detailed description of the Open TP application environment is given in

Chapter 7 (Transaction Management).

110

111

Chapter 7
Transaction Management

Introduction

This chapter describes the facilities provided by OpenVME to support

Transaction Management, Transaction Processing and Distributed Transaction

Processing.

Transactions

A transaction is an application operation or unit of work which is executed

according to certain principles which ensure that, under any circumstances, the

results of transaction are predictable. Execution of a transaction usually entails:

� receiving a message from a transaction source;

� processing the message, including any required database updates;

� returning a reply to the transaction source.

The principles, known as the "ACID properties", ensure that the effects of

executing a transaction are well defined in any circumstances, including system

failure. They are:

� Atomicity: a transaction must either complete as a whole, or not at all,

leaving any data resource unchanged;

� Consistency: the effects of a completed transaction are such that any data

resource moves from an initial valid state to a new valid state;

� Isolation: transactions must not interfere with each other even when

executed concurrently: the effects must be as though they were executed

serially;

� Durability: the effects of a completed transaction must be permanent and

persist under any circumstances, including failures of hardware, software

or system.

Successful completion of a transaction such that its effects are durable is termed

commitment.

Transaction Management is a term describing the support of applications which

need to perform operations with transactional properties. It is particularly suitable

for workloads where data integrity and security, and high reliability are essential.

Transaction Processing (TP) is a particular use of transaction management (and

Information Management) facilities for handling large volumes of (usually)

relatively simple line-of-business transactions (OLTP).

112

Distributed Transactions

An increasingly important area of TP is Distributed Transaction Processing. In

Distributed TP, a number of separate TP applications, distributed amongst

several (possibly heterogeneous) systems, co-operate to support transactions

which may access resources on more than one system. A special distributed co-

ordination mechanism is used between all the applications participating in a

distributed transaction to ensure that the ACID properties of the transaction are

preserved. This is known as the two-phase commit mechanism and it is described

below.

Open Transaction Management

The X/Open Transaction Processing Model

AP

RM TM CRM

AP

RMTMCRM

TX

XA XA+

OSI TP

XATMI

CPI-C

TxRPC

TX

XAXA+

e.g.

SQL

XATMI

CPI-C

TxRPC

The X/Open model identifies several distinct functions within an active

transaction processing system:

� a Transaction Manager (TM) which controls the co-ordination of one or

more Resource Managers and/or Communication Resource Managers as

directed by the Application Program;

� a Resource Manager (RM) which manages a resource - e.g. a Database

Manager, a transactional print server, an ISAM file manager etc.;

� a Communications Resource Manager (CRM) which is used in

Distributed TP to communicate with CRMs in other TP systems,

providing application to application communication and inter-application

transaction co-ordination;

� an Application Program (AP) which provides the user-specific

functionality.

It should be noted that this is intended only as a programming model, identifying

key programming interfaces; it is not intended to define an implementation

architecture and does not, for example, imply any particular process structure.

113

Distributed Transaction Concepts

Application Dialogues

Applications co-operating in an interactive Distributed TP system communicate

by means of an application dialogue which is an association between the

applications, allowing messages and control information to be passed between

them. The application which starts a dialogue is termed the initiator and an

application which joins a dialogue is termed a responder. A responder may, in

turn, initiate further dialogues and this gives rise to a directed graph, the

Dialogue Tree, whose root is the original initiator.

Within a dialogue, an initiator may make requests of a responder which may

return replies; for a particular transaction the pattern of request-reply pairs gives

rise to another directed graph, a sub-graph of the dialogue tree, termed the

Transaction Tree, whose root is termed the Transaction Master. The transaction

master has a key role in distributed transactions: it makes the ultimate decision

whether a transaction should be committed or not.

Transaction

Master

Dialogue

Application

Application

Application

Application

Application

Two Phase Commit

The Two-Phase Commit process is used to assure the ACID properties of a

transaction which updates resources controlled by more than one Resource

Manager. An important use of two-phase commit is for distributed transactions

which may use resources on more than one system.

An essential part of the two-phase commit process is the action of logging

information; this is the recording of that information on permanent or

non-volatile storage.

114

The two-phase commit process involves several steps:

1. The application starts a transaction; it may then update resources

controlled by RMs, which apply these updates to temporary or volatile

copies of the resources; finally, it requests the TM to end the transaction;

2. In phase 1 of the process, the TM asks each RM whether it is ready to

commit its work: each RM logs all updates and notifies the TM that it is

ready;

3. If and when all RMs have notified the TM that they are ready, the TM

proceeds to phase 2 in which it logs the decision to commit; it then

requests each RM to commit its updates - i.e. to apply them permanently

to the resources;

4. When each RM has committed its updates, it notifies the TM that it has

committed; when all RMs have done so, the TM has established that the

transaction has been successfully committed.

If any RM fails to declare itself ready to commit, the TM may then roll-back the

transaction by requesting each RM to roll-back the local effects of the

transaction, and discard any (temporary) updates to resources. If any RM, having

declared itself ready in phase 1, fails to commit in phase 2, the TM may recover

the transaction subsequently by re-attempting the commit process.

Queued Transactions

In some cases, it is not desirable or acceptable for one application to issue

requests to another and wait for a response before processing can complete. In

such cases, applications can be decoupled by passing messages between

applications via a queue which is under the control of a Message Manager. This

technique is known as queued transactions, or, in the OSI TP standards, queued

data transfer.

The sending of a message to a queue and, separately, the retrieval of the message

from the queue may be performed as transactions. If sending, delivery and

retrieval of the message are performed as transactions, and the queue itself has

suitable characteristics of reliability and durability, then messages can neither be

duplicated or lost. This technique is known as transactional messaging. Thus

although queued transactions do not provide single distributed transactions, many

of the properties associated with an interactive transaction (e.g. within a

dialogue) are retained. In general, however, it is more difficult to design and

reason about systems with the inherent asynchrony that results from the use of

queued transactions.

115

OpenVME Transaction Management Support

Introduction

OpenVME provides extensive transaction management facilities. They are

available both within a Transaction Processing environment (in conjunction, for

example, with TPMSX) and also in standard job environments such as Batch or

MAC. This section describes the facilities.

Transaction Management

Commitment Co-ordinator (COCO)

The Commitment Co-ordinator (COCO) links the activities of a set of Resource

Managers within a VM so that they can collectively perform transactions which

have the required ACID properties. In terms of the X/Open Transaction

Processing model, COCO performs the role of a Transaction Manager (TM).

For any particular transaction each transaction manager is either the master (the

transaction manager which logs the commit point) or a slave. A slave transaction

manager can act as a master to further slave transaction managers thereby

creating a transaction tree whose root is the master. Several transaction managers

can thus contribute to the co-ordination of a distributed transaction.

COCO provides the facilities to suspend a slave transaction when contact is lost

with the master during the "in-doubt" period of two-phase commit and, if

necessary, make a heuristic decision. When contact is re-established, the TM

determines if incompatible heuristic decisions have been made and, if so, informs

the work manager so that it can invoke the application to resolve the outcome of

the transaction.

Work-In-Progress Store Manager (WSM)

WIP Store Manager handles the data used to roll-back or recover transactions,

sessions, databases etc. In effect, it handles the non-volatile data except for that

managed directly by the Resource Managers themselves. WIP Store thus

provides facilities for logging Transaction Data (transient, required only until the

associated transaction has completed); Partial Results (required between

transactions within a user session), Assurance Data (required permanently, for

database recovery & auditing purposes), and miscellaneous Resource Manager

and Transaction Manager log records. Whenever possible, WSM automatically

combines several log items into a single write transfer to non-volatile storage

media; this considerably reduces the overheads of securing critical data.

WSM may optionally exploit the use of virtual memory to provide a cache to

reduce the number of read transfers from storage media. This feature is

particularly valuable for storing partial results which need to be re-read when

executing the next transaction within a session.

116

As the contents of the WIP Store are essential to the integrity of the applications

and resource managers it supports, the non-volatile WIP Store is normally

duplexed to minimise the risk of loss of data.

Distributed Application Support

XA

TXSQL

XA+

DML

ISAM

ADF
XATMI
TxRPC

CPI-C
External
Comms

OSI TP

OSI TP Gateway

RMs TM

(COCO)

CRM

(OTP)

WIP Store Manager

Application Harness (TPMSX or CDAM)

AP - Application Program

Application Dialogue Handler (ADH)

(OTP)

Application VMs

Application Dialogue Facility (ADF)

The Application Dialogue Facility (ADF) provides APIs which allow one

application to hold a dialogue with one or more other applications. The

responding application may be in the same application server, in different

application servers on the same system, or in different application servers on

different systems. ADF may be used from CDAM or TPMSX work managers.

The API to ADF is designed as a general peer-to-peer communications interface.

Other Application to Application APIs

OpenVME provides support for several open application-to-application APIs.

These include the XATMI (used in X/Open Distributed TP standards), CPI-C

and TxRPC (used in OSF DCE). Functionally, the subsystems supporting these

APIs are similar to the ADF subsystem and they exploit the underlying OSI TP

services in a similar way.

117

OSI TP Handler (OTP)

OSI TP Handler (OTP) is an OSI Application Entity which provides the OSI TP

Application Layer service of OpenVME. The OSI TP protocol is used to

communicate between distinct OSI TP Application Entities, for example on

different application servers or systems; it uses the OSI Co-ordinated

Commitment & Recovery (CCR) protocol as a carrier for distributed 2-phase

commit and associated recovery.

OTP is used by ADF and by the subsystems supporting the XATMI, P2P and

TxRPC APIs. Its main functions are enacting the OSI TP protocol state table

transitions and performing protocol encoding & decoding. When a dialogue is

co-ordinated, OTP is a Communications Resource Manager, interfacing to TM

and it takes responsibility for transmission of two-phase commit protocol

elements between application VMs in different application servers and/or

systems.

There are two major components of OTP: one runs in-process in each VM using

application dialogues; the other is used to handle external OSI TP

communications. Communication between the in-process components of OTP in

separate VMs on the same system is provided by the ADH subsystem.

There is one local OSI TP service per application server provided by OTP. The

OSI TP Gateway executes within the OpenVME Communications Server

Infrastructure, using the services of OTP, and comprises a Scheduler VM, a

Recovery VM and an appropriate number of Dialogue VMs.

Application Dialogue Handler (ADH)

The Application Dialogue Handler (ADH) provides an extremely efficient

method of passing messages between VMs in a single OpenVME system.

ADH includes facilities for the definition of routing tables which are used to

define the permissible routes between different applications, both within a system

and external the system. Routing tables contain information about an

applications server's own OSI TP service and about other, remote, OSI TP

services with which the server communicates. ADH provides a name translation

facility so that applications can transparently identify remote applications and

ADH can determine their whereabouts on the network.

ADH also provides facilities for TPMSX services and CDAM applications to

listen for incoming dialogues. These listening facilities are used in conjunction

with the routing tables to identify the destination application for any particular

application dialogue.

118

The OpenVME TP Management System (TPMSX)

Introduction

The OpenVME Transaction Processing Management System (TPMSX) provides

a complete open processing environment for TP applications so that they can be

managed in a controlled and reliable way. This processing environment provides

the capabilities necessary to support high throughput systems, with many users,

high data volumes and fast response time, with transactions processed safely and

securely.

TPMSX conforms to the X/Open TP model and a set of X/Open standard APIs

are supported as well as the OSI TP standards for communication between

transaction managers in a distributed TP system.

TPMSX makes extensive use of the underlying OpenVME transaction

management facilities described in the previous section.

The Structure of a TPMSX service

A TPMSX service is constructed from several components, including:

� A single Control VM (CVM) which queues & schedules messages for the

Application VM(s);

� One or more Application VMs (AVMs) containing user-written

application modules;

� A TPMSX Spooler VM which handles printing of documents;

� The TPMSX Auxiliary VM (XVM);

� Shared access to Resource Managers, including TPMSX itself.

TPMSX

AVMs

Type B

TPMSX

AVMs

Type A
TPMSX

Control

VM

 Database

Y

 Database

Z

 App. File

X

Transaction

Sources

119

In normal operation, all messages are initially handled by the CVM. Code in the

CVM (optionally user-written) analyses the message type and determines the

AVM Type required to handle the message; the message is then queued until an

AVM of the correct type is available. There may be several AVMs of a particular

type, allowing several similar messages to be processed concurrently. When an

appropriate AVM is available, it is notified by the CVM that there is a message

queued for processing by that AVM. The AVM retrieves the message from the

queue and processes it, passing a final reply back to the CVM; it then becomes

available again to handle a another message.

TPMSX provides a means of saving data, known as partial results, between

successive transactions from a particular source; this data is stored, in the WIP

Store, together with other recovery data generated to enable the TP service to be

restarted tidily and co-ordinated with RMs and CRMs after a service break.

Transaction demarcation, commitment management and, in general, access to

Resource Managers take place in the AVM, "in-process". In terms of the X/Open

model each Application VM is provided with Virtual Resources corresponding to

a Transaction Manager and such Resource Managers as it requires to access. One

of these Resource Managers is TPMS itself, which provides managed interfaces

to a work-in-progress store (WIP store), for logging temporary information, and

to spooling and input-output resources.

RMs

Oracle, . .)

TPMSX AVMs

CVM

XA

TXSQL

External Transaction Sources Other CRMs via OSI-TP

XA+

DML

ISAM

TPMSX

ADF
XATMI
TxRPC

CPI-C

WIP Store Manager Application Dialogue Handler

AP - Application Program

TPMSX Application Harness

TM CRMRMs

(COCO) (OTP)
(IDMS, Ingres,

Oracle, . .)

The diagram above shows how the various functions supporting TPMS

applications are supported within a TP service. It also identifies VME & TPMS

subsystems with the elements of the X/Open transaction management

architecture; these are described in more detail below.

120

The TPMSX Control VM (CVM)

The CVM has the following functions:

� Control of "dumb" terminals & other transactions sources;

� Output message formatting, incorporating the required template;

� Input message analysis and routing to a suitable AVM;

� Control of service start-up (including recovery) & close-down;

� Control of AVM creation, concurrency etc. according to service

requirements;

� Statistics gathering & message logging.

The characterisation of a CVM for a particular TP service is achieved by the use

of a parameter module, generated when the service is created or updated. User-

written procedures may also be incorporated into the CVM at certain points - e.g.

for message validation and analysis or for special output processing.

Message analysis and the consequent routing of a message to a suitable AVM can

be handled in one of several ways:

� based on knowledge of the screen template currently displayed on the

terminal;

� by direct application control of a pre-determined sequence of interactions;

� based on a message key, usually the first few characters of a message;

� by the terminal user invoking an action key;

� by invoking a user-written message analyser program, incorporated in the

CVM;

� based on OSI TP routing tables;

� by treating the message as a service-defined default message type.

Once a message has been analysed it is placed in a shared (global) data area. The

CVM selects an AVM of the appropriate AVM type from a pool of similar

AVMs, and a global flag event is caused to notify the selected AVM. The AVM

can subsequently retrieve the message from the global data area.

TPMSX Application VMs (AVMs)

AVMs are the environments in which the majority of the application-specific

work is performed by the execution of user-written application modules. Identical

AVMs are grouped into sets known as AVM types, which provide a basis for the

allocation of system resources and for optimising performance. There may be

many instances of an AVM type in a TP service, thus allowing concurrent

processing of similar messages from several transaction source. The CVM

maintains pools of AVMs of each type; the number of AVMs in a pool

determines the concurrency of message processing within that AVM type.

121

An AVM is dedicated to handling a particular transaction until the transaction is

completed. Successive transactions allocated to an AVM result in the serial re-

use of that AVM. In the course of processing a message, the application may:

� access Resource Managers to manipulate conventional files (e.g. via

RECMAN) or database information (e.g. IDMSX or a relational

database);

� output intermediate replies to the transaction source (as unsolicited

output);

� generate a final reply to the transaction source, to be output on successful

completion of the transaction;

� generate new transactions which may be started immediately, after a

specified interval, or periodically; this allows different aspects of the

processing of a single message to be handled by different applications;

� interact with other applications by means of a dialogue, using the

OpenVME distributed application facilities. In this way, a single

transaction can be executed across several applications, in the same or

different TP service and/or system.

Note that the two methods of initiating further work - generating new transactions

and starting a dialogue - are significantly different. In the former case, there is no

co-ordination between the effects of separate transactions and any recovery must

be performed by executing a compensating transaction. In the latter case the

effects of all applications are associated with a single transaction and are

therefore automatically co-ordinated.

To indicate completion of a transaction, a final reply is generated by the

application. There may be further user-written processing of this message in the

CVM and it may be merged with a screen template and then, finally, it is

transmitted to the terminal.

The TPMSX Spooler VM

The TPMSX spooler is a special AVM type which manages most of the printing

for a TP service. Spooler functionality has an in-process component which

enables AVMs to place documents in a folder file for subsequent printing by the

Spooler AVM. A folder file is thus a resource for which the in-process

component of Spooler is the responsible Resource Manager. The out-of-process

component of Spooler, the Spooler VM, handles all aspects of printing to the

printers connected to it, including removing documents from folder files, printing

them and handling exceptions and recovery across service breaks or failures.

In some circumstances it may be necessary to print some (usually small)

document during the processing of a transaction. In such cases, the document is

output directly to the printer under the control of the CVM.

122

The TPMSX Auxiliary VM

The TPMSX Auxiliary VM (XVM) is used to handle asynchronous actions for the

TP service such as spooler recovery and transaction meter logging to SMF.

The Distributed Transaction Processing System (DTS)

TPMSX provides an integrated scheme which supports a limited form of queued

transactions between TP applications. This is known as the Distributed

Transaction Processing System (DTS). An application may send a message to

another application; successful transmission of this message is necessary before

completion of the transaction. The destination TPMSX service queues incoming

messages until the receiving application is ready to receive the message; the

message is not finally removed from the queue until processing of the message by

the receiving application is complete.

Co-ordinated & Distributed Application Manager (CDAM)

Introduction

The OpenVME transaction management facilities may be exploited in non-TP

environments. A single application may therefore use several Resource

Managers in a co-ordinated manner; equally, several applications, in the same or

different systems, may co-operate using the distributed application facilities of

OpenVME; optionally these facilities may be used to perform co-ordinated

transactions across the applications.

This is particularly relevant for distributed or client-server systems for which

there are several models of distribution, most of which can be used in

conjunction with a transactional style. Indeed, transactions, whether formally

supported or not, are an essential feature of almost any (possibly distributed)

system in requirements such as data integrity, reliability and resilience are

important.

This section describes the OpenVME Co-ordinated & Distributed Application

Manager (CDAM). The facilities provided by CDAM allow the construction of

non-TPMSX applications which are able to co-ordinate updates across one or

more Resource Managers. One of the RMs may be OTP (accessed via ADF or

one of the open application-to application APIs), in which case remote RMs can

be included in distributed application co-ordination.

CDAM Concepts

A CDAM Service consists of a set of catalogued objects representing a Resource

Manager which is part of an application server environment. CDAM

applications can be run in any type of VM, usually MAC or Batch, within the

123

scope of a CDAM Run. A CDAM Run consists of one or more applications each

of which can optionally contain one or more transactions. During a CDAM Run,

which is performed in the context of a CDAM service, the VM is bound to the

application server and temporarily becomes one of its resources; CDAM thus

provides a work-environment corresponding to the nominated CDAM service.

CDAM applications which make use of ADF or one of the open application-to-

application APIs can be either initiators or responders and can participate in

dialogues with other CDAM applications, TPMSX applications or non-VME

applications.

A CDAM service also has a catalogued recovery task which provides the ability

to recover CDAM runs, under the direction of the transaction manager, in the

case of VM loss, system loss or communication failure. The recovery task is

executed in a separate System Task VM which can either be started

automatically, on system load, or manually when required.

Certain areas of application data may be declared as Partial Results. Partial

Results may be data areas within the application program or may be SCL job-

space variables. Partial Results data is automatically saved by CDAM at the end

of each transaction so that if the transaction is rolled back, or the job is restarted

after a break, the data is restored to its state at the start of the transaction.

A CDAM Run can be divided into a number of CDAM Work Units. These

typically correspond to separate application programs and they can be used to

scope Partial Results. This allows different phases of a CDAM Run to use

different Partial Results. In addition, it is possible to have Partial Results scoped

to the whole CDAM Run and these are typically used to allow a the run to re-start

at the failed Work Unit.

Facilities are provided to allow CDAM responder applications to save

Compensating Transaction Data (CT Data) in the event of a heuristic decision

being taken because of communications failure during two-phase commit. If,

when communications are restored, it is found that the heuristic decision was

incorrect, the CT Data is used to run, automatically, a user written Compensating

Application to resolve the heuristic mix.

124

125

Chapter 8
Information Management

Introduction

OpenVME provides several information management services catering for a wide

range of information models and the corresponding information storage &

retrieval services. These services include:

� Relational Databases which support open standard SQL services;

� A high performance Codasyl database, IDMSX;

� record-based file services (supporting sequential, indexed etc.

organisations);

� flat-file services (including fully X/Open conformant filesystems).

This chapter describes how the fundamental architectural components of

OpenVME are used to provide information management services.

Information Models

Unstructured Files

An unstructured file is structured as a contiguous sequence of bytes. Operations

are provided to:

� read or write any contiguous sequence of bytes within the file;

� extend or truncate the size of the file;

� lock any contiguous sequence of bytes within the file;

Record-based Files

Record based (flat) files comprise a set of records accessed either sequentially or

randomly using a key. The internal record structure is entirely application-

defined. File organisations supported include: Sequential, Indexed Sequential and

Hashed Random. Operations are provided to:

� select a record by key, relative to the current record or absolutely

� read or update the selected record;

� insert new records or destroy existing records;

� lock the selected record.

The Codasyl (Network) Model

The Codasyl model provides records and allows relationships to be defined

between them to be defined using set types. A set is a one-to-many relationship

126

between records: one owner and many members. A record may participate in

several set types either as owner or as a member. Records are manipulated using

Data Manipulation Language (DML) operations. Access is navigational in that

an application selects one record at a time and may then select another record by

key value or by navigating set relationships. Operations are provided to:

� select a record by key value or by navigating from owners to members or

vice versa;

� read or update the selected record;

� insert new records or delete existing records;

� connect records into sets or remove them from sets.

The description of information in the database is essentially static.

The Relational Model

The Relational model organises a database as a set of relations; each relation is a

set of tuples (records) with common structure. Each relation has a primary key

whose value identifies a row uniquely. Relationships between relations are

represented by including the primary key of one relation as a foreign key in

another. In the relational model, operations are performed on sets of tuples and

produce sets of tuples as results; thus the operations can be combined to provide

more powerful operations. The basic operations, based on the Relational Algebra

and generally expressed in Structured Query Language (SQL), include:

� Selection of tuples according to specified criteria;

� Projection (mapping) of tuples;

� Join of relations (cartesian product);

� Update of selected tuples.

Dynamic creation of relations is fundamental to the operational model and so the

description of information in a database (the relational schema) is also dynamic.

Features such as Triggers, Integrity Constraints and Object Support supplement

the basic model.

The declarative nature of SQL (expressing what is to be performed rather than

how) allows a wide variety of underlying implementations.

127

Object-Oriented Models

Object-oriented models are a synthesis of Object-Oriented programming and

database ideas using the concept of active objects that encapsulate stored

information within themselves, allowing access to it only via a defined

procedural interface. Recent developments have supplemented the basic model

with the concept of bulk data types which formalise and simplify the handling of

collections of objects.

There are several development approaches:

� the extension of relational databases to support abstract data types, rules

and objects;

� persistent versions of object-oriented languages such as C++ and

Smalltalk;

� fully object-oriented databases.

In the short term only the first is expected to have a significant impact in

commercial applications.

Codasyl Database - IDMSX

IDMSX is the OpenVME network database management system. It essentially

conforms to the international CODASYL standard, which is also supported by

other vendors on other platforms. IDMSX provides efficient access to

information shared by many users who may have different views of that

information. It performs all access to and manipulation of data and is responsible

for data security, data integrity and automatic recovery.

Applications are written with embedded Data Manipulation Language (DML)

statements. DML statements are translated during compilation into direct calls on

underlying IDMSX interfaces. The in-process manner of invoking IDMSX

results in very efficient database access.

The structure of an IDMSX database is defined in terms of schema and sub-

schema. Schema describe the logical structure of an entire database and sub-

schema describe subsets of the database available to particular application

programs. Comprehensive facilities are provided to enable the optimal mapping

of logical schema onto a physical storage structure. Data definitions, schema and

sub-schema can all be stored in the Data Dictionary System.

128

The major features of IDMSX are:

� Data is structured internally so that the database can be shared by different

users for different purposes, each requiring different logical views of the

same information.

� Data is stored in an efficient way to minimise disc accesses. For each

record type random, sequential or clustered physical placement may be

chosen allowing the database to be optimised for a particular pattern of

usage. Placement is independent of logical organisation.

� IDMSX provides a powerful indexing system which supports any number

of alternative access keys. It also supports indexed sets which provide

optimum performance when individual records are required to be selected

from large groups.

� Data can be stored in a form that is CAFS-searchable; CAFS greatly

improves the speed of access where the search key is not a database key.

� IDMSX supports automatic recovery from program or storage failures.

This involves two techniques: delayed update which only updates the

database when a task has been successfully completed; and rollback,

which uses a journal of before-looks to restore the state of the database if

a failure occurs before a task is completed. Rollbacks are not applicable if

the IDMSX service is using the recovery facilities of the Open TP

environment.

� Main store areas can be used to cache selected IDMSX data thus reducing

the number of accesses to disc. Cache size may be fixed or dynamic.

� IDMSX supports the X/Open model of transaction management; in

particular, it interfaces with the OpenVME transaction management

system using an optimised interface which is functionally equivalent to the

X/Open XA standard.

� A comprehensive set of management tools is provided to assist with

archiving, recovery, database restructuring and physical re-organisation.

The performance of IDMSX is 2 to 3 times better than that of a typical relational

databases, when comparing like with like. When a relational database is used

without the benefits of a transaction processing work manager, or with front end

tool sets providing advanced usability features, then the ratio is even higher.

These ratios between non-relational and relational database performance apply to

products across the whole industry and are not specific to ICL.

129

The Architecture of an IDMSX Service

An IDMSX Database Service comprises:

� A description of the service in the Catalogue defining certain attributes

and other catalogued objects which are associated with the service;

� The IDMSX Database files which hold the database itself;

� The IDMSX Journal files which hold copies of changed records when the

database is being updated; the files enable recovery from failures in

individual applications or the whole system. Journal files are as follows:

The Central Journal which contains after-images of changed records;

Quick-before-looks (QBL) files each of which contains before-images

of records changed in one transaction (not used in the Open TP

environment);

Area journals which contain after-images of records changed in one or

more areas of the database.

� An IDMSX Diary file in which all major events and activities on the

database are recorded. Examples include starting and ending a database

service, and starting and ending utility operations on the database. The

database diary has several functions:

To provide a record of database use;

To record the names of the database and journal files of the service;

To check whether applications and utilities have completed their

operations tidily;

 and, unless the IDMSX service is using the recovery facilities of the Open

TP environment:

To control the use of QBL files in recovering the database after a

failure; the names of the QBL files are recorded in the diary;

To record the names of TP services accessing the database in order to

co-ordinate recovery with them on a service restart;

� Miscellaneous files including dump files, workfiles etc.

130

IDMSX Run-time Structure

At run-time the IDMSX database service is realised as:

� An IDMSX Service VM which controls the database service;

� Areas of global virtual store known as service tables which define:

Semaphores & locks to control shared access to the database;

Information on the storage of IDMS areas in physical files;

Buffers for page (block) transfers;

Workspace for pages defined as being held in virtual memory;

Workspace for caching selected areas of the database;

Work space to accumulate service statistics.

� Application VMs which use the database service. Each AVM has local

data supporting the Virtual Resources which provide in-process access to

the database. Shared Virtual Resources which co-ordinate the concurrent

access to the database by several VMs are supported by the service tables

described above. Files of the database service is assigned locally within

each AVM as required enabling common shared access to the files from

all AVMs.

Shared Database

Files

Shared Database

Files

Journal Files IDMSX Diary

Files

Node 1 Node 2

Applications Applications

Common Access to Shared Files

IDMSX

Service VM

IDMSX Global Data

IDMSX

Local Data

IDMSX

Local Data

131

Use of IDMSX Database Services

An IDMSX service can be used by an Application VM running in almost any

work environment, including Batch, MAC or TP.

An AVM may only access a single IDMSX database service at a time. However a

TP service can use several IDMSX database services by using separate AVMs to

access each service. This technique, in conjunction with the co-ordination

features of the OpenVME transaction management system, can be used to allow a

single transaction, spanning several AVMs, to operate on several databases.

A single AVM may access an IDMSX database service and any number of

RECMAN files; it may also access one or more relational database (see later).

Several TP services may use a single database service concurrently. This

technique allows several different applications to access a single database. It can

also be used to allow extremely large numbers of terminals (exceeding the

normal TPMSX limits) to access an IDMSX database by running multiple

instances of the same TPMSX service, all sharing the same IDMSX service.

IDMSX Recovery Facilities

Dump and restore utilities allow a security copy of the database to be made.

Dumps may take place concurrently with normal operation.

Roll-forward and roll-back utilities are provided to process IDMSX journals. The

roll-forward utility may be used to process a restored portion of the database by

writing after-images from the journal file. The roll-back utility (only applicable if

the IDMSX service is not using the recovery facilities of the Open TP

environment) can be used to restore the database to a previous state (e.g. prior to

some error) by writing before-images to it.

Relational Databases

A choice of Relational database management systems (RDBMSs) is provided by

OpenVME. An SQL service conforming to open standards is supplied by

INGRES, Oracle and Informix. There are generally two major run-time

components of a RDBMS:

� a front-end component, an instance of which is usually co-located with

each application;

� a back-end component - the database server - which actually performs

data manipulation operations on the database and to which shared access

is made by all front-end components.

132

Applications either generate SQL explicitly or are written in a programming

language which allows embedded SQL statements. In the latter case, a source

pre-processor converts the embedded SQL into calls on the underlying APIs.

The structure of a database is defined using a Data Description Language (DDL).

Relational databases additionally allow the dynamic creation of new tables

(relations) although such tables may not, subsequently, be accessed as efficiently

as those that are pre-defined.

Oracle RDBMS

Oracle is a Relational DBMS supporting standard (and extended) SQL,

networked SQL access, distributed database operation and a range of front-end

tools and application development aids.

Oracle uses a front-end / back-end architecture in which client applications

(front-ends) access a shared database server (back-end). SQL*Net is the Oracle

proprietary mechanism used for linking front-end and back-end components. It

supports a two-phase commit capability allowing distributed transactions to be

performed across a number of servers. Front-end and back-end components may

be co-located in which case communication between them can be optimised by

the use, for example, of shared memory.

Each instance of an Oracle database server comprises one or more query

execution engines which have common access to the database discs and

communicate with each other via an area of shared memory known as the Shared

Global Area. A Lock Manager co-ordinates resource sharing between execution

engines, allowing them to synchronise access to resources such as data and

peripheral devices.

The lock manager performs the following services for applications:

� keeps track of current "ownership" of a resource;

� accepts requests for resources from applications;

� notifies the requesting application when a resource is available;

� allows an application to gain exclusive access to a resource.

Multi-node Operation

Multi-node operation of the Oracle database server is based on a shared disc

architecture. This allows an efficient multi-node implementation by minimising

contention on shared memory areas whilst exploiting the uniform access

available from each node to all database discs. In addition, a Distributed Lock

Manager (DLM) provides a means for instances of Oracle on different nodes to

communicate with each other and co-ordinate modifications of data on the shared

discs. This is achieved by allocating distributed locks - Parallel Cache

Management (PCM) locks - to data blocks and then using DLM facilities to

control ownership by instances of data blocks.

133

Parallel cache management is used to ensure cache coherency between caches in

different Oracle instances. Within a data block, transactional locking (down to

row level) is performed entirely within the instance which owns the data block,

thus reducing communications between instances.

Oracle Instance X

Applications

Node 1

Inter-node Network

Input-Output Network

Log Files 1 Log Files 2 Log Files 3

Shared Data Files Shared Data Files

Oracle Instance Y

Applications

Node 2

Oracle Instance Z

Applications

Node 3

Control Files

The loosely coupled, shared disc architecture has the following benefits:

� high performance through the efficient exploitation of multiple nodes;

� incremental performance growth by adding additional nodes;

� high availability through hardware redundancy.

Oracle has a number of features which support high performance operation:

� Each Oracle instance has a cache in which data blocks are stored to

reduce disc accesses.

� Oracle supports fast commits in which a transaction is committed by

writing to a serial log file rather than by several random updates to the

database files. Each instance of Oracle has its own independent log file.

� Oracle supports group commits which allow several transactions to be

committed by a single write to the log file, thus reducing the effects of log

file latency.

� Since an update is committed to the log file, writes may be deferred by

only updating the Oracle cache.

134

� Oracle supports row-level locking. This fine-grain locking within a data

block reduces the probability of a clash between different applications

attempting to access the same resource (c.f. a whole data block).

� Oracle (from version 7.1) supports parallel query execution, index

creation and data loading.

� On-line back-up and archiving are supported.

Oracle has several other important features:

� Oracle is a Resource Manager, providing the interfaces required by the

X/Open distributed TP architecture. Oracle takes full advantage of

OpenVME transaction management facilities.

� Applications using Oracle, running in the Open TP environment, can

perform fully co-ordinated distributed transactions.

� Oracle Forms enables form-based applications to be developed which run

under TPMSX.

INGRES Database

INGRES is a set of components providing an integrated database and application

development tools. It provides 4GL and 3GL application building tools for both

character and Windows environments. It has a sophisticated Query Optimiser to

optimise query execution time and has a full range of system administration

facilities.

The major run-time server software component is INGRES BASE.

INGRES/NET allows an INGRES client application to access a remote INGRES

database server. INGRES/Star allows multiple INGRES databases to be accessed

as though they were a single database.

Additional tools and components provide application development and user

interface capabilities:

� INGRES C and COBOL pre-compilers allow SQL statements to be

embedded in programs;

� Report by Forms (RBF), Query by Forms (QBF) & Application by Forms

(ABF);

� INGRES/Windows4GL: an O-O programming tool for building

applications with GUIs.

135

Applications

Journal Files Checkpoint Files

Shared Data Files Shared Data Files

Applications

Ingres Server X

Local Data Cache

Ingres Server Y

Local Data Cache

Local Front-End Local Front-End

Service VM

Archiver VM

Connections

from

Remote FEs

Log Files

Global Store for Locking, Shared Caches and Buffers

Shared Filestore Access

Recovery VM

Nameserver VM

The run-time components of an Ingres service include:

� Ingres Front-End processes which can be local to the OpenVME system

(e.g. when an OpenVME application is using the Ingres service directly)

or remote (e.g. when a PC application is accessing the Ingres service

remotely). Front-end processes can be co-located in the same VM as

back-end server processes.

� Ingres Back-End server processes which support access to the Ingres

databases. Each server process is multi-threading, supporting multiple

front-end processes and various Ingres system threads. Each back-end

server processes maintains a local data cache using a value-block-locking

scheme. The server processes have components at Access Levels 9 and 10

to ensure that applications, running at Access Level 10 or above cannot

gain unauthorised access to global store areas (at Access Level 9).

� The Ingres Service VM which controls the other VMs associated with the

Ingres service.

� An Archiver VM which extracts committed updates from the Log file and

writes them to individual database journals;

� A Recovery VM which is used to restore a consistent database state after a

service failure;

� A Name-server VM which is used by front-end processes as a directory to

identify the route to the required Ingres server.

136

The Ingres database has several features allowing it to provide a high throughput,

high reliability relational database service:

� A two-phase commit mechanism ensures data integrity for distributed

applications;

� Each Ingres server has a local cache in which data blocks are stored to

reduce disc accesses; a shared cache further reduces disc traffic when data

is accessed by multiple servers.

� Ingres supports fast commits in which a transaction is committed by

writing to a serial log file rather than by several random updates to the

database files.

� Ingres supports group commits which allow several transactions to be

committed by a single write to the log file, thus reducing the effects of log

file latency.

� Since an update is committed to the log file, writes may be deferred by

only updating the Ingres cache.

� Each Ingres server VM is fully multi-threaded, reducing VM switching

overheads and memory occupancy;

� Ingres can exploit the Series 39 CAFS search accelerator in a totally

transparent manner, giving large performance improvements for many

complex queries;

� On-line back-up and archiving are supported.

Ingres has several other important features:

� Ingres database definitions can be held in the OpenVME Data Dictionary

System (DDS) and a database can be automatically generated from the

definitions;

� Ingres applications can be generated by Application Master which also

includes facilities for database transition from IDMSX;

� Ingres ESQL/COBOL applications can be run in a TPMSX environment;

� Ingres is well integrated with OpenVME System Management

mechanisms including operational, distribution and capacity management.

137

INFORMIX Database

INFORMIX is a Relational Database Manager, with associated development and

run-time tools, supporting X/Open conformant SQL. It is designed for Unix

systems and therefore executes within the VME-X environment. INFORMIX is

also the source of the C-ISAM product which supports the X/Open ISAM

standard.

The major run-time server component is INFORMIX OnLine, a multi-media,

high-performance database server. It is intended for OLTP environments and has

full capabilities for database recovery and maintaining data integrity after a

failure.

INFORMIX-TP/XA is an additional option linking INFORMIX-OnLine to

X/Open XA-compliant transaction managers and thus allows it to act as a

Resource Manager for an XA-compliant TP environment such as TPMSX.

INFORMIX-TP/ToolKit is a set of library functions which can be used to create

OLTP applications.

A variety of additional tools provide application development, interactive query

and distributed database capabilities:

� INFORMIX-SQL: end-user interactive SQL tool;

� INFORMIX-ESQL/C: allows SQL statements to be embedded in a C

program;

� INFORMIX-ESQL/COBOL: allows SQL statements to be embedded in a

COBOL program;

� INFORMIX-4GL: an application development tool for generating

database applications;

� INFORMIX-STAR: used to control a distributed database application.

INFORMIX OnLine uses an optimised device driver to gain efficient direct

access to VME files, thereby achieving excellent performance.

Object Database

The OpenVME architecture is extensible and thus allows for alternative

databases such as object databases (for example the Fujitsu ODBII database) to

be supported in the future.

138

Use of the CAFS Information Search Processor

The CAFS-ISP is a hardware search accelerator which searches data as it is read

from the disc for records which match user-defined search criteria. Records

which match the search criteria are returned for further processing; other records

are discarded. CAFS allows large volumes of data to be searched rapidly

according to complex criteria. Search criteria can be numeric, alpha/numeric or

straight text, and can involve:

� multiple criteria, combined with AND and OR operators, in each enquiry;

� precise or fuzzy matching (using wildcards);

� different types of questions: e.g. satisfying any three out of five selected

criteria;

� a combination of the above.

CAFS is ideally suited to provide ad hoc enquiry facilities to new and existing

applications, and for operating as a free text retrieval system. Interfaces are

provided to allow application to use CAFS facilities directly, including:

� The Direct CAFS Interface (DCI), accessible, for example, from C,

FORTRAN & SCL;

� The Relational CAFS Interface (RCI) allowing COBOL programs to

operate on "logical files" which are relational views of IDMSX or

RECMAN files, supported by CAFS;

� The CAFS Search Option which allows COBOL programs which perform

serial record processing to use CAFS searches to select only the required

records.

In addition, Ingres can use CAFS facilities to improve performance in a manner

which is entirely transparent to database applications.

139

Flat Files

File Description & Creation

OpenVME supports various types of flat file including sequential, indexed

sequential and alternate key record organisations as well as block organisations.

Every file has an associated file description stored in the Catalogue, defining the

physical and logical characteristics of the file and the data in it. Standard file

descriptions are provided for common file organisations and new descriptions

can be created, optionally based on an existing description.

Each file organisation is supported by a specific Record Access Mechanism

(RAM) type which provides the required mappings between the logical file

organisation and its corresponding physical block organisation.

A new file is created by specifying a hierarchic name for the file (within the

Catalogue), a file description and, optionally, an area of physical filestore in

which the file data is stored. The information describing the file is stored in the

Catalogue.

File and Record Access

As with most other catalogued objects, there are two phases of file usage:

� The declarative phase during which the file is selected and the Virtual

Resources for the specific file usage are created within the VM;

� The imperative phase during which accesses to data in the file take place.

The Declarative Phase

During the declarative phase, the catalogue object describing the file is selected,

establishing a currency for the file. The action of selection causes Virtual

Resources to be established within various subsystems including File Controller,

Resource Scheduler and, for Libraryfiles, Library Controller. Currencies returned

by RS for the underlying physical resources are associated in FC with the file

currency.

Having selected the file a resource allocation reschedule is performed to acquire

access to use the physical resources associated with the file. For example, if

accessing a magnetic tape file, it is at this point that the tape volume would be

mounted.

140

The final action in the declarative phase is to select a Record Access Mechanism.

Each usage of a file causes a Virtual Resource, an instance of the appropriate

RAM type (determined by the file description in the catalogue), to be created.

Data associated with the file usage is stored in the RAM. During its initialisation,

the RAM requests the appropriate Physical File Manager (PFM) - e.g.

MAMPHY for magnetic files - to create a Virtual Resource providing access to

the underlying physical file. The PFM returns a PFM currency which provides an

efficient route by which the RAM can subsequently invoke operations on the

PFM Virtual Resource.

Application

Kernel
Device Access Managers

RECMAN

Record Access

Lower Director

Physical File Managers

MAMPHY

Upper Director

Logical resources
CATHAN, FC, RS

PF
connection

Resource
allocations

File
currency

RAM
currency

Assign File Reschedule Select RAM Access

RAMRAM initialisation

Acquire resources

Connect to PF

Imperative

Phase

Declarative

Phase

Main paths involved in declarative and imperative phases of file access.

The Imperative Phase

During the imperative phase, operations on a file are performed by invoking the

RAM via one of two procedural interfaces made available when the RAM was

created. One of these allows additional parameters to be passed specifying, for

example, a position in the file, an action (read, write etc.) or a buffer address. The

other is used when no parameters need be passed - for example, when reading the

next record of a serial file.

141

During this phase, the RAM invokes MAMPHY directly using the PFM currency

returned during RAM selection. This provides a highly efficient route to the PFM

and bypasses all the Upper Director subsystems which were involved during the

declarative phase.

The internal structure of RECMAN itself is described in detail in Chapter 5.

Record Access Principles

The action of a RAM is controlled by a set of RAM parameters stored in the

RAM. The parameters are initialised when the RAM is selected and many can be

changed by subsequent calls to the RAM. The most important RAM parameters

are:

� Position: a pointer into the file contents;

� Record and Key buffer references;

� Imperative Action (e.g. select, read, write, destroy);

� Displacement of the record relative to the last accessed (next, previous or

same).

The default invocation of a RAM uses stored RAM parameters to perform a

similar action to that performed on the previous invocation. For example, to read

records from a serial file, the Position would be initialised to "just before first"

(record), the Displacement to "next" and the Imperative Action to "select and

read". Successive calls would select the next record and read it into the specified

record buffer. The storage of parameters in this way minimises the number of

parameters that have to be passed and validated on each invocation of the RAM,

helping to ensure that record access is as efficient as possible.

142

Interchange Between Information Management Services

Database Definition Interchange

The same business model within DDS that was used to generate schema for an

IDMSX database can be used to generate DDL for a relational one.

Bulk Data Interchange

It is possible to move bulk data between databases (e.g. from IDMSX to

INGRES) on a regular basis and then use specific tools to access (read) the data.

This is particularly relevant where stable data is required for analysis purposes.

Accessing Multiple Information Management Services

A single application can concurrently access IDMSX, INGRES, Oracle,

RECMAN, etc., under TPMSX, MAC or Batch work environments. Thus new

data could be stored in a relational database (say) and the application extended to

access it together with IDMSX data. The OpenVME transaction management

facilities give automatic co-ordinated update when more than one database is

involved in a single transaction.

Where one of the databases is on a different system there are several possible

models of distribution.

� The OpenVME transaction management facilities allow multiple

applications, each accessing one or more local databases, to co-operate in

a co-ordinated manner using standard open interfaces (e.g. XATMI).

� The relational databases provide a STAR capability whereby a local

instance of the RDBMS provides a coherent view of a distributed set of

(identical) RDBMS instances. The distribution is invisible to the

application. Co-ordination of updates is effected by proprietary

mechanisms.

� For PCs, middleware can be used to link applications designed to access

local databases to remote (usually relational) databases.

Application Application

Application
co-operation

Management
Information

Management
Information

Middleware
e.g. database access

Management
Information

Presentation

(PC / workstation)

Multiple databases

Database

STAR link

Management
Information

Management
Information

143

Client-server Access to Information Management Services

In the context of information management, the relevant forms of Client-server

distribution are Remote Data Management and Distributed Data Management. In

general both of these are restricted to the use of databases accessed via SQL.

Note that Review allows SQL access to IDMSX data, thus making an IDMSX

database remotely accessible using the same mechanisms and client APIs as for a

relational database.

SQL has several major benefits for Client-server systems:

� there is a defined standard for SQL itself (although most vendors support

optimised proprietary extensions to this standard);

� the granularity of SQL queries is such that they can be remotely executed

in a distributed system without networking considerations dominating

performance;

� many major PC software packages are able to generate SQL queries to

access information held on a remote (shared) relational database; standard

APIs and middleware facilitate this method of access.

A major characteristic of SQL is that it allows queries to be made which are not

pre-determined. This is extremely powerful: if the required information is

modelled in the database then it can be extracted, immediately, without the need

for any user application.

Distributed Data Management

Oracle, INGRES and Informix all supply STAR products which allow multiple

instances of a RDBMS to be linked so that from the application only a single,

integrated database is visible.

The unique benefit of distributed database technology is that it provides the

ability to perform queries that find the data wherever it is held, if necessary by

combining data from several databases. However the performance aspects of

distributed database services mean that they can be used for MIS work but that

distributed transaction processing should be used for high throughput

applications.

When distributed data management is used by applications, the data types and

layouts in the databases need to be known by the applications. Therefore there

may be difficulties of management where the application components are under

separate ownership or operational control, or have different technical origins or

use different infrastructures.

144

Remote Data Management

One method of achieving access to remote databases with relational tool-sets is to

use the relational/NET products which are enable client applications to access

remote database servers. Protocol proprietary to the database vendor is generally

used for such access.

OpenVME supports interworking from applications and many standard PC

packages such as spreadsheets by the use of middleware products such as

TechGnosis's SequeLink, and Information Builders' EDA/SQL.

Such middleware products provide a mechanism for connecting from PC (etc.)

packages, such as spreadsheets to databases, so that corporate data can be

downloaded to them, using facilities (menus) within the packages themselves.

Typical integration features include:

� Connection from: spreadsheets, generic database front-ends, Visual Basic

etc.;

� on many client environments including Microsoft Windows on a PC;

� via: a wide range of LAN communications protocol stacks;

� to: a wide range of relational database management systems;

� on environments: OpenVME, UNIX, MVS and others;

� allowing access to all OpenVME data sources via ReView.

SQL access to IDMSX and other VME data sources (Review)

SQL access to IDMSX data is enabled by the ReView facility which provides

relational views of IDMSX data. Full read access is available, treating these

views as though they were relational tables. This gives a common user interface

across INGRES, IDMSX and other VME data sources.

The full read access extends to interactive SQL, SQL embedded in C and

COBOL, all INGRES tools and all database-independent tools which interface to

INGRES and any other vendor's tools which access INGRES databases. The

applications and tools may be run on any environment on which they are

supported and which can network through to VME using INGRES/NET - PCs,

UNIX systems, VME-X, TPMS, MAC, Batch.

ReView gives full SQL read access to:

� many IDMSX databases as though they were one relational database

� many ISAM files as though they were one relational database

� many sequential files as though they were one relational database

� any combination of the above

� any combination of the above together with one INGRES database.

In addition, similar techniques make it possible to access the OpenVME

catalogue, operator picture files, X.500 directories etc..

145

The ReView architecture exploits the provision, within INGRES, for software

gateways to provide mappings between the relational model and external (non-

INGRES) data. The ReView architecture provides a link, via an application

executed within a TPMSX service AVM, to an IDMSX database.

Client tools

& applications

DTS Link

SQL

TPMSX AVMsTPMSX CVM IDMSX

Gateway
SQLFront-

End Interface Ingres Back-End

(AM)

Using ReView, relational application can access a number of IDMSX databases

as through they were one relational database, but the IDMSX databases must be

on the same machine as each other and on the same machine as the INGRES

back end. By allowing the DTS link to be inter-system, an application can access

a number of IDMSX databases as though they were one relational database,

where the IDMSX databases can be on different machines from each other and

from the INGRES back end.

146

147

Chapter 9
Networking Services

Introduction

The networking services element of the OpenVME architecture provides the

means of communication between the components of a corporate system and also

with other systems. This chapter describes the architecture of the integrated

communications facilities of OpenVME and the higher level interworking

services built above them.

The architectural approach adopted by OpenVME is to provide comprehensive

and fully integrated support for a core set of networking services and to use

software or hardware gateways to support other services. Together, these services

support both the hierarchic (workstation/server) and peer-to-peer (co-operative

processing) dimensions of distributed computing. Such an approach provides for

a single stable, highly tuned networking environment within OpenVME itself,

and, via the use of appropriate gateways, the ability to choose from a wide range

of networks and networking standards within a central corporate network, and

within other systems communicating with an OpenVME system.

148

The Open Systems Interconnection Architecture

The OSI Seven Layer Model

The Open Systems Interconnection (OSI) architecture divides communications

functions into distinct layers. Each layer performs a well defined function in the

communications process, providing a service to its immediate superior, which in

turn provides a (higher level) service to its superior, thus creating a stack of

layers.

Any communication is logically considered to be between peer functional entities

(i.e. in the same layer), using protocol appropriate for that layer. This structuring

of communications services and the corresponding protocols ensures a high

degree of modularity and extensibility.

Each layer possesses a Service Interface through which the layer above interacts

with it, sending and receiving Service Data Units (SDUs) and, in some cases,

indications of certain conditions. When sending data, each layer adds its own

protocol information to the SDU, creating one or more protocol data units

(PDUs); these are passed to the layer below, via its service interface, as SDUs for

that (lower) layer. When receiving data, the complementary process occurs, each

layer removing its own protocol information before passing the received SDU to

the layer above.

The general form of the relationship between adjacent layers is illustrated in the

diagram below.

Layer n

Layer n+1

Layer n-1

Layer n Service Interface

Layer n-1 Service Interface

Protocol Control

Information
Layer n Service Data Unit

Layer n-1 Service Data Unit

Layer n+1 Protocol Data Unit

Layer n Protocol Data Unit

149

Application

Presentation

Session

Transport

Network

Link

Physical

Information Transfer Services

Data Encoding & Representation

Dialogue Control & Synchronisation

End-to-end Data Transfer

Routing & Addressing

Transmission control

Interface to Transmission Medium

2

3

4

5

6

7

1 1

2

3

4

5

6

7

The OSI model defines seven layers:

1. Physical: the physical medium (e.g. cabling) and the standards used to

represent information on the medium;

2. Link: control of data transmission over a physical link;

3. Network: establishment, maintenance & termination of communications

between endpoints of a network, including addressing and routing;

4. Transport: provision of a reliable end-to-end communications service

between systems, possibly on different networks;

5. Session: provision of logical communications paths between applications,

including synchronisation and dialogue control;

6. Presentation: structuring and encoding of data passed between

applications;

7. Application: provision of specific application services.

150

Overview of the OpenVME Communications Architecture

Introduction

The core VME communications architecture is based on the OSI model and

provides integrated support for the major OSI services and protocols. Support for

the OSI layers is divided between those services provided in Kernel (OSI layers 1

- 5) and those provided in Director (some of OSI layer 6) and above (OSI layers

6 & 7). Broadly, Kernel provides the services in which a data unit may not be

simply associated with a single VM and therefore cannot be handled

"in-process". The Director subsystems known collectively as COSMAN provide

a range of presentation facilities.

Efficient support is also provided for other protocol sets via gateways, accessed

using the core OSI protocols. In particular, support for the Internet set of

protocols (TCP/IP, UDP/IP) is provided using a combination of "in-process"

software and gateway hardware.

The X/Open Transport Interface (XTI) API is supported for both OSI and IP

protocols and open APIs for application services are provided where standards

exist.

The diagram below illustrates the basic structure of the OpenVME

Communications Architecture, showing key components:

Kernel Comms

Local Area Networks

Director Comms

Local

Files

Local

Files

NETCON VM Application VM Application VMsSponsor VMs

Out-of-line

Services

Intra-System

Direct

Sponsored

Gateway
or

Controller

Other LANs

or

WANs

151

SAPs and SAP Hierarchies

Catalogued objects, Service Access Points (SAPs), represent endpoints of

potential communications paths between peer layer services. Relationships

between SAPs represent the use by one layer service of another and are labelled

with the appropriate addressing and routing information; the resulting graph is

termed a SAP hierarchy. At the highest layer, catalogued Services represent

application level services and may possess an underlying SAP structure which

defines the potential communications paths to or from that service. An

"out-of-process" subsystem, NETCON, is responsible for controlling the

establishment and termination of the underlying Virtual Resources,

corresponding to the SAP structure, used to support an instance of a

communications path.

A SAP can be be considered as representing a route into a protocol layer service.

SAPs of different layers may be linked to form a SAP Hierarchy, representing a

route through several layers of protocol handling; each such linkage may be

labelled with routing or addressing information. At the uppermost layer, a SAP is

usually the route of some specific catalogued Service, representing a route

between an application providing that service and other applications, using a

protocol stack whose layers correspond to the SAPs in the SAP hierarchy.

Network Layer

Transport Layer

Session/Presentation
Layer

Application Layer

Hardware UnitsNetwork Address

Transport
Address

etc.

Unit

NSAP

TSAP

DISAP DISAP

Service Service

NSAP

TSAP

A Local SAP hierarchy represents the route, via layer services corresponding to

its SAPs, by which a local service may be accessed by other services or, itself,

access other services. Correspondingly, a Remote SAP hierarchy represents the

route to or from a remote service (generally on some other system).

152

OpenVME Core Networking services

Introduction

This section outlines the core Networking Services provided by OpenVME,

identifying the protocol standards used and the APIs available to applications

requiring use of those services. As indicated above, additional services are

available by the use of software or hardware gateways.

Data Transmission

The core data transmission standards are based on standard OSI protocols and

may be operated over Ethernet (OSLAN), FDDI or X25. Connection-oriented

(CONS) and Connectionless (CLNS) network services are provided and may be

accessed directly by applications.

Data Interchange

Various classes of data interchange services across the transmission networks are

provided:

Generalised real time (co-ordinated)

OpenVME supports co-ordinated real time data interchange using the OSI TP

service. APIs conforming to XATMI, TxRPC and CPI-C standards provide co-

ordinated data interchange between several applications. An additional

proprietary API is provided by the ADF subsystem.

Generalised real time (uncoordinated)

OpenVME supports uncoordinated based real time data interchange using OSI

TP (see also previous section) or DTS (ICL proprietary) services. These services

may be used to provide uncoordinated real-time application to application data

interchange.

Application access to OSI or IP-based transport services is also provided via an

API conforming to the X/Open XTI (or the TLI).

Additional capabilities are provided through the use of proprietary ICL data

interchange services for OSI only:

Application Data Interchange (ADI)

Remote Session Access (RSA) (terminal access)

These provide access to existing OpenVME applications; in the case of the

terminal protocols, this enables access from PC-based frontware client/server

applications.

153

Message Passing

OpenVME supports messaging between applications (where there is no

requirement for real time response) through the provision of X400 messaging

services. The X400 service provided is based on an X400 Message Transfer

Agent (MTA) and includes support for the X400 P1 service (for direct

communication with other MTAs on large host systems), and the X400 P7

service (for communication with User Agents on PCs and workstations).

Messaging support is provided for both interpersonal messaging applications,

and for client-server Electronic Data Interchange (EDI) based applications.

An API based on the X/Open message access and object management interfaces

(MA & OM) is provided, which can be used by applications on the OpenVME

system.

Remote Data Access

OpenVME support for direct access to relational database systems via the use of

SQL based protocols between the client and server systems, for the range of

supported databases. Support for SQL access to Codasyl (IDMSX) databases

and record-based files is provided via the ReView gateway {See Information

Management}.

Bulk Data Transfer

OpenVME supports bulk data transfer between applications through the use of

the standard NIFTP protocol (used by ICL FTF) and via the OSI FTAM

standard. The standard UNIX uucp, telnet and ftp facilities are supported over

TCP/IP.

Distributed Function and Co-operative processing

Application access to all of the networking services on OpenVME systems is

provided through the use of X/Open standard application programming interfaces

(APIs).

Shared Filestore

OpenVME supports the NFS file server protocol. This permits files used by PC

or Unix applications to be held in OpenVME filestore, and thus to take advantage

of the capacity, security and filestore management facilities provided by VME.

For example, the VME Custodian product can be used to archive UNIX filestore

to a remote server.

Supporting Services

OpenVME provides a number of supporting services for use by the various

application components in the corporate network, as follows:

154

Directory Services

OpenVME supports network Directory Services by hosting an X500 Directory

Service Agent (DSA), providing local and remote directory services. Access to

directory services is primarily via OSI protocols.

An API based on the X/Open directory and object management interfaces (OM &

XDS) is also provided for applications running on the OpenVME system.

Message Switching Services

A central message switching service is provided via the X400 service provided

on the corporate server, which provides a centralised message switching system,

allowing messages between various systems in the network to be controlled and

routed through an OpenVME system.

Gateways

Interworking with OpenVME systems from other networking environments is

provided through transmission level gateways and free-standing gateways, for

access to other core networking architectures

Gateways based on the use of open (i.e. ISO, TCP) standards are widely

available, thereby greatly expanding range of choice in terms of the connectivity

and access capabilities available to the users of OpenVME systems. For example,

gateways providing OSI relaying onto frame relay, ISDN or Megastream

networks are available.

Terminal Access

ICAB-02 & ICAB-05

The default terminal model for VME systems is based on a proprietary protocol.

It is optimised for textual interactions between the user and the application which

take place in terms of relatively coarse-grained dialogue elements. In a typical

dialogue exchange, the application generates a screen which can contain several

fields, each of which has attributes constraining the type of data which may be

entered. The user can then exploit the local data entry and editing capabilities of

the terminal to place new text or modify existing text in the displayed fields.

When data entry is complete, the user causes the data to be transmitted to the

application.

The ICAB-05 protocol embodies various enhancements allowing sophisticated

control of display attributes and optimising the protocol between terminal and

application (e.g. by omitting unchanged fields from the data returned to the

application).

155

FORMS

FORMS provides an enhanced user interface based on a distributed presentation

architecture. The FORMS protocol:

� carries the logical elements of a user dialogue;

� allows screen definitions to be downloaded to the workstation.

FORMS is described in more detail in Chapter 12 (User Interface).

Asynchronous Terminals

Flexible Terminal Handler enables all the common asynchronous terminal types

to be supported and to have full access to screen-mode applications.

VTP

VME provides "host end" support for the OSI VTP service, and maps it onto

attribute and other protocol features known to VME TPMS services. The

facilities supported at the terminal or terminal emulator are similar to those of

proprietary VME terminals.

The OpenVME Kernel Communications Architecture

Introduction

Kernel communications architecture is based on a modular structure comprising

infrastructure subsystems supporting a number of common functions (notably

NCM and NFH), and subsystems for handling individual protocols or hardware

devices. Protocol Handler subsystems are independent of each other and are

structured so that, using the supporting infrastructure, one subsystem may pass

messages to another. It is thus possible logically to link protocol handlers (and

hardware device handlers) to support the protocol stack required by a particular

communications path.

The modular nature of this architecture and the ability to link several protocol

handlers to support a particular protocol stack has a natural correspondence with

the layering of the OSI architecture.

156

Kernel Communications Outline Structure

NFH

NCM

LSH

Transport (4)

Internet (3c)

LAN Access Sub-systems

STM

Session (5)

Network (3)

COSMAN (6)

LLSM

KRM

Application Services

HM, NETCON etc.

Kernel Communications

Key to Diagram

COSMAN Communications and Slow device Manager

NCM Network Connection Manager

NFH Network File Handler

Session Session Protocol Handler (OSI layer 5)

ICM Intra-system Connection Manager

ETH External Transport Handler (OSI Layer 4)

OSI Internet Internet protocol handler (OSI Layer 3c)

Network Network protocol handlers (e.g. X25, ICLCnn etc.)

STM Stream Manager for driving streams over LAN

LAN Access Device / controller drivers for LAN access

KRM Kernel Reconfiguration Manager

HM Hardware Manager

NETCON Communications Network Controller

LSH LAN Station Handler (LAN Station Management)

LLSM Low-level Station Manager

157

Two concepts are important in the descriptions that follow:

� a unit is the Virtual Resource within a communications subsystem

associated with a specific communications path through that subsystem; in

general each subsystem (including NCM) allocates its own units;

� a file is a Virtual Resource which is associated with a specific usage of a

communications path by an above-kernel subsystem; NFH provides a

common file-level interface to the various protocol handling subsystems

within Kernel Communications.

Network Connection Manager (NCM)

The NCM subsystem provides common interfaces for above-kernel subsystems to

manage the Virtual Resources (units) supported by Kernel Communications

subsystems. NCM also provides various protocol-independent functions and

services for all the other Kernel Communications subsystems. These include:

� Unit declaration & deletion and managing the unit connection hierarchy;

� Establishment of links between other subsystems;

� Tracing, error logging, dumping etc.;

� Data buffering, maintaining buffer pools etc.;

� Timer handling etc.

The NCM management interfaces are usually invoked by Kernel Reconfiguration

Manager (KRM), possibly via LLSM, on behalf of Hardware Manager (HM - in

Director). For dynamically declared units, in turn, HM is invoked by NETCON

which manages the declaration and deletion of such units. NCM provides a

mechanism for NETCON to declare interest in certain units. This mechanism is

used by NETCON to monitor state changes in units as well as the arrival of

network connection requests.

Network File Handler (NFH)

The Network File Handler (NFH) subsystem provides unshared Virtual

Resources known as files through which an application may use underlying

communications resources. It thus acts as a bridge, providing a common interface

between the (shared) public communications handling in Kernel (accessed via

NFH files) and the local handling used by an application within a VM.

NFH provides a common external interface to the normal "in-process" transfer

functions of all Kernel communications subsystems. NFH provides services for

above-kernel subsystems to enable file connections to be made through NFH to

protocol handlers; it also provides services which are specific to individual

connections such as tracing, event causing, input data queuing.

Associated with each NFH file are queues of data. These queues are held in

public buffers, thus minimising the amount of buffer space which would

otherwise have to be allocated in each VM. An input queue contains data

158

received by the system but not yet read by the application; an output queue

contains data output by the application but awaiting transmission. A file may

have several queues (input or output) associated with it, subject to restrictions for

a particular file type or usage.

Communications resources are inherently asynchronous in their operation.

However NFH minimises the impact of this asynchrony by ensuring that output

data is buffered immediately, and that input data is buffered until read by a

higher-level subsystem. Asynchronous completion of an output request and the

arrival of input data (as well as certain exception conditions) are indicated to

higher-level subsystems by means of an event.

Protocol Handling Subsystems

The protocol handling subsystems carry out the functions of the various protocols

and reflect the layers of the OSI model. Any particular protocol handler

communicates with:

� the protocol handler (or hardware device or controller manager) at the

layer below. Each subsystem provides a standard set of lower interfaces

for use by underlying protocol handlers when indicating termination of

actions initiated by the subsystem or unsolicited events;

� the protocol handler at the layer above, or with NFH if the connection to

the handler is from above Kernel. Each subsystem provides a standard set

of upper interfaces for use by NFH or higher level protocol handling

subsystems;

� with other non-communications subsystems (HM, NETCON etc.) via

NCM. each subsystem provides a standard set of interfaces for use by

NCM - for example, to allow the subsystem to be initialised, and to allow

units to be declared. Some subsystems also provide control action and

attention interfaces which permit non-IO interactions between subsystems

(e.g. loading a microprogram into a hardware device).

Communications Device Handling Subsystems

The communications device handling subsystems manage the hardware devices

or controllers which drive the physical communications medium. In practice, the

hardware architecture of OpenVME systems uses a Local Area Network as a

"system bus" to which hardware device and communications controllers are

attached. Communications controllers connected to this LAN may either be

gateways or true controllers; in the latter case the protocol stack becomes

recursive, with the LAN protocol (e.g. layers 1-4) carrying messages to drive the

controller (e.g. at layer 1 or 2).

159

Director Communications Architecture

COSMAN

VME Director provides applications with "in-process" access to communications

facilities. The Director subsystems supporting these facilities are known

collectively as COSMAN (COmmunications and Slow device MANager). In the

case of communications resources, COSMAN provides a file-level interface

which is closely aligned to that of NFH.

In terms of the OSI model, COSMAN supports certain presentation (layer 6)

services, providing data encoding and decoding between an application and the

underlying communications service. This allows applications to use the data

structuring and encoding conventions independently of the protocols being used

by underlying (or peer) communications layers.

Application Use of COSMAN Resources

The set of interfaces provided by COSMAN for operating on a file comprises:

� a data input interface, to read a queued input data;

� a data output interface, to queue data for subsequent output;

� miscellaneous (queue) control interfaces;

� events used to notify the application of asynchronous conditions.

For data output requests, COSMAN performs presentation mappings as it

transfers data from the application's local buffer into a local, on-stack buffer;

NFH is then called to perform the transfer, and the on-stack buffer is copied to

the queue in one or more public buffers; for data input requests, COSMAN

performs presentation mappings as it transfers data from the queue in public

buffers (via a reference provided by NFH) to the application's local buffer.

Network Connection Management (NETCON)

Introduction

NETCON (also known as Communications Network Controller) is an out-of-

process subsystem responsible for instigating the creation, management and

subsequent deletion of the Virtual Resources within an OpenVME system used to

support a communications path.

NETCON is structured in a highly modular, layered fashion, with layer managers

corresponding to the OSI layers. Communication between layers, across a layer

service interface, is restricted to synchronous requests and asynchronous

indications.

160

NETCON is implemented as a VM with privileged interfaces to various Director

subsystems, including:

� Hardware Manager (HM) which mediates between NETCON and Kernel

(NCM) or Director (COSMAN) communications subsystems in unit

declaration;

� Network Controller, Upper Director (NCUD) which provides

communication between user VMs and NETCON for passing connection

and disconnection requests and indications;

� Resource Scheduler (RS) which provides the in-process interfaces through

which user VMs interact with NCUD when requesting or accepting

connections;

� Network Catalogue Manager (NCAT) provides commands for creating

and modifying catalogued Service Access Points (SAPs), the relationships

between SAPs and hardware communications units, and generic SAP

descriptions. If the modifications are relevant to NETCON, NCAT passes

the updated information to NETCON, via a task message, to allow it to

modify its internal tables appropriately.

Network Controller Initialisation

When the system is initially loaded, NETCON searches the catalogue for all

SAPs, hardware communications devices and the relationships between them,

building internal tables representing the SAP structures thus identified.

Subsequent changes to the catalogue are notified to NETCON so that it can

update its tables accordingly.

Unit Declaration & Connection

Kernel and Director communications subsystems support units and NETCON is

responsible for mapping layer hierarchies onto appropriate unit hierarchies.

When NETCON needs to create a connection through a SAP, it requests the

appropriate protocol handler or COSMAN (via HM) to declare a unit

dynamically, and to connect it to a previously declared unit (either another

dynamically declared unit or a permanent hardware device) with addressing

information. It is possible for a unit of one layer to have several units of higher

layers connected to it; such a unit is termed a multiplexor. The process of

creating a unit (and connecting it) may require an exchange of protocol with a

remote system - e.g. to establish an outward connection, to confirm an inward

connection or for negotiation of connection parameters.

161

Unit Disconnection & Deletion

The layer manager of a unit is notified of the disconnection of a unit in the layer

above (or, at the uppermost layer, by an application). If the unit was dynamically

declared and there are no other units in the layer above connected to the unit, the

layer manager may initiate deletion (via HM) of the unit. Deletion of a unit is

notified to NETCON by an event from the protocol handler. The process of

disconnecting a unit and deleting it may require an exchange of protocol with a

remote system - e.g. to request or confirm disconnection.

Incoming Connection Requests

When an incoming connection request arrives in a Kernel Communications

subsystem, the protocol handler informs NCM; NCM, in turn, notifies NETCON

via an asynchronous event, identifying the hardware unit and any relevant

protocol data. NETCON uses its tables to pass the request up through the layer

managers responsible for the SAPs addressed by each layer of the protocol. Each

layer manager may:

� declare a unit in one of the underlying communications subsystems;

� generate protocol to respond to the remote peer entity which originated

the request;

� identify a SAP at a superior layer addressed by protocol at this layer.

The uppermost layer is usually the Application layer and at this layer protocol is

used to identify a service to which the request is passed, directly or indirectly. As

the request is passed up through the layer managers, units are dynamically

declared, via HM, to support the required protocol stack.

Incoming Disconnection Requests

Incoming disconnection requests may be originated at any layer and are notified

to NETCON by an event from the relevant protocol handler. NETCON passes

the disconnect request to layer manager responsible for the layer at which the

disconnect request was originated. In general, this layer manager (or application)

then causes a disconnect indication to layers above (if any) and generates a

disconnect confirmation to be sent to the remote peer entity; the unit is then

disconnected from the layer below and deleted.

Outgoing Connection Requests

Outgoing connection requests are passed to NETCON from an application via RS

and NCUD. The remote entity is usually identified as a remote service with an

underlying remote SAP hierarchy (although a SAP may be identified explicitly).

A service (or SAP) may have several routes and each layer manager uses a

combination of user-specified preferences, load-balancing and quality-of-service

parameters to determine the order in which routes are selected to attempt a

connection.

162

NETCON passes the request down through layer managers corresponding to the

selected SAP hierarchy. When the request reaches the manager responsible for

the lowest layer of the SAP hierarchy (which is either a hardware

communications device or a special SAP for intra-system connections), a unit is

declared. As control is then returned successively to the layers above, units are

dynamically declared and connected (via HM) to support the required protocol

stack.

Outgoing Disconnection Requests

Outgoing disconnection requests generally originate at the uppermost layer of a

protocol stack. The uppermost layer manager generates protocol to its

corresponding peer to initiate disconnection. When this is confirmed to the layer

manager by an event from the protocol handler, the unit is disconnected from the

layer below and deleted.

Above Director Communications Architecture

Application Layer Architecture

In the OSI architecture, the Application Layer comprises Application Processes

each which contains a number of Application Entities. An OSI application

process denotes a collection of functionality and corresponds roughly with a

VME service - e.g. a file transfer responder service. An application entity is a

part of the functionality of an application process which is subject to OSI

standardisation - e.g. an FT Responder's ability to operate the FTAM protocol.

The OSI architecture defines invocations - instances - of both applications

processes and application entities. An Application Process Invocation is a

specific instance of the usage of an application process (service). An Application

Entity Invocation (AEI) is a specific instance of the usage of an application entity

from an application process invocation and corresponds to a Virtual Resource

providing the operations defined for the application entity.

An application entity itself has internal structure, comprising a number of

Application Service Elements (ASEs). Each ASE is supported by one or more

Application Level Protocol Machines (ALPMs) whose behaviour is defined by

protocol and service standards.

AEIs can communicate with each other using OSI presentation services,

establishing a temporary relationship between them which is termed an

association. The establishment and destruction of associations are functions of a

special ASE termed the Association Control Service Element (ACSE); this ASE

is present in every application entity.

163

Application Level
Protocol Machine

Operational Descriptive

Invocation

AE

Application Level
Protocol Machine

ASE

ALPM
ALPM

Application Entity
Co-ordinator
Application Entity
Co-ordinator
Application Entity
Co-ordinator

Access Point

Transport Service

Access Point

Transport Service

Access Point

Transport Service

Invocation

AE

SAP

Presentation

SAP

Presentation

DISAP

Presentation

Service
Transport

AE
Co-ordinator

invocation

invocation Application
Process (Service)

Application
Entity
Application
Entity

Application
Service Element
Application
Service Element

Application
Entity

ASE

Service
Presentation

AP
Invocation

Director

Kernel

In the OpenVME catalogue, an Application Process is represented by a service,

known as the principal service. The service has routes via OSI Presentation SAPs

(DISAPs), each addressed by a DISAP Selector, each representing an

Application Entity within the Application Process. In the catalogue the AE co-

ordinator(s) for each Application Entity is specified in the corresponding SAP

node.

Application Layer Software Structure

Non-standardised
element

AEIH

AE Co-ordinator

ALPMs

ACSE AH

Application Entity

AE Utilities
e.g. AEIM

Standardised

Application-dependent
interfaces

interfaces

Layer-independent
software

Application-dependent
software

Layer 5 / 6
Sub-systems

Lower layers

164

Non-Standardised Element (NSE)

A Non-Standardised Element is that part of an Application Process outside its

Application Entities which is therefore not subject to OSI standardisation. In the

case of FTAM, for example, the NSE provides the user interface and filestore

access functions.

Application Entity Invocation Handler (AEIH)

Application Entity Invocation Handler provides interfaces to the declarative

functions for an AE which are associated with the creation and destruction of

AEIs. The interfaces to these functions are the same as those provided by the

VME RSI for declarative functions on lower layer OSI services, and support the

same event interface. AEIH uses loader facilities to intercept the RSI interfaces.

If a request is made to initiate or listen for an application layer service (an

Application Process), AEIH passes the request to the appropriate AE

Co-ordinator; otherwise the request is handled in the default manner.

Application Entity Co-ordinator

The AE co-ordinator is responsible for the creation of AEIs, establishing

associations, and the creation & initialisation of the ALPMs required to support

each ASE within the Application Entity. When the AE co-ordinator is entered to

create an AEI it creates a corresponding Virtual Resource and returns a

descriptor to the resource, enabling subsequent requests to the AEI to invoke the

specific resource (AEI) directly.

Application Layer Protocol Machines (ALPMs)

An Application Layer Protocol Machine handles a specific application layer

protocol - e.g. the FTAM protocol or the X400 P1 protocol. APLMs use the

facilities of AH to interface to the presentation layer and may optionally use

utility procedures such as those provided by AEAM.

Application Control Service Element (ACSE)

ACSE provides facilities for handling the creation and destruction of

associations. These include facilities which allow an AEI to:

� establish an association with another AEI;

� accept an incoming association request from another AEI;

� offer an association to another VM;

� destroy an association.

165

Association Handler (AH)

Each association is underpinned by a presentation connection. ACSE does not,

itself, provide data transfer or synchronisation facilities; instead it makes use of

presentation services directly available to the user of the association. AH

provides facilities to:

� output data;

� notify inward data indications to a nominated ALPM or ACSE procedure;

� perform synchronisation actions;

� notify inward synchronisation actions.

Application Entity Area Manager (AEAM)

Application Entity Area Manager provides ALPMs with facilities for allocating

and managing variable length tables and buffers.

Application Layer Services and APIs

OSI Application Entities

The OpenVME system provides a number of standard OSI Application Entities:

� File Transfer And Manipulation

� X400 Message Handling Service

� X500 Directory System & User Agents

� Virtual Terminal

� Transaction Processing

OSI Application Layer Service Elements

The OpenVME system includes a number of OSI Application Service Elements

(ASEs) each supported by corresponding protocol machines.

� Application Control Service Element (ACSE)

� File Transfer And Manipulation (FTAMSE)

� Reliable Transfer (RTSE)

� Remote Operations (ROSE)

� X400 Message Transfer, Storage, Delivery, Access & Retrieval

 (MTSE, MSSE, MDSE, MASE, MRSE)

� X500 Directory Manipulation, Storage & Retrieval

 (DMSE, DSSE & DRSE)

� Virtual Terminal (VTSE)

� OSI Transaction Processing (TPSE)

� Commitment, Concurrency & Recovery (CCRSE)

166

OSI Application Layer APIs

X/Open conformant APIs are provided to various OSI application layer services,

most notably:

� The ACSE/Presentation Service APIs (XAP);

� The FTAM high-level API (XFTAM);

� The X400 Message Access Service (XMA);

� The X500 Directory Service (XDS);

� The XATMI API to the OSI-TP Service;

� The OSI Remote Operations Service (ROSE);

� The OSI Object Manager (XOM).

X/Open Transport Interface

The Transport Interface (TI) subsystem supports the X/Open Transport Interface

(XTI) which provides access to the OSI and TCP/IP & UDP/IP transport

providers. Libraries are provided in both the X/Open Application Environment

and within the VME C language to map calls in C on the XTI to equivalent calls

on TI interfaces.

Out of Process Communications Architecture

Several communications-related functions are performed out-of-process in

dedicated VMs. Various infrastructure subsystems exist to provide a standard

framework for protocol handling VMs. These are described below.

The Communications Service Infrastructure (CSI)

The Communications Service Infrastructure provides a generalised framework

for use in the implementation of application layer communications services

related to application to application interworking. A CSI-based service has a

scheduler VM and one or more protocol-specific support VMs. The

infrastructure provides general purpose, protocol-independent functions and is

responsible for the scheduling of connections to support VMs and providing

management capability. Examples of services based on CSI include the X400

Message Transfer Agent (MTA) and the OSI-TP Gateway VM (OTP).

The Flexible Terminal Handler Infrastructure (FTH)

Flexible Terminal Handler provides an environment for protocol-handling

sponsors. Its prime use is for handling special terminal requirements, with

sponsors mapping between the presentation protocol expected by the application

and the actual terminal protocol. Sponsor modules exist to allow all the common

de facto asynchronous terminal types to access standard interactive OpenVME

services.

167

Out-of-line Layer Services

Provision is made for a protocol to be handled by an Out-of-line Layer Service

(OLS). The OLS mechanism enables a protocol handler to be written as an

OpenVME application, executed in a dedicated OLS sponsor VM. Although

out-of-line support of protocols is less efficient (involving inter-VM

communication and switching penalties) it is a very flexible way of supporting

protocols for which ultimate performance is not essential; it also allows user-

written protocol handlers to be incorporated into the standard VME

communications mechanisms.

An intra-system connection is established (by NETCON) between the user of an

OLS and the OLS VM, so that the out-of-line support for the protocol layer is

invisible to the user.

The NCOL subsystem provides supporting services for OLS VMs. In particular,

it simplifies VM initialisation, establishment of communication and subsequent

interactions with NETCON.

Out of Process Communications Services

The following list summaries the major communications functions and services

provided by out-of-process VMs.

� Communications Network Controller (CNC, NETCON)

� TCP/IP (VTI)

� Streams (STR)

� Layer protocol handlers (e.g. Yellow Book Transport Service)

� OSI TP Gateway (OTP)

� X400 Message Transfer Agent (MTA)

� X500 Directory System Agent (DSA)

� Remote Session Access (RGT)

� Asynchronous Sponsor Service (ASS)

� Asynchronous Terminal Handler (ATH)

� Virtual Terminal Sponsor (VTP)

� Transport Relay (RLY)

� X400 Remote Sponsor (X4SP)

� File Transfer copier (NIFTP & FTAM)

168

169

Chapter 10
Distributed Application Services

Introduction

Client-server Architectures

Client-server architecture describes a distributed computing system in terms of

the roles of, and relationships between interacting components - clients and

servers. The architecture focuses on the distribution of functionality between the

component that makes a request (a client) and the component that responds to it

(a server). A server is a component acting on behalf of a client supporting a

defined set of functions, known as services. A client, requiring a service, initiates

an interaction by making a request to a suitable server and then awaiting a

response from the server indicating completion of the request. It is important to

note that a single component may take part in various interactions, in some of

which it acts as a client and, in others, as a server.

The Client-server model is generally applicable. The term "component" usually

refers to a software application but is also sometimes used to refer to the system

or hardware platform on which it is executed.

Generic Application Architecture

A total application can be considered as having three major components:

presentation, application logic and data management. Partitioning the

functionality of an application in this way results in a modular structure which

identifies relatively self-contained components which are potentially

distributable.

Data Management

Application

Presentation

Generic Application Model

User Interface

User Dialogues

Application Processes

Application Operations

Application Objects

Database Objects

Example Functionality

170

Distributed Applications

An application is distributed if execution of different components or functions of

the application takes place on different systems or hardware platforms.

Distribution may occur within an application or between applications, or both.

There are several models of distribution, each characterising a particular way of

partitioning functionality; a total application may employ several models in

combination.

Client/Server (or Workstation/server) Architecture

The term Client/Server is commonly used to refer specifically to the class of

systems in which one or more components running on a workstation platform act

as clients to one or more server components running on a "server platform",

usually shared between several workstations. This is also sometimes termed a

Workstation-server architecture to distinguish it from the more general use of the

term Client-server described above.

Workstation-server architecture splits a single application into components

executed on different platforms, the workstation and one or more servers,

separated by a network. The application can be split in various ways, each termed

a style or model of client-server distribution:

Application

Presentation

Presentation

Application

Presentation

Application

Presentation

Application

Presentation

Application

Presentation

Application

Distributed

Data Management
Remote

Data Management

Data

Management

Data

Management

Data

Management

Data

Management

Data

Management

Data

Management

Distributed

Presentation

Remote

Presentation

Distributed

Function

 Source: Gartner

The term remote indicates that the component is remote from the application;

distributed refers to distribution within a given component (presentation,

application or data management).

171

Co-operative Processing Architecture

A Co-operative Processing architecture is one in which applications interact with

each other on a peer-to-peer basis (in contrast to the hierarchical relationships of

the Workstation-server architecture). The architecture aligns well with an object-

oriented approach in which each application encapsulates certain data and

provides services which perform well defined operations on that data.

Application

Presentation

Data

Application

Presentation

Co-operative

Processing

Management

Data

Management

Distributed Computing Infrastructure

Within the overall Client-server architecture, as well as the applications

themselves, there is a requirement for a framework linking separate application

components, enabling them to interact and co-operate to form coherent

distributed systems, potentially in heterogeneous environments. The

infrastructure which provides this distributed computing framework is generically

termed middleware.

Middleware provides the means by which a client requiring a service can make a

request which is passed to a suitable server, via underlying networking services.

Distribution Transparencies

Middleware may provide one or more distribution transparencies which conceal

various aspects of the distributed computing environment from applications:

� Platform and Network Transparency: each component operates

independently of platform hardware and operating system, and of the

underlying network services;

� Location Transparency: each component operates independently of the

location of itself and of other components with which it interacts;

� Migration Transparency: a component may change its location at run-

time without impacting operation of the system;

� Concurrency Transparency: a component may support multiple

interactions concurrently;

� Failure Transparency: failure of a component does not compromise the

ability of other components to recover from the failure;

172

� Replication Transparency: multiple instances of a component may be

used to increase performance or resilience of the system;

� Data Transparency: the location, logical structure and physical

representation of data managed by a component are hidden from other

components accessing the data.

Client-server Interactions

Component Use of Infrastructure

From the application programmer's viewpoint, the use of distributed computing

infrastructure may be implicit, if suitable transparencies are provided, or explicit

otherwise.

Interactions between application components can be programmed by invoking

infrastructure APIs explicitly. Such interactions are termed infrastructure-

mediated.

Alternatively, interactions can be programmed by using language syntax to

express interactions between client and server directly, so that the client

apparently invokes a server API rather than an infrastructure API. Such

interactions are termed language-mediated and depend on application

development tools to construct the code that invokes the underlying infrastructure

APIs.

A special case of mediated interaction is that in which interactions programmed

as operations on a local API conceal a remote interaction. For example, remote

printing, file and database services are invariably of this form. An agent

component provides the local API for the client and the code that invokes the

underlying infrastructure APIs to communicate with the server.

Client Server

Distributed Computing Infrastructure

Client Server

Distributed Computing Infrastructure

Language & Agent mediationInfrastructure mediation

End-to-end
Interaction

End-to-end
Interaction

Infrastructure

APIs

Infrastructure

APIs

173

Types of Client-server Interaction

The main types of interaction style in Client-server distributed computing are as

follows:

� Conversational interaction: This is infrastructure-mediated interaction

via dialogue over networking services. It has historically been the

predominant style of interaction used for distributed application systems;

� RPC interaction: This is language-mediated interaction formulated in

terms of procedure calls from client to server, according to procedure type

definitions common to both;

� Object request interaction: This is language-mediated interaction

formulated in terms of object-oriented interactions between client and

server components;

� Loosely-coupled interaction: This is an interaction which takes place via

one or more intermediate components. The interactions between client,

server and intermediate components can be any of the other types of

interaction identified above.

OpenVME Distributed Application Services

Run-time Services

The OpenVME distributed computing infrastructure provides supporting services

which enable application components to interact with other components.

Networking Services

Networking Services can be used explicitly for conversational interactions in a

Distributed Function or Co-operative Processing architecture. They are

invariably used implicitly, as an underlying communication mechanism, by

higher level services supporting RPC or object request interactions.

OpenVME provides OSI and Internet networking services, accessed via the

X/Open XTI transport interface. OSI application services such as VTP, OSI-TP,

ROSE are also supported. Chapter 9 provides a detailed description of the

OpenVME Networking Services.

Terminal access protocols are commonly used in distributed and remote

presentation architectures, together with workstation frontware, to provide user-

interface conformant presentation of unchanged applications. Chapter 12

provides a detailed description of the OpenVME User Interface services.

Networked Resource Usage

Networked resources are used implicitly, via agent-mediated interactions. For

external clients, OpenVME supports a wide range of services including:

174

� Networked File System (NFS)

� Message Handling Services (X400)

� Directory Services (X500)

� PC-LAN services

Remote Database Access

Remote Database access can take place via agent-mediated interactions, with

database front-end software or Client-server middleware providing the agent

functionality. SQL is a key enabling interface for this type of distribution as it

provides the data transparency that allows database queries to be expressed

independently of the location or internal organisation of the server database.

All the relational database management systems on OpenVME support this type

of distribution. In addition, ReView provides transparent data access, via an SQL

interface, with all OpenVME data management facilities including IDMSX and

flat files. Chapter 8 provides a detailed description of the OpenVME information

management services.

Remote Procedure Calls

Remote Procedure Calls are used for language-mediated interactions in a

Distributed Function or Co-operative Processing architecture. They are

sometimes used implicitly to support, for example, agent-mediated interactions

invoking operations on networked resources. RPC services which operate in a

heterogeneous environment must provide data transparency mechanisms to allow

for different data representations on different platforms.

Extensions to basic RPC mechanisms allow RPC interactions to take place in a

transactional framework. This technology is termed transactional RPC.

OpenVME supports several RPC capabilities, including:

� SVR4 Remote Procedure Call (RPC) with External Data Representation

(XDR);

� DAIS has an RPC capability underlying its object request mechanisms

(see below);

175

Distributed Transaction Management

Transaction Management is an infrastructure service which can be used in

conjunction with all styles of interaction. Whilst it is most obviously relevant to

dedicated Transaction Processing environments, it may be used to ensure data

integrity and consistency across any distributed computing system. For example,

Remote Database access and RPC facilities can be enhanced in this respect by

providing them within a transactional framework.

OpenVME provides transaction management facilities accessed via the standard

X/Open APIs. The underlying OSI-TP service enables transactions to be

distributed across several applications on different platforms.

These facilities are described in detail in Chapter 7.

Messaging services

Messaging services provide support for loosely-coupled, agent-mediated

interactions between co-operating components.

Transactional extensions to messaging services ensure that messages are

delivered precisely once (if at all). The X400 definition is being enhanced in this

way. In a complementary way, the OSI-TP service is being enhanced to support

message queues which enable messages to be added to or removed from a queue

in a transactional manner. This technique, termed transactional messaging,

allows the guarantees of transactional operation to be extended to more loosely-

coupled interactions.

The X400 Message Handling Service provides a means for passing structured

messages with arbitrary content between components. The service is invoked via

the X/Open MHS APIs. An important use of messaging services, frequently

based on X400, is for Electronic Data Interchange (EDI).

Distributed Object Request services

Distributed object request services can be used to provide language-mediated

interactions between components in a co-operative processing architecture.

Components are designed as objects with clearly defined interfaces. An object

hides its internal implementation from other objects and can only be accessed via

its interfaces.

Run-time services provide facilities for creating and managing objects, for

routing client requests to appropriate server objects and for security, error

management etc. Development tools greatly simplify the task of constructing

distributed applications by providing an application environment model which

abstracts above details of underlying platforms, networking services and

infrastructure.

176

The OMG Common Object Request Broker Architecture (CORBA) is the

emerging standard for object request environments. It is compatible with the ISO

Open Distributed Processing (ODP) reference architecture.

The DAIS application development tools and middleware provide a CORBA

conformant environment. DAIS is available on OpenVME as well as Unix, PC

and other platforms, and is therefore highly suitable for integrating applications

across heterogeneous, distributed computing systems.

Distributed Naming, Directory & Service Discovery services

The components of a distributed system need to be able to identify the other

components with which they require to interact. This is usually achieved by using

a naming scheme. However in different environments the ways in which objects

are named and those names decoded may vary considerably. It is therefore

desirable to use a federated naming scheme in which names are decoded within

the context of a previously identified environment; in such a scheme, an element

of a name may identify a new environment in which the remainder of the name

should be decoded.

Messaging services based on X400 standards can use the X500 directory service

to provide addressing and routing information.

The OMG CORBA architecture allows clients to identify service requirements in

terms of attributes. The Object Request Broker matches requests to advertised

services of which it is aware and mediates in the establishment of an association

between client and server.

Distributed Security services

Distributed security is an infrastructure service which can used in conjunction

with any style of interaction. OpenVME co-operates with ICL Access Manager to

provide secure, authenticated logon. This is part of the Sesame architecture on

which the ECMA security architecture is based.

Distributed applications can use OSI association management features to provide

secure, authenticated association between application servers. Finer grain

security (e.g. related to individuals or roles) must be implemented by applications

themselves. Extensions to the underlying security make additional services

available via the General Security Services API (GSSAPI).

The DAIS/SE security extension provides transparent access protection to all

data and services, encryption facilities, secure authentication and administration

tools. DAIS/SE security services are accessed via the GSSAPI.

Within OpenVME itself extensive security mechanisms support both

discretionary and mandatory security policies (see Chapter 15).

177

Integration Tools

The run-time services and application development tools described above enable

a coherent set of distributed components to be developed and executed.

Distribution transparencies ensure that the components are combined into a total

application in a naturally uniform manner.

Presentation

ApplicationApplication

Application

Integration Component

Presentation

Application
Data

Management
Application

Data Mgmnt

Integration Component

Presentation
Data

Presentation

Presentation
Data

Application
Management

Application

Integration Component

Component Structure
Examples

Review

DAIS Information Service

ICL Forms

Dialogue Management System

ProcessWise

Application Application Application

Integration Component

Application Integration

The rationale for many distributed systems is the linking together of several

separate applications to provide a single, coherent interface to the functions and

information provided by the applications. One important additional capability is

to combine functions or information from separate applications, thereby

providing new functionality. The linking and combining of applications in this

way is termed integration and the software components which provide a

framework for developing and executing integration functions are examples of

integration tools or components.

In many cases it is necessary or desirable to integrate applications developed

using different methods and with different run-time component structures,

interfaces and environments. It is often only possible to interact with these

components through prescribed interfaces which may not have been particularly

designed for use by other applications. Integration components can be used to

adapt existing interfaces so that a component appears to provide the interfaces

required to allow it to be integrated into the total application.

178

For example, an existing applications may only be accessible via a terminal

(presentation) interface. An integration component can provide a terminal

interface (via networking services) to the application and a procedural interface

to other applications, allowing them to access the services provided by the

existing application. The diagram above illustrates some application component

structures showing examples of the use of integration components within the

structures.

The integration tools used to construct integration components often require

information about the components which are to be linked. The most effective

method of achieving this is to use a common source of design information for all

applications and development tools - a Data Dictionary. For example, the

Dialogue Management System (DMS) can use screen design data in the ICL Data

Dictionary System to allow a DMS application to be written solely in terms of

logical fields, with the intermediate screen presentation entirely hidden.

Distributed Application Development

Application Development tools play a key role in supporting a programming

model which hides unnecessary details of distribution from the programmer.

Tools are an essential ingredient of language-mediated distributed computing,

delivering automated distribution transparency.

The use of the Open AM application development tools for the development of

distributed applications is described in Chapter 11. Open AM is targeted at the

development of applications to run within application servers interworking with

Open TP facilities. The Open AM 4GL provides platform, network and location

transparencies, allowing client and server applications to be developed with

minimal dependence on how the applications are eventually partitioned and

distributed. Application procedures and their formal interfaces are described in

the Data Dictionary (DDS) and procedural invocations between client and server

applications are automatically transformed into Remote Procedure Calls. Open

AM generates X/Open conformant COBOL code (with embedded SQL if

appropriate) and automatically generates code to interface to the underlying

infrastructure - e.g. the X/Open XATMI Application Programming Interface for

distributed transactional operations with data transparency.

DAIS application development facilities include a powerful set of code

generation tools which hide the complexities of distribution. Service interfaces

are defined in terms of the CORBA Interface Definition Language (IDL)

which is an abstract notation for describing the set of service operations which

comprise an interface.

The DAIS stub compiler generates stub routines for client and server programs.

The stub code is responsible for any data conversion required for transparency

179

and for calling underlying infrastructure APIs. The application can invoke the

stub code as though it were calling the server interfaces directly. Alternatively,

client application calls can be written in Distributed Programming Language

(DPL) embedded within the application which is then pre-processed to provide a

target language source file. DPL provides interface type checking, dynamic

creation and destruction of interface instances, and invocation of service

operations.

Distributed System Management

The OpenVME system management tools supporting distributed computing

systems are described in Chapter 12. In addition DAIS and TPMSX both provide

additional facilities for managing distributed applications operating within their

respective environments.

180

181

Chapter 11
Application Development

Introduction

This chapter describes the application development facilities of OpenVME. The

ICL Data Dictionary (DDS) plays a central role in supporting these facilities.

The QuickBuild family of application development tools, in conjunction with

DDS, enable open applications for a wide range of application architectures to be

developed and code automatically generated. Open interfaces to DDS allow

dictionary data to be interchanged with third party CASE tools, thus allowing

maximum flexibility to the application developer.

Equally, the OpenVME architecture provides an environment into which

applications developed on other systems to open standards, can be simply ported.

A major theme of application development is to enable an application developer

to design open applications in a manner which minimises the impact of

differences in the underlying architecture. This is particularly important for

distributed and client-server applications for which there is a large range of

possible models of distribution. Application development tools are a key

mechanism in hiding differences in environment and distributed application

infrastructure from such applications.

The Data Dictionary (DDS)

Many benefits are obtained from centring application development around a

dictionary. The dictionary holds the master information about business processes

and data and about computer processes and data. This single source of

information is a model for and provides documentation of the application

development process and provides a consistent source of application information.

Tools can automatically generate applications, databases and forms from the

information.

DDS has many features which make it particularly appropriate for use as a

central repository for Corporate business dictionary data. QuickBuild and

QuickBuild WorkBench are efficiently integrated with it. There are also links

between DDS and leading CASE toolsets and UNIX dictionary products from

leading vendors, in particular via the open CDIF (CASE Data Interchange

Format) standard.

182

Data Dictionary Services - DDS

Tools
support

QuickBuild
Interface
objects

e.g. CDIF

Program
Master

Tools
support

client tools
e.g. Browser

QuickBuild
WorkBench

Programmers
WorkBench

VME

VME &
other
servers

PCs

Project
Dictionaries

Other
WorkBenches

Application Development Tools

QuickBuild

QuickBuild is a uniquely powerful integrated CASE product set which, starting

from diagrams on a WorkBench, automatically generates applications which

may:

� be portable to other systems supporting COBOL 85 and relevant APIs;

� access relational databases and Codasyl databases;

� be distributed in structure;

� use 4GL with ICL FORMS;

� run in a Transaction Processing environment (e.g. TPMSX);

� run in a non-TP environment (e.g. CDAM).

Apart from DDS, the major components of QuickBuild are:

� Open Application Master (AM): 4GL system for application

implementation;

� QuickBuild WorkBench (QBWB): a PC-based system analyst's

workbench;

� Automatic System Generator (ASG): automatic generation of AM

programs;

� Database Generator (DBG): automatic database generation from DDS;

� QuickBuild Pathway: a simplified environment for using other

QuickBuild facilities.

183

Open Application Master

At the heart of QuickBuild is Open Application Master (Open AM). Open AM

can be used to develop stand-alone or co-operating applications, using Relational

or Codasyl databases, which are portable.

The primary way to produce open applications is for the Open AM compiler to

generate standard COBOL, which is portable, and thus hide platform and

networking interfaces from the application code. The generated application code

is targeted to be completely portable, in the sense that it is X/Open COBOL

conformant (with embedded SQL) and has no machine, terminal or networking

specific elements, all such elements being removed and relocated in middleware.

When data is transferred between the client and server, its conversion to conform

to different representations is provided automatically by middleware.

The primary model of distribution for applications generated by Open AM is that

of distributed function. From a single AM application, client code is generated

which runs on a workstation and server code which runs under a transaction

manager (e.g. TPMSX). Alternatively, Open AM can be used to generate server

code and other tools can be used to generate client code for the workstation.

Other models of distribution are also supported. In particular, co-operative

processing between applications is supported. Such applications may run under a

transaction manager or in free-standing environment supporting distributed

dialogues via an appropriate API (such as XATMI).

QuickBuild WorkBench

QuickBuild WorkBench (QBWB) is a system analyst's workbench which runs on

a PC using a diagrammatic representation of the system design. Using From these

diagrams, DDS representations of the program are generated and thence, using

other QuickBuild components, applications and the databases which they access.

Program Master & Programmer's WorkBench

Program Master and Programmer's WorkBench provide an application

development environment for COBOL programs. They are integrated with the

DDS Data Dictionary. An important difference between these tools and the

QuickBuild set is that applications are developed and written in COBOL whereas

with QuickBuild, a 4GL is used. Also they do not offer the same flexibility of

generating open distributed applications.

184

Application Development Tools - General

Any application development tools may be used to generate client applications

running on workstations or UNIX platforms. With the support of Open TP

interfaces by TPMSX, server applications running under TPMSX may also be

generated by any appropriate tool.

Run-time "Middleware"

DDS

Quickbuild

Other
Dictionary

Other
CASE

Workstation
Client

Server
Server

CDIF

Portable Client and Server code

Client/

Applications running under TPMSX generated by AM or written in a 3GL can

interwork, using various interworking protocols, with applications generated by

any application development tool.

There are links between DDS and leading CASE toolsets and UNIX dictionary

products from leading vendors, in particular via the open CDIF (CASE Data

Interchange Format) standard.

Porting of Open Applications

OpenVME provides compilers for several standard languages including COBOL

(74 or 85), C (K&R or ISO), FORTRAN (77), Pascal, C++, RPG2 and BASIC.

Applications written in these languages can be recompiled to run on an

OpenVME system. Debugging and run-time error handling facilities provide

tracing and error reporting in terms of original source text and symbol names.

185

In addition OpenVME provides a full X/Open conformant Common Application

Environment with standard libraries, allowing X/Open conformant applications

to be simply ported to an OpenVME system. This environment includes the full

base set of X/Open System Interfaces (XSI) and libraries together with the

standard Commands and Utilities. ISO standard C and the associated libraries are

provided together with COBOL 85. A comprehensive set of features is provided

in addition to the mandatory base facilities. These include: C-ISAM & SQL

(Informix), TCP/IP & UDP/IP (via sockets & XTI), and several Berkeley Unix

and Unix SVR4 features to facilitate practical application portability. Profiling

and symbolic debugging tools, including the ability to single-step through

application code, are provided.

The Open TP environment provides a set of X/Open conformant APIs allowing

applications that conform to the X/Open TP standards to be recompiled to run on

an OpenVME system. Open TP application can interwork with applications

running in other transaction management environments.

186

187

Chapter 12
User Access & User Interface

Introduction

This chapter describes the features of OpenVME which support User Access and

the provision of User Interfaces.

OpenVME is capable of supporting almost any terminal or workstation and the

architecture allows the use of any platform or environment which supports user

presentation, including dumb terminals, PCs, tone phones, videotext terminals,

ATMs, multimedia etc. Character and graphical user interfaces are supported.

The OpenVME system is optimised for supporting large-scale server functions.

Those functions which can effectively be supported locally for each user are

expected to be provided by an intelligent workstation. The User Interface is such

a function.

Overview

OpenVME support for user interfaces is based on the following approach:

� Provision of user interfaces is achieved through the adoption of a Client-

server architecture for all corporate server applications. This allows the

user interface components to be implemented and supported separately

from the application logic and information handling aspects of the

application, implemented and supported on an OpenVME system.

� Microsoft Windows is the default platform for the user interface

component for all Client-server applications. This enables integrated

simultaneous access to all corporate server applications from a single PC

platform and with a single consistent user interface style.

� Access from other platforms and with other user interface styles is

possible within the overall architecture and can be provided in response to

specific market or application requirements.

� Facilities are provided to allow existing applications using generic text

terminals to be upgraded to exploit this user interface architecture without

change to the applications.

� The linking of the user interface component and application logic and

information handling components of applications within the Client-server

model is provided by the use of open standard interfaces. This allows the

user interfaces provided to Client-server applications to be implemented

using third party and commodity products (e.g. PC-based tools and

applications).

188

Reference Model

The diagram below identifies the major components of the user interface.

User interface enablers

User

Work
management
system

Application
architectures

calls

calls

calls

Application

development

tools

generates

generates

Workstation hardware
(screen, keyboard,
mouse, printers)

supports

is delivered by

sees and uses

generates

User interface style

(look and feel)

Task &
process
automation

The user interface style defines the look and feel of the user interface in terms of

user interface objects (e.g. a menu bar) and the actions which users can perform

on these objects. It also prescribes the use of the workstation hardware. The

preferred user interface style is the Common User Access (CUA) interface style

which is supported by Microsoft Windows.

The workstation hardware includes the equipment used to deliver the user

interface: screen, keyboard, mouse, printer and security devices. The standard

hardware supports MS Windows (or eventually Windows NT).

User interface enablers make the user interface available to a range of

applications. There are several types of enabler:

� Window managers / desktops / user environments enable users to use

several applications concurrently; they support the user interface objects

defined by the user interface style. The standard user environment is MS

Windows (augmented where required by specific application exploitation

of the underlying MS windowing facilities).

189

� User interface servers support a range of higher level objects (e.g. forms).

ICL FORMS is an example of such a server allowing traditional TPMSX

applications to deliver a CUA / Windows conformant user interface.

Provision of the HLLAPI interface (directly or via DDE) to a server

supporting VME (7561) terminal protocols allows a wide range of

commodity PC applications and frontware tools to access information

presented by existing applications.

� Terminal emulators give access to existing applications using a variety of

terminal protocols and interface styles. The most significant emulations

for VME services are VME (7561) and VT220. The target architecture is

not optimised for applications driving such terminals directly.

� Object and data links enable information to be exchanged between

applications. Object links enable objects managed by one application to

be contained in objects managed by other applications. Data links provide

ways of transferring data between stand-alone applications, terminal

emulators and the dialogue logic of distributed applications.

� Data marshalling systems manage the passing of information between the

user interface and the application. They enable the user interface of many

different applications to be integrated together.

The Work management system enables an information system to maintain the

user's working context. The features of this system include:

� Support for single system logon by a user for access to any permitted

application. This capability is part of the ICL distributed security

architecture, known as ICL Access.

� Definition and retention of the user's working environment in terms of

applications and information used regularly;

Task & process automation provides facilities to allow the user to:

� Automate tasks which they perform regularly;

� Participate in organisational processes by using a process support (or

workflow) system (e.g. Processwise). Such systems enable the automation

of business processes and are powerful tools for the integration of existing

applications into such processes.

Application development tools are used to develop individual applications and

the interface provided by the applications to the user. The QuickBuild application

development toolset generates server applications which work with any client

applications, thereby allowing a free choice of presentation.

190

Client-server Architecture Models

Distributed Presentation

FORMS offers a distributed presentation service for single TPMSX services, but

does not involve any application code within the FORMS client. FORMS

separates the user interface server, executed on a PC in a Windows environment

from the application dialogue handler, executed within TPMSX. It comprises two

components:

� A FORMS sponsor VM which transforms TPMS template-based protocol

into the FORMS protocol and manages the downloading of form

definitions to the PC;

� A PC user interface server which maps the logical dialogue encoded in

FORMS protocol to the Windows user interface style.

Interface features provided by FORMS include pull-down menus, scrolling and

panning around large forms, field prompts and Help. The FORMS user interface

server supports DDE links allowing PC-based applications (e.g. a spreadsheet) to

transfer data to or from the application. New applications which use FORMS can

be written in COBOL or AM or generated through QuickBuild.

The HLLAPI interface is an API which allows applications to interact with an

object representing a screen image (based on IBM 3270). A user interface server

is provided which supports the HLLAPI interface to an object which

communicates with server applications on an OpenVME system via proprietary

(7561) terminal protocols. A wide variety of PC based tools and applications can

exploit this interface to access information presented by existing VME

applications.

Remote Presentation

In applications using this model, user interface functions are provided entirely on

the server system and communication between client workstation and server is in

terms of terminal protocols. Examples include the VME (7561) terminal

protocol, VT220 and X-Windows. Applications of this type are not generally

capable of delivering the required consistent user interface style. However, some

integration is possible in a windowing environment. Such applications do not

exploit the full capabilities of an intelligent workstation and may place a heavy

load on underlying communications capabilities. This model is therefore not

preferred in the architecture although it is recognised that there are circumstances

in which it must be supported.

Distributed Function & Distributed Application

In applications using these models the user interfacing functions and some of the

application logic are supported on the workstation. Applications of this type are

191

supported by middleware linking the server and Windows-based parts of the

application; the middleware provides APIs allowing PC-based components of the

application to communicate with the server components.

For existing applications the ADI (proprietary communications) and HLLAPI

interfaces are provided. The former provides an efficient means for application

components to communicate raw data. The latter allows a wide range of

commodity applications and frontware tools to access information presented by

existing applications.

For new applications the XATMI (for real time applications) and the X400 XMA

(or other proprietary PC-based) mail interface(s) (for mail/EDI applications) are

provided.

ICL's Dialogue Management System (DMS) provides limited distributed

functionality. It enables the construction of new applications on open platforms

(PCs and UNIX) which can exploit the facilities offered by many different and

existing TPMS applications as well as applications running on MVS and UNIX

platforms, and other non-TP applications. DMS provides a modern and highly

effective way of combining and encompassing existing mainframe-based

applications within a new, PC-based application using sophisticated "dialogue

management" facilities to determine when and how to invoke appropriate parts of

existing applications.

Remote Data Management

In applications using the this model all of the user interfacing and application

logic are hosted on the workstation. Since the architecture supplies an SQL

interface to all VME data sources [see Information Management], a common

interface is supplied to all these sources, and there is a great range of query

applications and tools which can exploit it. This is of particular use for MIS

working.

192

193

Chapter 13
System Management

Introduction

The growth in use of distributed IT systems imposes new demands on the service

provider who is faced with maintaining the availability of an application which

now has potential dependencies on a range of platforms and networking services.

System Management provides the tools which enable the service provider to

control this complexity and diversity. This chapter describes the system

management facilities of OpenVME.

The System Management Process Model

The overall system management process follows the model illustrated below.

This process model gives the service provider the mechanisms for ensuring that

the corporate qualities are maximised to deliver the services required.

Users Information Systems

New
Requirements

Billing

Service Level

Operations

Problem

Distribution

Generation

Inventory

Change

Operational
Control

Planning and Reporting Introduction and Deployment

Capacity

194

The model is divided into three key areas - based on different management

concerns:

� Operational Control - providing real time system monitoring and control

from a central location, dealing with issues and problems as they occur.

� Introduction and Deployment - to manage the whole process of making

changes to the IT system.

� Planning and Reporting - to manage the quality of services and to assist

in system planning and accounting.

The System Management Functional Model

The generic functional model for System Management is illustrated below:

Graphical

MMI

Text

MMI
Managed
Resources

Management
Messaging

Bulk Data
TransferManagement

Applications

Managing System Managed System

Agent

Sponsors

Agent

Managed Resources & Managed Objects

The Managed Resources of a system include:

� Physical resources (e.g. nodes, printers, discs);

� Logical resources (e.g. VMs, files, units, connections);

� Application resources (e.g. queues, transactions, services);

� Domain resources: provided by a domain manager (e.g. network

management)

The Managed Object model of a managed resource is a formal specification of

how the various manageability features of the resource are viewed by the

manager. The main purpose of the model is to provide a common framework for

managing a type of resource. Managed objects are defined in terms of attributes,

operations, notifications & behaviour.

195

Sponsors

Sponsors provide a library of functions that assist in the implementation of

managed resources. Sponsors simplify the management interface seen by a

managed resource and can add functionality to the basic managed object model

of a resource.

Agents

Agents are concerned with providing access to managed resources (e.g. for

management operations) and dissemination of information from managed

resources (including notification of asynchronous events). Agents provide a

standardised service for the exchange of management information between

management applications and managed resources. They are responsible for

identifying the managed resources affected by a request and establishing the

necessary associations with agents in other systems.

Messaging & Bulk Data Transfer Services

Messaging and Bulk Data Transfer services provide the underlying means of

transferring management information between agents.

Management Applications

Management Applications are a set of tools used by Service Providers to enact

system management processes.

OpenVME support for the System Management models

Delivery of enterprise system management capability is provided by the ICL

TeamCARE product set. Mapping between the TeamCARE interfaces and other

management environments is provided as part of the TeamCARE product set.

The OpenVME system is, by design, inherently manageable. Support for

enterprise wide system management is provided by sponsors and agents which

conform to the TeamCARE interfaces, ensuring that OpenVME is, and will

continue to be, able to be integrated with the TeamCARE products.

OpenVME supports the systems management themes defined in the Process

Model as follows:-

� For the Operation, Problem, Distribution, Generation, Capacity and

Change systems management themes OpenVME provides sponsor and

agent capability which will interwork with enterprise wide applications to

provide system management solutions.

� For the Service Level, Inventory, Billing and New Requirements system

management themes, OpenVME provides access paths to the necessary

data for management via clearly defined, standard, interfaces.

196

Operational Control

Operations

Operations covers the provision of real time system monitoring and control from

a central location, dealing with issues and problems as they occur.

Operations

Management

Messaging

CAS

Managing System

RMS

CAS

Managed System

RMSV SMF

VME-X VME TPMSXOCM

Manager

StatusCommand/
Response

Operations Manager provides the ability to manage a number of different types

of system from a single location. It provides facilities to enable the managed

resources to submit alerts and status information which is maintained within a

central status database. This information may be aggregated and filtered by

Operations Manager. Operator access to the database of information is via the

Operations Control Manager (OCM) which provides a selective, graphical

representation of the managed resources; each such managed resource may define

a set of generic remote actions which can be initiated directly from the console.

Remote command/response is also supported.

The Community Alert Subsystem (CAS) provides the messaging services between

managing and managed systems.

Within the managed OpenVME system, the following sponsors are provided:

� the Remote Management System for VME (RMSV) provides sponsor

facilities for status notifications and local actioning of commands for the

OpenVME system;

� the Remote Management System for VME-X (RMSX) provides sponsor

facilities for status notifications and local actioning of commands for

managed resources owned by VME-X services;

� the Standard Monitoring Facility (SMF) provides sponsor facilities for

the collection and dissemination of monitoring information, in particular

for the Open TP application environment.

197

Automated System Operation

By default, the operational management of the system is performed by using the

interactive operator facilities available within an OPER job. These allow an

operator to receive and respond to prompts and to enter commands affecting the

behaviour of the system.

OpenVME provides an optional feature, the Automated System Operator (ASO),

which automates the responses to specified prompts, rather than requiring a

human operator to respond. ASO can be programmed to perform specific actions

in response to routine prompts. When a prompt arises for which it has no action

specified, ASO can route the prompt to a local VME operator or, via Community

Alert Subsystem, to the central Operations Control Manager. ASO exploits the

Programmable Operator Facility infrastructure. The ASO task is based on POF,

customised with procedures of the Automated Operator Facility (AOF).

Problem

Problem management covers the diagnosing, resolving and prevention of

problems.

OpenVME systems are provided with extensive automatic incident recognition

and analysis capability which enables these systems to raise calls within a call

database whenever the system detects a problem. Local call databases have the

ability to communicate to a central problem logging application.

Graphical

MMI

Incident

Manager

Text

MMI

BrokerBroker
Bulk Data

Transfer

Evidence

Storage

FTF/FTAM

Problem

Service

FTF/FTAM

ASPRTST

VME-XH/W & VME

Managing System Managed System

Problem

Escalation

SAM

Management

Messaging

198

The main components supporting problem recognition & registration are:

� Incident Manager provides centralised problem notification logging and

management including control of the problem escalation interface to the

vendors;

� Problem Service provides a local (to the system) call logging capability

which may communicate centrally to Incident Manager;

� Broker provides agent capability for problem notifications;

� Automatic System Problem Reporter (ASPR) provides incident

interpretation and threshold evaluation for exceptions occurring in

managed resources owned by VME-X services;

� Support And Maintenance (SAM) provides incident interpretation and

threshold evaluation for exceptions occurring in the OpenVME system;

� Total System Teleservice (TST) provides OpenVME applications with

problem reporting and bulk evidence movement capabilities.

Teleservice provides the capability for electronic delivery of service between the

customer and the vendor/service supplier. Services covered by Teleservice

include Diagnostic services, Problem Escalation services, Preventative

Maintenance services, News services, Delivery services and Performance

Evaluation services.

Telediagnostics provides direct electronic access between the vendor/service

supplier and a problem system. The level of access is based functionally at the

individual unit level within a system.

 Capacity

Capacity Management monitors system usage and performance ensuring there is

adequate capacity available and that it is being used effectively. Detailed

performance statistics are used as an off-line tool to aid long term planning.

RTM

Display

Managing System

VCMS Agent

VCMS Agent

Managed System

VME-X Data
SMF

VCMS Data

Collection

TPMSXVMEVME-X

Collection

Management

Messaging

199

Real Time Monitoring provides a window into the current performance of the

major system components using a hierarchical colour coded display. Time

sampling of the performance data within a system with thresholding to provide

colour changes is used to provide an ongoing graphical display of the system

performance. The breaches of threshold may also create alerts via the messaging

system to link into Operations Manager.

A Statistical Analysis package is used for providing capacity reports and trend

analysis. The package supports a GUI and is not sensitive to the source of the

statistical data. As a result it offers a strategic integration capability for mixed

platform client-server environments.

Sponsors provide the mapping between the data requirements of Statistical

Analysis packages and Real Time Monitor and the raw data gathered from the

system.

Introduction & Deployment

Generation

Generation Management provides the means to configure and reconfigure the IT

services in response to changing requirements. Mechanisms are provided for

defining and updating configuration data. These are linked into the operation

command and control structures to provide implementation capability.

Distribution

Distribution Management provides the facilities for automatic, remote

distribution and activation of software throughout the IT infrastructure. These

facilities include:

� Software distribution, installation and control from the central

management system;

� Monitoring of software delivery to target systems;

� Distribution by pre-defined schedules;

� Central log of software/data version by location.

License Management provides facilities for managing and optimising the use of

software licensed for network use. OpenVME has the capability to act as a

licence management server for a network, In this role, it receives issued licences

from the software issuer and stores these in a protected manner. It responds to

licence requests from client packages or applications to ensure that a licence

exists for the level of operation that is required.

200

Supporting Infrastructure

Presentation

System Management supports a mix of presentation interfaces each tailored to

the management role being undertaken, including high resolution graphical

workstations (for real time operations and configuration design), form based

working (for routine tasks such as help desk operation or distributed

administration) and command line interaction (for diagnosis and problem

solving).

Management Infrastructure

Management Messaging

Management Messaging is the component of the systems management

infrastructure that links elements of managing applications to each other and

managing applications to management sponsors.

Community Alert Management (CAM) is the established ICL protocol for

management messaging. CAM runs over an OSI transport or TCP/IP

infrastructure.

The facilities provided by CAM will eventually be provided by a combination of

CMIP, SNMP, X400, OSI TP and OSF DME.

Relationship with other management domains

Network Management

The established, de facto, standard for managing network resources is the Simple

Network Management Protocol (SNMP). Based on TCP/IP it has been widely

adopted for the linking of network resources and workstations into a managed

domain. SNMP gateway facilities are provided which enable such managed

domains to be interfaced into the system management functionality for

monitoring purposes whilst retaining network management functionality within

the domain manager. SNMP agent capability is provided on the OpenVME

system to enable the networking functions of the servers to be included in the

network domain.

201

Workstation Management

The Distributed Support Information Standards (DSIS) Group consists of

organisations which perform service, support and management activities for

networked systems. The group is concerned with the potential costs and impact

of distribution. These standards are intended to be protocol independent and are

aimed at specifying data and operations which will enable DSIS compliant

systems to support common service, support and management activities.

OpenVME systems provide interworking with DSIS compliant networks. in

particular the Problem Service can accept DSIS problem data.

Interworking with the PC LAN system management environments is provided via

gateways.

202

203

Chapter 14
Platforms

The Series 39 Hardware Architecture

Introduction

The Series 39 hardware architecture is designed to allow a range of scaleable

systems to be constructed from a set of modular components. At any time a range

of systems is available in which the performance of the largest system is up to

100 times that of the smallest. All the systems are binary compatible and forward

software compatibility is assured when new components are introduced.

Several features of the architecture are of particular relevance to the support of

mission-critical application services:

� Disaster-tolerant configurations can be constructed in which central

hardware components can be separated by up to 2 Km and Input/Output

devices can be over 50 Km away.

� System configurations with sufficient components can be partitioned into

two or more smaller configurations.

� The use of fibre-optical LAN technology for Input/Output connection

allows considerably flexibility in configuring I/O controllers and devices

between systems. Fibre-optical interconnect is also considerably more

reliable and noise-immune than conventional wiring.

� The communications architecture allows simple, efficient interconnection

to external system components. These include workstation platforms,

other server systems or special-purpose server components such as the

Goldrush parallel database server.

Series 39 Hardware System Components

The major hardware components of a Series 39 system are:

� One or more Series 39 processing nodes;

� An Input/Output network;

� Input/Output controllers;

� Input/Output devices;

� An inter-node network (multi-node systems only).

204

Each processing node comprises:

� An Order Code Processor (OCP);

� An Input/Output Processor (IOP);

� A main Memory;

� A number of I/O couplers, connecting to the fibre-optical I/O network;

� An inter-node coupler (for multi-node systems only).

The Series 39 hardware architecture allows for arbitrarily large multi-node

systems although some implementations are limited to eight nodes. In addition,

the architecture allows for each node to contain several processors (IOPs and/or

OCPs), providing an additional way of extending overall system performance.

This flexibility allows a wide range of configurations to be constructed. For any

particular set of requirements a set of components can be selected from which to

build an appropriate configuration, and which also ensures excellent potential for

future enhancement.

IO Network

Disc

Controller

IO

Processor

Order

Code

Processor

Memory

Main

Internal

Data

Paths

Tape

Controller

Local

Area

Network

Wide

Area

Network

IO Couplers

Node

Inter-node

Coupler

To other

Nodes

incl. CAFS

205

Series 39 Nodal Systems

Motivations

Many Virtual Resources are shared between several VMs. One way to implement

such resources is by the use of shared memory to represent the state of the

resources. This can be very efficient in that performing an operation on such a

resource can be achieved by in-process execution of appropriate code in any VM

which has access to the shared data. Alternative schemes, based on message

passing, are usually very much less efficient.

However, large scale use of shared memory in multi-processor systems has a

number of drawbacks:

� At the hardware level, the latency of memory accesses is adversely

affected by the mechanisms required to ensure that, at appropriate times,

all processors have a consistent view of the values stored in shared

memory locations;

� The hardware engineering required to provide shared memory capabilities

does not scale simply with increasing numbers of processors;

� The ability of the system to be resilient to the failure of a processor is

compromised by the possibility that critical shared memory locations

might become inaccessible or left in an inconsistent state;

Nodal Architecture Hardware Structure

The Series 39 Nodal hardware architecture addresses some of these issues by

structuring the system into one or more Nodes, each of which contains:

� one or more processors;

� memory, only directly accessible to processors in that node;

� connection to an inter-node network which supports shared memory

operations;

� logically direct connections to all input-output controllers.

The nodes are linked together by two networks:

� The Inter-node network which carries protocol used to maintain shared

memory consistency;

� The IO network through which nodes access the IO controllers and

devices.

206

Node 1

Fault-tolerant Inter-node Network

VM 1

Local

VM 2

Local

VM 3

Local

Node 2

VM 4

Local

VM 5

Local

VM 6

Local

Shared Global Data

Nodal Kernel (Nodal Public Data)

Director & Public Kernel (Shared Public Data)

Shared Global Data Shared Global Data

Shared Global Data

Nodal Kernel (Nodal Public Data)

Replicated IO Network

Replicated Shared Memory

Shared memory (whether Public or Global) is replicated in each node requiring

access to the data. This replication is effected at the granularity of a page.

Read operations by a processor are always to the local memory (of that node).

This eliminates the read latency often associated with accessing shared memory

via a bus, for example.

Write operations to shared memory update the local instance of the shared

memory and cause protocol to be sent to other nodes (via the inter-node network)

to ensure that instances of the shared memory in other nodes are updated. This

updating occurs asynchronously so that processing may proceed immediately

after the write operation. Semaphore operations may be used to ensure that

updates to shared memory by processes executing on one node are visible to

processes executing on other nodes.

207

Inter-node Communication

There is also a requirement for the instances of Nodal Kernel operating in each

node to communicate with each other. For this purpose, an additional inter-node

primitive operation is provided. A Broadcast Interrupt may be sent from a

process (executing Nodal Kernel) in one node to all other nodes. The interrupt

may be specified as a process interrupt, in which case it is notified as a vectored

interrupt executed in the nominated process, or a node interrupt, in which case it

is notified as a vectored interrupt on a pre-defined Unit. Kernel uses these

mechanisms to implement:

� a Vectored Event, caused by a process in one node and notified to a

process in another;

� a Broadcast Call which executes a nominated procedure in a process

determined by the Unit on each node.

Nodal Architecture Software Principles

The key principle of the OpenVME Nodal Architecture is to eliminate

unnecessary sharing and interactions between concurrently executing processes

in the system. This principle is reflected in several ways:

� Virtual Machines have individual instances of the unshared Virtual

Resources they require; there is no necessity to co-ordinate with other

VMs when operating on such resources.

� Real resources associated exclusively with a Node (such as processor

time, memory, access to IO) are managed entirely within that node by

Nodal Kernel; there is no necessity to co-ordinate with instances of Nodal

Kernel on other nodes when operating on such resources.

� The IO architecture provides a separate stream (logical connection) from

each Node to each IO device; there is no necessity for software to co-

ordinate with other nodes when performing operations on an IO device.

� Virtual Addresses are allocated within an appropriately restricted context:

Local segment numbers are allocated independently within each VM.

Global shared data segment numbers are allocated locally within each

VM, eliminating the potential for conflicts between address ranges of

shared segments when a VM shares several areas with different VMs.

Nodal Public segment numbers are allocated independently within

each node by Nodal Kernel.

� Visibility of the nodal nature of the hardware architecture is restricted to

Kernel. Kernel is responsible for ensuring that all higher layers are

presented with a uniform view of all the resources of the system.

208

The CAFS Information Search Processor

CAFS is an acronym for Content Addressable FileStore. CAFS is a special

purpose processor which can be fitted to any Series 39 Disc Controller.

Logically, CAFS operates between a disc drive and its controller, searching data

as it is read from the disc for records which match user-defined search criteria.

Records which match the search criteria are passed to the processing node; other

records are discarded. CAFS allows large volumes of data to be searched very

rapidly and by distributing intelligence from processing nodes into disc

controllers (of which there can be very many) it greatly reduces the load on the

processing nodes.

Search criteria can be numeric, alpha/numeric or straight text, and can involve:

� multiple criteria, combined with AND and OR operators, in each enquiry;

� precise or fuzzy matching (using wildcards);

� different types of questions: e.g. satisfying any three out of five selected

criteria;

� a combination of the above.

209

Chapter 15
Support for Corporate Qualities

Performance

Introduction

Performance includes the following factors:

� Connectivity: The number of users requiring simultaneous access to the

system.

� Throughput: The rate at which the system processes work, This includes

measures of both the number of requests sent and received and the

corresponding volumes of data.

� Response time: The time taken for the system to respond to requests for

service.

Most applications can usually be implemented in several ways, with a number of

options for partitioning the overall application functionality. This is particularly

true of distributed applications for which there are several models of distribution.

Deciding which model is appropriate in any particular case involves a complex

trade-off between many different factors. Performance is usually an important

factor and some implementation models may provide very different performance

attributes from others. The overall amount and distribution of the processing

power required to support a solution varies according to which model of

distribution is chosen. This has implications for the overall financial cost of the

solution.

The remainder of this section summarises the key performance aspects of

OpenVME and then discusses the performance attributes implied by the various

models of distribution.

210

OpenVME Performance

OpenVME

OpenVME is a high throughput and facility rich operating system. It has been

designed to support large numbers of users and large amounts of data whilst

providing good response times to interactive users and batch processing work

simultaneously. Some of the architectural features which contribute to this

capability are:

In-context Architecture

Tasks run in Virtual Machines enabling the resources provided to be very

effectively managed. Nearly all processor time is allocated, using pre-emptive

scheduling mechanisms, at the priority appropriate to the task, which, for

example, enable batch work to run alongside TP without severe impacting

response times.

I/O Transfer Scheduling

Virtual Machine priority determines the order in which transfers are actioned.

This also prevents TP response times from being impacted by batch work. It is

often more efficient to allow certain tasks, such as long-running queries, to use

very large transfer sizes. This can reduce elapsed times by an order of magnitude,

but might cause other, higher priority, tasks to suffer long transfer delays. The

OpenVME architecture therefore ensures that very long transfers are interrupted

in favour of short transfers of equal or higher priority. This strategy ensures that

high priority tasks are not unduly delayed, whilst allowing lower priority or long-

running tasks to make progress.

Multi-node Series 39 Architecture

Additional power can be added with minimal disruption by adding more

processing nodes. The multiple processors are invisible to applications and

normally provide a performance increase of at least 0.9 per additional node. The

unique nodal architecture avoids the memory bottleneck frequently associated

with shared store symmetric multiprocessing systems.

OpenVME was designed at the outset for multiprocessor working and has

therefore never been subject to the single-threading bottlenecks encountered by

most other operating systems.

Performance Engineering

The key functions in OpenVME itself and many other products including

TPMSX and IDMSX have been engineered for performance. This means both

that they are efficient and that their performance is thoroughly understood, so that

throughput is predictable as well as high.

211

Transaction management environments can be specifically optimised for high

performance: this is particularly true of TPMSX, and therefore, whatever

distribution model is being used, it is the recommended environment for

interactive server applications requiring high performance.

IDMSX has many facilities which allow the developer to maximise performance

through appropriate application and data design.

Parallel Database Servers

The OpenVME architecture allows the transparent integration of specialised

servers dedicated to providing optimised support of a particular service. Parallel

Database Servers support high performance relational database access. Their

architecture is designed to ensure that "overheads" such as database lock

management, I/O processing and I/O transfers are distributed evenly across the

processing elements. The performance of parallel database servers is almost

proportional to the number of processors, up to a specified maximum.

OpenVME Client-server System Performance

A Client-server Architecture in which overall functionality is appropriately

distributed and aggregated throughout the system is the way to provide high

performance for corporate IT requirements:

� Complex forms of presentation (e.g. Windows) require large quantities of

processing power to be placed in close proximity to the user - i.e. on the

desktop. Significant communications delays spoil the "feel" of the

presentation.

� The availability of cheap, powerful workstations means that for a large

user population, provided the functionality can be distributed to the

workstation, it is less cost-effective to provide equivalent processing

power centrally.

� Corporate systems are characterised by the need to access shared

information. Such information is most effectively made accessible by

applications running on shared servers. Corporate Servers are specifically

designed to support large numbers of users and large amounts of data

whilst providing good response times.

Further performance aspects are discussed in terms of the most significant

models of distribution.

Distributed Presentation

The use of a block-mode (as opposed to character-mode) terminal interface to the

server minimises the interrupt demand on the server platform, and provides the

opportunity for it to support tens of thousands of terminals.

212

The use of either FORMS-style presentation or that provided through frontware

(e.g. via HLLAPI) retains this efficiency in combination with a Windows user

interface.

Distributed Function

The architectural support of this model allows developers to design applications

to minimise network traffic for high throughput systems. Having the server

application on the same system as the database means that database requests are

not sent across the network. Having the client application on the same system as

the presentation means that bit-mapped presentation requests are not sent across

the network.

By exporting some of the processing demand, a central server may be able to

support a larger population of users, etc.

Remote Data Management

As in all the models, for high-throughput access to databases, the usage of this

model should be combined with the usage of a transaction management system.

To obtain high throughput, applications should be designed to minimise the

volume of data passed between the application and the database manager.

Distributed Application

High throughput may be achieved though the use of transaction management

systems and appropriate application design.

A design method which is often appropriate is to place application function

associated with a given database together with that database. This tends to

minimise communication traffic between distributed application components and

therefore improve throughput.

Security

Summary

The provision of security within a client-server architecture through support of

open security standards as described below provides OpenVME systems with the

ability to provide high levels of security, and to do so in conjunction with a wide

set of client systems and security products, both ICL and non-ICL, within which

support for these standards is provided.

213

Introduction

The provision of security features requires a number of separate capabilities:

� the ability to establish the identity and security attributes of an individual

(a subject) wishing to access information, a service or any other resource;

� the ability to define security attributes of information, services and other

resources (objects) of an OpenVME system, and policies defining the

operation of security mechanisms;

� the ability to pass relevant security information between components of

distributed applications;

� the ability to police accesses made to resources and to enforce relevant

security policies according to the security information within the system;

� the ability to audit accesses made to resources and ensure that security

violations are attributable to the individual who performed the access.

OpenVME aims to provide the above capabilities and to interwork with other

systems in distributed networks possibly containing differing types of security

and access products.

Security in OpenVME

Security is a fundamental quality of OpenVME. All accesses to system resources

must pass through a security barrier that checks to ensure that the caller has the

required permissions to access the resource in the way requested. It is this basic

architectural feature that has made it possible for OpenVME to become the first

(and probably still the only) general purpose operating system to succeed in

being evaluated at a level equivalent to the US DoD TSEC B1 (UKL 3).

The OpenVME Security Options (HSO) allow an installation to improve their

security to the level they require at a pace that suits them. There are a number of

options, including Personal Identification (allowing individuals to be personally

authenticated) and Audit (allowing all accesses to system resources to be

audited). The full security options suite supports "mandatory" access controls and

allows system resources to be classified using military or commercial security

classifications.

OpenVME will adopt the GSSAPI (Generic Security Standards API) which is

becoming a de-facto standard; the GSSAPI allows applications to access different

security services in a standard manner. An important feature of the GSSAPI is

that it provides interfaces to applications that can be used to encrypt data prior to

transmission across the network.

214

Security in the Corporate Client-Server System

Establishing User Identity and Security Attributes

This is normally carried out within the system on which a user performs initial

"login", for instance by software based on a remote workstation: similar facilities

to those provided on remote workstations are also provided by OpenVME for

non-programmable terminals directly connected to the OpenVME system itself.

Integration of ICL Access Manager enables an OpenVME system to be part of a

distributed network of systems in which end users perform a "single login" to all

IT services. Access Manager is based on the ECMA security architecture of

which the CEC-funded SESAME programme is a working demonstration.

The ECMA security architecture allows security administration to be devolved in

a controlled manner within an organisation. The architecture allows a rich set of

attributes to meet different access control needs and encourages the use of "real-

world" attributes such as identity (e.g. person), role (e.g. generic job description)

or security clearance.

A key feature of the ECMA architecture is the concept of a Privileged Attribute

Certificate (PAC) which contains a person's privilege attributes and various

controls on circumstances in which these can be used. A PAC is sealed by its

originator and the use of public key technology allows any recipient to validate

its integrity. A PAC can be passed form one application to another, thus

providing the potential for full access control throughout a distributed network.

Transferring Security Information Between Applications

Transfer of security related information between applications is enabled by

providing support within the OpenVME systems for the open protocol standards

defined for the transmission of such information.

In this context the standards supported include:

� overall security standards such as those being defined within OSI/ECMA,

and implemented within the ICL Access Manager product set;

� application specific security standards, for instance the security features

defined for use with standards such as OSI-TP, SQL, X500 and FTAM

As well as having the ability to accept security information when acting as a

server system, OpenVME systems also provide facilities to allow this information

to be passed on to other server systems, in cases where an OpenVME system is

acting as a client to such systems

The use of open protocols to pass security information in this way allows the

OpenVME security facilities to be used in conjunction with any remote system

within which support for the relevant security standards is provided: this includes

products such as ICL's Access Manager, as well as third party products.

215

Policing and Actioning Security Attributes

Within the OpenVME system, the security attributes made available to the

system are policed and actioned in a number of ways as follows:

� Access to data and other resources within the OpenVME system itself are

policed through the use of the OpenVME discretionary security features,

and through the use of the mandatory security features provided via the

OpenVME high security product sets: in the latter respect OpenVME as a

system is currently certified to security level B1.

� Access to the security attributes are provided to applications running on

OpenVME systems for use for security purposes within the applications

themselves: examples of such information would be user identification

information for use in logging/audit trails. Access to this information will

be provided through open standard GSS API programming interface.

Auditing

The purpose of auditing is to ensure that any person who attempts to compromise

the security of a system can be readily identified and held accountable for their

actions. An audit log records details of any such access. OpenVME itself, as well

as TPMSX, IDMSX and the relational databases provide audit logs.

Encryption

The ICL Access Manager product provides standard encryption facilities.

Encryption can be used:

� to conceal sensitive information;

� to seal high integrity information securely to prevent tampering.

216

Availability

Availability is a measure of whether the system is there when the users need it;

and whether it delivers the defined service and the agreed service levels.

Businesses are increasingly dependent upon their information systems to provide

competitive advantage in their chosen market. The availability of these

information systems contributes directly to providing this advantage.

OpenVME provides for resilient systems, with:

� multiple, independent copies of the data maintained, automatically by

OpenVME. The independent copies (plexes) ensure continued

availability of data in the event of hardware or environmental failure. The

Series 39 hardware architecture allows data copies to be separated by

many kilometres, thus providing the basis for survival from large-scale

disasters;

� multiple VME processors, with automatic load distribution. This enables

the application and database to be able to process the data in the event of

loss of hardware or environmental failure. The Series 39 hardware

architecture allows the processors to be separated by up to two kilometres

for disaster standby;

� multiple, independent routes between major system components - nodes

and controllers, and also to I/O devices such as discs, to ensure resilience

to any single failure;

� multiple access from the OpenVME system to supporting networks, with

automatic route switching, re-routing, or load sharing. This enables

continued access between the OpenVME system and other systems over a

resilient network;

� end-to-end hardware integrity checks on all data within the Series 39

hardware platform;

� end-to-end software integrity checks on dialogues between applications

and, where required and permitted by security considerations, automatic

substitution or recovery after failure of an application or application

server;

� Hardware units taken out of service, upgraded or repaired, and put back

into service while the OpenVME server system and applications continue

to run. The Series 39 hardware is capable of continuous operation;

� TPMSX/IDMSX applications replaceable while the OpenVME system is

operating. Certain applications can be upgraded while the system

continues to operate;

All these features are invisible to the application and database, and can be

implemented without changes to them.

217

High availability systems also require provision against failure of the system

itself. Continuous availability also requires the ability to upgrade the system

software while continuing to provide a service.

It is possible to meet both of these requirements by using twin OpenVME

systems. By separating in the OpenVME system the functions of: network/client

interworking, transaction execution ordering (usually specific to the application),

and transaction/database manager, the backend functions can be implemented on

two, independent OpenVME systems, with fast handover from one system to its

twin in the event of failure. The TPMSX environment is particularly suited to

this.

This standby approach to availability offers a range of solutions, from just

replicating the key data up to immediate and invisible switch over from one

OpenVME system to another. Each portion of the OpenVME system can be

modified or upgraded, used to take archives, or to run other services; all without

compromising the other key attributes of Corporate Servers, e.g. data integrity

and control, or without affecting key services. The solution can be implemented

in stages as the business demands and finance permits. This is often the most

cost effective method of meeting the requirements, particularly when constrained

by existing applications, working practices, or geographic factors, etc.

Usability

Usability is defined as the degree to which users can achieve their goals with

effectiveness, efficiency and satisfaction. The capabilities of OpenVME ensure:

Effectiveness: user operations are achieved accurately and completely through

transaction management and other mechanisms.

Efficiency: an appropriate, consistent user interface may be chosen. Powerful

application development tools are available which allow applications to be

developed more quickly. Queries may be made to all Corporate Server data

sources without applications having to be written.

Satisfaction: a user interface may be chosen which is subjectively acceptable to

users; high availability, security and a good response time are available through

the use of Corporate Servers. Facilities are available to present information in

each user's chosen natural language.

218

Potential for Change

Introduction

The design of OpenVME ensures that OpenVME systems themselves and the

customer information systems into which they are integrated, have, built into

them, the ability to evolve to meet new market demands and new technical

possibilities.

A major architectural strength of OpenVME is its adaptability to change. New

standards can be efficiently supported using the gateway and sponsor components

and through its in-context Virtual Machine architecture. Equally, new technology

and system components (hardware and software) may be used to support current

interfaces and standards without affecting existing applications. OpenVME has

been designed using object-oriented techniques - data is associated with

subsystems - and this allows new subsystems to be introduced and existing ones

modified without cascading side-effects to other parts of the system and causing

software decay.

Transparency Mechanisms

OpenVME systems supply many transparencies; that is, they provide many

features in such a way as to hide their potentially changeable attributes from

application programs.

These transparencies are referred to in the following sections, which describe

potential for change for each architectural element.

User interface

A Client-server architecture allows the user interface to be modified without

change to the server application. In many cases the user interface is modifiable

by non-experts.

The supply of FORMS and generic frontware-enabling infrastructure allows

existing OpenVME applications to be given Windows character and graphical

user interfaces without re-writing the applications.

Distributed Application Services

It is a major aim of the OpenVME Distributed Application Sservices to provide

distribution transparencies.

219

Transaction Management

Server applications can be written such that they are independent of the

transaction source: the transaction management architecture caters for input from

a variety of sources, including terminals, intelligent workstations, queued

messages and mail messages.

Information Management

Data source transparency: The supply of an SQL interface to all the OpenVME

databases and file systems allows access to them from many new tool-sets. This

access can be to single data sources or numbers of them in combination with

relational database access. Data can be moved across data management systems

without change to SQL applications.

Relational databases are modifiable in various ways without change to

applications. The SQL language allows queries which are not pre-defined to be

made.

Support of database management systems on advanced hardware can be achieved

without change to existing relational applications.

Application Development

The provision of the DDS dictionary allows business information to be kept

which is independent of applications and data and can be used by many different

CASE tools. The business model is independent of database type (IDMSX or

relational).

The QuickBuild application development tools allow an application to be

developed which work on different platforms and under different environments

and such that its function can be distributed and re-distributed to conform to

different client-server models.

Systems Management

Generation Management provides the means to configure and reconfigure the IT

services in response to changing requirements, and Distribution Management

ensures that the same version of the software is installed on each system that

receives the software. This is particularly important where there are many client

instances.

Networking Services

OpenVME supports interworking with a wide range of client platforms and

environments. This means that server applications can continue unchanged whilst

PCs go through several iterations of platforms, operating environments and

windowing systems, including, for example, a change from Windows to

Windows/NT.

220

The supply of middleware allows applications to be unaware of differences at the

networking and distributed application services levels and hides the different data

representations supported by client and server platforms.

Platforms

The design of the OpenVME loading system normally provides transparency at

the source code level in areas where other systems provide it only at the object

code level.

OpenVME provides tape subsystem and tape device transparency. Media

(printer, tape, disc) transparency is provided for sequential files. File connection

transparency is provided through OpenVME "local names". Disc location

transparency (over many kilometres) is provided.

OpenVME provides system size, node multiplicity, system version and hardware

model transparencies.

221

Appendix A:
Standards

Introduction

As a general statement, conformance to X/Open standards is supported. The

relevant X/Open standard changes with time, for example: XPG3, XPG4, etc.

Transaction Management

Standards in this area are being defined by X/Open. All the major TP vendors

are contributing to this activity. By "Open TP" in this document we mean

support of the X/Open transaction management interfaces and model. The

X/Open interfaces for communication between TP applications are:

XATMI based on Tuxedo's interface

CPI-C based on IBM SAA (extended for OSI TP)

TxRPC based on DCE RPC.

The IBM CICS interfaces are a competing standard. The architecture includes

inter-operation with CICS systems.

The IBM standard application programming interface which can be used to

create Windows applications that access unchanged 3270 mainframe applications

is HLLAPI .

Co-ordination between participating systems is handled by the OSI-TP protocol

(ISO/IEC 10026).

Information Management

Relational Database

The relevant standard relating to interfacing into the relational database

management system is SQL. The ISO and ANSI standards for SQL are identical.

The X/Open standard is converging towards the ISO standard at XPG4. All the

major relational systems are close to supporting the standard, and will move

closer over time.

The ISO OSI-RDA standard, when defined and supported, will enable

networking between heterogeneous database products.

The SQL Access CLI (call level interface) as defined by the SQL Access Group

(SAG) will ease the task of database-independent tools vendors.

222

Microsoft has produced a specification of their Open Database Connectivity

architecture (ODBC). ODBC is a vendor neutral interface standard allowing

Microsoft Windows applications to communicate with a variety of Database

Servers. It will be supported from a variety of Microsoft and third party Windows

applications. ODBC is claimed to be fully compliant with the SAG Call Level

Interface Specification.

IDAPI is a similar interface from Borland (with support of IBM, Novell,

Wordperfect and others).

The X/Open standard TP model includes a standard for the interface ("XA")

between resource managers (such as relational databases) and a transaction

manager. This enables co-ordinated access to heterogeneous database systems. It

is supported by TPMSX.

IDMSX

IDMSX essentially supports the international Codasyl standard. With the

ReView development, SQL is be supported, for full read access.

Application Development

Dictionary and CASE

Data in DDS conforms to the international standard IRDS 4-layer architecture.

The more detailed IRDS standards are not currently useful.

The relevant standard for exchanging data with other dictionaries and CASE

tools is CDIF (CASE Data Interchange Format), which is promoted by EIA, the

Electronics Industries Association, an accredited standards maker for ANSI. EIA

is a US organisation, heavily populated by European (UK) members. At least 15

of the world's most well-known CASE vendors are participating in a CDIF

prototyping exercise.

CDIF is now recognised as leading in the development of open standards for

CASE information models. The new ISO DDSE standardisation work will be

based on the CDIF models; this should confirm the use of consistent CDIF-based

models for bulk transfer and for IRDS and PCTE schemas.

CDIF is also the clear leader in bulk transfer formats. ANSI X3H4 (IRDS) has

already abandoned its own plans to develop an IRDS export-import standard, on

the basis that CDIF will provide this capability, and ECMA TC33 TGRM are

also looking at the possibility of using CDIF as the basis for the PCTE export-

import capability.

223

No international standards for Analysis and Design Methods yet exist. SSADM is

going through BSI processes and CORE is about to start. There is EC work on

Euromethod.

4GLs

No standards for 4GLs exist. Where the 4GL generates a standard 3GL such as

COBOL then lock-in can be avoided.

3GLs

For COBOL and C, the ISO and ANSI standards are the same. In both cases, the

X/Open standard is a superset, and is the target standard. In the case of C, the

ISO standard is expected to be adopted as the XPG4 definition.

Distributed Application Services

Standards exist for the following environments: network services, PC-LAN,

network filing, remote DBMS, distributed TP, message passing, DCE core,

object request broker and ODP environments.

OSI-TP

This standard for transaction management has a significant impact on Open TP

and forms the basis for ICL's Open TP products.

DCE

DCE establishes some de facto standards which are likely to influence industry

perceptions in areas where they are adequate to the requirements in distributed

computing.

Open Distributed Processing (ODP)

These standards define a reference model for open distributed processing. They

are open (being underwritten by ISO), but have not yet been fully ratified.

XDCS

These are standards for distributed computing from X/Open. They are based on

existing standards from other standards organisations.

CORBA

The OMG CORBA standard defines an architecture for an object-based

distributed computing model which is compatible with the ISO ODP reference

model. It is rapidly gaining acceptance as a common standard for distributed

object-based systems.

224

User Interface

The relevant standard for PCs is Microsoft Windows 3.

The relevant X/Open standard is X Windows from M.I.T.

Networking Services

ICL's principal source of standards for communications and networking products

is the Open Systems Interconnection (OSI) standards supported by ISO.

Standards for LAN and WAN communication are supported below Transport

level.

 Where business cases apply, other Transport-level protocols such as TCP/IP or

PC-LAN equivalents are supported.

Application-level profiles (X.400, FTAM, VTP) are increasingly supported by

VME and VME-X over both OSI and TCP/IP networks. OSI-TP is supported

over OSI. It can also be supported over TCP/IP by use of a relay supporting the

RFC1006 profile and running in an external gateway.

Systems Management

OSI Standards

CSD products provide an external management interface which conforms to

recognised open standards. Within the OSI domain this interface is targeted to

be provided by the OSI Common Management Information Service (CMIS)

running over the Common Management Information Protocol (CMIP).

DSIS

The Distributed Support Information Standards (DSIS) Group is a consortium of

companies who are jointly promoting the development of international standards

for service and support information. Inter-operability with DSIS conformant

platforms will be mandatory for Teleservice.

De Facto Standards

SNMP has become the de facto Internet standard for the management of

networks and the ability to interact with an SNMP domain is expected to be

provided.

Other international and de facto standards (e.g. OSF DME) exist and will require

support as they achieve a significant presence in the corporate system

marketplace.

225

Security

Standards in the field of security include the following:

Trusted Computer Security Evaluation Criteria (TCSEC)

The US Department of Defence [sic] (DoD) publication Trusted Computer

System Evaluation Criteria (TCSEC) is widely used as benchmarks for operating

systems.

Because of its colour, this is commonly referred to as the "Orange Book". It

concentrates on a number of areas of operating system security. These primarily

affect confidentiality, accountability and assurance, but go further than just

specifying what constraints must be available.

The Orange Book lays down a number of bands, ranging from D (no security) up

to A1 (fully verified security), which define the minimum criteria against which

individual computer systems may be certified. Those believed by ICL to be

relevant to secure networks include:

� Level C2, which requires users to be individually identified. This identity

is used as the basis for both access control and, through use of an audit

trail, for providing individual accountability.

� Level B1, which requires Mandatory Access Control (MAC), with

objects labelled with their security classification, and an informal

statement of the security policy. It satisfies most Defence requirements

without requiring formal design methodologies.

ICL believes that C2 is adequate for most commercial organisations; B1 may be

required in some isolated pockets within them.

Information Technology Security Evaluation Criteria (ITSEC)

The security services of a number of European countries (including Britain's

CESG) have produced a list of "harmonised requirements" for the evaluation of

computer systems. These differentiate between the level of functionality

provided in a particular security domain, and the degree of assurance that this

level or functionality is in fact provided. Assurance is a combination of the

correctness of the functionality as a means of combating a perceived threat, and

the effectiveness with which this functionality is provided.

In general, commercial clients are satisfied by a lower level of assurance than are

defence or intelligence clients. ITSEC permits a system to be described in this

way; TCSEC merges the functionality and effectiveness criteria in a way which

makes it impossible to produce (say) a system which is believed (but not

certified) to operate at Level B1.

ITSEC includes a number of "functionality classes"; some of these map directly

onto corresponding TCSEC criteria. ITSEC also defines "effectiveness classes",

226

and of these two are believed by ICL to be relevant to commercial security

systems.

� E2, where the supplier needs to state the security policy in the product

� E3, where it is necessary to describe the policy, and show how the

development environment ensures that this cannot be compromised.

UK GOSIP V4.0

The UK GOSIP V4.0 specification subsets ISO 7498/2 (ISO OSI Security

Architecture) to derive a set of specifications which can be used by Government

(non Defence) organisations with an interest in security. It highlights the need to

carry out a risk analysis and recommends the CRAMM methodology.

GOSIP is primarily interested in the security of communication between

computer systems, and specifically does not cover the security of these systems

themselves. Thus it concentrates on the implementation of security policies in

terms of the OSI 7-layer model and the measures which it is possible to take at

each layer.

ECMA TR/46

The ECMA Technical Report ECMA TR/46 establishes an architecture for a

secure system, rather than a set of standards, and is thus of much greater interest

as a framework for ICL product developments. Additional ECMA publications

define the data elements and types necessary to support the ECMA TR/46

standards.

Open Systems Interconnection (OSI)

ISO has ratified several OSI standards covering the basic Reference Model,

specific communications services and protocols and network management

functions.

227

Appendix B:
Glossary of Terms

3GL Third Generation programming Language, e.g. COBOL or C

4GL Fourth Generation Language (very high-level)

Access Key Value defining the maximum Access Level permitted to use a

resource

Access Level Value denoting the privilege level at which a process is

currently executing

Account Collection point for accounting & charging facilities

ACSE Association Control Service Element

ADF Application Dialogue Facility

ADI Application Data Interchange

AE Application Entity

AEI Application Entity Invocation

ALPM Application Level protocol Machine

AM Application Master; also Access Manager

ANSA Advanced Network Systems Architecture; a distributed

computing architecture

ANSI American National Standards Institute

APF Access Permission Field

API Application Programming Interface; allows applications to

access services.

ASE Application Service Element

ASG Automatic System Generator

ASO Automated System Operation

AVM Application VM (TPMSX)

C C language

CADES Computer Aided Design and Evaluation System

CAE X/Open Common Application Environment

CAFS Content Addressable Filestore

CAM Community Alert Management

CAS Community Alert Subsystem

CASE Computer Aided Software Engineering

Catalogue Database describing all objects known to the OpenVME system

CDAM Co-ordinated & Distributed Application Manager

CDIF CASE Data Interchange Format. See Appendix A: Standards.

CEC Commission of the European Communities

CESG Computer Evaluation Security Group

CICS Transaction Monitor developed by IBM

CLI Call Level Interface (of SQL)

CLNS Connection-less Network service

CMIS/CMIP Common Management Information Standard/Protocol

Codasyl An information model based on a network of records organised

into sets.

228

CONS Connection-oriented Network Service

Controlling File File used to record file allocation and placement

CORBA Common Object Request Broker Architecture

COSMAN Communications and Slow device Manager

CRM Communications Resource Manager (X/Open TP Model)

CSA Concurrent Session Access

CSI Communications Service Infrastructure

CTM VME Common Target Machine

CVM Control VM (TPMSX)

CUA Common User Access

DAIS Distributed Application Integration Services

DBMS Database Management System

DCE OSF's Distributed Computing Environment

DDE Dynamic Data Exchange

DDS ICL's Data Dictionary System

DES Secret-key encryption algorithm used in the USA

Director The part of VME which handles logical resources

DME OSF's Distributed Management Environment

DML Data Manipulation Language

DMS ICL's Dialogue Management System

DNS Distributed Name Service

DSA X.500 Directory Service Agent

DSIS Distributed Support Information Standards

DTS Distributed Transaction Management System (TPMSX)

ECMA European Computer Manufacturer's Association

EDI Electronic Data Interchange

EIA US Electronics Industries Association

Encryption Secure encoding

Event Object supporting inter-process communication &

synchronisation

FDDI Fibre Distributed Data Interchange

FIFO First-in-first-out

File Section Section of a partitioned file (e.g. reel of multi-reel tape file)

Filestore Category An aggregation of filestore managed similarly

Filestore Description Description of an allocation of filestore space

Filestore Volume Disc volume (or partition), magnetic tape reel or cartridge

Frontware Tools which enable client applications which interwork with

unchanged server applications to provide an improved user

interface and other functions.

FTAM File Transfer and Access Method

FTF File Transfer Facility

FTP File Transfer Protocol; part of TCP/IP

GB Gigabytes

GOSIP Government OSI Profiles

GSI General System Interface - commands which can be called

from SCL

GSSAPI General Security Services API

Hardware Unit Central units, peripherals, other systems on local LANs

229

HCI Human-Computer Interface

HLLAPI High Level Language Application Programming Interface

HSO VME High Security Option

I/O Input-Output

ICAB-02 Terminal access protocol used with VME

ICAB-05 Extended version of ICAB-02

IDL Interface Definition Language

IDMSX Integrated Database Management System

IEEE (US) Institute of Electrical and Electronic Engineers

Installation The root for enumerating objects in an installation

IPC Inter-Process Communication

IRDS Information Resource Dictionary System

ISAM Indexed Sequential Access Method

ISDA Interactive Screen Design Aid

ISDN Integrated Subscriber Digital Network

ISO International Standards Organisation

IT Information Technology

ITSEC IT Security Evaluation Criteria

IVDP Interactive Video/Direct Print

Job User job

Kernel The part of VME which handles real resources

LAN Local Area Network

Library Collection of data files with similar properties

Libraryfile Data file belonging to a library

Librarylist List of libraries to be used as a context for module loading

Location Site of an object (hardware, service etc.)

MAC Multi-Access Computing

MB Megabytes

MHS Message Handling Service

Middleware Infrastructure provided which insulates applications from their

environment and the way they are distributed

MIS Management Information Service. Allows managers, and

others, to access information in ways that are not pre-

determined.

MIT Massachusetts Institute of Technology

MTA X.400 Message Transfer Agent

NIFTP Network Independent File Transfer Protocol

OCF Operator Communications File

OCM Operations Control Monitor

OCP Order Code Processor

ODP Open Distributed Processing, based on the reference

architecture defined in ISO/IEC 10746.

OLTP Online Transaction Processing

OMF Object Module Format

OMG Object Management Group

OPEH Object Program Error Handler
OPENframework ICL's System Integration architecture and method

OSF Open Software Foundation

230

OSI Open Systems Interconnection

OSI-TP OSI standard for transaction management protocols

OSLAN Open Systems LAN

OVEC ICL's OpenVME Exploitation Centre

P2P Peer to Peer

PAC Privilege Attribute Certificate

PAS Program Activity Sampler

PC Personal Computer

PCTE Portable Common Tools Environment

PFI Physical File Interface

PID VME Personal Identification Option

Pipe A file connecting two processes, one writing, one reading

Platform A collection of hardware and software components with the

ability to process and store information.

PLI Primitive Level Interface

PLT Procedure Linkage Table

POSIX Standards for operating system interfaces defined by IEEE.

Primitive File A file viewed as a sequence of physical data blocks

Profile A service or service description

PS Access Manager Person Server

QB ICL's QuickBuild

QBP QuickBuild Pathway

QBWB QuickBuild Work Bench

RAM Record Access Mechanism

RDA Remote Database Access

RDBMS Relational Database Management System

Real File Data file as a set of blocks

RECMAN VME's Record Management software

ReView A means of providing relational access to all OpenVME data

sources

RIBA Distributed Computing programme in which ICL is a

collaborator

RISC Reduced Instruction Set Computer

RPC Remote Procedure Call

RSA Remote Session Access

RSI VME Restricted System Interface

SAP Service Access Point

SCL System Control Language

SCT VME's Service Connection Task

Service A functional capability

SESAME Consortium developing the ECMA security architecture

SMF Standard Monitor Facility

SNA IBM's System Network Architecture

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSADM Structured Specification and Design Method

SVR4 (UNIX) System V Release 4

Task A VM customised for a specific purpose

231

TCB Trusted Computing Base

TCB Transfer Control Block

TCP/IP Transmission Control Protocol/Internet Protocol

TCSEC Trusted Computer Security Evaluation Criteria

TP Transaction Processing

TPMSX ICL's Transaction Processing Management System

TxRPC Transactional RPC

UCG User Code Guardian

UDP/IP User Datagram Protocol/Internet Protocol

UES Access Manager User Environment Server

US Access Manager User Sponsor

User Object Object whose content is user-defined

UUCP UNIX file transfer protocol

Virtual File Virtual file mapped onto one or more real files

VM Virtual Machine

VME Virtual Machine Environment

VME-X OpenVME Application Environment which supports X/Open

interfaces, together with other key practical portability

interfaces.

VTP OSI Virtual Terminal Protocol

X/Open A joint initiative by members of the information technology

community (suppliers and users) to adopt, promote and

adapt open standards.

X25 A communications wide-area network protocol

XATMI X/Open Application Transaction Manager Interface

XDCS X/Open Distributed Computing Services

XDR External Data Representation (system independent data

representation)

XDS X/Open Directory Service

XMA X/Open Message Access API

XPGn X/Open Portability Guide Issue n

XSI X/Open System Interface

XTI X/Open Transport Interface

232

233

Appendix C:
Catalogue Object Types

Catalogue Object types

The VME Catalogue supports the following Object types:

User (or Person) User workgroup or individual identification

File Group Group of Files, Libraries, Filegroups

Data File A file with associated file or record organisation

Primitive File A file viewed as a sequence of physical data blocks

File Section Section of a partitioned file (e.g. reel of multi-reel

Filestore Category An aggregation of filestore managed similarly

Filestore Volume Disc volume (or partition thereof), magnetic tape

Controlling File File used to record file allocation and placement

Event Object supporting inter-process communication &

Configuration Block

Hardware Unit Central units, peripherals, other systems on local

Installation The root for enumerating objects in an installation

Virtual File Virtual file mapped onto one or more real files

User Object Object whose content is user-defined

Location Site of an object (hardware, service etc.)

Profile or Service A service or service description

Task Description of a VM customised for a specific

Service Access Point Element of communications route & addressing

Job User job

Library Collection of data files with similar properties

Libraryfile Data file belonging to a library

Account Collection point for accounting & charging

Librarylist List of libraries to be used as a context for module

Real File Data file as a set of blocks

Filestore Description Description of an allocation of filestore space

234

235

Appendix D:
List of OpenVME Subsystems
ACC ACCOUNTING_MANAGER

ACO ADVANCED_CAFS_OPTION

ACSE AS_CONTROL_SERVICE_ELEMENT

ADH APPL_DIALOGUE_HANDLER

AEAM APP_ENTITY_AREA_MANAGER

AEIH APPL_ENTITY_INVOCATION_HANDLER

AH ASSOCIATION_HANDLER

AK ALTERNATIVE_KEYS

AM AREA_MANAGER

ANAL NETSIM_ANALYSIS

AOF AUTOMATIC_OPERATOR_FACILITY

ASR ADDRESS_SPACE_AND_REGION_HANDLER

ATAF APPL_TO_APPL_FACILITY

ATH ASYNC_TERMINAL_HANDLER

ATMI XATMI

AU AUTOMATIC_UPGRADE

BA BA_BLOCK_ACCESS_RAM

BC BC_BULK_COPY

BL SYSTEM_B_LOADER

BM BUFFER_MANAGER

BR BR_BASE_RESPONDER

BRF BROWSE_FILE_UTILITY

BRS BROWSER

BS BS_OUTER_SCL

BUC BUC_BUDGET_CONTROL

CD CD_CREATE_DISC_HOLONS

CDAM DISTRIB_AND_RECOVER_MGR

CDDJ CREATE_DELETE_DIRECTOR_JOB

CDH COMMUNICATIONS_DEVICE_HANDLER

CG CG_CAFS_GENERATE

CH CATALOGUE_HANDLER

CHAF C_HEADERS_AND_FUNCTIONS

CHC CHC_CHARGE_CONTROL

CLI CLI

CME CONCURRENT_MACHINE_ENVIRONMENT

CMMN COMMON_FACILITIES

CNC COMMUNICATIONS_NETWORK_CONTROL

COCO COMMITMENT_COORDINATOR

COLL COLLECTOR

COM COM_FORMATTER

CPM CPM_COMMS_PROCESSOR_MANAGER

CRC CHECKPOINT_RESTART_CONTROLLER

CSA CONCURRENT_SESSION_ACCESS

CSI COMMS_SERVICE_INFRASTRUCTURE

CTU CMMN_TOOLS_UTILITIES

CUM CENTRAL_UNIT_MANAGER

CV CV_CORRELATE_VOLUME_FACILITIES

DA DA_OPERFY

DAN DIAGNOSTIC_ANALYSER

DC DC_DIRECTOR_COMMUNICATIONS

DCY DUMP_COPY

DEM DIRECTOR_ERROR_MANAGER

DES DIAGNOSTIC_EVIDENCE_SYSTEM

DEVM DIRECTOR_EVENT_MANAGER

DH DEVICE_HANDLER

DIF DATA_INTERCHANGE_FUNCTION

DIR OSI_DIRECTORY_PRODUCT

DM DISPLAY_MANAGER

DMG DMG_DUMP_MANAGER

DN DN_DUMP_ANALYSER

DSA DIRECTORY_SYSTEM_AGENT

DSG DATABASE_SYSTEM_GENERATOR

DSH DIRECTOR_SEMAPHORE_HANDLER

ECFH OCF_HANDLER

EDH ENCODE_DECODE_HANDLER

EFSM EMBEDDED_FILESTORE_MANAGER

ELAN ELAN_ETHERNET_MANAGER

ELB ENTRY_LEVEL_B

EM EM_UPPER_EVENT_MANAGER

ER ER_ERROR_MANAGER

ETH ECMA_72_TRANSPORT_HANDLER

EXIM EXPORT_IMPORT

EXS EXECUTION_SCHEDULER

FAH FORMS_AND_HELP

FC FILE_CONTROLLER

FCD FCD_CATALOGUE_DECATALOGUE

FCH FILE_CONTINGENCY_HANDLER

FD FD_FILE_DESCRIPTION_HANDLER

FDS FORMS_DEVELOPMENT_SYSTEM

FG FG_FILEGROUP_MANAGER

FID FORMS_INTERFACE_DESIGNER

FL FL_FILE_SERVICES

FMFC FORM_FILE_CMDS

FMS FMS_FILESTORE_MANAGEMENT_SCHEME

FORM FORM_CALL_MANAGER

FP FTAM_PROTOCOL_MACHINES

FPWH FPWH_FTAM_WORM_HANDLER

FRE FRE_FILE_RESILIENCE

FRS FORMS_RUNTIME_SYSTEM

FSR FILE_STORE_ROUTINES

FT FILE_TRANSFER

FTAM FTAM_TRANSFER_APPLICATION

FTC FTC_FTAM_COORDINATOR

FTH FLEXIBLE_TERMINAL_HANDLER

FTS FORMS_TERMINAL

FU FU_FILE_UTILITIES

GXD GXD_GIVE_DETAILS_MANAGER

HM HM_HARDWARE_MANAGER

IC INSTALLATION_AND_CHANGE_HANDLER

ICM INTRA_SYSTEM_CONNECTION_MANAGER

IDH IDH_INTERCHANGE_DEVICE_HANDLER

IEH INITIAL_ENTRY_HELP

IFH INTERMEDIATE_FILE_HANDLER

IFS INTERNAL_FILE_SERVICE

ILAN INTERNODE_LAN_AND_COUPLER_MGR

INH INTERNET_HANDLER

IPS INPUT_SCHEDULER

IS INDEX_SEQUENTIAL

ISDA DDS_SCREEN_DESIGNER

IXC INDEX_CONSTRUCTOR

JI7 JI_MACROS

JI8 JI_OSCL_PROCEDURES

JI9 JI_BATCH_JOB_FUNCTIONS

JS JOB_SCHEDULER

KC KC_KERNEL_COMMUNICATIONS

KEM KERNEL_ERROR_MANAGER

KEVM KERNEL_EVENT_MANAGER

KL KERNEL_LOADER

KMH KMH_MICROPROGRAM_HANDLER

KRM KERNEL_RECONFIGURATION_MANAGER

KSH KERNEL_SEMAPHORE_HANDLER

LC LIBRARY_CONTROLLER

LLSM LOW_LEVEL_LAN_STATION_MANAGER

LM LM_LOCK_MANAGER

LOCM LOCATION_MANAGER

LSH LAN_STATION_HANDLER

LSM LOADSET_MANAGER

LST LST_LISTINGS_MANAGER

LU LU_LIBRARY_UTILITIES

MA MESSAGE_ACCESS

236

MAC MAC_SCHEDULER

MAL MONITOR_ANALYSER

MCM MONITOR_COLLECTION_MANAGER

MCOM MONITOR_COUNTER_MANAGER

MEH MEDIA_HANDLER

MF MAPPED_FILE_RAM

MH MODULE_HANDLER

MLAN MLAN_MACROLAN_MANAGER

MLM MONITOR_LOGGING_MANAGER

MLND MLND_MLAN_DIAGNOSTICS

MM MAGNETIC_MEDIA_PHYSICAL_FILE_MGR

MMAM MAMPHY_ACCESS_MANAGER

MMDI MAMPHY_DISC_IMPERATIVE_MGR

MMDV MAMPHY_DISC_VOLUME_MGR

MMI VISIONMASTER_MAC

MMUM MAMPHY_UNIT_MANAGER

MNM MULTI_NODE_MANAGER

MPT MPT_MODULE_PROCESSING_TOOLS

MR MR_MAC_RESPONDER

MSS MONITOR_SYSTEM_SAMPLER

NCAT NETWORK_CATALOGUE_HANDLER

NCM NETWORK_CONFIGURATION_MANAGER

NCOL NETWORK_OLS_CONTROLLER

NCUD NETWORK_CONNECTION_UD_HANDLER

NFH NETWORK_FILE_HANDLER

NM NM_NODE_MANAGER

NSUN NETSIM_SUNDRIES

NSXD NSXD_DRIVERS

NXC NXCMAN_TAPE_SYSTEM

ODH OPER2_DEVICE_HANDLER

OFM OCF_FILE_MANAGER

OM OBJECT_MANAGEMENT

OPS OUTPUT_SCHEDULER

OR OR_OPERATOR_RESPONDER

OS_5 OS_MACROS

OS1 OUTPUT_SPOOLER

OS6 OS_MACROS_SUPPORT_PROCS

OSCL OSCL_STANDARD_OUTER_SCL

OSP OUTPUT_SPOOLING

OTP OSI_TRANSACTION_PROCESSING

PCH PROGRAM_CHECKPOINTING

PCXA PCXA

PERM PERIPHERAL_MANAGER

PFFC FORM_TEMPLATE_UTILS

PFFM PFFM_FORMS_MERGER

PFMS PFM_SERVICES

PLAN PUBLIC_WRITE_LAN_COUPLER_MGR

PM PROCESS_MANAGER

POF PROGRAMMABLE_OPERATOR_FACILITY

PR PROMPTER_MECHANISM

PREP NETSIM_PREPARATION

PS PACKAGE_SELECTION

PSI PRESENTATION_SERVICE

PSP PAGE_ORIENTED_SPOOLER

PT PETE

PTH PURSUIT_TERMINAL_HANDLER

PTR PRINTFILE_TRANSF_RAM

PV PV_PRIVACY_HANDLER

PWM PUBLIC_WRITE_MANAGER

QISH QUICK_INTRA_SYSTEM_HANDLER

QMH QUICK_MESSAGE_HANDLER

RBS RBS_RME_BASE_SUPPORT

RC RC_RAM

RCH RCH_REMOTE_COUPLER_HANDLER

RD RD_DRIVERS

RF RF_SLOW_DEVICE_RAM

RG RG_REPORT_GENERATOR

RGT RSA_GATEWAY_TASK

RI RESOURCE_INTERFACE_MANAGER

RLY TRANSPORT_RELAY

RM RM_RESOURCE_MANAGER

RMF RMF_MAPPED_FILE_MANAGER

RORO ROLLON_ROLLOFF_MANAGER

ROS REMOTE_OPERATION_SERVICE_ELEMENT

ROSE ROSE

RR RR_FILE_RECOVERY

RS RESOURCE_SCHEDULER

RT RT_TAG_MANAGER

RU DROUTE_UTILITIES

RUN NETSIM_RUN

SA SEGMENT_ALLOCATOR

SAH SHARED_ACCESS_HANDLER

SAM SAM_INTERFACE

SCHH SCHH_SECURITY_HANDLER

SCLS SCL_SYSTEM

SD SD_PHYSICAL_FILE_MANAGER

SDH SLOW_DEVICE_HANDLER

SDM SDM_SERIAL_DEVICE_MANAGER

SFA NETSIM_SCREEN_FORMAT_ANAL

SL1 SL_MACROS

SL2 SL_PROCEDURES

SM SM_SECTION_MANAGER

SMAN SERVER_MANAGER

SMF STANDARD_MONITORING_FACILITY

SMON SMON_SYSTEM_MONITOR

SPR SPR_SYSTEM_PROMPTER

SQ SYSTEM_QUEUEING

ST STATISTICS_PACKAGE

STM STM_STREAM_MANAGER

STR VME_STREAMS

STW SYSTEM_TASK_WATCHDOG

SVC SERVICE_CONNECTION

SVL SUPERVISOR_LOADER

SVM SERVICE_MANAGER

SW SPOOL_WRITER

TC TASK_CONTROLLER

TDDH TRANSPARENT_DIRECT_DEV_HNLR

TDH TRANSPARENT_DEVICE_HANDLER

TI TI_TRANSPORT_INTERFACE

TIM TIMER_MANAGER

TLB TLB_MAG_TAPE_LIBRARY_APPL

TM TAG_MANAGER

TME TME_EMULATION

TP TP_SCHEDULER

TPA TP_ADAPTOR

TR TR_RECORD_TRANSFORMATION

TRUG SYSTEM_UPGRADE

TSM TRANSPORT_SERVICE_MANAGER

TST TOTAL_SYSTEM_TELESERVICE

TU TU_TAG_UTILITIES

TXA9 TX_ACCESS_LEVEL_9

TXAC TX_ACE

TXAP TX_APPLICATION

TXCO TX_CONTROL

TXDA TX_DATA

TXDE TX_DEVICE

TXIN TX_INTERFACE

TXIT TX_INST

TXJO TX_JOURNAL

TXMA TX_MATS

TXMC TX_MAIN

TXPH TX_PHAN

TXPR TX_PREPARE

TXSL TX_SLOTFILE

TXSM TX_MONITORING

TXSP TX_SPOOLER

TXST TX_STATS

TXTE TX_TESTING

TXVM TX_VMS

TXWD TX_WIP_STORE_DRIVER

TXXV TX_AUXILIARY_VM

UCG USER_CODE_GUARDIAN

UCI UNIX_COMPATIBILITY_INTERFACES

UIM USER_INTERFACE_MANAGER

UM UM_USER_MANAGER

UO UO_USER_OBJECT_MANAGER

UPG UPG_UPGRADE_PROMPTER

USE USER_SUPPORT

237

UTM UPPER_TAG_MANAGER

VC VC_DISC_VOLUME_COPIER

VCAP VCAP_COMMON_APPLICATIONS

VCUT VCUT_COMMON_UTILITIES

VDD VDD_DISC_DISPLAY_FUNCTIONS

VDF DUMP_FORMATTER

VDH VM_DESCRIPTION_HANDLER

VF VIRTUAL_FILES

VFS FTAM_VIRTUAL_FILESTORE

VG VI_VOLUTS

VHPC VHSDC_PROTOCOL_DRIVERS

VHUD VHSDC_UNIT_DRIVERS

VI VI_DISC_INITIALISER

VISA VISA_KERNEL

VMEP VME_PATHWAY

VMEX VME_XOPEN

VMI VIRTUAL_MACHINE_INITIALISATION

VMM VIRTUAL_MACHINE_MANAGER

VMPX VME_PATHWAY_EXTENDED

VOD VOD_ARCHIVE_HANDLER

VOLM VOLUME_MANAGER

VP VP_PRINT_TAPE_FUNCTIONS

VPU VOLUME_PARTITION_UTILITIES

VR VR_VIRTUAL_FILE_MANAGER

VSC VSC_SWEEP_CYCLE_UTILITIES

VSM VIRTUAL_STORE_MANAGER

VTC VTC_TAPE_FUNCTIONS

VTD VTD_TIDY_DISC_FUNCTIONS

VTF VIRTUAL_TERMINAL_FORMS

VTI VME_TCP_IP

VTPM VIRTUAL_TERMINAL_PROTOCOL_M

VWM WINDOW_MANAGEMENT

VX VX_IO_HANDLER

VY VY_COMMON_HOLONS

VZ VOLUTS_GI_IO_HANDLER

WI WORK_INTRODUCTION

WM WORK_MANAGEMENT

WMT WORKMIX_TASK

WMX WORKMIX

WSM WIP_STORE_MANAGER

X25H X25_HANDLER

X400 X400_CODE_HANDLER

X4M X4MAIL

X4SP X400_REMOTE_SPONSOR

XAP XOPEN_ACSE_PRESENTATION_API

XCV X_OPEN_COMMANDS_FROM_VME

XFM XFM_VMEX_FILE_MANAGER

XTI XOPEN_TRANSPORT_INTERFACE

238

239

Appendix E:
Bibliography
OpenVME Customer Publications

Full details of all OpernVME customer publications are available in the Publications

Catalogue. The majority of OpenVME customer publicationas are also available on the

OptICL OpenVME CD-ROM product.

Overview

Introduction to OpenVME 58548

Application Environment
Advanced CAFS Option: User Guide 54824

Batch Recovery Techniques 59550

DAIS: System Overview R30428

Distributed Applications on VME 30366

Open VME Application Porting Guide 54438

RSI Option: Compiler Target Machine 52102

RSI Option: Extended Target Machine 51531

RSI Option: Magnetic Physical File Interface 54494

RSI Option: Non Magnetic Physical File Interface 56911

RSI Option: Primitive Level Interface 51078

RSI Option: Work Management 51444

VME-X Programmers Reference Manual 55737

Vocabulary of SCL Command Specifications 52069

Application Development
Additional Dictionary Facilities (DDS.850) 10397

Application Analysis: An Interactive Guide 16397

Application Master: Reference (AM.300) 15420

Data Dictionary System: Summary 17146

FORMS COBOL Programmers Guide 12340

FORMS Overview 18606

FORMS Implementors Guide 19455

FORMS Interface Designers Guide 12366

FORMS Introduction to Interface Design 12056

FORMS Terminal: Users Guide 56437

FORTRAN 77 Language R03792

Object Module Format and Utilities 55843

Programmer's Workbench 13692

Programmer's Guide 54571

Programming Utilities 58310

Querymaster Advice and Guidance 18013

QuickBuild Exploitation Guide 18862

QuickBuild Overview (Series 39) 11124

QuickBuild: Developing Applications (AM.300) 18653

240

Quickbuild Pathway & ASG Reference 17157

QuickBuild: Planning and Implementing a System 18530

Running and Using a Dictionary Service (DDS.850) 14558

SCL Programming 51776

Screen Design Using DDS R00400

System Programming 50440

The DDS Model (DDS.850) R00461

Using DDS System Definition Language (DDS 800/850) R00419

Using the COBOL C2 Compiler R00173

Using the VME C Compiler R50324

VME/B Environment Option 57586

VME COBOL Range COBOL Language (C2) R03790

VME COBOL Range COBOL Syntax (C2) R03791

VME S3 Language R00084

Transaction Management & TPMSX
Designing a TPMS Service R00460

Implementing a TPMS Service R00462

Introduction To TPMS R00458

Specifying a TPMS Service as a DDS Model R00463

Specifying a TPMS Service Using the Parameter File R00464

TPMS (XE) 57685

TPMS (XL) Option R30168

TPMS Global Contents and Glossary Of Terms R00459

TPMS Service Control and Maintenance R00465

Writing COBOL Applications for a TPMS Service R00461

Information Management
IDMSX : Using Data Display R00110

IDMSX Easychange User Guide R30236

IDMSX High Performance Option User Guide R30235

IDMSX Part 1: Setting up a Simple Database R00176

IDMSX Part 2: Database Establishment R00154

IDMSX Part 3: Using a Database R00155

IDMSX Part 4: Database Programming R00156

IDMSX Part 5: Database Design R00153

Querymaster: Using Querymaster R00433

ReView User Guide 59251

VME INGRES Installation & Operations Guide 19708

VME INGRES/SQL Reference Manual 16924

VME INGRES/Embedded SQL for C 12147

VME INGRES/Embedded SQL for COBOL 18473

VME INGRES System Commands Reference Manual 14696

VME INGRES Database Administrators Guide 13798

VME INGRES Command Reference Summary 16948

VME INGRES/REPORTS: Report Writer Reference Manual 14352

241

Networking Services
File Transfer 57143

Flexible Terminal Handler Asynchronous Sponsor Package 50946

Flexible Terminal Handler: Infrastructure 53003

Flexible Terminal Handler: Sponsor Writers Guide 56630

Introduction to VME Communications 53002

Implementing Local Area Networks 52744

Message Handling System 57030

TCP/IP protocols on OpenVME 55343

Terminal Access 55078

Wide Area Networks: Implementing Full XBM 50635

Wide Area Networks: Implementing Integrated X.25 50802

System Management
Automated System Operator (ASO) User Guide 51273

Accounting Charging and Budgeting 52099

FORMS Terminal: Administrators Guide 50229

Moving Workloads 58177

SAM Reference Manual 53845

System Exploitation 52035

System Management 52397

System Management Dictionary 58416

System Operating 51092

System Performance 54496

System Prompts 59345

The Filestore Management Scheme 52185

Work Scheduling 55250

VME-X System Administrator's Reference Manual 58728

VME-X User Guide 55047

VME-X Users Reference Manual 52124

Series 39 Hardware
Advanced CAFS Option R30130

Guide to CAFS Exploitation R30053

Hardware Reference Manual 50296

Security
Provding an ICL Access Service (VME) 12244

System Security 52807

Security Options 52650

242

OPENframework Publications

The following books are published by Prentice Hall and cover the qualities, elements and

specialisations of OPENframework:

Overview
The Systems Architecture: an Introduction ISBN 0-13-560186-X

Qualities
Availability ISBN 0-13-630948-8

Usability ISBN 0-13-630930-5

Performance ISBN 0-13-630666-7

Security ISBN 0-13-630658-6

Potential for Change ISBN 0-13-630617-9

Elements
User Interface ISBN 0-13-630591-1

Distributed Application Services ISBN 0-13-630518-0

Information Management ISBN 0-13-630500-8

Application Development ISBN 0-13-630484-2

Systems Management ISBN 0-13-630450-8

Networking Services ISBN 0-13-630393-5

Platforms ISBN 0-13-630385-4

Specialisations
Services ISBN 0-13-101213-4

Transaction Management ISBN 0-13-630377-3

X/Open Publications

Overviews
An Introduction to X/Open and XPG4 (by CCTA) ISBN 1-872630-68-5

Open Systems in Practice ISSN 0966-8063

Open Systems: A Guide to Developing the Business Case ISBN 1-872630-72-3

X/Open and Interoperability (by Petr Janecek) ISBN 1-872630-57-X

X/Open and Open Systems (by Colin Taylor) ISBN 1-872630-55-3

X/Open Systems and Branded Products: XPG4 ISBN 1-872630-52-9

Base Definition
Commands and Utilities Issue 4 ISBN 1-872630-48-0

System Interface Definitions Issue 4 ISBN 1-872630-46-4

System Interfaces and Headers Issue 4 ISBN 1-872630-47-2

243

Communications & Interworking
ACSE/Presentation Services API (XAP) ISBN 1-872630-91-X

API to Directory Services (XDS) ISBN 1-872630-18-9

API to Electronic Mail (X.400) ISBN 1-872630-19-7

Byte Stream File Transfer (BSFT) ISBN 1-872630-27-8

EDI Messaging Package (XEDI) ISBN 1-872630-25-1

FTAM High-level API (XFTAM) ISBN 1-872630-60-X

Guide to IPS - OSI Coexistence and Migration ISBN 1-872630-22-7

Guide to Selected X.400 and Directory Services APIs ISBN 1-872630-23-5

Guide to the Internet Protocol Suite ISBN 1-872630-08-1

Message Store API (XMS) ISBN 1-872630-83-9

Networking Services Issue 3 ISBN 1-872630-42-1

OSI-Abstract-Data Manipulation API (XOM) ISBN 1-872630-17-0

Protocols for X/Open Interworking: XNFS Issue 4 ISBN 1-872630-66-9

Protocols for X/Open PC Interworking: (PC)NFS ISBN 1-872630-00-6

X.400 (APIs and EDI Messaging) - ISBN 1-872630-78-2

X/Open Transport Interface (XTI) ISBN 1-872630-29-4

Data Management
Data Management Issue 3 ISBN 1-872630-40-5

Data Management: SQL Call Level Interface (CLI) ISBN 1-872630-63-4

Data Management: SQL Remote Database Access ISBN 1-872630-98-7

Indexed Sequential Access Method (ISAM) ISBN 1-872630-03-0

Structured Query Language (SQL) ISBN 1-872630-58-8

Distributed Computing
Common Object Request Broker: Architecture and

Specification

ISBN 1-872630-90-1

Distributed Computing Services (XDCS) Framework ISBN 1-872630-64-2

Distributed Internationalisation Services ISBN 1-872630-75-8

Languages
COBOL Language ISBN 1-872630-09-X

Programming Languages Issue 3 ISBN 1-872630-39-1

Miscellaneous
Document Interchange Formats ISBN 1-872630-51-0

Document Interchange Reference Model ISBN 1-872630-50-2

Internationalisation Guide - Version 2 ISBN 1-859120-02-4

Internationalisation of Interworking Specifications ISBN 1-872630-87-1

244

Transaction Processing
Communication Resource Manager Specifications ISBN 1-872630-88-X

CPI-C ISBN 1-872630-35-9

Distributed TP: Reference Model ISBN 1-872630-16-2

Distributed TP: The Peer-to-Peer Specification ISBN 1-872630-79-0

Distributed TP: The TX Specification ISBN 1-872630-65-0

Distributed TP: The TxRPC Specification ISBN 1-859120-00-8

Distributed TP: The XA Specification ISBN 1-872630-24-3

Distributed TP: The XA+ Specification ISBN 1-872630-93-6

Distributed TP: The XATMI Specification ISBN 1-872630-99-5

Transaction Processing ISBN 1-872630-89-8

System Management
Systems Management: Managed Object Guide (XMOG) ISBN 1-859120-06-7

Systems Management: Reference Model ISBN 1-859120-05-9

User Interface
Window Management Issue 3 ISBN 1-872630-41-3

X Toolkit Intrinsics ISBN 1-872630-14-6

X Window s File Formats & Application Conventions ISBN 1-872630-15-4

X Window System Protocol ISBN 1-872630-13-8

Xlib - C Language Binding ISBN 1-872630-11-1

XPG4
XPG4 Branded Products Part 7 ISBN 1-873620-52-9

XPG4 Component Defns. Part 2 ISBN 1-872630-52-9

XPG4 CSQs Part 6 ISBN 1-872630-52-9

XPG4 Guide to Branding Part 4 ISBN 1-872630-52-9

XPG4 Overview Part 1 ISBN 1-872630-52-9

XPG4 Profile Defns. Part 3 ISBN 1-872630-52-9

XPG4 TMLA Part 5 X/Open Systems & Branded Products ISBN 1-872630-52-9

245

Additional Sources

ISO Reference Documents
Open Systems Interconnection: Basic Reference Model ISO 7498

Systems Management Overview ISO 10040

Systems Management Functions ISO 10164

Structure of Management Information ISO 10165

Distributed Transaction Processing (OSI-TP) ISO 10026

OSI Remote Procedure Call ISO 11578

The Open Distributed Processing Reference Model ISO 10746

OSF Documents
OSF/1 Operating System Overview OSF-OS-PD-1190-1

OSF DCE Overview OSF-DCE-PD-1090-4

OSF DME Overview O-DME-RD-1

OMG Documents

Object Management Group Architecture Guide

Object Model

The Common Object Request Broker: Architecture &

Specification

GOSIP Standards

Government OSI Profile Specification

Miscellaneous Documents
Security Framework for the Application Layer of Open

Systems

ECMA TR/46

Reference Model for Frameworks of CASE ECMA TR/55

246

247

Index

Above Director Software, 78

Access Control

Discretionary policy, 27

Mandatory policy, 27

Access Key, 29, 33, 54

Access Level, 29, 33, 53

Entry conditions, 44

Protection, 53

Scheduling, 54

Suspension, 44

Access Permission Field, 29, 34

Accounting, 78

Address translation, 30

ADF, 116

ADI, 152, 190

AM, 183

AOF, 91

APF, 29, 34

Application, 95

Application Data Interchange, 152

Application Development, 17, 181

Application Master, 183

Application Dialogue, 113

Application Environment, 16, 95

Application Programming Support, 97

Establishment, 101

Open, 102

Structured view, 96

Application Master, 183

Application Server, 99

Application VM (TPMSX), 120

ASG, 182

ASO, 91

Association Management, 162

Automated Operator Facility, 91

Automated System Operation, 197

Availability, 216

AVM, 120

Batch, 84, 98

Binding, 24

Block-structured resource allocation, 26

CAE, 102

CAFS, 79, 80, 208

Software Interfaces, 138

CAM, 200

Capacity management, 198

CAS, 196

CASE, 17, 181

Catalogue, 22

Director facilities, 65

Hierarchic name, 23

Security attributes, 23

Selection, 23

Selector, 23

Catalogued Object, 22

CDAM, 122

CDIF, 181, 184

Checkpoint, 76

Client-server, 11, 169

Client/Server architecture, 170

Co-operative processing architecture,

171

Interaction types, 173

CLNS, 152

CMIP, 200, 224

CMIS, 200, 224

Codasyl, 127

Commands & Utilities, 93

Communications

Above Director, 88

Architectural overview, 150

Core networking services, 152

Director, 76

Director architecture, 159

Kernel, 61

Kernel architecture, 155

Network controller, 159

Out-of-line Layer Service, 167

Out-of-process services, 167

Out-of-process tasks, 92

Communications Resource Manager, 112

Communications Service Infrastructure, 166

CONS, 152

Containment Architecture, 28

Contingency, 78

Control Program, 82

Control VM (TPMSX), 120

Co-operative processing, 11, 171

248

Co-ordinated & Distributed Application

Manager, 122

Copier Task, 91

CORBA, 176

COSMAN, 159

Coupler

Input/Output, 204

Inter-node, 204

CPI-C, 221

CRM, 112

CSA, 90

CSI, 98, 166

Currency, 23

CVM, 120

DAIS, 176

Data Dictionary, 181

DBG, 182

DDS, 181

Declarative Architecture, 22

Descriptor, 32

Escape, 41

System Call, 38

Device, 50

Dialogue Management System, 178, 191

Director, 63

Directory Service Agent, 92, 154

Distributed Application, 170, 190

Distributed Application Development, 178

Distributed Application Services, 16, 169

Distributed Data Management, 143, 170

Distributed Function, 170, 190

Distributed Naming Service, 176

Distributed Object Request, 175

Distributed Presentation, 170, 190

Distribution management, 199

Distribution Transparencies, 171

DML, 126

DMS, 178, 191

DSA, 92, 154

DSIS, 201

DTS, 122

EDI, 153

Encryption, 176, 215

Error Management

Containment, 54

Director, 77

Kernel, 62

Symbolic debugging, 87

Escape Routine, 41

Event, 43

Kernel Event Manager, 59

External Data Representation, 174

External references, 35, 40

FDDI, 152

File

Listing, 86

Transfer, 86

File Management

File descriptions, 139

Flat files, 139

Logical, 68

Physical Files, 64

Record access, 78

Filestore

Logical Organisation, 68

Flexible Terminal Handler, 166

FORMS, 155, 182, 189, 190

FTAM, 80, 91, 153, 167

General System Interface, 80

Generation management, 199

GOSIP, 226

GSI, 80

GSSAPI, 176, 213

Hardware Management

Director, 67

Kernel, 60

HCI, 17, 187

HLLAPI, 189, 190

HSO, 213

ICAB-02, 05, 154

IDL, 178

IDMSX, 127

Service architecture, 129

Imperative Architecture, 35

Information Management, 16, 125

Client-server access, 143

Interchange, 142

Information Models, 125

Network model (CODASYL), 125

Object-oriented model, 127

Record-based files, 125

Relational model, 126

Unstructured files, 125

Infrastructure-mediated interactions, 172

249

In-process Architecture, 26

Input-Output, 50

Integration Tools, 177

Interface Definition Language, 178

Inter-node Communication, 207

Inter-process Communication, 74

X/Open support, 74

Inter-process Communication, 43

Interrupt, 39, 46

IPC, 43, 74

IRDS, 222

ISAM, 79, 103, 137, 144, 185

Job, 70, 84

Control, 80

Queue, 84

Journal, 72

Kernel, 57

Language-mediated interactions, 172

Layered Structure, 53

Library, 68

License management, 199

Loadable object, 24

Loader, 24, 39

Loading Environment, 24, 41, 97

Local Segment Table Base, 30

Location, 65

Lower Director, 63

MAC, 82, 84, 97

Managed Object Model, 194

Mechanism, 50

Memory, 204

Message Handling Service, 175

Message Passing

Director, 75

Message Queue

X/Open, 74

Message Transfer Agent, 153

Messaging, 153, 175

MHS, 175

Middleware, 171

MIS, 143, 191

Module, 35

Module Loading, 68

Monitoring

Application profiling (PAS), 88

Director, 77

Kernel, 62

MTA, 92, 153, 166, 167

Multi-Access Computing, 97

NETCON, 159

Network Management, 200

Networked Resource Usage, 173

Networking Services, 17, 147

NIFTP, 153, 167

Nodal Architecture, 205

Hardware structure, 205

Nodal structure, 56

Software principles, 207

Object

Naming, 24

Object Module, 39

Object Module Format, 39

Object Program Error Handler, 87

OCF, 72

OCM, 196

OCP, 204

ODP, 176, 223

OLTP, 111

OMF, 39

Area, 40

Diagnostics, 87

Module key, 40

Object, 40

OPEH, 87

Open AM, 183

Open Distributed Processing, 176

Operand Addressing, 32

Operations Control Manager, 196

Operations Management, 196

Operator Communication File, 72

Operator Communications, 72

Operator Tag, 85

OSI Communications Architecture, 148

Application APIs, 88, 166

Application Entities, 165

Application Layer, 162

Application Service Elements, 165

File Transfer and Manipulation

(FTAM), 153

OSI TP, 117, 152, 167

Transport service, 152

Virtual Terminal Protocol (VTP), 155

VTP, 167

X400 Messaging services, 153

250

X500 Directory services, 154

OSLAN, 152

Out-of-process Sub-systems, 89

P2P, 116

PAC, 214

Page, 28

Page Table, 30

Parameter keyword, 40

Parameter passing, 37

Parameter validation, 37

PAS, 88

PCTE, 222

Performance, 209

Client-server, 211

Peripheral Manager, 61

Personal Identification Option, 213

Physical File Manager, 63

PID, 213

Platform, 18, 203

Plexed Disc Files, 64

PLT, 35

Potential for Change, 218

Pre-emptive process, 46

Privacy

Director, 65

Privacy, 27

Privilege, 33

Privileged Interfaces, 42

Problem management, 197

Procedure, 35

Procedure Call, 36

Forced, 39

Procedure Exit, 36

Procedure Linkage Table, 35

Procedure template, 40

Process, 31

Management, 58

Scheduling, 47

VME-X, 103

Process Management Table, 33

Process State Dump, 32

Processor

Input/Output, 204

Order Code, 204

Program Activity Sampler, 88

Protection, 33

QBWB, 182, 183

Quickbuild

Pathway, 182

QuickBuild, 182

WorkBench, 183

RAM, 68, 78

RECMAN, 78

Record Access, 78

Mechanism (RAM), 68, 139

RAM parameters, 141

Record Access Mechanism, 78

Relational Database, 131

Informix, 137

Ingres, 134

Oracle, 132

Remote Data Management, 144, 170, 191

Remote Database Access, 174

Remote Presentation, 170, 190

Remote Procedure Call, 174

Remote Session Access, 152

Replicated Memory, 206

Resource Allocation

Director, 66

SCL BEGIN & END, 81

Resource Allocation, 26

Resource Manager, 112

ReView, 144

RPC, 173, 174

RSA, 152

Run-time Library, 87

SAP, 151

Scheduler, 84

Execution, 90

Spooler & copier, 90

SCL, 81

Interactive, 81

Outer, 86

SCL Program, 82

SCT, 90

SCT (System Call

System Call Table), 59

Security, 27, 212

Client-server systems, 214

Director, 65

Distributed Security, 176

Segment, 28

Segment Table, 30

Semaphore

251

Kernel Semaphore Handler, 59

X/Open, 74

Server Manager, 100

Service

Application, 16, 95, 101

Catalogued, 71

CDAM, 122

Service Manager (SVM), 71

TPMSX, 118

Work management, 101

Service Access Point, 151

Service Connection Task, 90

Service Description, 71

Service Discovery, 176

SESAME, 214

Shared Memory, 47

Replicated, 206

X/Open, 74

Simple Network Management Protocol, 200

SMF, 77

SNMP, 200

Spooler, 98

Spooler AVM (TPMSX), 121

Spooler Task, 91

SQL, 126, 131, 143, 144

SSADM, 223

Stack, 31

Stack frame, 31

Standard Monitoring Facility, 77

Standards, 221

Static data, 35

Stream, 50

Operation, 51

Stream Manager, 61

Structured Query Language, 126

Sub-process Call, 38

Sub-system, 55

Sub-system, 25

Sub-system Structure, 55

Super-segment, 28

Suspension, 44

System Architecture, 15

System Call, 38, 42

Kernel System Call Handler, 59

System Call Table, 59

System Control Language, 81

System Load, 76

Supervisor Loader, 62

System Management, 18, 193

Functional Model, 194

Introduction & Deployment, 199

Operational Control, 196

Process Model, 193

Relationship with other domains, 200

Supporting infrastructure, 200

Tasks, 91

VME-X Service administration, 108

System Task, 98

Tag Management, 66

Task

Catalogued, 70

Creation & initialisation, 72

Scheduler, 90

Support, 70, 91

System, 89

System Task Watchdog, 91

Task Controller (TC), 71

TCB, 51

TCP/IP, 17, 88, 92, 166

Timer Facilities, 49

Timer Manager, 60

TP, 118

TPMSX, 118

Distributed Transaction Processing

System, 122

Transaction, 111

ACID properties, 111

Distributed, 112

Queued, 114

Transaction Management, 16, 75, 111, 175

Application Dialogue, 116

Distributed Application Support, 116

Transaction Manager, 115

Work-in-progress Store, 115

Transaction Manager, 112

Transaction Processing, 111

Transaction Processing Management

System, 118

Transactional Messaging, 114

Transfer Control Block, 51

Transparencies

Distribution, 171

System, 218

Two-phase commit, 113

252

TxRPC, 116, 221

UCG, 78

Unit Table, 46

Upper Director, 64

Usability, 217

User Access, 17, 187

User Code Guardian, 78

User Interface, 17, 187

Reference Model, 188

UUCP, 103, 153

VALidate instruction, 34

Virtual Address, 28

Virtual Machine

Initialisation, 72

Kernel VM Manager, 58

Virtual Machine, 19

Virtual Machine Environment, 19

Virtual Memory, 28

Virtual Store Manager, 57

Virtual Resource, 25

Virtual Resource, 19

VM, 19

VME, 19

VME Object, 19, 22

VME-X, 102

Architecture, 103

exec, 103

fork, 103

Service VM, 105

User VM, 104

VTP, 17, 92, 155

Work Environment, 97

Work Management, 85

Tasks, 90

Work Scheduling, 84

Workmix, 84

Workstation Management, 201

Workstation/server, 11, 170

X/Open

Application Environment, 102

Commands & Utilities, 94

System Interface, 102, 185

TP Environment, 109

Transport Interface, 88, 166

X500, 154

XATMI, 221

XATMI, 116

XDR, 174

XDS, 154

XMA, 191

XSI, 102, 185

XTI, 88, 166

