Characteristic function chi-squared distribution:
Let us assume that we have the following function where X is normally distributed:

X~N(0,0?%)
Y = X2

We can state the following:
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By taking the derivative of the cumulative distribution function of Y, we get:
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As the PDF of the stochastic variable X is even (It is symmetric due to the fact that it has a normal
distribution), we can state:
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This results in:
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We now can find the characteristic function through the moment generating function:

|

M, (it) = E[e™] = “207eitV dy

SI

We now make the following substitutions:




We use the substitution rule:
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Making the following substitution:
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We can clearly see that the integrand is symmetric. By extending the upper and lower limit of this
Riemann integral to co and —oo and taking the % of the result we can find the answer. This extension

leads to the well known Gaussian integral. For more information | would like to redirect to my website
http://www.planetmathematics.com where one can find a document about this integral.
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Resubstituting a, § and c results in:
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Normally when we see the definition of the chi-square distribution we have the following:

Y =XZ + X5+ + X2
Where X; is independent and identically distributed. One advantage of Fourier transforming (calculating
the characteristic function) of a summation of independent stochastic variables is that their respective

characteristic functions can be multiplied in the Fourier Domain (or convolution in the spatial domain).

Proof:
My(lt) = E[eity] =F I:eitzzl=1xi2:| = E[eitxlz ...eitxr%]
Due to the independence of the stochastic variables and the properties of the expectance operator:
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Hence the characteristic function of the central chi-square distribution.



