
111111

Priority Queues (Heaps)

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science

Washington State University

22222

Motivation
Queues are a standard mechanism for ordering tasks
on a first-come, first-served basis
However, some tasks may be more important or
timely than others (higher priority)
Priority queues

Store tasks using a partial ordering based on priority
Ensure highest priority task at head of queue

Heaps are the underlying data structure of priority
queues

Priority Queues
Main operations

insert (i.e., enqueue)
deleteMin (i.e., dequeue)

Finds the minimum element in the queue, deletes it from the
queue, and returns it

Performance
Goal is for operations to be fast
Will be able to achieve O(log2N) time insert/deleteMin
amortized over multiple operations
Will be able to achieve O(1) time inserts amortized over
multiple insertions

3

Simple Implementations
Unordered list

O(1) insert
O(N) deleteMin

Ordered list
O(N) insert
O(1) deleteMin

Balanced BST
O(log2N) insert and deleteMin

Observation: We don’t need to keep the priority
queue completely ordered

4

Binary Heap

A binary heap is a binary tree with two
properties
Structure property

A binary heap is a complete binary tree
Each level is completely filled
Bottom level may be partially filled from left to
right

Height of a complete binary tree with N
elements is

5
⎣ ⎦N2log

Binary Heap Example

6

Binary Heap

Heap-order property
For every node X, key(parent(X)) ≤ key(X)
Except root node, which has no parent

Thus, minimum key always at root
Or, maximum, if you choose

Insert and deleteMin must maintain
heap-order property

7

Implementing Complete
Binary Trees as Arrays

Given element at position i in the array
i’s left child is at position 2i
i’s right child is at position 2i+1
i’s parent is at position

8

⎣ ⎦2/i

9

Fix heap after
deleteMin

Heap Insert

Insert new element into the heap at the
next available slot (“hole”)

According to maintaining a complete binary
tree

Then, “percolate” the element up the
heap while heap-order property not
satisfied

10

Heap Insert: Example

11

Insert 14:

Heap Insert: Implementation

12

Heap DeleteMin

Minimum element is always at the root
Heap decreases by one in size
Move last element into hole at root
Percolate down while heap-order
property not satisfied

13

Heap DeleteMin: Example

14

Heap DeleteMin: Example

15

Heap DeleteMin: Example

16

Heap DeleteMin:
Implementation

17

Heap DeleteMin:
Implementation

18

Other Heap Operations
decreaseKey(p,v)

Lowers value of item p to v
Need to percolate up
E.g., change job priority

increaseKey(p,v)
Increases value of item p to v
Need to percolate down

remove(p)
First, decreaseKey(p,-∞)
Then, deleteMin
E.g., terminate job

19

Building a Heap

Construct heap from initial set of N items
Solution 1

Perform N inserts
O(N) average case, but O(N log2 N) worst-case

Solution 2
Assume initial set is a heap
Perform a percolate-down from each internal node
(H[size/2] to H[1])

20

BuildHeap Example

21

Leaves are all valid heaps

BuildHeap Example

22

BuildHeap Example

23

BuildHeap Example

24

BuildHeap Implementation

25

BuildHeap Analysis

Running time of buildHeap proportional to
sum of the heights of the nodes
Theorem 6.1

For the perfect binary tree of height h containing
2h+1 – 1 nodes, the sum of heights of the nodes is
2h+1 – 1 – (h + 1)

Since N = 2h+1 – 1, then sum of heights is
O(N)
Slightly better for complete binary tree

26

Binary Heap Operations
Worst-case Analysis

Height of heap is
insert: O(log2N)

2.607 comparisons on average, i.e., O(1)

deleteMin: O(log2N)
decreaseKey: O(log2N)
increaseKey: O(log2N)
remove: O(log2N)
buildHeap: O(N)

27

⎣ ⎦N2log

Applications

Operating system scheduling
Process jobs by priority

Graph algorithms
Find the least-cost, neighboring vertex

Event simulation
Instead of checking for events at each time
click, look up next event to happen

28

Priority Queues: Alternatives
to Binary Heaps

d-Heap
Each node has d children
insert in O(logd N) time
deleteMin in O(d logd N) time

Binary heaps are 2-Heaps

29

Mergeable Heaps

Heap merge operation
Useful for many applications
Merge two (or more) heaps into one
Identify new minimum element
Maintain heap-order property
Merge in O(log N) time
Still support insert and deleteMin in O(log N) time

Insert = merge existing heap with one-element heap

d-Heaps require O(N) time to merge

30

Leftist Heaps

Null path length npl(X) of node X
Length of the shortest path from X to a node
without two children

Leftist heap property
For every node X in heap, npl(leftChild(X)) ≥
npl(rightChild(X))

Leftist heaps have deep left subtrees and
shallow right subtrees

Thus if operations reside in right subtree, they will
be faster

31

Leftist Heaps

32

Leftist heap Not a leftist heap

npl(X) shown in nodes

Leftist Heaps

Theorem 6.2
A leftist tree with r nodes on the right path
must have at least 2r – 1 nodes.

Thus, a leftist tree with N nodes has a
right path with at most nodes

33

⎣ ⎦)1log(+N

Leftist Heaps

Merge heaps H1 and H2
Assume root(H1) > root(H2)
Recursively merge H1 with right subheap of H2
If result is not leftist, then swap the left and right
subheaps
Running time O(log N)

DeleteMin
Delete root and merge children

34

Leftist Heaps: Example

35

Leftist Heaps: Example

36

Merge H2 (larger root) with right
sub-heap of H1 (smaller root).

Leftist Heaps: Example

37

Attach previous heap as H1’s right child.
Leftist heap?

Leftist Heaps: Example

38

Swap root’s children to make leftist heap.

Skew Heaps

Self-adjusting version of leftist heap
Skew heaps are to leftist heaps as splay trees
are to AVL trees
Skew merge same as leftist merge, except we
always swap left and right subheaps
No need to maintain or test NPL of nodes
Worst case is O(N)
Amortized cost of M operations is O(M log N)

39

Binomial Queues

Support all three operations in O(log N)
worst-case time per operation
Insertions take O(1) average-case time
Key idea

Keep a collection of heap-ordered trees to
postpone merging

40

Binomial Queues

A binomial queue is a forest of binomial trees
Each in heap order
Each of a different height

A binomial tree Bk of height k consists of two
Bk-1 binomial trees

The root of one Bk-1 tree is the child of the root of
the other Bk-1 tree

41

Bk-1

Bk-1

Bk =

Binomial Trees

42

Binomial Trees

Binomial trees of height k have exactly 2k

nodes
Number of nodes at depth d is , the
binomial coefficient
A priority queue of any size can be
represented by a binomial queue

Binary representation of Bk

43

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
k

Binomial Queue Operations

Minimum element found by checking
roots of all trees

At most (log2 N) of them, thus O(log N)
Or, O(1) by maintaining pointer to
minimum element

44

Binomial Queue Operations
Merge (H1,H2) H3

Add trees of H1 and H2 into H3 in increasing order by depth
Traverse H3

If find two consecutive Bk trees, then create a Bk+1 tree
If three consecutive Bk trees, then leave first, combine last two
Never more than three consecutive Bk trees

Keep binomial trees ordered by height
min(H3) = min(min(H1),min(H2))
Running time O(log N)

45

Merge Example

46

Binomial Queue Operations
Insert (x, H1)

Create single-element queue H2
Merge (H1,H2)

Running time proportional to minimum k such that Bk
not in heap
O(log N) worst case
Probability Bk not present is 0.5

Thus, likely to find empty Bk after two tries on average
O(1) average case

47

Binomial Queue Operations

deleteMin (H1)
Remove min(H1) tree from H1
Create heap H2 from the children of min(H)
Merge (H1,H2)

Running time O(log N)

48

deleteMin Example

49

Binomial Queue Implementation

Array of binomial trees
Trees use first-child, right-sibling
representation

50

H3:

51

52

53

54

55

merge (cont.)

56

merge (cont.)

57

58

deleteMin (cont.)

59

Priority Queues in STL

Binary heap
Maintains maximum
element
Methods

Push, top, pop,
empty, clear

60

#include <iostream>
#include <queue>
using namespace std;

int main ()
{
priority_queue<int> Q;
for (int i=0; i<100; i++)
Q.push(i);

while (! Q.empty())
{
cout << Q.top() << endl;
Q.pop();

}
}

61

STL priority queue

Summary

Priority queues maintain the minimum
or maximum element of a set
Support O(log N) operations worst-case

insert, deleteMin, merge

Support O(1) insertions average case
Many applications in support of other
algorithms

62

	Priority Queues (Heaps)
	Motivation
	Priority Queues
	Simple Implementations
	Binary Heap
	Binary Heap Example
	Binary Heap
	Implementing Complete Binary Trees as Arrays
	Slide Number 9
	Heap Insert
	Heap Insert: Example
	Heap Insert: Implementation
	Heap DeleteMin
	Heap DeleteMin: Example
	Heap DeleteMin: Example
	Heap DeleteMin: Example
	Heap DeleteMin: Implementation
	Heap DeleteMin: Implementation
	Other Heap Operations
	Building a Heap
	BuildHeap Example
	BuildHeap Example
	BuildHeap Example
	BuildHeap Example
	BuildHeap Implementation
	BuildHeap Analysis
	Binary Heap Operations�Worst-case Analysis
	Applications
	Priority Queues: Alternatives to Binary Heaps
	Mergeable Heaps
	Leftist Heaps
	Leftist Heaps
	Leftist Heaps
	Leftist Heaps
	Leftist Heaps: Example
	Leftist Heaps: Example
	Leftist Heaps: Example
	Leftist Heaps: Example
	Skew Heaps
	Binomial Queues
	Binomial Queues
	Binomial Trees
	Binomial Trees
	Binomial Queue Operations
	Binomial Queue Operations
	Merge Example
	Binomial Queue Operations
	Binomial Queue Operations
	deleteMin Example
	Binomial Queue Implementation
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Priority Queues in STL
	Slide Number 61
	Summary

