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INTRODUCTION 

This paper discusses the design of the Department of De­
fense (DoD) Kernelized Secure Operating System (KSOS, 
formerly called Secure UNIX). ** KSOS is intended to pro­
vide a provably secure operating system for larger minicom­
puters. KSOS will provide a system call interface closely 
compatible with the UNIX operating system. The initial 
implementation of KSOS will be on a Digital Equipment 
Corporation PDP-IlnO computer system. A group from Ho­
neywell is also proceeding with an implementation for a 
modified version of the Honeywell Level 6 computer sys­
tem. 

KSOS will be capable of handling information at various 
security levels (a security level is a combination of a hier­
archically-ordered classification category, like SECRET or 
TOP SECRET, and a possibly null set of compartments, 
like "No Foreign Dissemination" or specialized need-to­
know compartments). The goal of the system is to provide 
strong assurances that it is impossible for an unprivileged 
user to cause an information compromise. 

At its outer interface, KSOS will appear to be closely 
similar to the UNIX operating system. 13 The only changes 
are to tighten the security checking on some of the operating 
system calls, and to add several new calls which individual 
UNIX sites had previously added to their systems. Existing 
applications programs written for UNIX will run without 
modification or recompilation on KSOS, providing that they 
do not violate the security rules of the system. At last count 
there were several hundred application programs for UNIX, 
ranging from simple utilities through sophisticated compi­
lers, data management systems, text processing systems, 
and powerful editors. (This paper was completely prepared 
on a UNIX system, as is all documentation for the KSOS 
project.) All of these programs should run on KSOS without 
modification. 

This UNIX-like interface is provided by a software com­
ponent called the UNIX Emulator. The UNIX Emulator 

* The work described in this paper was performed under ARPA Order 3319, 
Contract MDA903-77-C-0333 administered by the Defense Supply Service 
Washington. Various DoD Agencies are funding the work. The conclusions 
presented are those of the author and are not necessarily those of the Gov­
ernment or Ford Aerospace. 
*'" UNIX and PWBIUNIX are trademarks of the Bell System. 
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transforms the user's UNIX operating system calls into (se­
quences of) calls to the Security Kernel. The Security Ker­
nel is the heart of the system. The Kernel implements the 
reference monitor concept. I Briefly, through a combination 
of hardware and software checking, the Kernel monitors 
every access attempt by each user process. The Kernel will 
be shown to make the correct decision on whether to permit 
or deny the access attempt. 

One important distinguishing characteristic of KSOS over 
the prototypes which have preceded it 5 ,S is that it contains 
a full range of support software. Included in this "Non­
Kernel System Software" (also called Non-Kernel Security­
Related Software) are components which support the day­
to-day operational functions of the system: secure spooling 
of line printer output. portions of the interface to a packet­
switched computer network, etc. Also included are com­
ponents for the continuing maintenance of the system such 
as consistency checks of the file system, and system gen­
eration support. Finally, there are components to support 
the administration of the system, such as adding and deleting 
users, changing the security levels that a given user may 
access, and other functions. 

The schedule for KSOS calls for its delivery in the fall of 
1979 after the conclusion of a full series of testing. The 
KSOS development contract specifies that the system shall 
have a full MIL SPEC documentation package. The primary 
documents defining KSOS are detailed "design to" speci­
fications which are called" B5 Specifications. ,. 3,6,9 The Ker­
nel B5 Specifications 6 include formal, mathematical descrip­
tions of the Kernel written in a language developed by SRI 
International called SPECIAL. 15 SPECIAL is a formal, non­
procedural language for describing the behavior of systems 
in the manner suggested by Parnas. iO In addition, technicai 
reports have been delivered detailing our plans for verifi­
cation of the system' s security properties, 16 for the tools and 
techniques to be used in implementation. 4 and for the long 
term maintenance and support of the system. 7 

The remainder of this paper begins with a discussion of 
the influences on the design. As with any design project, it 
is impossible to identify ail of the factors which cause a 
given course to be taken, so only the strongest influences 
are discussed. Next the design itself is presented. Here the 
emphasis is on the more novel aspects of the design. In 
addition to the usual things expected from an operating 
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system. KSOS provides a number of features that aid in the 
creation of encapsulated secure environments. The paper 
concludes with a few remarks on how KSOS may be used 
effectively. 

INFLUENCES ON THE DESIGN 

External design goals 

The overall design goals for KSOS are: 

I. The system must provide provable security, i.e. its 
design and mechanization must be oriented towards 
the proof of its security properties. 

2. The emulation of the UN IX system call interface must 
be as faithful as possible given the constraints of the 
security model. 

3. The performance of the system should be "good," 
specifically, the performance should be comparable to 
that of a UNIX system. 

4. The Kernel should be usable by itself as a simple, 
secure operating system. 

5. The design should be amenable to implementation on 
other hardware bases. 

The need for provable security had the most profound im­
pact on the design. First, it dictated the basic structure of 
the system. A Security Kernel would function as a reference 
monitor. 1 The Kernel would mediate all access attempts in 
the system. Because the Kernel would potentially be proven 
to operate correctly. its behavior would have to be formally 
specified. Further, the size of the Kernel would have to be 
kept to a minimum to make formal specification and eventual 
verification tractable. Although only representative code 
proofs were planned, the Kernel would have to be imple­
mented in a language suitable for code proofs. 

Because the UNIX call interface had to be emulated faith­
fully and efficiently, the Kernel interface became "UNIX­
flavored." However, because non-UNIX applications of the 
Kernel were planned, there was strong pressure to keep 
UNIX-specific structures out of the Kernel. As will be seen 
below, the Kernel has no knowledge of the format, or se­
mantics of UN IX-specific constructs such as directories or 
load modules (UNIX a.out files). This knowledge is encap­
sulated outside the Kernel. 

It was recognized that a large class of KSOS applications 
would not require the flexibility and added power of the 
UNIX interface. Rather, many of them would be built di­
rectly on the Kernel. Thus, the Kernel had to provide all of 
the features commonly found in an operating system. This 
meant that the Kernel would include somewhat more func­
tionality than the absolute minimum. 

Hardware limitations 

Although KSOS was intended to be a machine-indepen­
dent design, it will be implemented on real machines with 

various hardware limitations. The PDP-IlnO has two sig­
nificant limitations. First, process switching is expensive 
because a large number of processor and memory manage­
ment registers must be individually saved and restored. 
Thus, architectures which require extensive process switch­
ing are to be avoided. 

The PDP-II!70 does not lend itself to the creation of 
virtual machine environments that include direct control of 
single user i/o devices. The problem stems from the granu­
larity, of the virtual address to real address mapping, and 
from the logical addressing of i/o registers. In KSOS on the 
PDP-II!70, all devices are managed by the Kernel: no at­
tempt is made to provide devices in the user's "virtual 
machine." 

In fairness to the PDP-II design it should be remarked 
that none of these hardware limitations are especially bur­
densome; they merely influence the design to take advantage 
of the strengths, and to avoid the weaknesses of the hard­
ware base. 

The design methodology 

The design of KSOS is strongly influenced by the design 
methodology used on the project. KSOS is being designed 
and implemented using a blend of the "classical" methods 
with the formalism of the Hierarchical Development Meth­
odology (HDM) 14 developed by SRI International. HDM 
emphasizes formalism throughout the project. The system's 
security requirements are formally stated as properties to be 
satisfied by an abstract description of the design, This design 
is described in a mathematical. non-procedural language, 
SPECIAL. 15 The secUljty properties of the design are estab­
lished by proving theorems that are derived from the design 
and the mathematical model of the security requirements. 
The implementation language is selected to allow its corre­
spondence with the specifications to be proven. All of these 
steps force the designer to be precise and exacting in the 
statement of the system design. They make "kludges" very 
obvious at an early date. The design methodology strongly 
encourages a hierarchical decomposition of the design. 

KSOS DESIGN 

KSOS is composed of three components: 

I. The Security Kernel 
2. The UNIX Emulator 
3. The Non-Kernel System Software 

The relationship of these components is shown in Figure I. 
The Security Kernel's function is to provide a simple 

operating system which can be shown to be secure. The 
Kernel centralizes the control, of all the resources in the 
system. It mediates each access attempt by a user process 
and only permits those accesses which comply with the 
access control policy. The Kernel resides in the most priv­
ileged address space of the machine (called "kernel mode" 
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USER PROGRAMS UNTRUSTED 
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KERNEL CALLS) 
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KERNEL MODE SECURITY KERNEL 

(NKSR: NON-KERNEL SECURITY RELATED SOFTWARE) 
Figure l-KSOS system structure. 

on the PDP-IlnO) where it has access to all of the raw 
hardware and memory management facilities. 

Logically, the UNIX Emulator is a part of each UNIX 
process which on the PDP-IlnO resides in the "supervisor 
mode" address space of the process. Its function is to map 
the user's UNIX system calls into the corresponding Kernel 
call(s). 

The Non-Kernel System Software is a collection of au­
tonomous processes performing support services for the sys­
tem. Like UNIX, KSOS does not have services like login 
embedded in the operating system. Rather, these services 
are performed by "trusted processes" which reside outside 
of the Kernel. Except for the fact that these processes have 
the privilege to selectively violate the rules of the Kernel, 
they are just like any other process. Because the Emulator 
is "untrusted" and is not intended to be verified, it cannot 
be used by trusted software: rather, such software must use 
the Kernel directly. 

The KSOS Security Kernel 

Viewed as an abstract machine, the Kernel's function is 
to create the objects of its interface (processes, process 
segments, files, devices, and subtypes) from the basic hard­
ware resources of the system, and to mediate all access 
attempts to these objects. 

The Kernel enforces three distinct types of access check­
ing. The first is the enforcement of 000 security policy. 
This checking is the verification of that fact that the user 
has the proper clearance and need-to-know for reading the 
information (the "simple security property"), and that in­
formation cannot be downgraded by writing it to a file at a 
lower security level (the "security *-property"). 

The second type is the enforcement of an integrity policy 
described in Reference 2. Integrity is a mechanism for pro­
tecting system data bases, programs, etc. against modifica­
tion while allowing them to be read by any process. It is 
formally defined to be the mathematical dual of the security 

model. We have found this integrity model to be overly 
restrictive, as its originator suspected. However, it does 
provide an additional, essential dimension of protection. 
Development of a more effective integrity model would seem 
to be a meaningful.research topic. 

The third type of a<;cess checking performed by the Kernel 
is discretionary access checking. Unlike the first two types 
of checking, the discretionary access checking is completely 
under the control of the user. The user may, at his discre­
tion, permit or deny access by other users to the objects he 
owns. KSOS enforces a discretionary access policy similar 
to that of UNIX. For each object there are (logically) nine 
bits that specify read, write, and execute/search access by 
the owner, others in the same group as the object, and all 
others. We recognize that this discretionary access policy 
has limitations when compared to' more sophisticated 
schemes, such as the access control lists used in Multics. 
However, it is simple, and requires a small fraction of the 
support mechanisms needed for access control lists. 

The Kernel supports five different types of objects: 

I. Processes 
2. Process segments 
3. Files 
4. Devices 
5. File SUbtypes 

All Kernel objects have the same type of name called a 
SEID (Secure Entity IDentifier). Further, every object, re­
gardless of its type, has a block of information associated 
with it that includes all the information needed by the Kernel 
to mediate access attempts to the object. This block is called 
the "type independent" information. Because objects, re­
gardless of the object type, have homogeneous type inde­
pendent information, access checking by the Kernel is 
greatly simplified. All that must be checked is that infor­
mation may flow from the source to the destination. For 
example, if a process wishes to read a file, the source is the 
file and the destination is the process. In the KSOS Kernel, 
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two functions perform all the access checking (one for se­
curity and integrity checking and one for discretionary ac­
cess checking). 

Processes 

Processes are the only active agents in the KSOS design. 
To adequately emulate UNIX, KSOS processes must be 
cheap and plentiful. For example, each UNIX command is 
run as a separate process. Processes in KSOS will require 
only modest amounts of Kernel resources. Most of the Ker­
nel data for a process will be swapped in and out with the 
process, reducing the amount of locked down Kernel mem­
ory space for the process tables. 

Processes may possess privileges ("trusted processes") 
that enable them to perform functions that require reduced 
checking by the Kernel (e.g. changing the classification of 
a file) or which may require that additional checking be 
performed in the process (e.g. logically mounting part of the 
file system). The privileges that may be given to a process 
have been designed following the concept of ' 'least privi­
lege." That is, the granularity of the privileges is quite fine, 
and quite specific. Many service processes possess only a 
single privilege, and many privileges are possessed by only 
one process. Thus, the KSOS Kernel is designed to create 
encapsulated environments for critical functions. Privileges 
are obtained from the process image file (load module) from 
which the process was initialized. Two Kernel calls, 
K.-invoke and K_spawn, are used for the controlled invo­
cation of privileged software. K~nvoke functions by re­
placing the entire process with a user-specified intermediary 
process. For the invocation of trusted software, this inter­
mediary is a trusted "bootstrap" that, in turn, replaces itself 
with the requested process image file, and sets the privileges 
of the process from the values in the image file. K_spawn 
performs the same function in a new process created as part 
of the K_spawn function. This mechanism allows knowlege 
of the format and semantics of process image files to be kept 
out of the Kernel. Thus, the bootstrap encapsulates the 
function of initiating trusted software with minimal Kernel 
support. 

In addition to the K_spawn mechanism, new processes 
may be created by the K30rk call, which is similar to the 
UNIX fork call. K30rk creates a "clone" of the caller, a 
new process that is an exact copy of the caller. The only 
difference between the two processes (parent and child) is 
the return value from the K30rk call. Such a mechanism is 
required for the accurate emulation of the UNIX fork call. 

Processes normally run at a single security level. The only 
exception to this is the part of the Non-Kernel System Soft­
ware that changes the user's working security level. For 
inherently multi-level applications, the preferred design 
would be to create a trusted multiplex/demultiplex ("mux/ 
demux") process which directs commands and i/o to pro­
cesses running at each level needed. This would be prefer­
able to having these per-level functions performed within 
one process which changes its level because such a process 

would be larger and more complicated than the mux/demux 
process. Verification of the correctness of a process be­
comes significantly more difficult as the process size and 
complexity increase. One example of this preferred archi­
tecture is the KSOS network interface. A small trusted proc­
ess separates the multi-level data stream from the network 
into several streams. Each stream has data of only one 
security level in it. The mono-level streams from the pro­
cesses are similarly combined by the trusted process into a 
single, multi-level stream. 

Standard UNIX is acknowledged to be deficient in the 
area of Inter-Process Communication (lPC). KSOS provides 
significant improvements in this area. The Kernel supports 
both an event IPC mechanism and shared segments. The 
event mechanism allows one process to send a message to 
another process, and (optionally) to cause the receiving 
process to be interrupted analogously to receiving a hard­
ware interrupt. The full set to security checks is performed 
for each IPC attempt. That is, information must be able to 
flow from the sender to the recipient, and the recipient must 
have permitted such information flow. Finally, a process 
may enable and disable the pseudo interrupt mechanism, so 
that it will not be interrupted during some critical operation. 
(Shared segment IPC is discussed below.) 

Process segments 

A process segment is a portion of the virtual address space 
of a process. The process segment is not tied to the native 
memory management hardware of a particular machine. The 
KSOS process segment may be of any size from a hardware­
limited lower bound up to the entire virtual address space 
of a process. A process may have only some of its segments 
actually mapped into its address space. At its creation the 
segment may be declared to be sharable, in which case other 
processes can "rendezvous" with it and map it into their 
address spaces. This allows for very high bandwidth com­
munication between the processes. Naturally, they must 
establish a protocol that guarantees that the segment will 
not be corrupted through un sequenced use. The process 
may elect to have only some of its segments actually mapped 
into its address space. In particular, several segments for 
the same part of the address space could exist. This mech­
anism is used by the trusted mux/demux processes discussed 
above. The data segments are shared between the trusted 
mux/demux and the processes servicing each logical stream. 
The mux/demux maps in a particular segment to a well 
known location and puts/extracts the data for that stream 
int%ut of the segment. 

One other use for shared segments is shared text (pro­
gram) segments. It is possible to have a pure text segment 
shared between mUltiple processes, thus reducing the overall 
memory requirements for the system. KSOS allows a seg­
ment to be locked in memory, or to be retained in the swap 
area for faster accessing. The designer of the KSOS-based 
system is offered considerable latitude in trading space for 
time. 
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Files and devices 

The Kernel file structure is flat and uniform. That is, there 
are no Kernel assumptions about the internal structure or 
contents of files. Directories and other higher-level con­
structs are mechanized outside the Kernel. The UNIX Em­
ulator creates UNIX-like directories by interpreting the con­
tents of Kernel files. This allows a designer working directly 
with the Kernel to create a different type of directory struc­
ture if desired. Kernel files are accessed by blocks. There 
is no Kernel buffering of file i/o. Ratp.er, the i/o is done 
directly into the requesting user's address space. Kernel i/o 
is asynchronous, that is, the call returns to the user as soon 
as the i/o has been internally queued. An IPC message is 
sent to the user upon i/o completion. (The inclusion of asyn­
chronous i/o is a relatively late addition to the KSOS design.) 

Kernel devices are like a special type of file, as in UNIX. 
Terminals have only the lowest level echoing support in the 
Kernel. Higher level functions like erase/kill processing are 
done outside the Kernel. 

KSOS supports removable file volumes. The mechanism 
is similar to the UNIX mount mechanism with some signif­
icant additions for protection. Because of the possibility for 
removing a volume, files are limited in size to one volume. 
Presently the design allows for support of at least 300 Mbyte 
disks, with extensibility to 600 and 1200 Mbyte disks pos­
sible. These large disks may be partitioned into one or more 
extents, referred to as "mini-disks" which may be inde­
pendently utilized as virtual disks. 

Subtypes 

The KSOS subtype mechanism is one of its more novel 
features. The subtype mechanism is designed to allow the 
selective encapsulation of a class of files. Each file is a 
member of a subtype class. For example, "normal" files are 
in the null SUbtype class. Files which are UNIX directories 
are the "UNIX directory" SUbtype class. The accesses to 
files in a given SUbtype class may be restricted. The subtype 
restriction on UNIX directories is that anyone may read a 
directory, but only a process whose effective user ID is the 
Directory Manager may write them. These subtype restric­
tions are in addition to the other types of access checking 
(security. integrity and discretionary). The access restric­
tions for a given SUbtype apply to all files of that subtype. 

There are many other possibilities for using subtypes. For 
example, they could allow "peaceful coexistence" of two 
separate directory structures as might occur if there were 
two different Emulators, say one for UNIX and one for 
another operating system. SUbtypes could also be used to 
control what could be done to files that mechanized the 
internal structure of a data base management system. Only 
processes that were known to correctly manipulate the 
structure would be allowed to change it. The subtype mech­
anism provides the KSOS Kernel with a significant type 
extension feature in that it lets the Kernel support encap-
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sulation and control of objects without having the Kernel be 
cog"nizant of the syntax and semantics of the object. 

Secure terminal interface 

In the secure system it is necessary to have an "unspoof­
able" path to trusted services. ("Spoofing" occurs when an 
unprivileged user process pretends to be a privileged proc­
ess. For example, a nefarious user starts a process that 
imitates the login sequence, and waits for an unsuspecting 
victim to type in his password.) In KSOS each terminal is 
(logically) two devices, the normal terminal device and the 
secure device. Only privileged Non-Kernel System Software 
is able to use the secure device. When the user types a 
reserved attention character (currently BREAK), the normal 
path is blocked, and the character stream is switched to the 
secure path. Li~tening on the secure path is a service process 
which will cause the desired secure service to be performed. 
Because the normal path is blocked, rather than killing off 
any process using it, it is possible for the user to start doing 
something, temporarily abandon it while requesting some 
secure service, and resume the activity after the secure 
service is completed. This is the mechanism by which the 
user is able to change his working security level. The Secure 
Terminal Interface is illustrated in Figure 2. 

Auditing 

DoD security policy requires that certain security-related 
events be captured for auditing purposes. In KSOS this 
occurs in two ways, as shown in Figure 3. In the first case, 
the Kernel captures the events it knows about and generates 
an IPC message to the Audit Capture process. The second 
mechanism is that the Non-Kernel System Software cap­
tures the event. This second case is necessary because the 
Kernel cannot tell that certain significant events, like a user 
login, have occurred. The Audit Capture process does only 
a minimal amount of processing and then simply places the 
event record into an audit log. Although it is not within the 
scope of the current KSOS contract, this audit log could be 
processed to look for suspicious (sequences of) events. 

The UNIX EmuLator 

The UNIX Emulator is almost compieteiy definedby its 
two interfaces. It must transform the system calls of the 
UNIX interface into sequences of Kernel calls. In the design 
of KSOS a serious attempt was made to get a good "imped­
ance match" between the Emulator and the Kernel, while 
not having the Kernel be strongly UNIX-dependent. 

Our view of the Emulator has evolved significantly. Ini­
tially, the Emulator was viewed as not much more than a 

. set of subroutines that resided in a different address space. 
The functions performed by the Emulator were isolated to 
one process, except for the obvious cases of interaction with 
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other processes via the UNIX pipe mechanism and the 
"ptrace" system call. 

While this view simplifies the Emulator, it is incorrect. At 
the UNIX interface, a process is indirectly aware of the 
presence of other members of its' 'process family" (a proc­
ess family consists of all the processes that are descendents 
of the process started at login for a given user). In particular, 
things "like the seek pointers to open files are shared among 
the members of a process family. Our view of the Emulator 
now is that it provides an operating system for the process 
family. The Emulator not only creates the UNIX-level ob­
jects from the Kernel-level objects but also provides for 
controlled sharing of these UNIX-level objects. 

It should be remarked that the UNIX interface is perhaps 
not as "clean" as one would like. There are several subtle 
ways in which a great deal of the internal mechanization of 
the system is manifest at the interface. It is debatable 
whether these things are "bugs" or are "features!" 

UNIX directory management 

One of the major functions of the Emulator is the creation 
of the UNIX file system from the more primitive file system 
provided by the Kernel. The Emulator caches the block i/o 
supported by the Kernel to provide the byte stream i/o 
supported by the UNIX interface. The Emulator also is 
where UNIX directories are managed. The final design of 
the UNIX directory management function is the result of a 
long series of (occasionally heated) debates on where direc­
tories would be mechanized. Initially they were to be com­
pletely managed by the Emulator. However, this was prior 
to the birth of the subtype notion, and there was no way to 
guarantee the integrity of the direciory siruciure. In partic­
ular, trusted software could not depend upon the directory 
structure. Then it was proposed to move part or all of the 
directory management function into the Kernel. This seemed 
to solve the integrity problem, but opened a new and more 
serious problem of making the Kernel cognizant of the struc­
ture and semantics of directory files, and thereby making 
the Kernel very UNIX-specific. Finally, the subtype idea 
was proposed. The Kernel would know that directories were 
"special:' and would aid in the preservation of their integ­
rity. However, the Kernel would not be aware of the internal 
structure or semantics of directories. 

The current design has the Emulator performing all the 
directory interpretation functions (i.e. recursively searching 
for names in directories), but writing directories is only done 
by the Directory Manager. The Directory Manager is a pro­
gram that is K_spawned into execution whenever an Emu­
lator needs to modify a directory. It starts its life running as 
the user "dir_mgr" who owns the directory subtype. After 
getting permission for write access to directory sUbtyped 
objects, the Directory Manager reverts its identity to that of 
the requesting user. From there on, the Kernel will enforce 
security, integrity and discretionary access checking. Thus, 
the user cannot trick the Directory Manager into modifying 
a directory that the user cannot access. This architecture 
may be criticized as being too slow, since creating a new 
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process via K_spawn is moderately time-consuming. How­
ever, measurements on one of our UNIX systems in a soft­
ware development environment suggest that modification of 
directories is a fairly infrequent occurrence. 

Computer network support 

The Emulator contains the bulk of the support for the 
computer network interface. Initially, KSOS will "speak" 
Version 4 of the Transmission Control Protocol (TCP)12 in­
cluding the Internet Datagram Layer. 11 This protocol ap­
pears to be on its way to becoming a future standard within 
DoD. 

Although no networks presently exist that can handle 
mUltiple security levels, this architecture envisages their 
development and is designed to support them. To support 
a multi-level network, the Network Daemon would be 
trusted, so it could handle the multi-level stream to/from the 
network. The remainder of the TCP functions performed by 
the Emulator would be untrusted, since they are at only one 
level. 

The basic structure of the KSOS network interface was 
discussed above, and is illustrated in Figure 4. There is a 
Network Daemon which handles the Internet Datagram pro­
tocol, and enough of the TCP to separate the i/o stream from 
the network into separate streams for each connection. In 
each Emulator is the majority of the TCP functionality. All 
of the functions relating to sequence number maintenance, 
window maintenance, acknowledgment, and retransmission 
are in the Emulator. This is possible because these are per 
connection functions, and need not be globally managed. 
These two portions of the TCP function communicate using 
the Kernei-supported IPe mechanisms. The shared segment 
mechanism is used for bulk data passing, and the event 
mechanism is used for synchronization, and for "com­
mands" to the TCP Daemon and responses from it. 

The non-Kernel system sojhvare 

The purpose of this component of the KSOS system is to 
provide the software tools to support a KSOS system. The 
Non-Kernel System Software is divided into four groups: 

1. Secure User Services-Software that manipulates the 
security levels of users and files. Also included in this 
class are all functions that require a secure ("unspoof­
able") path to the service. 

2. System Operation Serdces-Software that performs 
continuing services for the system, such as the Net­
work Daemon, line printer spooling and interuser mail. 

3. System Maintenance Services-Software that per­
forms occasional services primarily in the area of 
checking and repairing the consistency of the file sys­
tem. Also included are the system generation func­
tions. Individual KSOS sites can generate their system 
to suit the hardware configuration available. 

4. System Administratil'e Senices-Software that aids 
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Figure 4-Network interface structure. 

the System Administrator in controlling the sytem. Our 
goal has been that the System Administrator need not 
be a computer expert to perform his functions. 

The Non-Kernel System Software described is a minimally 
complete set. Clearly there are large numbers of additional 
utilities that would be desirable. It is expected that this class 
will be supplemented extensively as KSOS matures. 

KSOS APPLICATION CONSIDERATIONS 

There are two broad classes of KSOS applications, each 
with different considerations. The first is applications that 
utilize the full KSOS system, i.e., applications based upon 
UNIX. KSOS should appear to these applications to be only 
slightly different than a standard UNIX operating system. 
Because KSOS provides a UNIX-like interface, meaningful 
secure applications can be built using the existing software. 
UNIX is one of the best systems in existence for the creation 
of new products by novel combinations of existing packages, 
and KSOS will preserve this flexibility. Such applications 
can, however, be made easier in some cases via the direct 
use of KSOS Kernel calls. 

The second class of applications is those which use the 
Kernel directly without an Emulator. The Kernel provides 
many features that make it an attractive operating system in 
its own right. It otTers excellent i/o performance, a range of 
I PC options, and many features that ease the design of multi­
level applications. Because the Kernel is "UNIX-flavored" 
without being heavily UNIX-dependent, it is possible to 
create application environments that are an amalgamation 
of the features provided by different operating systems. 

KSOS facilitates the creation of encapsulated environ­
ments that can be used for a variety of purposes. This 

encapsulation allows objects to be manipulated only by soft­
ware known to perform correctly. In many cases only a 
small part of a multi-level application actually deals with 
data at different security levels. By encapSUlation of these 
functions in a small trusted process, it is possible to build 
multi-level applications that minimize the amount of trusted 
(and therefore expensive) code. 
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