
KSOS-The design of a secure operating system*

by E, J, McCAULEY and p, J, DRONGOWSKI
Ford Aerospace and Communications Corporation
Palo Alto, California

INTRODUCTION

This paper discusses the design of the Department of De­
fense (DoD) Kernelized Secure Operating System (KSOS,
formerly called Secure UNIX). ** KSOS is intended to pro­
vide a provably secure operating system for larger minicom­
puters. KSOS will provide a system call interface closely
compatible with the UNIX operating system. The initial
implementation of KSOS will be on a Digital Equipment
Corporation PDP-IlnO computer system. A group from Ho­
neywell is also proceeding with an implementation for a
modified version of the Honeywell Level 6 computer sys­
tem.

KSOS will be capable of handling information at various
security levels (a security level is a combination of a hier­
archically-ordered classification category, like SECRET or
TOP SECRET, and a possibly null set of compartments,
like "No Foreign Dissemination" or specialized need-to­
know compartments). The goal of the system is to provide
strong assurances that it is impossible for an unprivileged
user to cause an information compromise.

At its outer interface, KSOS will appear to be closely
similar to the UNIX operating system. 13 The only changes
are to tighten the security checking on some of the operating
system calls, and to add several new calls which individual
UNIX sites had previously added to their systems. Existing
applications programs written for UNIX will run without
modification or recompilation on KSOS, providing that they
do not violate the security rules of the system. At last count
there were several hundred application programs for UNIX,
ranging from simple utilities through sophisticated compi­
lers, data management systems, text processing systems,
and powerful editors. (This paper was completely prepared
on a UNIX system, as is all documentation for the KSOS
project.) All of these programs should run on KSOS without
modification.

This UNIX-like interface is provided by a software com­
ponent called the UNIX Emulator. The UNIX Emulator

* The work described in this paper was performed under ARPA Order 3319,
Contract MDA903-77-C-0333 administered by the Defense Supply Service
Washington. Various DoD Agencies are funding the work. The conclusions
presented are those of the author and are not necessarily those of the Gov­
ernment or Ford Aerospace.
*'" UNIX and PWBIUNIX are trademarks of the Bell System.

345

transforms the user's UNIX operating system calls into (se­
quences of) calls to the Security Kernel. The Security Ker­
nel is the heart of the system. The Kernel implements the
reference monitor concept. I Briefly, through a combination
of hardware and software checking, the Kernel monitors
every access attempt by each user process. The Kernel will
be shown to make the correct decision on whether to permit
or deny the access attempt.

One important distinguishing characteristic of KSOS over
the prototypes which have preceded it 5 ,S is that it contains
a full range of support software. Included in this "Non­
Kernel System Software" (also called Non-Kernel Security­
Related Software) are components which support the day­
to-day operational functions of the system: secure spooling
of line printer output. portions of the interface to a packet­
switched computer network, etc. Also included are com­
ponents for the continuing maintenance of the system such
as consistency checks of the file system, and system gen­
eration support. Finally, there are components to support
the administration of the system, such as adding and deleting
users, changing the security levels that a given user may
access, and other functions.

The schedule for KSOS calls for its delivery in the fall of
1979 after the conclusion of a full series of testing. The
KSOS development contract specifies that the system shall
have a full MIL SPEC documentation package. The primary
documents defining KSOS are detailed "design to" speci­
fications which are called" B5 Specifications. ,. 3,6,9 The Ker­
nel B5 Specifications 6 include formal, mathematical descrip­
tions of the Kernel written in a language developed by SRI
International called SPECIAL. 15 SPECIAL is a formal, non­
procedural language for describing the behavior of systems
in the manner suggested by Parnas. iO In addition, technicai
reports have been delivered detailing our plans for verifi­
cation of the system' s security properties, 16 for the tools and
techniques to be used in implementation. 4 and for the long
term maintenance and support of the system. 7

The remainder of this paper begins with a discussion of
the influences on the design. As with any design project, it
is impossible to identify ail of the factors which cause a
given course to be taken, so only the strongest influences
are discussed. Next the design itself is presented. Here the
emphasis is on the more novel aspects of the design. In
addition to the usual things expected from an operating

From the collection of the Computer History Museum (www.computerhistory.org)

346 National Computer Conference, 1979

system. KSOS provides a number of features that aid in the
creation of encapsulated secure environments. The paper
concludes with a few remarks on how KSOS may be used
effectively.

INFLUENCES ON THE DESIGN

External design goals

The overall design goals for KSOS are:

I. The system must provide provable security, i.e. its
design and mechanization must be oriented towards
the proof of its security properties.

2. The emulation of the UN IX system call interface must
be as faithful as possible given the constraints of the
security model.

3. The performance of the system should be "good,"
specifically, the performance should be comparable to
that of a UNIX system.

4. The Kernel should be usable by itself as a simple,
secure operating system.

5. The design should be amenable to implementation on
other hardware bases.

The need for provable security had the most profound im­
pact on the design. First, it dictated the basic structure of
the system. A Security Kernel would function as a reference
monitor. 1 The Kernel would mediate all access attempts in
the system. Because the Kernel would potentially be proven
to operate correctly. its behavior would have to be formally
specified. Further, the size of the Kernel would have to be
kept to a minimum to make formal specification and eventual
verification tractable. Although only representative code
proofs were planned, the Kernel would have to be imple­
mented in a language suitable for code proofs.

Because the UNIX call interface had to be emulated faith­
fully and efficiently, the Kernel interface became "UNIX­
flavored." However, because non-UNIX applications of the
Kernel were planned, there was strong pressure to keep
UNIX-specific structures out of the Kernel. As will be seen
below, the Kernel has no knowledge of the format, or se­
mantics of UN IX-specific constructs such as directories or
load modules (UNIX a.out files). This knowledge is encap­
sulated outside the Kernel.

It was recognized that a large class of KSOS applications
would not require the flexibility and added power of the
UNIX interface. Rather, many of them would be built di­
rectly on the Kernel. Thus, the Kernel had to provide all of
the features commonly found in an operating system. This
meant that the Kernel would include somewhat more func­
tionality than the absolute minimum.

Hardware limitations

Although KSOS was intended to be a machine-indepen­
dent design, it will be implemented on real machines with

various hardware limitations. The PDP-IlnO has two sig­
nificant limitations. First, process switching is expensive
because a large number of processor and memory manage­
ment registers must be individually saved and restored.
Thus, architectures which require extensive process switch­
ing are to be avoided.

The PDP-II!70 does not lend itself to the creation of
virtual machine environments that include direct control of
single user i/o devices. The problem stems from the granu­
larity, of the virtual address to real address mapping, and
from the logical addressing of i/o registers. In KSOS on the
PDP-II!70, all devices are managed by the Kernel: no at­
tempt is made to provide devices in the user's "virtual
machine."

In fairness to the PDP-II design it should be remarked
that none of these hardware limitations are especially bur­
densome; they merely influence the design to take advantage
of the strengths, and to avoid the weaknesses of the hard­
ware base.

The design methodology

The design of KSOS is strongly influenced by the design
methodology used on the project. KSOS is being designed
and implemented using a blend of the "classical" methods
with the formalism of the Hierarchical Development Meth­
odology (HDM) 14 developed by SRI International. HDM
emphasizes formalism throughout the project. The system's
security requirements are formally stated as properties to be
satisfied by an abstract description of the design, This design
is described in a mathematical. non-procedural language,
SPECIAL. 15 The secUljty properties of the design are estab­
lished by proving theorems that are derived from the design
and the mathematical model of the security requirements.
The implementation language is selected to allow its corre­
spondence with the specifications to be proven. All of these
steps force the designer to be precise and exacting in the
statement of the system design. They make "kludges" very
obvious at an early date. The design methodology strongly
encourages a hierarchical decomposition of the design.

KSOS DESIGN

KSOS is composed of three components:

I. The Security Kernel
2. The UNIX Emulator
3. The Non-Kernel System Software

The relationship of these components is shown in Figure I.
The Security Kernel's function is to provide a simple

operating system which can be shown to be secure. The
Kernel centralizes the control, of all the resources in the
system. It mediates each access attempt by a user process
and only permits those accesses which comply with the
access control policy. The Kernel resides in the most priv­
ileged address space of the machine (called "kernel mode"

From the collection of the Computer History Museum (www.computerhistory.org)

KSOS-The Design of a Secure Operating System 347

USER PROGRAMS UNTRUSTED
USER MODE (MA Y INCLUDE NKSR

KERNEL CALLS)

SUPERVISOR
MODE

UNIX EMULATOR TRUSTED NKSR

KERNEL MODE SECURITY KERNEL

(NKSR: NON-KERNEL SECURITY RELATED SOFTWARE)
Figure l-KSOS system structure.

on the PDP-IlnO) where it has access to all of the raw
hardware and memory management facilities.

Logically, the UNIX Emulator is a part of each UNIX
process which on the PDP-IlnO resides in the "supervisor
mode" address space of the process. Its function is to map
the user's UNIX system calls into the corresponding Kernel
call(s).

The Non-Kernel System Software is a collection of au­
tonomous processes performing support services for the sys­
tem. Like UNIX, KSOS does not have services like login
embedded in the operating system. Rather, these services
are performed by "trusted processes" which reside outside
of the Kernel. Except for the fact that these processes have
the privilege to selectively violate the rules of the Kernel,
they are just like any other process. Because the Emulator
is "untrusted" and is not intended to be verified, it cannot
be used by trusted software: rather, such software must use
the Kernel directly.

The KSOS Security Kernel

Viewed as an abstract machine, the Kernel's function is
to create the objects of its interface (processes, process
segments, files, devices, and subtypes) from the basic hard­
ware resources of the system, and to mediate all access
attempts to these objects.

The Kernel enforces three distinct types of access check­
ing. The first is the enforcement of 000 security policy.
This checking is the verification of that fact that the user
has the proper clearance and need-to-know for reading the
information (the "simple security property"), and that in­
formation cannot be downgraded by writing it to a file at a
lower security level (the "security *-property").

The second type is the enforcement of an integrity policy
described in Reference 2. Integrity is a mechanism for pro­
tecting system data bases, programs, etc. against modifica­
tion while allowing them to be read by any process. It is
formally defined to be the mathematical dual of the security

model. We have found this integrity model to be overly
restrictive, as its originator suspected. However, it does
provide an additional, essential dimension of protection.
Development of a more effective integrity model would seem
to be a meaningful.research topic.

The third type of a<;cess checking performed by the Kernel
is discretionary access checking. Unlike the first two types
of checking, the discretionary access checking is completely
under the control of the user. The user may, at his discre­
tion, permit or deny access by other users to the objects he
owns. KSOS enforces a discretionary access policy similar
to that of UNIX. For each object there are (logically) nine
bits that specify read, write, and execute/search access by
the owner, others in the same group as the object, and all
others. We recognize that this discretionary access policy
has limitations when compared to' more sophisticated
schemes, such as the access control lists used in Multics.
However, it is simple, and requires a small fraction of the
support mechanisms needed for access control lists.

The Kernel supports five different types of objects:

I. Processes
2. Process segments
3. Files
4. Devices
5. File SUbtypes

All Kernel objects have the same type of name called a
SEID (Secure Entity IDentifier). Further, every object, re­
gardless of its type, has a block of information associated
with it that includes all the information needed by the Kernel
to mediate access attempts to the object. This block is called
the "type independent" information. Because objects, re­
gardless of the object type, have homogeneous type inde­
pendent information, access checking by the Kernel is
greatly simplified. All that must be checked is that infor­
mation may flow from the source to the destination. For
example, if a process wishes to read a file, the source is the
file and the destination is the process. In the KSOS Kernel,

From the collection of the Computer History Museum (www.computerhistory.org)

348 National Computer Conference, 1979

two functions perform all the access checking (one for se­
curity and integrity checking and one for discretionary ac­
cess checking).

Processes

Processes are the only active agents in the KSOS design.
To adequately emulate UNIX, KSOS processes must be
cheap and plentiful. For example, each UNIX command is
run as a separate process. Processes in KSOS will require
only modest amounts of Kernel resources. Most of the Ker­
nel data for a process will be swapped in and out with the
process, reducing the amount of locked down Kernel mem­
ory space for the process tables.

Processes may possess privileges ("trusted processes")
that enable them to perform functions that require reduced
checking by the Kernel (e.g. changing the classification of
a file) or which may require that additional checking be
performed in the process (e.g. logically mounting part of the
file system). The privileges that may be given to a process
have been designed following the concept of ' 'least privi­
lege." That is, the granularity of the privileges is quite fine,
and quite specific. Many service processes possess only a
single privilege, and many privileges are possessed by only
one process. Thus, the KSOS Kernel is designed to create
encapsulated environments for critical functions. Privileges
are obtained from the process image file (load module) from
which the process was initialized. Two Kernel calls,
K.-invoke and K_spawn, are used for the controlled invo­
cation of privileged software. K~nvoke functions by re­
placing the entire process with a user-specified intermediary
process. For the invocation of trusted software, this inter­
mediary is a trusted "bootstrap" that, in turn, replaces itself
with the requested process image file, and sets the privileges
of the process from the values in the image file. K_spawn
performs the same function in a new process created as part
of the K_spawn function. This mechanism allows knowlege
of the format and semantics of process image files to be kept
out of the Kernel. Thus, the bootstrap encapsulates the
function of initiating trusted software with minimal Kernel
support.

In addition to the K_spawn mechanism, new processes
may be created by the K30rk call, which is similar to the
UNIX fork call. K30rk creates a "clone" of the caller, a
new process that is an exact copy of the caller. The only
difference between the two processes (parent and child) is
the return value from the K30rk call. Such a mechanism is
required for the accurate emulation of the UNIX fork call.

Processes normally run at a single security level. The only
exception to this is the part of the Non-Kernel System Soft­
ware that changes the user's working security level. For
inherently multi-level applications, the preferred design
would be to create a trusted multiplex/demultiplex ("mux/
demux") process which directs commands and i/o to pro­
cesses running at each level needed. This would be prefer­
able to having these per-level functions performed within
one process which changes its level because such a process

would be larger and more complicated than the mux/demux
process. Verification of the correctness of a process be­
comes significantly more difficult as the process size and
complexity increase. One example of this preferred archi­
tecture is the KSOS network interface. A small trusted proc­
ess separates the multi-level data stream from the network
into several streams. Each stream has data of only one
security level in it. The mono-level streams from the pro­
cesses are similarly combined by the trusted process into a
single, multi-level stream.

Standard UNIX is acknowledged to be deficient in the
area of Inter-Process Communication (lPC). KSOS provides
significant improvements in this area. The Kernel supports
both an event IPC mechanism and shared segments. The
event mechanism allows one process to send a message to
another process, and (optionally) to cause the receiving
process to be interrupted analogously to receiving a hard­
ware interrupt. The full set to security checks is performed
for each IPC attempt. That is, information must be able to
flow from the sender to the recipient, and the recipient must
have permitted such information flow. Finally, a process
may enable and disable the pseudo interrupt mechanism, so
that it will not be interrupted during some critical operation.
(Shared segment IPC is discussed below.)

Process segments

A process segment is a portion of the virtual address space
of a process. The process segment is not tied to the native
memory management hardware of a particular machine. The
KSOS process segment may be of any size from a hardware­
limited lower bound up to the entire virtual address space
of a process. A process may have only some of its segments
actually mapped into its address space. At its creation the
segment may be declared to be sharable, in which case other
processes can "rendezvous" with it and map it into their
address spaces. This allows for very high bandwidth com­
munication between the processes. Naturally, they must
establish a protocol that guarantees that the segment will
not be corrupted through un sequenced use. The process
may elect to have only some of its segments actually mapped
into its address space. In particular, several segments for
the same part of the address space could exist. This mech­
anism is used by the trusted mux/demux processes discussed
above. The data segments are shared between the trusted
mux/demux and the processes servicing each logical stream.
The mux/demux maps in a particular segment to a well
known location and puts/extracts the data for that stream
int%ut of the segment.

One other use for shared segments is shared text (pro­
gram) segments. It is possible to have a pure text segment
shared between mUltiple processes, thus reducing the overall
memory requirements for the system. KSOS allows a seg­
ment to be locked in memory, or to be retained in the swap
area for faster accessing. The designer of the KSOS-based
system is offered considerable latitude in trading space for
time.

From the collection of the Computer History Museum (www.computerhistory.org)

Files and devices

The Kernel file structure is flat and uniform. That is, there
are no Kernel assumptions about the internal structure or
contents of files. Directories and other higher-level con­
structs are mechanized outside the Kernel. The UNIX Em­
ulator creates UNIX-like directories by interpreting the con­
tents of Kernel files. This allows a designer working directly
with the Kernel to create a different type of directory struc­
ture if desired. Kernel files are accessed by blocks. There
is no Kernel buffering of file i/o. Ratp.er, the i/o is done
directly into the requesting user's address space. Kernel i/o
is asynchronous, that is, the call returns to the user as soon
as the i/o has been internally queued. An IPC message is
sent to the user upon i/o completion. (The inclusion of asyn­
chronous i/o is a relatively late addition to the KSOS design.)

Kernel devices are like a special type of file, as in UNIX.
Terminals have only the lowest level echoing support in the
Kernel. Higher level functions like erase/kill processing are
done outside the Kernel.

KSOS supports removable file volumes. The mechanism
is similar to the UNIX mount mechanism with some signif­
icant additions for protection. Because of the possibility for
removing a volume, files are limited in size to one volume.
Presently the design allows for support of at least 300 Mbyte
disks, with extensibility to 600 and 1200 Mbyte disks pos­
sible. These large disks may be partitioned into one or more
extents, referred to as "mini-disks" which may be inde­
pendently utilized as virtual disks.

Subtypes

The KSOS subtype mechanism is one of its more novel
features. The subtype mechanism is designed to allow the
selective encapsulation of a class of files. Each file is a
member of a subtype class. For example, "normal" files are
in the null SUbtype class. Files which are UNIX directories
are the "UNIX directory" SUbtype class. The accesses to
files in a given SUbtype class may be restricted. The subtype
restriction on UNIX directories is that anyone may read a
directory, but only a process whose effective user ID is the
Directory Manager may write them. These subtype restric­
tions are in addition to the other types of access checking
(security. integrity and discretionary). The access restric­
tions for a given SUbtype apply to all files of that subtype.

There are many other possibilities for using subtypes. For
example, they could allow "peaceful coexistence" of two
separate directory structures as might occur if there were
two different Emulators, say one for UNIX and one for
another operating system. SUbtypes could also be used to
control what could be done to files that mechanized the
internal structure of a data base management system. Only
processes that were known to correctly manipulate the
structure would be allowed to change it. The subtype mech­
anism provides the KSOS Kernel with a significant type
extension feature in that it lets the Kernel support encap-

KSOS-The Design of a Secure Operating System 349

sulation and control of objects without having the Kernel be
cog"nizant of the syntax and semantics of the object.

Secure terminal interface

In the secure system it is necessary to have an "unspoof­
able" path to trusted services. ("Spoofing" occurs when an
unprivileged user process pretends to be a privileged proc­
ess. For example, a nefarious user starts a process that
imitates the login sequence, and waits for an unsuspecting
victim to type in his password.) In KSOS each terminal is
(logically) two devices, the normal terminal device and the
secure device. Only privileged Non-Kernel System Software
is able to use the secure device. When the user types a
reserved attention character (currently BREAK), the normal
path is blocked, and the character stream is switched to the
secure path. Li~tening on the secure path is a service process
which will cause the desired secure service to be performed.
Because the normal path is blocked, rather than killing off
any process using it, it is possible for the user to start doing
something, temporarily abandon it while requesting some
secure service, and resume the activity after the secure
service is completed. This is the mechanism by which the
user is able to change his working security level. The Secure
Terminal Interface is illustrated in Figure 2.

Auditing

DoD security policy requires that certain security-related
events be captured for auditing purposes. In KSOS this
occurs in two ways, as shown in Figure 3. In the first case,
the Kernel captures the events it knows about and generates
an IPC message to the Audit Capture process. The second
mechanism is that the Non-Kernel System Software cap­
tures the event. This second case is necessary because the
Kernel cannot tell that certain significant events, like a user
login, have occurred. The Audit Capture process does only
a minimal amount of processing and then simply places the
event record into an audit log. Although it is not within the
scope of the current KSOS contract, this audit log could be
processed to look for suspicious (sequences of) events.

The UNIX EmuLator

The UNIX Emulator is almost compieteiy definedby its
two interfaces. It must transform the system calls of the
UNIX interface into sequences of Kernel calls. In the design
of KSOS a serious attempt was made to get a good "imped­
ance match" between the Emulator and the Kernel, while
not having the Kernel be strongly UNIX-dependent.

Our view of the Emulator has evolved significantly. Ini­
tially, the Emulator was viewed as not much more than a

. set of subroutines that resided in a different address space.
The functions performed by the Emulator were isolated to
one process, except for the obvious cases of interaction with

From the collection of the Computer History Museum (www.computerhistory.org)

350 National Computer Conference, 1979

USER

USER
PROCESS
AT LEVEL Y

USER PROCESS
AT LEVEL X

-- --- -- -- -- ---- -- -- -- -- -- -- 4---

SUPERVISOR

Kernel

SECURE K-SPAWN
INITIATOR

IPC

SECURE
SERVER

FROZEN PATH

KERNEL

Figure 2-Secure terminal interface.

AUDIT CAPTURE
PROCESS

OTHER TRUSTED
PROCESSES

Figure 3-Audit information flow.

K-SPAWN

EMULATOR AT
LEVEL Y

EMULATOR
AT LEVEL X

NORMAL PATH

From the collection of the Computer History Museum (www.computerhistory.org)

other processes via the UNIX pipe mechanism and the
"ptrace" system call.

While this view simplifies the Emulator, it is incorrect. At
the UNIX interface, a process is indirectly aware of the
presence of other members of its' 'process family" (a proc­
ess family consists of all the processes that are descendents
of the process started at login for a given user). In particular,
things "like the seek pointers to open files are shared among
the members of a process family. Our view of the Emulator
now is that it provides an operating system for the process
family. The Emulator not only creates the UNIX-level ob­
jects from the Kernel-level objects but also provides for
controlled sharing of these UNIX-level objects.

It should be remarked that the UNIX interface is perhaps
not as "clean" as one would like. There are several subtle
ways in which a great deal of the internal mechanization of
the system is manifest at the interface. It is debatable
whether these things are "bugs" or are "features!"

UNIX directory management

One of the major functions of the Emulator is the creation
of the UNIX file system from the more primitive file system
provided by the Kernel. The Emulator caches the block i/o
supported by the Kernel to provide the byte stream i/o
supported by the UNIX interface. The Emulator also is
where UNIX directories are managed. The final design of
the UNIX directory management function is the result of a
long series of (occasionally heated) debates on where direc­
tories would be mechanized. Initially they were to be com­
pletely managed by the Emulator. However, this was prior
to the birth of the subtype notion, and there was no way to
guarantee the integrity of the direciory siruciure. In partic­
ular, trusted software could not depend upon the directory
structure. Then it was proposed to move part or all of the
directory management function into the Kernel. This seemed
to solve the integrity problem, but opened a new and more
serious problem of making the Kernel cognizant of the struc­
ture and semantics of directory files, and thereby making
the Kernel very UNIX-specific. Finally, the subtype idea
was proposed. The Kernel would know that directories were
"special:' and would aid in the preservation of their integ­
rity. However, the Kernel would not be aware of the internal
structure or semantics of directories.

The current design has the Emulator performing all the
directory interpretation functions (i.e. recursively searching
for names in directories), but writing directories is only done
by the Directory Manager. The Directory Manager is a pro­
gram that is K_spawned into execution whenever an Emu­
lator needs to modify a directory. It starts its life running as
the user "dir_mgr" who owns the directory subtype. After
getting permission for write access to directory sUbtyped
objects, the Directory Manager reverts its identity to that of
the requesting user. From there on, the Kernel will enforce
security, integrity and discretionary access checking. Thus,
the user cannot trick the Directory Manager into modifying
a directory that the user cannot access. This architecture
may be criticized as being too slow, since creating a new

KSOS-The Design of a Secure Operating System 351

process via K_spawn is moderately time-consuming. How­
ever, measurements on one of our UNIX systems in a soft­
ware development environment suggest that modification of
directories is a fairly infrequent occurrence.

Computer network support

The Emulator contains the bulk of the support for the
computer network interface. Initially, KSOS will "speak"
Version 4 of the Transmission Control Protocol (TCP)12 in­
cluding the Internet Datagram Layer. 11 This protocol ap­
pears to be on its way to becoming a future standard within
DoD.

Although no networks presently exist that can handle
mUltiple security levels, this architecture envisages their
development and is designed to support them. To support
a multi-level network, the Network Daemon would be
trusted, so it could handle the multi-level stream to/from the
network. The remainder of the TCP functions performed by
the Emulator would be untrusted, since they are at only one
level.

The basic structure of the KSOS network interface was
discussed above, and is illustrated in Figure 4. There is a
Network Daemon which handles the Internet Datagram pro­
tocol, and enough of the TCP to separate the i/o stream from
the network into separate streams for each connection. In
each Emulator is the majority of the TCP functionality. All
of the functions relating to sequence number maintenance,
window maintenance, acknowledgment, and retransmission
are in the Emulator. This is possible because these are per
connection functions, and need not be globally managed.
These two portions of the TCP function communicate using
the Kernei-supported IPe mechanisms. The shared segment
mechanism is used for bulk data passing, and the event
mechanism is used for synchronization, and for "com­
mands" to the TCP Daemon and responses from it.

The non-Kernel system sojhvare

The purpose of this component of the KSOS system is to
provide the software tools to support a KSOS system. The
Non-Kernel System Software is divided into four groups:

1. Secure User Services-Software that manipulates the
security levels of users and files. Also included in this
class are all functions that require a secure ("unspoof­
able") path to the service.

2. System Operation Serdces-Software that performs
continuing services for the system, such as the Net­
work Daemon, line printer spooling and interuser mail.

3. System Maintenance Services-Software that per­
forms occasional services primarily in the area of
checking and repairing the consistency of the file sys­
tem. Also included are the system generation func­
tions. Individual KSOS sites can generate their system
to suit the hardware configuration available.

4. System Administratil'e Senices-Software that aids

From the collection of the Computer History Museum (www.computerhistory.org)

352 National Computer Conference, 1979

MULT-LEVEL
NETWORK

KSOS
KERNEL

Figure 4-Network interface structure.

the System Administrator in controlling the sytem. Our
goal has been that the System Administrator need not
be a computer expert to perform his functions.

The Non-Kernel System Software described is a minimally
complete set. Clearly there are large numbers of additional
utilities that would be desirable. It is expected that this class
will be supplemented extensively as KSOS matures.

KSOS APPLICATION CONSIDERATIONS

There are two broad classes of KSOS applications, each
with different considerations. The first is applications that
utilize the full KSOS system, i.e., applications based upon
UNIX. KSOS should appear to these applications to be only
slightly different than a standard UNIX operating system.
Because KSOS provides a UNIX-like interface, meaningful
secure applications can be built using the existing software.
UNIX is one of the best systems in existence for the creation
of new products by novel combinations of existing packages,
and KSOS will preserve this flexibility. Such applications
can, however, be made easier in some cases via the direct
use of KSOS Kernel calls.

The second class of applications is those which use the
Kernel directly without an Emulator. The Kernel provides
many features that make it an attractive operating system in
its own right. It otTers excellent i/o performance, a range of
I PC options, and many features that ease the design of multi­
level applications. Because the Kernel is "UNIX-flavored"
without being heavily UNIX-dependent, it is possible to
create application environments that are an amalgamation
of the features provided by different operating systems.

KSOS facilitates the creation of encapsulated environ­
ments that can be used for a variety of purposes. This

encapsulation allows objects to be manipulated only by soft­
ware known to perform correctly. In many cases only a
small part of a multi-level application actually deals with
data at different security levels. By encapSUlation of these
functions in a small trusted process, it is possible to build
multi-level applications that minimize the amount of trusted
(and therefore expensive) code.

ACKNOWLEDGMENTS

KSOS is being created by an exceptionally talented and
dedicated team. It is a pleasure to acknowledge their con­
tributions. The Government team on KSOS also deserves
acknowledgment for their efforts to make KSOS a reality.
Finally, credit must be given to Ken Thompson and Dennis
Ritchie of Bell Laboratories for the creation of UNIX. We
still marvel at the sophistication and elegance of their prod­
uct.

REFERENCES

J. Bell, D. E. and L. J. LaPadula, "Secure Computer Systems," ESD-TR-
73-278, Vols. I-III, MITRE Corporation, Bedford, MA, November 1973-
June 1974.

2. Biba, K. J., "Integrity Considerations for Secure Computer Systems,"
MTR-3153, MITRE Corporation, Bedford, MA, June 1975.

3. "KSOS UNIX Emulator Computer Program Development Specification
(Type B5),"' WLD-TR7933, Ford Aerospace and Communications Cor­
poration, Palo Alto, CA, September 1978.

4. "KSOS Implementation Plan," WDL-TR7799, Ford Aerospace and
Communications Corporation, Palo Alto, CA, March 1978.

5. Kampe, M., C. Kline. G. Popek and E. Walton, "The UCLA Data
Secure UNIX Operating System," Technical Report, University of Cal­
ifornia at Los Angeles, Los Angele~, CA, July JQ77

6. "KSOS Security Kernel Computer Program Development Specification

From the collection of the Computer History Museum (www.computerhistory.org)

(Type B5)," WDL-TR7932, Ford Aerospace and Communications Cor­
poration, Palo Alto, CA, September 1978.

7. "KSOS Maintenance and Support Plan," WDL-TR7810, Ford Aerospace
and Communications Corporation, Palo Alto, CA, March 1978.

8. "Draft B5 Specifications for the MITRE Secure UNIX Prototype," Pri­
vate Communication, 1977.

9. "KSOS Non-Kernel Security-Related Software Computer Program De­
velopment Specification (Type B5)," WDL-TR7934, Ford Aerospace and
Communications Corporation, Palo Alto, CA, September 1978.

10. Parnas, D. L., "A Technique for Software Module Specification with
Examples," CACM, Vol. 15, No.5, May 1972, pp. 330-336.

II. Postel, J. B., "Internetwork Protocol Specification," Version 4, Infor­
mation Sciences Institute, University of Southern California, Marina del
Ray, CA, September 1978. -

KSOS-The Design of a Secure Operating System 353

12 .. Postel, J. B., "Specification of Internetwork Transmission Control Pro­
tocol-TCP Version 4," Infonnation Sciences Institute, University of
Southern California, Marina del Rey, CA, September 1978.

13. Ritchie, D. M. and K. Thompson, "The UNIX Timesharing System,"
CACM, Vol. 17, No.5, May 1974, pp. 365-375.

14. Robinson, L., K. N. Levitt, P. G. Neumann and A. R. Saxena, "A
Fonnal Methodology for the Design of Operating System Software," in
Current Trends in Programming Methodology, R. T. Yeh (ed.), Vol. I,
Prentice-Hall, April 1977.

15. Roubine, O. and L. Robinson, SPECIAL Reference Manual. 3rd ed.,
Technical Report CSG-45, SRI International, Menlo Park, CA, January
1977.

16. "KSOS Verification Plan," WDL-TR7809, Ford Aerospace and Com­
munications Corporation, Palo Alto, CA, March 1978.

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

