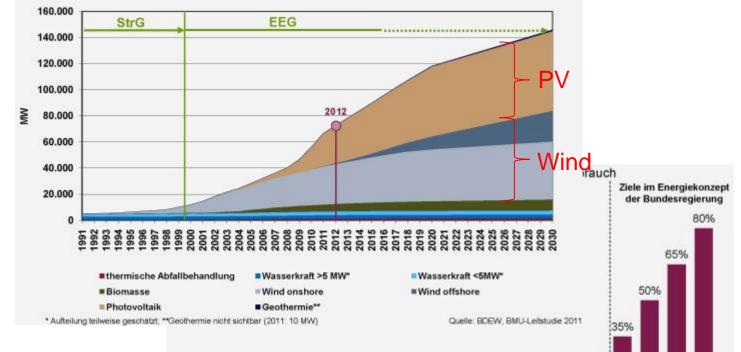
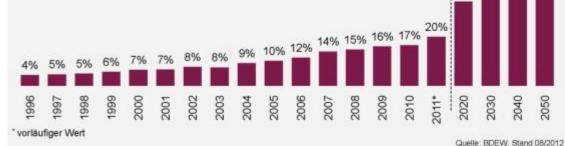

SCCER Heat & Electricity Storage Symposium, PSI, Villigen (CH), May 5, 2015

Adiabatic CAES: The ADELE-ING project


S. Zunft, German Aerospace Center (DLR)

Knowledge for Tomorrow



Background German "Energiewende": RE Targets

Political targets:

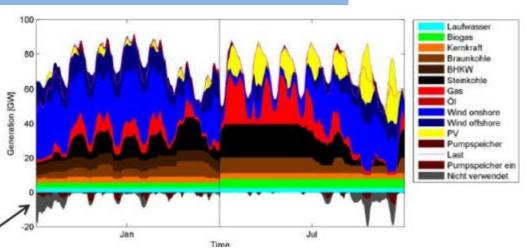
- 50% of gross electricity production from RE by 2030
- Mostly by PV und Wind

Background High penetration of RE & grid balancing

Jan+Jul 2009

• High baseload share

Needed:


 Improved operational flexibility of generation capacity (both conventional & renewable)

100

- Expansion of storage capacity
 - ... and more

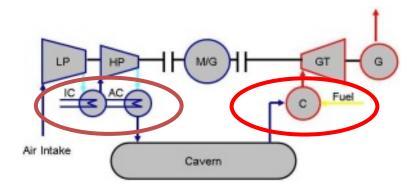
Jan+Jul 2020

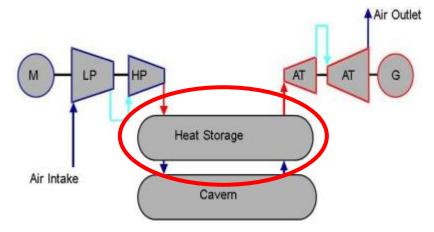
- Planned: 35%RE by 2030 (NREAP): 51.8 GW PV, 45.8 GW Wind
- Share of baseload power decreased & significant share of fluctuating power from RE
- → variation of residual load 30..45 GW
- \rightarrow pronounced gradients

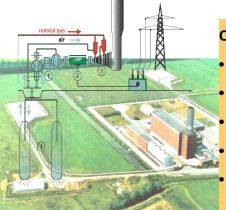
Laufwasse

Wind onshore Wind offshore

Pumpspeicher ein Nicht verwendet


PV Pumpspeicher Last


Biogas Kernkraf



Background

Flexibility through Compressed Air Energy Storage (CAES)

Efficiency ~42%

Conventional CAES process:

- Huntorf, Germany (E.ON)
- 321 MW (2h)
- 310000 m³
 - 46 66 bar

Operation since 1978, turbine refurbishment in 2007

Adiabatic CAES process:

Re-use of compression heat during

discharge operation

Emission-free Round-trip efficiency ~70%

ADELE-ING Project

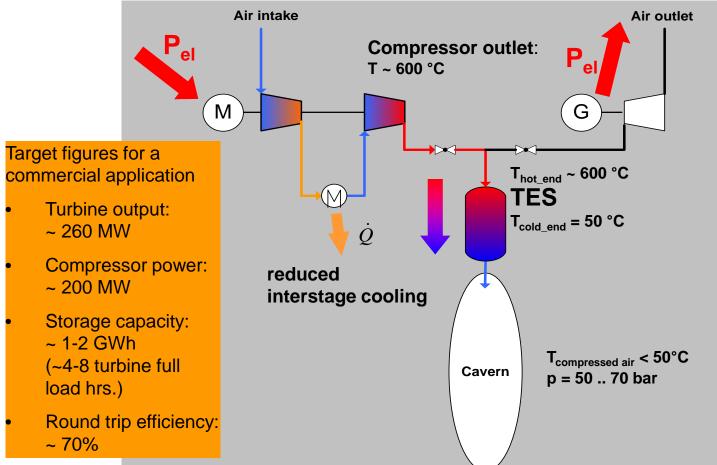
ADELE-ING Consortium

- RWE: Operator, Cavern, Grid & Economics
- GE: Turbomachinery, system design
- DLR (Coord.): Heat storage, system design
- Züblin: Heat storage, concrete pressure vessels
- Fraunhofer IOSB: Economics, Grid modeling
- Universität Magdeburg: Economics, Grid modeling

Scope:

- ADELE (2009-2013): Feasibility, concept studies, component development
- ADELE-ING (2013-2016): Engineering aspects, Assessment of system variants

Supported by:



Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

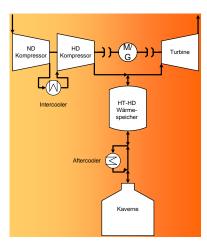
> ENERGIE SPEICHER Forschungsinitiative der Bundesregierung

ADELE-ING Project System layout (base concept)

Challenges & Achievements ADELE System: Cost optimization of 10 variants

ᢖᠧ(^ᢂ/

Kaverne


ート

Turbine

HT-ND

Wärmespeicher

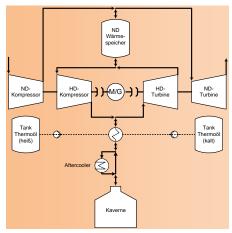
HT Regenerator storage

HT Regenerator storage in secondary loop

Gas-Gas Wärme

übertrage

Aftercooler


HD

Kompresso

Molten salt heat storage & thermal oil storage

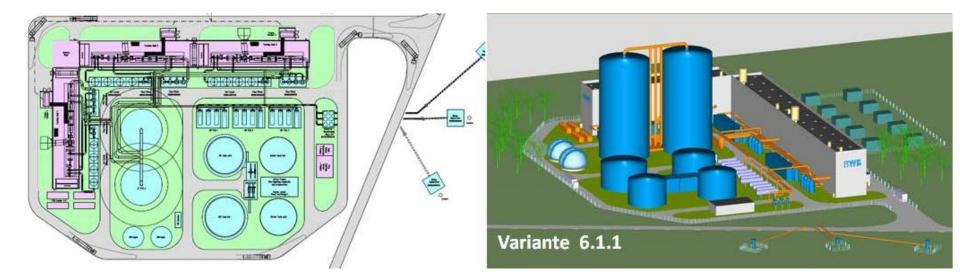
⊣)-([™])-)-ND HD Turbine Kompresso Kompress L. Tank Salz-Tank Salzchmelz schmelze (kalt) (heiß) Tank Tank hermoöl Thermoöl (heiß) Aftercoole Kaverne

Multistage process with low temperature heat storage

- Comparative assessment, based on
- Conceptual designs, jointly developed P+I diagrams

ND

Kompressor


- Techno-economic assessment, availability analysis, risk analysis
- → Advantages for 2-stage systems with reduced temperature level

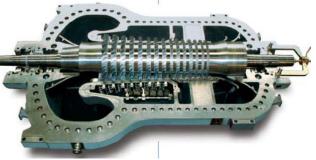
Challenges & Achievements ADELE System: Layout, lead options

Three concepts engineered in depth together with EPC partners Different heat storage options:

- High-temperature molten salt HX and tank
- Low-temperature 2-stage LP and HP solid regenerators
- Low-temperature 2-stage, LP regenerator/ HP thermal oil HX
- → Capital costs comparable to pumped hydro plants: ~1300 €/kW_{el}

Challenges & Achievements Turbomachinery

Compression Train

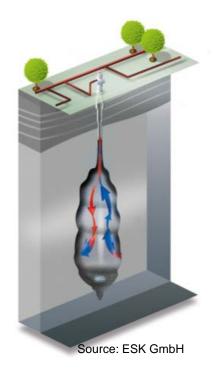

- Axial LP compressor, gas-turbine derived
- Radial HP compressors
- Challenge: high temperatures in last stages

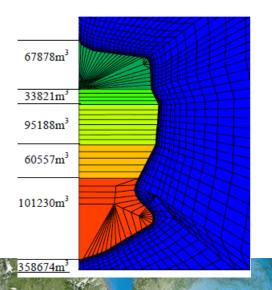
Expansion Train

- Full-scale 100 MW: Axial turbines, HP based on steam, LP on gas turbine technology from GE O&G
- Small-scale: Radial HP expander and LP axial turbine
- Challenge: Broad operation range, Redesign and adapt from current products

Shaft Arrangement

Single-shaft with motor/generator and SSS clutches, gear boxes for compressors

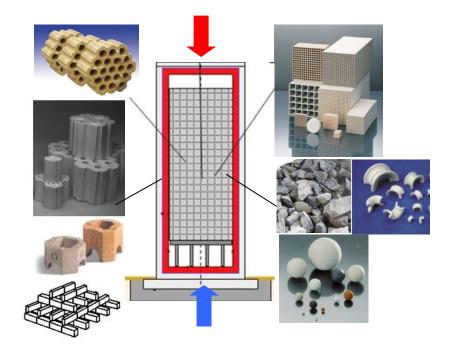




Challenges & Achievements Cavern

Air storage in caverns

- Mature technology for natural gas
- Technical challenges for air:
 - significant higher flow rates → larger well diameter
 - frequent cycling → comply with safety/durability requirements
 - lower pressure spread → large volume
 - increased corrosion risk → advanced completition materials
- On-going investigations:
 - Re-use of existing caverns
 → cost saving potential
 - Sites studies (salt caverns, saline aquifers)
 → high potential, well correlated with wind sites
 - Simulation studies (geo-mechanics, assessment of operation strategies)

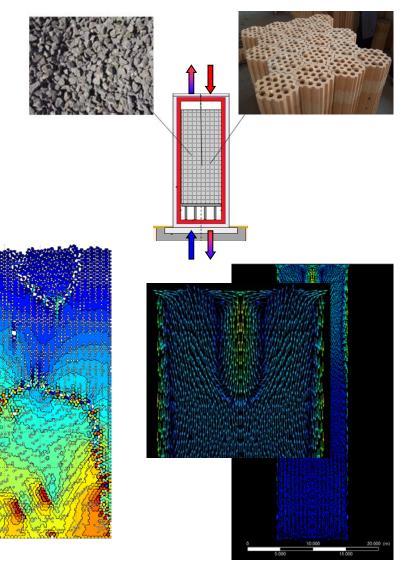

Challenges & Achievements Heat storage technology

Challenges

- Large storage capacity (1-2 GWh)
- Large (& constant) discharge heat rates ...
- ... @~600°C, 50-70 bar
- Without existing industrial examples

Technology: Regenerator storage

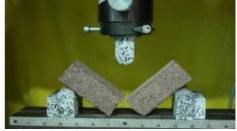
- Direct contact of storage material & pressurised air
- Inventory material: oxide ceramics, natural stones
- Pressurised containment
- Inner HT-insulation



Challenges & Achievements Heat storage design aspects

Development has covered all open design questions:

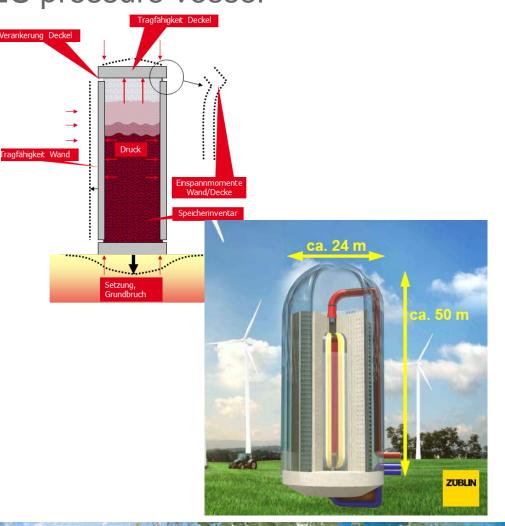
- Inventory arrangement? Typically shaped bricks, cost reduction potential with packed beds
- Thermal design: How to best deploy existing design freedoms for a cost-effective design?
- Fluid-dynamics: Pressure loss & flow quality?
- Thermo-mechanics: Mechanical loads (thermal ratcheting) & lifetime?
- Pressure vessel: solutions with prestressed concrete. Feasibility? Costs?
- Material qualification for low-cost inventory media & lifetime assessment
- Experimental validation of concepts
- \rightarrow Cost reduction is the main target!


Stillstandsberechnungen für Schüttspeicheraufbau

Challenges & Achievements Pilot-scale validation & material qualification

- Material qualification for low-cost inventory media in cyclic tests, lifetime assessment
- Experimental validation of inventory concepts in 5 tons scale

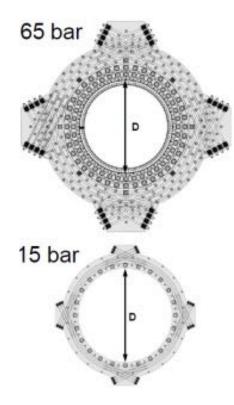
Teststand "TM-Speicher" am DLR Stuttgart


Challenges & Achievements Structural engineering of TES pressure vessel

Challenges

- Mechanical working load of lid with openings
- Working load of wall with inner pressure & inventory-induced mechanical loads
- Working load at joint restraints @lid, @foundation
- foundation

Solution


- Containment from pre-stressed concrete
- Tightening, Insulation, integrated active cooloing

Challenges & Achievements Structural engineering of TES pressure vessel

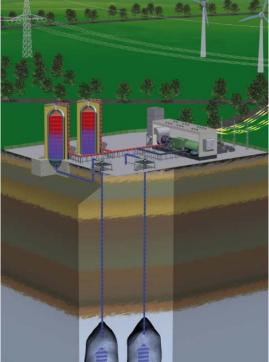
Concept: layout of pre-stressing elements

Experimental validation in 1:1 large-scale experiment

Ongoing work

Challenging and uncertain economic environment: requires additional solutions with even lower costs, tailored to different markets:

- Down-scaled ACAES:
 - Distribution grid, Industrial "behind-the-meter" (15MW)
 - Low investment hurdle
- Hybrid (partly adiabatic) schemes:
 - Natural gas co-fired ACAES (lower specific cost, higher power, more flexibility through limited NG firing
 - Integration of power-to-heat from excess electricity (lower specific costs)
- Gas-turbine integrated CAES (including upgrade solutions)



Summary & Conclusions

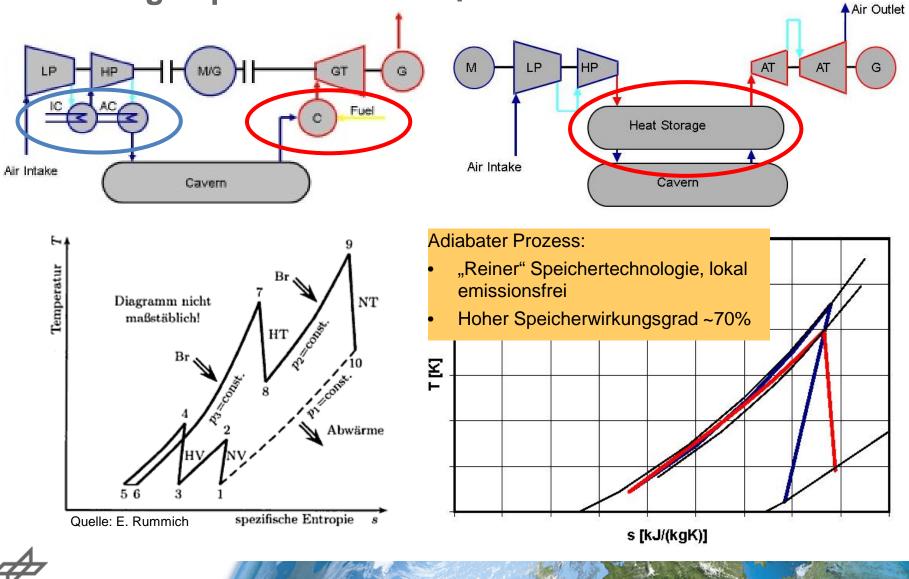
- Adiabatic CAES offers cost-effective electricity storage, is a promising technology option to increase the energy system's flexibility
- ADELE-ING has elaborated an advanced development stage
 - Design solutions for all components available
 - Some configurations cost-optimised
 - High round-trip efficiency 66..70%
 - Since 2010 Capex brought down to level of pumped hydro
- Economics: difficult economic environment
- On-going work seeks to further improve the opportunity to market entry (downscaling to 10-30MW, hybrid schemes using low-tariff electricity or natural gas)

DLR.de • Chart 18 > Lecture > Author • Document > Date

Contact: stefan.zunft@dlr.de

Challenges & Achievements ACAES Economics

Cost optimization led to ADELE-Ing plant configurations with Eur1300/kW \rightarrow On par with pumped hydro storage!


- Revenues in current German market not sufficient for economic viability of storage plants
- Challenging and uncertain economic situation requires solutions with even lower cost tailored to different markets

Today's CAES Plants

Туре	Simple CAES process, two- stage NG combustors	2 nd generation CAES, recuperator, two-stage NG combustors
Location	Huntorf, Niedersachsen	McIntosh, Alabama
Commissioning	1978	1991
Turbine power	320 MW _{el}	110 MW _{el}
Generation capacity	~1 GWh	2.6 GWh
Thermal round trip efficiency	~42 %	~52 %
Specific cost	320 DM/kW _{el}	\$591/kW _{el}
Turbine start-up time	>9 min.	14 min.
Images Sources: BBC, Operating Experience with the Huntorf Air Storage GT Power Station, 1986; Daly, CAES reduced to practice, ASME 2001; http://www.pennenergy.com		

Technologieoption Druckluftspeicher

