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Abstract

The growing capability of robotic planetary explo-
ration missions brings increasingly constrained data bud-
gets. The autonomous prioritization, processing, and even
acquisition of science data could allow more scientific in-
formation and discovery per megabit of transmission – in-
creasing the scientific value and the pace of operations.

Here we explore the problem of analyzing rock out-
crops using only colour photography. Elementary image
processing techniques generate a feature space incorpo-
rating colour and visual texture information from an im-
age. Then, a machine learning technique, multiclass lin-
ear discriminant analysis (MDA), is used to learn the vi-
sual components that distinguish adjacent rock types from
each other, and a vector clustering technique is used to
segment images of the same and similar outcrops. The
approach is tested successfully in a variety of geological
settings representative of those expected in planetary sur-
face exploration, and shows promise for extension to other
imaging modalities and processing techniques.

1 Introduction

Planetary exploration missions have deployed pro-
gressivley more capable and complex platforms to explore
the bodies in the solar system. The Mars Science Lab-
oratory rover, for example, carries an extensive suite of
remote-sensing, contact, and internal instruments [1], to-
gether offering far greater capacity to generate scientific
data than previous missions. Communications capabili-
ties continue to be an important limitation for these mis-
sions, however, restricting the amount of data that can
be returned to Earth. This has an additonal consequence
of restricting the speed of operations, as many tasks –
such as approaching a rock outcrop and placing an instru-
ment against it – require several human-in-the-loop steps
in decision-making. Each such step requires the transmis-
sion of data to the Earth, its inspection, and the transmis-
sion of resultant commands to the spacecraft.

1.1 Improving scientific throughput
These missions could realize a greater throughput

of science information by achieving these tasks more
quickly, or by devoting a larger fraction of the downlink
to science-relevant images as opposed to intermediate im-
ages intended for human decision-making. Achieving ei-
ther – more science per time, or more science per kilobit
– may be possible by allowing the robotic system to make
decisions on its own.

One tool for aiding such decision-making by the robot
is autonomous interpretation of images. A major task
of operations scientists is finding interesting features in
downlinked images so that they may be targeted for fur-
ther investigation. New software has already begun to al-
low a degree of autonomous interpretation and improved
scientific return, as in the case of the AEGIS software de-
veloped for the Mars Exploration Rovers [2], which uses
on board image processing to prioritize images for down-
link, based on the detection of rocks sitting on the plain
surrounding the rover.

1.2 Geological investigations: In-place
materials and contacts

For a surface mission with a geological focus, an ex-
ample of an interesting feature is an outcrop in which vi-
sual inspection suggests the presence of more than one
type of rock. In terrestrial field geology, these features
are called contacts between geological units, and while
they have a variety of forms and origins, they are impor-
tant sources of information about the nature and history
of the rocks in a region. The information they carry is
particularly rich if the materials are still in-place, that is,
remaining in the position and context of their formation.
This makes outcrops valuable sites of investigation, over
loose material that cannot be clearly connected to its place
of origin.

Impact craters, ubiquitous on solid planetary surfaces
and of interest for both geological and astrobiological in-
vestigations [3], are formed by violent and turbulent pro-
cesses that result in numerous emplacements of mixed
rock types, such as impact breccias, melt rocks, and ejecta
deposits [4]. This chaotic process also tends to produce



features of vertical relief, often including exposed out-
crops of rock, particularly in environments where the rate
of erosion is low. Finding such outcrops, particularly
those displaying geological contacts, is critical in investi-
gations of such widely-varying settings as impact craters,
sedimentary environments, and volcanic flows.

1.3 Present work
The present work aims to develop image processing

tools which allow the segmentation of images of rock out-
crops along geological units, as a step towards producing
a capability for detection and mapping of outcrops dis-
playing geological contacts. We formalize this problem
as one of unsupervised image segmentation into geologic
surface types. We test the hypothesis that Mahalanobis
metric learning, trained by exemplar scenes, can improve
the fidelity of such segmentations to an expert interpreta-
tion. The experiments show that unsupervised image seg-
mentation produces geologically relevant categories from
simple colour and texture primitives when analyzed with
appropriate distance metrics. Section 2 describes the his-
tory of similar work in the exploration context. The design
of the algorithm is presented in section 3, and the design
of an experiment to test it is described in section 4. The re-
sults of tests on field data in a variety of geologic settings
are presented and discussed in section 5.

2 Existing techniques

2.1 Geological classification
Geology on Earth relies site visits by a trained analyst,

but planetary exploration programs have researched auto-
mated techniques. Previous efforts have identified specific
features in outcrops, especially sedimentary layering [5]
[6]. Further efforts saw significant successes in detecting
loose rocks resting on the ground [7] [8], by a variety of
techniques with varying results [9]. Such systems even-
tually became capable enough to be used to guide robotic
decision making [10], and in recent years to be deployed
on the Mars Exploration Rover Opportunity to improve
the return of scientific data [11]. But with highly vari-
able visual appearance, gradational boundaries, and com-
plex boundary morphology, separation of geological ma-
terials within an outcrop is even more challenging a task
than recognizing rocks against a background. At least one
current project is working to apply information from im-
age texture to the problem [12] but to our knowledge the
present work is the first attempt to identify geologic con-
tacts within a single image in a wholly unsupervised fash-
ion.

2.2 Distance metric learning
In the presence of correlations and noise dimensions

in the input space, it can be quite difficult to find a repre-

sentation where the classes of interest naturally separate
from each other. Metric Learning seeks a distance met-
ric, or equivalently, a transformation of the input space, to
maximize task performance. These methods typically rely
on a training set of distinct classes from the problem do-
main. They optimize the distance metric to maximize the
distance between the dissimilar classes. This new repre-
sentation reflects semantic distinctions of interest so that
a wholly unsupervised algorithm can recover them.

Many such algorithms involve fitting a Mahalanobis
metric, expressed as a simple linear projection that we will
write here as a matrix A. Following the notation of [13],
applying A to each sample pair (xi, x j) produces a Maha-
lanobis distance in the original sample space:

M(xi, x j) = (AT xi − AT x j)T (AT xi − AT x j)T

= (xi − x j)AAT (xi − x j)
(1)

Note that the matrix M = AAT is symmetric, posi-
tive semi-definite. There are many ways to find this ma-
trix. The most common approach, Multiclass Discrim-
inant Analysis, is an extension of classical Linear Dis-
criminant Analysis; for k distinct classes, it forms A by
the eigenvectors associated with the top k-1 eigenvalues of
M−1

w Mb Here Mw is the within class scatter matrix and Mb

is the between class scatter matrix. The resulting trans-
formation minimizes the determinant of the former and
maximizes the determinant of the latter. Other linear dis-
tance metric learning algorithms include Information The-
oretic Metric Learning [14], Locally Discriminative Gaus-
sians [15], and NCA [16]. A comparison of all such tech-
niques is beyond the scope of this paper, but LDA-based
methods often perform comparably to iterative approaches
and basic MDA is sufficient to evaluate our hypothesis.

3 Method

3.1 Strategy
The approach used in this work begins from the ob-

servation that rocks which are visually distinct from each
other are often distinct in several ways - by colour, by the
orientation of linear features in the rock surface (‘fabric’,
in the geological sense), or visual texture, such as from
layering, weathering, fracturing, or grain size. Very often
separate geological units are visually distinguishable from
each other in more than one of these characteristics. We
attempt to exploit this property by applying a technique
that finds groups of pixels which vary together in several
visual features.

3.2 Channel set
We begin by processing the image to produce sev-

eral data products relating to colour, texture, and other



visual attributes at each pixel. Each such data product is
called hereafter a visual ‘channel’, and represents an array
of values corresponding to each pixel in the input image.
For initial tests, a basic feature set was used consisting of
seven channels:

1. The grayscale representation of the colour image;

2. The red channel of the colour image;

3. The green channel of the colour image;

4. The blue channel of the colour image;

5. The ratio, at each pixel, of the blue and red channels;

6. The difference, at each pixel, of the blue and red
channels;

7. A brightness map produced by first taking the magni-
tude of the image gradient at each pixel, then passing
a kernel over the result which sums the values of all
pixels in a small radius. This channel is intended to
respond to the local density of edge features in re-
gions of the image.

An extended feature set uses these same channels
along with eight more provided by the MR8 filter bank
[17], in an effort to further emphasize textural informa-
tion. In principle, many more channels can be designed
and included, but this present work reports only on results
using the above basic and extended feature sets.

For either implementation, the data produced in cre-
ating the n-dimensional feature space is represented as a
set of n-dimensional vectors, with each pixel represented
by a vector composed of that pixel’s corresponding values
from each visual channel.

3.3 Learning step
We first train MDA by using a dataset of labeled im-

ages from the same locale. This is relevant for spacecraft
operations where a rover is travelling tens or hundreds of
metres per command cycle, and geologic surface types
will be somewhat similar to categories that have already
been seen in previous images. Scientists could train such a
system on the ground and then transmit the compact trans-
formation matrix to the rover, enabling it to recognize ap-
propriate features in new images. For each set of training
data, we formed 2 to 3 classes from the categories of in-
terest, and learned an MDA representation based on this
training data. MDA permits solutions with a rank up to
k-1 where k is the number of classes. We then applied the
low-rank transform to other images from the locale not
used during training, producing an unbiased estimate of
task performance on a new scene.

To effect the segmentation, the feature space vectors
are transformed to the MDA-learned representation, then

clustered by proximity in the n-dimensional feature space.
As a baseline, the k-means clustering technique is used,
with other clustering techniques possible.

3.4 Assessing the segmentation
Candidate segmentations are assessed by compari-

son to manually-labeled reference segmentations using
the Adjusted Rand Index [18]. The Rand Index is a figure
of merit that counts the number of pairs of pixels which
are, in both segmentations, assigned to the same segment,
as a fraction of the total number of pixels. Normalized
against random chance, it becomes the Adjusted Rand In-
dex (ARI), which has a value of zero for a pixel segmen-
tation performing the same as random assignment, and a
value of one for a segmentation which is identical to the
reference.

4 Experiment design

The technique was tested on imagery from a variety
of geological settings, including several types of volcanic
deposits in Mars-analogue sites in the Mojave desert, Cal-
ifornia; impact breccias from the Sudbury impact crater in
Ontario, Canada; and a clay-rich sedimentary setting with
visible calcium sulfate veins in Gale Crater, Mars. In each
geological setting, the system is trained using a represen-
tative image showing the characteristic local rock types.
The trained system then segments both the training im-
age, and new images from the same locality. Three cases
are tested in each locality, each using a different feature
space:

• The basic feature space (described in section 3.2),
without applying the learned vector (“No learning”)

• The basic feature space, with the learned transforma-
tion applied

• The extended feature space including the MR8 filter
bank, with MDA learning on that larger space

In each case, the segmentation is compared to a ref-
erence, human-labeled segmentation, using the Adjusted
Rand Index.

For the locales on Earth, the photographs used were
captured with a handheld digital SLR camera. Lighting
conditions varied from full insolation to full shade; cast
shadows that covered only a portion of the scene were
avoided, though shadows created by in-scene relief are un-
avoidably present in several cases. The photographs were
selected to show a variety of geological materials with vis-
ible contacts, and a variety of contact types (sharp, grada-
tional, highly complex) and morphologies (adjacent mas-
sive units, layered materials, clasts within a matrix). Artif-
ical objects often included in geological imaging, such as
hammers and rulers to provide a reference for scale, were



Table 1. Segmentation algorithm perfor-
mance. Values are the Adjusted Rand
Index, as described in section 3.4

Scene
type,
Num-
ber of
classes

Image
refer-
ence

No
learning

Learning
on basic
feature
space

Learning
on
extended
feature
space

A 1277 0.814 0.968 0.987
2 1261 0.912 0.922 0.936

1281 0.912 0.961 0.973
B 0272 0.562 0.759 0.816
2 0743 0.378 0.657 0.715

0283 0.348 0.538 0.609
C 0199 0.565 0.943 0.950
3 0200 0.372 0.795 0.749

0230 0.245 0.587 0.563
D 0495 0.323 0.693 0.742
3 0497 0.289 0.616 0.633

0511 0.350 0.589 0.665
E 9726 0.774 0.920 0.946
2 9735 -0.072 0.790 0.793

9745 0.761 0.837 0.868
F s133r1 0.084 0.769 0.828
2 s133ls2 0.053 0.220 0.718

s133ls3 -0.002 0.018 0.313

intentionally excluded. These procedures allowed the ex-
periment to employ a set of fully natural scenes with no
intrusions, but somewhat optimized shadow for the local
topography. Such conditions are representative of those
to be expected in planetary surface imaging with a robotic
platform.

Images from Mars were obtained by the left and right
Mastcam imagers of the Mars Science Laboratory rover in
the context of the mission science team’s investigation of
the Yellowknife Bay locality of Gale Crater. Scenes of the
desired lithologies having broadly similar dust cover were
selected from the area visited by the rover on sol 133 of
the mission, with views of the rover hardware excluded.

5 Results

We tested the algorithm on a variety of scenes hav-
ing diverse rock types and boundary shapes. These scene
types are described in the following section, and include a
variety of volcanic, impact, and sedimentary settings, each
showing clear contacts between distinct geological units.

The results of the segmentation are shown in Table 1.
For each scene type, one image of a representative scene

Figure 1. Example of scene type A. Basalt
blocks and sand, image number 1281,
and its segmentation result.

Figure 2. Example of scene type B. Mas-
sive basalt and lahar deposit, image
number 0272, and its segmentation re-
sult.

was used to train the algorithm. The feature space trans-
formation learned using this image was used in segment-
ing this same image, and two more images of the same
type of geological materials, taken under similar lighting
conditions at an adjacent site, with the image fields of
view not overlapping that of the training image. For each
scene type, the image used for training is that marked by
by an italicised reference number in Table 1.

5.1 Scene types

5.1.1 Type A: Basalt blocks and sand
A mixture of irregular, vesiculated basalt blocks, sur-

rounded by fine sand, shown in Figure 1. The basalt
blocks are of volcanic origin. The silicate sand occupies
the space between the basalt blocks, and also fills in some
of the surface vesicles, complicating the segmentation.

5.1.2 Type B: Massive basalt and lahar deposit
Outcrop exposure of massive basalt overlying older

lahar deposit, shown in Figure 2. A lahar deposit, formed
by violent pyroclastic flow, is visible in the lower portion
of the image as a highly disordered accumulation of mate-
rial with many irregular shapes and highly varying colour
and texture. It is overlain by a layer of massive basalt,
sourced from a later volcanic event. The basalt also has
non-uniform colour, and some of the surface coatings in
the basalt are of similar colour to the lahar. Fissures and
ridges that intruduce linear shadows are also present.



Figure 3. Example of scene type C. Lay-
ered volcanic materials, image number
0199, and its segmentation result.

5.1.3 Type C: Layered volcanic deposits
A succession of volcanic deposits from periodic

events at the Cima volcanic flows, shown in Figure 3.
Three layers of material are visible. Each has a differ-
ent dominant colour, but each shows significant variation.
Gradational changes are visible between the layers, and
some blocks in the bottom layer have faces which are
coated in material from the top layer. The boundaries
are irregular, and enclaves of each material can be found
within the others.

5.1.4 Type D: Complex intermixed volcanic
materials

A complex scene, treated as three distinct classes,
shown in Figure 4. Massive basalt overlies and is partially
mixed into two other types of material, each of which is
visibly heterogeneous. Such visibly complex scenes are
common in a variety of geological settings.

5.1.5 Type E: Impact breccia
An exposed outcrop of breccia from the Sudbury im-

pact structure, shown in Figure 7. Fractured by the vio-
lence of the impact, clasts of one type of rock are embed-
ded in a matrix of another type. This type of material is
common in impact craters and in volcanic settings.

5.1.6 Type F: Mineralized veins in Martian
sandstone

An outcrop of clay-rich mudstone showing visible
veins of calcium sulfate material [19], in the Yellowknife
Bay locality of Gale Crater, Mars. This site was studied by
the Mars Science Laboratory mission science team, and
an example is shown in in Figure 10. It was selected as
a high-priority science target, and a nearby outcrop of the
same composition was the site of the first drill sample of
the mission. The training image was acquired by the MSL
rover’s right Mastcam; the other two test images are of
nearby exposures of the same material imaged by the left
Mastcam, all on sol 133 of the mission. Significant and
non-uniform coverage of reddish dust on both rock types,
nearly ubiquitous on the Martian surface, complicates the
vision problem.

Figure 4. Photograph of complex geologi-
cal scene, image number 0495

Figure 5. Segmentation map of image number 0495

5.2 Discussion
In general, the algorithm produces good quality re-

sults, both by reference to the Adjusted Rand Index figure
of merit, and by visual inspection of segmentation maps.
Even without the learned transformation matrix, the sys-
tem produces results significantly better than a random
pixel assignment, and in some types of scenes, far bet-
ter. With the learning step included, the figure of merit in-
creases in all cases, generally by a significant margin. The
value of the training is also illustrated in Figure 6, which
compares the separation of pixel vectors as plotted using a
principal components analysis, and reprojected using the
MDA-learned feature space representation. The projec-
tion is trained on a separate image. When applied to the
new scene, it improves the alignment between k-means
clusters and geologic unit classes. Black circles show the
locations of cluster centroids.

The expanded feature space, including the MR8 filter
bank, in most cases produces only a small improvement
over the results with the basic feature set. The MR8 filter



Figure 6. Normalized spread of the pixel
vectors with the learned feature space
representation from MDA, compared to
an ordinary principal components anal-
ysis. Data from image #0497, trained on
#0495, coloured by class label.

bank is designed to contribute information about visual
texture, as is the gradient-derived channel in the basic fea-
ture space. Given the small marginal improvement of in
the ARI in most cases, it appears that the gradient-derived
channel adequately captures that textural information, for
most purposes, and the high cost of computing the MR8
channels may not be justified in many applications.

As the scenes become more complex, with greater
intra-class variation and complex boundaries between
classes, the figures of merit are somewhat reduced.
Nonetheless, even for very complex scenes, a visual in-
spection shows that the segmentation accurately repro-
duces the visual divisions that are salient to the human
eye. An example of this is in scene type D, where three
types of volcanic deposits are found in a single outcrop,
with very complex mixing and irregular boundaries. Such
a scene is shown in Figure 4, where a massive basalt, vis-
ible in the upper right hand corner, is intermixed with two
different layers of volcanic material. The segmentation
map for this image is shown in 5. The division of the
scene by material type is evident, with the algorithm de-
tecting even small isolated regions of one material em-
bedded in another. Some stray pixels are apparent, at-
tributed to the difficulty of training on this very difficult
scene type. The Adjusted Rand Index for this segmenta-
tion is 0.742. While already likely adequate for a variety
of follow-on uses such as steering a spectrometer instru-
ment at the identified regions, futher improvements may
be found by including new types of information in the fea-
ture space.

A particular demonstration of the value of the learn-
ing step is found in the case of the impact breccias from
the Sudbury crater. Here the algorithm was, as usual,
trained on a single example of a typical outcrop, then
tested on other images of similar materials. One of these,

Figure 7. Photograph of Sudbury impact
breccia, image number 9735

Figure 8. Segmentation map of image
number 9735, without the learning step
applied

Figure 9. Segmentation map of image
number 9735, with the learning step
applied



Figure 10. MSL MastCam-right pho-
tograph of calcium sulfate veins in
mudstone, image reference s133r1. Im-
age credit: NASA/JPL-Caltech/MSSS

with image number 9735, is shown in Figure 7. A red-
dish oxidation coating is visible on the surface of the out-
crop. This uneven coating covers portions of both rock
types (the darker-coloured ground mass, and the lighter-
coloured clasts) in the breccia. This colouration is unre-
lated to the rock composition and potentially confusing
to an algorithm relying on colour information, and with-
out applying the learning step the results are unsatisfying.
Figure 8 shows the segmentation map for the no-learning
case, with ARI -0.072, slightly worse than random assign-
ment. A naı̈ve two-class clustering finds the numerically-
significant difference between the smooth rock and dark
shaded fractures. However, with the learned feature space
transformation applied, the results are greatly improved,
as shown in Figure 9, with the ARI rising to 0.793, even
with the algorithm having been trained on a different im-
age in which the oxidation coating was not present.

The learning step also improves the sedimentary ex-
ample from Yellowknife Bay, Mars. Reddish-hued dust is
nearly ubiquitous on rock outcrops on Mars, and like the
oxidation coating in Sudbury, is potentially confusing to
a vision algorithm. The segmentation is greatly improved
by the training, even in the most challenging case (image
s133ls3), where significant variation in dust cover makes
the host rock appear more grey, rather than the dominant
red hue seen in the training image in Figure 10. The chal-
lenging variation in colour from the dust cover is likely the
reason why this is the geological setting in which the ex-
tended feature space, featuring the texture-rich MR8 filter
bank, is most beneficial.

Figure 11. Segmentation map of image s133r1

6 Conclusion

Further testing in new geologic settings is ongoing.
In particular, the system is being tested as a means of
detecting surface contaminations – recognizing dust par-
tially covering a rock outcrop, for example, and discrim-
inating it from the rock itself – for application to im-
ages of dusty contact spectrometry targets investigated
by the MSL rover. Future developments of the tech-
nique could expand and optimize the feature space to ac-
count for optimal combinations and representations of the
colour channels. An adaptation to multispectral imaging,
as currently practiced with Mars-surface missions, is also
planned. The system could also be adapted to other imag-
ing modalities, depending on the instrumentation avail-
able in a given setting. As part of integration into a larger
scheme for outcrop analysis, an autonomous method for
determining the number of classes to use in the vector
clustering is also in development.
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