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AFFDL-TR-69-42

FOREWORD

This report is the result of a combined in-house and contract effort.

Under Project 1467, "Structural Analysis Methods" and Task 146702

"Thermoelastic Stress.Analysis Methods" an in-house effort collected and

categorized available analysis and design techniques. This collection was

further reduced and through an automated search technique a comparison

of approaches and references was made under Contract F33615-67-C-1538 which

was initiated and sponsored by the USAF Flight Dynamics Laboratory. This

contract with Technology Incorporated, Dayton, Ohio, covered the time

period 30 April 1967 to 30 April 1969.

Mr. Gene E. Maddux, of the Flight Dynamics Laboratory, served as the

Air Force contract monitor. For Technology Incorporated, Mr. Dudley C. Ward,

manager of the Aeromechanics Department, was the project directr-; and

Mr. Leon A. Vorst, senior research engineer, was the project engineer.

The authors are grateful for the assistance and the contributions of

other Technology Incorporated personnel, particularly Mr. Robert R. Yeager,

junior research engineer; Mr. Thomas J. Hogan, scientific programmer; and

Mr. Harold P. Zimmerman, scientific programmer.

This technical report has been reviewed and i approved.

Chief, Solid h nics Aran

Structures Division
Air Force Flight Dynamics Laboratory
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KEYWORD INDEX

Introduction

This Keyword Index is based on the headings in Chapters 1 through 11.
In the preparation of this index, first all significant words in these headings
were extracted and arranged alphabetically. Words closely related such as
"loads, " "loading, " and "load" were denoted by the single word "loading."
The resultant significant words are presented on this page. Second all
headings with significant words were grouped alphabetically under each
significant word. The following pages present the grouped headings, each
with its number identification, under the respective significant words.

ACCESS EQUIVALENT REACTION
ALLOWABLE EXACT RECTANGULAR
ANALOGY EXTERNAL REDUCED
ANALYSIS FAILURE REDUNDANCY
ANGLE FATIGUE RESISTANT
ANISOTROPIC FIELD RESTRAINT
ARCHES FIT REVOLUTION
AXIAL FIXED RINGS
BAR FLANGES RIVETS
BEAM FLAT ROUND
BEARING FORCES SANDWICH
BENDING FORMULA SECTION
BUCKLING FRAMES SECTION
BUSHING HEAD SHAFT
CELL HEAP SHAPE
CIRCULAR HELICAL SHEAR
CLOSED HOLES SHELLS
COEFFICIENT IMPERFECT SHORT
COLUMN INDETERMINATE SIMPLE
COMBINED INERTIA SLENDERNESS

COMPLEX INSTABILITr SPHERES
CONCENTRICALLY INTERACTION SPRINGS
CONICAL INTERNAL SQUARE
CONNECTIONS JOHNSON-EULER STATIC
CONSTRAINT JOINT 5TATICALLN
CONTACT JUNCTION STEEL
CONTINUOUS LACING STEPPED
CRIPPLING LATERAL STIFFENERS
CRITERIA LATTICED STRAIGHT
CRITICAL LOADING STRENGTH
CROSS LONG STRESS
CURVED LUG STRINGER
CUTOUTS MEMBRANE STRINGERS

CYLINDER MODE SUPPORT
DATA MODULUS TANG
DEEP MOMENT TANGENT
DEFLECTIONS MULTICELL TAPERED
DEFORMATION MULTIPLE TENSILE
DESIGN NONCIRCULAR TENSION
DETERMINATE NONUNIFORM THICK
DISCONTINUITY OBLIQUE THIN
DISHED OPEN

DISTRIBUTED OUTSTANDING TORSION

DISTRIOUBLE N TRANSMISSION

DOUBLE PANELS TRANSVERSE

ECCENTRICITY PIN TRUSSES

EFFECTIVE PINNED TUBES

ELASTIC PLASTIC UNPRESSURIZED
PLATE UNSTIFFENEO,

ELLIPTICAL PRESS UPRIGHT
ELONGATION PRESSURE VESSEL
EMPIRICAL PRESSURIZED WEB
END PRIMARY WIRE
EQUATION RATIO
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ALLCJ.ABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FILLD BEAM 1.3.3.6
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ANALYSIS
ANALYSIS OF CoMBINEL STRESSES IN TRANSMISSION SHAFTING 10.4
ANALYSIS vP LUGS oITH LESS THAN 5 PCT ELONGATION 9.15
ANALYSIS &F PLATES 6.

BAR ANALYSIS 3I

COLUMN ANALY5iS 2.
EXAMPLE OF UNIFURA AXIALLY LOADLD LUG ANALYSIS 9.6
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INTRODUCTIuN TO BAR ANALYSIS 3.1
INTROuUCTION 10 COLUMN ANALYSIS 2.1

INTRODUCTION TO LuG ANALYSIS 9.1
INTRODUCTION TO THE ANALYSIS OF BEAMS 1-1

INTRODUCTION TU TRANSMIOSION SHAFT ANALYSIS 10.1

LUG ANALYSIS 9.

LUG ANALYSIS NOME,4CLATURE 9.2

LUG FATIGUE ANALYSIS 9.17
NOMENCLATUKE FOR ANALYSIS OP PLATES 6.2

NOMENCLATUkE FOR bAK ANALYSIS 3.2

NOMENCLATUKE FOR COLUMN ANALYSIS 2.2

NOMENCLATURE FOR THE ANALYSIS OF BEAMS 1.2

NOMENCLATURE USED IN TRANSMISSION SHAFTING ANALYSIS 10.2

SAMPLE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING 10.6.1
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TRANSMISSIuN SHAFTING ANALYSIS to.

ANGLE
CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES 2.3.2.4

ANISOTROPIC
ANISOTROPIC PRESSURE VESSELS 8.5

ARCHES
CIRCULAR RiNGS AND ARCHES 5.9
SAMPLE PRObLEM-CIRCULAR RINGS AND ARCHES 5.10

AXIAL
APPROXIMATL METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS BEAM COLUMNS 1.4.j

AXIAL COMPHESSION OF CURVED PLATES 6.6

AXIAL COMPRESSIUN OF FLAT PLATES 6.3

AXIAL LUG DESIGN FOR PIN FAILURL 9.14.1

AXIAL LUG DESIGN FOR PIN FAILURE IN THE BENDING MODE 9.14.1.2
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BAR
BAR ANALYSIS 3.
BENDING LOADS ON BARS 3.8
COMPRESSIVE LOADING OF BARS 3.7
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INTRODUCTION TO BAR ANALYSIS 3.1
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SAMPLE PROBLEM - dAk UNDER STATIC TENSILE LOAD 3.4
STATIC TENSILE LOADING OF BARS 3.3
TORSIONAL LOADING OF BARS 3.9

BEAM
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM 1.3.3.6
ANALOGIES FOR BEAMS IN TORSION 1.5.3
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APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AXIAL ANU TRANSVERSE LOADS . BEAM COLUMNS 194.1
APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AXIAL ANI TRANSVERSE LOADS - BEAM COLUMNS 1.4.1
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INTRO.UCTIUiv TO STATICALLY INOETERMINATE TRUSSES 4.4.1
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ISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD 8.3.1.2.2
LACING

LACING BARS IN COLUMNS 3.10
LATERAL

INTRODUCTION 10 LATERAL INSTABILITY OF DEEP BEAMS IN BENDING 1.3.1.5
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BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS 2.3.1.-T1
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CYCLIC TENSILE LOADING OF BARS 3.5
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EXACT METHOD FUR dEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
EXAMPLE OF AXIALLY LOADED LUG DESIGN 9.14*1.3
EXAMPLE OF UNIFuRM AXIALLY LOADED LUG ANALYSIS 9.6
FLAT PLATES UNDER COMBINED LOADINGS 6.8.1
INTRODUCTIOIN TO bEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS 1.4
INTROUUCTIUN TU REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING 103.4
LOADIiiGS yN CIRCULAR TRANSMISSION SHAFTING 10.3
LUG AND BUSHING STRENGTH UNDER OBLIUUE LOAD 9.10
LUG A14D BUSHING STRENGTH UNDER TRANSVERSE LOAD 9.7
LUG AND BUSHING STRENGTH UNDER UNIFORM AXIAL LOAD 9.3
LUG ULARINb STREHiTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS 9.5.1
LUG BEARING STRENGTH UNDER UNIFORM AXIAL LOAD 9.3.1
LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR oOINT WITH LESS THAN 5 PCT ELONGATION 9.15.4
LUG DESIGN STRENGTH UNDER UNIFORM AXIAL LoAD 9.3.3
LUG NET-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.Z
LUG NET-SECTION STRENGTH UNDER UNIFORM AXIAL LOAD 9.302
LUG STRENGTH UNDER OBLIQUE LOAD 9.10.1
LUG STRENuTH UNDER TRANSVERSE LDAU 9.7.1
LUG TANG STRLNGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.4
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PIN SENDING STREN4GTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.3
PIN BENDING STREN6TH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.5
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.2
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5,4
PLATES UNDER COMBINED LOADINGS 6.8
SAMPLE PRobLEM - BAR UNDER CYCLIC TENSILE LOAD 3.6
SAMPLE PROBLEM - dAR UNDER STATIC TENSILE LOAD 3..
SAMPLE PRUBLEM - CONCENTRICALLY LOADEDLONG COLUMN IN BENDING 2.3.1.6
SAMPLE PROBLEM - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING 2.3.1.11• 9
SAMPLE PROBLEM - LONG ECCENTRICALLY LOADED COLUMNS AND EQUIVALENT ECCENTRICITY 2.3.1.9
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SAMPLE PROOLeM - USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS 2.3.1.11.2
SAMPLE PkOULEM-BEAMS UNDER CONDINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS 1.4.3
SHEAR LOADING OF LURVED PLATES 6.7
SINGLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD 9*5
SINGLE SHEAR JOINTS UNDER OBLIQUE LOAD 9.12
SINGLE SHEAR JOINTS UNDER TRANSVERSE LOAD 9.9
STATIC TENSILE LUADtNG OF BARS 3.3
STREiHGTH UF.LUG TANbS IN AXIALLY LOADED LUGS WITH LESS THAN S PCT ELONGATION 9.15.3
TORSIONAL LOADING OF BARS 3.9

LUNG
BENDING FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS 2.3.1.3
BENIIiiG FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS 2.3.1#7
COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS 2.3.1.1
LONG RECTANGULAR MEMBRANES 7.5.1
SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS 2.3.1.2
SAMPLE PROBLEM - CONCENTRICALLY LOADED LONG COLUMN IN BENDING 2.3.1.6
SAMPLE PRUbLEM - LONG ECCENTRICALLY LOADED COLUMNS AND EQUIVALENT ECCENTRICITY 2.3.1.9
SAMPLE PROBLEM - LONG RECTANGULAR MEMBRANES 7.5.Z

LUG
ANALYSIS OF LUGS WITH LESS THAN 5 PCT ELONGATION 9.10
AXIAL LUG DESIGN FOR PIN FAILURE 9.14.1
AXIAL LUG UESIGN FOR PIN FAILURE IN THE BENDING MODE 9.14.1.2
AXIAL LUG DESIG14 FOR PIN FAILURE IN THE SHEARING MODE 9.14.1.1
AXIALLY LOADED LUG DESIGN 9.14
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EXAMPLE OF AXIALLY LOADED LUG DESIGN 9.14.1.3
EXAMPLE OF UNIFORM AXIALLY LOADLD LUG ANALYSIS 9.6
EXAMPLE PROBLEM OF LUG FATIGUE ANALYSIS 9.18
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LUG ANALYSIS 9.
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LUG A,4D BUSHING STRENGTH UNDER UBLIUUE LOAD 9.10
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MEMBRANE
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES 7T5.3.2
CIRCOLAR MEMBRANES 7.3
INTRODUCTION TO MEMBRANES 7Te
LONG RECTANGULAR MEMBRANES 7.5*L
MEMBRANE ANALOGY FOR BEAMS IN ELASTIC TORSION 1.5.3.1
MEMBRANE STRESSES IN HEADS OF THIN CYLINURICAL PRESSURE VESSELS 8.3.1.2.1
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION 6.34.1
MEMBRANE STRESSES IN THIN CYLINUEkS 8.3.1.1.1
MEMBRANE STRESSES IN THIN SPHERtS
MEMBRANES 7.
NOMENCLATuRh FOR MEMBRANES 7.2
RECTANGULAR MEMBRANES 7.5
SAMPLE PROBLEM - CIRCULAR MEMBRANES 7.4
SAMPLE PRObLEM - LONG RECTANGULAR MEMBRANES 7T5.2"SAMPLE PRO.LEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES 8.3.1.1.3
SAMPLE PROBLEM - SHORT RECTANGULAR MEMBRANES 7.5.3.3
SHORT RECTANGULAR MEMBRANES 7.5.3
THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES 7.5.3.1

MODE
AXIAL LUG DESIGN FOR PIN FAILURE IN THE BENDING MODE 9.14.1.1AXIAL LUG DESIGN FOR PIN FAILURE IN THE SHEARING MODE 9.14.1.1

MODULUS
REDUCED MODULUS EQUATION 2.3.1.11.3
SAMPLE PRUOLEM - USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS 2.3.1.11.4
TANGENT MODuLJS EQUATION 2.3.1.11.1

MOMENT
APPLICATIUN OF THE THREE MOMENT EQUATION TO SOLVING FOR THE REACTIONS ON CONTINUOUS BEAMS 1.3.4.5
INTRODUCTION TO REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOAUING 1.3.4
MOMEHt OF INERTIA OF THE UPRIGHTS OF A PARTIAL TENSION UIELD BEAM 1.3.3.4
REACTION FORCEb AND MOMENTS ON BEAMS WITH BOTH ENDS FIXED 1.3.4.3
REACTION FORCES AND MOMENTS ON BEAMS WITH ONE FIXED END, AND ONE PINNED SUPPORT 1.3.4.1
REACTION FORCES AND MOMENTS ON LONTINUOub BEAMS 1.3.4.4
SAMPLE PRObLEM - REACTIONS ON CONTINUOUS BEAMS BY THE THREE MOMENT EQUATION 1.3.4.6
SAMPLE PROBLEM-SOLUTION OF FRAMES BY THE METHOD OF MOMENT DISTRIBUTION 5.4
SOLUTION OF FRAMES BY THE METHOD OF MOMENT DISTRIBUTION 5.3

MULTICELL
MULTICELL CLOSED BEAMS IN TORSION 1.5.2.2.7

MULTIPLE
MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS 9.13
STATICALLY INDETERMINATE TRUSSES WITH MULTIPLE REDUNDANCIES 4.4.4

NONCIRCULAR
EFFECT OF END RESTRAINT ON NONCIRCULAR BEAMS IN TORSION 1.5,.3
EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED BEAMS IN TORSION 1.5.2.2.4
NONCIRCULAR BEAMS IN TORSION 1.5.2
NUNCIRCULAR BEAMS WITH THIN OPEN SECTIONS IN TORSION 1.5.2.1.3
NONCIRCULAR CLOSED BEAMS IN TORSION 1.5.2.2
NONCIRCULAk OPEN BEAMS IN TORSION 1.5.2.1
NONCIRCULAk OPEN BEAMS WITH VARIOUS CROSS SECTIONS IN TORSION .5.z2.1.5
SAMPLE PRUBLEM - i.ONCIRCULAR CLUSED STIFFENED UNIFORM SECTION BEAM IN TORSION 1.5o2.2.5
SINGLE CELL NONCIRCULAR CLOSED bEAMS IN TORSION 1.5.2.2.1
SINGLE CELL 14UNCIRCULAR CLOSED BEAMS WITH UNIFORM CROSS SECTION IN TORSION 1.5.2.2.2
SINGLE CELL NUNCIRCULAR TAPERED'CLOSED BEAMS IN TORSION 1.5.2.2.3

NONUNIFORM
NONUNIFORM CIRCULAR BEAMS IN TORSION 1.5.1.2

OBLIQUE
BUCKLING OF uBLIQUE PLATES 6.9
BUSHING STRENGTH uNDER OBLIQUE LOAD 9.10.2
DOUBLL SHEAR JOINTS UNDER ObLIUUE LOAD 9.11
LUG ANiD BUSHING STRENGTH UNDER OBLIQUE LOAD 9.10 -
LUG 5rRENGTH UNDER OBLIQUE LOAD 9010.1
SINGLE SHEAR JOINTS UNDER OBLIQUE LOAD 9.12

OPEN
NONLIRCULAR BEAMS WITH THIN OPEN SECTIONS IN TORSION 1.5.2.1.3
NONCIRCULAR OPEN BEAMS IN TORSION 1.5.2ol
NONCIRCULAR OPEN BEAMS WITH VARIOUS CROSS SECTIONS &N TORSION ..S.Zol.5
SAMPLE PRUbLEM-NONCIRCULAR bEAMS WITH THIN OPEN SECTIONS IN TORSION 1.5.2.1.4

OUTSTANDING
CRIPPLING SIRESS OF OUTSTANDING FLANGES 2.3.2.3

PANELS
BUCKLING 01 SANDWICH PANELS 6.11

PIN
AXIAL LUG DESIGN FOR PIN FAILURE 9.14.l
AXIAL LUG DESIGN FOR PIN FAILURL IN THE BENDING MODE 9.14.1.2
AXIAL LUG DESIGN FOR PIN FAILURE IN THE SHEARING MODE 9.14.1.1
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SAMPLE PROBLEM - REACTIONS ON btAM WITH ONE FIXEV AND ONE PINNED SUPPORT 1.3.4.2
PLASTIC

SAMPLE PRUbLEM-SIMPLE BEAMS IN PLASTIC BENDING 1.3.1.4
SAND HEAP ANALOGY FOR BEAMS IN PLASTIC TORSION 1.5.3.k
SIMPLE BEAMS IN PLASTIC BENDING 1.3.1.3

PLATE
ANALYSIS OF PLATES 6.
AXIAL COMPkESSION OF CURVED PLATES 6.6
AXIAL COMPkESSICN OF FLAT PLATES 6.3
BEAN-SUPPURTLD FLAT PLATES IN BENDING 6.4.2
BENDING OF FLAT PLATES 6.4
BUCKLING OF OBLIUE PLATES 6.9
BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRESSION 6.3.3
BUCKLING OF UNbTIFFENED FLAT PLATES IN AXIAL COMPRESSION 6.3.1
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION 6.3.3
CURVED PLATES UNDER COMBINED LOADINGS 6.8.2
EMPIRICAL FORMULAS FOR ALLOWABLE BEARINt LOADS OF A CYLINDER ON A FLAT PLATE 11.7.1

FLAT PLATES UNDER COMBINED LOADINGS 6.8.1
INTRODUCTION TO ANALYSIS OF PLATES 6.1
NOMENCLATUkE FUR ANALYSIS OF PLATES 6.2
PLATES UNDER COMBINED LOADINGS 6.8
SHEAR BUCKLING OF FLAT PLATES 695
SHEAR LOADING OF CURVED PLATES 6.7
UNSTIFFENED FLAT PLATES IN BENDING 6.4.1

PRESS
STRESSES LUE TO PRESS FIT BUSHINGS 9.16

PRESSURE
ANISOTROPIL PRESSURE VESSELS 8.5
BUCKLING 6F THIN SIMPLE CYLINDERS Ui4DER EXTERNAL PRESSURE 8.3.1.3.1
BUCKLING LF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE a.3.1.3
BUCKLING UF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE 8.3.1.3
BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE 8.3.1.34
DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD 8.3.1.2.2.1
DISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD 8.3.1.2.2
DISCONTINUITY STRESSES IN THIN CYLINDRICAL RESSURE VESSELS WITH CONICAL HEADS 83.12
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT HEADS 8.3.L.2.2.3
HEADS OF THIN CYLINDRICAL PRESSURE VESSELS 8.3.1.2

INTRODUCTION TO PRESSURE VESSELS SE 8.1
MEMBRANE STRESSES IN HEADS OF THIN CYLINURICAL PRESSURE VESSELS 8.3.1.2.1
NOMENCLATURE FOR PRESSURE VESSELS 8.2
PRESSURE VESSELS 8.
SAMPLE PRObLEM -EUCKLIN6 OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE 8.3.1.3.1.1
SAMPLE PROBLEM - U1ICONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DiSHE, HEADS 8.3.02.2.1
SAMPLE PRCBLEM - OISCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS 8.3.1.Z.2.4.1
SAMPLE PROBLEM - DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT HEADS 8.3,12Z.4.3.1
SAMPLE PROBLEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE 8.3.2.2.1
SAMPLE PRObLEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE 8.3.2.2.1
SAMPLE PRObLEM - THICK CYLINDRICAL PRESSURE VESSEL 8.4.1.3
SAMPLE PRObLEM - THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE 8.3.2.1.1
SAMPLE PROBLEM - THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE 8.3.2.1.1
SIMPLE THIN PRESSURE VESSELS 8.3.1
STIFFLNED THIN PRE SSURE VESSELS 8.3.Z
STRESSES INI SMPLE CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORTS 8.3.1.4
THICK CYLINPRICAL PRESSURE VESSELS 8.4.1-
THICK CYLINDRICAL PRESSURE VESSELS UNDER EXTERNAL PRESSURE ONLY 8.4.1.2
THICK CYLINDRICAL PRESSURE VESSELS UNDER EXTERNAL PXESSURE ONLY 8.4.1.2
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PRESSURE ONLY 8.4.1.1
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PRESSURE ONLY 8.4.1*1
THICK PRESSURE VESSELS 8U4
THICK SPHERICAL PRESSURE VESSELS 8.4.2
THIN CYLINDRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL) 803.2.2
THIN CYLINtRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL) 8.3.2.2
THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE 8.3.2.1
THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE 8.3.2.1
THkIN PRESSURE VESSELS 8.3

PRESSURIZED
CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS 6.3,1.5
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING 8.301.5.Z.4
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION 8.311.5.1.2
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8.30105.3.4

INTERACTION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS 803.1.5.'
SAMPLE PROBLEM - CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3.401

PRIMARY
PRIMARY FAILURE OF SIMPLE COLUMNS 2.3.1

RATIO
CRITICAL EFFECTIVE SLENDERNESS RATIO 2.3.0111.?

REACTION

APPLICATION OF THE THREE MOMENT EQUATION TO SOLVING IOR THE REACTIONS ON CONTINUOUS BEAMS 1.3.4.5
INTRODUCTION TO REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING 1.3.4
REACTION FORCES AND MOMENTS ON bEAMS WITH BOTH ENDS FIXED 1.3.4.3

xxid



KEYWORD INDEX (continued)

REACTION fURCES AND MOMENTS ON bEAMS WITH ONE FIXED END AND ONE PINNED SUPPORT 1.3.4.1
REACTION FURCEb AID MOMENTS ON CONTIWUOUb BEAMS 1.3.4.4
SAMPLE PRubLEM - REACTIONS ON BEAM wITH ONE tIXED AND ONE PINNED SUPPORI 1.3.4.2
SAMPLE PRUbLEN - REACTIONS ON CONTINUOUS BEAMS BY THE THREE MOMENT EQUATION 1.3.4.6

RECTANGULAR
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES 7.5.3.2
LATERAL INSTAbILITY OF DEEP RECTANGULAR BEAMS IN BENDING 1.3.1.6
LONG RECTANGULAR ,IEMBRANES 7.5.1
RECTANGULAR BEAMS IN TORSION 1.5.2.1.2
RECTANGULAR FRAMLE 5.5
RECTANGULAR MEMBRANES 7.5
SAMPLE PRkbLEM - LONG RECTANGULAR MEMBRANES 7.5.2
SAMPLE PRObLEM - SHORT RECTANGULAR MEMBRANES 7.5.3.3
SHORT REC7ANGuLAR MEMBRANES 7.5,3
THEORETICAL RESULTS FOR SHORT RLCTANGULAR MEMBRANES 7.5.3.1

REDUCED
REDUCED MQUULUS EwUATION 2.3.1.11.3

REDUNDANCY
SAMPLE PRUbLEM-STATICALLY INDETERMINATE TRUSSES WITH A SINGLE REDUNDANCY 4.4.3
STATICALLN INDETERMINATE TRUSSES WITH A SINGLE REDUNDANCY 4.4.2
STATICALLY INDETERMINATE TRUSSES WITH MULTIPLE REDUNDANCIES 4.4.4

RESISTANT
FLANGES OF STIIFEIIEU SHEAR RESISTANT BEANS 1.3.2.4
INTROJUCTIUN TU SHEAR RESISTANT BEAMS IN BENDING 1.3.2.1
RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.0
SAMPLE PRObLEM-STIFPENED SHEAR RESISTANT bEAMS 1.3.2.7
STIFFENED SHEAR RtSISTANT BEAMS IN BENDING 1.3.2.3
STIFFENER-1D-FLANGE RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.3
UNSTIFFENED SHEAR RESISTANT BEAMS IN BENDING 1.3.2.2
WEB-TO-FLANGE RIVLTS IN SHEAR RLSISTANT BEAMS 1.3.2.6.1
WEB-TO-STIFFENEk RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.2
WEBS OF STIFFENED SHEAR RESISTANT BEAMS 1.3.2@5

RESTRAINT
EFFECT OF LND RESTRAINT ON NONCIRCULAR BEAMS IN TORSION 1.5.2.3

REVOLUTION
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION 8.3.1.1

RINrGS
CIRCULAR kINGS AND ARCHES 

509
FRAMES ANL RINGS S.
INTRODUCTIUN TO FRAMES AND RINGS 5.1
NOMENCLATURE FOR FRAMES AND RINGS 5.2
SAMPLE PRkuLEM-CIHCULAR RINGS AND ARCHES 5.10
THIN CYLINURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL) 6.3.2.2

RIVETS
BEARING STNESSES IN RIVETED CONNECTIONS 11.3
RIVETS AT THE ENDS OF PARTIAL TENSION FIELD BEAMS 1.3.3.12
RIVETS IN PARTIAL TENSION BEAMS WITH ACCESS HOLES 1.3.3.17
RIVETS IN PARTIAL TENSION F.ELD BEAMS 1.3.3.8
RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6
SAMPL4 PR~bLEM - BEARING STRESSES IN RIVETED CONNECTIONS I114
STIFFENER-7u-FLANL.E RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.3
UPRIGHT-Tu-FLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM 1.3.3.8.3
WEB-TO-FLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM 1.3.3.6.1
WEB-TO-FLANGE RIVETS IN SHEAR RLSISTANT BEAMS 1.3.2.6.1
WEB-TO-STIFFENER RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.1
WEB-To-UPRIGHT RIVETS IN PARTIAL TENSION FIELD BEAM 1.3.3.0.,

ROUND
CRIPPLING STRESS UF ROUND TUBES 2.3.2.1
HELICAL SPRINGS OF ROUNU WIRE 1.5.4.1
SAMPLE PRUbLEM - CRIPPLING STRESS OF ROUND TUBES 2.3.2.2

SANDWICH
BUCKLING UF SANDWICH PANELS 6.11

SECTION
APPLICATIUI. OF THE METHOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES 4.3.4
NONCIRCULAR BEAMS WITH THIN OPEN SECTIONS IN TORSION 1.50201.3
NONCIRCULAk OPEN BEAMS WITH VARIOUS CROSS SECTIONS IN TORSION 1.5.041.5
SAMPLE PROBLEM - NONCIRCULAR CLOSED STIFFENED UNIFORM SECTION BEAM IN TORSION 1.5.4.205
SAMPLE PROBLEM - STATICALLY DETERMINATE TRUSSES BY ThE METHOD OF SECTIONS 4.3.5
SAMPLE PRObLEM-NONCIRCULAR BEAMS WITH THIN OPEN SECTIONS IN TORSION 1.5.•2o.4
SINGLE CELL NONCIRCULAR CLOSED BEAMS WITH UNIFORM CROSS SECTION IN TORSION 1.5.2.2.2

SHAFT
ANALYSIS-uF COMBINED STRESSES IN TRANSMISSION SHAFTING 10.4
DESIGN PROCEDURE FOR CIRCULAR TRANSMISSION SHAFTING 10.6
DESIGN STRESSES AND LOAD VARIATIONS FOR TRANSMISSION SHAFTING 1005
GENERAL DESIGN EQUATION FOR CIRCULAR TRANSMISSION SHAFTING 10O8.2
INTRODUCTION TO TRANSMIOSION SHAFT ANALYSIS to0l
LOADINGS ON CIRCULAR TRANSMISSIUN SHAFTING 10.3
NOMENCLATURE USED IN TRANSMISSION SHAFTING ANALYSIS 10.2
SAMPLE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING 100601
TRANSMISSION SHAFTING ANALYSIS 10.

SHAPE
CRIPPLING STRESS OF ANGLE ELEMEhTS AND COMPLEX SHAPES 2.3.2.4
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ELASTIC STRESSES AND DEFORMATION OF VARIOUS SHAPES IN CONTACT 11*5
SAMPLE PRObLEM - CRIPPLING STRESS OF A COMPLEX SHAPE 2.3.2o5

SHEAR
AXIAL LUG DESIGN FOR PIN FAILURE IN THE SHEARING MODE 9ol4.1.1
BUSHING S1RLNGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.503
DOUBLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD 9.4
DOUBLE SHEAR JOINTS UNDER OBLIQUE LOAD 9.11
DOUBLE SHEAR JOINTS UNDER TRANSVERSE LOAD 908
FLANGES OF STIFFENED SHEAR RESISTANT BEAMS 1.3.2.4
INTRODUCTION TO SHEAR RESISTANT BEAMS IN BENDING 1.3.2.1
INTRODUCTION TO SHEýkR WEB BEAMS IN BENDING o.3.2
LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS 9.5.1
LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR .OINT WITH LESS THAN 5 PCT ELONGATION 901504
LUG NET-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 905*2
LUG TANG STRENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.4
LUG-BUSHING DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9,4.1
MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS 9.13
MULTIPLE SHEAR. Alit SINGLE SHEAR CONNECTIONS 9.13
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.3
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.505
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4o2
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4o2
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.4
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9*5t4
RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6
SAMPLE PROBLEM-STIFFENED SHEAR RESISTANT BEAMS 1.3.2.7
SHEAR BUCKLING OF FLAT PLATES 6.5
SHEAR LOADING uF CURVED PLATES 6.7
SINGLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD 9.5
SINGLE SHEAR JOINTS UNDER OBLIUUE LOAD 9.12
SINGLE SHEAR JOINTS UNDER TRANSVERSE LOAD 9.9
STIFFENED SHEAR RESISTANT BEAMS IN BENDING 1.3.2.3
STIFFENER-TO-FLANGE RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.3
UNSTIFFENED SHEAR RESISTANT BEANS IN BENDING 1.3.2.2
WEB-TO-FLANGE RIVETS IN SHEAR RESISTANT BEAMS 1.3.2964t
WEB-TO-STIFFENER RIVETS IN SHEAR RESISTANT BEAMS 1.3.26.2
WEBS OF STIFFENED SHEAR RESISTANT BEAMS 1.3.2.5

SHELLS
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION 8.3.1.1

SHORT
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES 7.5.3.2
BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS 2.3.1.11
BENDING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS 2.3.1.11.6
BENDI;4G FAILURE OF SHORT COLUMNS 2.3.1.10
COLUMN DATA. APPLICABLE TO BOTH LONG AND SHORT COLUMNS 2.3o•..
SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS 2.3.1.2
SAMPLE PRObLER - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING 2.3.1.11.9
SAMPLE PROBLEM - SHORT RECTANGULAR MEMBRANES 7.5.3o3
SAMPLE PROBLEM - USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS 203.1.11.0
SAMPLE PROBLEM - USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS 2.3.1.11.2
SHORT RECTANGULAR MEMBRANES 7.5.3
THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES 7.5..1•

SIMPLE
BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE 8.3.1.3.1,
BUCKLING OF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE 8.3.1.3
BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE 8.3.t.3.2
CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS 8.30.05
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING 8.3.1.5.2.2
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION 8.3.1.5.1.4
CRIPPLING STRESS'UF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 683.1.5.3.o
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING 8.3.1..• 2
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSION 8.3.1.5.1
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3
CRIPPLING STRESS OF UNPRESSURIzED SIMPLE THIN CYLINDERS IN BENDING 8.3.1.4.2.1
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION 8.3.1.5.1.1
CRIPPLING STRESS jF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3.1
FORMULAS FOR SIMPLE FRAMES 5.7
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION 8.3.1.1
PRIMARY FAILURE OF SIMPLE COLUMNS 2.3.l
SAMPLE PRObLEM - BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE 8.3.1.3.1.1
SAMPLE PROBLEM - CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING 8.3.1.5.4• L

w SAMPLE PRobLEM - CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3.4.
SAMPLE PRObLEM - TORSIONAL FAILURE OF SIMPLE COLUMNS 2*3.1.13
SAMPLE PkObLEM-FORMULAS FOR SIMPLE FRAMES 5.8
SIMPLE BEANS IN BENDING 1.0.1
SIMPLE BEANS IN ELASTIC BENDING 1.3.1.1
SIMPLE BEAMS IN PLASTIC BENDING 1.3.1.3
SIMPLE COLUMNS 2.3
SIMPLE THIN PRESSURE VESSELS 8.3.1
STRESSES IN SIMPLE CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORTS 8.3.1*4
TORSIONAL FAILURE OF SIMPLE COLUMNS 2.3.1.12
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SLENDERNESS
CRITICAL EFFECTIVE SLENDERNESS RATIO 2.3.1.11.T

SPHERES
BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE 0.3. .
EMPIRICAL FORMULA FoR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT 11.T.2
MEMBRANE STRESSES IN THIN SPHERES B.3.1.1.2
SAMPLE PROBLEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES 6.3.1.1.3
THICK SPHERICAL PRESSURE VESSELS 0.4e2

SPRINGS
HELICAL SPRINGS 1.5.4
HELICAL SPRINGS OF ROUND WIRE 1.5.4• 1
HELICAL SPRINGS OF SQUARE WIRE 1.5.4,2

SQUARE
HELICAL SPRINGS OF SQUARE WIRE 1.5•4•2

STATIC
SAMPLE PRObLEM - 8AR UNDER STATIC TENSILE LOAD 3.4
STArIC TENSILE LOADING OF BARS 3.3

STATICALLY
APPLICATION OF THE METHOD OF JOINTS TO STATICALLY DETERMINATE TRUSSES 4.3.2
APPLICATION OF THE METHOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES 4.3.4
DEFLECTIONS IN STATICALLY DETERMINATE TRUSSES 4.3.6
INTRODUCTION TO STATICALLY DETERMINATE TRUSSES 4.3.1
INTRODUCTION TO STATICALLY INDETERMINATE TRUSSES 4.4.1
SAMPLE PROBLEM - STATICALLY DETLRMINATE TRUSSES BY THE METHOD OF SECTIONS 4.3.5
SAMPLE PRObLEM-APPLICATION OF THE METHOD OF JOINTS TO STATICALLY DETERMINATE TRUSSES 4.3.3
SAMPLE PRObLEM-DEFLECTIONS IN STATICALLY DETERMINATE TRUSSLS 4o3.7
STATICALLY DETERMINATE TRUSSES 4.3
STATICALLY INDETERMINATE TRUSSES 4.4
STATICALLY INDETERMINATE TRUSSES WITH A SINGLE REDUNDANCY 4.4.2
STATICALLY INDETERMINATE TRUSSES WITH MULTIPLE REDUNDANCIES 4.4.4

STEEL
EMPIRICAL FORMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT 11.7.2

STEPPED
SAMPLE PROBLEM - STEPPED COLUMN 2.4,2
STEPPED AND TAPERED COLUMNS 2.4.1

STIFFENERS
BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRLSSION 6.0.2
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION 60306
EFFECT OF STIFFENERS ON NONCIRCuLAR CLOSED BEAMS IN TORSION 1.5.2.2.4
FLANGES OF STIFFENEU'SHEAR RESISTANT BEAMS 1.3.2.4
SAMPLE PROBLEM - NONCIRCULAR CLOSED STIFFENED UNIFORM SECTION BEAM IN TORSION 1.5.2.2.5
SAMPLE PROBLEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE 6.3.2.2.1
STIFFENED SHEAR RESISTANT BEAMS IN BENDING 1.3.2.3
STIFFENED THIN PRESSURE VESSELS 0.3.Z
STIFFENER-TO-FLANGE RIVETS IN SHEAR RESISTANT BEAMS 1.3.2.6.3
WEBS OF STIFFENED SHEAR RESISTANT BEAMS 1.3.2.5

STRAIGHT
SAMPLE PRUBLEM - USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS Z23.111.e
STRAIGHT LINE EQUATION 2.3.1.11.5

STRENGTH
BEARING STRENGTH OF AXIALLY LOAIDED LUGS WITH LESS THAN 5 PCT ELONGATION 9.15.1
BEARING 5TMLNGTH OF TRANSVERSELY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION 9115.5
BUSHING BEARING STRENGTH UNDER oNIFORM AXIAL LOAD 9*3.4
BUSHING SlRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5*3
BUSHING STRENGTH UNDER OBLIQUE LOAD 9.10.2
BUSHING STRENGTH UNDER TRANSVERSE LOAD 997.2
COMBINED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AXIAL LOAD 993*5
DOUBLE SHLAR JOINT STRENGTH UNDLR UNIFORM AXIAL LOAD 9.4
LUG AND BUSHING STRENGTH UNDER UBLIUdE LOAD 9.10
LUG AND BUSHING STRENGTH UNDER TRANSVERSE LOAD 9.7
LUG AND BUSHING STRENGTH UNOER UNIFORM AXIAL LOAD 9.3
LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS 9.5.1
LUG BEARINO STRENGTH UNDER UNIFORM AXIAL LOAD 9.3.1
LUG buSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR 4OINT WITH LESS THAN S PCT ELONGATION 9.15.4
LUG DESIGN STRENGTH UNDER UNIFORM AXIAL LOAD 9.3.3
LUG NET-SELtION STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.2
LUG NET-SELTION STRENGTH UNDER UNIFORM AXIAL LOAD 9.3.2
LUG STRENGTH UNDER OBLIQUE LOAD 9.10.1
LUG STRENGTH UNDER TRANSVERSE LOAD 9.7.1
LUG TANG STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.4
LUG-BuSHING DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC, 9.4.1
NET-SECTION STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION 9.15.2
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9*4,3
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.5
PIN SHEAR STRENGTH tOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.4.2
PIN S-EAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9.5.4
SINGLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD 9.5
STRENGTH OF LUG TANGS IN AXIALLY LOADED LOGS WITH LESS THAN 5 PCT ELONGATION 9.15.3

STRESS
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM l.3*3.6
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ANALYSIS OF COMBINEU STRESSES IN TRANSMISSIUN SHAFTINb 10.4
BEARING STRESSES lit
BEARIAG STRESSES IN RIVETED CONNECTIONS 11.3
COMPUTED STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM 1.3.3.5
CRIPPLING STRESS OF ANGLE ELEMENTS AND COMPLEX SHAPES 2.3.2.4
CRIPPLING STRESSOF I BEAMS 2#3.296
CRIPPLING STRESS OF OUTSTANDING FLANGES 2.3*23
CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS 8.3.1.5
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING 863.1054.2
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION 8.31•.5.L.2
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3.2
CRIPPLING STRESS OF ROUND TUBES 2,3.2.1
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDINO 8.3.1,5.2
CRIPPLING STRESS oF SIMPLE THIN CYLINDERS IN COMPRESSION 83.1•5.1
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN TORSION 8.3.1.5.3
CRIPPLING STRESS oF UNPRESSURIZED SIMPLE THIN CYLINDERS IN BENDING 6.3.*1.52.1
CRIPPLING STRESS OF UNPRESSURIZLD SIMPLE THIN CYLINDERS IN COMPRESSION 8.3.l.5o.1.
CRIPPLING STRESS OF UNPRESSURIZLO SIMPLE THIN CYLINDERS IN TORSION 8.3.01,53.1
DESIGN STRESSES AND LOAD VARIATIONS FOR TRANSMIbSION SHAFTING 10.5
DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD 8.3.1.2.2*Z
DISCONTINUITY STRESSES AT THE jUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD 8.3.1.2.2
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS 8.3.1.2.2.'
DISCONdTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT HEADS 5.3.1.2.203

ELASTIC STRESSES AND DEFORMATION OF VARIOUS SHAPES IN CONTACT 11.4
INTRODUCTION TO BEARING STRESSES 11.1
INTRODUCTION TO DISCONTINUITY STRESSES 803.1.2..•,
MEMBRANE STRESSES IN HEADS OF THIN CYLINURICAL PRESSURE VESSELS 8.3410.21
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INTRODUCTION

This introduction serves a threefold purpose: (1) it summarizes the
eleven chapters making up this manual; (2) it references several publications
which contain related information; and (3) it lists the nomenclature most
commonly used in the chapters.

CHAPTER SUMMARIES

Chapter 1 - Beams

Section 1. 3 of this chapter presents the method of analysis for simple,
shear web, and partial-tension-field beams in bending, as well as methods
of determining the reactions on statically indeterminate beams. Section 1. 4
treats beam columns, and Section 1. 5 covers beams in torsion including
helical springs.

Chapter 2 - Column Analysis

Section 2. Z of this chapter treats primary bending and torsional failure
as well as crippling failure of columns of uniform cross section. Stepped and
tapered columns are treated in Section Z. 3, and the material on beam columns
is in Chapter 1.

Chapter 3 - Bar Analysis

This chapter treats bars in tension with emphasis upon the effect of
stress raisers.

Chapter 4 - Trusses

Section 4. 3 of Chapter 4 gives methods of determining the stresses and
deflections of statically determinate trusses, and Section 4. 4 treats statically
indeterminate trusses.

Chapter 5 - Frames and Rings

This chapter gives a general treatment of frames composed of straight
elements of uniform cross section, in addition to particular solutions for
various simple frames and circular rings under several types of loadings.

Chapter 6 - Plates

Methods for determining the critical buckling stress of both flat and
curved plates with and without stiffeners and having various loadings are
given. Charts and curves covering most common loadings and supports
facilitate analysis.
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Chapter 7 - Membranes

Circular, square, and rectangular membranes under uniform pressure
are treated in this chapter.

Chapter 8 - Pressure Vessels

Section 8. 3 treats thin pressure vessels both with and without stiffeners.
Stresses due to supports as well as membrane and discontinuity stresses are
considered for thin pressure vessels without stiffeners. The analysis of thick
pressure vessels is considered in Section 8. 4, and glass fiber pressure
vessels are briefly discussed in Section 8. 5.

Chapter 9 - Lug Analysis

This chapter presents methods of analyzing lugs and their pins and
bushings under various loading angles.

Chapter 10 - Shafts

The analysis of power transmission shafting is presented for circular
shafts. Methods for treating discontinuities such as keyways, grooves, holes,
and steps are given. A general design equation is presented to facilitate
analysis.

Chapter 11 - Bearing Stresses

This chapter treats bearing stresses in riveted joints as well as those
between elastic bodies of various shapes. Formulas are also given for the
deformations of elastic bodies in contact.

REFERENCES

The following references are given to aid the reader in finding other
treatments of the work contained in this manual. It is evident that a work
of this nature owes a great deal to previous works. In particular, the
editors wish to acknowledge the kind permission of the Frederick Ungar
Publishing Company, 250 Park Avenue South, New York, N. Y. for the use
of material from the volume "Handbook of Formulas for Stress and Strain"
(1966) by William Griffel. Much of the data in Chapters 6 and 8 was
derived from this handbook.
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NOMENCLATURE

The most commonly used nomenclature is presented here. Complete
lists of nomenclature are available at the beginning of each chapter.

A area
a 1/2 the major diameter of an ellipse
a plate length
a linear dimension as indicated in diagrams
a subscript, allowable

:it subscript, allowable

ax subscript, axial
B ductility factor for lugs with less than 5% elongation
b i/Z the minor diameter of an ellipse
b plate width
b linear dimension as indicated in diagrams
b effective bearing width

b subscript, bending

br subscript, bearing
C centroid
C coefficient of constraint for columns
C numerical constant
CBT torsion - bending coefficient
Cr rivet factor
c 1/2 the minor diameter of an ellipse
c distance from neutral axis to extreme fiber
c linear dimension as indicated in diagrams

subscript, compression
subscript, crippling

cr subscript, critical
D diameter
DF distribution factor
d .mean diameter
d linear dimension as indicated in diagrams
E modulus of elasticity
Er reduced modulus
E, secant modulus
Et tangent modulus
e eccentricity
e strain
F allowable stress
F acel allowable stress for concentrically loaded column
Fb allowable bending stress
Fbr allowable bearing stress
Fbru allowable ultimate bearing stress
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Fbry allowable yield bearing stress

F 0  allowable compressive stress
F0e allowable crippling stress
Foot allowable column stress (upper limit of column stress

for primary failure)
FoP proportional limit in compression
For critical stress
FOY compressive yield stress
Fo allowable web shear stress
File* crippling stress in shear
'For critical buckling stress
Flu allowable ultimate shear stress
Foy yield stress in shear
Fty yield stress in tension
FEM fixed-end moment
FS factor of safety
f calculated stress
f• bcalculated bending stress
fb r calculated bearing stress
fc calculated compressive stress
fo calculated shear stress
ft calculated tensile stress
G modulus of elasticity in shear
H horizontal reaction
h height
hp horsepower
I moment of inertia
IP polar moment of inertia

subscript, inside
J torsion constant
J polar moment of inertia
K a constant, generally empirical
k radius of gyration
k diagonal tension factor
k a constant, generally empirical
L length
L" effective length
M moment
M empirical constant in straight line column equation
N number of cycles
N empirical constant in straight line column equation
n number of elements
n •factor of safety
n empirical constant

0 subscript, outside
P applied concentrated load
P axial load
P allowable load
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P& alternating load
POO crippling load
Per critical load
p pressure or pressure difference
p rivet spacing
P subscript, polar
P subscript, pressurized
Q statical moment of a cross section
q shear flow
q notch sensitivity factor
R reaction force
R radius or radius of curvature
R stress ratio - f/F
r radius
r cylindrical or polar coordinate

r subscript, radial
r subscript, ring
r subscript, rivet
S tension force per inch on the edge of a membrane
s distance measured along a curved path
* subscr.ipt, shear
, subscript, skin

,t subscript, stringer
T torque
T tensile force
T thickness of pressure vessel head
t thickness
t subscript, tension

tr subscript, transverse

u subscript, ultimate

u subscript, upright
V shear force
V vertical reaction
V velocity
W applied concentrated load
W total load
W potential energy
w applied distributed load
w width

subscript, web
x force in redundant member of a truss
x rectangular coordinate
y rectangular coordinate
y deflection

subscript, yield
z rectangular coordinate

aI empirical constant

a. angle

6



empirical constant
angle
increment or difference

6 deflection

E: strain

TI plasticity coefficient
cylindrical coordinate

e angle or angular deflection

empirical constant

x half wavelength of buckling

Poisson's ratio

torsional spring constant

elastic Poisson's ratio

LIP plastic Poisson's ratio

V Poisson's ratio

, elastic Poisson's ratio

plastic Poisson's ratio

P radius of gyration

p density

71 summation

CP angle or angular deflection

4rangular deflection

(2 empirical constant

W angular velocity
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1. B EAMS

1. 1 Introduction to the Analysis of Beams

Beams under various loadings are considered in this chapter. Section 1. 3
treats beams in bending while beams under combined axial and transverse loads
and beams in torsion are treated in Sections 1.4 and 1. 5, respectively.

1.2 Nomenclature for the Analysis of Beams

A = cross-sectional area
A = area of moment diagram
A = constant of integration
A = width of the larger leg of an angle section
At = cross-sectional area of tension or compression flange
A% = cross-sectional area of upright or stiffener
Aue = effective cross-sectional area of upright or stiffener
a = 1/2 the major diameter of an ellipse
a = linear dimension
a -

a =/EIy h 2 /4 GJ for an I beam of depth h
a = distance from the left end of a span to the centroid

of its moment diagram
B = width of the smaller leg of an angle section
B = constant of integration
b = 1/2 the minor diameter of an ellipse
b = width of section
b = developed length of thin section
b = linear dimension
b = subscript, bending

b= distance from the right end of a span to the centroid
of its moment diagram

C = centroid of moment diagram
CI, CZC3 = stress concentration factors

C" = rivet factor (rivet spacing - rivet diameter

rivet spacing

c = distance from neutral axis to extreme fiber
c = linear dimension
ct = distance from neutral axis of flange to the extreme

fiber of flange
= subscript, critical

D = diameter
DI = inside diameter

Do = outside diameter
d = linear dimension
d = stiffener spacing
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E = modulus of elasticity
e = distance from centroid of upright to web

= subscript, effective
= allowable crippling stress of upright

F.0 = column yield stress (allowable column stress at
L'I/p = 0)

Fool = allowable column stress
FMX = ultimate allowable compressive stress for natural

crippling
FO = ultimate allowable compressive stress for forced

crippling
F" = reduced ultimate allowable compressive stress for

forced crippling
FS = allowable web shear stress
F I = reduced allowable web shear stress
F,0o0 o = collapsing shear stress for solid unstiffened webs
Po0o = critical (or initial) buckling stress
Fit = torsional modulus of rupture
Pau = ultimate stress in pure shear
Fl = yield stress in pure shear
Ftu = ultimate tensile stress

t = subscript, flange

fb = calculated primary bending stress
f cant =calculated compressive stress at the centroidal axis

of the upright
fer = calculated critical compressive stress
ft = calculated stress in flange due to the horizontal component

of diagonal tension in a partial tension field beam
fS =calculated shear stress
fob = secondary bending moment in flange
fu = calculated average compressive stress in upright
fume% = calculated maximum compressive stress in upright
G = modulus of elasticity in shear
h = height or depth - height of shear web beam between

centroids of flanges
I = moment of inertia
It = average moment of inertia of beam flanges
IP = polar moment of inertia
I5 = required moment of inertia of upright or stiffener

about its base

Iu -= moment of inertia of upright or stiffener about its base
= subscript, inside

J= torsion constant

K = a constant
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k = diagonal tension factor
L = length

L" = effective length of beam
M = applied bending moment

Mr = critical moment
MrP = fully plastic bending moment
M b = secondary bending moment in flange
Mt = bending moment due to transverse loads alone
My = bending moment at the onset of yielding
m = coefficient given by Figure 1-8
n = number of active spring coils
n = constant given in Section 1. 3. 1. 6

= subscript, outside
P = applied, concentrated load
P = axial load

Pis = upright end load
p = rivet spacing
p = pressure
Q = statical moment of cross section - Ay

q = shear flow

qA = beam shear at a distance of Zh/3 from the beam end
q, = shear load of web to flange rivets (lb/in.)
qt = tension load on web to upright rivets (lb/in.)
qt = increased tension load on web to upright rivets (lb/in.)
R = reaction
r = radius

= subscript, rivet
r= inside radius
r. = outside radius
S = tension force on edge of membrane (lb/in.)
s = distance measured along curved path
s = di stance from centroidal axis to point of application

of load
= subscript, shear

T = torque

To&% = maximum allowable torque
t = thickness

t = subscript, tension
to = effective thickness
tr = flange thickness

t, = skin thickness
tt = thickness of closed stiffener
tu = upright. thickness

t' = web thickness

U = L for beam column
El
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U = developed length of elongated section

= subscript, ultimate
U = subscript, upright
V = shear force
W = concentrated transverse load
w = distributed transverse load
If = subscript, web
x, y, z = rectangular coordinates
y = deflection of beam due to bending

= subscript, yield
aX = angle of diagonal tension

a = coefficient given by Table 1-14
= coefficient given by Table 1-14

6 = spring deflection
60 = portion of spring deflection due to direct shear
1 = plasticity coefficient
p = radius of gyration
0 = slope of beam

= summation

1. 3 Introduction to Beams in Bending

For the purposes of discussion, beams in bending are divided here into
simple beams (Section 1. 3. 1) and shear web beams (Section 1. 3. 2). Shear
web beams are further subdivided into shear resistant beams and partial
tension field beams. If a beam is statically indeterminate, Section 1. 3.4
must be consulted in order to determine the reaction forces and moments.
Otherwise, the equations of statics may be used to determine the reactions.

1. 3. 1 Simple Beams in Bending

Simple beams in elastic and plastic bending are treated in Sections
1. 3. 1. 1 and 1. 3. 1. 3, respectively, while the possibility of lateral instability
of deep beams in bending is treated in Section 1. 3. 1. 5.

1. 3. 1. 1 Simple Beams in Elastic Bending

This section treats simple beams in bending for which the maximum
stress remains in the elastic range.

The maximum bending stress in such a beam is given by the formula

- Mc (1-1)
I

while the shear flow is given by VQ (1-2)

q
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where Q = .A ydA. The use of these equations is illustrated in Section 1.3..Z. 2.
1

The vertical and angular displacements of a simple beam in elastic
bending are given by Equations (1-3) and (1-4), respectively, where A and B
are constants of integration.

Y = M dx2 + Ax + B (1-3)
0 El

e - M _f-M dx+A (1-4)dx El

1.3. 1. 2 Sample Problem - Simple Beams in Elastic Bending

Given: The cantilever beam shown in Figure 1-1.

Y y 50 lb.
1 in. square aluminumn bar
1 = 0. 0833

/X

20

Figure 1-1. Cantilever Beam in Bending

Find: The maximum bending and shear stresses.

Solution: From the equations of statics, the shear and moment
diagrams in Figure 1-Z may be obtained.

50 '

V = 50.

M

M 5Ox 1000

-1000

Figure 1-Z. Shear and Moment Diagrams for the

Beam in Figure 1-1
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Since c and I are constant along the beam, the maximum bending
stress occurs at the point of maximum bending moment; and from
Equation (1 - 1),

SMc _ -1000(0. 5) = 6,000 psiI 1 0.0833

Q may be computed at a distance yl from the neutral axis by
considering the beam cross section shown in Figure 1-3:

1f '.2
Q = ydA f y (1) dy = 2

A1 Y

Q is maximum at Y, = 0 where Q = 1/2. Thus, the maximum
shear flow occurs at the neutral axis and is given by Equation
(1-2) as

VQ 50(0. 5) = 300 lb/in.
1 =0.0833

The maximum shear stress is thus,

300 lb/in. _ 300 lb/in. 2
1 in.

Al

jj neutral axis

Figure 1-3. Cross Section of Beam

1.3. 1.3 Simple Beams in Plastic Bending

In some cases, yielding of a beam in bending is permissible. If
the beam material may be considered to be elastic-perfectly plastic, the
bending moment at failure is given by

Mt = k My (1-5)

where My, is the moment that causes initial yielding of the extreme fibers
and K is the shape factor given in Table I-1.
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TABLE 1-1

Values of the Shape Factor, K

VAt
Section A 0 hl h

K _ ___1 1___ 2.0 1.70___ -"23S3 3(D4 - i4 b 2blhl

All mass is assumed to be concentrated at the centroids of the flanges.

1.3. 1.4 Sample Problem - Simple Beams in Plastic Bending

Given: The simply supported beam shown in Figure 1-4.

20 zo

2x 1 C1045 Annealed Steel Bar
Fy = 55,000 psi, I = 0.666 in. 4

Figure 1-4. Simply Supported Beam in Bending

Find: The load, P, that causes fully plastic bending.

Solution: Rearranging Equation (1-1) and replacing the bending
stress with the yield stress gives

my= FYI 55000(.-666) = 36, 600 in./lb.
c 1.0

Inserting the value of K from Table 1-1 into Equation (1-5) gives

Mr = K My = 1. 5 (36, 600) = 54, 900 in. /lb.

From statics, the maximum moment on the bar is 10P. Thus,
for fully plastic bending,

P - P -5,490 lb.
10
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1. 3. 1. 5 Introduction to Lateral Instability of Deep Beams in Bending

Beams in bending under certain conditions of loading and restraint
can fail by lateral buckling in a manner similar to that of columns loaded in
axial compression. However, it is conservative to obtain the buckling load
by considering the compression side of the beam as a column since this
approach neglects the torsional rigidity of the beam.

In general, the critical bending moment for the lateral instability
of the deep beam, such as that shown in Figure 1-5, may be expressed as

K /EI GJ
Ma L (1-6)

where J is the torsion constant of the beam and K is a constant dependent on
the type of loading and end restraint. Thus, the critical compressive stress
is given by

f 0 -Mc (1-7)

I

where c is the distance from the centroidal axis to the extreme compression
fibers. If this compressive str'ess falls in the plastic range, an equivalent
slenderness ratio may be calculated as

T E (1-8)

\h

Figure 1-5. Deep Rectangular Beam
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The actual critical stress may then be found by entering the column curves
of Chapter 2 at this value of (L'/p). This value of stress is not the true com-
pressive stress in the beam, but is sufficiently accurate to permit its use as
a design guide.

1.3. 1.6 Lateral Instability of Deep Rectangular Beams in Bending

The critical moment for deep rectangular beams loaded in the
elastic range loaded along the centroidal axis is given by

Mor = 0. 0985 K. E (1-9)

where K. is presented in Table 1-2, and b, h, and L are as shown in Figure

1-5. The critical stress for such a beam is

for = KrE (-- ) (1-10)

where KV is presented in Table 1-2.

If the beam is not loaded along the centroidal axis, as shown in

Figure 1-6, a corrected value Kf' is used in place of Kf in Equation (1-10).
This factor is expressed as

K," K, (l- n)( _ (I ii

where n is a constant defined below:

(1) For simply supported beams with a concentrated load at mid-
span, n = 2. 84.

(2) For cantilever beams with a concentrated end load, n = 0. 816.

(3) For simply supported beams under a uniform load, n = 2. 5Z.

(4) For cantilever beams under a uniform load, n = 0. 725.

Note: s is negative if centroidal
the point of appli- axids
cation of the load s
is below the cen-
troidal axis.

Figure 1-6. Deep Rectangular Beam Loaded at a Point Removed

from the Centroi-dal Axis
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TABLE 1-2

Constants for Determining the Lateral Stability of Deep

Rectangular Beams in Bending

Type of Loading and Constraint

Case Kf Km

Side View Top View

Sj1.86 3.14

2 - # ~ - ~3. 71 6. 28

3 (LIIIZ ~ ~ - -3. 71 6. 28

4 -. 5.45 9. 22

5 ,1- -- 2.09 3.54

6 *A LA 3.61 6.10

7-4.87 8.24

8 'Zi I .... - z 2. 50 4.235

9 3.82 6.47

10iI 6.57 11.12

.11 I•,• .•• 7.74 13.1

12 Zzzz- 3.,13 5. 29

13 3.48 5.88
SI-

14 . L -- {..h 2.37 4.01

15 -Z- 2.37 4.01

16 t 3.80 6.43

17 - 3.80 6.43
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TABLE 1-2

Constants for Determining the Lateral Stability of Deep
Rectangular Beams in Bending (concluded)

rM= Kf/. 5913.0

Kf
2.0_ _

1.00 I I I i
1 .10 .20 .30 .40 .50

c/L

1. 3. 1. 7 Lateral Instability of Deep I Beams

Figure 1-7 shows a deep I beam.

S ,.tw

h

Figure 1-7. Deep I Beam

The critical stress of such a beam in the elastic range is given by

fo? = K, ( L (YI- Z)

x

where KI may be obtained from Table 1-3, and a is given by

a= EEI h/4 GJ (1-13)
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where J is the torsion constant of the I beam. This constant may be approxi-

mated by

J = 1/3 (2b t 3 + h t 3) (1-14)

This method can be applied only if the load is applied at the centroidal axis.

TABLE 1-3

Constants for Determining the Lateral Stability of I-Beams

Type of Loading and Constraint

Case KI -
.Side View Top View

1i (E)

2 . "-'-" (E)

3 m 3 (E)~ 16

* Use Figure 1-8 to obtain m
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4 0... l l. .. I
30 I 1111 Case 4

S1J

20 --

Case 2

)080 - ---- - - -

6 .. .. . \ -

L 4
a 3--- \ ,

2\

1.0------ -

N -t

.6- - - ~ - Case 3

.4 \>1-

.3r - ~ s I---r 1
3 4 5 6 S 10 20 30 40 5060 80 1n0

Figure 1-8. Values of m for Table 1-3

1. 3.Z Introduction to Shear Web Beams in Bending

The most efficient type of beam is one in which the material resist-

ing bending is concentrated as near the extreme fiber as possible and the
material resisting shear is a thin web connecting tension and compression
flanges. The simplifying assumption that all the mass is concentrated at the

centroids of the flanges may be made for such beams, thus reducing the
simple beam formulas to f. = M/Afh for bending and to f, = V/ht for shear.

The flanges resist all bending and the web resists all shear.

These beams are divided into two types, shear resistant and partial
tension field beams. The webs of shear resistant beams resist the shear load

1 -13



without buckling, and the webs of partial tension field beams buckle at less
than the maximum beam load.

If/"V/h is less than seven, the use of a partial tension beam is
recommended on the basis of weight economy; and the use of a shear resis-
tant beam is recommended if /-V-/h is greater than eleven. If 7, <[-V/h < 11,
factors other than weight will determine the type of beam used.

1. 3. 2. 1 Introduction to Shear Resistant Beams in Bending

If the web of a shear resistant beam is sufficiently thin, the sim-
plifying assumption that all the mass is concentrated at the centroids of the
flanges may be made. This reduces the simple beam formulas to

ft = M (1-15)
A h

for bending, and

V _ _q (1-16)
Sht t

for shear. The flanges resist all of the bending and the webs resist all of
the shear. Unstiffened shear resistant beams are discussed in Section
1. 3. 2.2 while stiffened shear resistant beams are treated in Section 1. 3.2. 3.

1. 3. 2.2 Unstiffened Shear Resistant Beams in Bending

Both the web and flanges of an unstiffened shear resistant beam
must be checked for failure. The flange is generally considered to have
failed if the bending stress in it exceeds the yield stress of the material,
although bending in the plastic range may be used if some permanent set can
be permitted.

The web must be checked for ultimate load as well as for collapse.
If the web is not subject to collapse, the allowable average stress at ultimate
load, F,, will be either 85% of the ultimate strength in shear or 125% of the
yield strength in shear. Figure 1-9 gives the collapsing stress for two alumi-
num alloys. It should be noted that for thinner webs (h/t > 60), initial buck-
ling does not cause collapse.

In conclusion, the required thickness of a thin unstiffened web is
given by

V (1- 17)
hF$

or

V
S= (1-18)

hF90011

whichever is larger.
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40.0

30.0

25.0- ___ _

65.0 --

40.0

2.0h
00

1.o

30.5

1.5-

/.6

0. 0.8

0.9 Efficient Design
0.9.4_ Cutoff

0.3

0.2

I/ A should be below cutoff

0 1 2 3 4 5 6 7 8 9 1-0 11 12

K5

Figure 1-10. Critical Shear Stress Coefficient, K,
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Read Read

4Z Left Right
Scale Scale

4 !--20

75S-T AIc
3.) - 18

36 iiIiiiiiii11hi- 16
34 -- 14

x 32 2- 1

o 30 - 10
0

t= 015

28 8

26 6.025 6

.032--
24 - 4

24S-T Ale .0512Z .~~064--- 220 0

0 40 80 120 160 200 240 280

h Height of Beam
t Web Thickness

Figure 1-9. Collapsing Shear Stress, F6 a0 1 l, for Solid Webs of Z4S-T
and 75S-T Alclad Sheet

1. 3.2.3 Stiffened Shear Resistant Beams in Bending

The vertical stiffeners in a shear resistant beam resist no com-
pressive load, as is the case for tension field beams, but only divide the web
into smaller unsupported rectangles, thus increasing the web buckling stress.
The flange web and rivets of such a beam must be analyzed.

1. 3. Z.4 Flanges of Stiffened Shear Resistant Beams

The flanges of a stiffened shear-resistant beam must be checked
for yielding or ultimate strength by means of Equation (1-15) as in the case of
unstiffened shear resistant beams.

1. 3. Z. 5 Webs of Stiffened Shear Resistant Beams

The web panel of a stiffened shear-resistant beam must be checked
for strength as well as for stability.

The strength of such a web may be checked by Equation (1-16) as
in the case of unstiffened shear resistant beams, and the stability of such a
beam may be checked by Equation (1- 19) in conjunction with Figures 1- 10
through 1-16.
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SAMPLE PROBLEM 1.3.2.7

Ns = 6.9

t = 081 in.

t 2  E = 10x106 psi
Fscr/

-C - ' KE s.-) d 6 in.

F sc'r =12, 500 psi

Figure 1-11. Nomograph for Critical Buckling Stress (Equation 1-19)
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Figure 1-13. F,,, versus Fsor/-n for Stainless Steel
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Figure 1-14. Fea. versus Fear /I for Aluminum and Magnesium
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Figure 1-16. Flor versus F.../• for 356-T6 Sand Casting

The critical buckling stress of a web panel of height h, width d,
and thickness t, is given by

Fier K E t" ) - (1-19)

In this equation, K. is a function of d/h and the edge restraint of the web panel.
Figure 1-10 relates K. to d/h and Iu/ht3. . Once K, has been found, Fer/Tj may
be obtained from the nomogram in Figure 1-11. Fs.r may then be found from
Figures 1-12 through 1-16. It should be noted that the moment of inertia of
the stiffener, I., for Figure 1-10 should be calculated about the base of the
stiffener (where the stiffener connects to the web). Also, the modulus of
elasticity of the web has been assumed to be equal to that of the stiffeners.

1. 3.2. 6 Rivets in Shear Resistant Beams

Rivets are required to fasten the web to flange in shear resistant
beams. In addition, rivets are used to fasten the web to the stiffener and the
stiffeners to the flange in stiffened shear resistant beams.
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1. 3. Z. 6. 1 Web-to-Flange Rivets in Shear Resistant Beams

The spacing and size of web-to-flange rivets should be such that
the rivet allowable (bearing or shear) divided by q x p (the applied web shear
flow times the rivet spacing) gives the proper margin of safety. The rivet
factor, Cr (rivet spacing - rivet diameter/rivet spacing), should not be less
than 0.6 for good design and in order to avoid undue stress concentration.

1.3.2.6. Z Web-to-Stiffener Rivets in Shear Resistant Beams

No exact information is available on the strength required of the
attachment of stiffeners to web in shear resistant beams. The data in Table
1-4 is recommended.

TABLE 1-4

Recommended Data for Web-to-Stiffener Rivets
in Shear Resistant Beams

Web Rivet Rivet
Thickness, in. Size Spacing, in.

.025 AD 3 1.00

.032 AD 4 1.25

.040 AD 4 1.10
*051 AD 4 1.00
.064 AD 4 .90
.072 AD 5 1. 10
.081 AD 5 1.00
.091 AD 5 .90
. 102 DD 6 1.10
.125 DD 6 1.00
.156 DD 6 .90
.188 DD 8 1.00

1. 3. Z. 6.3 Stiffener-to-Flange Rivets in Shear Resistant Beams

No information is available on the strength required of the attach-
mernt of the stiffeners to flange. It is recommended that one rivet the next size
larger than that used in the attachment of stiffeners to web or two rivets the
same size be used whenever possible.

1. 3.2. 7 Sample Problem - Stiffened Shear Resistant Beams

Given: The beam shown in Figure 1-17 made of 75S-T6 Alclad.
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stiffener moment of inertiaabout base, I = 0.-0___75

--- d = 6

S .. . . ./
V = 8550 lb.

h 9 E = 10x106 psi

FLange web thickness, t .0.081 in.

web-to-flange rivets,

AD5 at spacing p = 0. 625 in.

Figure 1-17. Stiffened Shear Resistant Beam

Find: The margin of safety of the web and the load on each web

to flange rivet.

Solution: From Equation (1-16) the web shear stress is given by

f V 8550 11,7Z0 psi
ht 9(0.081)

d 6- 0. 667

h 9

and

lU 0.0175 -3.66

ht 3  9(0.081)3

From Figure 1-10, KS = 6.9. From Figure 1-11, Fter/Tj = 12, 500 psi.

From Figure 1-14, Fsor = 12, 500 psi.

Since the critical buckling stress of the web is less than the yield

stress, the most likely type of failure is buckling. Thus, the

margin of safety of the web may be given by

M. S.-= ForF 12500 _ = 0.06

fa 11720
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The load per web-to-flange rivet. is

V 8550 (0. 625) = 594 lb.
qxp=---p- 9

1. 3.3 Introduction to Partial Tension Field Beams in Bending

A tension field beam is defined to be one for which the web is in-
capable of supporting any compressive load, and thus buckles upon applica-
tion of any load, and the web of a stiffened shear resistant beam is designed
so that it will not buckle. The web of a partial tension field beam is capable
of resisting compressive loads, but buckles at a load less than the ultimate
beam load. The vertical stiffeners in a partial tension field beam serve to
resist a compressive load and also increase the web buckling stress by
dividing the web into smaller unsupported rectangles.

The curves given for partial tension field beams give reasonable
assurance of conservative strength predictions provided that normal design
practices and proportions are used. The most important points are:

(1) The ratio of the thickness of the uprights to that of the web, tu/t,
should be greater than 0. 6.

(2) The upright spacing, d, should be in the range 0. 2 < d/h < 1.0.

(3) The method of analysis presented here is applicable only to
beams with webs in the range 115 < h/t < 1500.

In the following presentation, it is considered sufficiently accurate to take the
distance between flange centroids, h, as the web height and upright length.

The methods of analysis of the web, uprights, flanges, and rivets
of partial tension field beams are given in the following sections. The end
of a partial tension field beam must be treated differently and is covered in

Section 1.3. 3.9. If a partial tension field beam has access holes,. it should
be treated according to Section 1. 3. 3. 14.

1. 3. 3. 1 Webs of Partial Tension Field Beams

The web shear flow and shear stress of a partial tension field beam
are given to a close degree of approximation by Equations (1-20) and (1-Z1):

V (1-z0)
f. q h

f, qq V (1-21)

t ht
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The diagonal tension field factor, k, of a partial tension field beam specifies
the portion of the total shear that is carried by the diagonal tension action of
the web. This factor can be found from Figure 1-18 as a function of the web
shear stress, f,, and the ratios d/t and d/h. This curve is based on the
assumption that the shear panel has simply supported edges. The accuracy,
however, is sufficient for tension field beams whose webs have varying
degrees of edge restraint. It is recommended that the diagonal tension fac-
tor at ultimate load satisfy the following inequality:

k < 0.78 - (t - 0.012)1/2 (1-22)

This criterion is presented in tabular form in Table 1-5.

TABLE 1-5

Tabular Presentation of Equation (1-22)

.020 .025 .032 .040 .051 .06o .072 .081 .091 .102 .125 .156 .188 .2,0

.78-(t•.0.012) 1 .69 .67 .64 .61 .55 55 .53 .52 .50 .48 .44 .40 .36 .29

The allowable web shear stress, F., can be obtained fr'om Fig-
ure 1-19 for 75S-T6 or Z4S-T4 aluminum sheet. These values are based
on tests of long webs subjected to loads approximating pure shear and con-
tain an allowance for the rivet factor, Cr. The allowance for rivet factor
is included because the ultimate allowable shear stress based on the gross
section is almost constant in the normal range of the rivet factor (Cr > 0. 6).
The values of F, are given as a function of the stress concentration factor,
C 2 , which can be found from Figure 1-20 as a function of h/t, d, and It.
The higher values of C 2 are largely theoretical, but a few scattered tests
indicate that the values of Cz become increasingly conservative in the
.higher ranges.

1. 3. 3. 2 Effective Area of the Upright of a Partial Tension Field Beam

The total cross-sectional area of the uprights for double or single
uprights is designated as A.. In order to make the design charts apply to

both single and double uprights, the following effective upright areas, A,,,
are to be used in the analysis.

For double uprights, symmetrical with respect to the web,

Au@ Au (1-23)
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For single uprights,

Au

A.0 AeU (1-24)
l+ (-e )

P. /
where p is the radius of gyration of the stiffener and e is the distance from
the centroid of the stiffener to the center of the web. If the upright itself
has a very deep web, Au, should be taken to be the sum of the cross-
sectional area of the attached leg and an area 1Z tu 2 (i. e. , the effective
width of the outstanding leg is 12 times t.).

The properties of standard extruded angles commonly used as
uprights may be obtained from Table 1-6.

1.3. 3. 3 Design Criteria for the Uprights of a Partial Tension Field Beam

The uprights or web stiffeners of a partial tension field beam must
have a sufficient moment of inertia to prevent buckling of the web system as a
whole before formation of the tension field, as well as to prevent column
failure under the loads imposed on the upright by the tension field. The up-
right must also be thick enough to prevent forced crippling failure caused by
the waves of the buckled web. This forced crippling failure is almost always
the most critical.

1. 3. 3. 4 Moment of Inertia of the Uprights of a Partial Tension Field Beam

The required moment of inertia of the upright about its base (the
surface attached to the web) is given in Figure 1-21 as a function of ht 3 and
d/h.. These curves are essentially derived by equating the critical buckling
stress of the sheet between the stiffeners to the general instability stress of
the web as a whole.

1. 3. 3. 5 Computed Stresses in the Uprights of a Partial Tension Field Beam

The lengthwise average stress in the upright at the surface of
attachment to the web, f, may be obtained from Figure 1-ZZ as a function
of k, A,. /td, and f, as

f = f,(fU/f ) (1-25)

The upright stress varies from a maximum at the neutral axis of the beam
to a minimum at the ends of the upright. The maximum stress, fu,,x , may
be obtained from Figure 1-2Z as a function of k, d/h, and fu as

fiMaX = fo(fo (1-26)
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TABLE 1-6

Properties of Standard Extruded Uprights

[ Angie - Urequal Leg, Extruc"

A YB tAPO 1 ;0-1-

A i-ta .62%.s i.050 .0535 .193 .0039 .0276 146 .0-1)T .0'71
. --- -70 , 063 0739 .235 .0085 .03571 .139 .00246 .1-12.

,.625i .063 .0818 .232 .00o4 .0427 . 18 .00484 04•4
.--- .o63] .0922 .274 .0136 .0470 .177 .0049 0 .053 1

"N _____ __ 85 7651 06 109.22 0 .0136 .0539 .221 08 1 5-
_ .! .1251 .184 .2.58 .0259 .0872 .211 .01639 .92

i .25 .0631 .100 .316 .0202 .0494 .170 .00486 .3546
M .125 .4 .3041 .0388 .0807 .165 .00971 .,39-1

1.000 .750 .063 .108 .313 .0203 .0565 .217 .00852 .064z
.125 .200 .302 .0389 .0937 }.208 .01652 1044

.875 .063 .116 .310 .0203 .0637 .262 .01351 .0659
Au .094 .167 .305 .0297 .0872 .257 .01992 .0924(A+c)y 4 -/ . (Aue)X y/ - .063 .124 .400 .0398 .0616 .209 .00854 .07%5

.750 .094 .179 .393 .0586 .0845 .203 .01257. .105.
1.250 .125 .231 .387 .0767 .104 .200 .01678 ,1270

.063 .139 .394 .0398 .0756 .298 .02034 .0846
1.000 .094 .202 .389 .0587 .105 .291 .02973 .1162

Angle - Equal Leg, Extruded . _ .125 .262 .382 .0769 .130 .286 .03921 .1434
.750 .094 .204 .476 .1019 .0927 .194 .01266 .1239

I 1 .125 .264 .465 .1337 .114 .191 .01697 .1.196
% .094 .228 .474 .1020 .114 .282 .03006 .1379

A tu Au or .or A, 1.500 .000 .125 .295 .468 .1341 .142 .276 .03944 .1686
.0 I ..... . 156 .361 .463 .1656 169 .271 .04798 19?4

.500 .063 .0582 147 .0025 .0297 .. 694 .251 .468 .101Z .135 .372 .05382 .1491
.063 .0749 186 .0049 .0400 1.250 .125 .327 .462 .1343 .170 .365 .0773 .1844

.625 .078 .0908 .185 .0060 .0467 .156 .400 .457 .1662 .201 .360 .0956 .2168
.094 .1068 .18 .0071 .0525 1.000 .125 .327 .553 .2140 .153 .269 .0397 .1945
.063 .0908 .227 .0085 .0498 1.750 1.250 .125 .358 .549 .2141 .180 .360 .0787 .2113

.750 .094 .130 .220 .0123 .0665 1.500 .125 .389 .542 .2140 .208 .447 .1347 .2243
.125 .167 .216 .0163 .0802 .156 .478 .537 .2655 .248 .441 .1666 .2664
.063 .107 .265 .0135 .0597 1.000 .125 .358 .637 .3212 .162 .261 .0399 .219§

.875 .094 .154 .262 .0179 .0819 .156 .439 .631 .3970 .193 .256 .0498 .2535

L . .125 .198 .256 .0259 .0999 .125 .392 .643 .3217 .195 .348 .0778 .2386
.063 .128 .302 .0205 .0735 1.250 .156 .480 .629 .3978 .229 .343 .0963 .2807

1.000 .094 .183 .296 .0296 1.0989 .188 .568 .622 .4747 .263 .336 .1154 .3161
.125 .235 .293 .0373 i.121 2.000 .125 .423 .629 .3213 .221 .437 .1348 .2531
.063 .159 383 .0399 .0932 1.500] .156 .si5 .623 .3979 .263 .431 .1672 .2995

1.250 .094 .230 .379 .0588 .129 .188 .6!5 .618 .4756 .304 .426 .1997 .3433
.125 .29 .362 .0773 9.160 .125 .454 1 .623 .3215 .249 .526 .2147 .2656
.288 .427 .362 .139 1.210 1.750 .156 .558 .617 .3983 .298 .520 .2661 .3167

0.0946 19 6 .0693 .113 _..188 .662 .611 .4761 .344 .514 .3181 .3641
1.50 .094 .46 .1024 I. 155 1.250 .156 .558 .796 .7822 .252 *.326 .0971 .3411

.125 .360 .454 1343 .199 .188 .662 .790 .9369 .292 .321 .1170 .3865

.188 .521 .443 .1)89 .268 1.500 .156 .597 .795 .7827 .288 .414 .1677 .3642

.7094 . 334 .536 .1627 .2198 ,188 .709 .789 .9371 .334 .409 .2009 .4183.0 125 2154 .249 2.500 1.739 .156 636 .791 .7828 .324 .503 .2667 .3836

.18...6.....188 3280 .329 .188 .756 .785 .9378 .376 .497 .3196 .4420

.094 .377 .617 .2440 .222 2.000 .156 .o81 .783 .7843 .363 .590 .3997 .4037
2.000 .12i .491 .612 .3217 .288 .188 .809 .777 .9391 .421 .584 .479 .467

188 .715 .601 .4768 .388 2.250 156 .720 .776 .7841 .398 .679 .572 .418
S.250 .924 .591 .6267 .479 IS- .856 .770 .9392 .462 .674 .684 .487
I 1220 3 .03 7.74 .963Z4 .359 --- .5 .188 .809 .956 1.6306 .367 .391 .202 .4952. 9 .183 .903 .762 .93-99 .507 .250 1.05.0 .913 2.1344 .458 .381 .269 .595

1 '250 1.17 .751 1.23-5 .62 3.000 2.000 .189 .903 .950 1.6309 .451 .576 .480 .553[ 100 -led 1.09 .924 1.6334 .621 - .250 1. i7 .938 Z.i094 .564 ,.556 .629 .672
3.00 1 .250 1.42 .912 2.1476 .788 I 2.5001 .250 1.30 ,9 27. 14 7 1 .676 .734 1,239 .734

. I.7 i.. 932 _ . __ 5 2.6647 .803 |.722 1.537 .67
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1. 3. 3.6 Allowable Stresses in the Uprights of a Partial Tension Field Beam

The maximum upright stress, fu,,., should be checked against an
allowable forced crippling stress, F., which is obtained from Figure 1-23.
If the upright has legs of unequal thickness, the thickness of the leg attached
to the web should be used to determine the ratio tVt. In the case of double
uprights, fum,, should also be checked against the allowable natural crippling
stress of the flange.

The stress, fu' should be no greater than the column yield stress,
F,, (the stress at L'/I = 0). The centroidal upright stress, f..,t = fu Aue/Au,
should be checked against an allowable column stress, F,,,. F., and F.., can
be found from the column curves in Chapter Z.

For simplicity, the effective column length of the upright, h', may
be taken as h, since this effect is rarely critical. However, the following
values of h" may be used if necessary:

hoh (1-27)

1+ k2 (3 - 2 dh
h"= (1-28)

for double uprights', and

h'= -- h (1-Z8)
2

for single uprights.

1. 3. 3. 7 Flanges of Partial Tension Field Beams

The total stress in the flanges of a partial tension field beam is
the result of the superposition of three individual stresses: the primary
beam stress, fb, the compressive stress, ff, caused by the horizontal com-
ponent of the diagonal tension in the web, and the secondary bending stress,
f W'caused by the distributed vertical component of the diagonal tension.

The primary beam stress is given by

fb M (1 -Z9)
Afh

The compressive stresses due to the horizontal component of diagonal tension
is given by

fkh (1-30)
ZAf + 0. 5(1-k) th
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where k is the diagonal tension field factor which may be found by referring
to Figure 1-18. The secondary bending moment due to the distributed vertical
component of diagonal tension is given by

M _ 12 ikf, td2 C (1-31)

where C 3 is given in Figure 1-20. MSb is the maximum moment in the flange

and exists in the portion of the flange over the uprights. If C 3 and k are near
unity, the secondary bending moment in the flange midway between the up-
rights is half as large as that given and of opposite sign. The secondary
bending stress is then MSb (1-32)

where (If/cr) is the section modulus of the flange. The total stress in the

flange is equal to fb + f± + fsb'

1. 3. 3.8 Rivets in Partial Tension Field Beams

Three types of rivets must be analyzed in partial tension field
beams. These are web-to-flange rivets, web-to-upright rivets, and upright-
to-flange rivets.

1. 3. 3. 8. 1 Web-to-Flange Rivets in a Partial Tension Field Beam

The shear load per inch acting on the web-to-flange rivets
in partial tension field beams is given in Figure 1-24. The rivet factor, Cr,
should be greater than 0. 6 to justify the allowable web stresses used in
Section 1. 3. 3. 1 and to avoid undue stress concentration.

1. 3.3.8.2 Web-to-Upright Rivets in Partial Tension Field Beam

The tensile load per inch acting on the web-to-upright rivets
is given in Figure 1-25. This tensile load is a result of the prying action of
the buckled web. Although these loads reflect time-tested practice, they
should be considered only tentative because of the limited test data presently
available. The tensile load criteria is believed to insure a satisfactory design
as far as shear strength is concerned.

1. 3. 3.8. 3 Upright-to-Flange Rivets in a Partial Tension Field Beam

The shear load on the upright-to-flange rivets in a partial
tension field beam is given by

P. = f.A.. (1- 33)

where f. is the average compressive stress in the upright and A U is the
effective area of the upright as given in Section 1. 3. 3. 2.
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1. 3. 3. 9 Ends of Partial Tension Field Beams

The end of a partial tension field beam must be specially handled
since the web is discontinuous at the end and the tension component of web
stress must be transferred to the flanges in the end panel.

The following treatment is based on the assumption that the basic
beam shear, q, is constant over a length Zh/3 from the end of the beam.
When the basic beam shear, q, varies over this length, the terms (q+ 1. 5kq),
(q+ 1.0 kq), and (q kh/4A,) should be replaced by the terms (q + 1. 5 kq'),
(q+ 1.0 kq'), and (q'kh/4A9), respectively, where q is the actual beam shear
at the point being considered, and q' is the beam acting at a distance Zh/3
from the end of the beam.

1. 3. 3. 10 Webs at the Ends of Partial Tension Field Beams

The web in one corner must carry a shear flow of q+ 1. 5 kq. If
reinforcement is necessary, a doub"er of the dimensions shown in Figure 1-26
should be added to the web, resulting in a combined shear strength of q+ 1. 5 kq.
This is usually necessary in one corner only. If the applied shear flow is oppo-
site to that shown in Figure 1-26, the doubler should be attached to the lower
corner of the web. The shear flow in the web in the corner not reinforced is
q - 1. 5 kq, where q is the shear flow in the web at points removed from the end.

IJ

1-h
h/2

i doubler

Figure 1-26. Doubler at the End of a Partial
Tension Field Beam

If the shear can act in either direction, double reinforcement may
be necessary. In general, the basic web is capable of carrying about a 60%
reversal of shear without double reinforcement.

1. 3.3. 11 Uprights at the Ends of Partial Tension Field Beams

The following stresses act simultaneously on the end stiffener of
a partial tension field beam:
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I. A compressive stress due to the vertical component of web
diagonal tension. This compressive stress varies from

(fu - fu, /2) at either end to f,,,/2 at the midpoint of the
stiffener.

2. A compressive stress due to the variable shear flow along
the end stiffener. The equivalent shear flow distribution
curve is assumed to vary linearly from (q - 1. 0 kq) at one
corner to (q + 1. 0 kq) at the other corner. This compressive
stress builds up from zero at either end of the stiffener to
kqh/4AU at the midpoint of the stiffener.

Thus, the maximum compressive stress in the end stiffener (exclusive of
additional external loads acting) is equal to

fu max + qkh
+ -- +(1-34)

2 4 A,

This stress should be compared with the lower of F, or F,, for the upright
in computing the margin of safety.

1. 3.3. 12 Rivets at the Ends of Partial Tension Field Beams

The doubler should be attached to the web iti accordance with Table 1-7.

The diagonal edge of the doubler should be attached with a minimum of two
rows of rivets with a minimum distance between rows of four rivet diameters.
The strength of this attachment in lb/in. should be equal to the thickness of the
doubler times 30, 000 psi.

TABLE 1-7

Doubler-to-Web Rivets

Doubler Gage Rivet Size Rivet Spachig

.020 - .032 AD-4 1. 5 in. on centers

.040 - .051 AD-5 2.0 in. on centers

.064 & greater DD-6 2. 5 in. on centers
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The web-to-flange attachment adjacent to the doubler must be strong

enough to carry a shear flow of (q + 1. 5q) (I + 0. 414k) lb/in. The other flange

attachment must carry a shear flow of q(l + 0.414k) lb/in.

The attachment of the end stiffener of a partial tension field beam to

the web must be strong enough to carry a shear flow of (q+ 1. 5kq)(l +0. 414k)

lb/in. in the region of the doubler and q(l+0.414k) elsewhere.

1. 3. 3. 13 Sample Problem - Partial Tension Field Beams

Given: The partial tension field beam shown in Figure 1-27.

web - 0. 051 75S-T6 Alclad

q =1250 lb. /in.

h= 10

........ ... ...... I L. .

Flanges -'1. 5x-1. "5x. 1-upright-0.75x0.75xO.O9
4

75S-T6 angle 75S-T6 angle

Figure l-Z7. Partial Tension Field Beam with Single Uprights

Find: The margins of safety of web and uprights and the rivet

loads.

Solution: The method of obtaining the desired quantities is

summarized in Table 1-8.
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1. 3. 3. 14 Partial Tension Field Beams with Access Holes

Figure 1-28 shows a partial tension field beam with access holes
of diameter, D. Such a beam may be analyzed in the same manner as one
without access holes except that the substitutions described in Sections
1. 3. 3. 15, 1.3. 3. 16, and 1. 3. 3. 17 must be made.

~~-d -

D f

Figure 1-28. Partial Tension Field Beam with Access Holes

1. 3.3. 15 Webs of Partial Tension Field Beams with Access Holes

The method of analyzing webs, given in Section 1. 3. 3. 1, should
be used for partial tension field beams with access holes except that the
allowable web shear stress, F', must be replaced by a reduced allowable
web shear stress given by

F = Fs td(d-D)+AU DC 4 ] (1-35)
C 5 td 2

where the design reduction factors, C 4 and C 5 , are given in Figure 1-29.
This method gives good correlation with tests if beam parameters are in the
following ranges:

0.020 in. < t < 0. 132 in.
0.040 in. < tu < 0.079 in.
7.4in. < h < 19.4in.
7.0 in. < d < 18.0 in.
Z. 375 in. < D < 5. 875 in.

1. 3. 3. 16 Uprights of Partial Tension Field Beams with Access Holes

The method of analyzing uprights, given in Sections 1. 3. 3. 2
through 1.3. 3.6, may be used for partial tension field beams with access
holes except that the forced crippling allowable, F., should be replaced by
a reduced forced crippling allowable given by

F -= (1-36)
1 D

d

1 - 44



1.0

0.8

0.6

C4

0.4

0.2-

0
0 1".0 2.0 3.0 4.0

tu/t

d/I.

1.5

1.4

1.3
C5-

1.2

I.1

1.0
0 0.2 0.4 0.6 0.8 0.

D
h

Figure 1-Z9. Design Reduction Factors Due to Access Hole

1 - 45



1. 3. 3. 17 Rivets in Partial Tension Beams with Access Holes

The method given in Section 1. 3. 3. 8 for analyzing rivets may be
used for partial tension field beams with holes except that the tensile load on
the web-to-upright rivets, qt, should be~replaced by an increased load given by

"qt qt -I -+ (1-37)

1. 3.4 Introduction to Reaction Forces and Moments on Beams Under

Transverse Loading

Figure 1-30 shows a beam under transverse loading. Two equations
of equilibrium may be applied to find the reaction loads* applied to such a beam
by the supports. These consist of a summation of forces in the vertical direc-
tion and a summation of moments. If a beam has two reaction loads supplied
by the supports, as in the case of a cantilever beam or a beam simply sup-
ported at two points, the reaction loads may be found by the equilibrium
equations and the beam is statically determinate. However, if a beam has
more than two reaction loads, as in the case of a beam fixed at one end and
either pinned or fixed at the other end, it is statically indeterminate and beam
deflection equations must be applied in addition to the equations of statics to
determine the reaction loads.

Figure 1-30. Beam Under Transverse Loading

Section 1. 3.4. 1 presents a method for determining reaction loads
on beams fixed at one end and pinned at another point, and Section 1. 3.4. 3
treats reaction loads for beams fixed at both ends. Beams on three or more
supports are treated in Section 1. 3.4. 5.

1. 3.4. 1 Reaction Forces and Moments on Beams with One Fixed End and
One Pinned Support

Figure 1-31(a) shows a uniform beam with one fixed and one pinned
support. The following procedure may be used to determine the support reac-
tions on such a beam if its stresses are in the elastic range.

1. Split the beam at the pinned support as in Figure 1-31(b) and find
MA from the equations of statics.
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2. Consider the right section of the beam as a single beam simply
supported at both ends as in Figure 1-31(b). Find the moment
diagram for this beam as in Figure 1- 3 1(c). A is the area of
this moment diagram and C is the centroid of this area.

(a)

L
M

® J •(c)

(d)

tRA RB

Figure 1-31. Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point
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3. Find MB by the equation

-3 A- MA

MB - 1-38)L2 2

The evaluation of the first term of this equation may be facilitated
by the use of Table 1-10.

4. Evaluate RA and RB by applying the equations of statics to
Figure 1-31(d).

Once the support reactions have been determined, the moment and shear
diagrams may be constructed for the beam. If the pinned support is at the
end of the beam, MA may be set equal to zero.

1. 3.4. Z Sample Problem - Reactions on Beam with One Fixed and One
Pinned Support

Given: The beam shown in Figure 1-32.

10 - -- L= 20

10

500 lb. 500 lb.

r ,, •'- I in. square aluminum bar

E = lox 107

I = 0.0831

Figure 1-32. Beam with One Fixed End and One Pinned Support

Find: The reaction moments and forces on the beam.

Solution: Figure 1-3 3 (a) may be obtained by redrawing the beam
as in Figure 1-31(b). The moment diagram may then be drawn
for the right portion; and A, "a, and MA may be determined as in
Figure 1-33(b).

From Equation (1-38),

MB -3Aa MA -3(25000)(10) 5000 -4,375 in.lb.MB L2 2 - (20)2 2
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Now that M. is known, RA and R. may be found by applying the
equations of statics to Figure 1-33(c). Doing this gives
RA 781 lb. and R. = Z19.0 lb.

500 lb. 500 1b.

Ma 5000 in. lb.

A 2500x Z0 Z5000 in. 2lb.
C (b)

20 in.

T= 10

500 lb. 500 lb.

(c)
MB

RA RB

Figure 1-33. Solution for the Reaction Forces and Moments on
the Beam in Figure 1-31

1. 3.4. 3 Reaction Forces and Moments on Beams with Both Ends Fixed .

Figure 1- 3 4(a) shows a uniform beam with both ends fixed. The
following procedure may be used to determine the support reactions on such
a beam if its stresses are in the elastic range.

1. Consider the beam to be simply supported as in Figure 1-34(b).

Z. Find the moment diagram for this simply supported beam as in
Figure 1- 3 4(c). A is the area of the moment diagram and C is
the centroid of this area.
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(a)

L

(b)

M

S~(c)

MA( (, MB (d)

RA RB

Figure 1-34. Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point

3. Find MA and M. by the equations

MA = 2A (Zb - a) (1-39)
L2

me = ZA (Z a- b-) (1-41))

L

The evaluation of the terms in these equations may be facilitated
by the use of Table 1-10.

4. Evaluate RA and R. by applying the equations of statics to
Figure 1-34(d).

Once the end reactions have been determined, the moment and shear diagrams
may be constructed for the beam.
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The above procedure may be avoided by using Table 1-9 which gives
equations for the reaction moments for beams fixed at both ends under various
loadings. The sign convention for this table are as shown in Figure 1-34(d).

TABLE 1-9

End Moment Reactions for Beams with Both Ends Fixed
Under Various Loadings

P 2. P

A. iB AB
__L b _ _

2 2j L

PL PL Pab 2  Pa 2 b
MA M15 8 A L2B L 2

.w lb. /in. 4. w lb. /in.

L -2 2
wL 2  wL 2  lwL2  M 5wL 2

A 12 MB 1y192 192

5. w lb. fin. 6. wib. in.

A/ B
.4 - a _ - - L L2a 2B

MA -n- (6L -8aL+3a2) MA 5wL296 MB 5wL96

wa 2

MB=, 2 2 (4aL - 3a 2 )12L,

7. 8-wlb./in. w lb. /in.

ýA B A, B

wL2  wL 2  wa 2 (10L 2 2-OaL+3a
2 )MA =%&L2 wLB MA =-0,MA-20 MB - 30 Mr60!2

MB = wa3 (5L -3a)60L2

i . 10.9- ~M in-lb. -___ .

22X wA -A BX~

-- -- ~-~L b B-~

(3b 1) Ma wL wL2
MA =----(3L LMB-M 2 MB 3-
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TABLE 1-9

End Moment Reactions for Beams with Both Ends Fixed

Under Various Loadings (concluded)

1. 12. p P p

AB A

L .

MA = Pa(1 a) MB= MA MA -- B B

13. 
14.

• ," " a ---4 w 1.b. / in. -- a - .
w

A B A wb

L
MA _wa (3L-2a) MB M A MA (L 3aL 2 =

MA 6L M12L -a'~c)vB A

1. a - I16..-,L-4
2 MA

B A B{~•rIfhII
L L

wa 2  _a2  wL 2  3wL 2

MA - (10 - 15 aL +6.LZ) MA= MB- 160
30 L LZ 30B 16

wa 2  a
MB 20 L

17. 'w elliptic load 18. w= f(x)

A. B A/ BL L x

wL 2  _ wL 2

MA:" 13.52 MB 15.86 L

MA = 2 x(L-x)2 f(x)dx
L .0

MB - J x (L- x)f(x)dx

0

1. 3.4.4 Reaction Forces and Moments on Continuous Beams

A continuous beam is one with three or more supports. Such a
beam is statically indeterminate and deflection equations must be applied to
find the support reactions. The three-moment equation is such an equation.
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1.3.4. 5 Application of the Three Moment Equation to Solving for the
Reactions on Continuous Beams

Figure 1-35(a) shows a uniform beam that is simply supported at

three colinear points, A, B, and C. In order to obtain the reactions, the
beam is broken into two simply supported sections with no end moments, as
shown in Figure 1-35(b). The moment diagrams are then found for these

sections and the area A and centroid C of these diagrams are found as shown
in Figure 1-35(c). The quantities found may now be substituted into the three-
moment equation:

-6A 1 a 6A 2 b 2
MALl + ZMe (L 1 + L 2 ) + MCL 2 - (1-41)L] L?

If MA and Mr are known, this equation may be solved for the moment at B,

M8 . Knowing this moment, the support reactions at A, B, and C maybe
found by applying the equations of statics.

The terms to the right of Equation (1-41) may be found for various
simple loadings by use of Table 1-10.

MA (!MC (a)

(b)

M M A?

&CC

S.... (c )

Figure 1-35. Beam Simply Supported at Three Points
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TABLE 1-10

6A'• 6Ab
Values of - and

L L

Type of Loading 6AT 6AF
on Span L L

(1) w

Wa (L2 a2) W (L-a)(Za-a 2 )
LL

(2)
a - b

""aM 2) M (3b 2 LZ)

L

(0) w lb/in.

4 4

L

w Ib/ in.

liIIIFiIL w E2 (ZLZ -c2)..a2(ZL-aZ)] 4 LbZ(ZLZbZ)d?(ZLZd)]4L• IC I -4L I
d

ý-c L

(5) w Wb/in.

8 33
60 60

L

( Win.

7, •wL3 8 wL3

60 60

7-L

(7) •__ w WbinL

.. 5 wL 3  5 wL3
32 32

1 - 54



If a beam has a number of concentrated loads as shown in Figure
1-36, Equation (1-42) becomes

Pa 2 7"P~b2
MALl + 2MO (L 1 + L 2 ) + McL 2  - lL1 (L 1

2 - a - 2 (L 2-bZ2. (1-42)

L/ (L 2  b2
2

where P 1 denotes any one of several concentrated loads which may act on the
left span at a distance a 1 from support A. Similarly, P 2 denotes any load in
the right span at a distance from support C.

al P1P2 4b 2

Figure 1-36. Continuous Beam Under Several Concentrated Loads

If a beam is simply supported at more than three points, the three-
moment equation may be written for each intermediate support. The equations
may then be solved simultaneously to obtain the moments at each support.
This procedure is illustrated by the sample problem in Section 1. 3.4.6.

1. 3.4.6 Sample Problem - Reactions on Continuous Beams by the Three

Moment Equation

Given: The continuous beam shown in Figure 1-37.

10 15 20

5 .'- 1010 1b. /in.

5001b. 001b.

span #1 span#Z pn#

"; supp3s uppo /t 3 support #4

supppor #3
"~support #1

Figure 1-37. Continuous Beam on Four.Supports
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Find: The support reactions.

Solution: The three-moment equation may be written for spans
I and 2. Since only concentrated loads are present, the special
case given by Equation (1-42) may be used. Thus,

-Plal 2 2 P 2 b( zb2z
MILI+ZM2 (LI+L 2 )+ M 3 L 3 - (LI -a 1  - (L 2 b2

Inserting numerical values gives

0(10) + ZM2 (10 + 15) + M3(20) -- 500(5) (102 - 52) 300(5) (152 52)
10 15

Simplifying gives 5M 2 +-2M 3 = 3875.

The more general form of the three-moment equation given by
Equation (1-41) may now be written for spans 2 and 3 with the
aid of cases one and three of Table 1-10.

M 2 (15) + 2M 3 (15 + ZO) = -300(10) (152 + 102) 10(20)3

15 4

Simplifying gives 3M 2 + 14M 3 = -15, 000.

The two equations in M 2 and M 3 that were just obtained may be
solved simultaneously to find-that M 2 = -376 and M 3 = -990.

The equations of statics may now be applied as illustrated in
Figure 1-38 to find the reaction forces.
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(I)10
5 -t-- 10-R I - 5(500)= -386

,5001bj Therefore, R = 211.4 lb.

SJ)1\42,-386

R 1 span I

(2) 10 -- °°I --- 15

5 5001b. 3001b.

RI= 211.4 2 - M3 =-990

25(211.4) -20(500)-i 15R? -5(300)= -990

Therefore, R, = 348 lb.

(3) 20I
10 lb. /in.

M3 -990C
.R4

20R 4 - 10(200)= -990

Therefore, R 4 = 50. 5 lb.

(4) Summing the vertical forces gives

RI+R 2 +R 3 + R 4 - 500- 300- Z00=0
211.4+348+R 3 + 50. 5- 500- 300-'200=0
Therefore, R 3 = 390. 1 lb.

Figure 1-38. Solution for Reaction Forces
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The beam may now be drawn as in Figure 1-39.

10 15 ;0
1!-I 0 --- ftj 10 lb. ]/in.

0-0 300~ j
11.4 1348 1390.1 i.50.5

Figure 1-39. Continuous Beam on Four Supports with Reaction Forces

1.4 Introduction to Beams Under Combined Axial and Transverse Loads -
Beam Columns

A beam under combined axial and transverse loads cannot be analyzed
by simply superposing the effects of the two types of loading. The method of
solution must take into account the simultaneous effect of these loads, and
may thus become quite complex. Axial tension tends to straighten the beam,
thus counteracting the bending moments produced by the transverse load. On
the other hand, since axial compression may greatly increase the bending
moment and the slope and deflection of the beam, it is the more serious type
of axial load.

Two methods of analysis may be used to determine the total fiber stress
in members under combined axial and transverse loads. The first method,
which is approximate in nature, assumes that the elastic curve of the deflected
member is similar in form to the curve for a like member under the action
of transverse loads alone. The moment due to deflection is estimated on this
assumption and combined with the moment due to transverse loads. This
approximate method is treated in Section 1.4. 1. The other method, which is
the exact one, makes use of the differential equation of the elastic curve and
i's treated in Section 1.4.2. The criteria for the use of these methods is given
in these sections.

1.4. 1 Approximate Method for Beams Under Combined Axial and
Transverse Loads - Beam Columns

For any condition of combined axial and transverse loading, the
maximum stress in the extreme fiber is given by

f M M (1-43)"wa A I/c

where P is the axial load and M is the maximum bending moment due to
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the combined effect of axial and transverse loads. (The plus sign is for
fibers in which the direct stress and the bending stress are in the same
direction, the minus sign for fibers in which they are in opposite directions.

If a column is comparatively stiff so that the bending moment due to the axial
load is negligible, M may be set equal to the maximum moment due to trans-
verse loads Mt alone. This may be done with an error of less'than five
percent if P < 0. 125 EI/LZ for cantilever beams, P < 0. 5 EI/L 2 for beams
with pinned ends, or P < ZEI/Lz for beams with fixed ends.

If 0. IZ5 EI/L < P < 0. 8 EI/L for cantilever beams and
0. 5 EI/Lz < P < 3 EI/L 2 for beams with fixed ends, the value of M for
Equation (1-43) may be given by*

M = 2(1-44)

(I+ KPL
El

for an error of less than five percent where K is given in Table I-I1 for
various manners of loading and end support. The plus sign is used in the
denominator if P is a tensile load and the minus sign is used if P is a com-
pressive load. Equation (.I.44) is appropriate only for beams in which the
maximum bending moment and maximum deflection occur at the same section.

TABLE 1-11

Values of cL for Equation (1-44)

Manner of Loading and Support K

Cantilever, end load 1/3
Cantilever, uniform load 1/4
Pinned ends, center load 1/12
Pinned ends, uniform load 5/48
Equal and opposite end couples 1/8
Fixed ends, center load 1/24
Fixed ends, uniform load 1/32 (for end moments)

1/16 (for center moments)

1.4. 2 Exact Method for Beams Under Combined Axial and Transverse
Loads - Beam Columns

Table 1-1Z gives exact formulas for the bending moment, M,
deflection, y, and end slope, 9, in beams which are subjected to

- Griffel, William, Handbo6k of Formulas for Stress and Strain
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading

Case Formulas

I.

Max M'= -WLtanU/U at.= L

Max y W (LtanU/U - L) atx= 0

p x p

•_ ~~w (i-cos L/U} )

-Max M - [L(I....c.U),U + L tan Uat a.. L

y w
Max 'L FII(I+-1U2-U sec U)+L(tan U U)]at x 0

-0 TV- U 2 ~os
P -. L p..[. ?oU

"3.
Max M = tan - U at x - L

Y w L WL /II
y - Mao y I WL (tan 'U -- U)at.= 'L

w (I-cos4U at 0

2p cnU -

4.
Max M = wL ( ( U I I /U2 at x z L/Z

Y1 
"(a.y ec U - I U at Ll

"8 py z"('L

wL u + l.soU t 0
-- 3 L 2 sin U J

5.

Moment equation: x = 0 to x = a:

M = in . sin ; Max M at x f=L if..L < a

sin U zU ZU

Monment equation: x = a to x = L:

W M W in17 aU . tL-a MxMatx=)L-'L)fUL n

py M sin U :M n an\--)iILJ j1~if- .an .d(~lA- )<-Lzu-- .,,( - iu--)< a. M a, M ,. at a-o

sin bU . nxU

Deflection equation: x = 0 to x =a: y = W ( = L - aUL- n

PU sin U LW ,sin sina a(cL-

D otnection equation: x. a . tox. L: y ;• ( in U L4

sin -t sin aUa o

Mom~.~ efletio equation: x o L L
2  

U
- __=_-W- bot+ nL: U) .... 0 ^- / Ln ....L La

- % - -• t , u . . . Z " " - - ' "- L -- ,i

7 in6Max mwt = L arc cosI

Deflection equation: L •

x 0 to x z L; x UT 6 •(--+ ,,v •r"

w (ý_ L 4- OL)at x=L

SUtanU 3
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading (continued)

cast Formulas

Max M IM, CIU at o.0
PY M, MI• I• t

Maxy !L 4t, )=L

S.. .. L-n - " - :T ""L- Y
S - v os Uco -

..... o..e.q.ti. . 0 .too L: Mv M -M, sn-. Mto

L t/ L .1, -IM' cos U
MaM atx-•a M, n )

MI M2  ,.-ti,-•,n q,..-ion.x 0 . . L: y [M v IM,-h ) -- 2-hM,, a . ' ) n - Mov__
IJ--r.M

2 
- M

1 
U(M 2 - M

1
0tlaosot L .- .sinL

L___ -- -- ouP-'- sio0:alLUI _• MzL M I 'i4 - M , "U) M I
L L t. U os U • in U , at X L

P~~ j not

Ilean- w.ith Ilied eods under axial coam-

pression and transverse center load KI _ M W L I U

y I W = center load - k "

Si M =ý-YL- (- t jil

I-pl L,,• t : ,.- ,• -"•'•-U:.ia U, ýIU j

10. ta with fixed ends under axial co.i-
pression and uniform trans .ersr load M, MZ wL2 I .

PjL MovO
p _ _ _ _ _ __I I l l ~ l . . A t 0 .. . M . - 7 - f~

. . o o~-u--u -

- ------ L---L -FUU v se ,a !U ) U

I1. Beam with o*e end fird. ohe-r end M..,%I N, WL
2  

tan "U n U- I
pinned urder aWiul conpression and 20 L IUn L

transverse center load 7 I U

it • f_ W -

L vt°n Lo,- F (so°J-,ooivn tlu7U .io-C.
W _ otor loud _%I L: Mv M 1, 1,0 n Cot __ _ U_____i_+_U 5)

tn U L 2 L ta U U

L slinR. on -L- U nin
L I \ t' L c us - . WLr L.x)U + z in - U Cot

L t" n U ttU L '. 0 tan U 5L

12. Boeam with one end fixed, other end s-p.

ported, und . . a . p . . . MaoM Id c r I
1 

0 .L . a, -•dii

uniform gransverse load 1 M I [ L

R -- 'L - -".

Y1 
L

L___ Ij C_ t: Lo s iSD e~~ I -I tl c i vOl 'qu atio nii v I t} t* v :U i

= I t utLoOt.)_. LI oCut sL o-.n CotP. (L. x ,j
L -~L sin L 'LZ 'i

13 Sare r Ca-se I (.iniileer- with end Max Mo WL tanh U/U at x = L

luad) er epl that P it tension ,MaN y - IL% f l- to nh U0 at x 0

14 Same an as e 2 anilen M ith uniform I L tanh U - - l - tech U/U at x L

loadf rittpt st Pit. tnion Ms. y SL L(I - I 0.stech U)-L( tah V 1: 1

I5. Same -as Case 3 (pinned ends, venter Max M t W.I t 1,ta h i tu at 0 L

load) eucept than P in tension Mlay - it I L. - nhL U- t U) at - L

Max M =wL (I tech U)/UZ

16. Sanme as Case 4 (pinned ends, uniform

loadI )rrept that ,P is tM L- (I .n .yh -. U)]

-81 WL cosh U- M

2~~~ s0 ihO .2 inh ill ush jtJ
,17. Sante as Ca IN 9(ined ends, Center load)

avtetstus sisVensoLWL tI h I1 U I - Cush jU)2

ZPU[2 2 sio-6 csh
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading (concluded)

Ca.e Formulas

MMwLZ U - tanh U + M wL
2

) U ..

I1. Same as Case 10 (fixed ends, uniform tan U

load) except that P is tension wLZ 4U -'osh½U) U
May Y = TP7U

2
[ L inh RU + 2 L

19. Beam with ends pinned to rigid supportm K U9 -U3 " -- tanh + Qtan i U %herek T
0o horizontal displacement is prevented z 8 24 4 2 2 4h k

Uniform transverse load and unknown

axial tension

This equation is solved for U, and P determined therefrom

When C = E kL
4  

is s--.il (iji s than 4), p= 68 ElCL (C 2 2 CZ)

I6EAk
3  

630 L
2  

2835

"When C is large (greater than 15). P= El r

*TL ------

When P has been found by one of the above formulas. M and y may he found by the formulas of Case 16

20. Continuous beam, span. I and 2 unequ Ll M3L, U2 cosec U2 - I
and unequally loaded MI ) [ c U 2

2  )

Ll 1 lcott, LZ I- UZ cot U-
M2 ul 2 

2 
2 )

w22

P a k wI L, 3 tantUl -. Ul wsL
2 3 tan U, - U2

(Theorem of Three Moments: Subscripts with P. L. u, 1. -ed U refer to first and second spanus. N.2
acts on span I, M2 . on span 2)

combined axial and transverse loading. Although these formulas should be
used if P > 0. 125 EI/L 2 for cantilever beams, P > 0. 5 EI/L 2 for beams with
pinned ends, or P > 2 EI/L 2 for beams with fixed ends, they may be used for
beams with smaller axial loads. In these formulas, U = Lv-P/EI. The quan-
tity U may be found rapidly through the use of the nomogram in Figure 1-40.
The formulas for beams under a compressive axial load may be modified to
hold for a tensile axial load by making the following substitutions: -P for P;
UP'- for U; /Tsinh U for sin U; and cosh U for cos U. This has been done
for some of the more common loadings and the resulting formulas given in
cases 13 to 18 of Table 1-12.
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Figure 1-40. Nomogram for Determining U *1,0

4Griffel., William, Handbook of Formulas for Stress and Strain
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1.4.3 Sample Problem - Beams Under Combined Axial and Transverse

Loads - Beam Columns

Given: The beam column shown in Figure 1-41.

- 30

20 lb. /in.

2500 lb.

?- in. square aluminum bar

E= 10X106 ps
I = 1.33 in. 4

Figure 1-41,. Cantilever Beam Under Combined Axial and

Transverse Loads

Find: The maximum bending moment, M, vertical deflection,

y, and angular deflection, e, of the bar.

Solution:

0. 125 0. 125 (10x 106)(1 33) 1 1, 850 lb.
L 2  (30)2

According to Section 1. 4. 2, the exact method must be used

for cantilever beams if P < 0. 125 F1ýIlL 2 as is true in this

case. From Figure 1-40,

U = L530 0.41
So x 106)(1.33)

From Table 1- 12, Case 2,

Max M = - -L [L-(1-sec U) + LtanU

=Z0 (30.0) 30.0 (l-sec 0.41) + 30 tan 0.411 8200 in. lb.

0.41L 0.41 J
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Max "--wL-L (I + 1 UZ sec U) + L (tan U-U)]

PU U 2

SY 20(3. 0) pF30 ( -0.414

2500(0.40) LL 0-- 2

+ [30 (tanO 41 -. 0.41)] = 2.92 in.

"w V L L / 1-cos2U
P L_ cos U U sin 2-U

20 - 30 30 / 1-cosO.82 " 0.0095 rad

2500 L . 915 0.41k. sin 0.82 /1

= 0. 550.

1. 5 Introduction to Beams in Torsion

For purposes of discussion, beams in torsion are broken into two
categories: circular beams, which are treated in Section 1. 5. 1, and non-
circular beams, which are treated in Section 1. 5. 2. Circular beams are
further divided into those with uniform cross sections (Section 1. 5. 1. 1)
and those with nonuniform cross sections (Section 1. 5. 1. 2). Noncircular
beams are divided into open noncircular beams (Section 1. 5. 2. 1) and closed
or hollow ones (Section 1. 5. 2.2), and the effect of end restraint on non-
circular beams is treated in Section 1. 5. 2. 3.

Section 1. 5. 3 treats the membrane and sandheap analogies for beams
in torsion. Since the loading of the wires of helical springs is primarily
torsional, they are listed under beams in torsion and treated in Section 1. 4.4.

1. 5. 1 Circular Beams in Torsion

This section considers the torsion of solid or concentrically hollow
circular beams.

1. 5. 1. 1 Uniform Circular Beams in Torsion

Figure 1-42 shows a uniform circular beam in pure torsion. If
the stresses in such a beam are in the elastic range, the stress distribution
at a cross section is as shown in Figure 1-43.
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L

Figure 1-42. Uniform Circular Beam in Torsion

ro fS

Figure 1-43. Stress Distribution of Circular Beam in Torsion

The shear-stress at a distance r from the center is given by

fs = Tr (1-45)
I

The angle of twist of the beam is

TL (1-46)

GIP

Inserting the value of Ip for a circular cross section into Equations (1-45)

and (1-46) gives

f2 Tr (1-47)
f4 4

TT (r. -r

and

2 TL (1-48)

IT(r. 4 - r 4)G
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In order to treat solid circular shafts, r, may be set equal to zero in

Equations (1-47) and (1-48).

It should be noted that Equations (1-47) and (1-48) apply only to

beams with circular cross sections.

The maximum shear stress occurs at the outside surfaces of

the beam and may be computed by setting r equal to r 0 in Equation (1-47).

The maximum tensile and compressive stresses also occur at the outside

surface and both are equal in magnitude to the maximum shear stress.

If a circular beam is twisted beyond the yield point until the

outer portions are at the ultimate torsional stress, a stress distribution

such as that shown in Figure 1-44 is obtained. The maximum torque that

such a beam may sustain in static loading is given by

-Fe Il (1-49)
t~ax : ro

where Ft is designated as the torsional modulus of rupture. This torsional

modulus of rupture is shown graphically for steel beams in Figure 1-45.

Figure 1-44. Plastic Stress Distribution of Circular Beam in Torsion
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Figure 1-45. Torsional Modulus of Rupture for Steel Beams

In many cases, the torsional modulus of rupture of a material may

not be available. These may be treated by assuming the uniform shear stress

distribution shown in Figure 1-46.

Figure 1-46. Assumed Plastic Stress Distribution
of Circular Beam in Torsion

The magnitude of the uniform shear stress may be assumed to be
equal to the yield shear stress (F.,) for conservative results or the ultimate
shear stress (F,,) for nonconservative results. In the first case, the maxi-

mum torque in the beam may be expressed as
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4VL FOY IP (-0

3~ r

and in the second case, the maximum torque in the beam may be expressed
as

_4 Fau IPT .RX 3 r . 1 -51 )

It should be noted that the possibility of crippling in thin-walled
tubes was not considered in the previous discussion. Crippling of circular
tubes is treated in Chapter 8. This tubes should be checked for crippling.

1. 5. 1. Z Nonuniform Circular Beams in Torsion

When a circular beam of nonuniform cross section is twisted, the
radii of a cross section become curved. Since the radii of a cross section
were assumed to remain straight in the derivation of the equations for stress
in uniform circular beams, these equations no longer hold if a beam is non-
uniform. However, the stress at any section of a nonuniform circular beam
is given with sufficient accuracy by the formulas for uniform bars if the
diameter changes gradually. If the change in section is abrupt, as at a
shoulder with a small fillet, a stress concentration must be applied as ex-
plained in Chapter 10.

Figure 1-47 shows a nonuniform circular beam in torsion.

T T

Figure 1-47. Nonuniform Circular Beam in Torsion

If its diameter changes gradually, its angle of twist is
L

T= T dx
G I

0

This equation is used to obtain the formulas for e for various beams of uni-
form taper that are shown in Table 1-13.
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TABLE 1-13

Formulas for the Angle of Twist of Nonuniform Circular Beams in Torsion

Type of Beam Angle of Twist

8TL 2 arctan -D2 \

rnG(D 2 - D)D 3  3 D

D -- ,D 3 + D 2  D 3 - D "

2arctany~ +1 LogeLý D3 - D ) ýD 3 +D 1  ) .S,=L ý13 D3 2

inside taper,
outside uniform

I ' 1~32 TLI I

DD2,- D D + DD + -- )•-----•--j D] 3GDD2 D i DID2 D-22"

T L
solid beam,
outside taper

8TL arctan D 2

_'G(D -D 1 )D 3 3 iD3+

DI D3D2 D r~- t- +o D--\ D -D, -, .t a -, + L o" g , . - O -
inside uniform,
outside taper

D- D2 2 TL(D1 +D 2 )
SD2 2

r Gt D 1 2D 2

thin tapered tube with
uniform wall thickness

Griffel, William, Handbook of Formulas for Stress and Strain
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1. 5. 1. 3 Sanmple Problem - Circular Beams in Torsion

Given: The circular beam shown in Figure 1-48.

Aluminum - G = 4x106 psi

il 0000 in. l-b. 10000 in. Lb.

D1 =2.5 _-_--__D2=_3

L 20

Figure 1-48. Tapered Circular Solid Beam in Torsion

Find: The angle of twist and maximum stress in the beam.

Solution: From Table 1-13.

32DTL i I + 1 1 I

, t.D 1D
2

= 32(10000)(20) / _ + 1 + 1 0.0091 rad.
37,(4x10 6 )(2.5)(3) •2.52 2.5(3) 32 /

= 0.52°

Applying Equation (1-47) to the outside of the thin end of the beam

2 Tr 2119000)f1. 25!
4 4= 3, 260 psi

-ir~ - r, -(1.25 -Q4

1. 5.2 Noncircular Beams in Torsion

In the derivation of formulas for circular beams in torsion, it was
assumed that plane sections remain plane and radii remain straight in the
deformed configuration. Since these assumptions no longer hold for non-
circular sections, the equations for circular sections do not hold. The
warping of plane sections of a square bar under torsion is illustrated in
Figure 1-49.

Figure 1-49. Warping of the Sections of a Square Bar in Torsion
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In this section, open beams are treated first and closed beams are

treated second. Closed beams are those with hollow sections, and other beams

are called open beams. Since plane sections remain plane for round beams in

torsion, the end constraint of such a beam does not effect its behavior. How-
ever, end constraint can be an important factor in the treatment of noncircular

beams in torsion and ,is treated in Section 1. 5.3.3. At a sufficient distance
from the application of the load, however, the stresses depend only on the

magnitude of the applied torque according to Saint-Venant's principle.

1. 5.2. 1 Noncircular Open Beams in Torsion

This section deals with noncircular beams whose cross sections are

not hollow. Section 1. 5. 2. 1. 1 gives the stress distribution in elliptical beams

in torsion, and Section 1. 5. 2. 1.2 treats beams with rectangular cross sections.

Section 1. 5. 2. 1. 3 treats open noncircular beams with thin sections with for-

mulas for thin rectangular sections. Table 1-15 in Section 1. 5. 2. 1. 5 gives

formulas for stress and deformation in noncircular beams with various sections.

All of the material in this section is based upon the assumption that

cross sections are free to warp.

1. 5. 2. 1. 1 Elliptical Beams in Torsion

Figure 1-50 shows a cross section of an elliptical beam in

torsion and the two components of shear stress that are present. The

shear stress components shown are given by

=Z Ty (1-53)

TTab3

and
Z Tz

ox r - a 3  b(-54)

where T is the torque applied to the beam. The maximum shear stress
occurs at (z = 0, y = b) and is given by

ZT (1-55)

nab

z

Figure 1-50. Cross Section of Elliptical Beam in Torsion
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The angle of twist of an elliptical beam of length, L, is

e - T (a + b ) L (1-56)

in a 3 b 3 G

1. 5.2. 1.2 Rectangular Beams in Torsion

Figure 1-51 shows a rectangular beam in torsion. The maxi-
mum stress id such a beam occurs at the center of the long side and is

given by
T

Smab tz (1-57)

where a is a constant given in Table 1-14. The angle of twist of a rectangui-
lar beam in tension is

TL
bt G (1-58)Sbt3 C

where $ is given in Table 1-14.

T

- fsmax

L
T

"b

Figure 1-51. Rectangular Beam in Torsion

TABLE 1- 14

Constants for Equations (1-57) and (1-58)

b/t 1.00 1.50 1.75 2.00 Z.50 3.00 4 6 8 10

a 0.Z08 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333

S0.141 0.196 O.Z14 0.229 0.249 0.263 0.281 0.299 0.307 0.313 0.333
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The maximum stress and angle of twist of a rectangular beam
in torsion may also be computed with satisfactory accuracy (error less than 4%)
from the following equations:

T (3 + 1.8-t-- (1-59)

$max b 3 T b

0= TL (1-60)

bt 3 Fl1 0. 63t (1 t 4

- b \ 12 b 4

1. 5.2. 1.3 Noncircular Beams with Thin Open Sections in Torsion

If a rectangular beam is very thin relative to its length (b>>t)
Equations (1-59) and (1-60) become

f 3T (1-61)
, Max btZ

and 3 TL
3T- (1-62)

bt 3 G

From Table 1-14, it can be seen that these expressions are correct within
10 percent if b/t = 8.

Although Equations (1-61) and (1-62) have been developed for
rectangular beams, they can be applied to the approximate analysis of shapes
made up of thin rectangular members such as those in Figure 1-52. If sharp
corners exist, however, large stress concentrations may result so that
Equation (1-61) is not valid. The effect of sharp corners is explained by the
membrane analogy in Section 1. 5. 3. 1. Equations (1-61) and (1-62) may be
applied directly to sections such as those at the top of Figure 1-52 if b is
taken to be the developed length of the cross section as shown.

If a thin section is composed of a number of thin rectangular
sections as are those at the bottom of Figure 1-52, the following equations
may be applied:

3 TL 3 TL (1-63)
GE bt 3  G(bltl 3 + bzt 2

3 +

f 3 T ti 3 T t1 (-43Tt 1  - 3Tt- (1-64)

1 . bt 3  bltl 3 + b2 t2
3 + ..
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3 T tt2  3 T t 2fst b (±t3  (1-65)$ a2 bt3 bltl13 + b 2t 23 + . .

11 n2

f rmax 3 (1-66)
3bt 3  blt 1

3 +bZt 3 +..

In the above equations, fs.axn is the maximum stress in the nth rectangular
portion of the section, L is the beam length, and T is the applied torque.

If a section is composed of thick rectangular sections, the
equations in Section 1. 5.2. 1. 5 should be used. The advantage of the equa-
tions in this section is that they may be applied to specific shapes for which
a more exact formula may not be available.

_ bQ

b 2 b

r b2 t t2 b• 3 •__L-t3

b-@ b[1

Figure 1-52. Beams Composed of Thin Rectangular Members

1. 5.2. 1.4 Sample Problem - Noncircular Beams with Thin Open Sections
in Torsion

Given: A 50-in. -long beam with a cross section such as that
shown in Figure 1-53 under a torsional load of 500 in. lb.
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3

r=1

3 t=0. 125 G= 4x10- 6 psi

r=

Figure 1-53. Thin Open Section

Find: The maximum shear stress and the angle of twist of the
beam.

Solution: The developed length of the section is

b = 3 + 3 + 2 +T = 11. 14 in.

Equations (1-61) and (1-62) may now be applied to obtain

= 3 T _ 3(500) = 8,610 psi
bt 2  (11. 14)(0. 125)2

and

3 TL 3(500)(50)
3- 3 -bt G ii. 4(0.125)3 (4x 106)= 0.86 rad. =490

bt G 11. 14(0.I5 4 l )

1. 5.2Z. 1. 5 Noncircular Open Beams with Various Cross Sections in Torsion

Table 1-15 gives formulas for the deformation and stress of open
noncircular beams with various cross sections in torsion. The formulas for
Case 1 are based on rigorous mathematical analysis, and the remaining for-
mulas are obtained either by approximate mathematical analysis or the mem-
brane analogy and are normally accurate within 10 percent.
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TABLE 1-15

Formulas for Deformation and Stress of Various Open Section in Torsion

Form of Magnitude and L.o: ,-,on of
Cross Section Angle of Twist Maximum Shear S' .0ss

(1)

< __ = 80 TL z0OT
smax - 2 .t the mid-

3 Ga 
a

Equilateral point of each side
Triangle

(z)

a

. 38-31 TL38.31T 18.051'

<2 G a 4G8.34TLfsmax - .,.?

Right
Isosceles
Triangle

(3) 
For cases (3) to (9) inclusive, fsmaxy TL (+ 16x occurs at or very near one of the

o _xT__1_+__ points where the large:t inscribed
= x circle touches the bo urc,:. ry, unleas

4IG there is a sharp reen'trant angle at
U some other point on the .;oundary

causing high local s:-le•,F. Of the
points where the large!-t inscribed
circle touches the bounWdary, fsmax
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (continued)

Form of Magnitude and Location of
*Cross Section Angle of Twist Maximum Shear Stress

(4) t occurs at the one where the boundary

curvature is algebraically least. (Con-
vexity represents positive, concavity
negative, curvature of the boundary.
At a point where the curvature is posi-

Any elongated section 3 (1 4F T L tive (boundary of section straight or

or thin tube. @3AU2 convex) the maximum stress is given

(3F approximately by
dU = elementary length

along median line where a Gec
whee smax LL

t= thickness normal to
median line u whereFJ -Ut dU

A = area of section 0

DC -- D___ ___ __ ___ __ __ ___ ___ __ ___1+ rT2D 4  L_

(5) 16 A 4

0 15 T 2 D4  D
0.15 (16A2 2r )j

Any solid, fairly com- 40TLI
pact section without 4 =
reentrant angles. GA 4  where

D = diameter of largest inscribed
Ip = polar moment of circle

inertia about cen-
troidal axis r = radius of curvature of boundary

at the point (positive for this
A = area of the section case)

A = area of the section
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (continued)

Form of Magnitude and Location of
Cross Section Angle of Twist Maximum Shear Stress

(6) D

I -1 At points where the boundary of a
r b TL section is concave or re-entrant,

d c G(ZK I - KZ - ZaD the maximum stress is given

approximately by
b

f Gec

where smax L
I section, flange thick-
ness. K, =bb3 4-0.V1! (1 b4 where

r = fillet radius 3b [ F2.

D= diameter of largest K2 = cd
3  C [I 1 0.llBLoge ( L-i-)

inscribed circle 3* -
and 16 A4

ar~rt = b if b <d, t = d if -o. ÷., )

d<b, t 1 = b if b>d,
t = d if d > b 0. Z3SD }I tan

a
/ __TL where D, A and r have the same mean-

b4D ] bG(K I- Ka. -Ding as before and • = angle through
which a tangent to the boundary rotates

.e Keab
3  b4  in turning or traveling around the re-

3[j.0.2- ('- .)1 entrant portion, measured in radians.

1 d 
(Here r is negative.)

a= tl
(0. Is 0. 10

T section, flange thick-
ness uniform: r, D, t

and t 1 as for Case (6)
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (concluded)

Form on Angle of Twist Magnitude and Location of
Maximum Shear Stress

(8) b

S - T LarO(K I K }2 ,) 4

'hrr
--

d - . -0, 1

K, .,1
3  

0 I~ 1L section

r and D as for Cases (6)
and (7)

d (9.17.1T -q06

(9)

T L

G ZK4 - K 14

where the summation is
for the constituent L sec-
tions computed as for
case (8)

1. 5. 2.2 Noncircular Closed Beams in Torsion

Closed beams have one or a number of hollow portions in their
cross section. This type of beam is much more efficient in torsion than
open beams.

Section 1. 5. 2.2. 1 treats single cell closed or box beams in tor-
sion, and Section 1. 5. 2. 2. 7 treats multicell closed beams in torsion.

1. 5. Z. 2. 1 Single Cell Noncircular Closed Beams in Torsion

This section treats box beams with a single hollow portion in
their cross section. Section 1. 5.2.2. 2 treats such beams having uniform
cross section, and Section 1. 5.2.2. 3 treats tapered box beams. The effect
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of stiffeners and cutouts in box beams are treated in Sections 1. 5.2. 2.4 and
1. 5. 2. 2. 6, respectively.

1. 5. 2. 2.2 Single Cell Noncircular Closed Beams with Uniform Cross
Section in Torsion

Figure 1-54 shows a cross section of a thin box beam. The
angle of twist of such a beam of length, L, due to an applied torque, T, is
given by

e TL [dU (1-67)
4A2 G t

In this equation, A is the area enclosed by the median line, t is the thickness
at any point, and U is the length along the median line. The shear flow in
such a tube is uniform at all points and is given by

T
q=- (1 -68)

2A

If the shear stress is assumed to be uniform across any thickness, it is
given by

Sq - T (1-69)t 2 At

From this expression, it can be seen that the maximum shear stress occurs
where the thickness is minimum.

Figure 1-54. Cross Section of a Single Cell Closed Beam
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If the thickness of the tube is uniform, Equation (1-67) becomes

S TLU (1-70)

4A 2 Gt

and Equations (1-68) and (1-69) remain the same.

1. 5. 2. 2. 3 Single Cell Noncircular Tapered Closed Beams in Torsion

Figure 1-55 sho'ýrs a tapered box beam under a torsional load, T.
Since all four sides are tapered in such a way that the corners of the box would
intersect if extended, the equations in Section 1. 5.2.2.2 may be applied to
this beam if A is taken to be the area at the cross section in question.

S-C: -:r-

Figure 1-55. Tapered Box Beam in Torsion

However, these equations no longer apply for box beams for
which the taper ratio of the horizontal webs is not the same as that of the
vertical webs since the shear flows will not have the same distribution for all
webs. Such a beam is shown in Figure 1-56. Although the equations in
Section 1. 5.2.2.2 are not valid for a box beam such as that shown in Figure
1-56, they are quite accurate for the common airplane wing structure with
closely spaced ribs. The ribs divide the web into several smaller webs and
serve to distribute shear flows so that they are approximately equal in the
horizontal and vertical webs.

Figure 1-56. Box Beam with Nonuniform Taper
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1. 5.2.2.4 Effect of Stiffeners on Noncircular Closed Beams in Torsion

Thin-walled airplane structures usually contain longitudinal
stiffeners spaced around the outer walls as shown in Figure 1-57. If the
open-type stiffener, as shown to the left in Figure 1-57, is used, the tor-
sional rigidity of the individual stiffeners is so small compared to the tor-
sional rigidity of the thin-walled cell that it is negligible. However, a
closed-type stiffener is essentially a small tube and its stiffness is thus
much greater than that of an open section of the same size. Thus, a cell
with closed-type stiffeners attached to its outer walls could be treated as a
multicell closed beam with each stiffener forming an additional cell. Since
the analysis of a beam with a large number of cells is difficult and, in gen-
eral, the torsional stiffness provided by the stiffeners is small compared to
that of the overall cell, an approximate simplified procedure may be used
with sufficient accuracy.

7 1 1 1 L _r-~

Open-Type Stiffener Closed-Type St..ffener

Figure 1-57. Types of Stiffeners

In the approximate method, the thin-walled tube and closed
stiffeners are converted into an equivalent single thin-walled tube by modi-
fying the closed stiffeners by one of two procedures. This equivalent tube
is then analyzed according to the material in Section 1. 5. 2.2. Z. The two
procedures for modifying the closed stiffeners are:

1. Replace each closed stiffener by a doubler plate having an
effective thickness given by

t. = t., s/d (1-71)

This procedure and the necessary nomenclature are illustrated
in Figure 1-58.

2. Replace the skin over each stiffener by a "liner" having a thick-
ness given by

t,= t, d/s (1-72)
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This method and the necessary nomenclature are illustrated
in Figure 1-59. The first of these procedures slightly over-
estimates the stiffness effect of the stiffeners, whereas the
second procedure slightly underestimates this effect.

fastener centerline

d t s  te = tsts/d {t

tst4d

Figure 1-58. First Method of Transforming Closed Stiffeners

fastener centerline

dt ts d

tst --ot --No 4 t =tst + s
S

ss

Original Stiffener Transformed Stiffener

Figure 1-59. Second Method of Transforming Closed Stiffeners

Since the corner members of a stiffened cell are usually open
or solid sections such as those shown in Figure 1-57, their torsional re-
sistance can be simply added to the torsional stiffness of the thin-walled
overall cell.

1. 5.2.2. 5 Sample Problem - Noncircular Closed Stiffened Uniform
Section Beam in Torsion

Given: A 12 0-in. -long beam under an applied torque of
10,000 in. lb. with a cross section as shown in Figure 1-60. A

Find: The angle of twist and maximum shear stress in the
beam.
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t-- = .l -s I 0

s'4

Stiffener Detail

1 x 1 x 1/8 angles at corners16

16 G = 4x106

24

Figure 1-60. Cross Section of Stiffened Single Cell Open Beam

te tst s/d I ( = 0. 33

8 165_ ts I

d= 1.5

Figure 1-61. Doubler Equivalent to Beam Stiffeners

Solution: From Section 1. 5.2. Z. 4, a doubler plate equivalent
to a stiffener may be drawn as shown in Figure 1-61. The

area enclosed by the median line of the transformed section
is thus

A= (24x 16) -8 (d) -4 (2)

where the last term takes into account the effect of the corner
angles. Thus,

A= (2 4x 16) -8 (0-33 ) (1. 5) -4 ( )(2) 381. 5
( 2 \16

Applying Equation (1-67) to the equivalent beam gives
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o TL dU 1 I04(120) { 8d

4A G t 4(381. 52 )(4x10 6 ) t

+ 4(Z) + 2(24+ 16) -[8d+4(2)]

I lt, + 1-1
8 16

where the terms in the parenthesis represent integration over
the doubler, angles and skin, respectively. Thus

0lo4(l20) { 85) + 4(2)

4(3815 2)(4x 10 6) f (0. 33+0.0625) (0.0625+0. 125)

+ 2(24+ 16)-_8(l. 5)+4(2), } = 5. 35x10- 4 rad = 0.03060
0.0625

From Equation (1-69)

T 104 13. 1
ZAt 2(381. 5)t t

Thus, the maximum shear stress occurs at the point of mini-
mum thickness and

13.1f, - 10 psi
0.0625

1. 5. Z. 2. 6 Effect of Cutouts on Closed Single Cell Beams in Torsion

Typical aircraft structures consist of closed boxes with longi-
tudinal stiffeners and transverse bulkheads. It is necessary to provide nm-any.
openings in the ideal continuous structure for wheel wells, armament instal-
lations, doors, windows, etc. These cutouts are undesirable from a struc-
tural standpoint but are always necessary. A closed torque box is necessary
for most of the span of an airplane wing but may be omitted for a short length
such as the length of a wheel well opening. When a portion of the skin is
omitted for such a region, the torsion is resisted by differential bending of
the spars, as indicated in Figure 1-62, since the open section has low tor-
sional rigidity. If the torsion is to be assumed to be resisted by the two side
webs acting independently as cantilever beams, as shown in Figure 1-62(b),
one end must be built in as shown in Figure 1- 6 2(a).
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TL
bh

P Pr

bhb

Note: Bottom Skin b
Removed (a) (b)

Figure l-6Z. Illustration of the Effect of a Cutout

The existence of a cutout and the resultant axial loads in the
flanges also increase the shear flow in closed portions of the box adjacent
to the cutouts.

.5.2.2. 7 Multicell Closed Beams in Torsion

Figure 1-63 shows the internal shear flow pattern on a multicell
tube consisting of n cells under a pure torsional load, T. The torque applied
to this tube is given by

T = 2qIAI + 2-q 2 2 A. + 2q..A. (1-73)

where A 1 through A. are the areas enclosed by the medium lines of cells I
through n. The line integral, ' ds/t, where s is the length of the median of
a wall and t is the wall thickness, may be represented by a. Then a,, is
the value of this integral along the wall between cells K and L, where the
area outside the tube is designated as cell (0). Using this notation, the fol-
lowing equations may be written for cells (1) through (n):

cell ( A [qla 1 0 - (q, - q 2 ) a 1 2 ] = 2G• (1-74)

cell (2) -1- [ (q - q,) a 1 2 + q 2 a 2 0 + (q2 - q 3 ) a 2 3 ] 2Gz (1i-75)
A2

cell (3) 2_ [q 3 - q2 ) a2 3 + q 3 a 3 0 + (q 3 - q4 ) a 3 4 ] 2 GO, (-76)
A 3
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cell (n-i) 1 [(q -1  - q -2 ) a.-2,n-1 + q,-Ia.-l,0
An - I

+ (qn- 1  -q,)a,- 1 ,] n zGO (1-77)

cell (n) 1- [(q, - q% _lI)a, l, n - q% a, 0 ] = ZGO (1-78)
A,,

The shear flows, q, through q,, may be found by solving Equations (1-73)

through (1-78) simultaneously. From these shear flows, the shear stress

distribution may be found since f, = q/t.

CELL (0)

•--ql-- q2 q3 . ia-z qný-I qn

A A2
Cell (1) Cell (2) C 1n1IC l n

Figure i-63. Multicell Tube in Torsion

1. 5.2. 2. 8 Sample Problem - Multicell Closed Beams in Torsion

Given: A multicell beam with the cross section shown in

Figure 1-64 under a torsional load of 5,000 in. lb.

Cell (0) wall (1) wall (1,(2)

Figure 1-64. Two Cell Closed Beams

Find: The shear stress in each of the walls.

Solution: Assuming the cell corners to square gives

A 1 = ((. 5)(6. 5) = 16.25 in. 2

A2 = (2_.5)(4) = 10 in.2
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a,, - [z(6. 5) + Z. 5]/0. 1875 = 77. 3

a 1 2 = 2. 5/0.250 = 10

a 2 0 = [Z(4) + Z. 53/0. 1Z5 = 84

Applying Equations (1-73), (1-74), and (1-75) to the given
beam gives

T 2q= 1 A1 + ZqZA 2 ,

I [qlal 0 + (q1 - qz) a1 2  ZG ,
Al

and

I1 [(q 2 - ql) a 1 2 + q2 a 2 0 ] 2 GO.
AZ

Inserting numerical values into these equations gives

5000 = 2ql(1 6 . Z5) + Zqz(10),

16.25 [qi(77. 3) + (ql - qz)(10)] Z(4x 106)0,

and

1 (q 2 - ql)(10) + q 2 (84)] = Z(4x106)010

Solving these equations simultaneously gives

q= 78 lb/in. , qZ = IZ3 lb/in, and

0 = 1.345x10- 4 rad = 0. 00770

The shear stress in wall (1) is

f q, - = 415 psi
T- =l 0. 1875

The shear stress in wall (Z) is

q 2  123

f - - -984 psi
* t2 0. IZ5
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The shear stress in wall (1. Z) is

ql-q 2  123-78 q

f = - 1257 - 180 psit1. 2 0. 250

1. 5.2. 3 Effect of End Restraint on Noncircular Beams in Torsion

The equations for noncircular beams in torsion in previous sec-

tions assumed that cross sections throughout the length of torsion members
were free to warp out of their plane and thus there could be no stresses
normal to the cross sections. In actual structures, restraint against the

free warping of sections is often present at the point of attachment of a beam.

For example, the airplane wing cantilevers from its attachment to a rather

rigid fuselage structure and is restrained against warping at its point of

attachment. The effect of end restraint is greater at points close to the

restraint than those further removed. Sections such as I-beams are more

effected by end restraint than compact sections such as circles and squares.

Figure 1-65 shows an I-beam with one end restrained under a

torsional load, T. The maximum flange bending moment is

T L
M h - a tanh L (1-79)max a

where

a ( h1-80)
2 TL

*and 0 is the angle of twist of an I-beam with unrestrained ends given in
Table 1-15. The angle of twist of such an I-beam with restrained ends is

, (i a tanh hL__g_ (1-81)
L a,

From this equation, it can be seen that the end restraint has a stiffening
effect on the beam.

1. 5. 3 Analogies for Beams in Torsion

Two analogies for beams in torsion are useful both for visualiza-
tion of stress distributions and magnitudes and for experimental work. The

membrane analogy, which is described in Section 1. 5. 3. 1, is valid for open
beams for which the shear stress is in the elastic range. The sand heap
analogy (Section 1. 5. 3. 2) may be used to treat open beams under torsional

,loads for which the plastic shear stress is the same at all points on the
cross section.
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Figure 1-65. I-Beam Restrained at One End

1.5.3. 1 Membrane Analogy for Beams in Elastic Torsion

The equation for the torsion of a beam in the elastic range is
analogous to that for small ,eflections of a membrane under uniform pres-

sur-. Figure 1-66 shows such a membrane. The pressure on the membrane
is designated as p, and S is the uniform tension per unit at its boundary. The
membrane a-nalogy gives the following relationships between the deflected
membrane and a beam of the same cross section in torsion:

(1) Lines of equal deflection on the membrane (contour lines) corre-
spond to shearing stress lines of the twisted bar.

(2) The tangent to a contour line at any point on the membrane surface
gives the direction of the resultant shear stress at the corre-

sponding point on the cross section of the bar being twisted.

(3) The maximum slope of the deflected membrane at any point with

respect to the edge support plane is proportional to the shear

stress at the corresponding point on the cross section of the
twisted bar. Thus, the shear stress is greatest where the con-
tour lines are closest.

(4) The applied torsion on the twisted bar is proportional to twice

the volume included between the deflected membrane and a plane
through the supporting edges. If p/S 2 GG, this torque is equal

to twice the volume.
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Figure 1-66. Membrane Under Pressure

The membrane analogy may be used to experimentally measure
quantities for beams in torsion. However, possibly the main advantage of

the membrane theory is that it provides a method of visualizing to a con-

siderable degree of accuracy how stress conditions vary over a complicated

cross section of a bAr in torsion. For example, consider the bar with rec-

tangular cross section shown in Figure 1-67(a). A membrane may be
stretched over an opening of the same shape and deflected by a uniform
pressure. Equal deflection lines for the deflected membrane will take the
shape as shown in Figure 1-67(b). These contour lines tend to take the

shape of the bar boundary as it is approached as does the direction of shear-

ing stress. The shear stress is maximum where the contour lines are closest
(center of long side). Since the applied torsion is proportional to the mem-

brane volume, the more elongated of two rectangular bars of equal area has
the smaller torsional rigidity. Also, it is obvious that bending a long thin

rectangular section will not appreciably change the membrane volume and,
thus, the torsional rigidity of a bar of this shape.

I

(a) (b)

Figure 1-67. Rectangular Bar in Torsion
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The membrane analogy also makes it apparent that stresses are
very low at the ends of outstanding flanges or protruding corners and very
high where the boundary is sharply concave. For example, Table 1-16
gives the stress. concentration factor for the concave side of the shape in
Figure 1-68. Multiplying the maximum stress obtained from the formula
for thin rectangular sections in torsion by this factor gives the maximum
stress on the concave side of a thin bent section.

TABLE 1-16

Stress Concentration Factor for Thin
Sections in Torsion

____ /8 [1!4 1/2~~

Factor -/? 2-1/4 ,1 2 1-3/4

r

Figure 1-68. Thin Curved Section

1. 5. 3. 2 Sand Heap Analogy for Beams in Plastic Torsion

The maximum ultimate torque that an open beam may withstand
in torsion is given by

T = ZV F,, (1-82)

where V is the volume of a sand heap with a maximum slope of unity, piled

on a plate having the same shape as the beam cross section. Table 1-17
gives the volume of sand heaps with various bases of various shapes.

1. 5.4 Helical Springs

The primary stresses in the wire of a helical spring are due to
torsion. Section 1. 5.4. 1 treats helical springs composed of round wire,
and those composed of square wire are treated in Section 1. 5. 4.2.
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TABLE 1 - 17

Sand Heap Volumes for Equation (1-82)

Type Section Sand Heap Volume

Rectangle

t 
V = ~t-- (3b-t )

12 b t

b

Circle

-- TT D 3
24

KD _ __

Triangle

Ar
3

A- area of triangle

r = radius of inscribed circle
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1. 5.4. 1 Helical Springs of Round Wire

Figure 1-69 shows a helical spring made of round wire under an
axial load, P. If the spring radius (r) is much greater than the wire diam-
eter (D), the wire may be treated as a straight round beam under a tor-
sional load, Pr, as indicated in Figure 1-69. Superposing the stress due
to torsion of the wire on the uniform shear stress due to direct shear
(4P/-,D2 ), the following equation for the maximum shear stress in the spring
may be obtained:

_ 16 Pr (I D N, (1-83)

TrrD
3  , 4r

In the cases of heavy coil springs composed of wire with a relatively large
diameter, *D, in comparison to r, the initial curvature of the spring must
be accounted for. This is done in the following equation:

f _ 16 Pr ( 4m- 1 0.'615 \ (1-84)
max D 3  4m -4 m

where

m 2r (1-85)
D

This equation reduces to Equation (1-83) as r/D becomes large.

The total deflection (6) of a round spring of n free coils is given by

64 Pr 3 n
6 = G4  (1-86)GD4

This equation neglects the deflection due to direct shear which is given by

6 8PRn (1-87)
Gd

2

This portion of the deformation, however, is generally negligible compared
to the value of 6 given by Equation (1-86) and is thus generally ignored.

All of the equations in this section apply to both compression and
tension springs, and in both cases the maximum shear stress occurs at the
inside of the wire.
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V)

D

r-~5 1 T=Pr

P

Figure 1-69. Helical Spring of Round Wire

1. 5.4.2 Helical Springs of Square Wire

Figure 1-70 shows a helical spring made of square wire under an
axial load, P. The maximum shear stress in the square wire is given by

4.80 Pr (4m-_1 0.615
b3 4-4 m(1-88)

5Uf!8•C - b 3  "4m- 4 m o

where 2 r
M 2r (1-89)

The total deflection of such a spring is given by

6 44. 5 Pr 3 h(GO= (1-90)
Gb 4

where n is the number of active or free coils in the spring. This equation
neglects the deflection due to direct shear as did Equation (1-86). However,
the deflection due to direct shear is normally negligible compared to that
given by Equation (1-90).

r

Figure 1-70. Helical Spring of Square Wire
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2. COLUMN ANALYSIS

2. 1 Introduction to Column Analysis

The stresses that a structural element can sustain in compression are
functions of several parameters. These parameters are:

(1) the length of the element along its loading axis,
(2) the moment of inertia of the element normal to its loading axis,
(3) the cross-sectional variation of the element with length,
(4) the eccentricity of the applied load,
(5) the continuity of the integral parts of the element,
(6) the cross-sectional characteristics of the element,
(7) the homogeneity of the element material,
(8) the straightness of the element, and
(9) the end fixity of the element.

The effects of these parameters can be categorized by first establishing
certain necessary assumptions. For the following analysis, it is assumed
that the material is homogeneous and isotropic. It is further assumed that
the element is initially straight and, if it is composed of several attachedparts,
that the parts act as integral components of the total structural configuration.

The remainder of the previously mentioned parameters dictate more
general classifications of compression elements. If a compression element is
of uniform cross section and satisfies the previously mentioned assumptions,
it is referred to as a simple column and is treated in the first part of this
chapter. On the other hand, compression members having variable cross-
sectional properties are called complex columns and are covered in the latter
part of this chapter. Stepped and latticed columns are included in the treat-
ment of complex columns.

The possible basic types of failure defined for columns are primary and
secondary failure. Primary failure occurs when a column fails as a whole
and may be defined by the fact that cross sections of the element retain their
original shape although they may be translated and/or rotated with respect td-
their original position. If cross sections are translated but not rotated, the
primary failure is of the bending type. Failures for which cross sections of
a column are either rotated or rotated and translated are treated in the sec-
tion on torsional instability.

If a column experiences a failure due to lateral bending at a stress level
below the elastic limit of the material, it is defined to be a long column while
failures at a maximum stress greater than the elastic limit are characteristic
of short columns.

Secondary failures occur when buckling or crippling occur in sections
of a column before it is loaded enough to produce a primary failure.
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A column failure of a selected element is influenced by the eccentricity
of the applied load and by the end fixity of the element. Both of these dictate
boundary conditions that modify the solutions to the differential equations
governing column response.

In general, a column must be designed to prevent both the bending and
torsional types of primary failure as well as crippling. Crippling is likely

to occur in columns having thin portions in their cross sections. The tor-
sional type of primary failure is likely to occur at a lower load than the bend-
ing type in columns having cross sections of relatively low torsional stiffness.

Closed sections have enough torsional stiffness to insure that any primary
failure will be of the bending type so they must only be designed against this

and crippling.

2. 2 Nomenclature for Column Analysis

A = area

a = linear dimension as indicated in diagrams
= subscript, allowable

b = linear dimension as indicated in diagrams

b = b+h/2 in Section 2. 3. Z. 4
C = coefficient of constant - (L/L")
COT = torsion - bending constant

C = distance from neutral axis to the concave side of
loaded column

= subscript, critical

D = diameter

E = modulus of elasticity
Er = reduced modulus of elasticity
Es = secant modulus of elasticity

Et = tangent modulus of elasticity

e = eccentricity of loading
e = strain

= subscript, for Euler's equation
ec/p4 = eccentric ratio
FACOI = working concentrically loaded column stress
Fb = working bending stress

F0 = allowable compressive stress

FOeb = working compressive stress in bending

Fee = allowable crippling stress
Fe0  = empirical constant in Johnson parabolic equation

(column yield stress)

FC0 1  = maximum fiber stress for primary failure of a
column

FoP = .proportional limit in compression
Fey = compress-ive yield stress

FS = factor of safety
f = calculated stress
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fe = calculated compressive stress

fl = stress at which the secant modulus of elasticity
is equal to 0. 7

G = modulus of elasticity in shear
h = height

I = moment of inertia
IP = polar moment of inertia

J = torsion constant
K = spring constant
K = empirical constant
k = empirical constant
L = length

L" = effective length = L/,J

L/p slenderness ratio

L'/p = effective slenderness ratio

(L /P)vr critical effective slenderness ratio

M = empirical constant in straight line column equation

N = empirical constant in straight line column equation

n = empirical constant in Ramberg-Osgood equation
P = axial load

P. = allowable load
P~C = crippling load

P = critical load
P = Euler critical load

r = radius

T = torque
t = thickness

x, y, z = rectangular coordinates
E = Ee/f 1 where e is strain

= Poisson's ratio
p. = torsional spring constant

p = radius of gyration = 117W
= summation

•/
0 = angular deflection
CP = angular deflection

2. 3 Simple Columns

A simple column acts as a single unit and has a uniform . ction
along its length. Such columns are treated in the following mate.rL:..i

2. 3. 1 Primary Failure of Simple Columns

A simple column has a primary failure when its cross secti.ons are
translated and/or rotated while retaining their original shape, that ":. when
the column fails as a whole without local instability. If the column ir.,ss
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sections are translated but not rotated as shown to the left of Figure 2-1, it
is said to fail by bending while pure rotation or a combination of rotation and
translation are characteristic of torsional failures.

-- r---"/ /
I - -- ",

l---- \ ' ,

_r'_'

Figure 2- 1. Modes of Primary Failure

2. 3. 1. 1 Column Data Applicable to Both Long and Short Columns

A stable section (not subject to crippling) testing for various lengths
will generate data of the form shown in Figure 2-2. The stress F.01 is the
stress at failure, and L" /p is. the ratio of the effective column length to the
radius of gyration of the section. This L'/p ratio is called the effective
sFenieer2_ss ratio of the column.

Z3..1Cou t AEuler Column Curve

Fcol o

L'/p

cr

Figure 2-2. Typical Column Failure Curve

From the figure, it is apparent that the Euler column curve is quite
accurate beyond a critical L /p which defines the separation between long and
short columns. A great amount of test data, collected for particular materials,
is available and eliminates the need to determine whether a long or a short
column curve is applicable. A summary of column allowable curves that are
applicable to both long and short columns is outlined and presented on the fol-
lowing pages. These curves are based upon the tangent modulus equation which
is discussed in Section 2.3. 1. 11. 1. The column allowables are based on mini-
mum guaranteed properties, Basis A, or probability properties, Basis B, if
the latter are available. The pertinent basis is indicated in the figures.
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INDEX OF COLUMN ALLOWABLE CURVES

Figure

Aluminum Alloys

2014 Extrusion .................................... 2-3
20Z4 Bare Sheet and Plate ....... ................ 2-4

Bare Plate . ............ ............... . .2-5
Extrusion . .. .. .. .. .. . . .. .. .. . . . .... . . .. 2-6
Clad Sheet and Plate ...................... 2-7
Clad Sheet ..................................... 2-8

7075 Bare Sheet and Plate ........ ...................... Z-5
Extrusions .......... ............................. 2-3
Die Forging ......... ............................ 2-9
Clad Sheet .......... ............................. 2-8

7178 Bare Sheet and Plate, Clad Sheet and Plate, and

Extrusions . ..... ....... ........................ 2-10
356 Casting ........................ . ................. 2-11

Magnesium Alloys

AZ63A-T6 Casting ......... .......................... 2-12
ZK60A-T5 Extrusion ......... ........................ 2-12
AZ31B-H24 Sheet ......... ........................... 2-13
HM21A-T8 Sheet ......... ........................... 2-14
HM31A-F Extrusion, Area< 1.0 in2 . . . .. . . . . . . . . .. . . . 2-15
HM31A-F Extrusion, Area: 1-3.99 in 2 . . . .. . . . . . . . .. . . . 2-16

Steel Alloys

Heat-treated Ftu = 180-260 Ksi ......................... 2-17
Heat-treated Ftu = 90-150 Ksi .......................... 2-18

Stainless Steel

18-8 Cold rolled - with grain .................... 2-19

Cold rolled - cross grain .................. 2-20
AM 350 Sheet ........ ........................... 2-ZI
PH 13-8 Mo Plate and Bar ....... ......... ............ 2-22
PH 14-8 Mo Sheet .......... ...................... . ..2-2Z
PH 15-7 Mo Sheet and Plate ........ .................... 2-23
17-7 PH Sheet and Plate ........ .................... 2-24
17-4 PH Bar .......... ............................ 2-21
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INDEX OF COLUMN ALLOWABLE CURVES (Cont'd.)

Figure

Titanium Alloys

Commercially Pure Sheet .... ....................... 2-25
8 Mn Annealed Sheet ..... ........................ 2-25
4Al-3Mo-1V Solution Treated and Aged Sheet and

Plate . ...................... 2-26
5A1-2.5Sn Annealed Sheet, Plate, Bar and Forging. 2-2'
6AI-4V Annealed Extrusion .................... 2-28

Annealed Sheet ................. ...... 2-29
Solution Treated and Aged Sheet ......... 2-30
Solution Treated and Aged Extrusion . . . 2-31

8A1-lMo-1V Single Annealed Sheet and Plate ......... 2-32
13V-IlCr-3A1 Solution Treated and Aged Sheet and

Plate ........ ....................... 2-33
Annealed Sheet and Plate .......... ..... 2-34
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2014 AND 7075 EXTRMSIONS

Thickness
6 Curve Designation and Area Basis

80
S1 2014-T6 .125-.499 B

2 2014-T6 .500-.749 B
3 2014 -T6 2! .750,ASZS B

4 Z014-T6Z > • 125, A<-32 A
70 5f< - 50 -.750-1.499 B

"8 7075-T6510 * .250-.499 B
and -T6511 .500-.749 B

61 V 
1.500-2.999 B

50

S44

40

0

U

30 U\

z° 0
11 , 3, & 4

0

0 20 40 60 80 100 120

L'/p

Figure 2-3. Column Allowable Curves
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I I I I ' I I

2024 BARE SHEET AND PLATE
90 ---- - - - - -

80

70 Material

Curve Designation Thickness Basis

I 2024-T42 <.250 A

2 2024-T4 501-2.00 B
60 -- 12024-T3 £250 B

3 2024-T36 5.500 B
4 2024-T6 !5.2.00 A

5 2024-T86 <. 063 A
S6 2024-T86 >.063, <. 5 A

50

0
U
.-. 40
40

U

30 ----- A

20

10 -- - ~

0 -

0 20 40 60 80 100 120

L'/p

Figure 2-4. Column Allowable Curves
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20Z4 BARE PLATE

90 7075 BARE SHEET AND PLATE

80------ - -
Material

Curve Designation Thickness Basis

S1 2024-T42 .250-3.00 A
S2 Z024-T4 .250-. 500 B

3 7075-T6 .A16-.039 B

"" 4 7075-T6 .040-. 249 B

5 7075-T6 .501-1.00 B

60 6250-.500 B
6 7.001-2.00 B

.• 50
0

0

40

C.).

30

0 20
0 20' 40 60 80 100 120

L' /p

Figure 2--5. Col~umn Allowable Curves
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2024 EXTRUSION

80 Material Thickness
Curve Designation and Area Basis

I 2024-T4 <.250 B
2 2024-T4 .250-.749 B

72-024-T4 .750-1.499 B
2023 -4-T4 A.50, A!25 B

4 2024-T4Z 2t.250,A<32 A
-5 2024-T62 All A

6 2024-TBI <.750 A

60

m
1 50

0

20 '"

10

0

0 20 40 60 80 100 120

L'/p

Figure 2-6. Column Allowable Curves
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2024 CLAD SHEET AND PLATE

90, ,,

80
Material

Curve Designation Thickness Basis

I 20Z4-T42 .500-3.00 A

70 - 2_ _024-T42 .063-.249 B
2024-T42 .250-.499 A

7 3 Z024-T3 .063-. 249 B

_&-024-T4 .250-2.00 B
4 2024-T36 .063-. 500 B

605 2024-T6 .063-.249 A
60- -6 2024-T81 .063-.249 A

"7 2024-T86 .063-. 249 B

, 40 4

.. " 50

0

O040

0

20

30 - -

0 20 40 60 80 100 120

L'/p

Figure Z-7. Column Allowable Curves
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- - - -i I '-I I-- -

2024 CLAD SHEET
90 7075 CLAD SHEET

80 [Material
Curve Designation Thickness Basis

- - 1 2024-T42 <. 063 B
2 2024-T3 <. 063 B

70 3 2024-T36 <. 063 B
7 4 2024-T6 <. 063 A

95 2024-T81 <. 063 A
-6 2024-T86 <. 063 B

7 7075-T6 .016-.039 B
S8 7075-T6 .040-. 062 B

9 7075-T6 .063-. 187 B
6 10 7075-T6 .188-.249 B

U)

z 40
0

W U

10

0 0 20 40 • 60 80 100 120

L'Ip

Figure 2-8. Column Allowable Curves
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7075-T6 DIE FORGINGS
90 -----

80 ..--

Basis -A

Curve Thickness

6 0• 1 :S . 2 - I< _ . 0 0 0 '

"1 .Z001-3.000

50

0
U

0

30...

10

0 20 40 60 80 100 120

L'/p

Figure Z-9. Column Allowable Curves
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90 7178-T6

90 - - - - B - - - - - -

8Basis- B

80 C- Curve Type Thickness

1 Clad Sheet 016 - .044

- - 2 Clad Sheet & Plate 045 - 1.000
3 Bare Sheet .016 - .044

70 4 Bare Sheet & Plate 045 - 1.000
(D 5 Extrusion .750 - 2.999

6 Extrusion <.250
7 Extrusion 500- .749

8 Extrusion' . 250 -. 499

60 -........-- - -

02

m

4 50

0

40

U

30 -..--..

0o -....-....- - - -

0 20
0 20 40 60 80 100 120

L'/p

Figure Z-10. Column Allowable Curves
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I I I I I

CASTING - ALUM. ALLOY

45

40

Basis - A

35 Curve Material Designation

1 356-T6 Sand Casting

z 356-T6 Permanent
Mold Casting

30

252

0

0 20

"-4
0

15

0 20 40 60 80 100 120

LIP

Figure Z-11. Column Allowable Curves
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MAGNESIUM
36 -I - - I

32-- - - - - -- - -

2
8 .Basis A-

Curve Material

-- I AZ63A-T6 Casting

Z 2 ZK60A-T5 Extrusion

U 20

0
, 16

I "n

4

0

0 20 40 60 80 100 lzo

V/P

Figure 2_ Z. Column Allowable Curves
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I I I I I

AZ31B-H24 MAGNESIUM
36 - - SHEET

32

2 Basis - A

Z8 Curve Temperature

-1 Room
2 200•F
3 300*F

24 - 4 400'F
5 500°F

20

U)

16
02 \

0

4 20 -04 08 0 2

U

16 - -7
04

8

0 20 40 60 80 100 120

Figure 2- 13. Column Allowable Curves
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S..... .......... ! ..... . I I ... I

HM2IA-T8 MAGNESIUM
18 SHEET

16

Basis - A

14 Curve Temperature

I .Room
2 2000 F

3 300°F

"• 5 500'F

W

0 10

8
0
U

4.L

2

00 20 40 60 80 1 00 120

L' /p

Figure 2-14. Column Allowable Curves
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Ii. . . ' " ' i "i II . ...

HM3 lA-F MAGNESIUM EXTRUSION
S36 - AREA <1.000 in. -

3Z

Basis - A

28
Curve Temperature

1 Room

2 Z00°F
3 300°F

24 4 400*F

5 500' F

02

16"

S82

Cl] i.

0
U

8

.0 20 40 60 80 100 120

L'/p

Figure Z-15. Column Allowable Curves
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HM3 1A-F -MAGNESIUM EXTRUSION
18 AREA: 1.000 3.999 in.-

16
•k Basis - A

Curve Temperature

14 '1 Room

z 400'F

.. 5 500' F
14
12

S10

02

02

U 10

6

0 20 40 60 80 10O0 1 2O
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Figure Z-16. Column Allowable Curves

0 - 0

: , . , I I I I I I 0



HEAT-TREATED ALLOY STEEL

360- - - - - - - - - - - - -

320 -----
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Curve Ftu (ksi)
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Figure 2 -17. Column Allowable Curves
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HEAT-TREATED ALLOY STEEL
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160 - - - - - - - - - - - - - - - -
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Figure 2- 18. Column Allowable Curves
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STAINLESS STEEL (18-8)

180 -
-- COLD ROLLED - WITH GRAIN
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-

140 Basis - A

3 Curve Temper

1 Annealed
2 1/4 Hard
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120 4 3/4 Hard

x 5 Full Hard
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Figure Z-19. Column Allowable Curves
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"STAINLESS STEEL (18-8)

180- . COLD ROLLED - CROSS GRAIN
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Figure 2-20. Column Allowable Curves
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STAINLESS STEEL
SHEET AND BAR

220 I -

2--Basis A

180 - : Curve Alloy Condition Thickness

-2 1 AM-350 (sheet) SCT _- 1870
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• 140 f------------------
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Figure Z-21. Column Allowable Curves
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240- i

PH13-8Mo, H 1000 STAINLESS STEEL PLATE AND BAR
PHI4-8Mo, SRH 1050 STAINLESS STEEL SHEET

2202-----------------

200

180 Basis -B

160 - Curve Temperature
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2 400-F

3 500' F
4 600°F
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Figure 2-ZZ. Column Allowable Curves
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PH15-7Mo STAINLESS STEEL
SHEET AND PLATE

220-

20- -0 , ,
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Figure 2-Z3. Column Allowable Curves
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240I

17-7PH STAINLESS STEEL

SHEET AND PLATE
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-.Figure Z-24. Column Allowable Curves
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TITANIUM SHEET
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160 -
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Curve Alloy Temperature
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3 8Mn Annealed Room
"" 4 8Mn Annealed 300°F

5 8Mn Annealed 500' F

120

3

c 1 0 0 -- - -- - -- - -- - -- - -- - - -- - -- - -- - -- - -- - -- - -

too

i 80

60 - --

20

0 20 40 60 80 100 120
L,/p

Figure 2-25. Column Allowable Curves
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4A1-3Mo- 1V TITANIUM ALLOY

180 SOLUTION TREATED AND AGED SHEET AND PLATE

t -. 250

160

140-

Basis - B
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3 400 °F

4 4 500'F

15 600'F
106 700*F
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20 - ----------------
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]Figure 2-26. Column Allowable Curves
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5A1-Z. 5Sn TITIANIUM ALLOY
180 ANNEALED SHEET, PLATE, BAR AND FORGING

160
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2 300°F
3 400 0 F

4 500°F
12 .3 -- 5 600°F

6 700°F

o 100" "- / ...

0 80

00 20 40 60 80 10012
S//p

Figure 2-27. Column Allowable Curves
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180 6AI-4V TITANIUM ALLOY

ANNEALED EXTRUSION

160

140 Basis - B

Curve Temperature
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Figure Z-28. Column Allowable Curves
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180 6AI-4V TITANIUM ALLOY ANNEALED SHEET
t S.250

160

140Basis -B
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Figure 2-29. Column Allowable Curves
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6A1-4V TITANIUM ALLOY

180 SOLUTION TREATED AND AGED SHEET
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160 -

Basis-B

140 Curve Temperature

1 1 Room
"-- -2 300°F

3 400°F
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Figure 2-30. Column Allowable Curves
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6AI-4V TITANIUM ALLOY
180 SOLUTION TREATED AND AGED EXTRUSION
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Figure 2-31. Column Allowable Curves
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180 8A1-1Mo-1V TITANIUM ALLOY
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Figure 2-32. Column Allowable Curves
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Figure 2-33. Column Allowable Curves
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Figure 2-34. Column Allowable Curves
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2. 3. 1.2 Sample Problem - Column Data Applicable to Both Long and

Short Columns

Given: The 0. 6 in. square concentrically loaded column
shown in Figure 2-35.

6

L 0.6

2014-T6 aluminum alloy extrusion

Figure 2-3 5. Pinned End Column in Axial Load

Find: The critical load, Per' by using column curves appli-
cable to both long and short columns.

Solution: Since the column is pinned at both ends, L'= L = 6 in.
For a square, I b4 /12 and A - b 2 . Thus,

- I = b2  
-(6)2 - 9.173 in.

A12 .12

Ll 6  in. 34.6

0. 173 in'.

From Figure 2-3, curve 2, find Fci = 56,200 psi. Thus,

PC= F,-oA = 56, 200 (.6)2 = 20, 200 lb.

2. 3. 1. 3 Bending Failure of Concentrically Loaded Long Columns

In the process of describing column behavior in this chapter, the
simplest cases are covered first and then various complications are coveren.
Historically, the first type of column to be successfully studied was the long
concentrically loaded one for which Euler developed an equation giving the
buckling load in terms of column parameters. This is also the simplest case.

The Euler formula, which is perhaps the most familiar of all col-
umn formulas, is derived with the assumptions that loads are applied con-
centrically and that stress is proportional to strain. Thus, it is valid for
concentrically loaded columns that have stable (not subject to crippling) cross
sections and fail at a maximum stress less than the proportional limit, that
is, concentrically loaded long columns. The form of the Euler formula is
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P, Cr 2 E P cr = 2 E (2-)

A L (L§22

0 p

Here, P/A is the ratio of the axially applied load at failure to the cross-
sectional area of the column. E is the modulus of elasticity of the column
and L/i is the ratio of the column length to the least radius of gyration of
its section. The radius of gyration is defined to be equal to 45IIA, where I
is the moment of inertia of the section. The constant, C, which is called
the coefficient of constraint, is dependent upon end restraints and is dis-

cussed in Section 2.3.1.4 . In the second form of Equation (2-I), L' is
an effective length which takes into account end restraint conditions.

2. 3. 1.4 Coefficient of Constraint for End Loaded Columns

In the discussion of columns, the coefficient of constraint C often

occurs. As was mentioned before, this coefficient depends upon the manner

in which the ends of a column are restrained, which, in turn, determines

the boundary conditions that must be satisfied by the equations describing

the column.

Sometimes, the use of a coefficient is avoided by using an effec-

tive length L' instead of the actual length L in formulas derived for a
column with both ends pinned of length L. The term L' is then the distance
between points of inflection of the loaded column curve. For example, the
effective length of a column of length L that is rigidly supported at both ends
is L/2 as can be seen in Figure 2-36.

L'= L L' L/2 L

Figure 2-36. Example of Effective Length

The relationship between L' and L, and C is

2

--) =C. (2-2)
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By assuming various combinations of idealized end restraints, a
table of theoretical end constraint factors may be constructed. This is
shown in Table 2-1.

TABLE 2-1

Coefficients of Constraint for Idealized End Conditions

Type of Fixity C Type of. Fixity C

771.-5 2 05

*J I///,i

1.00 j4.00

* iII
The end restraints of an actual column are never exactly equivalent

to pinned or fixed ends, but lie somewhere between the two extremes. This
discrepancy is due to the fact that a pinned joint is never entirely frictionless
and a member to which a column is fixed is never perfectly rigid.

Cases for which one or both of the ends of a column are fixed to
nonrigid members may be treated by considering these ends to be restrained
by a torsional spring of spring constant u. The constant p is defined to be
dT/dO where T is a torque applied to the support at the point where the col-
umn is attached and 6 is the angle of twist at this point. Given this definition,
p may be calculated by applying formulas from strength of materials to the
member to which the column is attached before attachment. For example,
consider the column shown in Figure 2-37. The torsional spring constant for
the end is found by considering the beam supporting the column and calculating
dT/de where T and 0 are as shown in the middle diagram. dT/de is a constant
for small deflections so T/O may be found from beam formulas. The column
is then redrawn with the attached beam replaced by an equivalent torsional
spring.

Ti

Figure 2-37. Example of Equivalent Torsional Spring
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Equations have been developed that give the end fixity coefficient, C,
as a function of pj, L, E, and I for columns equally elastically restrained at
both ends and for those pinned at one end. These equations are given and
plotted in Figure 2-38. From these plots, it can be seen that C approaches
the value corresponding to a fixed end rather than an elastically restrained
end as p. increases. Likewise, C approaches the value corresponding to a
pinned end as the spring constant approaches zero.

4.0 Foru= CO, C =4.0

3.8 -

3.6 0 -- 'Both Ends Equally Restrained

3.4 - ./ /I-'
3. -

3.------ L-

3.0 t

"D :.8 • uL -. n/-- Cot VrC

I II•- :. 6 -,- I . I_ _ -

C = fixity coefficient
E = modulus of elasticity -

_ I = moment of inertia
SL = length of. column

" 2. i�i= banding restraint coefficient -

spring constant (in-lb/rad)
S2.0

1 One End Restrained

.6 

1 - -
1.4 

7

L 2
.2 uL (TT) C

El l/-C Cot n/-C- I
1.0 For i = c0 C ..05

t , I 1 1

0 10 20 30 40 50 60 7) 80 90 100 110

EI

Figure 2-38. Fixity Coefficient for a Column with End Supports Having
a Known Bending Restraint
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At times, a column may be supported along its lvý-gth as well as at
the ends. For example, the column shown in Figure 2-. 0 supported at its
midsection by another member.

Figure 2-39. Simply Supported Column with Intermediate Support

In order to treat such a case, namely that illuid rated in Figure
2-39, we may consider the member supporting the columinn at its midsection
to be a spring of spring constant K lbs/in. which may be found by applying
strength of materials to the support. Charts that give the coefficients of
restraint of a pinned column with a single lateral supp-,rt along its mid-
section or two lateral supports symmetrically placed its midsection are
available. Figure 2-40 shows a simply supported colunin with one lateral
restraint and gives the coefficient of constant of such a column as a function
of column parameters. Figure 2-41 shows a simply su)pported column with
two symmetrically placed lateral restraints and gives the coefficient of con-
straint as a function of column parameters.

The previous discussion of coefficients of constraint was-limited
to relatively simple cases. At times, however, a column may be attached
to members for which an equivalent torsional spring constant is not easily
found or it may be attached in more complicated ways than those previously
discussed. In such cases, certain general rules may be applied.

In normal practice, the coefficient of constraint is less than two
and the effect of end fixity is smaller for short columns than for long ones.
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S. _- L ,Note:

S K A center support behaves
x - rigidly if q >_ 16 : 2

4.0

3.8 E' Modulus of _

Elasticity
q= 140

3.6

3.4 -q KL Sol

3.2

3.0 q 100

2.8

.•q= 80
T~2.6

0 2.4
U

2.2

4, ellA'//I "
q14

1.2 
Q

1.0

0•1 .2 .3 .4 .5

r

Figure 2-40. Fixity Coefficient for a Column with Simply Supported Ends
and an Intermediate Support of Spring, Constant, K
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K L
3

a• K a where K spring

a• b aconstant Wb/in

8

U 7

i

C) Q5Q

\20

L 4 
1

b/L

Figure 2-41. Fixity of a Column with Two Elastic, Symmetrically

Placed Supports Having Spring Constants, K

The ends of a compression member in a welded truss of steel tubes,
like those that are often used in aircraft structures, cannot rotate without

bending all of the other members at the end joints. Such a t'russ is shown

in Figure 2-42. It is difficult to obtain the true end fixity of a compressive

member in such a truss since the member may buckle either horizontally or"

vertically and is restrained by the torsional and bending rigidity of many
other members. It is usually conservative to assume C =2. 0 for all mem-
bers. A smaller coefficient of constraint might be used for a heavy com-

pressive member restrained by comparatively light members. Likewise, a
larger coefficient of constraint may hold for a light compressive member

restrained by heavier members. A coefficient of constraint of one should be
used if all of the members at a joint are in compression. Steel tube engine

mounts are usually designed with the conservative assumption of a coefficient

of constraint of unity.
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Figure 2-42. 'Welded Truss

Stringers which act as compression members in semimonocoque
wing or fuselage structure, such as that shown in Figure 2-43, are usually
supported by comparatively flexible ribs or bulkheads. The ribs or bulk-
heads are usually free to twist as shown so that their restraining effect may
be neglected and the value of C is taken to be unity, where L is the length
between bulkheads. If the bulkheads are rigid enough to provide restraint
and clips are provided to attach the stringers to the bulkheads, a value of 1. 5
is sometimes used for C.P P

Figure Z-43. Semimonocoque Structure

Z. 3. 1. 5 Distributed Axial Loads

Columns subjected to distributed axial loads may be treated by
formulas developed for end loaded columns if a coefficient of constraint is
used that takes into account both the load condition and end fixities. Fig-
ure 2-44 shows columns under a uniformly distributed axial load of P/L
lbs/in, with various, end restraints and their corresponding coefficients of
constraint. The values P, L, and C are used in the formulas for end loaded
columns.

P P P P

L 1T 4S L L L L

77; 1 4

C = 3.55 C = 7.5 C = 1.87 C = .794
P/L lb/in P/L Lb/in P/L lb/in P, L lb'in

Figure 2-44. Coefficients of Constraint for Columns Under a Uniformly
Distributed Axial Load
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2. 3. 1.:6 Sample Problem - Concentrically Loaded Long Columns
in Bending

Given: The concentrically loaded rectangular bar shown in
Figure 2-45 is fixed at one end and attached to a round bar
at the other end. Both bars are made of steel for which
E = 30 x 106 psi and G 11.5 x 106 psi.

round bar

40 2 x 1/2- in. bar

0

Figure 2-45. Example of Constrained Column

Find: Per"

Solution: From elementary strength of materials, 0 = TL/IPG for
a torsion bar. In effect, there are two 7. 25-in. -long bars
attached to the end of the column so that the equivalent tor-
sional spring constant is

Z T ZJG

0 L

Substituting the appropriate values into the expression for u gives

() .(1)__4 (11.5x 10 6 )
32 7.25 3.12 x 105 in. -lb/rad

7.25
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The column may now be redrawn as Figure Z-46.

40

Figure 2-46. Free Body Diagram of Constrained Column

_L_ (3. 12 x 105) (40) 20

El (30 x 106) [ 2 (.5) 3
12

From Figure 2-'38, we find that C 1.88. Solving Equation

(2-2) for L" gives

L 40
L' -- - 29.2 in.,/e-- •1.88

The radius of gyration of the bar is

V/-A 2 (5)3 /Z 2(.'5) 0. 144 in.
x/12

The slenderness ratio

L 30. 5 212
p 0. 144

From Section 2.3. 1. 11.7, it is found that a steel column for

which L/p is greater than 120 is a long column. Thus, the

Euler formula, Equation (2-2), becomes

- -
Lf)2

Substituting the values for the given column into this equation

gives

(.5x2)7 .30x10) - 13, 100 lb.
Per 1502
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In general, a column such as this must also be checked for
buckling in the plane through the bar and the column. In this
case, however, the column will not fail by this mode.

2. 3. 1. 7 Bending Failure of Eccentrically Loaded Long Columns

A theoretically correct formula that holds for eccentrically loaded
columns is the secant formula:

pF 0 1  (2-3)

A ec s I-ec [- 
(-J3p

2Q A E

In this formula, P, A, o, L, C, and E are defined as before, and e is the
eccentricity of the load. The distance between the central axis and the con-
cave side of the loaded column is designated as c. In the case of a long eccen-
trically loaded column, FC.1 may be taken to be the value of Per/A found .from
the Euler formula in Section 2. 3. 1. 3. If a factor of safety, FS, is applied,
the corresponding formula for allowable load, P., becomes

(FS)P" _ Fe 01  (2-4)

A +ec- sec[ L" ,(FS)Pa ]
02 2 V AE

The secant formula may also be used for short columns by finding F, 0 1 dif-
Sferently as will be shown in the material on short columns.

All physical columns have some accidental initial curvature due to
imperfections and some eccentricity of loading. In these cases, an equivalent
eccentricity may be used to approximate the effects of the imperfections. Data
may also be found for the equivalent eccentric ratio which is the ec/C 2 term in
the secant formula. Values for these may be found in Section 2. 3. 1. 8.

The secant formula applies when the eccentricity is in the plane of
the bending.

Unfortunately, the secant formula is difficult to solve and must be
solved by either trial and error or charts.

2. 3. 1. 8 Equivalent Eccentricity for Imperfect Columns

As was mentioned previously, no column is perfectly straight and
concentrically loaded. In order to allow for these initial imperfections in a
column whose loads are concentrically applied, an equivalent eccentricity of
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loading may be asssumed. The column may then be treated by methods used
for an eccentrically loaded column.

Opinion is divided as to whether the equivalent eccentricity assumed
for imperfections is dependent upon or independent of the length of a column.
If we assume that it is independent of column length, an equivalent eccentric
ratio ec/pZ ranging from 0. 1 to 0. 25 may be used. The mean value of such
an eccentric ratio is approximately equal to 0. 2. We may also assume that
the equivalent eccentricity, e, is proportional to the effective length of the
column. If this procedure is used, e may be taken to be equal to KL where K
is a constant. Values of K ranging from 0. 001 to 0. 0025 may be used with the
latter yielding conservative results.

2. 3. 1. 9 Sample Problem - Long Eccentrically Loaded Columns and

Equivalent Eccentricity

Given: The round column shown in Figure 2-47 with nominally
concentric loading.

50 -I

50000 M- f 500O#

D

Steel - E = 30 x 106 psi

Figure 2-47. Column Loading for Study of Eccentricity

Find: The column diameter, D, for a factor of safety of 1. 5, con-
sidering the initial imperfections of the column.

Solution: For a round section, I = rrD 4 /64 and A = rTD 2/4. Thus,
o =,/T]A-= D/4. Since the column is pin ended, L = L' = 50 in.
Try D = 1.215.

L -- 50 164.5
o 1.215

4

According to Section 2. 3. 1. 11.7, steel columns for which L'/o

is greater than 120 may be treated as long columns. Thus F,. 1

in the secant formula may be found by the Euler formula:

F 7_ __ E r2 (30lx - 10, 950 ps,

,.0 L' ,2 (164.5)2
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The secant formula, Equation (Z-4), may now be written as

(FS)P& F___

A + cse (ES) P. -

02 sec_ r AE J

10,950
l+ 2-!c s ec F I- ' i -SPi+~secki. (FS) P8 -G

02 ""o \0 AE

According to Section 2. 3. 1.8, equivalent eccentric ratio due to

initial imperfections is between 0. 1 and 0.25. To be on the con-
servative side, use an equivalent eccentric ratio of 0. 25. Sub-

stituting this and column parameters into the'secant formula, the

expression below is obtained.

(1.5)(5000) - 10,950

TT(1. 2 5)2  50 /(1. 5) (5000)1

4 s (1.215) r(i. 215) 2  (30x 106)I + . Z5 s ec 4 4

or 6450 = 6450

Thus, the original guess of D = 1.215 was correct. If this were

not true, different values of D would have to be chosen until one

was found that would make both sides of the secant formula equal.

2. 3. 1. 10 Bending Failure of Short Columns

In the previous discussion of long columns, it was assumed that the
column material was in the elastic range at the time of buckling. This assump-
tion; however, is not true for columns having an effective slenderness ratio
of less than a certain critical value for a given material. This value of the
critical effective slenderness ratio, L'/0, is discussed in Section 2. 3. 1. 11. •.

Since the Euler formula no longer applies for short columns, one of the for-
mulas used to fit short column data must be used to treat them.

2.3. 1. ii Bending Failure of Concentrically Loaded Short Columns

Several formulas are available to treat short columns. These have
no theoretical justification as did the Euler formula, but fit column data to a

degree of accuracy depending upon the material and column parameters. The
equations most commonly used for short columns are the tangent modulus,

Johnson Parabolic, and straight-line equations.
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2. 3. 1. 11. 1 Tangent Modulus Equation

If the slenderness ratio of a column is low enough that some of
its fibers are no longer in the elastic range at the time of failure, the Euler
formula no longer holds. However, this case may be treated by defining a
tangent modulus of elasticity, E,, to be the slope of the stress-strain curve
at a given point. This tangent modulus of elasticity may then be substituted for
the modulus of elasticity in the Euler equation to obtain the tangent modulus
equation (modified Euler equation).

P (TT2 E T)
( E(2-5)

A
A L

Since ET is equal to E in the elastic range, the tangent modulus equation reduces
to the Euler equation for long columns and is thus valid for both long and short
columns.

The value of stress at which ET is found is the maximum stress
in the column. In the case of a concentrically loaded column, this is equal
to P/A. Since ET is a function of loading, the tangent modulus equation must
be solved by trial and error if ET is found from stress-strain diagrams or tables.

The tangent modulus equation has been solved for a number of
different materials and these solutions are shown in Section 2. 3. 1. 1.

The main disadvantage of the previously described procedure
for solving the tangent modulus equation is the trial and error method required.
This disadvantage may be eliminated if an equation for the stress-strain curve
is available. Such an equation is the Ramberg-Osgood equation,

+3 ,n

Here, E = Ee/fI and : f /fl where e is the strain, f. is the compressive stress,
and fI is the stress at which the slope of a line from the origin to a point on tbe
stress-strain curve is 0. 7. E and n are constants determined experimentally
for a given material. The Ramberg-Osgood equation may be used to obtain the
following expression for the tangent modulus of elasticity.

E
Et = (2-6)

1 + 3/7 nn

This expression may in turn be substituted into the tangent modulus equation
with f. equal to F.01 to obtain
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Fot Ty 1 (2-7)

L 2 I + 37 n-I

In the case of a column under concentric loading, F.., is equal to P/A. A
nondinrensional plot of this equation is shown in Figure 2-48. Values of n,
fl, and F that are needed for the Ramberg-Osgood equation are shown in
Table 2-2.

1.2

1.0

n5
53

0.8 20o
10

0.4

2.2 _ _ _ _ ____

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

'T Elf1

Figure 2-48. Nondimensional Plot of Tangent Modulus Equation with
Et Obtained from the Rarnberg-Osgood Equation
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TABLE 2-2

Properties of Various Materials for Ramberg-Osgood Equation

Material E, Ksi n f,, Ksi

Aluminum Alloys

24 S-T Sheet 10, 700 10 41
24 S-T Extrusion 10. 700 10 37
75S-T Extrusion 10,500 20 71
Clad 2024-T3 Longitudinal 10, 000 10 38. 1
Clad 2024-T4 Lungitudinal 10.000 15 36.5

Steel

Normalized 29,000 20 75
Ft, = 100, 000 29,000 25 80
Ftu = 125, 000 29,003 35 100
Ftu = 150,000 29,000 40 135
Ftu = 180, 010 29,000 50 165

Titanium 6AI-4V B.•r Stock,
Longitudinal Ft,.= 145 Ksi
at room temp., 1/2 hr.
exposure to temperature

at room temperature 17, 500 "10 164
at 500"F 16,000 17 108
at 700°F 15,000 10 93.4
at 900°F 13, 800 9 85.7

One great advantage of using the Ramberg-Osgood relation
is that the necessary constants may be obtained for new materials without
extensive testing.

In general, the tangent modulus theory will yield conservative
results. However, this theory yields values for the critical load that are too
high for very short columns for which E, may be less than 0. 2 at failure.

2.3. 1. 11.2 Sample Problem - Use of Tangent Modulus Equation for
Concentrically Loded Short Columns

Given: The I-in. square concentrically loaded column
shown in Figure 2-49.

Find: The maximum value of P by using the tangent modulus
equation, with E.. obtained from the Ramberg-Osgood relation.
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15 - '

S~24 S-T Extrusion

Figure Z-49. Column Loading Used for Illustration of Tangent-
Modulus Equation

Solution: Ultimately, Equation (Z-7) must be solved. This
equation is shown traphically in Figure Z-48. From Table Z-2,
find E = 10. 7 x 10 psi, n = 10, and f, = 37, 000 psi for the
given material. Consulting Section 2.3. 1.4, find that C = Z. 05
for the given end constraints. Solving Equation (2-2), find that

L= L/f/. In this case,

L- 15 10. 55 in.

For a square, I = b 4 /1Z and A = b 2 .

L= - !j-12

In this case,

F8
0= \12- .289

Thus,

L /o _ 10.55/0.289

TVI-nE/f TT/1. 7x 106./3. 7x 10O4

From Figure 2-48,

Frot

f01- = 0.88

Thus,

Per

F0 0 1 - = 0.88 f
A

per= 0.88 A fl = 0.88(1) (37, 000)

Per = 32, 600 lb.
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2.3. 1. 11.3 Reduced Modulus Equation

An equation that is theoretically more correct than the tangent

modulus equation is the reduced modulus equation. In this case, a reduced

modulus of elasticity, Er, is used to replace E in the Euler equation. This

reduced modulus is a value between E and Et, one suggested value being

Er - 4E E (2-8)

(I-- + /E

It can be seen from this equation that Er approaches E as Et approaches E

so that the reduced modulus equation reduces to the Euler equation for long

columns as does the tangent modulus equation.

The reduced modulus equation is accurate for specimens in

which extreme care in manufacturing and testing is used but yields high values

of critical load for other columns. The more conservative tangent modulus
equation is preferred to the reduced modulus equation for this reason as well

as for its greater simplicity.

2. 3. 1. 11.4 Johnson-Euler Equation

For many materials a parabola may be used to fit column test

data in the short column range. The equation of such a parabola may be
written as

Foo -F Foo- K ( )2 (2-9)
\0

where Feo and K are constants chosen to fit the parabola to test data for a
particular material. The Johnson-Euler column curve consists of the Euler

curve for high L'/o ratios combined with a parabola that is tangent to this

curve and covers short column ranges. If Equation (2-9) is adjusted so that

it is tangent to the Euler curve, we obtain the Johnson equation

F 0 0 ( L )2 I
Fool = Fee I - 4 2 (2-10)

Here, Fee, is the maximum column stress which is given as P/A for concen-

trically loaded long columns and by more complicated formulas for eccen-

trically loaded columns. The single experimentally determined constant, Fee,

is called the column yield stress but has little physical significance for col-

umns with stable cross sections since very short columns for which Lp/p is

less than approximately 12 fail by block compression. In cases where local

crippling and primary bending failure interact, F. may be taken to be equal
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to the section crippling allowable. This case will be discussed more cv'-

tensively in Section 2. 3. 2. A typical Johnson-Euler. curve is shown i

ure 2-50. The coordinates that are marked show the point of tangen,-.y -,:en

the Johnson parabola and the Euler curve. Thus, the critical effec',. siender-

ness ratio separating long columns from short columns is / rr E7T-E Fr the

Johnson-Euler curve.

Fcol Johnson Parabola

Fco \

IFC E__ooer Curve

EU

Figure 2-50. Typical Johnson-Euler Curve

The main advantages of the Johnson-Euler curve are its

ability to fit data when there is an interaction between crippling andi . ry

bending failure and simplicity of computation. For columns having ,

cross sections, one of the other short column curves is normally pe'', rr, d.,

Z. 3. 1. 11. 5. Straight Line Equation

Short column curves for most aluminum alloys and sc",:-'.

other materials are best represented by straight lines. A typical straight

line is shown in Figure 2-51.
Fcol

N

Fcy

Euler Curve

I

Pcr

Figure Z-51. Typical Straight Line for Short Columns
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As can be seen from Figure Z-51, the straight line is not necessarily tan-
gent to the Euler curve as is the case for the Johnson parabola but this is
often the case. The straight line shown may be given by the equation

Fo _ N - M(-• (2-11)

where N and M are constants chosen to best fit column data for a given mate-
rial. As in the case of the Johnson parabola, this straight line does not
always hold for very short columns that fail by block compression so it is
cut off at F., as shown in the figure.

The critical effective slenderness ratio may be found by
equating Fo0 1 as found by the Euler formula to that value as found by Equa-
tion (2-11). This procedure involves solving a cubic equation and will not
be presented here since values of the critical slenderness ratio are tabulated

in Table 2-3.

Values of the constants N, M and the corresponding critical

slenderness ratio (L'/p)or are available for a large number of aluminum
alloys and manufacturing processes. These values are shown in Table 2-3.
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TABLE 2-3

Constants for Straight Line Equation

Extruded Rod, Bar and Shapes

Alloy and Temper Thickness, In. N(ksi) M(ksi, (L-')cr

2014-0 All 9.9 0.037 160
2014-T4 All 35.2 0.251 89
2014-T6 Up thru 0.499 61.4 0.410 50
2014-T6 0.500-0.749 67.3 0.471 48
2014-T6 0.750 and over

Area 25 sq in. max. 69.7 0.496 47
Area 25 to 32 sq in. 67.3 0.471 48

2024-0 All 9.9 0.037 160
2024-T4 Up thru 0. Z49 43.6 0.300 65
2024-T4 0.250-0.749 44.8 0.313 64
2024-T4 0.750-1.499 50.9 0.379 60
2024-T4 1.500-2.999

Area 25 sq in. max. 58.4 0.466 56

2024-T4 3. 000 and over
Area 25 sq in. max. 58.4 0.466 56

Z024-T4 1. 500 and over
Area 25 thru 32 sq in. 53.4 0.407 59

3003-0 All 5.4 0.015 222
3003-H112 All 5.4 0.015 z22

5454-0 Up to 5.000 13.3 0.058 142
5454-HIIZ Up to 5.000 13.3 0.058 142
5454-H311 Up to 5.000 20.4 0.111 121

5456-0 Up to 5. 000.. 21.6 0.120 111
5456-HI1Z Up to 5.0000) 21.6 0.120 111
5456-H311 Up to 5. 000 25.3 0.153 106

6061-0 All 5.4 0.015 222

6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63
6061-T62 All 28.1 0.127 74

6062-0 All 5.4 0.015 222

6062-T4 All 15.7 0.074 128

6062-T6 All 38.3 0.202 63

6062-T62 All 28.1 0.127 74
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Rod, Bar and Shapes (Cont'd.

Alloy and Temper Thickness, In. N(ksi) M(ksi)

6063-T42 Up thru 0. 500 11.0 0.043 149
6063-T5 Up thrO 0.500 17.5 0.076 103
6063-'1'6 Up thru 0. 124 28.0 0. 155 81
6063-T6 0. 125-0. 500 28.0 0. 155 81

7075-0 All 13.3 0.058 142
7075-T6 Up thru 0. 249 79.3 0.602 44
7075-T6 0.250-0.499 87.8 0.859 46
7075-T6 0.500-1.499 87.8 0.859 46
7075-T6 1.500-2,999 81.7 0.629 43
7075-T6 3. 000-4. 499®' 85.2 0.821 47
7075-T6 3. 000-4.499Z) 79.3 0.602 44
7075-T6 4. 500-5.0000 76.9 0.575 45

7178-T6 Up thru 0. 249 86.5 0.686 42
7178-T6 0.250-2.9994(:- 88.9 0.714 42

Rolled and Cold-Finished Rod and Bar

Diameter

Alloy and Temper or N(ksi) m(kst) L'
Thickness. In. (P)cr

EC-O All 3.2 0.006 241
EC-1412 Up to I in. 8.7 0.030 165
EC-H13 Up to I in. 13.3 0.058 142 -

EC-H17 Up to 1/2 in. 16.8 0.082 124

1100-0 All 4.3 0.0"10 221

1100-F 0.375 and over 7.6 0.025 186

2011-T3 0.125-1.500 45.4 0.368 79

2011-T3 1.501-2.000 40.3 0.308 85

2011-T3 2.001-3.000 35.2 0.251 89

2011-T8 0.125-3.250 48.0 0.400 77
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Rolled and Cold-Finished Rod and Bar (Cont'd

Dijam eter
Alloy and Temper or N(ksi) M(ksi)

Thickness, In. r

2014-0 Up thru 8.000 9.9 0.037 160
2014-T4 Up thru 6. 750 37.7 0.278 86
2014-T6 Up thru 6.750 64.7 0.543 54

2017-0 Up thru 8.000 9.9 0.037 160
2017-T4 Up thru 8.000 37.7 0.278 86

2024-0 Up thru 8.000 9.9 0.037 160
2024-T4 Up thru 6.500 48.0 0.400 77

3003-0 All 5.4 0.015 22Z
3003-H12 Up thru 0.374 12.2 0.051 148
3003-H14 Up thru 0.313 16.8 0.082 124
3003-H16 Up thru 0.250 22.8 0.131 112
3003-H18 Up thru 0.204 26.5 0.164 103

5052-0 All 11.0 0.043 149

5052-F 0.375 and over 12.2 0.051 148

6061-0 Up thru 8.000 5.4 0.015 222
6061-T4 Up thru 8.000 18.0 0.092 128
6061-T6 Up thru 8.000 38.3 0.202 63

7075-0 Up thru 8.000 12.2 0.051 148
7075-T6 Up thru 4.000 78.7 0.729 49

Standard Structural Shapes (Rolled or Extruded)

Alloy and Temper Thickness, in. N(kai) M(ksi) j
P cr

2014-0 All 9.9 0.037 160

2014-T4 All 35. Z 0.251 89
2014-T6 All 64.7 0.543 54
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Standard Structural Shapes (Rolled or Extruded)

Alloy and Temper Thickness, In. N(ksi) M(ksi-
P.r

5456-o All 21.6 0.120 111
5456-HIIZ All ZI.6 0. 120 111
5456-H311 All 25.3 0. 153 106

6061-0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63
6061-T62 All 28. 1 0. 127 74

6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-T6 All 38.3 0.202 63

Die Forgings

Alloy and Temper Thickness, In. N(ksi) M(ksi) )c

1100-F Up to 4 in. 4.3 0.010 221
2014-T4 Up to 4 in. 35.2 0.251 89
2014-T6 Up to 4 in. 61.4 0.410 50

2018-T61 Up to 4 in. 48.0 0.400 77
2218-T61 Up to 4 in. 48.0 0.400 77
2218-T72 Up to 4 in. 33.9 0.237 91

3003-0 All 5.4 0.015 222
3003-F All 5.4 0.015 222
4032-:T6 Up to 4 in. 50.6 0.433 75

6061-T6 Up to 4 in. 38.3 0.202 63
6151-T6 Up to 4 in. 40.6 0.220 61
7075-T6 Up to 3 in. 73.3 0.535 46
7079-T6 Up to 6 in. 72. 1 0.5Z2 46
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TABLE 2-3

Constants for Straight Line Equation (Conttd.)

Drawn Tube

Alloy and Temper Wall N(ksi) M(ksi) (•)Thickness, In. rpý
cr

2024-0 All 8.7 0.030 165
2024-T3 0.018-0.500 50.6 0.433 75

3003-0 All 5.4 0.015 222
3003-H12 All 12.2 0.051 148
3003-H14 All 16.8 0.082 124
3003-H16 All 22.8 0.131 112
3003-H18 All 26.5 0.164 103

Alclad 3003-0 0.014-0.500 5.4 0.015 222
Alclad 3003-HI2 0.014-0. 500 I2.2 0.051 148
Alclad 3003-H14 0.014-0.500 16.8 0. 082 124.
Alclad 3003-H16 0.014-0.500 22.8 0.131 112
Alclad 3003-H18 0.014-0.500 26.5 0.164 103

5050-0 All 6.5 0.019 185
5050-H34 All 20.4 0.111 121
5050-H38 All 25.3 0. 153 106

5052-0 All 11.0 0.043 149
505Z-H34 All 26.5 0.164 103
5052-H38 All 33.9 0.237 91

6061-0 All 5.4 0.015 222
6061-T4 0.025-0.500 18.0 0.092 128
6061-T6 0.025-0.500 38.3 0.202 63

6062-0 All 5.4 0.015 222
6062-T4 0.025-0.500 18.0 0.092 128
6062-T6 0.025-0.500 38.3 0.202 63

6063-T83 All 32.6 0.159 69
6063-T831 All 27.0 0.120 75
6063-T832 All 38.3 0.202 63
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Tube

Alloyand Temper WaT s N(ksi) M(ksi) (W)cThickness, In. -'-

2014-0 All 9.9 0.037 160
2014-T4 0.125-0.499 30.2 0.200 100
2014-T4 0.500 and over 35.2 0.251 89
2014-T6 0.125-0.499 61.4 0.410 50
2014-T6 0.500-0.749 67.3 0.471 48
2014-T6 0. 750 and over -

Area 25 sq in. max. 69.7 0.496 47

Area 25 to *32 sq in. 67.3 0.471 48

2024-0 All 9.9 0.037 160
2024-T4 0.499 and less 41.1 0.275 67
2024-T4 0.500-1.499 50.9 0.379 60
20Z4-T4 1.500 and over-

Area 25 sq in. max. 53.4 0.407 59
Area 25 to 32 sq in. 50.9 0.379 60

3003-0 All 5.4 0.015 222
3003-F All 5.4 0.015 Z22

5154-0 All 12.2 0.051 148

6061-0 All 5.4 0.015 2Z2
6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63

6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-T6 All 38.3 0.202 63

6063-T42 Up to 0. 500 11.0 0.043 149
6063-T5 Up to 0. 500 17.5 0.076 103
6063-T6 Up to 0.500 28.0 0.155 81

7075-0 All 13.3 0.058 142
7075-T6 Up to 0. 249 79.3 0.602 44
7075-T6 0.250-2.999 81.7 0.629 43

7178-T6 Up to 0. 249 86.5 0.686 42
7178-T6 0.250-2.999 88.9 0.714 42
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

P i p c

Alloy and Teniper Size or Pk')

Thickness, In. N(ksi) Mksil

3003-0 All 5.4 0.015 222

3003-11112 I in. and over 0.5 0.019 185

3003-1418 Under I in. size 26.5 0. 164 103
3003--F I in. and over .. 4 0.015 222

60," 1 -'r6 Under I in. size 38. 3 0.202 63

6W I-T6 I in. an1d( over 18.3 0. 202 0,

6063-'F5 All 17. 5 0.076 103

6063-T6 All 28.0 0. 155 81

6063-T832 All 8. 3 0.202 63

Sand Casling.s

Alloy and Temper Thicknes., In. N(ksi) Mksi) -

43-F 7.6 0.025 186
122-T61 35.2 0.251 89

142-T21 15.7 0.074 128

142-T571 35.2 0.251 89
142-T77 18.0 0.092 128

The values to the right 15.7 0.074 128195-T4 l570 7 2
are based on tests of

195-T62 standard specimens in- 24.0 0.147 1

195-T62 diviclually cast. 33.9 0.0237 91
I19•-T7 -19.2 0,.101 120

214-F" 11.0 0.043 149
11214-F 12.2 0.051 148

F214-F 11.0 0.043 149

2Z0-T4 15.9 0.076 131

319-F 11.5 0.047 163

319-T6 14.4 0.065 134
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Sand Castings (Cont'd.)

Alloy and Temper Thickness, In. N(ksi) M(ksi) ()-r

355-T51 12.2 0.051 148
355-T6 14.4 0.065 134
355-T61 23.4 0.136. 109
355-T7 24.2 0.143 107
355-T71 15.9 0.076 131

The values to the right
356-T51 are based on tests of 11.5 0.047 163
356-T6 standard specimens in- 13.7 0.061 144
356-T7 dividually cast. 18.8 0.098 123
356-T71 13.0 0.056 143

A612-F 14.4 0.065 134

Permanent Mold Castings

Alloy and Temper Thickness, In. N(ksi) M(ksi) (-)r

43-F 7.6 0.025 186
CI13-F 24.0 0.141 107

122-T551 37.7 0.278 86
122-T65 35.2 0.251 89

F132-T5--

The values to the right

142-T571 are based on tests of 0.237 91
14Z-T61 standard specimens in- 44.1 0.352 80dividually cast.

B195-T4 16.8 0.082 124
B195-T6 Z5.3 0.153 106
B195-T7 18.0 0.092 128

A214-F 14.5 0.066 135
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TABLE Z-3

Constants for Straight Line Equation (Cont'd.)

Permanent Mold Castings (Cont'd.

Alloy and Temper Thickness, In. N(ksi) M(ksi) (p)
cr

333-F 18.0 0.092 128
333-T5 25.3 0. 153 106
333-T6 29.0 0.188 100
333-T7 26.5 0. 164 103

355-TS1 The values to the right 25.3 0. 153 106
355-T6 are based on tests of 26.5 0. 164 103
355-T62 standard specimens in- 44.1 0.352 80
355-T7 dividually cast. 31.4 0.212 98
355-T71 31.4 0.Z12 98
C355-T61(@ 35.2 0.251 89

356-T6 25.3 0.153 106
356-T7 24.0 0. 141 107
A356-T61) 31.4 0.212, 98
C612-F 15.7 0.074 128
750-T5 8.7 0.030 165
B 7 5 0 - T 5 ---. .. .

(Area up thru 20 sq in.

Area 20 thru 32 sq in.

TArea up thru 30 sq in.

()The values shown for this alloy are valid for
any location in the casting.
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Z. 3.1.11.6 Sample Problem - Use of Straight Line Equation for

Concentrically Loaded Short Columns

Given: The concentrically loaded rectangular bar shown

in Figure Z-52.

to 12 -.

P •-0.5 P

606 1-T4 Aluminum Alloy Extruded
Bar, Width = 1.0 in.

Figure Z-5Z. Concentrically Loaded Short Column

Find: The critical load, Pr'

Solution: Since the column is made of aluminum alloy, a

straight-line equation should be accurate if the column is

short. From Section Z. 3. 1.4, C = 4 for columns having

both ends fixed. Since C = (L/L')', L' = L/2. The radius

of gyration,

,I _ b1h3P Y AI = V/l 2/h/ bh

A 12

Thus,

= =h2 (12 = 0.144.
12 12

L" _6 =41.6
p .144

From Table Z-3, we find that (L/p) 0 r = 128 for this material.

Since L/p is less than this critical value, a straight line

equation may be applied. Substituting the values of N and M,

given for 6061-T4 extruded bars in Table 2-3, into Equation
(2-11), we obtain

Foot 15. 7 .074QL)Ksi
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Thus,

er_ Fool =[15. 7 - .074(41.6)] KsiA

or

P,• 12. 55A = 12. 55(. 5) = 6.27 kip

Pr• =6, 270 lb.

2. 3. 1. 11.7 Critical Effective Slenderness Ratio

So far, long columns and concentrically loaded short columns
have been discussed. It has been mentioned that a long column is one for
which the Euler equation holds in the concentrically loaded case. This equa-
tion holds for columns having an effective slenderness ratio greater than a
value called the critical effective slenderness ratio of the column. In some
cases, this critical effective slenderness ratio need not be determined. For
example, the tangent modulus equation, reduced modulus equation, or plotted
data may be applied to either long or short columns. In other cases, this
ratio must be known in order to decide which of two equations is to be applied
to a column. A critical effective slenderness ratio must be found if the
Johnson-Euler or a straight line equation is to be used.

The critical effective slenderness ratio is, in general, a func-
tion of the column material. If the Johnson-Euler formula is to be used, we
obtain

-TT ZE (2-1-2)
0 r' Fco

as our critical effective slenderness ratio. If a straight line formula is to
be used, the critical slenderness ratio is the slenderness ratio for which
the Euler curve and the straight line either intersect or are tangent. A gen-
eral formula is not given here since the critical effective ýlenderness ratio
for each straight-line equation whose parameters are given in Table 2-3 is-
also given there.

In general, a steel column having a critical effective slender-
ness ratio of greater than 120 or an aluminum column having one of greater
than ZZ0 may be immediately treated as a long column. Columns having
lower effective slenderness ratios must be checked by Equation (2- 12) or
Table 2-3 or treated by a method applicable to both long and short columns.
If Equation (Z-12) is used, F,, may be assumed to be approximately equal
to Fcy for a rough estimate of LC/o.
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2. 3. 1. 11.8 Bending Failure of Eccentrically Loaded Short Columns

The column formulas in the previous section do not apply if
a column is eccentrically loaded or if initial imperfections are large enough

to have the effect of an appreciable initial eccentricity. In such cases, either
another formula must be used or adjustments must be made to existing equations.

The secant formula that was given in Section 2. 3. 1. 7 may also
be applied to short columns if its parameters are chosen correctly. This
equation is given again below for convenient reference.

(FS)P. F 0ol
A '(2-13)

A + e c sec L (FS)P.

02 1 0 AE

F.., is the maximum fiber stress at failure as before. Different references

suggest various ways of choosing F,,,. Reasonable results may be obtained
for very short columns if Fc:I is assumed to be equal to the compressive yield

point for steel or the compressive yield stress for light alloys. In the case of
intermediate length columns, F.o 1 should be taken to be the stress obtained

from one of the formulas for a concentrically loaded short column. If the for-
mula used for this purpose is the tangent modulus equation, E should be re-
placed by Et in the secant equation. The secant equation must either be
solved by trial and error or through use of a chart such as that shown in

Figure 2-53.

Unfortunately, the secant formula is inconvenient for computa.,
tion. A simpler approach may be used if the column deflection is small com-
pared to the eccentricity of loading. This assumption is true for very short

columns and to a lesser extent for intermediate length columns.

Using the previously mentioned assumption, the basic design
equation for an eccentrically loaded short column becomes

_ + P . (2 - .
FS A

Here F.°, is the maximum column stress as computed from one of the equa-

tions for a short concentrically loaded column.

A more refined design equation based on the assumption of a

small column deflection relative to the eccentricity of loading is

P PaPec

S-+ (2- 15)
A F~co1  I Fb
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where Fcoi is the working concentrically loaded column stress and Fb is the
working compressive stress in bending.

In conclusion, the secant formula is theoretically more correct
and yields better results for eccentrically loaded short columns. However,
due to the difficulty of applying this formula, Equation (2-14) or (2-15) may at
times be applied, especially for shorter columns.

(FS)Pa (FS) PA
AC0 SeC(

90 eL0P1 .0 0 [ e c "

-0.2

.80 0_

.70 0. 4 -.--0.3

C-.= ..-. . .
5100

0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L' ((FS)Pa
AE

Figure 2-53. Graphical Presentation of the Secant Column Formula
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2. 3. 1. 11.9 Sample Problem - Eccentrically Loaded Short Column
in Bending

Given: The eccentrically loaded round column shown in
Figure 2-54.

Pa~ I in. diameter P

6061 -T4 Alumintini Alhw: Extrnsion

Eccentricity of Loading 6 e- 0. 1 in.

Figure 2-54. Column Loading Used for Illustration of Secant-
Modulus Equations

Find: The allowable load, Pt if a factor of safety of 1. 3
is used. Use (a) the secant modulus equation, and (b)
Equation (2- 14).

Solution: (a) The secant modulus equation may be written as

(FS) P Fcot

A t

+ ± ~sec[L: %/1(FS) P,,
0 2 L 2p 'V AE.

Since the column is made of aluminum alloy, the straight-line
coluinn Equation (2-11) may be used to find Fo, if it is short.
From Table 2-3, find that B, D, and (L'/o),r for this material
are 15, 700 lb, 15 lb, and 128 respectively. Thus,

Foo1 = 15, 700 - 15 (Ž-)

Since the column is pin ended, L' = L = 12 in. For a circular
section, o = D/4 = 0. 25. Inserting these values into the above
equation gives F. 01 = 14, 980 psi. Since L'/p is equal to 48
and (L'/o)cr is equal to 128, the assumption of a short column

is valid. All of the parameters for the secant formula are now

known except P.. Inserting these values in the secant modulus

equation gives

1. 3 P8  14,980

nil() 2  1(. 5) se 12 2
4+ 2 sc 2.P .(.25) (.25) ii() (lox 106)1
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Simplifying this gives

9,090

1 + .8 sec [0. 00975 f']

Try Pa = 5, 000 lb. Substituting this value, we find that it

solves this equation. Thus, P. = 5, 000. If our original guess
was incorrect, other values of P. would have to be tried until

a value was found that solved the equation.

(b) Inserting the equation for F,., from part (a) into
'Equation (2-14) gives

15, 700 - 15 (L'/p) P +

FS A I

or

15, 700 - 15 (12/0. 25) P + P(0. 1)(0. 5)
1. 3 1/4 /64

Solving this for P gives P. = 6, 540 lb. Notice that
although this procedure eliminates the trial and error

methods used with the secant equation, it yields less con-
servative results.

2. 3. 1. 12 Torsional Failure of Simple Columns

The previous sections discussed the failure of long and short col-
umns by bending. It was assumed throughout this treatment that the sections
of the column are translated but not rotated as it fails. However, primary
failure may occur at loads lower than those predicted in the section on bend-
ing failure if the sections should rotate as well as translate as shown in Fig-
ure 2-55.

Figure 2-55. Section Subject to Translation and Rotation
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In general, columns whose cross sections have a low torsional
rigidity, GJ, must be examined for torsional instability. Columns having
closed sections or solid ones, such as round or square sections, have such
a high torsional rigidity that there is little possibility of them failing by tor-
sional instability. However, torsional instability must be considered in the
case of columns composed of thin sections. Failure by twisting is unlikely
for flanged columns whose cross sections are symmetrical about a point such
as I, H, and Z sections. Twisting-type failures are most apt to occur in the
case of torsionally weak sections that are unsymmetrical or have only one
axis symmetry such as angles, tees, and thin-walled channels.

The basic equation for a column that fails by a combination of bend-

ing and twisting gives the critical stress as

F0 GJ _ýCar TT2 E
F~01 -~ + CrTE(2- 16)

IP IP (L')z

In this case, CBT is a sectional property defined below and the parameters

are defined as usual.

The torsion bending constant is dependent upon the axis of rotation
and defined as

C %T" 2 2iA -v [ v wdA- 2  (2-17)"A A -A

where
pu

w = j fu r t d ,,2- 8
0

The parameters used above are shown on an arbitrary cross sec-
tionin Figure 2-56. Values of the torsional bending constant are given in

graphical form for various cross sections in" Figures 2-57 through 2-60.
The torsion constant, J, may be obtained in Figures 2-61 for bulb angles or
from the following equation for formed sections:

J = st 3 /3 (2-19)

Here, s is the developed length of the median line.
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y

i Figure 2-56. Parameters Used to Defihe the Torsion Bending Constant

If a column is not attached to a sheet, the twisting failure is by

rotation of sections about shear center of cross section. In this case, I•
and CsT are taken about this shear center. If the column is attached to a
sheet, sections may be assumed to rotate about a point in the plane of the
sheet. This procedure' gives rough results but unfortunately littl~e specific

information is available on this subject. In general, columns are stronger"
when they are used as stiffeners than when they stand free. However, a

column having an unsymmetrical cross section may be weaker when it is

attached to a sheet.
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Figure Z-57. Torsion -Bending Constant of Angle - About Its Shear Center
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-r h/t = 10

L7- _ _/h=1. 5

__ -I-/
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Figure Z-58. Torsion -Bending Constant of Bulb Angle -About Shear Center
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Figure 2-60. Torsion - Bending Constant of Channel - About Shear Center

2 - 79



* 0

C11 Cl

- -

z 80



2. 3. 1. 13 Sample Problem - Torsional Failure of Simple Columns

Given: A column with cross section and material properties
as shown in Figure 2-62.

Y

G = 3.85 106
i ~ E = 10 x 1.06 psi

L' = 100
Sd•----t = .1

3

- 1. 5

Figure 2-62. Cross Section of Column Used for Illustration of
Torsional Failure

Find: F.., for failure by a combination of bending and
twisting.

Solution: Since t is small, the shear center may be assumed
to be at the .corner of the angle.

The polar moment of inertia about the shear center is given by

IP 1I + IY

or

I, + (. 5)(3) . 5. i .3
1 J12

From Equation (2-19)

j = st 3  _ 4. 5 (0. 1)3 1. 5 x 10-
3 3

From Figure Z-57,

t 3 (h 3 + b 3 ) (0. 1)3(27 + 3.48) 8 46 x
Cbt- 36 36
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Inserting these values into Equation (2-16) gives

(3. 85x 106)(1. 5x 10- 3) + (8. 4 6 x 10- 4 (lox 106)Fc° =0. 9 +(0. 9)(104)

Thus, F.., 6,419 psi.

2. 3. 2 Introduction to Crippling Failure of Columns

In the previous sections, the primary failure of simple columns
was considered. However, if a column has thin sections, it may fail at a
load well below the critical load predicted for primary failure. Thus, a
column must, in general, be checked for both primary failure and crippling.
Primary failure may be assumed to be independent of crippling effects, in
which case, a failure curve such as that shown in Figure 2-63 may be used.
The right-hand portion of the curve describes the stress required for primary
failure of the column at various effective slenderness ratios. This curve is
cut off at the crippling stress level by the flat portion to the left.

I%

F cc

Li/p

Figure 2-63. Failure Curve Based on the Assumption of No
Interaction Between Primary Failure and Crippling

If the interaction between crippling and primary failure is to be
taken into account, the constant Fco in the Johnson-Euler equation may be set
equal to the crippling stress F. Although this procedure is more correct,
it also introduces added complications, and only works for columns having a
crippling stress less than the primary failure stress as L'/O approaches zero.
Figures 2-64 and 2-65 show sets of Johnson-Euler curves for various materials.
The curve used in a given case is the one that intercepts the ordinate at the
value of F,,, for that column.
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ALUMINUM ALLOYS

80* -
Johnson-Euler Formulas

For Aluminum Columns

Johnson Formula

2 L ,.zF cc ý)
S]• ~~~col = Fc- . .

41T E

60

C =restraint coefficientS-• E = 10. 3 x 106 psi

(1) 50

Euler Formula

0

U 40G 2

0

0
U

20 40 60 80 1',

L'o = L/p/C

Figure 2-64a. Johnson-Euler Column Curve
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MAGNESIUM ALLOYS

(Fcc)2  L 2F ca = -'c 2 L.•
60 - 4rrE

Where:

50 C = coefficient of restraint

E = modulus of elasticity
6.5 x 106

4 40
(U

U Fco1 Tr-

S• L Z

0 u 30

Cd

-o

0

U

10

0
0 20 40 60 80 100 120

L'/p -

Figure 2-64b. Johnson-Euler Column Curve
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STEELS

200 ,

Steel Columns

Johnson Formula
18 0 ") 2

FZ L

col = cc 4 2

Where C restraint coefficient
E = 29, 000, 000

Euler Formula

S 140
U) 2z

F col. L--
U)

E
120

0 Applies to Corrosion

and Non-Corrosion

- Resisting Steels

60v 8C)_ __ _ _

40 L

20 49 60 80 17

L'IP = p -C-

Figure Z-65a. Johnson-Euler Column Curve
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L
(0FC 4rr 2 E /___

Where:

60 C = restraint coefficient

"U2 E = modulus of etasticity=S4 15. 5 x 106

&4 50 _ _ _ I
TTE

r_ F c°[ =
F. ~L•

40

30

20______

Commercially Pure Titanium

10
0 20 43 6D 80 100 120

L'/3 = LI/ ,C

Figure Z-65b. Johnson-Euler Column Curve

2. 3.2. 1 Crippling Stress of Round Tubes

Steel tubes for which the diameter-to-wall thickness ratio is les's

than 50 need not be checked for crippling. This gives us some general idea

of the thinness required if a tube is to fail by crippling rather than by primary

instability. A theoretically correct formula for the crippling stress of a

tube is

Fc c E

/3(l 2 r (2-20)

where r is the mean radius andu = Poisson's ratio. If p is taken to be 0. 3, as

is the case for steel and aluminum alloys, we obtain
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.F 605 Ekt 
(2-Z1)

r

This equation, however, is extremely unconservative for small values of

t/r and should only be used for approximations in the early stages of design.

More conservative and accurate empirical methods are available

for the treatment of tubdlar columns. If L/r is less than 0. 75, use the

equation

Pee 2KT2r (2-22)

A L 2 t

where the critical stress coefficient, K, is given in Figure 2-66.

10RecO-

00 5001 mended

L2
o for

rtr/

Cylider Sujeced-o-AiaCmplSuprtession e

=CE r (2000)

- Clampe desggn

20 3 4 5P

whereCoisgive in igur 23067.

207Z = L -•
rt

Figure Z-66. Critical Stress Coefficients for Thin-Walled Short Circular

Cylinders Subjected to Axial Compression

If L/r is greater than 0. 75, use the equation

Fe CE tr (2-Z3)

where C is given in Figure Z-67.
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.Z4 ............- - - - -

16 --

C .12-

.08 -"

,04

0
0 400 800 1200 1600 2000 2400 2800 3200

rIt

Figure 2-67. Coefficient for Computing Critical Axial Compressive

Stresses of Indeterminate Length and Long Cylinders

2. 3.2.2 Sample Problem - Crippling Stress of Round Tubes

Given: The tubular aluminum column shown in Figure 2-68.

t = .02

E10 X 106 psi

.3

Figure 2-68. Cross Section of Column Used for Illustration of

Crippling Failure of Round Tube

Find: The crippling stress if

(a) L = 5 in.

(b) L = 60 in.
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Solution: (a) In this case, L/r < 0. 75 so we may use Equation (2-22)

L2LiiZi 5 3)?- 119. 5
rt 10(. 02)

r 10
-- 500

t .02

From Figure 2-66, K 1. Substituting this value into Equation

(2-22), we find that

2K 7 2 r 2 2(111)2(10) 350 psi
L 2 t (5)2(.02)

(b) If L = 60 in., L/r > 0. 75 so that Equation (2-23) may
be used

r = 500
t

From Figure 2-67, C = 0.22. Substituting this value into
Equation (2-23), we obtain

F, = 0.22 Et 0.22 (lox 106 )(0.02) = 4,400 psi
r 10

If the theoretically correct formula, Equation (2-20), is used for
either of these two columns,

Fe = 0.605 Et = 12, 100 psir

This value may be seen to be much greater than those obtained
from the more accurate empirical formulas.

2. 3.2. 3 Crippling Stress of Outstanding Flanges

Two idealized cases of edge restraint of long flanges are shown
in Figure 2-69. In case (a), the flange is fixed along its edge and the equa-
tion for its crippling stress is

Fe- 1.09E 2  (2-24)
b b 8
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The flange shown in (b) is hinged along its edge and the equation for its crip-
pling stress is

Fe- .416E ( t 2(2Z5)

A column flange is neither rigidly fixed nor hinged along i edge so its crip-
pling stress lies between those given by Equations (2-24) aiid (2-25), the latter
giving more conservative results.

t

t

•b • b

S~~Hinged •

Along
Edge

(a) (b)

Figure 2-69. Idealized Edge Constraints of Long Flanges

2. 3.2.4 Crippling Stress of Angle Elements and Cornph'<. Shapes

The basic design equations for the crippling stress and load of the
angle section shown in Figure 2-70 are

S~C

Go ) (2-26)

and

Pe (C.E 'A (2-27)

L )0. 75

Here b 'is equal to (h+b)/2 as seen in Figure 2-69 and C. is a constant dependent
upon the fixity of the edges, as shown to the right of Figurc- 2-70.
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b
Sr =R3 bi = h b

2

-Ce = .316 (t~vo ednes free)

Ce.= .342 (one edge free)

L h Ce C .366 (no edge free)

Figure 2-70. Angle Section

The area of this angle is given by

'b' rA Lw ) - 0.214 tt 2 (2-281.

Nondimensional plots of Equations (2-26) and (2-27) are shown in Figures
2-71 and 2-72, respectively. These plots may be used to facilitate the
solution of angle problems. It must be noted that Equations (2-26) and
(2-27) have no significance when F., is greater than FY. These cutoffs
are shown for two alloys in the following figures.
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0.09 .-.--.

0.08 75S-T6 Clad

0. 07

24S-T3

0. 06

0.05

VrF-cy" E 0.04 No Edge Free

_l--Two E~dges Free

0. 03

0.02

0.01

0
0 10 20 30 40 50 60 70 80

b - bth
t 2t

Figure 2-71. Dimensionless Crippling Stress of Angles vs. b'/t
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1.8 
_____

1 . •6 
T : d"g , r e

1. 6'----One Edge Free 160S-No Edge Free/

1.4 140

C 1.212

2 V-FE
1.0 

100
-FCC = Fcy -(24S-T3) A
-FCC Fcy (75S-T6) t--

0.8 80

0.6 60

0.4 40

0.2 20

0 10 20 30 40 50 60 70 80

t 2

Figure 2-72. Dimensionless Crippling Load of Angle vs. b'/t

Many complex sections, such as those shown in Figure 2-73, may

be treated by considering them to be composed of a number of angles. The

crippling stress of these sections may be found by the following procedure:

First, break the section up into a number of angles. Secondly, find the

crippling load and area of each of the angles. Finally, find F.¢ for the entire

section from the following equation:
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Foe _ E Crippling Load of Angles (z-z9)
F, Area of Angles

L U ...
Figure 2-73. Examples of Complex Sections

This procedure is illustrated in the following example.

2. 3. 2. 5 Sample Problem - Crippling Stress of a Complex Shape

Given: Column with the cross sectional shape shown in Figure

2-74. It is composed of an aluminum alloy for which E = I07 psi

and Fy = 50 kips.

863

431

.425 ®ID

1.228

- •L. 457

.0255

936 Z

Figure 2-74. Cross Section of Column Used for Illustration of

Crippling Failure of Complex Shape
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Find: The crippling stress F,,.

Solution: This section may be broken into three angle sections
as shown by the broken lines above. The calculation of the
crippling load and area of each angle section is summarized
in the table below:

Section b h Edge b+h Pec A
Condition t 2 t"• Pcc t A

____~~ __ __ _Y~E t2

1 0.425 0.431 One Edge Free 16.8 1.33 1.33t2 /F, yE 32.5 32.514

2 0.431 1.228 No Edge Free 32.6 1.72 1.72t
2 

/ F 64.0 I 64.012

3 0.936 1.228 1 One Edge Free 42.5 1.72 1.72t2 FV'T-._yE 83.9 83.912

The values of b and h in this table are as shown in Figure 2-70.
The values of Pe and A may either be found from Equations
(Z-Z7) and (2-28) or from Figure 2-72 which shows these equa-
tions in graphical form. The crippling stress may now be found
from Equation (2-29) to be

(1.33 + 1.72 + 1.72)t 2 -FPy7
F=, = 0 0z64/FVyE

(32. 5 + 64.0 + 83. 9)t 2

Substituting the material properties into the above equation gives

Fee = 0. 065/(5x -04)(30x1 3Z,400 psi

2. 3.2. 6 Crippling Stress of I Beams

Figure 2-75 shows an I section.

rb

tw h
L f

Figure 2-75. I Section
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The crippling stress of a column of this shape is given by

k~rT2 E t72
k,, = 

(2-30)I (C C )h2

where k, is given in Figure 2-76.

7 Web Buckles First

6 / Flange Buckles First

5

4

3
_ tw /tf

0.5

.6

.7

.8
- .9

.0

0 __j"
0 .2 .4 .6 .8 1.0 1.2

h

Figure 2-76. k,, for Equation (2-30)
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2. 4 Complex Columns

The material in previous sections treated columns that have uniform
cross sections and may be considered to be one piece. This section treats

of stepped and tapered columns whose cross section varies as well as of

latticed columns whose action varies from that of one-piece columns.

2. 4. 1 Stepped and Tapered Columns

Columns of variable cross section can be solved by numerical pro-
cedures. However, charts are available that vastly simplify the solution of

stepped and tapered columns.

These charts are shown in Figures 2-78 through 2-81. The use of
these charts in finding a critical load is self-explanatory except for the fact

that the tangent modulus of elasticity, E., must be used in place of E if the

section is stressed beyond the proportional limit. Also, the coefficients of

constraint that were discussed in Section 2. 3. 1.4 no longer hold for stepped
or tapered columns. The columns shown in the charts have pinned ends.

2. 4. 2 Sample Problem - Stepped Column

Given: The concentrically loaded pin ended, stepped column

shown in Figure 2-77.

-d 40

8 0424

P --- 'i .. P

Al = A4 A 2 = .5

11 = .25 12 = -5

Figure 2-77. Column Loading Used for Illustration of Effect of

Stepped Columns

Find: The critical load Pe..

Solution: Assume Pr 11,600 lb. Thus, F and are

equal to 11, 600/0.4 psi and 11, 600/0. 5 psi, respectively.

Equation (2-6) gives E. as

E
n-1

1 + 3/7 nc,
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Since C =fe/fl where f is the compressive stress which, in this
case, is F. 0 1 ,

Et :E

I + 3/7 n(Fool)n-

fi

Inserting values of f1 and n from Figure 2-46 into this equation
gives

10. 7 x 106

1 + 42.9 to )9

Inserting the values of F, and F into this equation gives

E, = 1.86 x 106 psi

and

EtZ =6. 55 x 106 psi

Thus

Et1I1 _ 1.8 6 x 106(0.25) 0. 142

EtzI2  6. 55 x 106 (0. 50)

From Figure 2-78, P,,/P = 0. 57 where

T2 ESEt
2 2

P. LZ

Thus,

'P - - 0. 57 TT2  (6. 55x 106)(0. 5)C. a (40)z

or Per 11, 600 psi. The original guess is thus correct. If it
were not, other values would have to be tried until the correct
value was found.
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Figure 2-79. Critical Loads for Unsymmetrical Stepped Columns
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2.4. 3 Latticed Columns

Although it is customary to assume that a latticed column acts as
a single unit and develops the full strength of the section, a column is actually
less stiff if the buckling occurs in a plane normal to that of the lacing. This
fact is unimportant if a column is designed so that buckling occurs in a plane
normal to that of the lacing, but it must be taken into account for columns
that are laced on all sides.

In order to take the effect of lacing into account, a reduced modulus
of elasticity, KE, may be used in place of E in the equations for simple columns.
Equations giving K as a function of column parameters are given in Figure Z-8Z
for various lattice configurations.

In designing latticed columns, care must also be taken to insure
that buckling of the individual members does not occur between points of attach-
ment. In general, the slenderness ratio of a longitudinal member between
points of attachment should be less than 40 or two-thirds of the slenderness
ratio of the column as a whole, whichever is lower.
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Colurnn Configuration K

A

1+ 4. 93

A L 2cos 2sine

AI-A -A2

+ 493 1 4.931

A L2 cos2qsinG A2 L 2 tan9

y K

I I~ a-,

0 =moment of inertia of entire column with resp(-ct to axis

of bending

L = length of entire column

I II =moment of inertia of a channel section about a central axis

parallel to the y axis

2= moment of inertia of a vertical batten plate section about a
central axis parallel to the x axis

Figure 2-82. Values of K for Various Lattice Configurations
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3. BAR ANALYSIS

3. 1 Introduction to Bar Analysis

Bars are thin structural members. This chapter gives procedures for
determining the resistance to yielding of bars under static lolds as well as
their resistance to fatigue failure under varying loads. Tensile loading of
bars is considered in detail, and information applicable to the compressive,
bending, and torsional loading of bars appearing in other chapters is ref-
erenced in this chapter.

3. Z Nomenclature for Bar Analysis

A = cross-sectional area, in.
ft = tensile stress, psi

fta = alternating stress, psi
ft, = mean stress, psi

Fty = yield stress in tension, psi
f.,, = endurance limit in torsion

K = stress concentration factor

K, = effective stress concentration factor

Kt = theoretical stress concentration factor

n = factor of safety

p = load, lbs
P. = alternating load, lbs
P. = mean load, lbs
q = notch sensitivity factor

3. 3 Static Tensile Loading of Bars

The basic formula for stress in a member of cross-sectional area A
under a static tensile load P is

ft = P (3-1)
A

This equation, however, is somewhat limited. In order for it to be valid,
the member must be centrally loaded, the section at which U occurs must

be well removed from the point of application of the load, and no stress
raisers may be present near the section where a occurs.

Bars are normally designed so that tensile loads are applied cen-
trally. If this is not the case, they may be considered to be beams under

combined tensile and bending loads and treated with the material in
Chapter 1. Although the end portions of a bar are as critical as the cen-

tral ones, they are not considered here since information about them more
properly belongs in a treatment of connections, for example, the chapter on
lug analysis in this work. According to St. Venant's principle, stress
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patterns become regular at a distance from the point of application of a load.
In this case, the stresses become uniform at a distance from the point of
application of an axially applied tensile load. Stress raisers will be con-
sidered here and when they are present, Equation (3-1) no longer applies.

If a stress raiser is present in'a bar loaded in tension,

S= K-2)

where K is a stress concentration factor. Equation (3-Z) indicates that the
stress at the discontinuity is K times the stress that would occur if no stress
raiser were present. The stress concentration factor may be determined
theoretically by the theory of elasticity, the photoelasticity method, etc.,
where it is designated as Kt. These values are not normally accurate, how-
ever, and are not in general used directly as will be discussed later. The
following figures give values of the theoretical stress concentration factor
for various cross-section and discontinuity shapes.

The theoretical stress concentration factor may be quite high as can
be seen in the following pages; however, this value is usually in agreement
with experiment. To account for this discrepancy, an effective stress con-
centration factor K is defined to be the one that holds in the actual situa-0

tion encountered. The notch sensitivity factor, q, is used to relate the two
and is defined by Equation (3-3):

q = K(3-3)
Kt I

The value of the notch sensitivity factor is a function of the material and the
size and shape of the discontinuity.

For ductile materials that are statically loaded to near their limit, the
yielding in the vicinity of the discontinuity may nearly eliminate stress con-
centration there, so that K, is approximately equal to one and q is quite low.

Brittle homogeneous materials are not as capable of localized yielding,
so that K. is approximately equal to Kt and consequently q is approximately
equal to one according to Equation (3-3). Cast iron of less than 45, with its
flakes of graphite, however, is effectively saturated with stress raisers, so
that the addition of another discontinuity seems to have little effect on its
fatigue strength. Thus q is approximately equal to zero for cast iron.

The design equation for a bar under a static tensile load P that is not
to be subjected to large-scale yielding is thus

F3Y= K- (2 (3-4)

3-A
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For a ductile or cast iron bar, K. may be assumed to be equal to unity and
A is the reduced area at the section where the discontinuity occurs. For a
bar of brittle homogeneous material, K. may be assumed to be equal to Kt
and A is either the cross-sectional area of the bar without the discontinuity

or the reduced area at the cross section where the discontinuity occurs.
Which of these areas is to be used is shown in a formula under each chart
of Kt in Figures 3-1 through 3-12.

ndZ

4
r

r
d

2.0

Kt 
1.8

1.6

104 .6 .8 1.0

d
D

Figure 3-1. Stepped Round Bar with Radial Fillet
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,- The values of K. may be used as a close approximation for any

type of V notch with a small fillet or radius r at the root of the notch

Figure 3-3. Round Bar with Hyperbolic Notch
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Note: The values of Kt may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch.

Figure 3-9. Rectangular Bar with Hyperbolic Notch (One Side)
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Figure 3-10. Rectangular Bar with Hyperbolic Notch (Each Side)
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The previously described procedure yields conservative results for
brittle homogeneous materials and the opposite for cast iron and ductile
materials. If a low margin of safety is desired for ductile materials and
cast iron, a value of q equal to 0. 2 is usually sufficient to account for the
effects of stress raisers.

The previously discussed material on bars in static tensile loading
is summarized in Table 3-1.

TABLE 3-1

Design of Bars Under Static Tensile Load

Design Equation F = K -

Material Type Ke A

ductile 1.0 reduced area of cross section
at the discontinuity

homogeneous Kt as found in Fig- either reduced or total area of
brittle ures 3-1 thru 3-12 cross section as indicated by

formulas in Figures 3-1 thru 3-12.

cast iron 1.0 reduced area of cross section
at the discontinuity

3.4 Sample Problem-Bar Under Static Tensile Loads

Given: A circular bar is to be made of a homogeneous brittle material
for which Ft. = 45, 000 psi. It is to support a static tensile load of
50, 000 lbs with a factor of safety of 1. 5. It is to have a U-notch of
the section shown in Figure 3-13.

re. I"
P = 50, 000 lbs 2

P •p D

Figure 3-13. Bar with U-Notch under Static Tensile Load
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Find: The diameter

Solution: Inserting the safety factor into Equation (3-4) gives

Fty _ 45000 K0 P 30,000

1.5 1.5 A

From Section 3. 3, K, = Kt. Thus,

30, 000 = Kt P
t A

Kt
Since P = 50,000, .6

A

From Figure 3-2, h= .2, r= .I thus, h = 2.
and furthermore, r

A - r (D-. 4)2

4

Thus,

4 Kt0. 6 -= _ _ _ _ _

r7 (D-. 4)2

Assume D= 1.05. Thus,

h. .2 .9h Z 190
D 1.05

From Figure 3-2, Kt = Z.0. Substituting these values gives

4K. 4(2.) 04 (Z.0. 6

T (D-. 4)z n (1. 05- 4)2

Thus, D is equal to 1. 05 in. If the assumed value of D does not
satisfy the equation, other values must be tried until a value of
D satisfying this equation is found.

3. 5 Cyclic Tensile Loading of Bars

The case to be considered now is that for which an alternating axial
load is applied to the bar. A diagram of this loading is shown in Figure 3-14.
The mean load is designated as Pt , and the alternating component is des-
ignated as Pa.
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P"P

time

Figure 3-14. Cyclic Loading of Bar

For a brittle homogeneous material, a stress concentration factor
must be applied to both the alternating and the mean stress in equations
for failure under alternating loads since a static load is affected by stress
concentration. Thus, the Soderberg relation becomes

1 Ke ftm Ký ft. 35- f~+ (3-5)

n Sy Sn

where S. and S. are equal to Pm/A and P./A, respectively, and n is the
factor of safety. In this case, Ke may be taken to be equal to Kt , so that
the basic design equation becomes

K t P Kt P.+ (3-6)
n AFty A f.e

where the A is either the reduced area at the discontinuity or the full area
of the bar as given in Figures 3-1 through 3-12.

For a ductile material, a stress concentration factor need only be
applied to the alternating stress in equations for failure since ductile
materials under static loading have an effective stress concentration
factor of one. In view of this, the Soderberg relation becomes

I ft + K, ft. (3-7)-
n F ty f ee

where ft, and ft, are equal to Pm/Am and Pa/Aa, respectively, and n is the
factor of safety. Here, A, is the reduced area of the bar, and Aa may be
either the reduced or the full area of the bar as given in Figures 3-1 through
3-12. Thus, the basic design equation for ductile rods under alternating
tensile loads is

1 P. K. P38- + (3-8)
n Am Fty A. f..e
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where K, is equal to q (Kt - 1) + 1. Here, Kt is the theoretical stress con-
centration factor as obtained from Figures 3-1 through 3-12, and q may be
obtained from Figure 3-15 for steel. For aluminum, magnesium and titanium
alloys, fatigue data is scattered to the extent that a value of one is suggested
for q.

h

r

0.9 - -
C7 _Quenched and Tempered Steels
L: 0.8

~j 0.7- - _ --

Annealed or Normalized Steels- 0.6

0.5

(2 0.4

o 0.3

0.2

0. 1
0 0. 02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Notch Radius r, Inches

Figure 3-15. Average Notch Sensitivity Curves. Applicable Particularly
to Normal Stresses; Used Also for Shear Stresses
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Since cast iron is insensitive to stress raisers, stress concentration
factors need not be applied in any formula governing alternating stresses.
Thus, the Soderberg equation may be used in its basic form

1 ft- fta (3.-9)

n Fty f~ a

where ft, and fta are equal to P. /A and P. /A, respectively, and A is the
reduced area of the rod. Thus, the design equation for cast iron bars
under an alternating tensile load becomes

Pm P. (3-10)
n A Fty A f6_

The previous discussion of bars under alternating tensile loads is
summarized in Table 3-Z.

TABLE 3-2

Design of Bars Under Cyclic Tensile Load

Material Type Design Equation Explanation of Terms

duc il 1P . K . P .
ductile + A = reduced area of section

n A. Fry A& f, Ke = q (Kt - 1) + 1 where q is

obtained from Figure 3-15 for
steel or set equal to I for
aluminum, magnesium, and
.titaniurn alloys, and where Kt
is obtained from Figures 3-1
through 3-1Z. A, = reduced
or full area of section as given
in Figures 3-1 through 3-12.

homogeneous Kt P, Kt P.

hs - = + Kt = theoretical stress concen-
brittle n A Fty A f. 0  tration factor as obtained from

Figures 3-1 through 3-12. A =
reduced or full area of section as
given by Figures 3-1 through 3-12.

cas ir n 1 P . P. ,,, ,, ,

castiron - + A = reduced area of section.
n A Fty A F,*
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3. 6 Sample Problem-Bar Under Cyclic Tensile Load

Given: A stepped circular bar with a fillet of . OZ in. radius is to
support a cyclic tensile load that is given as P = 20, 000 lbs +
10, 000 sin wt. lbs. This bar, as shown in Figure 3-16, is made
of an annealed steel for which Fty = 45, 000 psi and f.. = 35, 000 psi.

Use a factor of safety of 1. 5.

P = 20, 000 lbs +

10, 000 sin wt. lbs r= .08'

D P d

P 20, 000 Ibs +
P1 10, 000 sin wt. lbs

Figure 3-16. Bar Under Cyclic Tensile Load

Find: The diameter d.

Solution: From Section 3. 5, the basic design equation for a ductile
material is

+ K. P.- ___ + Kea(3-11)
n A. Ft y Aa f,.

Pm, Pa, and n are equal to 20,000 ibs, 10,000 lbs. and 1. 5,
respectively. By checking the explanation of terms in Section 3. 5
and checking the figure referred to there, we find that both A,
and A, are the reduced area 17dZ/4. This explanation of terms
also tells us that K. = q (Kt - 1) + 1, where q is given by Figure
3-15. Consulting this figure, q = . 89 and thus K. = . 89 (Kt - 1)+l.

The above values may now be substituted into the basic equation
to obtain

1 20000 [.89 (Kt - 1)+1] 10000-+2

1.5 Trd 2 (45000) TTd (35000)
4 4

Simplifying this equation gives

. 605 + . 323 Kt
0.66 =

dZ
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Try d = 1.33. Since d/D and r/d are equal to .870 and. 0601,
respectively, Kt = 1.75 according to Figure 3-1. Substituting
this in the above equation gives 0. 6 = 0. 6. Thus the guess for
diameter is correct. If it were not, other diameters would
have to be chosen to see if one satisfies the equation.

3.7 Compressive Loading of Bars

Bars that are subjected to compressive loads may be considered to
be columns. The behavior of columns may be obtained by referring to
Chapter 2.

3. 8 Bending Loads on Bars

Bars that are subjected to bending loads may be considered to be
beams and treated with the material on beams in bending appearing in
Chapter 1.

3. 9 Torsional Loading of Bars

Bars that sustain a torsional load may be studied by using the infor-
mation on beams in torsion in Chapter 1 or that on shafts in torsion in
Chapter 10.

3. 10 Lacing Bars in Columns

The function of lacing bars in a column composed of channels or other
structural shapes connected by them is to resist transverse shear due to
bending. Although these lacing bars resist shear as a group, each indi-
vidual bar is loaded in either tension or compression if its ends may be
considered to be pinned. For example, the type of loading on each of the
lacing bars in Figure 3-17 is indicated by a "T" on that bar if it is. in tension
or by a "C" if it is in compression.

P

T C \T C

Figure 3-17. Example of Lacing Bars
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These lacing bars may be studied by the information given early in this

chapter if they are in tension, or they may be considered as individual

columns and studied by the information given in Chapter 2 if they are in

compression. In addition to the strength of lacing bars as individual mem-

bers, their effect on overall column behavior must be considered. This

effect is treated in Chapter 2.
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4. TRUSSES

4. 1 Introduction to Trusses

A truss is a structure composed entirely of two-force members; that is,
the members that have two equal and opposite forces applied at two points.
Thus, since the members do not exert any torque on each other at the joints,
they are considered to be pin connected. However, welded and riveted joints
may be considered to be pinned joints if the member is so long compared with
its lateral dimensions that the connection can exert little restraint against
rotation.

Section 4. 3 discusses statically determinate trusses, and Section 4. 4
treats statically indeterminate trusses.

4.2 Nomenclature for Trusses

A = cross-sectional area of truss member
E = modulus of elasticity
L = length of truss member
P = force in truss member
R = reaction force
u = force in truss member due to a unit load
X = force in redundant member of a truss
6 = deflection

4. 3 Statically Determinate Trusses

4.3. 1 Introduction to Statically Determinate Trusses

The forces carried by the members of a statically determinate truss
may be determined by passing sections through certain members and applying
the equations of statics. The method of joints (Section 4. 3. Z) consists of
choosing these sections so that they completely surround a single joint. If the
sections that are chosen do not surround a single joint, the procedure used is
referred to as the method of sections (Section 4. 3. 4). This method is espe-
cially useful if it is desired to determine the load in only certain members.
In many cases, a combination of the method of joints and the method of sec-
tions may be advantageous in the analysis of a given truss.

Before either of these methods may be applied, the reaction forces
on the truss should be determined by the equations of statics.

Deflections in statically determinate trusses are treated in Sec-
tion 4. 3. 6.
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4. 3. 2 Application of the Method of Joints to Statically Determinate
Trusses

If a truss as a whole is in equilibrium, each joint in the truss must
likewise be in equilibrium. The method of joints consists of isolating a joint
as a free body and applying the equilibrium equations to the resulting force
system. Since the forces in the members at a truss joint intersect at a com-
mon point, only two equations of equilibrium may be written for each joint in
a planar truss. Thus, only two unknowns may exist at a joint and the pro-
cedure is to start at a joint where only two unknowns exist and continue pro-
gressively throughout the truss joint by joint. This procedure is illustrated
in Section 4. 3. 3.

4. 3. 3 Sample Problem - Application of the Method of Joints to Statically
Determinate Trusses

Given: The truss shown in Figure 4-1.

B C D

A G 1E
R,' 2000 lb. - 00 .R2

30 30 30

Figure 4-1. Planar Truss

Find: The forces in all of the members.

Solution: Applying the equations of statics to the entire truss gives
R1 = 1667 lb. and R 2 = 1333 lb. Free body diagrams may be drawn
for the joints in the order shown in Figure 4-2 and solved for the
forces in the members. Summarizing, if tensile forces are taken
as positive, the forces in the members are

PAS = -1925 lb. PeF Z -382 lb.
PAG = 962 lb. PCG = 382 lb.
P = -1925 lb. PDE = -1541 lb.

PSG 1925 lb. POF = 1541 lb.
Pc= -1541 lb. PEF 770 lb.

P= 1734 lb.
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RI = 1667
PAB B PBC

600
PAB = - 1925 lb. 0 PBG = 1925 lb.

(1) PAG = 962 lb. (2) PBC = -1925 lb.

A PAG AB 19 2 5  PBG

PB= 1925 PCG R2= 1333

PDE
600 PCG = 382 lb. 6DE = -1541 lb.

PAG =962]G PFG PFG = 1734 lb. (4) PEF = 770 lb.

2000 PEan 600PEF E

D PCF PDF 1541P'CD 600

600 PDF = 1541 lb.
(5) PCD -1541 lb. (6) 6 .600 W 7 F = -382 lb.

PG17,F1 PEF 70

7FG 1734 1000
PDF PDE 1541

Figure 4-2. Free-Body Diagrams of the Joints in the Truss Shown in Figure 4-1

4.3.4 Application of the Method of Sections to Statically Determinate
Trusses

The method of sections consists of breaking a truss up by a section
and applying the equilibrium equations to the resulting portions of the truss.
This method is preferable to the method of joints if the force on some interior
member is desired, since the necessity of calculating the forces on other
members may be eliminated. This advantage of the method of sections is
illustrated in Section 4. 3. 5.

4.3. 5 Sample Problem - Statically Determinate Trusses by the
Method of Sections

Given: The truss shown in Figure 4-1.

Find: The force in member FG.

Solution: From statics, R 1 = 1667 lb. and RZ = 1333 lb. By draw-
ing a section through members BC, CG, and FG, the free body
shown in Figure 4-3 is obtained. Summing moments about point C
gives PFG (30 sin 600) -1667(45) + 2000(15). Solving gives PFG 1734 lb.
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B C

//CG

A 6 oo 600 ;600 P FG

R1= 1667 jzo00

I-n---30 -.-

Figure 4-3. Free-Body Diagram of Part of the Truss Shown in Figure 4-1

4. 3.6 Deflections in Statically Determinate Trusses

The basic equation for the deflection of statically determinate
trusses is

PuL (4-1)
L. AE

In this equation, L, A, and E are the length, cross-sectional area, and
modulus of elasticity of each of the members of the truss. P is the force
due to applied loads of a member of the truss, 'and u is the force in a mem-
ber of the truss due to a unit load applied in the direction of the desired
deflection at the point whose deflection is desired. The application of this
equation is illustrated in Section 4. 3. 7.

4. 3. 7 Sample Problem - Deflections in Statically Determinate Trusses

Given: The truss shown in Figure 4-4.

500 lb. 1001) lb.

E Ox I07 psi for all A 3000
members /,A 35 B 1000 C

Area of mneimbers

ABC= All,) A(:I) 1 .2 -2121 1414 -1414

"AAB: APF. A)-- .

450 -2000 45 - D

20 10

Figure 4-4. Cantilever Truss
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Find: The vertical deflection of joint D.

Solution: The forces in the members may be found to be:

PA1 = 3500 lb., Pec = 1000 lb., POD = 1414 lb., Pse = -212.1 lb.,
PCD = -1414 lb., and P DC = -2000 lb. The truss may be redrawn

with a unit load in the direction of the desired deflection at joint
D as shown in Figure 4-5. The forces in the members are again

calculated with the results shown in Figure 4-5. Equation (4-1)
may now be solved as shown in Table 4-1.

A UAB 2 lb/lb B uBG = 0 Ib/lb

UBD 1.414 lb/lb

UBE =-1.414 lb/lb uGD =0 lb/lb

tiDE 1 lb/lb
E

I lb

Figure 4-5. Cantilever Truss with Unit Load Applied at the

Point Whose Deflection is Desired

TABLE 4-1

Solution of Equation (4-1) for the Truss Shown in Figure 4-4

Mere- P, Ib.. u, 1b. /b. _L , in. /b. PuL ,in.
ber AE AE

AB 3500 .2. 10/{(2)(10x106)= .5x10- 6  3.50 x 10-3

BC 1000 0 20/(1)(10 x 106) = 2 x10- 6  0

BD 1414 1.4.4 14.14/(1)(10x 106) = 1.414x 10-6 2.82 x 10-3

BE -2121 -1.414 14. 14/(2)(10x10
6 ) = .707x10- 6  2.12 x 10-3

CD -1414 0 14. 14/(1)(10x10 6 ) = 1.414x10- 6  0

DE -2000 -1 20/(2)(10x 106) = 1 x 10-6 2.00 x 10-3

= PuL= 9.44 x 10-3 in.
5AE
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4.4 Statically Indeterminate Trusses

4.4. 1 Introduction to Statically Indeterminate Trusses

If a truss is statically indeterminate, deflection equations must be
applied in addition to equilibrium equations to determine the forces in all of

the members. Section 4. 4. 2 treats trusses with a single redundancy, and
trusses with multiple redundancies are treated in Section 4. 4. 4.

4.4.2 Statically Indeterminate Trusses with a Single Redundancy

Trusses with a single redundancy may be treated by removing one

member so that a statically determinate truss is obtained. This member is
replaced by the unknown force exerted by this member, X. One equation

may be written for the deflection of the statically deter.minate truss due to

the applied loads including X, and another equation may be written for the
deflection of the removed member due to the unknown force, X. These two

equations may then be solved simultaneously to find X. Once X has been

found, the forces in the other members of the truss may be obtained by the
equations of statics. This procedure is illustrated in Section 4. 4. 3.

4.4.3 Sample Problem - Statically Indeterminate Trusses with a

Single Redundancy

Given: The truss shown in Figure 4-6.

30000 lb.

E 10x10 6 psi
B

10 AAB 2 in. Z ABC 2 in. Z

AB C~ A =. 2 in. 
2t [AAC= 15in2 in____ _5_ _ =1_, 2

10

Figure 4-6. Statically Indeterminate Truss With a Single Redundancy
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Find: The force on member AC,

Solution: The truss may be redrawn with member AC replaced
by the force resisted by this member, X, as shown in Figure 4-7.
The force in any member of the truss, P, may be obtained by the
superposition of the force due to the vertical loads -alone, P', and
that due to the horizontal loads alone. This latter force may be
given as X, where u is the force in a member of the truss due to
a unit horizontal load applied at points A and C. Thus,

P= PO +XU

By substituting this expression for P into Equation (4-1), the hori-
zontal deflection between points A and C is

P =L + X (4-2)

AE AE
Z 2

The terms and AE are computed in Table 4-Z. Thus,AE AE

6 = -0. 5645 + 47.63 x 10-6 X

From the deflection equation for bar AC,

-XLAC -X(50)8 -= - = 3. 33 x 10-6 X
AACE 1. 5(i0 x 10 6 )

Solving the last two equations simultaneously gives

X = 12730 lb.

30000 lb.

B

15000 lb. 15000 lb

Figure 4-7. Truss From Figure 4-6 Redrawn With Member
AC Removed
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TABLE 4-2

Computation of Summations in Equation (4-2)

Man- L PouL u2 L
PO, 1b. u [b/lb. IE in, /lb. 0 in. uL in. /lb.

ner AE AE

AB -3Z000 1.785 1.600x10" 6  -0.0915 5. 11 x 10-6

AD 26900 -3.0 1. 795x 10-6 -0. 1450 16. 15 x 10-6

BC -32000 1.785 1.600x10- 6  -0.0915 5. 11 x 10-6

BD 20000 -2.23 0. 6 7x 106 -0. 029Z 3.3Z x 10-6

CD Z6900 -3.0 1.795x10- 6  -0.1450 16. 15 x 10-6

PZ uL = -0.5150 u -'=47.63 xiO"w6 in/lb.AE AE

4. 4. 4 Statically Indeterminate Trusses with Multiple Redundancies

The analysis of trusses with more than one redundant is similar
to that for a truss with one redundant. The first step is to remove redundant
members or reactions in order to obtain a statically determinate base struc-
ture. The deflections of the statically determinate base structure in the
directions of the redundants may then be calculated in terms of the redundant
forces, and equated to the known deflections. For example, consider the
truss in Figure 4-8. Members a and b may be removed to obtain a statically
determinate base structure. The final force, P, in any member may be
obtained by superposing the forces due to the applied loads and redundant
forces. Thus,

P = P + X ua + Xbub (4-3)

where P, is the force in a member of the statically determinate base structure
due to the external load and ua and ub are the forces in a member of the stat-
ically determinate base structure due to unit loads applied in members a and b,
respectiyely. Applying this equation to members a and b, respectively, gives

6 Pu=L (4-4)

AE

and
- Pub L

6 b = (4-5)
AE
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where L, A, and E are properties of the members of the statically determinate
base structure and P is the force in a member of the base structure. Substi-
tuting Equation (4-3) into Equations (4-4) and (4-5) gives

, = + X 2 + X _ (4-6)

AE A AE AE
and z

S PubL X + Xb L (4-7)

AE L 1 AE AE

Figure 4-8. Statically Indeterminate Truss With Two Redundancies

In addition,

-X, L,,
6a= - (4-8)

A E

and

-Xb Lb (4-9)

6b A--E

Equations (4-6) through (4-9) may be solved simultaneously to obtain the
forces in the redundant members. Once this has been done, Equation (4-3)
may be applied to obtain the forces in the other members.

SPU.. L ua2 -L u ubL +&u2,L

a AE + X1 AE + + AE

.PUb L + .u. u.L ub u2L + +X u ,
6b +X + Xb +I. L+XuL (4-10)

AE AE AE AE/4 AE

and
•PaunL X,u.TuUL-] b- .u uL •u. 2L

A + X + x_ + + +... Xn

AE A E AE
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Also,

-X.L
a A AE

-Xb Lb

AbE

and

-X, L,
6:-

A E

These equations may be solved simultaneously to obtain the forces in the
redundant members.
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5. FRAMES AND RINGS

5. 1 Introduction to Frames and Rings

Frames and rings are statically indeterminate structures. A frame is
such a structure composed of prismatic elements joined rigidly at points of
intersection while the element or elements of a ring are curved.

Section 5. 3 treats the method of moment distribution for solving frame
problems. Section 5. 5 treats symmetrical rectangular frames under vertical
loading. Section 5. 7 gives formulas for simple rectangular, trapezoidal, and
triangular frames under various simple loadings. Circular rings and arches
are treated in Section 5. 9.

5. 2 Nomenclature for Frames and Rings

A = cross-sectional area
Aa = area under the moment diagram of a simply supported beam
a = linear dimension
b = linear dimension
c = linear dimension
D = diameter
DF = distribution factor
d = linear dimension
d = distance to centroid of load
E = modulus of elasticity
FEM = fixed end moment
H = horizontal reaction
h = height
I = moment of inertia
K = stiffness factor = I/L
L = length
M = moment
P = applied concentrated load
R = radius
s = length of upright of a trapezoidal frame
T = tensile force
V = shear force

V = vertical reaction
W = applied concentrated load
w = applied distributed load
x,y,z = rectangular coordinates
x = angular distance from the bottom of a circular ring

= increment or difference
= angle

e = rotation of the tangent to the elastic curve of a moment
at its end
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P = angle
= rotation of the chord joining the ends of the elastic curve

of a member
(•) = moment of the M. portion of the moment diagram of a

member (Figure 5-1) about point A.

5. 3 Solution of Frames by the Method of Moment Distribution

This section treats frames composed of prismatic members whose joints
do not translate. All members of such frames are assumed to be elastic.

The five basic factors involved in the method of moment-distribution are:
fixed- end moments, stiffness factors, distribution factors, distributed moments,
and carry-over moments.

The fixed-end moments are obtained by the use of the following equations:

MAS ZEI (29A + -8 -3*AS) + 2 [(C )A - 2()o)B] (5-1)

and

MSA = ZEI (209 + A 3 4
'A)+_2 [2(C )A - (3*)B] (5-2)L L

where:

MA13 = the moment acting on the end of member AB labeled as A
MSA = the moment acting on the end of member AB labeled as B
E = the modulus of elasticity of member AB
I = the moment of inertia of member AB
L = length of member AB

= rotation of the tangent to the elastic curve at the end of
the member

= rotation of the chord joining the ends of the elastic curve
referred to the original direction of the member

(C2)A = static moment about a vertical axis through A of the area
under the M. portion of the bending moment diagram

(DO)s = static moment about an axis through B

This terminology is illustrated in Figure 5-1.

If both ends of the member are completely fixed against rotation and
translation, the member is called a fixed-end beam and GA, GB, and *As are
all equal to zero. Thus, the last terms of Equations (5-1)-and (5-2) are
equal to the so-called "fixed-end moments." Denoting the fixed-end moments
as FEM,

FEMAB 2 2a- [(Q.)A - 2(Q), (5-3)

L
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"and

FEM 2 [ 2 ()A - (2i)8] (5-4)
L

Fixed-end moments for various simple types of loading were calculated and
are given in Table 5-i.

Equations (5-1) and (5-2) may be represented by one general equation
by calling the near end of a member "N" and the far end "F." The stiffness
factor of member NF is given by

KF -N (5-5)
LNP

Thus, the fundamental slope deflection equation becomes

MNF = ZEKNF (20N + of - 3 *mr) + FEMNF (5-6)

Any Loading

MA( B )rý MBA

L

MAB

MM

MBA

/ Origin'al Position

At BI

A IB

Curve

Figure 5-1. Illustration of Terminology for Method of Moment Distribution
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TABLE 5-1

Fixed-End Moments for Beams

1. P 2.

A B A B
L L a -- b

2Z 2 L
PL PL _ Pab2  

_ Pa 2 b
FEMAB 8 FEMBA- 8 FEMAB- L 2  FEMBA- L 2

3. w lb. /in. 4. w lb. /in.

A B__ __ _ BA B

L r

wL 2  wL 2  IlwL2  5wL- 2
FEMAB 12 FEMBA= 12 ftMB 192 ,2L- FEMBA 2 •92

5. w lb. /in. w lb. /

A B A B

2

FEMAB = wa 2 - 8aL + 3a2)A B 12L2 5w L 2 5 %,-L 2
FEMAB 5LFEMBA

FEMBA = (4a L-3a 2 ) 96 V 6

12L 2 _

7. -. /ilb /n. 8.wlb /n

A -B A B__ _ __ _

Paý L
S-L 1-r1 L

FEM wa= (10L 2 - lOaL+3a2

wL_ wL 2  AB 60L 2

FEM= FEM wa 3

0 0FEMBA - (5L-3a)
60L 2

9. 10.
M in-lb.

A .. .B A L . B--

L 2 2

FEMAB = Mb (31 a ___2 FEML-wL 2  wL•L LFEMAB= FMA
Ma (3bAB 32 BA 3

FEMBA- b 1) E 32

5-4



TABLE 5-1

Fixed-End Moments for Beams (continued)

11. 12.

L L.41
a

FEMAB = PaGl -- E) F.EMAB= 45PL FEMBA=MA
FEMBA= -FEMAB 48

13. 14. -a--4 wlb./in. •-a-

.A, B A- '

FEMAB 6 (3L-2a)=MB=-MA MA= 12L MB -MA

15. a1-. J.. 16

a 2

T6L

wa- (1 _• 1L

M wa 2 + 6
30MA -L MB 3wL=

wa 2  MA 30 160
MB= 20 L 4-__

17.,--w elliptic load 18. W i(X)

.L
-1.MA =�-�- J x(L-x) 2 f(x~dx

wL 2  wML2  o
MA 13.52 MB 15.86 MB . xz(L-x)f(x)dx

.0

The conditions to be met at a joint of a frame are: (1) the angle of
rotation be the same for the ends of all members that are rigidly connected
at a joint, and (2) the algebraic sum of all moments be zero. The method
of moment distribution renders to zero by iteration any unbalance in moment
at a joint to satisfy the second condition.

A distribution factor which represents the relative portion of the un-
balanced moment which is reacted by a member is used to distribute the
unb-olanced moment. This distribution factor is given for any member bm by
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DF Kb (5-6)
7-K
b

where the summation includes all members meeting at joint b.

The distributed moment in any bar bm is then

Mbm = - DFbi M (5-7)

This equation may be interpreted as follows:

The distributed moment developed at the "b" end of member bm as

joint b is unlocked and allowed to rotate under an unbalanced moment, M,

is equal to the distribution factor DFb, times the unbalanced moment, M,

with the sign reversed.

The "carry-over" moment is obtained by applying Equation (5-6) and

considering 0, = *,, = 0 as in Figure 5-2. The "carry-over" moment is
equal to half of its corresponding distributed moment and has the same sign.

Mb. = 4 EK• 0 (5-8)

and

Mmb = 2 EKmb Ob (5-9)

Thus,

M b = . (5- 10

,M -b -- Mbm

Figure 5-2. Illustration of Carry-Over Moment

The sign convention for moments in the method of moment distribution

is to consider moments acting clockwise on the ends of a member as positive.
This convention is illustrated in Figure 5-3.

M

Figure 5-3. Positive Sense for Bending Moments
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The following procedure is for the process of moment distribution
analysis:

(1) Compute the stiffness factor, K, for each member and record.

(2) Compute the distribution factor, DF, of each member at each

joint and record.

(3) Compute the fixed-end moments, FEM, for each loaded span
and record.

(4) Balance the moments at a joint by multiplying the unbalanced
moment by the distribution factor, changing sign, and recording
the balancing moment below the fixed-end moment. The uxn-

balanced moment is the sum of the fixed-end moments of a joint.

(5) Draw a horizontal line below the balancing moment. The
algebraic sum of all moments at any joint above the horizontal
line must be zero.

(6) Record the carry-over moment at the opposite ends of the
member. Carry-over moments have the same sign as the
corresponding balancing moments and are half their magnitude.

(7) Move to a new joint and repeat the process for the balance and
carry-over of moments for as many cycles as desired to meet
the required accuracy of the problem. The unbalanced moment
for each cycle will be the algebraic sum of the moments at the
joint recorded below the last horizontal line.

(8) Obtain the final moment at the end of each member as the alge-
braic sum of all moments tabulated at this point. The total of
the final moments for all members at any joint must be zero.

(9) Reactions, vertical shear, and bending moments of the member
may be found through statics by utilizing the above mentioned
final moments.

The use of this procedure is illustrated in Section 5. 4. It should be
noted that simpler methods may be found for the solution of rectangular,
trapezoidal, and triangular frames in Sections 5. 5 and 5. 7.

5.4 Sample Problem - Solution of Frames by the Method of Moment
Distribution

Given: The frame shown in Figure 5-4.
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Soo10000 lb.
5000 lb. 25'

1o 2000 lb/ft. 15-5 I

"A I= 2 I=3. 5 I=5

"25' 3 ' . 40'.

Figure 5-4. Frame

Find: The end moments and draw the moment diagrams for this frame.

Solution:

(1) From Equation (5-5), the stiffness factors of the members are:

I eA 2KRA - 2 0. 08

L SA 25

I8ý- 3. 5
KBC L 1 11 - - = 0. 1

.B• 35

Kc. - 5 = 0. 125
CL^ 40

Ic-t 2
K, - -2 = 0.08

L 25

These are recorded in line I of Table 5-2.

TABLE 5-2

Solution of Frame Shown in Figure 5-4

AB BA BC DC CB CE CD EC

1 K 0.08 0.1 0.1 0.125 0.08
2 DF _ 0.44 0. 56_ 0.33 0.41 0.26 __

3 FEM -104 +104 -18 0 +25 -50 0 +50

4 -38 -48 +8 +10 +7

5 -19 +4 +3 -24 +5

6 -2 -2 +8 +10 +6

7 - 1 +4 + 3 +5

8 -2 -2

9 1 -124 +62 -62 +6 +17 -30 +13 60
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(Z) From Equation (5-6), the distribution factors of the members are:

KBA 0. 08

DFK B A - = 0.44
KBA + KBC 0.08 + 0. 1

K__ __ 0. 1

DFSC = - = 0. 56
K BA + KBC 0.08 + 0. 1

K___ __ __ 0. 1

DFC8 = - 00.33
KCB +KCD +K,• 0.1+0. 08+0. 125

KCE 0.1i

DFCr = K = 0.41
Kcs +KCD +K CE 0. 1+0. 08+0. 125

DFCD = 0.1. 26
KCB +KKCD +KcE 0. 1+0.08+0. 125

These distribution factors are recorded in line 2 of Table 5-2.

(3) From Table 5-1, case 3,

FEM wL 2  2000(252 = -104,000 ft. lb.12 12

and

-wL _ 2000(25)2"FEM SA - - = 104, 000 ft. lb.12 12

From Table 5-1, case 2,

FEMBC - Pab 2 -5000(20)(15)1- 18, 000 ft. lb.
Lz (35)2

and

FEMS _-Pa
2 b 5000(20)Z(15) = 25,000 ft.lb.

L 2  (35)2
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From Table 5-1, case 1,

FEM PL -10000(40) 50,000 ft. lb.
8 8

and

FEMEC = -PL _ 10000(40) - 50, 000 ft. lb.
8 8

Since member CD is unloaded,

FEMCD = FEIo, = 0

These results are summarized in line 3 of Table 5-2.

(4) The unbalanced moment at joint B is

EFEM = 104 - 18 = 86

The moments at joint B may be balanced by multiplying this unbalanced
moment by the distribution factor and changing sign. The result is
recorded in line 4 of Table 5-2.

(5) A horizontal line may be drawn b'elow, the balancing moments in
line 4 of Table 5-2. The algebraic sum of all the moments at
this joint above this line is zero; that is,

-104 + 18 + 38 + 48 = 0

(6) The carry-over moments at the opposite ends of the members
are recorded as shown in line 5 of Table 5-2. These carry-over
moments have the same sign as the corresponding balancing mo-
ments and are half their magnitude.

(7) Steps 4, 5, and 6 may be repeated for joint C to obtain the rest
of the values shown in rows 4 and 5 of Table 5-2. The process
for the balance and carry-over of moments may be repeated for-

as many cycles as desired to meet the required accuracy of the
problem. The unbalanced moment for each cycle will be the alge-
braic sum of the moments at the joint recorded below the last
horizontal line. This process is shown on lines 6, 7, and 8 of

Table 5-2.

(8) The final moment at the end of each member may be obtained
as the algebraic sum of all moments tabulated in the first
seven lines of Table 5-2. This summation is shown in line 9

of Table 5-2.
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Now that the moments in each of the members at the joints are known,
the moment diagrams may be drawn for the members with the aid of the
equations of static equilibrium. These moment diagrams are shown in
Figure 5-5.

M(ft. lb.

100,000-

65000 55000

50,000

S-6Z000 -67000

M(ft. lb. )13,3000

Figure 5-5. Moment Diagram for Frame Shown in Figure 5--4

5. 5 Rectangular Frames

This section considers symmetrical rectangular frames that are either
pinned or fixed at the ends of both of their uprights.

Figure 5-6 shows a symmetrical rectangular frame both of whose up-
rights are pinned under some arbitrary vertical loading. Such a frame is
statically indeterminate and an equation, in addition to those of statics, must
be applied to determine the moments in its members.

Figure 5-6. Symmetrical Rectangular Frame Under Arbitrary Vertical
Loading With Both Uprights Pinned

5 - lb.



The free-body diagram of this frame may be drawn as shown in Fig-
ure 5-7.

The horizontal reaction is given by

3 Am
(5-11)

hL(ZK + 3)where

12 h
K - (5-12)

IIL

and A is the area under the moment diagram for a simply supported beam
under the same loading as the horizontal member of the given frame. Once
the horizontal reactions have been found by Equation (5-11), the moment
diagrams of the frame members may be found by the equations of statics.

H H

L

Figure 5-7. Free-Body Diagram of the Frame in Figure 5-6

Figure 5-8 shows a symmetrical rectangular frame both of whose
uprights are fixed under some arbitrary symmetrical vertical loading. Such
a frame is statically indeterminate with two indeterminates, and two equa-
tions, in addition to. those of statics, must be applied to determine the mo-
ments in its members.

h

L

Figure 5-8. Symmetrical Rectangular Frame Under Arbitrary Symmetrical
Vertical Loading With Both Uprights Fixed
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The free-body diagram of this frame may be drawn as shown in Fig-
ure 5-9. The horizontal reaction is given by

3A

H 3 A (5-13)
hL(K+Z)

where

K h (5-14)
II L
1L

and A is the area under the moment diagram for a simply supported beam
under the same loading as the horizontal member of the given frame. The
reaction moment on the ends of the uprights is given by

A
M = T . (5-15)

L(K+Z)

where K and A are defined as before. Once the horizontal reactions and
reaction moments have been found by Equations (5-11) and (5-13), the
moment diagrams of the frame members may be found by the equations of
statics. This procedure is illustrated in Section 5. 6.

h

M4AM
*R

Ll L

Figure 5-9. Free-Body Diagram of the Frame in Figure 5-8

It should be noted that solutions for rectangular frames under various
simple loadings are given in tabular form in Section 5. 7. The use of this
material, when applicable, is much simpler than using the material in this
section.
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5.6 Sample Problem - Rectangular Frames

Given: The symmetrically loaded frame shown in Figure 5- 10.

12 5

h =10h=1 Ii = 3 kIi.

L /"7 7 7 //7,77

L= 20 J

Figure 5-10. Rectangular Frame

Find: The bending moment diagram.

Solution:

K = I? h _ 5(10) - 0. 834
II L 3(20)

To find A , consider the simply supported beam shown in Figure 5-11
and draw its moment diagram. The area under this moment diagram
may be found to be

A = 45800 in. 21b.

Substituting this and K into Equations (5-13) and (5-15) gives

H 3 At 3(45800) 242 lb.
hL(K+2) 10(20)(0. 834+2)

and
A
____ -45800

M - - = 795 in. lb.
L(K+2) 20(0. 8 34+2)

A free-body diagram may now be drawn for the frame and the vertical
reactions computed as shown in Figure 5-12. The equations of statics
may now be applied to sections of this frame to obtain the moment
diagram shown in Figure 5-13.
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5 105

5 15 Z0 x

Figure 5-11I. Determination of Ai

1] ilb in1

h= 10

HM 242 \,AM -795 M=-7950 5 H) 242

2V=500 M V= 500

I Figure 5-12. Free-Body Diagram of Frame in Figure 5-10

-795 -795

Figure 5-1F3. Moment Diagram for Frame in Figure 5-10
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5. 7 Formulas for Simple Frames

This section presents formulas for determining the reaction forces and
moments acting on simple frames under various simple loadings. The re-
action forces and moments acting on frames under more complicated loadings
may often be obtained by the superposition of these simple loadings.

Cases I through 9 of Table 5-3 give reaction forces and moments on
rectangular frames, both of whose uprights are pinned; and such frames with
both uprights fixed are treated by cases 9 through 18 of this table. Table 5-4
gives reaction forces and moments on trapezoidal frames. The first four
cases treat such frames with both uprights pinned at the ends, and cases 5
and 6 treat trapezoidal frames with fixed-ended uprights. Table 5-5 gives
reaction forces and moments on triangular frames.

5.8 Sample Problem - Formulas for Simple Frames

Given: The trapezoidal frame shown in Figure 5-14.

-7.5 7.51

1000

I?= 1. 5 in.1
10

I n4
1= 1 in.4

5 - -- 15 5

Figure 5-14. Trapezoidal Frame

Find: The reaction forces and bending moments.

Solution: From the diagram at the top of Table 5-4,

F I- 2 1 1.12

G = 3 + 2F = 3 + 2(l. 12) = 5.24

11 = i in. 4 a = 5 in. h = 10 in.
12 = 1. 5 in. 4  b = 15 in. s = 5./ýSin.
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames*

L1K h

IL

12

-i -I d distance to centroid of load
unless otherwise usedHA___

MA M B MA = MB = 0 if uprights are pinned

(1) P Pb

b- 1  
VA = L VB =P- VA

3PL
HA = HB 8h(ZK +3)

For Spe. ial C.se: a = b = L/2

VA = VB = -

HA RB = H 3PL
=B- 8h(2K+3)

(2)

w wb(bVc,) VB = vb _ VA

HA HB wb [6ac , b (3L - Zb)]
A =B 4hL(ZK4-3)

For Special Case: a = c = 0, b= L

VA = VB = 2

w L2

HA = HB = 4h(2K+3)

* Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(3)
a b w VA = wbdL VB w b - VA

2 _ __ L 2

dH = H 3wb dL b d2
A B 4Lh(2K+3) 18

For Special Case: a= 0, b= L, d L

wL wLVA 2 VB

wL
2

HA = HB - 8h(2K+3)

(4)

aMb VA = _VL LM

IHA H 8  ,3(b-L/2)M
Lh(2K+3)

(5) VA = -VB = -Pa

HB = Pa-- [ bK(a + h) +
2h h2 (2K+3)

HA= HB P
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(6) w(~ba2)'
W IVA=: -VB ZL

aB- w(a 2 -b 2 ) + K[w(aZ-b2)(2hZ-a2-b2)]

4h- 4 8h 3 (2K+3)

HA = HF + w (b-a)

For Special Case: b = 0, a h

-whz
VA =VB- 2L

HB = 4 2(?K+3)

HA = HB - wh

(7) VA ,-Vp, -' (2a+b)(b-a)
- 6L

w
-VAL KXI 0= +

HB 2h h(2K+3)

aN Where:

b

X1 0  w [C30h 2 b(a2-b2)
120hz(a-b)

+ Z0h 2 (a 2 -b 2 ) + 15b(a 4 -b 4 ) - 12(a 5 -b 5 )]

w(b-a)HA=HB+ w2

Foir Special Case: b = 0, a L

VA= -VB -3h 2

3L

"'B = wh (4K+5
"10 2K+3

HA= HB -
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

'A = -VB - (aZ+ac _ 2c2)

(8) 

6L

B = -VAL KX 7

A 2h (-K+3)h

b Where:

X7 : w [3(4d 5 +c' 5 ) 15h(3d4 +c4)
1Z0h 2 (d-c)

+ 20h2(2d 3 +c3) - 15cd 2 (2h-d)2]

For Special Case: b = c = 0, a = d = h

VA =-VB - wh 2

H wh[ 1 + 7K

B 12 10(ZK+3)

(9)

a- VA = _VB L

b HA = HB = 3[K(Zab+az)+h 2 M

2h 3 (2K+3)
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames. (continued)

(10) p VA= Eb I a~b-a) =
*a-•-" b-- a b+ a VB = P -VA

-b. 1  
L 2 (6K+I)-

3Pab
HA = HB ZLh(K 2)

Pab _ (b-a)
MA- L L 2fK +2) 2L(6K41)J

rMB P= Pab I + (b-a)
MB =-L (K + 2) 2L(6K+I)

For Special Case: a = b L/2

VA = VB =P/Z

HA =Hp.= 8h(+2 I3PL

MA = MB

S(K~+ 2)

wcd _ X X-

(11) L L(6K~i)

a H 3(X I +X2)
HA = HB - h(K2)

Xl +X2 XI-X 2
MA -2(K+2-) - 2(61•-4-)

MB_ XI +X2 + XI -X 2
ZK+2 2(6K+1I)

Where:

"-"wc [ 24d 3  
_ 6bc 2 + 3c 2 + 4c 2 - 24d2]

X 4 - L L L

X = w [24_d3 6bc + 3Žc 3 + 2C2  -48d2 24dLZ4LL L L L
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

For Special Case: a = U, c b = L, d = L/2

VA = VB = _.L

H wL 2

HA= HB 4h(K+2)

wL 2
MA= MB = 12(K+2)

wcd X3 - X4 wc
VA = 2L L(6K+I) VB 2 A

(12)

dHA =HB = 3(X 3 +X 4 )
2h(K+2)

X3 + X4  X3 - X4
MA 2(K+2) 2(6K+I)

X 3 +X 4  X 3 - X 4

We MB z(K+Z) Z(6K+I)

"ý 4 Where:

3 -wcd3 c 2  51c 3  c 2 b d= +-- + i + - -d2
2L9 810L 6L

wc [d 3  c 2  ric3  c 2 b-d+':4 = -E'L + T8 + K19 6L d2 + dL]
4 ?LL 18 , 8i,) 6L

For Special Case: a = 0, c'= b = L, d L/3

wLV 1'bLd

VB =- - 1+ 20(6K+1) 1
w LL

HA=B = -L I

HA 8h(K+Z)

MA= 52 (5+ I )
MA 10 K+Z 6K-+I

MB = (120 5+Z 6K+I
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(13)

b- 1  VA=~B - .-6ab+L2 M
VA = -VB L3 (6K+l)

rM

HA HB 3(b-a)M
HE Lh (K+2)

MA M {6ab(:+2)§L~a{ý'7:+3)-b(5K..1fl
r~r 47 A2L2(K-i-)(6K+1)

- 3Pa
2 K(14) VA= VB Lh(6K+l)

HE ah h--+ (b-a)J

a ~MA Ea F -b(h+b+bK) _ h + 7~ 35a 1
2h L b(K+2) o(K+1)

MB Pa~ -b(h+b~bK) +h K
MB 2hL h(K+2) + 6(K41)

HA =HB P
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

MA MB w(a 2 -c 2 )
VA= -VB L L 2L

(15)

b = w(aZ-cZ) _X 5 _X6(K-1)
HB 2h 2h Zh(K+Z)

A HA = HB w(a-c)

MA=.3 K+l)[w(a 2 -C) -X5]X
2(6K+I) - [jL K+ ' ]-X5

M (3K+1w(az-cz) _ X5]
2(6K+I) K L -+2 6--+•1

Where:

•X5- = h [d 3 (4h-3d)- b 3 (4h-3b)]
12h 2

X6 = w [a 3 (4h-3a) - c 3 (4h-3c)]
12h 2

For Special Case: c = 0, b= 0, a = d =h

-whZK
VA = -VB - L(6K+I)

wh(ZK+3)

HB = 8(K+Z)

HA = HB - wh

M -wh2 [30K+7 1
MA 24 L 6K+1 K+Z
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

VA -VB =MA MB - w(a 2 +ac-2c)

IT L L 6L

(16) ,,HB =w(a2 +ac -2c 2 ) - X8  X9 (K- 1)
(6h 2h + Zh(K+Z)

HA = HB - w(a-c

SA (3K+)[ w(a2+ac-Zc 2  X8]

2(6K+1)

X9 I 3K 1] X8

MB = 2(6K+1)

X8 I 3K<

2 K+2 6K+1I

Where:

X8= W [15(h+b)(d 4 -b 4 ),_ 12(d 5 _b5 )
60hz(d-b)

-20bh(d 3 -b 3 )]

X9= 60h h(d-b) 10dhZ(Zd-3b)+10bh(4d3+bZh-b3)

-d 4 (30h+15b) + 12d 5 .+ 3b 5 ]
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

For Special Case: b = c = 0, a = d = h

VA VB -wh2K
VA = VB = 4L(6K+I) 47

HB = wh(3K+4)40(K+2)

wh
HA = HB -

MA wh 2 F27K+7 + 3K+7

60 2(6K+I) K+2

Swh Z7K+7 1
60 2(6K+I) K+2

MA MB w(2a+c)(a-c)VA = VB =-E-+ -- 6L L 6L

(17) HB w(Za 2-ac-c2) _X 11  X,2(K-l)

Sb 12h - 2h 2h(K+Z)

HA = HB- w(a-c)
2
2N 2

f 77,T -"(3K+1)1(w(Za 6-ac-c)2 6 XI]

MA 2(6K+I)

X 1 2 [ I 3K ]1
2 K2 6K+I l

(3~l)1w(az6-ac -c X1
MB 2(6K+l)

XI2r1 .3K'

z 52 2K+6
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

Where:

w [5hd4 _ 3d 5 - Z0hdb 3 
- 12b 4 (dfh)]xl = -- 6o5hd hbb

w,___ [£15(h+c)(a4_c 4 ) - 12(a 5 -c 5 )

12 =60h (a-c)

-20 ch(a
3 -C 3 )3

For Special Case: b = c = O, a = d h

-3Kwhz
VA -VB - 4L(6K+I) 71

wh(7K+l 1)HB =40(K+2)

wh
HA =HB -

-whz F87K+22 +

MA = 0 6KI K+21

wh 2 F ZIK+6 I1
MB 45 L 6-i-+i K+2zJ
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (concluded)

(18) VA = _VB -6bKM
VA - =hL(6K+l)

HA HB =3bM[2a(K+1)+b]
b HA HB 2h3 (K+ 2)

MA -M L[4a2 + Zab + b2+K(26a 2 - 5b2 )M -- 2h2(K+2.i(6K+l)

+ 6aKZlZa-b)]

MB = -VAL - M - MA
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TABLE 5-4

Rectangular Forces and Moments on Trapezoidal Frames--

A 
a2

I I4 G 3 + 2f

HA VA VB HB MA = MB = 0 if uprights

-a L A b are pinned
L

(1) w

wnh b

HA HB 2h a - 4 )

(2) P

rc dr
VA = P(a+d) VB P -VA

HA = H -( P-f- )

(3) _-wE2

VA =VB = L

HB = -- F)

HA = HB -wh

- Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 5-4

Rectangular Forces and Moments on Trapezoidal Frames (concluded)

(4) VA =VB= -Pc

L
P Pc

HB =P - l+ 1 hA

HA HB -P

(5) w• VAw '1B - b

A B 2

HA = HB -- ha + 42F]

M B wb
MMA MB12(2+F)

(6) VA = -V__Ph (I-Z)

HA= -HB = -P

HA 2
M M -PhZ

MA=-B 2
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TABLE 5-5

Reaction Forces and Moments on Triangular Frames

2 i11
2 h

h M K -

HA L

VA VB MA = MB = 0 if uprights

S L are pinned

P

PC =VA = P - VBVB L

H HB P + Za K+c)

w

VA = wa VB== wa VA

HA HB = waZ(4b +

SM
VA = .-VB=L

A H M 'a-bK

HA - HB : K+
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TABLE.5-5

Reaction Forces and Moments on Triangular Frames (continued)

VA =-VB L P

(4)

d pHB h hL Zh 2-(K+1)

C

1 
HA HD P

(5) /-ww hZ
VA = VB -L

H-wh ( 4b L1

HA = HB - wh

(6) c- d- VB P[1d~t~l VA = P VB

Pt HA HB k -P---c---- [[-b3K+4) -Z-LI
HA HB Lh- 6La h(K+1)

[a+dl + Z(2L-i-b)(a+c) +3ac)l

MA 2 [(a+d)(3K-i4)-Z(a+c)]
MA 6a2(K+1)

MB Za (K+1)
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TABLE 5-5

Reaction Forces and Moments on Triangular Frames (continued)

(7) w VA =wa 8L)_ 3 VB = 3 wa2
8L 8L

HA =HB - wa2  [b (10+i9K) -- ZL + a]
Z4Lh(K+1)

MA -a 13K+2)
24 (K+i1)

MB wa2
B 24(K-i-])

(8) VA3M

3M(a-bK)
HA =HB. ZhL(K+l)

MA=-KM
MA 2(KI-1)

M M
MB=Z(K+1)

VA -VB L I.c - - - I)

tHB Pc tb + d (h+d)(-3bK-4b-2L)
c Lh L6h

2 (K+l) I

+ 2(ZL+b)(h+c) + 3ac]}

MA = -c [(h+d)(3K-i+4) - 2 (h+c)j
6hz(K+l)

Qcd (h+2 d

MB -
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TABLE 5-5

Reaction Forces and Moments on Triangular Frames (concluded)

-3wh 2

VA VB -

(10) 8L
H- wh N

8L(K-.-)[b3+)a

HA HB '-wh

MA -wh(2 3K+2)
24(K+1)

wh 2
MB - 24(K+I)

From Table 5-4, case 2,

VA P(a+d) _ 1000(5+7. 5) = 500 lb.
L 25

Ve = P - VA = 1000 - 500 = 500 lb.

H,~ 2 bO),=" a+ c 10)0 r5 + 3 (7. 5 )(7. 5 )]-3571lb.
2h \ H+ b 2(10) 3 15(5.24)

A free-body diagram may be constructed for a section of the frame leg,
as shown in Figure 5-15. Equating the sum of the moment to zero gives

M = -500xI + 357( 2 xI) = 214xi

HA =357
-VA = 500 xi

Figure 5-15. Section of Frame Leg
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At the left frame joint,

M = 214x = 214(5) = 1070 in. lb.

A free-body diagram may now be drawn for a section of the horizontal
portion of the frame to the left of the load as in Figure 5-16. Equating
the sum of the moments to zero gives

M = 1070 - 500x 2

By considering symmetry, the moment diagram of the given frame
may be drawn as shown in Figure 5-17.

37 MO= 1070

1500 
M

Figure 5-16. Section of Horizontal Portion of Frame

1070

M= 214x

-2680
M= 1070 -S~

Figure 5-17. Moment.Diagram for Trapezoidal Frame

5. 9 Circular Rings and Arches

Table 5-6 gives formulas for the bending moments, tensions, shears,
and deflections of closed circular rings and circular arches of uniform cross
section loaded in various ways. Cases 1 through 21 treat closed rings, and
cases 21 through 24 treat arches. By superposition, the formulas given by
Table 5-6 can be combined to cover a wide variety of loading conditions.

These ring formulas are based on the following assumptions: (1) The
ring is of such large radius in comparison with its radial thickness that the
deflection theory for straight beams is applicable. (2) Its deflections are due
solely to bending, the effect of direct axial tension or compression and that
of shear being negligible. (3) It is nowhere stressed beyond the elastic limit.
(4) It is not so severely deformed as to lose its essentially circular shape.

Since many of the formulas in Table 5-6 consist of a large number of
terms, each of which may be large in comparison with the end result, calcu-
lations should be made with extreme care in order to ensure accurate results.
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section

M0 = Mat x = 0, y = -R

To = Tat x 0, y = -R

R V0 = Vat x =0, y =-R

Dh I = moment of inertia of ring

V Icross section
M

T a = cos x e = cos

b = sin x f = sin4€

C = COS~

d = sin B

Abh =. increase in horizontal diameter

ADv= increase in krertical diameter

x = angular distance from bottom of
r'ing

M = PR(O.3183 -b

Max+M=0. 3182PRatx=0

Max- M= -0.1817 PRatx= 2-

V -Pa
p z

IADh = 0. 137pR
EI

ADv = 0. 149-PR

EI
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0< x < 8

(2) M = PRi[0.3183(d-c5 + a - adc) - a+c]

T = P[E0.3183 a(0- dc)-a]

V = p[0.3183b(dc -)+b]

4 if 90(B~ < X < Tx)

M = PR[0.3183(d-c8 + a8 - adc)]

T = P[0.3183u (9- sc)]

V = P[0O.3183b (dc-8)]

nDh = PR3 [0.6366(d-co) + J(dc--)]h E1J

PR 3  d2
ADv ER [0.6366(d-c8) + c +- -1]

M = MA(0. 6 3 6 6 a - J) if (0< x < n/Z)

(3) M = MA(0.6366a + J) if (TT/Z < x < I)

M MA Max+ M = MA/2 just above MA

Max - M = -MA/2 just below MA

T = 0.6366 MAa/R

V = -0. 6 36 6 MAa/R

ADh= AD = 0
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0< x < 0)

(4) M = MAI0.3183(2ad+8)- I]

ST. = 0.6366 M o ad/R

MA MA V = 0.6366Mobd/R

k ; if (0<x < xT)

0< 900 M = 0. 3183 MA(Zad+8)

T = 0.6366 MAad/R

V = -0.6366 MAbd/R

MARZ
ADh = E (0.63666 - d)

= MARZ (0.6366$ + c - 1)

if (0< x < nI2)

(5) •M = PR(0.3183a+b - 0.8183)

P P
T = p(0.3183 a+b)

V = P (a - 0. 3183 b)

if (rI/2 < x <1T)

4 ZP M = PR (0.181 7 +0. 3 18 3 a)

T = 0.3183 Pa

V = -0.3183 Pb

Pit 3

A D h = - 0.1366 EL-
h E

ADV = 0. 1488

El
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0 < x <

(6) M = PRFO.3183(ac--dB-c)+ d- ½

p p T = 0. 3183 Pac2

V = -0.3183 Pbc 2

if (t.< x < rT/2)

P pPR[.31832ac2-d -c)+b

0< 9 0 * T = P(0. 31 8 3 acz + b)

V = P(a-0.3183bc
2 )

if (TT/2 < x < rr)

M = PR[0.3183(ac 2 - d5-c) + ]

T = p(0. 3183 ac 2)

V = -0.3183 Pbc 2

ADh = PR 3 [j(d 2 +1)- 0. 6 36 6(dc+ c)]
EI

ADv = PR 3 [d - ½(dc +q)-O.6366(d~i-c)+0. 7854]

if (0 < x <B)

(7) • M = PR[0.3183(dB+c'-+ad2- 1)-a+b

T = P(0.3183 ad 2 + b)

V = P(a-0.3183bd
2)

P P

52P
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (B < x <rr)

M = 0.3183 PR(d$+c+as2- 1)

T = 0.3183 Pas2

V = -0.3183 Pbs2

ADh = Ld 2 +-) + 0.6366(dS+c-i)-2j ifB>900

ADh P pR 3 [0.6366(d+c - 1) - d<90

El [(dc+B)/2+0"6366{dSic-1) -d]

if (0 < x< )

(8) P P M PR[0.3183(f 4+e-dB-c-ad 2 4 a) f+dI

T 0.3183 Pa (f 2 -d 2)

V 0.3183 Pb(d 2 -f 2 )

P P
if (< x < )

M = PR [03.3183 (f ý+e-dB-c -ad2-+ af-)- f+b]

T = P[0..3183 a (fz-dz)+b]

V = P[O.3183b (d2-f2)-1a]

if ( <x < TT)

M = 0.3183 PRf +e-d5-c-ad2 +afZ)

T = 0.3183 Pa(f
2 -d2 )

V = 0.3183 Pb (d 2 -f 2 )
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

*RDh = [(dZ4f2)/Z +0.6366(f.t+e-df-c)+1-2f]Ah-EI

PR3 [(fe+4-dc-o)/Z+o.6366(f4 )+e-ds-c)+d-f]

if (0< x < 0) M=
(9) P p 2 (

Z5mx+ PR [1

Smax - M P cot$ at each load

max T = 1 at x 0, 2ý, 48 ....
P P 2d

T = P cot$ at loadsz

Radial displacement at each point load

PR2 _0-dc-- I I1 outward
2EI 2d 2  0 -

Radial displacement at x = 0, 20, 48 .....

PR 3 2 1 CO
pR3 d Z) inward
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

M= w 2[+e+ 0. 3183 ýd- d d 3  ldc
04 2 02 3 4 4

(10) (0 
T = -0.1061 wRd 3

0

if (0 < x < 6)

M[ = M0 - wR 2 [db-0.1061d 3 (l-a)]

T = -wR (0.1061d 3 a+db)

SsinS V = wR (0. 1061d 3 b - da)

if (0< x <rr)

M = M0 + w R 2 [0. 1061d3(1-a)-(d 2 +b 2 )/Z]

T = -wR(9.1061d3a+b2

V = wR(0.1061 d 3b-ba)

ADh ZwR 4 [ I d dZ d3 3dc 2d_ )]

0.... 03183ý + - + - d
El 4 2 2 1 4 4 2

A 2wR 4 F 1 dz d 2c 8d C 03183
v E1 L 12 +4 1Z 4 6
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(11) w M 0 wR 2 0[ 3183 + d2 + 3d_.c

•( ~To =0

if (0 < x<

M = M0 - wR 2 b 2 /Z

w T = -w Rb 2

V = -w Rba

if < x < 8)

2 d2
M= M0

T -w Rdb

V -w Rda

-wR 4 [d + - 0.3183k8 +3dc + 2 d2 )
h El 3

Dv =-wR4 0.3183(8d? +3dc+o) +d 2-d+ -
El 2

3 z
+ c-_ + - C

3 3
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

lO = 0.305 wR 2

(12) w To = -wR(0.02653)

if (0< x < "/Z)

SM = M0 - T 0 R(I-a) - wR b/Z

T = T 0a - wRb/2

V = -Tob - wRa/2

wR if (1TIz < x < Tr

M M 0 - ToR(1-a)-wR 2 b/2 - wR 2 (1-b) 3 /6

T T 0a - wRb/2 + wRb(1-b 2 )/2

V = -Tob - wRa/a + wRa (1-a 2 )/2

ADh= 0. 12Z28 wR 4 /(EI)

AD = -0. 1220 wR 4 /(EI)

M,• -wR [°-' 0.13 d-•o P, -- dZ+• 0c2 -ý-dc 4
(13) w Z 0 . 3(3 2 4 4

2 2

To wR 0.3183 32d d+ - 1+

if (0 < x <0

M = MO - ToR(1-al -wR 2 (1-a2)/Z

T = T0a + wRa(I-al

V = T 0 b - wRb (0-a'
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TA,3LE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0< x <n)

M = M- ToR(l-a%-wR2(l'c)91C-a/Z

T = Toa+wRa(l-c)

V = -T 0 b - wRb(I-c)

(14) = 3F 3183ig- d c j3dc + dc2

3 36

AI 0,-S- I-IL-, k-

wR(T-cos*) T 0 wR [0.3183 (d-Sc) + c -I

if (0 < x <8)

M M 0 - TOR (I-al+wR3[{l-a)3/6_ (I c)(I-a) /23

T = To + wR a(I-Zc.,a)(1-a)I2

V = -T 0 b-wR b(l-2c+ a(l-a)/2

if (W< x < .q)

M M - T 0 R(1=a)--*R3(1-C)z(~ G+S-a )/Z3 3

T 0Ou + wRZaý(1-c)ZiZ

V -T 0 b - wR 2bjl-C)2 /2

5- 45

S



TABLE 5.6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

bf0 = wR Cc -0.318Sitc -81- 1

(15)
TO = wR[0.3183(d-c" .c - I]

2wR aitiB ii (0< x <B )

w M MO - ToR(I-al - wR 2 (0-a- db)

T T0 a + wR (db+a - 1)

V -T0 b 4 wR(db-b)

if (8S x •i}

o aM M M0 -T 0Rll-a)-, ,%.R2lcaoal

T - T* a + wR (a-ca)0

V -T 0 b + wR(cb-b)

-I c+ 31838 0. 568 3dif e<

A~v= 2R"-•4" 4(.•€+ 0. 31835 + S•. 0. 3183d*•

El 4 2

5 - 46



TABLE 5-6

Formulas for Closed Circular Rings of Uniform Gross Section (continued)

(16) uniform shear i O X O

M = PR to. 15915 [dO+c-f4-e+a(d2--f 2 )-b(dc+o+fe+o)

t -- -x(d+f)I - (d-f)/Z+bII

B ~if (0< x<Z217-)

p M = PR t0. 15915[db+c-fo-3+a(d2 -f2 )-b(dc+o-Ife+co)

-X(d+f)] + (d+f)/z)I

if (Znr - 4 < x < ZnT)

M = PR to. 15915 [cocf-~~Zf)bd++eý

-x(d+f)I + (d+3f/Z+b3

if (0 < x < 0) or (2TT - < x < Zn)

T = P[O. 15915 (ad _ afd-Obeb)b

V = P to. 1591 5(-d-f-bd2 +bf 2 -adc-a$ -afe-a4)+aI

if (8 < x < Zn - 4)
T = 0. 15915 P~d-f2bd-Obeb

V = 0. 15915 P(dfb?+f-d-Oa--
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0 X < )

M = MA[0. 3183(ad-bc+8!Z - x/Z) - ']

4'_T= -0. 318 M A(bc -ad)/R

V = -0.3183MA(bd+ ac+-ff)/R
M A

MA Ib if (6 < x < 2T)

?TT RZ in
M = MAL0. 3183(bd-bc÷+ /2 - x/2) +½]

T = -0.3i.8 MA(bc-ad)/R

V = -0. 3183 MA(bd+ac+i)./R

(18) M = wR (14a/2-rnb +xb)

Max+M= M0 = 3wR 2 /2

Max- M = -0.642wR2 at x = 74.6'

T = wR(xb - a/2-nb)

2rrRw V wR(xa+b!2-na)

w lb. perunitlengthof ADh = 0.4292 wR4

El
circumference

ADv = -0. 18765 wR4

El
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TABL.E 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

M0 = wR 2 (• +c +Bd-TTd+d2)

(19) wlb. per unit length

of circumference To = wR (dZ- )

if (0 < x < 8 )

M = M0 - ToR(1-a)-wR 2 (xb+a- 1)

T = T 0 a+wRxb

V = -T 0 b + wRxa

TiwR rrwR if 0 < x < if)

M M 0 - ToR('-a)+NwR2(xb4a-1-Trb+nd)

T= T0 a+wR(xb-:b)

V =-T 0b + wR (xa -na)

ADh= ZwR 4 F +pd- ( d2Il
EI L1+

ADv - wR 2 '-2.4674 T 2dc.+0_d)+\(Qd+c\

El L 4
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

M0 = -0.01132PR
(20)

T = -0. 07958P

p p
2 max+M = 0.01456 PR at x = 66.8"

max-M= -0.01456 PR at x= 113.2Z

if (0 < x < TT/2)

Psinx M = PR(0,23868a + 0.15915xb - 1/4)
TTR lb. per unit

length of circunmference T = P(0. 15915xb - 0.07958a)

V = P(0. 15915Xa - 0.07958b)

if (rT/2 < x < r)

M = PR(0.23868a + 0. 15915xb - b/Z + 1/4)

T = P(0. 15915xb - 0.07958a - b/2)

V = P(0. 15915xa - 0.07958b - a/Z)

ADh = AD, = 0

if (0 < x <0 )
(21)'•/'•'• "M = PRO.23868a - d/2+0. 15915(xb+ d+c-ac2

P sinx.
"r.-'R T = P[O. 15915txb-ac2 ) - 0.07958a]

V = 0. 15915P(xa-b/Z+bc )

8x if (0 < x < Trt

P p
2 M = PR[0. 23868a- b/Z+0. 15915(xb+Od+c-ac2 )3

T = P[0. 15915(xb-acz)-0.07958a - b/Z]

V = P[0.15915(xa-b/2+bc?)-a/2]

ADh P3 [0.3183(d8+c)-(dZ+1)/4]

AD = PR3 [0. 3183 (dS+c)+(dc40)/4 - d/2 -rr/8]
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(22) Ends Pinned

WH P [d2-f2_2,(pd _fcýc-e)-acd2_f2)
SHA =HB =-2 -3dc +Bc2 + a(+dc)

HA

where a and A cross sectional areaVA VB AR 2

v P d+f

VB = P -VA

(23) Ends Pinned 4d 2  
- 2d 2 C-dc2  a dc

[-A HB [ - 2 -Z -2
ZAc -+$-3dc+iacB+dc)

HA HB (a as for case (22))

VA = wRd

VA VB

VB = ZwR- VA

5 -51



TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (concluded)

-deitdn-dc) _ d2 - f 2  a(d2-f
HA= HB= L 2 d2

(Z4) Ends Fixed 8+ dc --- + a (8+dc)

8

(a as for case (22))

HA 8 M RB p (8 , ý-cd-ef-2fc

VA VB
VB= P -VA

MA = VARd + HR 28 P

MB =MA - ZVARd + PR'd+f)

1 2d~c ' ? d

(25) Ends Fixed* HA 6 HB_ +~d~ 2d 4 2-. -(-)HA= HB= I

2 2

MA MBHAW HB (a as for case (Z2))

VA VB MA =HwRR(d)+dc HR

MB = MA - 2VARd + ZwR 2 d2

VA = WRd

VB= wRd
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5. 10 Sample Problem - Circular Rings and Arches

Given: The circular ring shown in Figure 5-18.

70 1b.

800 in.lb. - - 800 in. 1b.

70 1b.

Figure 5-18. Circular Ring

Find: The bending moments in the ring.

Solution: The bending moment in the ring may be obtained by super-
posing that due to the concentrated loads (Mr) and that due to the applied
bending moments (Me). From Table 5-6, case 1, the bending moment
due to the concentrated loads is

MP = PR(0. 3183 - b/2) = 70(10)(0. 3183 - sinx/Z) = 223 - 350 sinx

From Table 5-6, case 3, the bending moment due to the applied
moment is

Mm= MA(0. 6366 a - 800(0. 6366 cosx- = 510 cosx - 400

if (0 < x </2)

or

M, = MA (0. 6366 a + = 800(0. 6366 cos x +½) = 510 cos x + 400

if (i-/Z < x < TT)

The bending moment due to the combined loading is

M =MP + M 5
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Thus,

M = (223 - 350 sinx) + (510 cosx - 400)
= 177 - 350 sinx + 510 cosx

if (0 < x < rr/Z)

or

M (2Z3 - 350 sinx) - (510 cosx + 400)
= 733 - 350 sirnx + 510 cosx

if (rr/2 <x <rr)

In the above expressions, x is the angular distance from the bottom
of the ring.
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6. ANALYSIS OF PLATES

6. 1 Introduction to Analysis of Plates

This chapter covers the analysis of plates as commonly used in aircraft
and missile structures. In general, such plates are classified as thin; that is,
deflections are small in comparison with the plate thickness. These plates
are subjected to compression, bending, and shear-producing loads. Critical
values of these loads produce a wrinkling or buckling of the plate. Such buck-
ling produces unwanted aerodynamic effects on the surface of the airplane. It
also may result in the redistribution of loads to other structural members,
causing critical stresses to develop. Thus, it is essential that the initial
buckling stress of the plate be known. In addition, if the buckling stress is
above the proportional limit, the planel will experience ultimate failure very
soon after buckling.

The critical buckling of a plate depends upon the type of loading, the
plate dimensions, the material, the temperature, and the conditions of edge

.support.

This chapter considers the various loadings of both flat and curved plates,
with and without stiffeners. Single loadings are considered first followed by a
discussion of combined loadings. Examples are given to show the use of the
analysis methods presented.

6. Z Nomenclature for Analysis of Plates

a plate length
Alt stiffener area
b plate width
bet effective panel width
c core thickness, signifies clamped edge
C compressive buckling coefficient for curved plates
e strain
E modulus of elasticity
Es secant modulus
Et tangent modulus
Es Et secant and tangent moduli for clad plates
f ratio of cladding thickness to total plate thickness
F stress
F 0 . 7' F0.85 secant yield stress at 0. 7E and 0. 85E
For critical normal stress
Fore critical shear stress
FP1  stress at proportional limit
Fay compressive yield stress
Ff crippling stress
FR free (refers to edge fixity)
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g number of cuts plus number of flanges (Section 6. 3. 3)
k buckling coefficient
ka compressive buckling coefficient
kP shear buckling coefficient
k. equivalent compressive buckling coefficient
K sandwich panel form factor
LA effective column length
n shape parameter, number of half waves in buckled plate
p rivet pitch
P total concentrated load
r radius of curvature
R stress ratio
R sandwich panel parameter
ss simply supported

t thickness
t, skin thickness
t" web thickness
t1 total cladding thickness
w unit load
W total load, potential energy
y deflection
Zt, length range parameter bZ(l--v )2/rt

* ratio of cladding yield stress to core stress
* 8crippling coefficient

ratio of rotational rigidity of plate edge stiffeners
plasticity reduction factor
cladding reduction factor

X• buckle half wavelength
V inelastic Poisson's ratio
V elastic Poisson's ratio
V: plastic Poisson's ratio
p radius of gyration

6. 3 Axial Compression of Flat Plates

The compressive buckling stress of a rectangular flat plate is given by
Equation (6-1).

For = kTT2 E 2 (t Z (6-1)

1z(1-v b

The relation is applicable to various types of loadings in both the elastic
and the inelastic ranges and for various conditions of edge fixity.

The case of unstiffened plates is treated first and then stiffened plates
are discussed. 4
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The edge constraints which are considered vary from simply supported
to fixed. A simply supported edge is constrained to remain straight at all
loads up to and including the buckling load, but is free to rotate about the
center line of the edge. A fixed edge is constrained to remain straight and
to resist all rotation. These two conditions define the limits of torsional
restraint and are represented by E = o for simply supported edges and E=
for fixed edges.

Plates are frequently loaded so that the stresses are beyond the pro-
portional limit of the material. If such is the case, the critical buckling stress
is reduced by the factor r1, which accounts for changes in k, E, and V, This

allows the values of k, E, and v. to always be the elastic values.

The second reduction factor in Equation (6-1) is the cladding factor r'.
In order to obtain desirable corrosion resistance, the surface of some aluminum

alloys are coated or clad with a material of lower strength, but of better cor-
rosion resistance. The resultant panel may have lower mechanical properties

than the basic core material and allowance must be made. Values for the

factor -n are given in the appropriate sections.

6.3. 1 Buckling of Unstiffened Flat Plates in Axial Compression

The buckling coefficients and reduction factors Of Equation (6-1)
applicable to flat rectangular plates in compression are presented in this section.

Figures 6-1, 6-2, and 6-3 show the buckling coefficient k. as a func-
tion of the ratio a/b and the type of edge restraint; and, in the case of Figure
6-2, the buckle wave length and number of half waves. Figure 6-4 shows k0

for infinitely long flanges and plates as a function of the edge restraint only.

The edge restraint ratio e is the ratio of the rotational rigidity of plate edge
support to the rotational rigidity of the plate.

The condition of unequal rotational support can be treated by

Equation (6-2).

k, = (k,, kz), (6-2)

The coefficients k arnd k., are obtained by using each value of e independently.

Figures 6-5, 6-6, and'6-7 present k. for flanges. A flange is con-
sidered to be a long rectangular plate with one edge free.

The plasticity reduction factor T1 for a long plate with simply sup-

ported edges is given by Equation (6-3).

ES 1-ve 3 E (6-3)

E L6
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B
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a/b

Figure 6-1, Compressive-Buckling Coefficients for Flat Rectangular Plates
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9.6
Maximum kc at

9. 2 transition from
I buckle to 2
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8.4 1- =
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7.2
kc 6 8106.8

6.4
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5.6

5.-
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.4 .5 .6 .7 .8 .9 1.0 1.,1 1.,Z 1.3 1.4 1.5

X/b

X is j buckle wave lengt0

n is number of half wavev in.

buckled plate

Figure 6-Z. Compressive-Buckling-Stress Coefficient of Plates as a '..on

of X /b for Various Amounts of Edge Rotational Restraint
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Figure 6-3. Compressive-Buckling-Stress Coefficient of Plates as a Function
of a/b for Various Amounts of Edge Rotational Restraint

6-6



It -

C) V

00
0 

-4

o 41

4-,

CD

-4

Q)0

10)

0 40 U

. -Y o d -X C d

bffl

0ý WV

- 6



1.9 -

1.8 I

1. 7 Il SSs

1.7

16ILoaded Edges

1.5 - Clamped

1.4 "

1.3 -

50
1.2 

2
1. 1. 

10

1.0 5

.9 2

.8
N 1

.7 .5
.5

.6
.1

05 0

.4
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

a/b

Figure 6-5. Compressive-Buckling-Stress Coefficient of Flanges as a

Function of a/b for Various Amounts of Edge Rotational Restraint
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Figure 6-6. Compressive-Buckling-Stress Coefficient of Flanges as a

Function of X/b for Various Amounts of Edge Rotational Restraint

6-9



EnL

%8 %o kn
U- Na

cd 4)

-4

bO 0
AU

0)

CU)

Ln LA) 0 LA Cý
-'-4 .,f

(\3 --4 '-"4 0

0

0)0

rx-4

C) 0 Ln0 ,-4U

N II

C) It

-41

O c'I co C)
(%JC - (DC

6 - 1



For a long plate with clamped edges, the factor is given by Equation (6-4).

Tj=[( ""i)(1V )] {o0. 3 52 +0. 324 [1 + ( 3 t (6-4)

The value of the inelastic Poisson ratio 10 is given by Equation (6-5).

v=v - (V v - )(a -)E (6-5)

The tangent and secant moduli can be determined from the Ramberg-
Osgood relation as shown in Equations (6-6) and (6-7).

_E S + 3 F0.7

+± )n F ,n- (6-7)
Et\7/ FO. 7 '

Values of E, F 0 . 7, and n must. be known for the material under consideration.

Figure 6-8 shows the characteristics of stress-strain curves used to deter-
mine the shape factor n.

The cladding reduction factor is given by Equation (6-8).

71- (6-8)

1 + 3f

This relation is valid for the range F.. < For < Fp,. For the plastic range
when For > FP, Equation (6-9).

+ ( . + + ( 3f)E, +][(+)+ (3 )Et\ ]}3 Et+
I -,:E 4 ;\ E (6,.9) .

1+3f + + 3 )JI2

4 " 4 ES

The potential energy factor W is given by Equation (6-10).

W _-3 - +)[(k) ( (6-10)
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Figures 6-9 and 6-10 present values of k. for plates restrained by stiffeners.
This data is included here instead of in the section on stiffened plates because
the stiffeners are not a part of the plate. To be noted is the effect of torsional
rigidity of the stiffener on the buckling coefficient of the plate.

6
a

Stiffener _
FRib Rib Fx b/2

5 Long. Center Line
-- t L fl-

F Ar t
Fr Fy F r • A r

F at
4 0 0

_k c . 0 5 .2
.1 5
.15 1.0

.2 2.0
3 .25- 5.0

.3 O

0 1 2 3 4

a/b

Figure 6-9. Compressive-Buckling Coefficient of Flat Plates Restrained -

Against Lateral Expansion. Poisson's Ratio Equals 0.3;

F A?

at
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S5 /_/_. .Stiffener (z)

5
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4 Long Edges Simply
Supported (kc 4.00)

b~ Stiffener

2 II I I . ......... I

0 50 100 150 200 250 300

b/t

Figure 6-10. Compressive-Buckling Coefficient for Long Rectangular Stf-feried

Panels as a Function of b/t and Stiffener Torsional Rigidity
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6. 3. 2 Buckling of Stiffened Flat Plates in Axial Compression

The treatment of stiffened flat plates is the same as that of un-
stiffened plates except that the buckling coefficient, k, is now also a function
of the stiffener geometry. Equation (6-1) is the basic analysis tool for the
critical buckling stress.

As the stiffener design is a part of the total design, Figures 6-11
and 6-1Z present buckling coefficients for various types of stiffeners.

The applicable critical buckling equation is indicated on each figure.

A plasticity reduction factor -q is applicable to channel and Z-
section stiffeners as given by Equation (6-11).

E 6, -V 2 (6-11)

E 1-v

Figures 6-13 and 6-14 present values of the buckling coefficient
for longitudinally stiffened plates. The curves% of Figure 6-13 are in terms
of the plate geometry and the parameter EI/bD for the plate. The curves of
Figure 6-13 were based on the assumption that the stiffener section centroid
was located at the midsurface of the plate. If the stiffener is located on one
side of the plate, as is usually the case, an effective value of (EI/bD) must
be determined. Figure 6-15 presents a plot of the function IiZ., vs X/b for
one, two, or an infinite number of stiffeners to be used in Equation (6-12).

E 1 + ( (6-1)

(-D) bt

The value of (X/b) used for Figure 6-15 must be the same as that used in
Figure 6-13. This may require an iterative approach as (EI/bD)e may occur
at a different value of g in Figure 6-13 than does (EI/bD) at the a/b of the n
originally used to enter Figure 6- 13.

Figure 6-16 presents curves for finding a value for k for plates
with transverse stiffeners. It is noted that the stiffeners are allowed to have

torsional stiffness in these plots, whereas in Figure 6-13 for axial stiffeners,

GJ = 0 for the stiffeners. See Figure 6-10 in Section 6.3. 1 for an indication
of the effect of stiffener rigidity on the plate buckling coefficient.
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Figure 6-11. Buckling Coefficients for Stiffeners
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Figure 6-11. Buckling Coefficients for Stiffeners (concluded)
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Figure 6-13. Compr es sive- Buckling Coefficients for Simply Supported Flat
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6. 3. 3 Crippling Failure of Flat Stiffened Plates in Compression

For stiffened plates having slenderness ratios L'/o S 20, con-
sidered to be short plates, the failure mode is crippling rather than buckling
when loaded in compression. The crippling strength of individual stiffening
elements is considered in Chapter 2, Column Analysis. The crippling strength
of panels stiffened by angle-type elements is given by Equation (6-13).

__ g - ý, F grit ( (6-13)
FC A F

For more complex stiffeners such as Y sections, the relation of Equation (6- 14)
is used to find a weighted value of t,.

a, t,
t- = - (6-14)

X a,

where a, and t, are the length and thickness of the cross-sectional elements of
the stiffener. Figure 6-17 shows the method of determining the value of g used
in Equation (6-13) based on the number of cuts and flanges of the stiffened panels.
Figure 6-18 gives the coefficient ý, for various stiffening elements.

If the skin material is different from the stiffener material, a
weighted value of F0 , given by Equation (6-15) should be used.

FOYS + rOYW [(Tito 1]

F y (;-- (6-15)
(t/t,)

Here, t is the effective thickness of the stiffened panel.

The above relations assume the stiffener-skin unit to be formed
monolithically; that is, the stiffener is an integral part of the skin. For
riveted construction, the failure between the rivets must be considered. The
interrivet buckling stress is determined as to plate buckling stress, and is
given by Equation (6- 16).

2TT j TjE (t )2
F, =- , - (6- 16)

1Z (1-v 2 ) I )

Values of e, the edge fixity, are given in Table 6-1.
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Figure 6-18. Crippling Coefficients for Angle-Type Elements

TABLE 6-1

End-Fixity Coefficients for Interrivet Buckling

(Fixity - Coeffic ient)Fastener Type e

Flathead rivet 4

Spotwelds 3.5

Brazier-head rivet 3

Countersunk rivet 1
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After the interrivet buckling occurs, the resultant failure stress
of the panel is given by Equation (6-17).

Fj (Zb, t.)+ Ff t A tF~r =(6- 17)
(2 bet t, ) +Ast

Here the value be, is the effective width of skin corresponding to the inter-
rivet buckling stress Ft. The failure stress of short riveted panels by
wrinkling can be determined. The following quantities are used:

Ft,t crippling strength of stringer alone (see Chapter 2,

Column Analysis)

F" wrinkling strength of the skin

F¢ crippling strength of a similar monolithic panel

Ff r strength of the riveted panel

The wrinkling strength of the skin can be determined from
Equation (6-18) and Figure 6-19. Here, f is the effective rivet offset dis-
tance given in Figure 6-Z0. This was obtained for aluminum rivets having
a diameter greater than 901o of the skin thickness.

F = b(6-18)IZ(I_-v2 ) " S

Now, based on the stringer stability, the strength of the panel can be calcu-
lated. Table 6-2 shows the various possibilities and solutions.

TABLE 6-2

Riveted Panel Strength Determination

Stringer Stability Panel Strength

-Ffst I Fw - stable Ffr = Fw

Fw b sbts + Ffst Ast

Ffst < Fw -unstable Ffr = bst + Ast
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Figure 6-20. Experimentally Determined VJalues of Effective Rivet Offset
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It is noted that in no case should F > Ft" Thus, the lower of
these two values should be used.

The use of the coefficient k, is based upon aluminum alloy data
for other materials. The procedure is to use Equation (6-19) for the panel
crippling strength.

Ffr t 4/3 t ts I/2
= 17. 9 ( ) ( -- iil 6) ( (6-19)

Foy f b, \ Foy /-J

6.4 Bending of Flat Plates

The bending of flat plates in aircraft structures can be caused by both
in-plane forces or by normal forces. The quantities of interest in the anal-
ysis and design of such plates are the magnitude and location of the maximum
stress and the maximum deflection.

The following sections present plots and-tables allowing the calculation
of these quantities.

6.4. 1 Unstiffened Flat Plates in Bending

The general buckling relation for plates subjected to in-plane bend-
ing is given by Equation (6-20).

Fb kb bT 2 E (tL (6-20)i -12(1V b /

Values of bending coefficient, kb, are given in Figure 6-21 for
various edge restraints and the number of buckles versus X/b, the buckle
wave length ratio, and in Figure 6-ZZ for various edge restraints versus
the ratio a/b.

For plates loaded with uniformly distributed normal force, the
maximum stress and maximum deflection can be represented by simple
relations by the use of a series of constants which depend upon the plate
geometry and loading. Tables 6-3 through 6-8 present loading coefficients
for use with Equations (6-21) through (6-25).
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings

(a) Uniform Loading

K K 1

b/a Vx(max.) Vy(max.) R

1 0.420 0.420 0.065

1.1 0.440 0.440 0.070

1.2 0.455 0.453 0.074

1.3 0.468 0.464 0.079

1.4 0.478 0.471 0.083

a a
1.5 0.486 0.480 0.085 R 2 r
1.6 0.491 0.485 0.086 T

2b Vy Vx(riax)
2

1.7 0.496 0.488 0.088 (max)

1.8 0.499 0.491 0.090 b
- V-• Vx

1.9 0.502 0.494 0.091 Rmax)

R Vyamax
2.0 0.503 0.496 0.092 R/j Vy(rnax)

3.0 0.505 0.498 0.093 y

4.0 0.502 0.500 0.094

5.0 0.501 0.500 0.095

S0.500 0.500 0.095

Remarks

L = a for Vx and Vy

*Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings (continued) *

(b) Distributed Loadings

K Ki

b/a Vxl V. 2  Vy RI R 2  Remarks

1.0 0.126 0.294 0.1Z0 0.026 0.039 Use L= a for Vx.

1. 1 0. 136 0.304 0. 199 0.026 0.038 v.2 --

1.2 0.144 0.312 0.189 0.026 0.037 Use L= bfor V1 R

1.3 0.150 0.318 0.178 0.026 0.036 Because the load is not "Z
..... - symmetrical, the reactions

1.4 0. 155 0. 323 0. 169 0.025 0.035 R 1 are different from the b/2 V Y V
- reactions Rz, also Vxl 2

1.5 0.159 0.327 0. 160 0.024 0.033 is different than Vx 2 . The X
6 1same applies to case V-3.

1.6 0.162 0.330 0.151 0.023 0.0320

1.7 0.164 0.332 10. 144 0.2 0.03
.. 33,0210.029 1

1.8 0.166 0.333 0.136 0.021 0.029 1 7

1.9 0. 167 0.334 0. 130 0.021 0.028

2.0 0.168 0.335 0.124 0.020 0.026

3.0 0.169 0.336 0.083 0.014 0.018S.......N otes:

4.0 0.168 0.334 0.063 0.010 0.014
-.0 0 .168 0. 1. In this case only, the formula (V) for the corner force

5.0 0. 167 0. 334 0.050 0.008 0,011 R can be used when substituting a for b
5.___ - -. -0 2 Vx(max. ) and Vy(max.) are at the middle of sides

0. 167 0. 333 -- -- - b and a respectively as shown in the figure for this table

(b) Distributed Loadings (Cont'd.)

K K I

a/b Vxl Vx2 V y R 1  R 2  Remarks

-- -- 0.250 -- -- Use L = a for Vxl,
Vx

5.0 0.008 0.092 0.250 0.002 0.017 X2

4.0 0.013 0. 112 0.251 0.004 0.020 Use L= b for Vy

3.0 0.023 0. 143 0.252 0.006 0.025

2.0 0.050 0.197 0.251 0.013 0.033

1.9 0.055 0.205 0.251 0.014 0.034 Vy R2

1.8 0.060 0.2131 0.249 0.016 0.035 /

1.7 0.066 0.221 0.248 0.017 0.036 X

1.6 0.073 0.230 0.245 0.018 0.037 b/Z jVy

1.5 0.080 0.240 0.243 0.020 0.037 
101/ a I

1.4 0.088 0.250 0.239 0.021 0.038 
'w

1.3 0.097 0.260 0.234 0.023 0.039 Y

1.2 0.106 0.271 0.227 0.024 0.039

1.1 0.116 0.282 0.220 0.025 0.039

1.0 0.126 0.294 0.210 0.026 0.039

'-Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings (concluded)

(b) Distributed Loadings (Cont'd.)

K K 1

b/a Vx(max.) Vy(max.) R Remarks Fa b]

1.0 0. 147 0.250 0.038 Use 1, a for V

1.1 0.161 0.232 0.038

I.Z 0.173 0.216 0.037 Use L= b for V y

1.3 0.184 0.202 0.036 R V (max) R

1.4 0.193 0.189 0.035 4 R

1.5 0.202 0.178 0.034 b/2 Vx
" (max) Vxlmax)

1.6 0.208 0.108 0.033 (

1.7 0.214 0.158 0.031 y
,__,_b/2 (max)

1.8 0.220 0.150 0.030 f v

1.9 0.2Z4 0.142 0.029 R R

a
2.0 0.228 0.135 0.02O

3.0 0.245 0.090 0.019 Y

0.250 -- --

(b) Distributed Loadings (Cont'd.)

K K 1

a/b Vx(rnax.) Vy(max.) R Remarks F >b

-- 0. 50 -- Use Lc aforVx

3.0 0.027 0.410 0.010
Use L b for Vy

2.0 0.057 0. 365 0.023

1.9 0.062 0.358 o. 024

1.8 0.098 0.350 0.026 R /2 a/2 R

1.7 0.074 0.342 0.028 -Vx(m ax) 1\ -.- --)

1.6 0.081 0.332 0.029 Vy(max)

1;'5 0.090 0.322 0.031 b/Z

1.4 0.099 0.311 0.033

1.3 0.109 0.298 0.035 R Vy (max) R

1.2 0.120 0.284 0.036

1.1 0.133 0.268 0.037

1.0 0.147 0.250 0.038

:Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-6

Loading Coefficients for Flat Elliptical Plates Under Uniform Load :

Edge Supported Edge Fixed
Uniform Load Over Uniform Load Over

Entire Surface Entire Surface

Manner of
Loading K K1  K K1

1.0 0.70 1.24 0.171 0.75

1.1 0.84 1.4Z 0.20 0.90

1.2 0.95 1.57 0.25 1.04

1.3 1.06 1.69 0.28 1.14

1.4 1.17 1.8Z 0.30 1.25

1.5 1.26 1.92 0.30 1.34 a

1.6 1.34 2.04 0.33 1.41

a/b 1.7 1.41 2.09 0.35 1.49

1.8 1.47 2.16 0.36 1.54

1.9 1.53 2.22 0.370 1.59

2.0 i.58 2.26 0.379 1.63

2.5 1.75 2.45 0.40 1.75

3.0 1.88 2.60 0.42 1.84

3.5 1.96 2.70 0.43 1.89

4.0 2.02 2.78 0.43 1.9

L b b

Locations of F max. at center F max. at end of
stress and Y max. at center shorter principal
deflection axis. Y max. at

center

*Griffel, William, Handbook of Formulas for Stress and Strain
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Equation (6 -21)(a), (b) pertains to rectangular, square, triangu-
lar, and elliptical plates.

y KwL 4  (a)

Et
3

K1 w Lz(6-21)

F - _(b)t2

Equation (6 -22)(a), (b) pertains to corner and edge forces for
simply supported rectangular plates.

R = K1 wab (a)
(6-22)

V = Kw L (b)

Equation (6 -23)(a), (b) pertains to partially loaded rectangular
plates with supported edges.

Kw L
3

y - t (a)
Et 3

(6-23)

F- KIW (b)
tz

Equation (6 - 2 4)(a), (b), (c) pertains to circular plates.

K W a 2

Et 3 (a

F- K1 W (b) (6-24)
t2

K 2 Wa (c)
Et 3

Equation (6 -25)(a), (b), (c), (d), (e) pertains to circular plates
with end moments.

KMaW
Et 3  (a)
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K 1 M (b)

tZ

K2 M aS- 3  (c) (6-25)Et3

F - (d)
at

2

M (e)
K 2 Et

3

Equation (6-25) (d) and (e) applies to trunnion-loaded plates only.
(See Table 6-8).

These equations have been developed with a value of 0. 3 for Poisson's
ratio; however, they may be applied to materials with other values without
significant error.

6. 4. Z Beam-Supported Flat Plates in Bending

The treatment of unstiffened flat plates in Section 6. 4. 1 included
considerations of the edge restraints. These were considered to be rigid in
most instances. This section presents methods of analysis which consider
the bending of the support beams. Figure 6-23 shows an idealized view of a
beam-supported plate. The loading may be either concentrated at the center
of the plate or distributed uniformly.

Support 
Supr

Figure 6_Z3. Beam-Supported Plate

'-'Griffel, William, Handbook of Formulas for Stress and Strain

6 - 53



Table 6-9 is used in conjunction with Figure 6-24 to find the maxi-
mum of either the plate or supporting beam. The rigidity ratio, H, is given
by Equation (6-26).

(1-v ) Eblb at 3

H = , where I = - (6-26)
EPIr P 12

Table 6-10 is used with Figures 6-25 and 6-26 to find the maxi-
mum stress in the plate and the beam.

6. 5 Shear Buckling of Flat Plates

The critical shear-buckling stress of flat plates may be found from
Equation (6-27).

Fo TI k. -r 2 E t 2(6-27)I2(1-v 0 )2  b

Figure 6-27 presents the shear coefficient k, as a function of the size
ratio a/b for clamped and hinged edges. For infinitely long plates, Figure
6-28 presents k. as a function of X/b. Figure 6-29(a) presents ksoo for long
plates as a function of edge restraint, and Figure 6-29(b) gives k, /ko as a
function of b/a, thus allowing the determination of k,.

The nondimensional chart in Figure 6--30 allows the calculation of in-
elastic shear buckling stresses if the secant yield stress, F 0 .7, and n the
shape parameter is known (Table 6-Il).

The plasticity-reduction factor i- and the clodding factor - can be
obtained from Equations (6-28), (6-29), and (6-30).

ES/ l-V, 2

TI = E (6-28)E 1 -V2

I 1±+ 3f~ ýfor F., < Fcro < FI L6-9)

I + 3f

____ 1+l3f ]EEO)]+f{[1+3f (~L]I~+ 3( L+ w1}ý
4 (6-30)

1+3f 1l+3f 1 + _

+ ++4

for Fars > FP,
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by nomogram.) -
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TABLE 6-1l

Values of Shape Parameter n for Several Engineering' M•.k!(,rials

n Material

3 One-fourth hard to full hard 18-8 stainless steel, wit! .
One-fourth hard 18-8 stainless steel, cross grain

One-half hard and three-fourths hard 18-8 stainless st ,
cross grain

Full hard 18-8 stainless steel, cross grain
10 2024-T and 7075-T aluminum-alloy sheet and extrusion

2024R-T aluminum-alloy sheet

2024-T80, 2024-T81, and 2024-T86 aluminum-alloy ,:heet
20 to 25 2024-T aluminum-alloy extrusion

SAE 4130 steel heat-treated up to 100, 000 psi ultimate stress

35 to 50 2014-T aluminum-alloy extrusions
SAE 4130 steel heat-treated above 125, 000 psi ultimate ,stress

SAE 1025 (mild) steel
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6.6 Axial Compression of Curved Plates

The radius of curvature of curved plates determines the method to be
used to analyze their buckling stress. For large curvature (b 2/rt < 1), they
may be analyzed as flat plates by using the relations in Section 6. 3. For
elastic stresses in the transition length and width ranges, Figure 6-31 may
be used to find the buckling coefficient for use in Equation (6-31).

F kr IT2 E t )2
ke r 2 E bt) (6-31)
1Z(1-vo2 )

1,000 1,000

r/t 300 r/t = 500

100 - 100
kc kc

10. 10

I 1

1 10 100 1000 1 10 100 1000
Zb 1,000 Zb

r/t = 1. 000

100"

kc

10-

1 10 100 1000

Zb

Figure 6-31. Buckling Coefficient Grouped According

to -r/t Values for Curved Plates

For sharply curved plates, (bZ/rt > 100), Equations (6-32) and'(6-33)
can be used.

F =•CE() (6-32)

Es Et (I -Ve 2)
E1  E ( ) (6-33)

E E, (I-v

Figure 6-32 gives values of C in terms of r/t. Figure 6-33 gives D

in a nondimensional form. Here the quantity ecr = Ct/r.
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6. 7 Shear Loading of Curved Plates

Large radius curved plates (b /rt < 1) loaded in shear may be analyzed
as flat plates by the methods of Section 6. 5. For transition length plates
(0 < bZ/rt < 30), Figure 6-34 can be 'used to find k. for use in Equation (6-34).

k, r 2 E (t2

F, k. =(L) - (6-34)
12(1-ve

For (b /rt > 30), Equation (6-35) may be used.

1 
(6-35)Fort :_ 0. 37 (Zb)!ý (Fr,) flat Plato

Curved plates under shear loading with stiffeners can be analyzed by
using Figure 6-35 for the value of the buckling coefficient k.. Both axial
stiffeners and circumferential stiffeners are treated.

6.8 Plates Under Combined Loadings

In general, the loadings on aircraft elements are a combination of two
or more simple loadings. Design of such elements must consider the inter-
action of such loadings and a possible reduction of the allowable values of the
simple stresses when combined loads are present. The method using stress
ratios, R, has been used extensively in aircraft structural design. The ratio
R is the ratio of the stress in the panel at buckling under combined loading to
the buckling stress under the simple loading. In general, failure occurs
when Equation (6-36) is satisfied. The exponents x and y must be determined
experimentally and depend upon the structural element and

R x + RZY = I T6-36)

the loading condition.

6.8. 1 Flat Plates Under Combined Loadings

Table 6-12 gives the combined loading condition for flat plates. Fig-
ures 6-36 and 6-37 give interaction curves for several loading and support
conditions. It is noted that the curves present conditions of triple combinations.
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Figure 6-34. Shear Buckling Coefficients for Various Curved Plates (continued)
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TABLE 6-1Z

Combined Loading Conditions for Which Interaction Curves Exist

Theory Loading Combination Interaction Equation Figure

Biaxial compression For plates that buckle in 6.37
square waves, R.+ Ry = I

Longitudinal compres- For long plates, Rc + Rs2= 1 6.36
sion and shear

Longitudinal compres- None 6.37
sion and bending

Elasti c 2 2
Bending and shear Rb + RS 6.36

Bending, shear, and None 6.36
transverse compression

Longitudinal compression None 6.37
and bending and trans-
verse compression

Inelastic Longitudinal compression Rcz + Rs2 1
and shear

Figure 6-38 presents buckling coefficients for right angle isosceles
triangular plates loaded under shear and compression. Equation (6-37) is the
interaction equation for shear and normal stress on this type of plate.

2F # + u F+ - (I -u ) = i(6-37)

Fero+ + Fero- Fer

The + and - subscripts refer to either tension or compression
along the altitude upon the hypotenuse of the triangle caused by pure shear
loading. Table 6-13 contains values of k,, k,+ and k._ for various edge
supports.

TABLE 6-13

Buckling Coefficients for Right-Angle Isosceles Triangular Plates Loaded
Independently in Uniform Compression, Positive Shear, and Negative Shear.

Edge Supports
(a) kc ks 4 ks

All edges simply supported 10.0 62.0 23.2

Sides simply supported, 15.6 70.8 34.0
hypotenuse clamped

Sides clamped, hypot-
enuse simply supported 18.8 80.0 44.0

aHypotenuse = b in Figure 6.38
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6. 8. z Curved Plates Under Combined Loadings

For curved plates under combined axial loading and shear with
10 < Zb < 100 and I < a/b < 3, the interaction relation of Equation (6-39)
may be used.

Re2 + R, = 1' (6-39)

This may be used for either compression or tension with tension being
denoted by a negative sign.

6.9 Buckling of Oblique Plates

In many instances, the use of rectangular panels is not possible.
Figures 6-39 and 6-40 give buckling coefficients for panels which are oriented
oblique to the loading. Figure 6-39 covers flat plates divided into oblique
parallelogram panels by nondeflecting supports. Figure 6-40 covers single
oblique panels.

6. 10 Sample Problem - Plate Analysis

Find: The buckling stress of a flat plate under uniform longitudinal
compression, simply supported on all four sides.

Given: a = 12 in. , b = 4 in, t = 0. 100 in.

Material: Bare Z024-T3 Sheet Material Properties: E = 10. 7xlO6 psi
v = 0. 33

FOY = 34, 000 psi

Solution: Fk, rrZE (t• 2

12(l-V2) b i

From Figure 6-1 for a/b = 3, k= 4.00.

= 1.0 for no cladding

=. 0 for elastic buckling

(4.0)(w2)(10.7)106 (100>2

1Z[l - (.33)21 2

For = 24, 600 psi

As this is below the compression yield strength, no allowance for
elasticity need be made.
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Figure 6-40. Buckling Coefficient of Clamped Oblique Flat Plates

6. 11 Buckling of Sandwich Panels

The use of sandwich construction for skin panels of aircraft has become
commonplace. Panel construction consists of primary and secondary skins

separated by a core which is usually some form of honeycomb or expanded

foam material. The critical buckling stress of such a composite can be cal-
culated from Equation (6-40).

Frr = CKFoFr (6-40)

The quantity Fcr is the buckling stress of the two faces if they were not con-
nected by the core. Use the total thickness of the faces. The coefficient C

is obtained from Figure 6-41 and K is a form factor given in Equation (6-41).

K = 1 + 3 (1 + c (6-41)

The data in Figure 6-41 is given as a family of curves of parameter R which
is given in Equation (6-42).

R - r (6-42)
K F- f
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7. MEMBRANES

7. 1 Introduction to Membranes

A membrane may be defined to be a plate that is so thin that it may be
considered to have no bending rigidity. The only stresses present are in the
plane of the surface and are uniform throughout the thickness of the membrane.

Section 7. 3 of this chapter treats of circular membranes, and Section 7. 5

deals with square and rectangular membranes.

7.2 Nomenclature for Membranes

a = longitudinal dimension of membrane
D = diameter
E = modulus of elasticity
f = calculated stress
filx = calculated maximum stress

nl-n7 = coefficients given in Figure 7-9

p = pressure
R = outside radius of circular membrane
r = cylindrical coordinate
t = thickness of membrane
x, y = rectangular coordinates
6 = deflection
6c = center deflection of circular membrane

4 = Poisson's ratio

7. 3 Circular Membranes

Figure 7-1 shows two views of a circular membrane with the clamped
edge under a uniform pressure, p.

The maximum deflection of this membrane is at the center and is given by

3
6C = 0. 662 R VT--_ (7-1)Et

The deflection of the membrane at a distance, r, from the center is

6r6.1 09(L.) 0. ) r (7-2)
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Figure 7-1. Circular Membrane with Clamped Edge

The stress at the center of this membrane is

f = 0-423 NQ t2 (7-3)

while that at the edge is

f 0. 328 3 Ep 2 R 2  (74)
N t2

7. 4 Sample Problem - Circular Membranes

Given: The circular membrane shown in Figure 7-2

Find: The center deflection and the stresses at the center and at the

edge of the membrane.

Solution:
4 4

D 10 0 151
E t lo506 .
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t = 0. 1 inch

p = 10 psi

E = 10x 10 6

Figure 7-Z. Circular Membrane with Clamped Edge

From Section 7. 5. 3. 2, a square plate, for which p/E (b/t)4 is greater
than 250, may be considered to be a membrane. Assuming this to be
approximately true for a circular plate with D used in the relation
instead of b, the given plate may be treated as a membrane.

From Equation (7-1), the center deflection of the given membrane is

33 R/ (7.5) _- o 2 .
0.662R Et = 0.662 (7.5) 10 (75) 1 i.

io(0.1)

From Equation (7-3), the stress at the center of the membrane is

E R 2  io (10) (7.52 )
f = 0.423 t 2  0.423 .... (0. 1)27 7, 500 psi

From Equation (7-4), the stress at the edge of the membrane is

SR2 077-52)=z)(7. 52)f 0.328 = 0.328 
= 5,870 psi(0. 1)2

7. 5 Rectangular Membranes

For purposes of analysis, rectangular membranes may be divided into
two classes: long rectangular membranes where the ratio of length to width
(a/b) is greater than five, and short rectangular membranes where this ratio
is less than five.
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7. 5. 1 Long Rectangular Membranes

Figure 7-3 shows a long rectangular membrane (a/b > 5) clamped
along all four sides.

a

thickness = t

Figure 7-3. Long Rectangular Membrane Clamped on Four Sides

The deflection and stress at the center of such a plate are approxi-
mately the same as those in a long membrane clamped along the two long sides.
Such a membrane is shown in its deflected position in Figure 7-4.

• " thickness =. t

Figure 7-4. Long Rectangular Membrane Clamped on Two Sides

The maximum stress and center deflection of the membrane in
Figure 7-4 under uniform pressure p are given by Equations (7-5) and (7-6)..

[ Lb
2 

2]1/3
f,, = [ 4 1 02t (7-5)

24(1-P )t

1/3

6 1 24 (1_2b (7-6)

b 8 Et

These equations are presented graphically in Figures 7-5 and 7-6 for pi = 0. 3.
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A long rectangular plate may be considered to be a membrane if
p/E (b/t)4 is greater than 100.

7. 5. 2 Sample Problem - Long Rectangular Membrane

Given: The membrane shown in Figure 7-7.

100 t = 0.1 inch

P =15 psi

E = 10x 106 psi

p = 0.316

Figure 7-7. Long Rectangular Membrane

Find: The maximum stress and center deflection

Solution:
4 4

p b 15

S10x 106 150

Since this quantity is greater than 100, the given plate may indeed
be considered to be a membrane.

From Equation (7-5),

_ pEEb 2  1/3 152 (107) (102) 1/3

{24 (l-p2) t 2 2415031 2 )(O_ 2 )J

= 10130

From Equation (7-6),

2 1/3 1/3
= 1 1[24(1-u 2),b] / 1 [24(1-0 62)1)1) /

b 8 Et - 8 107 (0. 1)

0.0185
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Thus,

6 = 0.0185 b = 0. 0185 (10) = 0. 185 in.

For quick calculations, the graphs in Figures 7,5 and 7-6 could
have been used. However, this procedure would give answers
that are not theoretically exact since these graphs are based on
a Poisson's ratio of 0. 3 rather than 0. 316.

7. 5. 3 Short Rectangular Membranes

7. 5. 3. 1 Theoretical Results for Short Rectangular Membranes

Figure 7-8 shows a short rectangular membrane (a/b < 5) clamped

on four sides under a uniform pressure p.

thickness t

FMTIii1" I

Figure 7-8. Short Rectangular Membrane Clamped.on Four sides

The deflection at the center of such a membrane is

= n a (7-7)
Et

where n1 is given in Figure 7-9.

The stresses at various locations on short rectangular membranes
are given by the following equations for which the values of the coefficients
nz through n 7 are given in Figure 7-9.
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Center of plate (x = b/2, y a/2)

f. n2 E -t (7-8)

fy,= n 3  p 2 Et 2 (79)

Center of short side (x b/2, y 0)

3 2

n4 2E 'a (7-10)

fy n 2E7' (7-11)3 a

Center of long side (x = 0, y = a/Z)

3 - 2
[p2 'af n 6  tE(\- (7-12)

f= n7 E P ta) (7-13)

It should be noted that the maximum membranes stress occurs at the center
of the long side of the plate.

7. 5. 3. 2 Applicability of Theoretical Results for Short Rectangular
Membranes

Figures 7-10 and 7-11 give the deflections of plates with variou3- -

length-to-width ratios obtained from the equations in Section 7. 5. 3. 1 and
compare these deflections with experimental values for 10-inch-wide alumi-
num plates.

For square plates (a/b = 1. 0), the thick plate theory should be used
for values of (p/E)(b/t)4 from 0 to 100. If 100 <(p/E)(b/t)4 <250, no theo-
retical method compares closely with test although the membrane theory should
be used for conservative results. If (p/E)(b/t)4 is greater than 250, the mem-
brane theory produces results that compare closely with experiments for square
plates.
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A rectangular plate (a/b > 1. 0) may be considered as a membrane if
(p/E)(b/t)4 > 100, with results becoming more conservative as a/b decreases.

7. 5. 3. 3 Sample Problem - Short Rectangular Membranes

Given: The membrane shown in Figure 7-12

p = 15 psi

t= 0. 1 in.

F 24 E= 10x10 6 psi

x M

y

Figure 7-12. Short Rectangular Membranes

Find: The center deflection and stresses

Solution:

4 .415 1 0

-~ 15 =~c -50ýE ~~107 0.

Since this value is greater than 100, the given plate may be treated
by membrane equations, according to Section 7. 5. 3. Z.

a 24 Z.4

b 10

From Figure 7-9:

n 1 = 0.130 n 5 = 0.077
n2 = 0.230 n 6 = 0. 3 11
n3 = 0. 080 n 7 = 0. 090
n4 = 0. 026
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From Equation (7-7), the deflection of the center of the membrane is

6 n=nia 'p = 0.130 (24) 0.222 in.
l07(0. 1)

From Equation (7-8) through (7-13), the stresses in the membrane
are as follows:

Center of plate (x = 5, y 12)

3z 32

f. = n 2  p2 E (f = 0.230 (15)2(107) = 11,650 psi

2 2 2 .
f = n 3  VE 1 0-n = 0.080 15)2(107) ( 4, 050 psi

Center of short side (x = 5, y= 0)

3 2 3
=n4  p2 E () = 0.1026 15)2(107)(,,-) = 1 5 psi

3 V 2

fy n5  i_) = 0.077 15) (10.)( ) = 3,900 psi

Center of long side (x =0, y = 12)

fx n6  ppE-(a)2 = 0.311 3V(15 -)2(107)(± )24 2= 15, 750 psi

2 a 2(177W24 2
fy = n = 0.090 (15) (1=k 0  4, 550 psi

The greatest stress is 15, 750 psi at the center of the long side.
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8. PRESSURE VESSELS

8.1 Introduction to Pressure Vessels

For purposes of analysis, pressure vessels may be divided into two
classes, thick and thin. Thin pressure vessels are those for which the ratio
of the least radius of curvature of the wall to its thickness is greater than ten.
These thin, pressure vessels are further subdivided into simple ones which
are discussed in Section 8. 3. 1 and stiffened ones which are discussed in Sec-
tion 8. 3. 2. Thick pressure vessels are discussed in Section 8. 4. Section 8. 5
gives a brief discussion of anisotropic pressure vessels and in particular
glass filament vessels.

8. Z Nomenclature for Pressure Vessels

A = cross-sectional area
A = a a/2 for stiffened cylinder

2Ar r2

_b (e (-Pi2)I+ r2

b Ar

Ar = minimum cross-sectional area of ring
Ast = cross section of stringer

a = one-half the major diameter of semi-

elliptical head
a = distance between rings
a = inside radius of thick sphere or cylinder
B = ýa/Z for stiffened cylinder

b = one-half the minor diameter of semi-
elliptical head

b = stringer spacing
b = outside radius of thick sphere or cylinder

b = subscript, bending
b = distance between adjacent edge of stringers
Cn = constant

= subscript, compressive
cs = distance from neutral axis of skin-stringer

combination to outer fiber of skin
cst = distance from neutral axis of skin-stringer

combination to outer fiber of stringer
Do = subscript, crippling

or = subscript, critical
D = El at for stiffened cylinder
d = mean diameter
d = At/bt for stiffened cylinder
d, = inside diameter

d. = outside diameter

8- 1



E = modulus of elasticity
Erng = modulus of elasticity of ring
ES = secant modulus of elasticity
Et = tangent modulus of elasticity
e = eccentricity of ring attachment to skin
Fbmar = meridional bending stress
Fbs = bending stress in skin
Fbt = bending stress in stringer
Fbt = circumferential bending stress
FCC = crippling stress of unpressurized cylinder
Feep = crippling stress of pressurized cylinder
F0 OP= proportional limit in compression
Fcr = critical stress

FOY = compressive yield stress
F = maximum stress

= meridional or axial stress
F = maximum meridional stress
Frmamr = meridional membrane stress

Fmt = circumferential membrane stress
Fr = radial stress
Frioax = maximum radial stress
Face = crippling shear stress of unpressurized

cylinder
Fseep = crippling shear stress of pressurized cylinder
F = maximum shear stress
Fomer = meridional shear stress

Fotmgr = meridional stress in stringer
Ft = tangential or circumferential stress
Ftmax = maximum circumferential stress

= calculated shear stress
S= moment of inertia

I = stress ratio - = rmax
pd/Zt

IP = polar moment of inertia

i= stress ratio = ma
pd/2t

last = moment of inertia of sheet-stringer combina-
tion per inch of circumference

it stress ratio = - tmax

pd/Zt

= subscript, inside

K - __E/D for stiffened cylinder
8r
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kp = buckling coefficient for sphere
ky = buckling coefficient for cylinder

L = cylinder length
M = bending moment
Mer = critical bending moment

M. = discontinuity moment

M,,it = bending moment of skin-stringer combina-

tion per inch of circumference
Mqqt, .= bending moment of skin-stringer combina-

tion per inch of circumference at midspan
between rings

M,,tr = bending moment of skin-stringer combination
per inch of circumference at ring

= subscript, membrane
= subscript, midspan
= subscript, meridional

Nme r = meridional membrane stress times wall

thickness (Fmer t)

Not = tangential membrane stress times wall
thickness (Fott)

n distance from midplane of flat head to joint

head thickness
= subscript, outside

P axial load
P = reaction force

P = Z(_P•t" j for stiffened cylinderst *E z (t+t:)

p = pressure difference (pl - P0)
P= subscript, polar
P= subscript, pressurized

PI = internal pressure

P0  = external pressure
Q-Ar E~n a3

= _______a3 - for stiffened cylinder
32 DrZ

Q" = discontinuity force

R = radius curvature
R = radius to centroid of minimum area of ring
Rb = applied bending moment/critical bending moment
R. = applied compressive load/critical compressive load

R',r = meridional radius of curvature

R _ -applied transverse shear load
critical transverse shear load

Rst = applied torsional moment
critical torsional moment
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Rt = tangential or circumferential radius of curvature

r = mean radius

r = radius to the inside of the skin of stiffened
cylinder

r = cylindrical or polar coordinate
= subscript, radial

= subscript, ring
r, = inside radius of dished head
rk = knuckle radius in dished head
s = subscript, shear

s = subscript, skin
st = subscript, stringer

T = head thickness
T = torque
T = pr/ 2 for stiffened cylinder

t = wall thickness

= subscript, tangential or circumferential

t t+ ts
t = I t ± ts for stiffened cylinder

1 + (l-•a )ts/t

tr = thickness of flange attachment to skin
to = Aot/b for stiffened cylinder
w I = radial deflection of head due to Q. and M.
w 2  = radial deflection of cylinder due to Q, and M0

w1 = radial deflection of head due to internal
pressure

W 22 = radial deflection of cylinder due to internal

pressure
= subscript, yield

x, y, z = rectangular coordinates
CL = half the apex angle of a cone

CL /K +T for stiffened cylinder
4D

0= angle of contact of saddle support

= ,IK - -: for stiffened cylinder

A = increment or difference
An = parameter in Figures 8-45 through 8-49

6 = radial deflection of shell
6M = radial deflection of shell midway between rings
6r = radial deflection of shell at ring
T"I = plasticity reduction factor

@I = angular rotation of head due to Q. and M,
62 = angular rotation of cylinder due to Q0 and M.

4 4 3 (1-pl)/r Tz
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k2 =, V3 (1-p2)/r-t2

p.Poisson's ratio
p. elastic Poisson's ratio PP "E E-

PP• = plastic Poisson's ratio (generally 0. 5)
0, = parameter in Figures 8-41 through 8-44

ý00 = angle between cylinder axis and normal to

head at head-cylinder junction

8. 3 Thin Pressure Vessels

This section deals with pressure vessels for which the ratio of minimum
radius of curvature of the wall to its thickness is greater than ten. These thin
pressure vessels are further subdivided for purposes of discussion into simple
and stiffened pressure vessels. A simple pressure vessel is defined here as
one that does not have stiffeners while 'a stiffened one may have rings and/or
stringers stiffening its walls.

8. 3. 1 Simple Thin Pressure Vessels

This class of pressure vessel includes unstiffened vessels for which
the ratio of the minimum radius of curvature of the wall to its thickness is
greater than ten.

Membrane stresses in simple thin pressure vessels are considered
first here and then the problem of discontinuity stresses at the junction of a
cylinder and its head is considered. The material in these first sections is
based on the assumption that failure by buckling under external pressures does
not occur. The possibility of buckling is treated in Section 8. 3. 1. 3. The
previously mentioned sections cover stresses due to pressure loads alone.
Section 8. 3. 1. 4 deals with stresses due to external loads'from support, and
Section 8. 3. 1. 5 treats of the effect of internal pressure upon the crippling
stress of thin cylinders under various loads.

8. 3. 1. 1 Membrane Stresses in Simple Thin Shells of Revolution

In a thin pressure vessel, no stresses other than those tangential
to the surface are present at points sufficiently removed from discontinuities
in the curvature, slope, or thickness of the wall. These tangential or mem-
brane stresses are constant throughout the thickness of the shell. At points
near discontinuities, such as the junction of a cylinder and its head discontin-
uity, stresses must be superposed upon the membrane stresses in order to
obtain the total stress. These discontinuity stresses are discussed in Sec-
tion 8. 3. 1.2.2.

In the following discussion, the difference between internal and
external pressure (pi - p.) is assumed to be uniform over the surface.
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Figure 8-1 shows a general thin shell of revolution. The meridian
lines of this shell are defined by the intersection of the shell and a plane pass-
ing through the axis of rotation of the surface. The circles of rotation are the
intersection of the shell with planes perpendicular to the axis of rotation.

meridian line

axis of.00 rotation

rotation

Figure 8-1. General Shell of Revolution

The two basic 'equations for a thin shell of revolution are

Nmme r N 't+ ( = P ) (8-( )
R .0 r Rt

and Rt
S= (P - p) (8-.)

2
In these equations, R, is the radius of curvature of a meridian line and R,
is the distance from the shell to its axis of rotation along a normal to the
shell. Both of these radii are taken to a surface located midway between
the inside and outside surfaces of the shell. Nar is the stress in the direc-
tion'of the meridian line times the shell thickness and Nmt is the stress
in the direction of a circle of rotation times the shell thickness.

8. 3. 1. 1. 1 Membrane Stresses in Thin Cylinders

Figure 8-2 shows a thin cylindrical shell (R/t > 10).

meridian line

.0,63ýVR ee rr FRtmer=

Rt= r

Figure 8-2. Thin Cylindrical Shell
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Since the meridian lines are straight, Rt, which is their radius of curvature,

is equal to infinity. Similarly, Rer may be found to be equal to r by applying

its definition. Inserting these values into Equations (8-1) and (8-2) and

solving gives

N~t = (pi - p.)r (8-3)

and

Nmmer (pi - p.) r/Z (8-4)

Since Nt F~tt and Ner = Fmmert,
N~t Pf - p.)r

F't= - p (8-5"
t t

and
N (p, - p.)r

F "- - = _ t (8-6)
t 2

From these equations, it can be seen that the ratio of the longitudinal to the

circumferential stress, F .. r/F't, is equal to 0. 5. Thus, the strength of a

girth joint may be as low as one-half that of a longitudinal joint as is illus-

trated in Figure 8-3.
Girth Joint

0 0 0 0. 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0

SLongitudinal Joint

Figure 8-3. Joints on a Cylindrical Pressure Vessel

8. 3. 1. 1. 2 Membrane Stresses in Thin -Spheres

Figure 8-4 shows a thin spherical shell (r/t >10). Applying

Equations (8-1) and (8-Z) to the shape in Figure 8-4 gives

(p, - po)r

N, = = 2 (8-7)

Thus,

(FP = (8-8)
zt
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9 meridian line

Rmer Rt r

circle of rotation

Figure 8-4. Thin Spherical Shell

8. 3. 1. 1. 3 Sample Problem - Membrane Stresses in Thin Cylinders

and Spheres

Given: The cylindrical pressure vessel shown in Figure 8-5.

t 25 in.

r = 6 in.

Pi - Po 500 psi

T .15 in

Figure 8-5. Thin Cylindrical Pressure Vessel with

Hemispherical Heads

Find: The membrane stresses in the cylinder and the heads.

Solution: Applying Equations (8-5) and (8-6) to the cylindri-

cal portion gives

Ft = 500 (6) 12, 000 psi
.25

and

Fisma = 500 (6) 6,000 psi
2 (.25)

Applying Equation (8-8) to the hemispherical heads gives

Fu = F.sr - 500 (6) = 10, 000 psi
2 (.25)
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It should be noted that the discontinuity stresses at the
head-cylinder junction may be much greater than these
membrane stresses.

8. 3. 1.2 Heads of Thin Cylindrical Pressure Vessels

In the previous discussion, membrane stresses in thin pressure
vessels, the slope, curvature, and direction of the meridian lines as well
as wall thickness were assumed to be continuous. However, one or more
of these assumptions do not hold true at the connection between a cylindrical
pressure vessel and any of the types of heads used in practice.

The tendency of the head of a cylindrical pressure vessel to deform
radially and angularly at a different rate than the cylindrical portion, com-
bined with the requirement of geometric compatibility, necessitates certain
discontinuity stresses near the head joint. Thus, unconservative designs will
be obtained if the membrane stresses are the only ones considered. These
discontinuity stresses are discussed more fully in Section 8.3. 1.2.2.

By.proper design of a pressure vessel, the discontinuity stresses
may be greatly reduced so that localized yielding will level out any stress
peaks and these stresses need not be considered for static strength analysis.
In the A.S. M. E. code for unfired pressure vessels, formulas for the thick-
ness of shells and heads (except in the case of flat heads) consider membrane
stresses only. But the proper design to prevent excessive discontinuity
stresses is specified. For example, proper design of a dished head requires
that the inequalities shown in Figure 8-6 be satisfied.

.• ri < do

do di ri rk > . 06 di

rk Note:

Knuckle mus't be so curved along
the meridian to avoid sudden
changes of slope

Figure 8-6. Proper Design of Dished Head

Formulas for membrane stresses in several types of thin heads are given in
Section 8.3. 1. 2. 1.

If a pressure vessel is subjected to repeated loadings where fatigue
is considered likely, stress peaks due to discontinuity stresses are of great
importance since localized yielding is no longer beneficial.
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8. 3. 1.2. 1 Membrane Stresses in Heads of Thin Cylindrical Pressure

Vessels

Formulas may be found for membrane stresses in several

common types of heads by the use of Equations(8-1) and (8-Z). These are

listed in Table 8-1.

TABLE 8-1

Equations for Membrane Stresses in Thin Heads

Type of Head Membrane Stresses

hemispherical _

or dished -- TFrnmer -- Fnt 2T

(Pi - Po)(a
4

y
2 

+ b4x2)I/2
Frnmer ZTb

2

-b ( (P .Po(a
4

y
2 

. b4xZ)I/2 1 x

- 21a4y2 + b4x2

sem ielliptical a ---- Ib4i Y

Wý.y

T at cylinder-head joint, y = 0 and x a.
Thus,

nie (Pi - Po)aSFrnme r 2 T

x
= pa 1 -aZ

Frnt = T 2bz

T (Pi - po) d

Framer 4 T cos a

CL• (pi - po)d

conical d = - posd

It can be seen from the equation for Ft at x a for an elliptical head that this
hoop stress is compressive if a is greater than,/Zb. Thus, the displacement
of the edge would actually be inward in this case. This is an undesirable sit-
uation because of a possibility of high discontinuity stresses.
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Wherever discontinuity stresses cannot be ignored, they may
be superposed upon the membrane stresses. Discontinuity stresses are dis-
cussed in the following section.

8.3. 1. 2. 2 Discontinuity Stresses at the Junction of a Thin Cylindrical
Pressure Vessel and Its Head

8. 3. 1. 2. 2. 1 Introduction to Discontinuity Stresses

If there is an abrupt change in the thickness or in the meridional
slope or curvature at any circumference of a thin vessel, bending stresses
occur in addition to the membrane stresses. These "discontinuity stresses"
are of four types: *

(1) a meridional bending stress, Fbmer, which varies linearly through-
out the thickness of the wall,

(2) a circumferential or hoop bending stress, Fbi, which varies
linearly throughout the thickness of the wall,

(3) an additional hoop stress, Ft, uniform throughout the thickness
of the wall, and

(4) a meridional shear stress, F.,,,e, assumed uniform throughout
the thickness of the wall.

In order to determine the state of stress of a pressure vessel,
it is necessary to find membrane stresses and discontinuity stresses. The
total stresses may be obtained from the superposition of these two states
of stress.

8. 3. 1.2.2.2 Discontinuity Stresses at Junction of Thin Cylindrical
Pressure Vessel and Head

If a cylindrical pressure vessel is subjected to pressure, the
cylindrical part and its head will tend to expand at different rates as shown
in Figure 8-7. The head alone would displace radially a distance w.. because

of internal pressure, and the cylindrical portion would displace w12 if it were

not attaiched to the head. However, geometric compatibility requires the head
and cylinder to displace equal amounts. Thus, the force Q0 and the moment M0

must exist between the head and the cylinder to hold them together. These, in
turn, cause discontinuity stresses near the junction between the cylinder and
its head.

The following procedure may be used to solve for discontinuity
stresses. First, the difference in radial displacements due to Q. and M 0 must
cancel the difference in radial displacements due to internal pressure. That is,

* Griffel, William, Handbook of Formulas for Stress and Strain
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w WI 2w we -WM (8-9)

2 1
A LxA

` Rtj

~wi 1

00

Figure 8-7. Illustration of the Necessity of Discontinuity
Stresses :

The values of w. and w. as functions of pressure may be ol'tained in Table 8-2
1 2

for various head shapes, and values foxr w and w 2 as functions of Q0 and M. may
be obtained from.Table 8-3. The angles of rotation of the cylinder and head
edges due to Q, and M0 must be equal. That is,

@I = 02 (8-10)

Values of these angles are given as functions of Q. and M0 in Table 8-3.

By substituting the values of displacements and angles obtained
from Tables 8-2 and 8-3 into Equations (8-9) and (8-10) and solving these,Q 0 .
and M. may be obtained as functions of pressure and the geometry and material
of the pressure vessel. The discontinuity stresses are given as functions of Qs,
M0 , and position in Figure 8-4. The curves given in Figure 8-8 are useful in
the evaluation of the stresses given by the equations in Table 8-4.

The previously described method of obtaining discontinuity
stresses is time-consuming, although it provides insight into the nature of
these stresses. More rapid solutions for the discontinuity stresses in thin
cylindrical pressure vessels with flat or conical heads may be obtained
through the curves given in Sections 8. 3. 1.2. 2. 3 and 8. 3. 1. 2. 2.4.

* Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 8-2

Displacement of Heads and Cylinders Due to Internal Pressure"

Form of Vessel Radial Displacement, wm

T2

wml - T cos c

Conical Head

T"

2
Wm 1 2 ET

Hemispherical Head

/ T

2 ET Rer

Vrmer

Any Figure of Revolution L

I-01 t w p
•'- m 2  Et( 2)

L <=

Cylinder

Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE A-3

Radial and Angular Displacements Due to Edge Loading -

Form of Vessel Radial Displacement Angle of Rotation.

sem ielliptical, coni- Q. 3 si GMO2 sn1 (1 p .ý Mo
cal, dished or hemni- wi = (. o_• sinz~ -o" sin •o ) 12=- sin -o )•

c a , d s e=rh m - - E T 3 2 ), 1 2 x I Z E T 3 2 X 1 2 x I

spherical head

Iý z 12 u( 00 .3 Uc 2 0O 3 in 0. M( 2~ sin On~

1 Et z e2  Et
3  2 22

I 4
t ,-Note: x =V 30l'•)/r2T2

I t'2 
2

1.0 -

0.9-\_

0. 7 sXX + sin)_x)_____

0.5
0.4

0.3 e - sn
0.2

-0.3

I . 00 2.00 3.00 4.00

xx
Figure 8-8. Curves for the Evaluation of the Equations in

Table 8-4-
: Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 8-4

Equations for Discontinuity Stresses

Expressions for Discontinuity Stresses of Distance x Measured

Along Meridian from Discontinuity Circle AA (see Figure 8-7)

(1) Hoop Normal Stress:

F Xr r) e-X [QX , Cos Xx - XM (cos Xx - sin Xx)]
t t \R )

(2) Meridional Shear Stress:

F.... /r e-'xX [Q, (cos Xx - sin kx) + ZkM 0 sin kx]
tRt R

(3) Maximum Meridional Bending Stress:

Fbm =r R (6) e-x [-Q, sin Xx + XM0 (cos Xx + sin Xx)]

(4) Maximum Hoop Bending Stress:

Fbt=t Fbmer + Et ( cot cP0 [ 6 ia) e &Xx [Q,, (cos Xx + sin Xx)
S2 Rt Et 3 X2

- 2XMO cos Xx]

Note: For stress in cylinder, X = X2 . For stress in head, let k = Xl and t-" T.

* Griffel, William, Handbook of Formulas for Stress and Strain.
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8. 3. 1.2.2.2. 1 Sample Problem - Discontinuity Forces in Cylindrical
Pressure Vessel with Dished Head

Given: The pressure vessel shown in Figure 8-9.
T =0.5 (1 -P2) = 0.91

E = lox 06

, /

p= 500

Figure 8-9. Cylindrical Pressure Vessel with Dished Head

Find: The discontinuity force and moment at the junction

of the cylinder and its head.

Solution: From Tables 8-3 and 8-4,

W Z ET RVA

m2 Et-

and

W 12 (P 2 _____ sin 2 CO M sin Cpo)

ET 3  2X1
3  2X1

12 (1-3 2 ) Q sin2 _ _ sinw2 -=______ sin c M0  sic 0o)

Et 2X3 2X2
2

From Table 8-3,

II = 3(1-P2z)/rz T2

and

X2 = 14 3(1-1d 2)/r 2 T 2
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In this case,

4

X1 k2 \/3(.91)/(102)(. 52) 575

Substituting this and other parameters into the above

equations gives

w = 4. 97 x 10- 3

w = 2. 12 x 10- 3

w = -15.2 x 10-6 Q, - 9. 36 x 10-6 M"

w = 15. 2 x 10- 6 Q, - 9. 36 x 10-6 M"

Substituting these into Equation (8-9) and solving for Q, gives

Q0= 93.6

Substituting the pressure vessel parameters into the

equations for e 1 and 02 in Table 8-3 gives

1 =9. 38 x 10- 6 Q. - 15. Z x 1 0 - 6 M"

2 =9. 3 8 x 10-6 Q, + 15.2 x 10-6 MO

Applying Equation (8-10) gives

61

Thus,

Mo 0.

The values obtained for Qo and M0 may be substituted into

the equations in Table 8-4 to obtain the discontinuity

stresses. Superposing these discontinuity stresses on the

membrane stresses then gives the total stresses at the
head-cylinder junction.
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8. 3. 1. 2. 2. 3 Discontinuity Stresses in Thin Cylindrical Pressure Vessels
with Flat Heads

For flat-headed pressure vessels, the only significant discon-
tinuity stresses are in the meridional direction. Thus, such a vessel will
have as its maximum stress either the membrane stress in the tangential
direction (pd/Zt), or the stress in the axial direction if the discontinuity stress

is great enough.

In treating axial discontinuity stresses, a stress ratio, Imr' may
be defined to be the ratio of the maximum stress in the meridional direction to
the tangential membrane stress (F-er1fX/pd/2"t). The advantage of this stress

ratio is that it tells immediately whether the tangential membrane stress or
the total axial stress is the maximum stress.

The following equation was derived for the stress ratio I, in a
flat headed cylinder as a function of head thickness T and cylinder thickness t: -

I C, (T/t) - 2Czn(T/t) + C 3 (d/t)3/2 + 2C 4 n(T/t)(d/t) + C)(d/t)(T/t)

3e r + -3 + C 8  + t)1/2 + 4C n_2_(Tlt)2 + C1(T t)_2_(8-1

C6 2(T/t) + 2C7 n(T/t) + - )+ C(d + /t)
1 /Z

Here, nT is the distance from the midplane of the head thickness to the joint
as shown in Figure 8-10. The coefficients C 1 through CIl are given below:

C1 = 2. 94317 C 6 = 1. 90702
C2 = 3. 74071 C 7 = 4. 84761
C 3 = 1.00000 C 8 = 1.02862
C 4 = 0.908912 C 9 = Z.66667
C5 = 0.385077 C 1 0 = 4.40610

C 1 1 = 1.46869

T/2 /

t o

Figure 8- 10. Junction of Cylinder and Flat Head

"* Griffel, William, Handbook of Formulas for Stress and Strain
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The first term in Equation (8-11) represents the axial mem-

brane stress in the cylinder, and the second term accounts for discontinuity
stresses.

Equation (8-11) is presented graphically in Figure 8-11 for

n = 0. 5 (junction at inner surface of head) and in Figure 8-12 for n 0 (head
fitted inside the shell).

d d
1600N T/t 1

35F 1400- 1.5

T/tz 1/

30 1200

,r7_1.5

35 -- 14l00 1.5

25 - 1000

S/ 2
12.5

2, - 8000-

2.5 3

15 600-

10

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

dd
t t

Figure 8-11. Graphical Presentation of Equation (8-11) for n = .5*

, Griffel, William, Handbook of Formulas for Stress and Strain
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T T
t

0

1800/
T/t= I

40 - 1600 1.5

35- Tit/ 1 1400-

2

30 .- 1200-

•25x 252 1000-

E 20- 800-)7 /3
15- 600- 3.5

43.510 4.5 , 400•o- 5
5• 55
5.565 200 6. ,5

"- 6.5 7

"7 8

10 20 30 40 50 60 70-80 90 100 10 20 30 40 50 60 70 80 90 100

d d
t t

Figure 8-12. Graphical Presentation of Equation (8-11) for n = 0 *

* Griffel, William, Handbook of Formulas for Stress and Strain
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8. 3. 1. Z. Z. 3. 1 Sample Problem - Discontinuity Stresses in

Pressure Vessels with Flat Heads

Given: The pressure vessel shown in Figure 8-13.

0.L 5 
T -

I-i
II

Figure 8-13. Thin Cylindrical Pressure Vessel with

Flat Head

Find: The maximum circumferential and meridional

stresses in the cylinder.

Solution: Since the only significant discontinuity stresses

in a flat-headed cylinder are in the axial direction, the

maximum circumferential stress may be taken to be the

membrane stress in that direction. Thus, using Equation

(8-5) gives

Ftrx = F•t = RE 500 (10) = 10, 000 psi
t 0.5

The distance from the center of the head to the joint (nT)

is equal to zero. Thus, n = 0 and the graphs in Figure 8-12

may be used. Here, d/t = 40 and T/t = 2. From Figure

8- 12,
F me rm•lI., - = 8.6

pd/Zt

Since this stress ratio is greater than one, F,,rmax > F~t

Rearranging and substituting the correct values into the

above relation gives

F = 8.6 8. 6 500 (20) _ 86,000 psi

Zt 2(. 5)
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8. 3. 1. 2. 2.4 Discontinuity Stresses in Thin Cylindrical Pressure Vessels
with Conical Heads

For conical headed pressure vessels, there may exist appre-
ciable discontinuity stresses in the circumferential and axial directions as
well as an axial shear stress. Stress ratios are defined here in the same
way as for flat-headed vessels. I.."'is the ratio of the maximum axial stress
to the tangential stress (Ferxax/pd/2t) as before, and It = Ft.,,x/pd/Zt and I. =
F 8,.,/pd/2t where Ftmax and F,,.X are the maximum circumferential and shear

stresses, respectively.

Pertinent geometric parameters for a cylindrical pressure
vessel with a conical head are shown in Figure 8-14.

IT

I x
I

d

Figure 8-14. Cylindrical Pressure Vessel with Conical Head

Figures 8-15 through 8-18 give the stress ratios, Imer and I,
for various cone apex angles. The maximum axial and shear stresses at the
junction may in turn be calculated from these. Figures 8-19 through 8-22
show the stress ratio It from which the maximum circumferential stresses in
a cylinder may be calculated. For the maximum axial stress, a solid line is
used if the stress is located in the cylinder, and a dashed line is used in
Figures 8-15 through 8-19 if it is located in the conical head.

It is important to note that when an internal pressure is applied
to a conical headed vessel, the cylinder always deflects outward and the conical
head inward. Thus, it is impossible to design a conical head to eliminate
moment and shear at the junction. It may be seen from Figures 8-15 through
8-18 that the greatest stress is the axial stress at the junction and that it is
desirable to make the cone and cylinder equally thick if a is less than 45 degrees
in order to minimize this axial stress. If this is not possible, the cone should
have a greater thickness than the cylinder. Vertex angles of greater than 45
degrees require a thicker head.
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1000 --

0.18 1 0.16 0.'14 0.12 0.10

T/tP, 1.0 0.8 0.850
A 00000p

/"/" ;

l100.S 100

d d

T -- - - - - - - - - - - - - - - 10 T

" I

___I_/

-- Cone at Junction

. - - -Cylinder at Junction

T/t 0.8, 1.0 a= 158

0 1 2 3 4

Imer

Figure 8-15. Stress Ratios for Pressure Vessels with Conical Head Closures

*Griffel, William, Handbook of Formulas for Stress and Strain
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1000 I :'s

m0.30• 0,20- m0.1I0
IT/t

1.0 1.155 0.8 -0 .8_ 1.0,1.155

/t

A ,,

1 rer 

is

/"i5

100 ---------------------- -- 100

d d
T T

10 10_

II

Cone at Junction

"--" Cylinder at Junction

T/t= 0.8,' 1.0, 1.155 a = 300

1I I I I I -

0 2 4 6 8

Ime r

Figure 8-16. Stress Ratios for Pressure Vessels with Conical Head Closures *

*Griffel, William, Handbook of Formulas for Stress and Strain
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. 5 o0. . - 0., 3 .0.
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'00V, ' 9 ,
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A -I/. I I I[
I~t I! I II

0*, 11 dT iT

, _ I,,

08 1.0 1. ,1.414°7- 1 1 •°••••
,- G Cone at Junction _

----- Cylinder at Junction

Tft= 0.8, 1.0, 1.2, 1.414

a = 45'
i ,, ,~ ~ I , I , I i ,I_

0 2 4 6 8 10 12
1
1T1e r

Figure 8-17. Stress Ratios for Pressure Vessels with Conical Head Closures*

* Griffel, William, Handbook of Formulas for Stress and Strain
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Cone at Junction
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"a" 600
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Figure 8-18. Stress Ratios for Pressure Vessels with Conical Head Closures*

Griffel, William, Handbook of Formulas for Stress and Strain
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1000 .- (Location of max. Circum. Stress in tylinder)
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10F1.0

t

0.8

7:/t~ 08, -
a= 15*

0 I L,

1.00 1.02 1.04 1.06 1.08 1.10
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Figulre 8-19. Stress Ratios for Pressure. Vessels with Conical Head Closures*

* Griffei, William, Handbook of Formulas for Stress and Strain
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Figure 8-20. Stress Ratios for Pressure Vessels with Conical Head Closures

* Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-21. Stress Ratios for Pressure Vessels with Conical Head Closures *

- Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-22. Stress Ratios for Pressure Vessels with Conical Head Closures

Griffel, William, Handbook of Formulas for Stress and Strain
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8.3. 1. . Z. 4.1 Sample Problem - Discontinuity Stresses in Pressure
Vessels with Conical Heads

Given: The pressure vessel shown in Figure 8-23.

t / ... . .. \

1 I \
T T0. 5

Ip 500 psiI 1

t= 0.5

r=

Figure 8-23. Thin Cylindrical Pressure Vessel with
Conical Head

Find: The maximum meridional, tangential, and shear
stresses at the head-cylinder junction.

Solution: For this pressure vessel, d/T = 40 and T/t = 1.
Figures 8-16 and 8-20 give stress ratios for conical heads
with an angle of 300. From these figures,

1.-r = . 8

it = 1. 055
Is = 0. 205

The circumferential membrane stress is

pd - 500(20) - 10, 000 psi
Zt 2(. 5)

Applying the definitions of the stress ratio gives

Fer = (-t)= 1.8(10,000)= 18, 000 psi

8 -31



t = It () P = 1.055(10,000) = 10, 500 psi
• 2t

Fama, Is (P-d-) .0.205(10,000) Z, 050 psi
2t

Since the appropriate graphs in Figure 8-16 are solid lines,
F •,,and F occur in the cone at the junction. From
the dashed line in Figure 8-20, the location of Ft,,, x/d is
0. ZZ. Thus, Ft... occurs at x = 0. 22 d = 4.4 inches from
the junction of the cylinder and its head in the cylinder.

8. 3. 1. 3 Buckling of Thin Simple Pressure Vessels Under External Pressure

In previous sections, it was assumed that the pressure is either
internal or external, but of small enough magnitude not to cause buckling.
However, thin pressure vessels must be checked for buckling if they are ex-
ternally loaded.

8. 3. 1. 3. 1 Buckling of Thin Simple Cylinders Under External Pressure

The formula for the critical stress in short cylinders
(L 2 /rt < 100) which buckle -elastically under radial pressure is

ky TT ZE ( t±- (8-12)

12 (l 1 2) L --

where ky is obtained from Figure 8-24. If the membrane stress in the cyl-
inder is greater than this, the cylinder will buckle.

The critical stress for long cylinders, [100 t/r <(L/r)2 <
5 r/t], under external radial pressure is

S= 0.93 E (t.)3 ( r)(8-13)
r L

For very long cylinders*, [(L/r)2 >5 r/t], the buckling stress-
is given by

F, =fT 0.25E (E ) (8-14)

where T1 is the plasticity-reduction factor given in this case by

'2zE (I-I) + 3 Et (8-15)

E (i-4 4 E,
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10o3

(r/t) fTii220 50

100

102 
00

k

10

10 102 103 04 05

L2 (1_e2)1/2/rt.

k rr2 E ) 2
cr 2 LTJ

F r - 12(1_•e 2 ) (--

Figure 8-24. Buckling of Short Cylinders Under External Radial Pressure

8. 3. 1. 3. 1. 1 Sample Problem - Buckling of Thin Simple Cylinders Under
External Pressure

Given: The cylinder shown in Figure 8-Z5.

L= 20 t= 0.5

r -Aluminum

S! r=i 10

i i = 0.31
_"p = 0.5

E 10x10
6

pi = 14.7 psi 1 P0 = 300 F 20, 000[I Fcp= 0 0
I I

Figure 8-25. Cylinder Under External Pressure
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Find: The critical'buckling stress, Fort and determine
whether the cylinder will buckle.

Solution:

L 2 202- = 80
rt 10 (.5)

Since this ratio is less than 100, Equation (8-12) for short
cylinders may be used. Before proceeding further, the
elastic Poisson's ratio must be found. From the nomen-
clature section,

E E0

Assume the critical stress is less than the proportional
limit of the material. If this is true, E = E8 and thus,

P. = . Compute

L2 (1-P. 2)/Z/rt 202 Ll-(31) 2 152
10 (.25)

From Figure 8-24, ky= 12.2. Substituting this into
Equation (8-12) gives

I = 12. 2(r 2 )(10)(106) .. 2. 5 2

Fe= -21.12 17, 300 psi12[1- (.31)] 21Z

Since this is less than the proportional limit of the material,
the original assumption is correct. If it were not correct,
a value of Fer would have to be assumed and a value of E.
corresponding to this value found. This value would, in turn,
be used to calculate p. which would be used in the Equation_
(8-12) to calculate Fr. This trial and error process would
have to be repeated until the assumed and calculated values
of F r were in agreement.

From Equation (8-5), the stress in the cylinder is

(= - p.)r - (14.7-300)(10) = 11,4000 psi
t .25

Since this is less than Fr,1 the cylinder does not fail.
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8. 3. 1. 3.2 Buckling of Thin Simple Spheres Under External Pressure

For computation of elastic-buckling stresses of thin spherical

plates under external pressure, Equation (8- 16) applies for all diameter ranges.

kprrE 2

F(r (.TT2E (8-16)
12 (1I-pe 2)

where k. is given in Figure 8-26.

3
10

Linear
Theory

t

ir

10

1 10 102 103

dz 01-Pe 2)I/2/rt

k P TT 2 E t )
Fcr 12 (1 -PZe)

Figure 8-Z6. Buckling Coefficient for Spherical Plates

Under External Pressure
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8. 3. 1. 4 Stresses in Simple Cylindrical Pressure Vessels Due to Supports

Figure 8-27 shows a cylindrical pressure vessel resting on

saddle supports.

r

Figure 8-27. Cylindrical Pressure Vessel on Saddle Supports

There are high local longitudinal and circumferential stresses adjacent to the
tips of the saddles. Although these stresses are difficult to predict exactly,
their maximum value will probably not exceed that given by Equation (8-17)
if the cylinder fits the saddle well.

F = [0.0Z - 0.00012 (1-90)] t7 log (8-17)

In this equation, P is the reaction at each saddle and R, t, and $ are as shown
in Figure 8-Z7 where 0 is in degrees. Equation (8-17) contains no term for
the thickness of the saddle since stresses are practically independent of this
for the ordinary range of dimensions.

The maximum reaction, P, that the vessel can sustain is about
twice the value that will produce a maximum stress equal to the yield point
of the material according to Equation (8-17).

If a pipe is supported in flexible slings instead of in rigid saddles,
the maximum stresses occur at the points of tangency between the sling and
pipe section. These stresses are usually less than the corresponding stresses
in a saddle supported pipe, but are of the same order of magnitude.

8. 3. 1. 5 Crippling Stress of Pressurized and Unpressurized Thin Simple
Cylinders

The crippling stress of thin simple cylinders is increased if internal
pressure is applied. The following sections present curves to determine the
crippling stress in pressurized and unpressurized cylinders subjected to com-
pression, bending, torsion, or any combination of these. The parameters for
such a cylinder are shown in Figure 8-28. Only buckling in the elastic range
is considered in this section.

8 - 36



r

t

Figure 8-28. Pressurized Cylinder

8. 3. 1. 5. 1 Crippling Stress of Simple Thin Cylinders in Compression

8. 3. 1. 5. 1. 1 Crippling Stress of Unpressurized Simple Thin Cylinders in
Compression

Equation (8-18) is an empirical relationship for the crippling
stress of short cylinders (L/r -5 1).

F.. E [11 - 8 1(I) + 0.10og( 1.3 (8-18)

For long cylinders (L/r >1), the best fitting relationship for the crippling
stress is

1.6 1.3 1.6

Fe E[11.2-8 (tS-) 16+ .109(1t) 1. i-418 (t) 16Log Lk)] (8-19)

For 99% probability values of Fe Figure 8-Z9 should be used.

Crippling occurs when the average compressive stress in the
cylinder exceeds F,..

8.3. 1. 5. 1. 2 Crippling Stress of Pressurized Simple Thin Cylinders in
Compression

Figure 8-30 gives in graphical form the incremental increase
in the crippling stress (AF,,) of a cylinder due to internal pressure. These
curves are for 99% probability values. Because of limited testing of pres-
surized cylinders, the value obtained for AF,, can be considered reliable
only in the ranges I <L/r <6, 600 <r/t <Z800 and pr/t <. 6 25 F:Y.
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10.0 x 10~___ __ __ 99% probability value of

_____ ~_____FccIE vs r/t for constant

AN ___ values of L/r
(confidence =0. 95)
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E 10

Fc .05 L/r

25

.01- .X50-
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-Elastic Buckling- 1 f

10 100 1000 100001-
r/t

Figure 8-29. Unpressurized, Simple Circular Cylinders

in Compression with Clamped Ends
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.3

AFccrr 0.221 (constant)
Et

/ Notes:

.2 1. For use only in conjunction with
the 99% probability values for
unpressurized cylinders
(Figure 8.29)

2. Applies only if pr/t <- 625 Fcy

AFcc Fccp FCC

1.0 2.0

• (5)2

Figure 8-30. 99% Probability Value of AF., for Pressurized
Circular Cylinder in Compression
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8. 3. 1. 5.2 Crippling Stress of Simple Thin Cylinders in Bending

8.3. 1. 5.2. 1 Crippling Stress of Unpressurized Simple Thin Cylinders
in Bending

Figure 8-31 gives 99% probability curves for the crippling stress

of unpressurized cylinders in bending. These curves parallel those for un-
pressurized cylinders in compression but yield crippling stresses about 12%
greater.

10.0 x 10-3 99% probability value of

-0 - Fcc/F vs r/t for constant

-- _-_ values of L/r
-- ,_ - - _ - (confidence 0.95)

.1-1.0 _ -- - 400- -. i :

E -L/r

-- •\•__- - 8

_ ~02 Rang of12-5

Dashed lines are extrapolated
into untested regions.

10 100 1000 10000

Fiue8-31. Unpressurized, Simple Circular Cylinders
in Pure Bending with Clamped Ends
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Crippling failure occurs when the maximum bending stress in
the cylinder (Mr/I) exceeds F ".

8. 3. 1. 5. 2.2 Crippling Stress of Pressurized Simple Thin Cylinders in
B ending

Figure 8-32 gives the incremental increase in the crippling

stress (AFc,, of a cylinder in bending due to internal pressure. This curve
is based on experiments on pressurized cylinders that were preloaded axially
to balance the longitudinal stress, pr/Zt, due to internal pressure. It should

be noted that this curve is based on very limited data.

iNotes:

N It e For use only in conjunction with the 990' probability

values for unpressurized cylinders in bending.
0.8 •--

2. Based on 32 tests of pretension balanced specimens,
- pr/t < .6 Fty

0.6- - - - - -

0.4 -

0.2-
AFcc Fccp - Fcc

0 1.0 2.0 "3.0 4.0 5.0 6.o 7.0 8.0

2

Figure 8-32. 99% Probability Value of 6F., for Pressurized

Circular Cylinders in Bending

8.3. 1. 5. 3 Crippling Stress of Simple Thin Cylinders in Torsion

8. 3. 1. 5. 3. 1 Crippling Stress of Unpressurized Simple Thin Cylinders
in Torsion

Torsional buckling of thin, unpressurized cylinders does not
exhibit the sudden snap-through behavior observed in the case of compression
and bending. Instead, the buckling process under torsion is more gradual and

8 - 41



a slight difference is observed between initial and ultimate buckling. However,
this difference is too small to be of any value so that the critical buckling stress
is taken to be the failure stress.

Figure 8-33 gives the 99% probability values for the crippling
shear stress of cylinders in torsion. These curves are applicable if

2

6< l4 2  (Ztr < 5 (- (8-20)

10.0 xl " _ _ _ _'_
-- _ -__ - 99% Probability Value of

_ _ al oLFscc/E vs r/t for constant
values of L/r

1.0

L/r

.01; 1 \\\ 2

S01-50

00Or- I- 1 11  1 1.. ....I..ILI IIU
10100 1000 10000

r/t

Figure 8-33. Torsional Buckling of Unpressurized Circular Cylinders
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However, analysis indicates that the range of use of these curves may be
extended to

L(2 )

Failure occurs if the shear stress in a cylinder under torsion Tr/IP is greater
than the crippling shear stress, Fs.,

8. 3. 1. 5.3.2 Crippling Stress of Pressurized Simple Thin Cylinders in
Torsion

Figure 8-34 gives the incremental increase in the crippling shear
stress of a cylinder in torsion (AF,,,) due to internal pressure. Since few tests
are available on buckling of circular cylinders under torsion and these tests are
for very low pressure ranges, design curves may not be established on a statis-
tical basis. . 2 0 ......

.18 -

Note:

.16 For use in conjunction with Figure 8.33

14

.12

.re10

.08

.0 6 1_ _ 

A F_ 
_ 1

04 Fscc sccp -Fsc

. 02
°OE 1: I 1 I I J-

0 0  .02  .04 .06 .08 .10 .12 .14 .16

(r 
)2

E (t

Figure 8-34. 6F... for Pressurized Circular Cylinders in Torsion
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8. 3. 1. 5. 3. 2. 1 Sample Problem - Cripppling Stress of Pressurized
Simple Thin Cylinders in Torsion

Given: The pressurized cylinder shown in Figure 8-3,5.

E = lox106 -r = 10 t = 0.1

p = 100 psi

T= 80, 000 in. lb T 80, 000 in.lb.

L = 801

Figure 8-35. Pressurized Cylinder in Torsion

Find: The crippling shear stress,- Faecp, and examine

for failure by crippling.

Solution: L/r = 8 and r/t = 100. From Figure 8-33,

Face = 8 x 10- 4

E

for unpressurized cylinders. Thus, F,, 8,000 psi.

From Figure 8-34,

6 " ( o . 1 2 5
E t

Thus,

Et _(10 X1
AF, = 25 r .125 ( 10)(' ) = 10, 000 psi

The crippling stress in a cylinder under pressure (Fce0 p)
is equal to that of an unpressurized cylinder plus AF cc.

Fscc = Face + AF 3 c = 8, 000 + 10, 000 = 18, 000 psi

It can be seen that internal pressure more than doubles the

resistance of the cylinder to crippling. The shear stress in

the cylinder is

f, = Tr _ (80, 000)(10) 20, 300 psi

IP rr (10.05 - 9.954

32
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Since this stress is greater than F,,,P, the cylinder will
fail by crippling.

8. 3. 1. 5.4 Interaction Formulas for the Crippling of Pressurized and
and Unpressurized Cylinders

Table 8-5 gives interaction relationships for various combi-
nations of loads. The combined load interactions apply to the initial buckling

of both pressurized and unpressurized thin-walled circular cylinders. The
terms used for pressurized cylinders are defined as follows:

Rb = applied bending moment
critical bending moment

Rv = applied compressive load
critical compressive load

RO = applied transverse shear load
critical transverse shear load

Rst = applied torsional moment
critical torsional moment

The terms for unpressurized cylinders are defined in the same way except

that stress ratios are used rather than load ratios.

8. 3. 1. 5.4. 1 Sample Problem - Crippling Interaction of Simple Thin
Cylinders in Compression and Bending

Given: The cylinder shown in Figure 8-36.

E = 10x 106

t = 0.025

M= ? M=?

P = 6000 P = 6000

p = 50 psi

L = 8.0

Figure 8-36. Pressurized Cylinder in Compression and Bending

Find: The maximum bending moment, M.
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Solution: From Figure 8-29, F.e/E = 1.6 x 10-4 for com-
pressive loading. Thus,

F0 e = (1.6 x 10-4 )(10 x 106) 1, 6000 psi

From Figure 8-30, AFer/Et = .235. Thus,

AFc .235 Et .235 (10 x 106)(. 025) = 5, 870 psi

r 10

TABLE 8-5

Combined Load Interactions for the Buckling of

Pressurized and Unpressurized Circular Cylinders

Combined Loading Interaction Equation
Condition (99% Probability Values)

Axial Comp. -i- Pure Bending Rc + Rb = 1. 0

Axial Comp. i Pure Bending 3 s 3 Rb3
+ Transverse Shear R, + + R 1.0

Pure Bending - Transverse 3... (Rb) 3  1. 0
Shear

Axial Coxrp. -4 Torsion Rc Rst = 1.0

Axial Tens. i Torsion Rst3 - RI = 1.0 Rt < 0.8

Pure Bending Torsion R R = 1.0

Bending b. 1.

Rb (Rs R = 1.0

Pure Bending - Torsion h 1.5 < p 3.0
* T ransverse Shear -v --

2.0 q <S 3.0

3

Axial Cornp. + Pure Bending 2 3 3
+ Transverse Shear + Torsion Rc I 'Rst ' Rs Rb i.0

Axial Load (Ten. or Comp.) Rs + Rb + R 2st 1.0

+ Pure Bending + Torsion
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For compressive loading,

Feel = Fee + AF.C = 1,600 + 5,870 7,470 psi

The critical compressive load is thus,

7470A = 7470 [n (20)(. 025)] = 11,700 psi

Since the applied compressive load is 6, 000 lb. ,

Re = applied compressive load _ 6, 000 - 513
critical compressive load 11, 700

From Table 8-5,

Re + Rb 1.0

Thus,

Rb = 1.0 - Re= 1.0-. 513 = 0.487

Now, the allowable bending load may be found once the
critical bending load is found. From Figure 8-31 and
8-32, Fee = 2,200 and AFo¢ = 9,000. Thus,

Feel = FCC + AFCC = 2, 200 + 9,000 = 11,200 psi

The formula for the critical bending moment is
n 4 4

IF _7 (10.0125 - 9. 98754)(1,200)
M - =_ = 6 = 5, 500 in-lb.

r 10

Since,

R - applied bending moment 0,487,
critical bending moment

M RbIcr = 0. 487(5, 500) = Z,430 in-lb.

8. 3. z Stiffened Thin Pressure Vessels

This section treats of thin pressure vessels that are reinforced with
stringers and/or rings.
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8. 3. 2. 1 Thin Cylindrical Pressure Vessels with Stringers Under Internal
Pressure

Figure 8-37 shows a cross section of a thin cylindrical pressure
vessel reinforced with stringers.

stringer cross-
P /sectional area = Ast

Figure 8-37. Cross Section of Shell with Stringers

The axial stress in the shell is

F pr ( bt + 2p A8 t8
21 bt + Ast

and that in the stringer is

Spr [ bt (I-44 1 (8-23)F'tze = t bt + A,t -

The circumferential stress is the same as that in a simple thin cylinder

Flt = pr (8-24)
t

8.3.2. 1. 1 Sample Problem - Thin Cylindrical Pressure Vessels with
Stringers Under Internal Pressure

Given: The cylindrical pressure vessel shown in Figure 3-38.

Find: The stresses in the shell and stringers.
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Si= 0.31
'[• r = 20

p = 100 psi

8 stringersS{Ast = 0, 5)

--t0 0..'1

Figure 8-38. Thin Cylinsdrical Pressure Vessel with Stringers

Solution: The distance between stringers is one-eighth the

circumference of the cylinder.

b = Znrr/8 = Zn-(Z0) 15. 7Z in.
8

From Equation (8-ZZ), the meridional stress in the shell is

Fer =pr bt + Zp A8 • _ 100(20) F 15. 72(0. 1)+2(0. 31)(. 5)]
ot bt +A, (.1) 15. 7Z(o. 1)+0. -

9, 100 psi

From Equation (8-Z4), the tangential stress in the shell is

pr = 100(20) - 20, 000 psit 
0.1

The only stress in the stringer is a meridional stress given by

Equation (8-Z31.

F = r [bt (1-2p) ] 100(20) [15. 7Z(0. 1)(1-0.62) ]
zt bt + Ast 2(0. 1) 15. 7Z(0. 1)+ 0.5

Z 2, 890 psi

8. 3. Z. 2 Thin Cylindrical Pressure Vessels with Rings Under Internal
Pressure (Stringers Optional)

Figure 8-39 shows two views of a thin shell with rings and stringers

and appropriate geometric parameters. An enlarged view of the section of the

ring is shown in Figure 8-40.
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ringsst = moment of inertia of skinspacing stringer combination per.
inch of circumference

a-I ring with modulus

of elasticity Ering
II I I Ii
II III

• E =modulus Of

I ' I I elasticity of
Iskin and

I I strigers
II II II

IIII t = shell
II H !thicknessII I I

II II II I stringers of

area Ast
shell length

L
inside radius stringer

of shell spacing

Figure 8-39. Shell with Rings and Stringers

- of attachment

ýbe

A b

U-r

L .centroid of Ar'

r

R

Cross Hatched Area is Ar'

Figure 8-40. Section of Stiffening Ring
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The definition of the following parameters facilitates the description

of pressure vessel behavior.

Ant
d =2

bt

T - r Y .
z

t b

1 -- + 2-
t. t

t

D EI8 ,, of sheet stringer combination

per inch of circumference

Vt' E/D

K- Zr

4Dn

~= K -

4D

2A -
2

rr rz
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Ar Er a3

32 Dr 2

The deflections and moments on the shell at the ring and at midspan
between rings are dependent on the relationship between K and T/4D. Two
conditions are possible - Kit T/4D and K < T/4D.

If K ýý T/4D, the radial deflections of the shell at the ring (68) and
midway between the rings (68) are given by Equations (8-25) and (8-26). In
this case, the bending moments of the skin stringer combination per inch of
circumference at the ring (Mtt) and midway between rings M,,., are given
by Equations (8-27) and (8-28).

-P (8-25)
i+ -Q__

01

6. = -P 12 (8-Z6)
-1l

Mtr PD 4  in Wb/in (8-27)

a2

-M sr 0 3

Masts 04 in Win (8-28)

In the above equations, Q. values may be obtained from Figures
8-41 through 8-44.

If'K <T/4D, the equations for deflections and moments on the shell
are the same as Equations (8-25) through (8-28) except that the 0. terms are
replaced by A. terms. These A. terms are given as functions of A and B in
Figures 8-45 through 8-49.
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The skin of a thin cylindrical pressure vessel with rings and
stringers has stresses that are uniform throughout their thickness. and that
are given by

T - pdEt1 +-
F~• (8-29)

t + (1-112 ) to,8- 
9

and

p. T-E(t + t')
=rt ....... (8-30)2

t + (I- il ) t(

In addition, the skin has a maximum axial bending stress of

M c,
Fba = (8-31)"ISt

where c. is the distance from the neutral axis of the skin-stringer combina-
tion to the outer fiber of the skin.

The stringers have a uniform axial stress given by

T ((-p23) +2)Et(

t + (l-p.z) ts 
(8-32)

in addition to a maximum bending stress of

M cat

Fbtt = (8-33)

where c,t is the distance from the neutral axis of the skin-stringer combina-
tion to the outer fiber of the stringer.

The- rings have a circumferential stress given by

Ering 6r

Ft =(8-34)
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8. 3. 2. 2. 1 Sample Problem - Stiffened Thin Cylindrical Pressure
Vessel with Internal Pressure -

Given: A shell reinforced with rings and stringers under
an internal pressure of 15 psi. The vessel parameters
as shown in Figures 8-39 and 8-40 are as follows:

r = 6 6 in., a = 11.34 in., t = 0.030 in., b = 2. 7 in.,

Ant = 0. 1048 in.,oIst = 0.00493 in. R R = 63. 2 in.

tr =0.040 in., e =0.35in., b'= Z. Zin., Ar' = 0. Z76 in.,

co =0. Z08 in. to skin, cot = 0. 572 in., E = Ei• = 17 x 106 psi,

S0. 316, therefore I-11 - 0.9.

Find: The stresses in the skin, stringers, and rings.

Solution: From the definitions of parameters in
Section 8.2.2. 2,

Aft 0. 1048
d- - - 1.29

bt Z. 7(. 030)

T E pr = 15(66) 495
2 2

t At 0. 1048, .08
t, -b Z. 0 -00388

t + to 0. 030 + 0. 0388 0.0318
1 + (I1)-P ts/t 1 + 0. 9 (0. 0388/0. 030)

D- EIt = 17 x 10 6 (0. 00493) = 8.38 x 104

K E 't' E/D_ /0.0318 (17x 10 6 )(8.38x l04 = 0.01925
Zr 2(66)

T - 495 0.001477

4D 4(8.38 x 104)

- K+ T = 10.019Z5 +0.001477 = 0.144
8 4D
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/K = 10.01925-- 0.001477 =0. 1333

aa 0.144(11.34) 0.817

B P- a _ 0.1333(11.34) = 0.756
2 2

p p 1 pt' 15(66)Z2
tP E I * Z(t + t,) 0.0318(17 x 106)

- 0.316(0.318) ]0. 1122
L Z(o. 030 + 0. 038)

A - r 2  (66)2

bL e ( e_ (1)3r 2.7 /0.35 ( (63.2)2

\t- l 2.) (0.9) 0.Z76

0. Z86

Ar Ev.j,1 a3 6
Q - -___a3 0.286(17x106)(1134)3 =0.607

32 Dr 2 32(8.38 x 104 )(66) 2

Since K >T/4D, Equations (8-25) through (8-28)
may be used to obtain deflections and moments.
From Figures 8-41 through 8-44 with A = 0. 817
and B = 0. 756,

1 = 0.76, 02 = 0.94, C)3 = 0.24, and(24  0.49

These values may now be substituted into Equations
(8-25) through (8-28) to obtain the following:

-P - -. 1122Z

Deflection at ring = 6-P60-
1+Q 1+0.607

01 0.76

0.0624 in. (outward)
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Deflection at rnidspan = 6, = -P n2
1+ --

=-O. 1122 1 + 0.94 =-0.0654 in. (outward)

1 + 0.76
0.607)

4 PD0 4
Moment at ring = Mstr =

4x0.1ZZ(8.38xl )(0.49) = 63.7 in. -lb/in.

(II. 3 4 )Z (i + 0 )

Moment at midspan = Mot, -

Q14

-63.7(0.24) = -31.2 in-lb. /in.

(0.49)

Stresses in Skin

The stresses in the skin consist of

(1) a meridional membrane stress, F-,-r

(Z) an axial bending stress FbS, and

(3) a tangential membrane stress Fet.

These must be computed at both the midspan and

the ring. From Equation (8-29),

T - p Et,(6/r) 495.- 0. 316(17 x 10 6 )(.0388) 6/66

Fm t + (I- ) to 0. 030 + 0. 9 (0. 0388)

- 7,630 - 48, 6606

At the midspan,

Fzver = 7,630 - 48, 6606M 7, 630 + 48,660 (0. 0654)

= 10,810 psi
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At the ring,

Fqgr =7,630 - 48, 660 6r = 7, 630 + 48, 660 (0. 0624)

= 10,670 psi

From Equation (8-31),

M ce M(O. 208) 42. IM
Fb. = - =lost 0. 00493

At the midspan,

Fb, = 4Z. IM$Bu= 4Z. 1 (31. Z) = 1,320 psi

At the ring,

Fbs = 4 2 . 1 M,,st =4Z. 1 (-63. 7) = -2, 680 psi

From Equation (8-30),

4T - E(t+t,)6/r (0. 316)(495)

t + GI-V 2 ) to .030 + (0. 9)(0. 0388)

(17x106 )(0.030+0.0388)6/66 -Z, 410 - 273, 0006
.030 + (0. 9)(0. 0388)

At the midspan,

Fat = 2, 410 - Z73, 000 (0. 0654) = Z0, 260 psi

At the ring,

Fa = 2,410 - Z73, 000 (0. 06Z4) = 19, 440 psi

The maximum meridional stress in the skin at the
midspan is given by

F,,•,ax = Fe,,r + Fb, = 10, 810 + 1,320 = 12, 130 psi

and that at the ring is

Formax =Feer + Fbe = 10, 670 - 2,680 = 7,990 psi
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The critical stress occurs in the skin at the midspan

where both the meridional and circumferential
stresses are greatest.

Stresses in Stringer

The stresses in the stringers consist of

(1) a uniform axial stress, Fetter' and

(2) an axial bending stress, F•o.

From Equation (8-32),

T (l-pZ) +p Et(6/r) 495 (0.9)-

t + (I-P L2 ) to (0. 3) + (0. 9)(0. 388)

+ (0.316)(17x 106)(o.3)(6,66) = 6,860 +37,6206

(0.3) + (0.9)(0. 388)

At the midspan

6, 860 + 37, 620 6 = 6, 860 - 37, 620(0. 0654) 4, 400 psi

At the ring,

Ft,,• = 6, 860 + 37, 620 6 = 6, 860 - 37, 620(0. 06Z4)

= 4, 510 psi

From Equation (8-33),

M cat M(0.57Z) = 116Mbet• -
1#$ 0. 00493

At the midspan,

Fbt = 116 Mo = 116(-31. Z) = -3, 730 psi

At the ring,

Fb~t = 116 M,,tr = 116(63.7) = 7,410 psi

The maximum stress in the stringers is given by

FU,, ='8 Fst,,r + Fbt
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This occurs at the ring where

Formox =4, 510 + 7,410 = 11,910 psi

Stresses in Ring

The rings have a circumferential stress Ft. From
Equation (8-34),

Ft = Er•g'r - (17 x 106)(0. 0624) = 16, 770 psi
R 63. Z

8.4 Thick PresSure Vessels

If the ratio of the minimum radius of curvature of a wall to its thickness
is less than ten, stresses may no longer be considered constant throughout the
wall thickness and radial stresses may not be ignored. Thus, the equations
for thin-walled pressure vessels that were developed with these assumptions
are no longer valid. This section presents solutions for the stresses in thick-

walled cylinders and spheres.

Thick vessels, other than cylindrical and spherical ones, have bending
stresses even if there are no discontinuities present. The analysis of these
stresses is difficult and is not established on a satisfactory basis as yet.
Thus, it is best to determine the intensity of the maximum stresses that exist
in unconventional designs by strain gauge measurements or other experi-
mental means.

8.4.1 Thick Cylindrical Pressure Vessels

Figure 8-50 shows a cross section of a thick cylindrical pressure
vessel of internal radius a and external radius b.

PO

Pi
p0  -

Figure 8-50. Thick Cylindrical Pressure Vessel
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The radial, tangential, and axial stresses, Fr, Ft, and Fearl in such

a cylinder are given by Equations (8-35), (8-36), and (8-37), respectively.

Fr = P1 - Po azb( - pp) (8-35)

b 2  az (b2  a2 ) r2

at (a1 . b2) (8-36)
Ftb2- a2 r2

p•a 2 - P, bZ
,, = az (8-37)b2 _- a2

In order for Equation (8-37) to apply, the point considered must be far
enough removed from the ends for St. Venant' s principle to apply.

8.4. 1.1 Thick Cylindrical Pressure Vessels Under Internal Pressure Only

If p. 0, Equations (8-35) and (8-36) reduce to

Sa p1  (i~ b2

Frb=-a 2  (8-38)

and

a = (l P1-- ) (8-39)
bz- az rz

Both of these stresses have maximum magnitudes at r = a. If the maximum
shear stress theory of failure is to be used, the design equation becomes

Ftmx - Frmx b 2

Fella% = b _(8-40)
Fsmnx =bZ - a2

8.4. 1. 2 Thick Cylindrical Pressure Vessels Under External Pressure
Only

If ps = 0, Equations (8-35) and (8-36) reduce to

F -P, b 2 Iaz (-1
F?- (8-41)

b- - az rz

and
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Ft-= b 1 +-a) (8-42)
bZ - az r2

In this case, both the tangential and radial stresses are always compressive,
with the former always the larger of the two. The maximum compressive
stress occurs at the inner surface of the cylinder where the radial stress
is equal to zero. This maximum compressive stress is given by

-2b2 Pa (8-43)

8.4. 1. 3 Sample Problems - Thick Cylindrical Pressure Vessel

Given: The pressure vessel shown in Figure 8-51.

'0o / Po = 15 psi

Figur6 8-51. Thick Cylindrical Pressure Vessel

Find: The maximum shear stress in the vessel.

Solution: Assume the external pressure is negligible and apply
Equation (8-40). Thus,

o b7 (15)2(10,000)

bZ.(52 210-000) 22, 500 psi
b2 -a? [(15) -(10) 2

8.4.2 Thick Spherical Pressure Vessels

The radial and tangential stresses at a distance r from the center
of a spherical pressure vessel of inner radius a and outer radius b are given
by Equations (8-44) and (8-45).

F pb3 (r3- a3) p1 (b 3 
- r 3) (8-44)

r 3 (a 3 _ h) r3 (a 3 _ b 3 )
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t pob 3 (Zr 3 + a 3 ) pta 3 (Zr 3 + b 3 ) (8-45)
Zr 3 (a 3 _ b 3 ) Zr 3 (a 3 

- b 3 )

The terminology here is the same as that shown in Figure 8-50 for cylindri-

cal pressure vessels.

If po = 0, 3
Ft _ P1 a (Zr 3 +b 3 ) (8-46)

Zr b 3 _ a 3

and the greatest tangential tension is at the inner surface at which

Pi Za3 + b 3
Fw =-- 3_a (8-47)

CX Z 0 3 -a 3

8. 5 Anisotropic Pressure Vessels

Th3 use of glass filaments in the construction of pressure vessels offers
several advantages. Glass has an ultimate strength of approximately 300, 000
lb/in. Z in the direction of the fiber when it is drawn into fine filaments. In
order to fully utilize this high unidirectional strength, however, it is necessary

to run the fiber in the direction of the maximum principal stress. This is done

."Ang the fibers on a mandrel. During the winding process, the filaments
are impregnated with resin which, after curing, will develop sufficient shear
strength to realize the high tensile strength of the fibers. In analyzing these

structures, it is assumed that the fibers sustain the primary loads with only
the secondary loads being resisted by the resin binder.

Since the principal stresses will vary in an actual vessel, the fibers may
actually be wrapped at more than a single wrap angle as may be seen in Fig-
ure 8-5Z.

Figure 8-52. Filament-Wound Pressure Vessel
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For a thin cylindrical pressure vessel, all stresses other than membrane
stresses are negligible. The optimum wrap angle is 55 degrees as shown in
Figure 8-53.

Figure 8-53. Optimum Wrap Angle for Thin Cylindrical Pressure Vessel

In addition to providing a structure of high strength-to-weight ratio, the
glass pressure vessels offer other advantages. Connections can be eliminated
and end closures, skirts, etc., fabricated as a single unit. In addition, pres-
sure vessels may be made in any proportions and sizes over wide ranges.

8 - 72



9. LUG ANALYSIS

9.1 Introduction to Lug Analysis

Lugs are connector-type elements widely used as structural supports
foi pin connections. In the past, the lug strength was overdesigned since
weight and size requirements were for the most part unrestricted. How-
ever, the refinement of these requirements have necessitated conservative
methods of design.

This section presents static strength analysis procedures for uniformly
loaded lugs and bushings, for double shear joints, and for single shear joints,
subjected to axial, transverse, or oblique loading. Also listed is a section
which applies to lugs made from materials having ultimate elongations of at
least 5% in any direction in the plane of the lug. Modifications for lugs with
less than 5% elongation are also presented. In addition, a short section on
the stresses due to press fit bushings is presented.

9. 2 Lug Analysis Nomenclature

FbIUL = Lug ultimate bearing stress
FbrYL = Lug yield bearing stress
Ftux = Cross grain tensile ultimate stress of lug material
Ftyx = Cross grain tensile yieldt stress of lug material

Fbru = Allowable ultimate bearing stress, MHB5
FbrY = Allowable yield bearing stress, MHB5

Ftu = Ultimate tensile stress
F = Allowable lug net-section tensile ultimate stress
FnYL = Allowable lug net-section tensile yield stress
FFbry, = Allowable bearing yield stress for bushings
F03F = Bushing compressive yield, stress

Fbru, = Allowable bearing ultimate stress for bushings
FOUP = Ultimate shear stress of the pin material
Ftup = Pin ultimate tensile stress
Ftup = Allowable ultimate tang stress
Fbr T = Maximum lug bearing stress
F maxL = Maximum bushing bearing stress
F 8 XP = Maximum pin shear stress

Fbmxp = Maximum pin bending stress
PbrUL = Allowable lug ultimate bearing load
P nu = Allowable lug net-section ultimate load
PuS = Allowable bushing ultimate load
P. = Allowable design ultimate load

P•,S = Allowable lug-bushing ultimate load

P = Pin ultimate shear load

Pubp = Pin ultimate bending load
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POPub = "Balanced design" pin ultimate bending load.

Pall = Allowable joint ultimate load

PT = Lug tang strength
PtruL = Allowable lug transverse ultimate load

Ptrus = Allowable bushing transverse ultimate load

Kn = Net-tension stress coefficient

Kb = Plastic bending coefficient for pin
Kb T = Plastic bending coefficient for tang
Kb, = Plastic bearing coefficient for lug
KbL = Plastic bending coefficient for lug
Kt ru = Transverse ultimate load coefficient
Kry = Transverse yield. load coefficient
Mmax = Maximum pin bending moment
MU P = Ultimate pin failing moment

A = Area, in. 2

a = Distance from edge of hole to edge of lug, inches
B = Ductility factor for lugs with less than 5% elongation

b = Effective bearing width, inches
D = Hole diameter of pin diameter, inches

E = Modulus of elasticity, psi
e = Edge distance, inches
f = Stress, psi

f. = Cyclic stress amplitude on net section of given lug,
lbs/in. 2

f. = Mean cyclic stress on net section of given lug, lbs/in. 2

fma RX = Maximum cyclic stress on net section of given lug,
lbs/in. 2

f=I = Minimum cyclic stress on net section of given lug,
lbs/in. 2

g = Gap between lugs, inches
hl.. h4  = Edge distances in transversely loaded lug, inches

h., = Effective edge distance in transversely loaded lug
K = Allowable stress (or load) coefficient
kIk 2 ,k 3 = Fatigue parameters
M = Bending moment, in. -lbs.

N = Fatigue life, number of cycles
P = Load, lbs.
R = Stress ratio, fUhI/fUI
t% = Bushing wall thickness, inches
t = Lug thickness, inches

w = Lug width, inches

O = Angle of load to axial direction, degrees
e = Strain, inches/inch

P = Density, lbs/in. 3
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Subscripts

al = Allowable op = Optimum
= Axial = Pin

*= Bushing , = Shear

b = Bending T = Tang

br = Bearing t = Tensile

C = Compression = Transverse

L = Lug U = Ultimate

max = Maximum = Cross grain

= Net tensile = Yield

0 = Oblique 1, Z = Female and male lugs

9.3 Lug and Bushing Strength Under Uniform Axial Load

Axially loaded lugs in tension must be checked for bearing strength and
for net-section strength. The bearing strength of a lug loaded in tension, as

shown in Figure 9-1, depends largely ont1he interaction between bearing,
shear-out, and hoop-tension stresses in the part of the lug ahead of the pin.

The net-section of the lug through the pih must be checked against net-tension
failure. In addition, the lug and bushing must be checked to ensure that the
deformations at desi-gn yield load are not excessive.

_ _ e

,wT w D Dp a. • WwT w D a

e

Figure 9-1. Schematics of Lugs Loaded in Tension

9.3. 1 Lug Bearing Strength Under Uniform Axial Load

The bearing stresses and loads for lug failure involving bearing,
shear-tearout, or hoop tension in the region forward of the net-section

in Figure 9-1 are determined from the equations below, with an allowable
load coefficient (K) determined from Figures 9-2 and 9-3. For values of
e/D less than 1. 5, lug failures are likely to involve shear-out or hoop-

tension; and for values of e/D greater than 1. 5, the bearing is likely to be
critical. Actual lug failures may involve more than one failure mode, but
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such interaction effects are accounted for in the values of K. The lug ultimate
bearing stress (Fbru L) is

Fru= K a (e/D < 1. 5) (9-1a)
L D

Fb = K Ftu, (e/D R 1. 5) (9-lb)
t

The graph in Figure 9-2 applies only to cases where D/t is 5 or less, which
covers most of the cases. If D/t is greater than 5, there is a reduction in
strength which can be approximated by the curves in Figure 9-3. The lug
yield bearing stress (Fbry, ) is'

Fb,7 = K a (e/D< 1 5) (9-Za)

FbryL = K Ft.,, (e/D 1. 5) (9-Zb)

2.0

1. 8_-

C1)

0
"-4

-o

,- , =1.4 ..

0

1i 4-0--PbrL Kat Ftux-- m-m---PbrL KDt Ftux---
I• 1.2

1.0
0.4 0.6 0.8 1.0 1.Z 1.4 1.6 1.8 2.0 2.2 2.4

e/D

Figure 9-Z. Allowable Uniform Axial Load Coefficient

9-4



C)

0)

z -

'0 d) r- LA '0 -f - 0N

0 0 c oO

U

Z SO C
0 

0 u.

.. E £ A

~ U ~ O..00

* A.

0

u Z

Go %D 0) OD A0 N -D 0 0 10 0 0

P4



The allowable lug ultimate bearing load (Pbru, ) for lug failure in bearing,
shear-out, or hoop tension is

PbrUL = FbruL Dt, (if Ftu, 9 1. 304 Fty.) (9-3a)

PbruL = 1.304 FbrYL Dt, (if Ft,, > 1. 304 Fty.) (9-3b)

Pbru /Dt should. not exceed either Fbru or 1. 304 Fbry, where Fbru and Fbry
are Lthe allowable ultimate and yield bearing stresses for the lug material
for e/D = 2. 0, as given in MIL-HDBK-5 or other applicable specification.

Equations (9-3a) a•nd (9-3b) apply only if the load is uniformly dis-
tributed across the lug thickness. If the pin is too flexible and bends
excessively, the load on the lug will tend to peak up near the shear faces
and possibly cause premature failure of the lug.

A procedure to check the pin bending strength in order to pre-
vent premature lug failure is given in Section 9. 4 entitled "Double Shear
Joint Strength Under Uniform Axial Load.. "

9.3. 2 Lug Net-Section Strength Under Uniform Axial Load.

The allowable lug net-section tensile ultimate stress (FU)L
on Section 1-1 in Figure 9- 4 a is affected by the ability of the lug material
to yield and thereby relieve the stress concentration at the edge of the hole.

FnuL = KUFtu (9-4)

K., the net-tension stress coefficient, is obtained, from the graphs shown
in Figure 9-4 as a function of the ultimate and yield stress and strains of
the lug material in the direction of the applied load. The ultimate strain (E,)
can be obtained from MIL-HDBK-5.

e

WY
D I (a)

Figure 9-4. Net Tension Stress Coefficient
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The allowable lug net-section tensile yield stress (Fn7 1 ) is

F YL = K.Fty (9-5)

The allowable lug net-section ultimate load (PU L) is

PAUL = FuL (w-D)t, (if Ftu - 1. 304 Fty) (9-6a)

PAUL = 1. 304 FUYL (w-D)t, (if FtU > 1. 304 Fty) (9-6b)

9. 3.3 Lug Design Strength Under Uniform Axial Load

The allowable design ultimate load for the lug (PU ) is the
lower of the values obtained from Equations (9-3) and (9-6).

P -UL - Pbr,, (Equations (9-3a) and (9-3b), or (9-7)
PA (Equations (9-6a) and (9-6b))

9.3.4 Bushing Bearing Strength Under Uniform Axial Load

The allowable bearing yield stress for bushings (Fbry ) is re-
stricted to the compressive yield stress (FCY,) of the bushing material,
unless higher values are substantiated by tests.

The allowable bearing ultimate stress for bushings (FbuB) is

FbrU = 1.304 FeyB (9-8)

The allowable bushing ultimate load (PUS) is

PIS = 1. 304 F0.B Dpt (9-9)

This assumes that the bushing extends through the full thickness
of the lug.

9.3.5 Combined Lug-Bushing Design Strength Under Uniform Axial Load

The allowable lug-bushing ultimate load (Pk .) is the lower of the
loads obtained from Equations (9-7) and (9-9).

PS = P. L(Equation (9-7). or P., (Equation (9-9)) (9-10)

9. 4 Double Shear Joint Strength Under Uniform Axial Load

The strength of a joint such as the one shown in Figure 9-5 depends
on the lug-bushing ultimate strength (Pý ) and on the pin shear and pin
bending strengths.
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Figure 9-5. Double Shear Lug Joint

9.4. I Lug-Bushing Design Strength for Double Shear Joints Under

Uniform Axial Load

The allowable lug-bushing ultimate load (P,, ) for the joint is

computed, using Equation (9-10). For the symmetrical joint shown in

the figure, Equation (9-10) is used to calculate the ultimate load for the

outer lugs and bushings (ZPuLe ) and the ultimate load, for the inner lug

and bushing (P, ). The allowable value of PUL for the joint is the lower

* 182 a6.

of these two values.

P.ts ZPUL l(Equation (9-I0)), or P,, (Equation (9-10)) (9-11)
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9.4. 2 Pin Shear Strength for Double Shear Joints Under Uniform
Axial Load

The pin ultimate shear load (P.u) for the symmetrical joint
Pshown in Figure 9-5 is the double shear strength of the pin:

S= 1. 571 Dpz FUP (9-12)

where Fsup is the ultimate shear stress of the pin material.

9.4.3 Pin Bending Strength for Double Shear Joints Under Uniform
Axial Load

.Although actual pin bending failures are infrequent, excessive
pin deflections can cause the load in the lugs to peak up near the shear
planes instead of being uniformly distributed across the lug thickness,
thereby leading to premature lug or bushing failures at loads less than
those predicted by Equation (9-11). At the same time, however, the con-
centration of load near the lug shear planes reduces the bending arm and,
therefore, the bending moment in the pin, making the pin less critical in
bending. The following procedure is used in determining the pin ultimate
bending load.

Assume that the load in each lug is uniformly distributed across
the lug thickness (b 1 = t 1 , and 2b 2 = t 2 ). For the symmetrical joint shown
in Figure 9-5, the resulting maximum pin bending moment is

MMRXP:=2(G+4 + g (9-1"3)

The ultimate failing moment for the pin is

3
MUp = 0. 0982 kbP Dp Ftup (9-14)

where kbp is the plastic bending coefficient for the pin. The value of kb
varies from 1. 0 for a perfectly elastic pin to 1. 7 for a perfectly plastic
pin, with a value of 1. 56 for pins made from reasonably ductile materials

(more than 5% elongation).

The pin ultimate bending load (Pub ) is, therefore,
P

Pu p0. 1963 kbP Dp3 FtuP (9-15)
=t- + + 10

2 4
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If uPub is equal to or greater than either Pu (Equation (9-11) or Pu,•

(Equation (9-12)), then the pin is a relatively strong pin that is not critical
in bending, and no further pin bending calculations are required. The
allowable load for the joint (Pa.1) can be determined by going directly to
Equation (9-19a).

If Pub (Equation (9-15)) is less than both P S (Equation (9-11))

and PUP (Equation (9-12)), the pin is considered a relatively weak pin,
critical in bending, However, such a pin may deflect sufficiently under
load to shift the c. g. of the bearing loads toward the shear faces of the lugs,
resulting in a decreased pin bending moment and an increased value of Pub .
These shifted loads are assumed to be uniformly distributed over widths b1
and Zb2 , which are less than tI and t 2 , respectively, as shown in Figure 9-5.
The portions of the lugs and bushings not included in bI and ZbZ are con-
sidered ineffective. The new increased value of pin ultimate bending load, is

0. 1963 kb Dp3 FtuP
P = (9-15a)P u b ( b , + - b 2 + 9 )

The maximum allowable value of Pub is reached when bI and b 2 are suf-
ficiently reduced so that Pubp (Equation (9-15a)) is equal to Pu L (Equation

(9-11)), provided that b, and Zb 2 are substituted for tI and t?, respectively,
At this point we have a balanced design where the joint is equally critical
in pin-bending failure or lug-bushing failure.

The following equations give the "balanced design" pin ultimate
bending load (Pub me) and effective bearing widths (b I in and Zb 2 min):

Pubp t2 g2
Pu P mx 2-- + 2 + g + g -ZCg (9- 16)

where

P. t 2 + P'. ti8e1 12

The value of Pub on the right hand side of Equation (9-16) and the values of
PP and P inthe expression for C are based on the assumption that the

full thicknesses of the lugs are effective and have already been calculated.
(Equations (9-10) and (9-15)).
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If the inner lug strength is equal to the total strength of the two
outer lugs (PuL., = 2 P)uLe ), and if g = 0, then

11

P.bp a PuP (9-17)Pmx p %B

The "balanced design" effective bearing widths are

Pub -max t1

b1 = (9-18a)mm n ZP~t

18

Pub t 2
P max

2b2  = (9- 18b)

where Pub is obtk.ined from Equation (9-16) and. Put and. Put are
P max I B

the previously calculated values based on the full thicknesses of the lugs.
Since any lug thicknesses greater than b 1  or b 2  are not considered
effective, an efficient static strength design wouldehave t, = b, .1n and.
tZ = 2 bZmin.

The allowable joint ultimate load (Pal1 ) for the double-shear joint
is obtained, as follows:

If Pub (Equation (9-15) is greater than either P. (Equation (9-11)
or Pup (Equation (9-12)), then Pall is the lower of the valugs of Put or

Pall = Pu.L (Equation (9-11) or PuP (Equation (9-12)) (9-19a)

If Pubp (Equation (9-15)) is less than both PUL and ip, then

Pal, is the lower of the values of PIus, and Pubp..

Pall = P.. P (Equation (9-1Z) 6 r Pubpsax (Equation (9-16)) (9-19b)

9.4..4 Lug Tang Strength for Double Shear Joints Under Uniform Axial Load-

If Equation (9-19a) has been used to determine the joint allowable
load, then we have a condition where the load in the lugs and tangs is assumed
uniformly distributed. The allowable stress in the tangs is Ftu.. The lug tang
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strength (PT) is the lower of the following values.

P = 2FtU wT1 tl (9-20a)

PT = FtU Tz w z t (9-2Ob)

"If Equation (9-19b) was used to determine the joint allowable load,
the tangs of the outer lugs should be checked for the combined axial and bend-
ing stresses resulting from the eccentric application of the bearing loads.
Assuming that the lug thickness remains constant beyond the pin, a load (P/2)
applied over the width b 1 in each outer lug will produce the following bending
moment in the tangs:

M1 =PZ t,-b

A simple, but generally conservative, approximation to the maximum com-
bined stress in the outer lug tangs is

F 2w + 6M (9-21)
T1I Zw1 t kb wrl tlZ

where kb , the plastic bending coefficient for a lug tang of rectangular cross-
T

section, varies from 1.0 for a perfectly elastic tang to 1. 5 fQr a perfectly
plastic tang, with a value of 1.4 representative of rectangular cross sections
with materials of reasonable ductility (more than 5% elongation). The allow-
able value of F " is Ft" T. The lug tang strength is the lower of the fol-
lowing values:1

ZFtuT1 wT1 t1

PT b(9-ZZa)
kb t(

T

PT = Ftu wT? t 2  (9- Ub).Tz 2

where bl, 5 is given by Equation (9-18a)

9. 5 Single-Shear Joint Strength Under Uniform Axial Load

In single-shear joints, lug and pin bending are more critical than in
double-shear joints. The amount of bending can be significantly affected by
bolt clamping. In the cases considered in Figure 9-6, no bolt clamping is
assumed, and the bending moment in the pin is resisted by socket action in
the lugs.
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Figure 9-6. Single Shear Lug Joint

In Figure 9-6 a representative single-shear joint is shown, with centrally

applied loads (P) in each lug, and bending moments (M and Ml) that keep
the system in equilibrium. (Assuming that there is no gap between the lugs,
M + Ml = P (t + tl)/Z). The individual values of M and M, are determined
from the loading of the lugs as modified by the deflection, if any, of the lugs,

according to the principles of mechanics.

The strength analysis procedure outlined below applies to either lug.
The joint strength is determined by the lowest of the margins of safety cal-
culated for the different failure modes defined by Equations (9-23) through (9-27).

9. 5. 1 Lug Bearing Strength for Single Shear Joints Under Uniform
Axial Loads

The bearing stress distributio'n between lug and bushing is assumed-
to be similar to the stress distribution that would be obtained in a rectangular
cross section of width (D) and depth (t), subjected to a load (P) and moment (M).
At ultimate load the maximum lug bearing stress (Fbr max L) is approximated by

Fbr max L = -P + 6m(9-23)Dt kbr L Dtz

where kb9L is a plastic bearing coefficient for the lug material, and is assumed

to be the same as the plastic bending coefficient (kbdL for a rectangular section.

9- 14
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The allowable ultimate value of Fbr ,,xt is either FbIU, (Equations

(9-1a) (9-1b)) or 1. 304 FbrYL (Equations (9-Za) (9-2b)), whichever is lower.

9. 5. Z Lug.Net-Section Strength for Single Shear Joints Under Uniform
Axial Load

At ultimate load the nominal value of the outer fiber tensile stress
in the lug net-section is approximated by

S P 6M (9-24)Ft Sax - + 2(w-D)t kb (W .D)t 2

L

where kbt is the plastic bending coefficient for the lug net-section.

The allowable ultimate value of Fi .. is F,, (Equation (9-4)) or
1. 304 FZt, (Equation (9-5)), whichever is lower.

9. 5. 3 Bushing Strength for Single Shear Joints Under Uniform Axial Load

The bearing stress distribution between bushing and pin is assumed
to be similar to that between'the lug and bushing. At ultimate bushing load the
maximum bushing bearing stress is approximated by

Fb~xB 6M
FDr tax kr W (9-25)D p t k , L D P t t .

where kb~ , the plastic bearing coefficient, is assumed the same as the plastic

bending coefficient '(kb ) for a rectangular section.
L

The allowable ultimate value of Fbr Sax a is 1. 304 F..., where F...

is the bushing material compressive yield strength.

9.5.4 Pin Shear Strength for Single Shear Joints Under Uniform Axial Load

The maximum value of pin shear can occur either within the lug or

at the common shear face of the two lugs, depending upon the value of M/Pt...
At the lug ultimate load the maximum pin shear stress (F. tax p) is approxi-
mated by

Fa a .273 P (if M :5/3)F, ,-(if -, 2/3) (9-26a)
Dp2 Pt

I.273 P PtZM +-1 M1. 273 P " -" , (if - >2/3) (9-26b)

Pt pPt
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Equation (9-26a) defines the case where the maximum pin shear is obtained
at the common shear face of the lugs, and Equation (9-26b) defines the case
where the maximum pin shear occurs away from the shear face.

The allowable ultimate value of Fb %ax P is F,,P the ultimate shear
stress of the pin material.

9. 5. 5 Pin Bending Strength for Single Shear Joints Under Uniform
Axial Load

The maximum pin bending moment can occur within the lug or at
the common shear faces of the two lugs, depending on the value of M/Pt. At
the lug ultimate load the maximum pin bending stress (Fb tax p) is approxi-
mated by

i0._19 (Pt ) M
Fb ,ax P 10. 19M t (if M!3/8) (9-27a)

kbP DP3  ZM Ptkp

Fb ma _ 10. 19M (M ( ) z - )Fb tax P Pt)-

ZM3 2M (9-27b)kbp Dp
Pt

(if M >3/8)

Pt

where kbp is the plastic bending coefficient for the pin.

Equation (9-27a) defines the case where the maximum pin bending
moment is obtained at the common shear face of the lugs, and Equation (9-27b)
defines the case where the maximum pin bending moment occurs away from
the shear face, where the pin shear is -zero. .

The allowable ultimate value of Fb tax P is FtuP, the ultimate tensile
stress of the pin material.

9. 6 Example of Uniform Axially Loaded Lug Analysis

Determine the static strength of an axially loaded, double shear joint,
such as shown in Section 9. 4, with dimensions and material properties given
in Table 9-1.
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Table 9-1. Dimensions and Properties

Fer.al'e Lugs, 1 Male Lug, 2. Bushings, Pin
1 and 2

Material Z024-T351 Plate 7075-T651 Plate Al. Bronze 4130 Steel

Ftv 64000 psi 77000 psi 1'10, 000 psi 125, 000 psi

(X-grain) (X-,rain_

Fry 40000 psi 66000 psi bO, 000 psi 1.03, 000 psi

(X-grain) (X-grain)

F o r 60, 000 psi

FU 82, 000 psi

E 10. 5 x 106 psi 10.3 x 106 29 x 106 psi

0 0. I 0.06

D or Dp D - 1.00 in. D -=1.00 in. D, 0.75 in. D = 0.75 in.

I= 1.00 in.

e 1.25 in. 1. 50 in.

a 0.75 in. 1.00 in.

w= WT 2. 50 in. 3. 00 in.

t 0. 50 in. 0. 75 in. 0. 50 and

0. 75 in.

g 0. 10 in.

(1) Female Lugs and Bushings

Ftux. = 64, 000 psi; 1.304 Ft, = 1.304 x 40000 = 52160 psi.

a) Lug Bearing Strength (Equations (9-2a) and (9-3b))

el _ 1 25 = 1.25; therefore K 1 = 1.46 (from Figure 9-2)

D 1. 00

Pbru = 1.304 x 1.46 x 0.75 x 40000 x 1.00 x 0. 50 = 28600 lbs.
'1

b) Lug Net-Section Tension Strength (.Equations (9-5) and (9-6b))

D .0Fty 40000
D _ 1.00 -040; -= 4 0.625;

wI 2. 50 Ftu 64000

S_64000 0.051; therefore, kI 0. 74

Ec 10.5 x 106 x 0. 1Z

(by interpolation from Figure 9-4)

P"= 2 x 1.304 x .74 x 4000 x (2. 5 - 1.0) x . 5 = 57, 898 lbs.
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c) Lug Design Strength (Equation (9-7))

Pul = Pru = 28600 lbs.L 1l

d) Bushing Bearing Strength (Equation (9-9))

1PU = 1. 304 x 60000 x 0.75 x 0.50 29300 lbs.
al

e) Combined Lug-Bushing Design Strength (Equation (9-10))

PUr L=B PUl = 28600 lbs.

(2) Male Lug and Bushing

Ftux = 77000 psi; 1. 304 Ftyx = 1. 304 x 66000 = 86100 psi.

a) Lug Bearing Strength (Equations (9-1b) and (9-3a))

e 2  1. 50 1. 50; therefore, K2  1.33 (from Figure 9-7)

D -1.00

Pbru = 1. 33 x 77000 x 1.00 x 0.75 = 77000 lbs.
1Z

b) Lug Net-Section Tension Strength (Equations (9-4) and (9-6a))

D _ 1.00 = 0.333; F y _ 66000 - 0.857;

w? 3.00 Ftu 77000

FtU 77000700 0. 125; therefore K,,, 0. 87

Ecu 1O03 x 10 x 0.0 6

(by interpolation from Figure 9-4)

PUL = 1.304 x 87 x 66000 x (3.0 - 1 0) x .75 = 11Z, 313 lbs.

c) Lug Design Strength (Equation (9-7))

P pbru 77000 lbs.

d) Bushing Bearing Strength (Equation (9-9))

.PUs =1.304 x 60000 x 0.75 x 0.75 =44000 lbs.lz
e) Combined Lug-Bushing Design Strength (Equation (9-10))

Ps= u = 44000 lbs.
PIL2 B.2
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(3) Joint Analysis

a) Lug-Bushing Strength (Equation (9-11))

PUL= PU = 44000 lbs.

b) Pin Shear Strength (Equation (9-12))

pusp = 1. 571 x (0. 75)2 x 82000 = 72400 lbs.

c) Pin Bending Strenigth (Equation (9-15))

The pin ultimate bending load, assuming uniform bearing across

the lugs, is

= 0. 1963 x 1. 56 x (0. 75)3 x 125000 30100 lbs.
Pub P .25 + 0. 1875 + 0. 10

Since Pub is less than both Pu and P,,P, the pin is a relatively

weak pin which deflects sufficiently under load to shift the bear-

ing loads toward the shear faces of the lugs. The new value of

pin bending strength is, then,

2Cb ZG x 30100 x (0.25+0.1875+0. 10) + (0. 10)2 - 0.)
28600 x 44000

(from Equation (9-16)) where C =

286 x 0.75 + 44000 x 0. 050

= 29000 lbs/in.

Therefore, Pub, = x 29000 x (0. 754 - 0. 10) = 37900 lbs.

The "balanced design" effective bearing widths are

37900 x 0. 50 = 0. 331 in. (from Equation (9-18a))
Z x 28600

= 37900 x 0.75 = 0. 646 in. (from Equation (9-18b))

2Z 21D 44000

Therefore, the same value of Pub would be obtained if the
P manx

thickness of each female lug was reduced to 0. 331 inches and

the thickness of the male lug reduced to 0. 646 inches.

d) Joint Strength (Equation (9-19b))

The final allowable load for the joint, exclusive of the lug tangs, is
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Pail = P 37900 lbs.

(4) Lug Tang Analysis

PT =Z x 64000 x . 50 x 0. 50 = 92700 lbs. (from Equation (9-ZZa))

1 + 3 (.1 0. 331 )
1. 4 0. 500

or

PT =77000 z 3. 00 x 0. 75 = 173300 lbs. (from Equation (9-22b))

Therefore, the lug tangs are not critical and the allowable joint
load remains at 37900 pounds.

9.7 Lug and Bushing Strength Under Transverse Load

Transversely loaded lugs and bushings are checked in the same general
manner as axially loaded lugs. The transversely loaded lug, however, is a
more redundant structure than an axially loaded lug, and it has a more com-
plicated failure mode. Figure 9-7 illustrates the different lug dimensions
that are critical in determining the lug strength.

e]

-- D h3

5 

45

I h 
h l1h

-- (a) (b)

tr tr

Figure 9-7. Schematic of Lugs Under Transverse Loads

9. 7. 1 Lug Strength Under Transverse Load

The lug ultimate bearing stress (FbruL) is

Fbru = Ftru Ftux (9-28)

where Kt,, the transverse ultimate load coefficient, is obtained from
Figure 9-8 as a function of the. "effective" edge distance (h,,):

h,a= 6
3/h + I/h 2 + I/h 3 + 1 h/4

9 - 20
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The effective edge distance can be found by using the nomograph in
Figure 9-9. The nomograph is used by first connecting the h 1 and hz lines at
the appropriate value of h 1 and hZ. The intersection with line A is noted. Next

connect the h 3 and h 4 lines similarly, and note the B line intersection. Con-
necting the A and B line intersection gives the value of hV to be read at the
intersection with the h., line. The different edge distances (hl, h 2 , h 3 , h 4 )
indicate different critical regions in the lug, h 1 being the most critical. The
distance h 3 is the smallest distance from the hole to the edge of the lug. If

the lug is a concentric lug with parallel sides, h,,/D can be obtained directly
from Figure 9-10 for any value of e/D. In concentric lugs, h 1 = h 4 andh 2 =h 3 .

The lug yield bearing stress (FbrL) is

FbyL= Kt). Fty. (9-2v)

where K-y, the transverse yield load coefficient, is obtained from Figure 9-9.

The allowable lug transverse ultimate load (Pt,) is
L

PtPUL = Fbr L Dt (if Ftux -1. 304 Ftyx) (9-30a)

Pt = 1. 304 Fbt, Dt (if Ft,, > 1. 304 Fy,.) (9-30b)

where Fbru? and Fbwy are obtained from Equations (9-Z8) and (9-29)).
L 9L
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Figure 9-10. Effective Edge Distance

If the lug is not of constant thickness, then A.V/Ab, is substituted
for h.,/D on the horizontal scale of the graph in Figure 9-8, where Abr is the
lug bearing area, and

A1 , = 6
3/A 1 + 1/A 2 + 1/A 3 + 1/A 4

A 1 , A 2 , A 3 , and A 4 are the areas of the sections defined by hl, h 2 , h 3 , and
h4 , respectively.

The values of t, and Ktr, corresponding to A.Y/Ab. are then.obtained
from the graph in Figure 9-8 and the allowable bearing stresses are obtained
as before from Equations (9-28) and (9-29)).

9.7. 2 Bushing Strength Under Transverse Load

The allowable bearing stress on the bushing is the same as 'that for
the bushing in an axially loaded lug and is given by Equation (9-8).. The allow-
able bushing ultimate load (P~ tr, is equal to P U (Equation (9-9)).
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9.8 Double Shear Joints Under Transverse Load

The strength calculations needed for double shear joint strength analysis
are basically the same as those needed for axially loaded. Equations (9-11)
through (9-19) can be used; however, the maximum lug bearing stresses at
ultimate and yield loads must not exceed those given by Equations (9-28)
and (9-29).

9.9 Single Shear Joints Under Transverse Load

The previous discussion on double shear joint applies to single shear
joint strength analysis except the equations to be used are now Equations (9-Z3)
through (9-27).

9. 10 Lug and Bushing Strength Under Oblique Load

The analysis procedures used to check the strength of axially loaded
lugs and of transversely loaded lugs are combined to analyze obliquely
loaded lugs such as the one shown in Figure 9-11. These procedures apply
only if a does not exceed 900.

r -P

Ptr

Figure 9-11. Obliquely Loaded Lug

9. 10. 1 Lug Strength Under Oblique Load

The obliquely applied load (Pa) is resolved into an axial component
(P = Pa cos a) and a transverse component (P,. = P,, sin N). The allowable.-
ultimate value of Pais P, and its axial and transverse components satisfy
the following equation: L

.6+ 1.6 (9-31)

where P.L is the strength of an axially loaded lug (Equation (9-7)) and Ptru ia
the strength of a transversely loaded lug (Equations (9-30a), (9-30b)). The
allowable load curve defined by Equation (9-31) is plotted on the graph in
Figure 9-12.
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Figure 9-12. Allowable Load Curve

For any given value of ' athe allowable load (PcLt) for a • cmn be
determined from the graph shown in Figure 9-12 by drawing a irne from the
origin with a slope equal to (Pu /Ptru ). The intersection of this line with the
allowable load curve (point 1 on. the Araph) indicates the allowable values of
P/Pu and Pt 1.Pt, , from which the axial and transverse components, P
and Ir, of the allowable load can be readily obtained. "

9.10. 2 Bushing Strength Under Oblique Load

The bushing strength calculations are identical to those for axial
loading (Equations (9-8) and (9-9)). r

9.11 Double Shear Joints Under Oblique Load

The strength calculations are basically the same as those for an axially
loaded joint except that the maximum lug bearing stress at ultimate load must
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not exceed Pa ý/Dt, where P.- is defined by Equation (9-31). Use Equations
LL

(9-11) through (9-19)).

9. 12 Single Shear Joints Under Oblique Load

The previous discussion on double shear joints applies to single shear

joint strength analysis except the equations to be used are now Equations

(9-23) through (9-Z7).

9. 13 Multiple Shear and Single Shear Connections

Lug-pin combinations having the geometry indicated in Figure 9-13

should be analyzed according to the following criteria:

(1) The load carried by each lug should be determined by distributing

the total applied load P among the lugs as indicated in Figure 9-13,

*b being obtained in Table 9-2. This distribution is based on the

assumption of plastic behavior (at ultimate load) of the lugs and

elastic bending of the pin, and gives approximately zero bending

deflection of the pin.

(2) The maximum shear load on the pin is given in Table 9-2.

(3) Th6 maximurm bending moment'in the pin is given'by the formulae
P 1 b

M = - where b is given in Table 9-2.
2

These lugs of Two outer lugs of equal thickness

equal thickness t' :not less than Ct' (See Table 9-Z)

CP i1-'"

P 1

These lugs of equal

thickness 't"

Figure 9- 13. Schematic of Muiltiple Shear Joint in'Tension
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Total number
of lugs includ- C "Pin Shear b
ing both sides- , ......

5 .35 ..50 P1  Z8

7 .40 .53 Pi .33 t +t

2
9 43 54 P 1  .37 ti+t"

2
11 .44 .54 Pi .39 ti + ti

2

.50 .50 P 1  50 t'+ t

2

9. 14 Axially Loaded Lug Design

This section presents procedures for the optimized design of lugs,
bushings and pin in'a symmetrical, double-shear joint, such as shown in
Figure 9-5, subjected to a static axial load (P). One design procedure applies
to the case where the pin is critical in shear, the other to the case where the
pin is critical in bending. A method is given to help determine which mode of
pin failure is more likely, so that the appropriate design procedure will be used.

Portions of the design procedures may be useful in obtaining efficient
designs for joints other than symmetrical, double-shear joints.

9. 14.1 Axial Lug Design for. Pin Failure

An indication of whether the pin in an optimized joint design is more
likely to fail in shear or in bending can be obtained from the value of R (Equa-
tion (9-3Z)). If R is less than 1. 0, the pin is likely to fail in shear and the
design procedure for joints with pins critical in shear should be used to get
an optimized design. If R is greater than 1. 0, the pin is likely to be critical
in bending and the design procedures for joints with pins critical in bending
should be used.

Tr Fp Foup FluR ______+ F. (9-32)

kbF.;:P Fb? -all 1 Fbr &1, 2

where F and F are the ultimate shear-and ultimate tension stresses for
8"P 

tuP

the pin material, kb p is the plastic bending coefficient for the pin, and Fb,-li 1
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and Fbr&I £12 are allowable bearing stresses in the female and male lugs. The

value of Fbr ,111 can be approximated by the lowest of the following three values:

D D 1

where Ft.,l and Ft.., are the cross-grain tensile ultimate and tensile yield

stress for female lugs, F,, is the compressive yield stress of the bushings

in the female lugs, and K is obtained from Figure 9-14. Assume D = DP if
a better estimate cannot be made. Fb, £112 is approximated in a similar manner.

1.0 -.-... - -

K 0.9 - - - - -0

0.8-

0.7
0 1 2 3 4

PP _Pin Material Density

.PL Lug Mbaterial Density

Figure 9-14. Allowable Bearing Coefficient

9.14. 1. 1 Axial Lug Design for Pin Failure in the Shearing Mode

Pin and Bushing Diameter

The minimum allowable diameter for a pin in double shear is

SPD =O0. 798 Fp(9.3 3)

The outside diameter of the bushing is D = Dp + 2te, where t. is the bushing
wall thickness.

Edge Distance Ratio (e/D)

The value of e/D that will minimize the combined lug and pin weight
is obtained from Figure (9-15)(a) for the case where lug bearing failure and
pin shear failure occur simultaneously. The lug isassumed not critical fn
net tension, and the bushing is assumed not critical in bearing.

9 - Z8
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D

e
2.0 oi ... I I -

Increase in weight of cross-hatched

I .. 8 area over optimum design weight M%)
1.6 [• 15(a)

1.4
elD ePin Critical

1.2 --Dege ~in Shear-

1.0 5-

0.68

0 3 4 5

PP Pin Material Density

PL Lug -Material Density

1.6
Double-Shear Joint,
Pin Critical in

e/D 1.4 0000- -e- Bending
• 0 (male lug is assumed

1.2~ -? -' - -- identical to female5 *lugs but is twice asS. . , = . 10 thick

0.6

.0 1 2 3 4 5
O IP Pin Material Density .

PL Lug Material Density

Figure 9-15. Edge Distance Ratio
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The curves in Figure 9-15 apply specifically to concentric lugs
(a = e - D/2, and w = 2e), but they can be used for reasonably similar lugs.

Allowable Loads

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from
Equations (9-3), (9-6), and- (9-9) in terms of the (unknown) lug thickness.
The lowest of these loads is critical.

Lug Thicknesses

The required male and female lug thicknesses are determined by
equating the applied load in each lug to the critical failure load for the lug.

Pin Bending

To prevent bending failure of the pin before lug or bushing failure
occurs in a uniformly loaded symmetrical double-shear joint, the required
pin diameter is. .

DýP Zi.55 P tl t +z2g) (9-34)SD = .... .'k bl P F t.P

where kb is the plastic bending coefficient for the pin, If the value of DP
P

from Equation (9-34) is greater than that from Equation (9-33),' the joint
must be redesigned becausethe pin is critical inbending.

Reduced Edge Distance-

If the allowable bushing load (Equation (9-9)) is less than the allow-
able lug load (Equation (9-3)), .,a reduced value of e, obtained by using the curve
shown in Figure 9-16 for optimum e/D, will give a lighter joint in which lug
bearing failure and bushing bearing failure will occiir -simultaneously. The
previously calculated pin diameter and lug thicknesses are unchanged.

Reduced Lug Width .

If the lug net-tension strength (Equation (9-6)) exceeds the bearing
strength (Equation (9-3)), the net-section width can be reduced by the ratio of
the bearing strength to the net-tension strength.

9. 14.1. 2 Axial.Lug Design for Pin Failure in the Bending Mode

Pin and Bushing Diameters (First Approximation)

A first approximation to the optimum pin diameter is shown in
Equation (9-35).
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DP= 1.273 ( F (tup + u
bP FtUP \Ft all F (935)

where Ft l1 :'is either Ft., or 1. 304 Ftl,1 1 whichever is smaller; and

Ft&l 2 is either Ft.x. or 1. 304 Ft y, 2 , whichever is smaller. This approxi-
mation becomes more accurate when there are no bushings and when there
is no gap between lugs.

The first approximation to the outside diameter of the bushing is
D = Dp + 2ts.

e

FbrB Allowable bushing ultimate
D bearing stress

D
Ftux= Lug material cross-grain

ultimate tensile -tress

2.5 ...

2.0
Z.OOF

1.5 -

e/D - -

0.5 -

0
0 0.5 1.0 1.5 2.0 2.5

Dp Fbru B/D Ftux

,Figure 9-16. Edge-Distance Ratio
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Edge Distance Rai6o(e/D)

The value of e/D that will minimize the combined lug and pin weight

is obtained from Figure (9-15)(b) for the case of symmetrical double-shear

joints in which lug bearing failure and pin bending failure occur simultaneously.

The lug is assumed not critical in tension and the bushing is assumed not

critical in bearing.

The curves apply specifically to concentric lugs ( a = e - D/2, and
w = Ze), but can be used for reasonably similar lugs.

Allowable Loads (First Approximation)

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from

Equations (9-3), (9-6), and (9-9), in terms of the (unknown) lug thickness.
The lowest of these loads is critical.

Lug Thicknesses (First Approximation)

The first approximation to-the required male aid female lug thick-
nesses are determined by equating the applied load'in each lug to the lowest
allowable load for the lug.

Pin Diameter (Second Approximation)

The second approximation to the pin diameter is obtained by sub-

stituting the first approximation lug thicknesses into Equation (9-34).

Final Pin and Bushing Diameters and Lug Thicknesses

The final optimum pin diameter is very closely approximated by

Dp ,Pt = I/3.Dp (Equation (9-35)) + 2/3 D, (Equation (9-34)) (9-36)

An average value, however, is generally sufficient. If the"final optimum
value is not a standard pin diamreter, choose the next larger standard pin

and bushing.

The final lug thicknesses corresponding to the standard pin and
bushing are.then determined. ...... ..

Pin Shear

The pin is checked for shear strength (Equation (9-33)).
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Reduced Edge Distance

If the bushing bearing strength (Equation (9-9)) is less than the lug
bearing strength (Equation (9-3)), a reduced value of e/D, obtained from the
curve in Figure 9-16, will give a lighter joint. The pin diameter and lug
thicknesses are unchanged.

"Reduced Lug Width

If the lug net-tension strength (Equation (9-6)) exceeds the lug bear-
ing strength (Equation (9-3)), the net-section width can be reduced by the ratio
of the bearing strength to the net-tension strength.

9. 14.1. 3 Example of Axially Loaded Lug Design

Using the same materials for the lug, bushing and pin as mentioned
in Section 9. 6, and assuming the same allowable static load of 37900 pounds,
a symmetrical double-shear joint will be designed to carry this load. A 0. 10-

inch gap is again assumed between the lugs. The bushing wall thickness is
assumed to b'e 1/8 inch.

The lug will firdt be assumed to be concentric (a = e - D/Z, and
w = Ze) but the final minimum weight design will not necessarily be concentric.

Pin Failure Mode (Equation (9-32))

The pin is first checked to determine whether it will be critical in
shear or bending, using Equation (9-32). Assuming D = Dp as a first approxi-
mation, determine Fbr all, and Fbr .112., using the graph in Figure 9-14 to
determine K.

KFtUXJ = 1.02 x 64000 = 65300 psi; 1.304 KFtyx1

= 1.304 x 1.02 x 40000 = 53100 psi;

1.304 FcYs = 1.304 x 60000 = 78200 psi; therefore, Fbr tal = 53100 psi
B1  -

KFtUX = 1. 02 x 77000 = 78500 psi; 1. 304 KFtyx2

- 1.304 x 1.02 x 6 6000 = 87900 psi

1. 304 F = 1.304 x 60000 = 78200 psi; therefore Fb, .11 = 78200 psi

Therefore,
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R = rx 82000 x ( 8 2 0 0 0 + 82000 )=3.4 (Equation (9-32))

1. 56 x 125000 '53100 78200

Therefore, the design procedure for pins critical in bending applies.

Pin and Bushing Diameters - First Approximation (Equation (9-35))

41.273 1 25000 125000 125000 -
Dp = -" (x70 + =0. 741 in.

1. 56 ( 312500 5000 +1577000

D = 0. 741 + 2 x 0. 125 = 0.991 in.

Edge Distance Ration (e/D)

The optimum value of e/D for both male and female lugs is 1. 24
(Figure 9-15 (b)). Therefore a/D is 0. 74 and w/D is 2.48 for a concentric

lug (therefore, w = 2. 46 in.).

Allowable Loads - Female Lugs and Bushings (First Approximation)

(a) Lug Bearing Strength (Equations (9-Za) and (9-36))

Pbr, = 1. 304 x 1.46 x 0. 74 x 40000 x 0. 991 tI = 55900 t lbs.

11

where K = 1.46 is obtained from Figure 9-2 for e'/D = 1.24

(b) Lug Net-Section Tension Strength (Equations (9-5) and (9-6b))

Kn = 0. 74 (obtained by interpolation from the graphs shown in

Figure 9-9-4) for

L- = 0. 403; F o. 625; - 0. 051
w Ftu Eeu

PnULl = 1. 304 x 40000 x (2. 46 - 0. 991) ti = 56600 t1 lbs.

(c) Bushing Bearing Strength (Equation (9-9))

= 1. 304 x 60000 x 0. 741 t - 58000 tI lbs.

Allowable Loads - Male Lug and Bushing (First Approximation)

(a) Lug Bearing Strength (Equations (9-1a) and (9-3a))
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P, -= 1.46 x 0.74 x 77000 x 0.991 t 2 = 82500 t 2 lbs.

(b) Lug Net-Section Tension Strength (Equations (9-4) and (9- 6 a))

K.2 = 0. 88 (obtained by interpolation from graphs shown in

Figure 9-4) for

D Ft_ Fu
= 0.403;-- = 0. 857; - = 0. 125

w2 Ft ECU

Pn-Lz= 0.88 x 77000 x (2. 46 - 0. 991) t2 = 99500 t2 lbs.

(c) Bushing Bearing Strength (Equation (9-9))
Puz = 1.304 x 60000 x 0. 741 t2 = 58000 t2 lbs.

Lug Thicknesses (First Approximation)

t= 37900 0. 3 3 9 in.; t 2 = 37900 = 0.654in.
2 x 55900 58000

Pin Diameter - Second Approximation (Equation (9-34))

DP 2. 55 x 37900 (0. 339 + 0.327 + 0. 200) = 0. 755 in.

1. 56 x I25000

D = 0.7555 + Z x0. 125 = 1.0005in.

Final Pin and Bushing Diameter (Equation (9-36))

0.741 0. 755 = 0. 748 in. (Use 0.750 inch pin)
2 + z

D = 0. 750 + 2 x 0. 125 = 1. 000 in.

Pin Shear (Equation (9-33))

DP = 0.798 37900 - 0. 541 in.
82000

Therefore, the pin is not critical in shear.

.Final Lug Thicknesses
t 1 0.339x 0.991 -0.336 in.

1. 000
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t2  0.654x 0.741 = 0 646 in.
0. 750

Reduced Edge Distance

The lug tension strength (E4uation (9-3)) exceeds the bushing
strength (Equation (9-9)) for the male lug. Therefore, a reduced
e/D can be obtained for the male lug shown in Figure 9-16.

DP Fbru 0. 750 1. 304 x 60000

D F -F 1.000 77000

Therefore, e/D = 0. 97 (male lug)

Reduced Lug Width

The lug net-section tension strength (Equation (9-6)) exceeds the
bearing strength (Equation (9-3)) for both the male and female lugs.
Therefore, the widths can be reduced as follows:

w 1.00 + (Z. 48 - 1.00) (55900t 1  2. 46 in.
56600 t,

w2  1.00 + (2.48 - 1. 00) (2500 t) 2.Z3 in.
z 99500t 2

Final Dimensions

Dp= 0.750 in.; D 1.000 in.

tI= 0.336 in.; el = 1 .Z4in.; wI = 2.46 in.

tZ =0.646 in.; e2 = 0.97 in.; w2 = Z.23 in.

Since w2 is larger than Ze 2 , the final male lug is not concentric.

9. 15 Analysis of Lugs with Less Than 5 PCT Elongation

The procedures given through Section 9-14 for determining the static
strength of lugs apply to lugs made from materials which have ultimate
elongations, cu, of at least 5% in all directions in the plane of the lug. This
section describes procedures for calculating reductions in strength for lugs
made from materials which do not meet the elongation requirement. In
addition to using these procedures, special consideration must be given to
possible further loss in strength resulting from material defects when the
short transverse gain direction of the lug material is in the plane of the lug.
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The analysis procedures for lugs made from materials without defects
but with less than 5% elongation are as follows:

9.15.1 Bearing Strength of Axially Loaded Lugs with Less Than 5
Elongation

(.1) Determine Fty/Ft, and eY/CU, using values of Ft., Ft, C., and

e. that correspond to the minimum value of E, in the pln-:, of
the lug.

(Z) Determine the value of B, the ductility factor, from the i:'raph
shown in Figure 9-17.

(3) Determine a second value of B (denoted by B. 05) for the stme
values of Ft, Ft., and E:, as before, but with E, = 0. 0.

(4) Multiply the bearing stress and bearing load allowabl.s, iven
by Equations (9-1.a) through (9-3b) by B/B. 05 to obtain the
corrected allowables.

1.0

S•-_. •Fty/ Ftu

S..9

a,0.8 0o.8

0.7

0.6
0 0.1 0.2 0.3 G.4 0.5 96 0.7 0.8 0.9 1.9

Figure 9-17. Ductility Factor

9.15.2 Net-Section Strength of Axially Loaded Lugs with Less Than

5 PCT Elongation

The procedure for determining net-section allowables is Cm same
for all values of %. The graphs in Figure 9-4 are used to obtain a v•ia3e of
K. which is susbstituted in Equations (9-4) and (9-5). If the grain d~,:-inof
the material is known, the values of Ff 7 , Ft., and Cu used in entering the graphs

should correspond to the grain direction parallel to the load. Otherwise, use
values corresponding to the minimum value of e. in the plane of the lug.
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9.15.3 Strength of Lug Tangs in Axially Loaded Lugs with Less Than

5 PCT Elongation

The plastic bending coefficient for a rectangular cross section can
be approximated by kb = 1. 5B, where B is obtained from Figure 9-17, in
which y and u are the yield and ultimate strains of the lug tang material in
the direction of loading. The maximum allowable value of kb for a rec-
tangle is 1.4.

9.15.4 Lug-Bushing Strength in Axially-Loaded Single-Shear Joint
with Less Than 5 PCT Elongation

The values of kr* and kL for rectangular cross sections are
approximated by 1. 5B, where B is determined from the graph as described
in Figure 9-17. The maximum allowable values of kb and k L are 1.4.

9. 15. 5 Bearing Strength of Transversely Loaded Lugs with Less Than 5%

Elongation (Equations (9-28) through (9-30b) in Section 9. 7. 1

The same procedure as that for the bearing strength of axially
loaded lugs is used.

(1) Determine B and B 0 5 as described for axially loaded lugs,
where B corresponds to the minimum value of eu in the
plane of the lug.

(2) Multiply the bearing stress 'and bearing load allowables
given by Equations (9-28) through (9-30b) by B/Bo. 5 to
obtain the corrected allowables.

9. 16 Stresses Due to Press Fit Bushings

Pressure between a lug and bushing assembly having negative clearance
can be determined from consideration of the radial displacements. After
assembly, the increase in inner radius of the ring (lug) plus the decrease in
outer radius of the bushing equals the difference between the radii of the bungh--
ing and ring before assembly:

6 = Uring - ubushing (9-36)

whe re

6 = Difference between outer radius of bushing and inner radius

of the ring.

u Radial displacement, positive away from the axis of ring or bushing.
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Radial displacement at the inner surface of a ring subjected to internal

pressure p is

S[C 2 +D 2  
(937)U E " + Lring (ring C 2  D2

Radial displacement at the outer surface of a bushing subjected to

external. pressure p is

U ." (9-38)

Ebh B2 - 2  bush'.J

where

A = Inner radius of bushing D. = Inner radius of ring (lug)

B = Outer radius of bushing E = Modulus of elasticity

C = Outer radius of ring (lug) pI = Poisson's ratio

Substitute Equations (9-37) and (9-38) into Equation (9-36) and solve for p;

6

D ( 2 +D " "]b " B BZ + A2. " "'

Eig +Z D2  ring) Ebush. BZAz bu sh.,S..ring\ CZ - DZ. •Bbuh

Maximum radial and tangential stresses for a ring subjected to internal

pressure occur at the inner surface of the ring (lug).

Fr,=p' Ft = p Cz+ Dz

,~~Z 2

Positive sign indicates tension. The maximum shear stress at this

point is
Ft - Fr

The maximum radial stress for a bushing subjected to external pressure
occurs, at the outer surface of the bushing is

The maximum tangential stress for a bushing subjected to external pres-

sure occurs at the inner surface of the bushing is
a2

Ft " B 2 
A 2
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The allowable press fit stress may be based on:

(1) Stress Corrosion. The maximum allowable press fit stress in
magnesium alloys should not exceed 8000 psi. For all aluminum
alloys the maximum press fit stress should not exceed 0. 50 Fty.

(2) Static Fatigue. Static fatigue is the brittle fracture of metals
under sustained loading, and in steel may result from several
different phenomena, the most familiar of which is hydrogen
embrittlement. Steel parts heat treated above 200 ksi, which
by nature of their function or other considerations are exposed
to hydrogen embrittlement, should be designed to an allowable
press fit stress of 25% 0Fu.

(3) Ultimate Strength. Ultimate strength cannot be exceeded, but is
not usually critical in a press fit application.

(4) Fatigue Life. The hoop tension stresses resulting from the press
fit of a bushing in a lug will reduce the stress range for oscillating
loads, thereby improving fatigue life.

The presence of hard brittle coatings in holes that contain a press fit
bushing or bearing can cause premature failure by cracking of the coating
or by high press fit stresses caused by build-up of coating. Therefore,
Hardcoat or HAE coatings should not be used in holes that will subsequently
contain a press fit bushing or bearing.

Figures 9-18 and 9-19 permit determining the tangential stress, FT,
for bushings pressed into aluminum rings. Figure 9-18 presents data for
general steel bushings, and Figure 9-19 presents data for the NAS 75 class
bushings. Figure 9-Z0 gives limits for maximum interference fits for steel
bushings in magnesium alloy rings.

9. 17 Lug Fatigue Analysis

A method for determining the fatigue strength of 2024-T3 and 7075-T6
aluminum alloy lugs under axial loading ispresented.

Figures 9-21 and 9-22 show the lug and the range of lug geometries
covered by the fatigue strength prediction method. Fatigue lives for lugs
having dimensional ratios falling outside the region shown should be corrobo-
rated by tests.

In this method the important fatigue parameters are k 1 , kZ, and k 3
(see Figure 9-23).
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Figure 9-18. Tangential Stresses for Pressed Steel Bushings

in Aluminum Rings
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Figure 9-19. Tangential Stresses for Pressed NAS 75 Bushings
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The curves are based upon a maximum allowable interference tangential
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Figure 9-20. Maximum Interference Fits of Steel Bushings in
Magnesium Alloy Rings
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Figure 9-21. Lug Geometry for Fatigue Analysis

2.0

1.5

1.0

.3.5 -

0 0.5 1.0 1.5 Z.0 2.5

C/D

Figure 9-22. Region of Lug Geometries Covered by Fatigue
Prediction Method
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4.0

kI is plotted vs a/C

k2 is plotted vs D/C--

k 3 is plotted vs D

3.5--

3.0

2. 5

2. 5 --0 __-

L 
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k3 (2024-T3)
0. 5

0 1.0 2.0 3.0 4.0

a/C, D/C, D

Figure 9-23. Parameters To Be Used in Figure 9-24 for Lug Fatigue Analysis
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To find the allowable life knowing the applied stresses and lug dimen-
sions, or to find the allowable stresses knowing the life, R value (R =f,,,/f..)
and, lug dimensions, use the following procedure:

(1) Enter Figure 9-22 to check that the lug dimensional ratios fall
within the region covered by the method. Enter Figure 9-23
and read k1 , k2 , and k 3 ; calculate the product klk 2 k 3.

(2) Calculate the allowable net-tension static stress for the lug, F nUL'
according to the method described in Section 9. 3. 2.

(3) Determine the value 0. 4 Fn . This is the alternating stress

corresponding to a maximum stress value of 0. 8 F nU when
f.In = 0. 0. 8 FnU' was chosen as an average yield stress value

for 2024 and 7075 aluminum alloy lugs.

(4) Using the value 0. 4 F nU as an alternating stress, draw a straight
line between the intersection of this value and the appropriate
klk 2 k 3 curve on Figures 9-24 or 9-25, and the point 0. 5 F"L at 1
cycle. This extends the klk 2 k 3 curve to cover the entire life range
to static failure.

(5) Enter Figure 9-24 or 9-25 (lug fatigue curves for the case where
R = 0) with klk 2 k 3 . For values of life, N = 103, 3 x 103, 104,
etc. , or any other convenient values, determine the corresponding
values of f., the stress amplitude causing fatigue failure when R = 0.

(6) Plot the values of f. found in Step 5 along the R = 0 line in a Goodman
diagram such as shown in Figure 9-26 (f. = f. when R = 0). The
Goodman diagram shown in Figure 9-27 applies to a particular
7075-T6 lug for which klk 2 k 3 = 1. 32 (see example problem 1),
but is typical of all such diagrams.

(7) Plot the allowable net-tension static stress found in Step 2 as
f. at the point (f,, 0) of the Goodman diagram (f. = f.,L when fa = 0).
For the case considered in Figure 9-26, this point is plotted as
(f,, = 70,000 psi, fa = 0).

(8) Connect the point plotted in Step 7 with each of the points plotted
in Step 6 by straight lines. These are the constant life lines for
the particular lug being analyzed. The Goodman diagram is now
complete and may be used to determine a life for any given applied
stresses, or to determine allowable stresses knowing the life and
R value.
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9. 18 txample Problem of Lug Fatigue Analysis

Given a concentric 7075-T6 aluminum lug as shown in Figure 9-21, with
the following dimensions: a = 0. 344 in, c = 0. 3444 in, and D = 0. 437 in. If the
lug is subjected to a cycle axial load such that the maximum net-section stress
is 27, 000 psi and the minimum net section stress is 18, 470 psi, find the fatigue
life.

From the lug dimensions,

a/c = 1.0 cID = 0. 787 (Dlc= 1.V7)

(1) Figure 9-22 indicates that the lug may be analyzed using this method.
From Figure 9-23,

kI = 1.0; k2 = 1.33; k 3 = 0.99; klkZk 3 = 1. 32

(2) Calculate the allowable net-section tensile ultimate stress, FI ,

for Equation (9-4) in Section 9. 3. 2. For the given lug, F,, =

70, 000 psi. L

(3) 0.4 FL =0.4 x 70, 000 = 28, 000 psi..
iL

(4) Draw a light pencil line on Figure 9-24 from the point. (f = 28, 000
psi on klk•k 3 = 1. 32) to the point (fL = 35, 000, N = 1 cycle) (This
is illustrated, for clarity, on Figure 9-27).

(5) Efter Figure 9-24 and read values of f. for various numbers of
life cycles, using the line klk 2 k 3 = 1. 32. These numbers are as
follows:

N i02 103 3 x 103 104 3 x 104  10 5  106 107

f. 30KSI 24. 5 18.8 13. 5 8.88 5. 70 Z. 34 1. 30

(6) Plot the values of f. along the R = 0 line of the Goodman diagram.
(Refer to Figure 9-26. )

(7) Plot FL = 70,000 psi, as f, at the point (f., 0) of the Goodman diagram.

(Refer to Figure 9-26.

(8) Connect the points plotted in Step 6 with the point plotted in Step 7
by straight lines. The Goodman diagram is now complete.
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(9) Enter the Goodman diagram with values of fa = 27, 700 - 18, 470
2

4, 615 psi and f, = 27,700 + 18,=470 23, 085 psi, and read the
2

fatigue life, N = 8 x 104 cycles, by interpolation (test results show
N = 8.6 x 104 cycles).

If the known quantities are life and R value, e. g. , N = 10 4 cycles and
R = 0, the allowable stresses can be obtained by using the same Goodman
diagram. Enter the completed Goodman diagram at R = 0 and N = 10 4 cycles

Sand read the amplitude and mean stresses (in this case f, = fm = 13, 500 psi).

Only if the lug dimensions are changed, must a new Goodman diagram
be drawn.
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10. TRANSMISSION SHAFTING ANALYSIS

10. 1 Introduction to Transmission Shaft Analysis

This section presents design methods for mechanical shafting. In this
discussion, a shaft is defined as a rotating member, usually circular, which
is used to transmit power. Although normal and shear stresses due to tor-
sion and bending are the usual design case, axial loading may also he present
and contribute to both normal and shear stresses. The design case must
consider combined stresses.

The general design of shafts will be discussed with emphasis on cir-
cular sections, either solid or hollow.

10. 2 Nomenclature Used in Transmission Shafting Analysis

The symbols used in this section are shown in Table 10-1.

TABLE 10-1

List of Symbols Used in Shaft Analysis

C numerical constants n revolutions per minute
D, d diameter r radius
E modulus of elasticity rpm revolutions per minute
fpm feet per minute f normal stress
F force fe endurance limit stress,
G modulus of elasticity in shear reversed bending
hp horsepower f, shearing stress
I moment of inertia f~p yield point stress, tension
J polar moment of inertia SAE Society of Automotive Engineers
k radius of gyration T torque
K stress concentration factor, V velocity, feet per minute

normal stress y deflection
Kt stress concentration factor, a. column factor

shear stress * .(phi) angular deformation
Slength W (omega) angular velocity, -

M bending moment radians per second

10. 3 Loadings on Circular Transmission Shafting

Transmission shafting is loaded by belts, chains, and gears which both
receive power from prime movers and distribute it to accomplish desired
results. Differences in the amount of power either added or subtract'ed at
various points on the shaft result in torsion of the shaft. The driving forces
and the driven resistances result in bending of the shaft and, for helical
gearing, an axial loading is also produced. These loadings generate both
normal and shear stresses in the shaft.
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The torsion loading produces a maximum shear stress at the shaft
surface calculated from

STr (10-1)

where the torque transmitted through the section is determined from the
horsepower relation:

T = hp (63, 000 (10-2)
n

The development of these relations can be found in standard texts.

The bending force produced by gears or chains is equal to the net
driving force given by

F -= T (10-3)
r

where the radius of the gear or sprocket is used. Bending forces from
belts must be obtained from the sum of the forces exerted on each side of
the pulley. The usual method is to use the following relation:

F1 + F2 = C(F 1 - F 2 ) (10-4)

where F 1 is the tension side force and F 2 is the slack side force. The
quantity (F 1 - F 2 ) is the net obtained from the horsepower equation. For
flat belts, the value of C is between 2 and 3, depending upon conditions of
installation. For V-belts, use C = 1. 5.

The axial load produced from gearing must be obtained from consid-
erations of the type of gear-tooth design used. It is beyond the scope of
this section to elaborate on gear loadings. Suffice it to say that they must
be considered.

The bending forces create normal stresses in the shaft given by

f Mr
1 (10-5)

The axial forces create a normal stress

f F (10-6)
A

where a is the factor changing F/A into an equivalent column stress where
F is compression and there is an appreciable length of unsuppo-rted shaft.
The recommended values of ax are given in the following relation:
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(for t,/k < 115) = 1
1-0. 0044 (f/k) (10-7)

for t/k > 115) L fy (Uk) 2  (10-8)
C TT2 E

C = 1.0 is used for hinged ends and C = 2. 25 is used for fixed ends. For
tensile axial loads and for short lengths in compression, a, = 1.0 is used.

10. 4 Analysis of Combined Stresses in Transmission Shafting

The recommended method for design of ductile materials subjected
to combined normal and shear stresses is that employing the maximum
shear stress theory. This theory states that inelastic action begins when
the shear stress equals the shearing limit of the mate-rial. The maximum
shear stress at any section is given as follows:

f. f, _ + ( f (10-9)
amax L

where f, and f are obtained from the relations given in Section 10. 3. The
value to be used for the design maximum shear stress, f. , is discussed
in the next section. Max

10. 5 Design Stresses and Load Variations for Transmission Shafting

The design stress is obtained from the yield strength of the material
to be used. However, it must be modified to account for various loading
anomalies. The "Code of Design of Transmission Shafting," which has
been published by the ASME as code Bl7c, 1927, gives the 'basic factors
to be used in determining the design stresses, either normal or shear.
According to this code, the basic design stress shall be:

f, = 0.3 (tensile yield strength)

Shear Design Stress or

f, = 0. 18 (tensile ultimate strength)

f = 0. 6 (tensile yield strength)

Normal Design Stress or

f = 0. 36 (tensile ultimate strength)
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The smaller of the two computed stresses is to be used. For combined
stresses, as discussed in Section 10. 4, the shear design stress is used. The
code also applies a factor of 0. 75 to the calculated design stress if the section
being considered includes a keyway. It is noted that this is equivalent to a
stress concentration factor of 1. 33. Table 10-2 should also be consulted prior
to making allowance for keyways. Although the code does not mention stress
concentration factors further, they must be considered in any design.

Figures 10-1 through 10-5 give stress concentration factors to be applied
to the design stress for various types of section discontinuities.

S2.6 ...
2.4 d

V Bending,. f. 32M/ Trd3

Z . 0

D/d 1.8

SL /d =3
0)16___

61.4

1.2 __ __

1.0
0. 1 r/d 0. 2 0.3

Figure 10-1. Stress Concentration Factor for Solid Shaft with Fillet
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2.4 D

.2.2
STension, f. 4F./TrdZ

2.0
C 1.8U

o 1.6

1.4 

......

1.2
1. 0 1... ..

0. 1 r/d 0.2 0. 3

2. .6r

2.4 D d

•2.2

Torsion, fo 16T/rrd 3 (shear)

U 2 . 0

U)1

0o 1.6
.4-Dd

1.4

1.2. d=.

1.0 
Dd10

0.1 r/d 0.2 0.3

Figure 10-1. Stress Concentration Factor for'Solid Shaft with Fillet (concluded)

10 - 5

/



3.0

2. 8B

z. 6

2. 4 __ ___ _ _ __ _ _ __ _

U) Bending (This Plane)
2.2 Me I _TD3 dD-

4)

o 2.0

i.E

1.6

1.4 -

0 0.1 0.2 0.3
d/D

3.0

2. .8B-

2.6

r4 2.4

o 2.2

CU Torsion-Kt at B, c D/Z

o To 2.0 fo - (Shear)-

16 6
1.8

1.4 __-_
00!.1 0. z 0.3

d/D

Figure 10-2. Stress Concentration Factor for Solid Shaft with Radial Hole
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U 1.8
$ý ý/d =2 or more

° 1.6

1.4

1.2

1.0 0.1 0.2 0.3

r/d

2.7

2.6 r\

2.4

2.2 1
Tension, fo 4F/*rrd

2. 0
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1.8

0162 _____ ____

0 0.1 0.'2 0. 3
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Figure 10-3. Stress Concentration Factor for Solid Shaft with Groove
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2. 4 __ _ _
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0 1.86

1.4D/ 1._ __ 0___1

1.2

0 0. 1 0.2 0. 3

rid
Figure 10-3. Stress Concentration Factor for Solid Shaft with Groove (concluded)

2.2 0. 5

hit

1.8 12.0

1.6

1.4 -

r h

1.2 P

012 34

h/r
Note: The maximum stress occurs in the fillet close to the

junction of the fillet with the small diameter.

Figure 10-4. Stress. Concentration Factor for Hollow Shaft with Fillet
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0
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K/
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0.1 0.2 0.3 0.4
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a. Shaft in Tension

8-16KT Do

SDI Do TT (D 0
4 .D 1

4 ) 0.9

d0. 8

6 . o C r0 . 6 6

K ___0.4

0

0 0.1 0.2 0.3 0.4
d/DD

b. Shaft in Torsion

Figure 10-5. Stress Concentration Factor for Hollow Shaft with Radial Hole
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0.9CM i D D1 /D0
66.-4z". 0

4.0

K

3.01 N

• (DO04 -D14)

0 0.1 0.2 0.1 0.4

d/D
0

c. Shaft in Bendings
Figure 10-5. Stress Concentration Factor for Hollow Shaft with Radial Hole (concluded)

Tables 10-2 and 10-3 give stress concentration factors to be applied to
keyways and several screw thread types. These are applied only if the section
being analyzed includes either threads or a keyway.

TABLE 10-2

Values of Stress Concentration Factor for Keyways, K
Annealed Hardened

Type of Keyway Bending Torsion Bending Torsion

Profile 1.6 1.3 2.0 1.6
Sled-Runner 1.3 1.3 1.6 1.6

TABLE 10-3

Values of Stress Concentration Factor for Screw Threads, K

Annealed Hardened
Type of Thread Rolled Cut Rolled Cut

American National (square) 2.2 2.8 3.0 3.8
Whitworth, Unified St'd. 1.4 1.8 2.6 3.3
Dordelet 1.8 2.3 2.6 3.3
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The code also recommends the application of a shock and fatigue factor
to the computed torsional moment or bending moment. This factor accounts
for the severity of the loading during stress reversals caused by the revo-
lution of the shaft. Table 10-4 gives these factors for rotating shafts.

TABLE 10-4

Values of Shock and Fatigue Factors for Rotating Shafts
(from ASME Code)

K. K.

Nature of Loading (bending) (torsion)

Gradually Applied or Steady 1. 5 1.0
Suddenly Applied, minor 1.5 to 2. 0 1.0 to 1.5
Suddenly Applied, heavy Z. 0 to 3. 0 1. 5 to 3.0

10. 6 Design Procedure for Circular Transmission Shafting

The recommended design procedure for circular shafts is as follows:

1) Define all loads on the shaft.
2) Determine the maximum torque and its location.
3) Determine the maximum bending moment and its location.
4) Determine the design stress.
5) Determine the shaft diameter at the critical diameter.
6) Check for shaft deflections.

A sample problem will illustrate the application of the above principles
and the previous relations.

I0.6. 1 Sample Analysis of Circular Transmission Shafting

The loaded shaft illustrated in Figure 10-6 receives 20 hp at 300 rpm
on pully B at a 450 angle from below. Gear C delivers 8 hp horizontally to
the right, and gear E delivers 12 hp downward to the left at 30°. The shafting
is to be cold-drawn C1035 with minimum values of tensile yield strength,
iY = 72, 000 psi, and of tensile ultimate strength, f, = 90, 000 psi.
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These applied loads are resolved into their vertical and hori-
zontal components and the bearing reactions calculated. These reactions
are found by summing moments and forces in the two planes. From these
computations, the shear diagram shown in Figure 10-7 were constructed.

A, =484 E,= 364

A 02 +eI aA- 18'-1 lo"01 0"ý At..... B D tE

1B,= 495 C =l187 D,,=166'T 1"

By= 495 Dy= 210

A BC D Er

Shear Diagramw" Shear Diagram

Horizontal Plane Vertical Plane

Figure 10-7. Drawing Illustrating Constructi6n of Shear Diagrams

The maximum bending moment is located where the shear diagram
crosses the axis. More complex loadings have several crossing points.
Each should be investigated to find the maximum. For the present case,
the maximum bending moment in the horizontal plane is

max = (12) (484) = 5810 in. -lbs (10-16)

and in the vertical plane it is

M = (12) (419) = 5030 in. -lbs (10-17)

Since both of these maximums are at the same place, at pulley B,
this is the point of maximum moment for the shaft. It is given by

MB = (MB.)2 + (MaY) 2 - (10-18)

S= E(5810)z + (5030)fl (10-19)

MB = 7685 in. -lbs (10-20)
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It is observed that if the location of the maximum moments is
not the same in each plane, both locations must be checked to find the
maximum. It is also observed that for this example the maximum torque
is also located at the same section.

The design stress is now determined. Based on the tensile yield
strength, the shearing stress is

fs = (0.3) (72,000) = 21,600 psi (10-21)

and based on tensile ultimate strength, it is

f 3dein = (0. 18) (90, 000) = 16, 200 psi. (10-22)

Our design will be based on the smaller. An allowance for the
keyway is now made. According to the code, 75% of the above stress is used.
Thus,

f 9dsign = (0. 75) (16, 200) = 12, 150 psi (10-23)

The shock and vibration factors to be applied to the torque and
moments for a gradually applied loading are K, = 1.0 and K. = 1. 5; these
are obtained from Table 10-4.

It is noted that if the section includes any other type of stress
raiser such as a step in the shaft, a radial hole, or a groove, the appropriate
stress concentration factors are to be applied to the design stress.

As this is a case of combined stress, the principle of maximum
shear stress will be used for the design:

fsa • [fs 2 f ._ ] (10-24)

design2

The shear stress f. is due to the.ýorque of 4200 in. -lbs and the
normal stress f is due to the bending moment of 7685 in. -lbs.

Thus, based on the use of a solid circular shaft,

K, Tr 16 K, T (16) (1.0) (4200) (10-25)

f jTD 3  - D 3

KM M, 32 KMM (32) (1. 5) (7685)
X I TTD

3  
T lD 3  (10-26)

Substituting into Equation (10-24) the above quantities gives
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12, 150 {~(16) (1. 0) (4200) 12 + ~(32) (1. 5) (7685)(1-7t. rD 3 2n 3 (10-27)TrD3 ZTTD 3

Solving for D3 gives

D 3  16 .) 2

12. 15 ((4.2) + [(1.5) (7.685)] 12 (10-28)

and

D = 1. 726 in. (10-29)

The closest size commercial shafting is 1-15/16 in. It is noted
that commercial power transmission shafting is available in the following
sizes:

15 3 1-7 11, 15 3 7 15 15 7
16 16 16 16 16 16 16 16 16 16 16

4 15 5 7_, 5 L5, 6 1_, 7, 71-, 8
16 16 16 2 2

The use of standard sizes facilitates the selection of bearings,
collars, couplings, and other hardware.

Machinery shafting, those used integrally in a machine, is avail-
able in the following sizes:

By 1/16 in. incIrements •1/2 to 1 in. , tolerance of -0. 002 in.
By 16in. inreme 1-1/6 to 2 in. , tolerance of -0.003 in.
in this range 2-1/6 to 2-1/2 in. , tolerance of -0. 004 in.

By 1/8 in. increments 2-5/8 to 4 in. , tolerance of -0. 004 in.
By 1/4 in. increments 4-1/4 to 6 in., tolerance of -0. 005 in.
By 1/4 in. increments 6-1/4 to 8 in., tolerance of -0. 006 in.

Returning to our example, the diameter of the shaft determined is
based on strength considerations alone. As deflections are also a prime
consideration, both angular and transverse deflections should be checked.

The torsional deflection of a shaft is given by

T- (10-30)
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where t is the length of shaft between the point of application of the torque
and the section being considered.

Although the example given was statically determinate, many situa-
tions encountered in practice are indeterminate. For these, the location of
the maximum stress must be determined by methods of analysis for contin-
uous beams: the area-moment method, the three-moment method, the method
of superposition, and the moment-distribution method. The exposition of
these methods is covered in the section of this manual devoted to beam analysis.

10. 6.2 General Design Equation for Circular Transmission Shafting

A general design equation for circular shafts, both solid and hollow,
can be developed on the basis of the recommended procedures. It is

D 3 - 6 K T2 + KM + 2 (10-31)
f, TT (I -B 4) 8

where B = DID and D, is the inside diameter of the hollow shaft. This equa-
tion requires several trials for solution because of the inclusion of the axial
load F.

It is also pointed out that in the design of large-size shafting, the
weight of the shaft and all pulleys and gears should be included in the design
calculations.
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1I. BEARING STRESSES

11. 1 Introduction to Bearing Stresses

The stresses developed when two elastic bodies are forced together are
term-ed bearing stresses. They are localized on the surface of the material
and may be very high due to the small areas in contact. The design informa-
tion given in this section assumes either static loading or low velocity loading.
The application to ball and roller antifriction bearings is not covered.

A brief discussion of bearing stresses in riveted joints is followed by a
presentation of theoretically derived equations for the bearing stresses between
various shapes in contact. An empirical treatment for the determination of
allowable loads is also presented.

It is noted here that the design of ball and roller bearings is a very
specialized area; however, their selections for various applications can be
made based on data published by the various manufacturers.

11.2 Nomenclature for Bearing Stresses

a = 1/2 the major diameter of an ellipse
c = 1/2 the minor diameter of an ellipse
D = diameter

E = modulus of elasticity
Fbr = allowable bearing load
FCP = proportional limit in compression
Fey = compressive yield stress
fbr = calculated bearing stress
fbre = calculated compressive bearing stress
fbre = calculated shear bearing stress
fbrt calculated tensile bearing stress

K 8I ElE 2  for general case of two
3 E 2 (1-UL1

2 ) + El (1-p 2 2 )

bodies in contact

Ki,K-, iK3  = coefficients in Table 11-1
P = axial load
PR = allowable axial load

S• = minimum radius of curvature
R- = maximum radius of curvature
r = radius
r = cylindrical coordinate
t = thickness
t = width of rectangular area
w = load per length (lb/in)
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wit = allowable load 'per length (lb/in)
x,y = rectangular coordinates

4
Y for general case of two bodies

1 + 1 + 1 + 1 in contact

= deflection

4 TT ---• R' R2 R'

R R 1  RZ. R. co RZ A

for general case of two bodies in contact

e= cylindrical coordinate

= Poisson's ratio
cp = angle shown in diagram for general case of two bodies in

contact in Table 11-1

11. 3 Bearing Stresses in Riveted Connections

Figure 11-1 shows a riveted connection between two plates.

P P

P

P

Figure 11-1. Riveted Connection

Excessive bearing stresses result in yielding of the plate, the rivet, or both.
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The intensity of the bearing stress between the rivet and the hole is not
constant but varies from zero at the edges to a maximum value directly in

back of the rivet. The difficulty caused by considering a variable stress
distribution may be avoided by the common practice of assuming the bearing
stress to be uniformly distributed over the projected area of the rivet hole.

The bearing stress is thus,
Pb (11-1)
Dt

The allowable load is

Pa = Fb, Dt (11-2)

where Fbr is the allowable bearing stress.

11.4 Sample Problem - Bearing Stresses in Riveted Connections

Given: The riveted plate in Figure 11-2

Find: The bearing stress between the rivets and the plate.

Solution: The load per rivet is 20,000/4 = 5,000 lb. From Equation(ll-l),

f P (5,000 =40, 000 psi
Dt (0. 5)(0. 25)

20000 1b. (D 20000 1b.

O.52

Figure ll-Z. Riveted Plate

11. 5 Elastic Stresses and Deformation of Various Shapes in Contact

Table 11-1 treats the elastic stress and deformations produped by pres-

sure between bodies of various forms. The first column of this table gives
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the form of the bodies and the dimensions that describe them.. The second
column indicates the shape and size of the surface of contact between the two
bodies as well as the combined deformation of the bodies, 6. The maximum
compressive, tensile, and shear bending stresses (fbr', f~br and fb,,) are given
in the third column of Table 11-1. The maximum compressive and tensile
bearing stresses occur at the center of the surface of contact and at the edge
of the surface of contact, respectively, and the maximum shear bearing stress
occurs in the interiors of the compressed parts. The equations in Table 11-1
are based on the assumption that the length of the cylinder and the dimensions
of the plate are infinite. For a very short cylinder or for a plate having a
width of less than five or six times that of the contact area or a thickness of
less than five or six times the depth to the point of maximum shear stress,

the actual stresses may vary considerably from those given by the equation
in Table 11-1.

Because of th.e very small area involved in what initially approximates
a point or line contact, the stresses obtained from the equations in Table 11-1
are high even for light loads. However, since the stress is highly localized
and triaxial, the stress intensity may be very high (above the yield point) with-
out producing-.pparent damage. Since this is the case and the formulas in

Table 11-1 hold only in the elastic range, the empirical formulas for allowable
loads given in Section 11. 7 are most useful for practical design. However, the
formulas in Table 11-1 are useful as a guide to design, especially when empiri-

cal formulas are not available for a given case.

11.6 Sample Problem - Elastic Stress and Deformation of Cylinder on
a Cylinder

Given: The cylinders shown in Figure 11-3.

Find: The contact surface, total deflection, and maximum compressive
stress.

w = 30 lb/in.

Steel, A151 4130

EI=E 2  E = 30x10 6 psi

gl = p = 0.3A. 1.0

Fcy 70, 000 psi

Figure ll-ý. Cylinders in Contact
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Solution: From Table 11-1, the surface of contact between two cylinders

with their axes parallel is a rectangular strip of width, b, given by

b = 1. 6 VDw [, 1 + I J

In this case,

I = 6 f2 30(1)(0. F) -0.3 + 1-0.3
+ ~ x 0. 32 3x 1061. 5) L . 30x 106 +30- 1-06 32 0.00125 in.

The combined deflection of the cylinders is given by

2(l- 2 )w I2 log, D 1 + log, ZD2

bT 3 b

if E1 = E2 E and p1 = pZ = 0. 3, which is true for the given cylinders.

Thus, in this case,

6 2(1-0. 3Z)(30) +z 2(1) Z(0. 5) ) 91 6

rT (30x10 6 ) -3 0.001Z5 0.00125

From the third column of Table 11-1, the maximum compressive bearing stress'

between two parallel cylinders is

w(D1 + D2 )

D 1 D2
Max fr, 0. 798 2" 2-- + i• 2

In this case,

S 30(1+0.5)

Max fbr = 0. 798 3(1)(0.5) 30, 800 psi
1-0.3 + 1-•0. 2

f30 .x -106 30 x 106

Thus, the cylinders will not yield and since Max fbre <F6 .. the equations

in Table II-I are valid.

11- 5
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11. 7 Empirical Treatment of Allowable Bearing Loads

Many tests have been made to determine the bearing strength of spheres
and .cylinders. However, it is difficult to interpret the results due to the lack
of any satisfactory criterion for failure. Some permanent deformation is shown
to be produced even for very small loads. This deformation increases progres-
sively with increasing load, but there is no sharp break in the load-set curve.
Thus, it is necessary to select some arbitrary criterion for the amount of
plastic yielding "that may be considered to represent failure. The circumstances
of use determine the degree of permanent deflection necessary to make a part
unfit for service.

The following sections present empirical formulas for the maximum
allowable bearing loads for various shapes in contact.

11. 7. 1 Empirical Formulas for Allowable Bearing Loads of a Cylinder
on a Flat Plate

Figure 11-4 shows a cylinder on a flat plate under a loading of w lb.
per linear inch.

W

+ )
Figure 11-4. Cylinder on Flat Plate

Table 11-2 gives empirical formulas for the allowable load (w,) for various
diameters of steel cylinders on flat steel plates. It should be noted that there
is little difference between failure under static conditions and that under slow
rolling conditions if slipping does not occur. If slipping occurs, tests are
necessary to obtain reliable information.

Although the allowable load (w.) is dependent upon length for short
cylinders, it is independent of length if the cylinders are longer than 6 inches.
The last equation in Table 11-2 is based upon an elongation of 0. 001 in. /in, in
the bearing plate.

11 - 12



- __TABLE 11-2

Empirical Formulas for a Steel Cylinder
on a Flat Steel Plate

Diameter Loading Condition Allowable Load (lb/in)

Fc - 13000
D< 25 in. static wa = (6cy )0 00 D

25 < D < 125 in. static Wa = - 13000) ) 3000v'- -
20000

116 < D < 476 in. slow rolling. wa = (18000+120 D) (cy- 13000
23000

11. 7.2 Empirical Formula for Allowable Bearing -Ldad of- Steel-Spheres

in Contact

Figure 11-5 shows two similar spheres in contact.

P

D

p

Figur4 11-5. Similar Spheres in Contact

The crushing load P is given by

P = 1960 (8D)I 175

The test sphere used to derive this formula was steel of hardness 64 to 66

Rockwell C.

-" IReproduced from
11-13 "'-be available copy. . -
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