

Status and Prospects for the EXO-200 and nEXO Experiments

Liang Yang

University of Illinois at Urbana-Champaign

On behalf of the EXO-200 and nEXO Collaborations

Neutrino'16, Imperial College, London

July 8, 2016

Use Liquid Xenon Time Projection Chambers (TPC) to Search for 0vββ Decay

- Xe is used both as the source and detection medium.
- Simultaneous collection of both ionization and scintillation signals.
- Full 3-D reconstruction of all energy depositions in LXe.
- Monolithic detector structure, excellent background rejection capabilities.

Example of TPC schematics (EXO-200)

EXO-200 is a running LXe detector with ~110 kg active volume. It has demonstrated key performance parameters for $0\nu\beta\beta$ search, and can reach $0\nu\beta\beta$ half-life sensitivity of 5.7 x10²⁵ yrs after Phase-II operation.

nEXO is a proposed ~ 5 tonne detector. Its design will be optimized to take full advantage of the LXe TPC concept and can reach $0\nu\beta\beta$ half-life sensitivity of ~ 10^{28} yrs

Monolithic Detectors

Monolithic detector is essential for background rejection:

- Rejection of surface background
- Self-shielding, containment of Compton scattering
- Inner fiducial volume extremely clean

Topological Event Information

- TPC allows the rejection of gamma backgrounds because Compton scattering results in multiple energy deposits.
- SS/MS discrimination is a powerful tool not only for background rejection, but also for signal discovery.

Detector Energy Resolution

Energy Resolution and $2\nu\beta\beta$ Background

- While LXe TPCs provide many handles to discriminate backgrounds, energy resolution is the only handle to discriminate $2\nu\beta\beta$ background.
- Future very large scale detectors should have sufficient energy resolution to suppress the $2\nu\beta\beta$ mode.

The EXO-200 TPC

Two almost identical halves reading ionization and 178 nm scintillation, each with:

- 38 U triplet wire channels (charge)
- 38 V triplet wire channels, crossed at 60° (induction)
- 234 large area avalanche photodiodes (APDs, light in groups of 7)
- All signals digitized at 1 MHz, ±1024 µs around trigger (2 ms total)
- Drift field 376 V/cm
- TPC housed in a copper vessel with 1.37 mm wall thickness

EXO-200 Phase-I Results

Precision ¹³⁶Xe 2vββ Measurement

Longest and most precisely measured $2\nu\beta\beta$ half-life

EXO-200 Phase-I Results

¹³⁶Xe 0vββ search with100 kg·yr exposure

Background in the 0v ROI: (1.7±0.2) keV⁻¹ ton⁻¹ yr⁻¹

From profile likelihood:

$$T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25} \text{ yr } \langle m_{\beta\beta} \rangle < 190 - 450 \text{ meV } (90\% \text{ C.L.})$$

Nature (2014) doi:10.1038/nature13432

 Backgrounds in ± 20 ROI

 Th-228 chain
 16.0

 U-232 chain
 8.1

 Xe-137
 7.0

 Total
 31.1 ± 3.8

Recovery from Underground Incidents

WIPP Events:

- 5 Feb. 2014 Fire in WIPP underground
- 14 Feb. 2014, ~23:00 Unrelated airborne radiological event

Recovery:

• 18 Feb 2014, remote recovery of enriched xenon

DOE Accident Inv. Rep., Mar 2014

- Sept. 2014 June 2015, drift and clean room cleanup and TPC health diagnostics (no measureable radioactive contamination inside or outside the cleanrooms.
- June Oct. 2015, equipment repair and Infrastructure maintenance

(EXO-200 detector and control systems worked well despite trying circumstances.)

Phase-II Restart:

- Oct. 2015 Jan. 2016, system cooldown, gas purification and liquid xenon filling
- Feb. April 2016, detector upgrades (electronics and derandonator)
- April 2016, Phase-II Physics data taking begins

EXO-200 Phase-II Operation

- EXO-200 Phase-II operation begins on 1/31/2016, after enriched liquid xenon fill.
- Data shows that the detector reached excellent xenon purity and ultra-٠ low internal Rn level shortly after restart.

Xenon purity since Jan. 31, 2016

EXO-200 Phase II Upgrade Performance (Front End Readout Upgrade)

Further improvements in detector energy resolution may be possible with better signal reconstruction and detector non-uniformity corrections.

EXO-200 Phase II Upgrade Performance (Deradonator)

EXO-200 Clean Room Module 1

Deradnator can deliver 0.85 m³/min of low Rn air

Measurements show that the Rn level in the air gap has been reduced by a factor ~ 10, sufficient to suppress this background for $0\nu\beta\beta$ search.

Phase-II Analysis Improvements

Many other analysis techniques under study:

- Enhance energy resolution through corrections of spatial and temporal non-uniformity
- Reduce systematics through detector simulation and calibration
- Implement continuous multiplicity metrics to improve event classification
- Develop multivariate discriminators and other machine learning algorithms

EXO-200 Phase II Sensitivity

P4.055 Status and improved detector performance of EXO-200, Y. Lin

EXO-200 can reach $0\nu\beta\beta$ halflife sensitivity of 5.7x10²⁵ ys.

With lower threshold, EXO-200 can improve measurement of ¹³⁶Xe 2νββ and searches in other physics channels.

> EXO-200: Nature (2014), doi:10.1038/nature13432

GERDA Phase 2: Public released result. June, 2016 (frequentist limit)

> KamLAND-Zen: arXiv:1605.02889 (2016)

From EXO-200 to nEXO

• EXO-200 has surpassed design energy resolution and SS/MS rejection capability, and is expected to suppassed the design background goals.

- nEXO is a ~ 5 tonne LXe TPC with better detector performance
- 4.7 tonnes of active ^{enr}Xe (90% or higher), < 1.0% (σ /E) energy resolution.

Preliminary artist view of nEXO in the SNOIab Cryopit

6,000 m.w.e. depth sufficient to shield cosmogenic background.

nEXO TPC Conceptual Design (artist's view)

Charge Readout Tiles

Silicon Photomultipliers (SiPMs)

Baseline concept: (Improved TPC design).

- Single drift volume
- Charge collection on the anode plane
- Light collection on the barrel behind field shaping rings

Prototype Charge Readout Tile

A modular and pad-like charge collection scheme is under study to replace a more traditional wire readout.

Prototype 3mm pitch, crossed strip quartz tile has been produced and tested in liquid xenon.

VUV sensitive SiPMs

Adapted from I.Ostrovskiy et al. IEEE TNS 62 (2015) 1.

First nEXO-specific run at FBK (Italy) provided ~10% PDE. New generation devices have reached PDE > 15%@ 170nm. Radio assay results of the FBK devices are also very encouraging.

> P1.069 Photon detection for nEXO 19 F. Retiere

nEXO Radio-assay and Detector Simulation

Recent substantial progress in radio-assay and simulation assists the detector design optimization and provides more accurate predictions of $0\nu\beta\beta$ sensitivity.

Summary

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA - M Moe California Institute of Technology, Pasadena CA, USA - P Vogel Carleton University, Ottawa ON, Canada — M Dunford, R Gornea, K Graham, R Killick, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA — PS Barbeau Friedrich-Alexander-University Erlangen, Nuremberg, Germany — G. Anton, R. Bayerlein, J. Hoessl, P. Hufschmidt, A. Jamil, T. Michel, M. Wagenpfeil, G. Wrede, T. Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA - D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, J Zettlemoyer Laurentian University, Sudbury ON, Canada — B Cleveland, A DerMesrobian-Kabakian, J Farine, U Wichoski University of Maryland, College Park MD, USA - C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, , S Delaguis R Herbst, A Johnson, M Kwiatkowski, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA - K Kumar, O Njoya. M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA — PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao TITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer University of California, Irvine, Irvine CA, USA — M Moe Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA — EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaguis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland

The EXO-200 Detector

EXO-200 Phase II Upgrade Performance (Front-**End Electronics**) Sum APD Noise FFT power spectra 180 160 140 Power Specturm (bits**2/kHz) 120 100 EXO-200 Phase I 80 noise 60 40 **EXO-200** Phase II noise 20 20 80 100 120 40 60 140 Frequency (kHz) Incoherent sum noise

- After electronics upgrade, the coherent sum noise of the APD channels is reduced by a factor 2.5.
- There is only 20% excessive coherent noise remaining.