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[1] A method of retrieving cloud microphysical properties using combined observations
from both cloud radar and lidar is introduced. The description of the lidar-radar model
accounts for nonspherical effects of the ice crystals, with a treatment for multiple
scattering and Mie effects. This retrieval makes use of an improvement to the traditional
optimal estimation retrieval method, whereby a series of corrections are applied to the state
vector during the search for an iterative solution. This allows faster convergence to a
solution and is less processor intensive. The retrieval method is applied to radar and lidar
observations from the CRYSTAL-FACE experiment, and vertical profiles of ice crystal
characteristic diameter, number concentration, and ice water content are retrieved for a
cirrus cloud layer observed 1 day of that experiment. Empirical relationships between ice
water content and radar reflectivity as well as between particle number concentrations and
characteristic diameter are also examined. The results indicate that a distinct and robust
relationship exists between the latter two parameters, offering insight into the nature of
cirrus microphysical processes.
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1. Introduction

[2] Processes relating to the atmospheric branch of the
hydrological cycle play an especially critical role in climate
change especially through cloud and water vapor feedbacks
[Stephens, 2005; Held and Soden, 2000]. Understanding
and ultimately quantifying these cloud feedbacks remains a
significant obstacle in climate research. Furthermore, the
role of cirrus clouds in such feedbacks have been specifi-
cally called out in a number of studies [e.g., Ramanathan
and Collins, 1991; Lindzen et al., 2001; Hartmann and
Larson, 2002, and references therein]. The issues underpin-
ning cloud feedback generally can be cast in the form of the
following questions [e.g., Stephens, 2002]: (1) Given a
fixed distribution of clouds and relevant properties, what
are the effects on radiative heating? (2) Given a fixed
distribution of heating, what then is the influence on
clouds? While our understanding of the radiative transfer
processes are sufficiently advanced, our inability to spec-
ify the relevant properties of cirrus clouds precludes
straightforward answers to the first question. Specifying

the cloud properties is also a necessary step for address-
ing the second more difficult question that requires a
clearer understanding of how the heating and moistening
effects of clouds in turn feed back to influence the
dynamical and thermodynamical properties of the atmo-
sphere, and subsequently the large-scale motions of air
driving the formation and evolution of cirrus clouds
themselves. Given these outstanding problems, prediction
of the formation and evolution of clouds is poorly
handled in models and our ability to test these predictions
with global cloud observations is also limited.
[3] Since cirrus clouds are ubiquitous [Liou, 1986] and

their bulk microphysical properties highly variable [e.g.,
Heymsfield, 1972], satellite remote sensing methods are
important for studying the influence of cirrus on the global
climate system. The verification of these methods is also of
critical importance. Unfortunately, such verification suffers
from a relative dearth of in situ ice cloud measurements and
limited campaigns to collect such data matched to the
observations.
[4] This paper presents a remote sensing procedure de-

fining the properties of cirrus clouds that potentially could
be used to address the first broad question posed above. The
procedure combines lidar and radar measurements to esti-
mate vertical profiles of cirrus cloud microphysical proper-
ties that are required to define the effects of these clouds on
the radiation budget. The specific properties of interest are
the intensive properties of size distribution, concentration,
and geometry of ice or water droplets within the clouds, and
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the extensive properties of cloud geometric shape and
thickness. The physical basis for such an approach was first
explored by Intrieri et al. [1993] and has more recently been
pursued in the work of Donovan and van Lammeren [2001]
among others. Here we formulate the retrieval problem in
terms of an optimal estimation framework [Jazwinsky, 1970;
Rodgers, 2000] as introduced by Stephens et al. [2001] and
followed by a series of similar papers [e.g., Heidinger and
Stephens, 2000; Austin and Stephens, 2001; Miller et al.,
2001; Cooper et al., 2003]. The present work modifies the
traditional optimal estimation technique to increase compu-
tational efficiency for systems represented by large retrieval
vectors and hastens convergence to a solution. The lidar-
radar retrieval algorithm is described in section 3. The
method is then applied to data collected during the
CRYSTAL-FACE campaign that occurred in south Florida
during July 2002. Retrieved optical and microphysical
parameters are validated against in situ measurements.

2. A New Implementation of the Optimal
Estimation Problem

[5] The general problem of determining the state of a
system from noisy measurements is called estimation, or
filtering. A key component of the estimation problem is the
specification of a physical model that relates the measure-
ments to the state variables, referred to as the forward model
or the mapping operator. The most probable system state
described by such a model is the one that minimizes the cost
function. Under the assumption of Gaussian statistics
[Jazwinsky, 1970], and by ignoring the a priori term (a
reasonable assumption for the present application), we
can write this cost function as

J xð Þ ¼ 1

2
y�H x;bð Þ½ �TR�1 y�H x; bð Þ½ �; ð1Þ

where x represents the state vector of the system, y
expresses the measurement or constraint vector, H is the
(nonlinear) forward model, R is the observation covariance
matrix, and b is the forward model vector of parameters.
Here, a constraint is referred to as an integrated property of
the system, such as the optical depth, ice water path, mean
temperature, etc. The forward model vector of parameters is
a list of unretrieved physical variables needed in the
description of the forward model. They are being held
constant, although some of them may display some
variability/uncertainty within the measurements. We define
one component of the state vector by xm, where m identifies
the physical variable. As discussed later, this can be either
particle number concentration, particle size, or lidar ratio at
a specific location within the cloud. The dimension of the
state vector is the sum of all its variables (chose here to
match the numbers of measurements/constraints L). The
solution to our current problem is given by

Amk dxk ¼ Gm m; k ¼ 1; . . . ;M ; ð2Þ

with

Amk ¼
X
sq

@Hs

@xm
R�1
s;q

@Hq

@xk
ð3Þ

and

Gm ¼
X
sq

@Hs

@xm
R�1
s;q ys � Hs x0ð Þ½ �; ð4Þ

where M is the dimension of a subset of components of the
state vector, and x0 is the state vector determined at a
previous iteration step. In order to complete the minimiza-
tion process, the above procedure must be applied to the
next subset of components of the state vector until all
components of the state vector are adjusted. The advantage
of the present formulation over the more common approach
(that sets M = L and all state vector components are varied
simultaneously) lies in its reduced dimension. Such a
reduction is crucial for data assimilation problems, where
dimensions of the order of 107 are typical. It is also helpful
for highly nonlinear problems, when A and G matrices must
be evaluated at each iteration step. Finally, the choice for the
number of elements M depends strongly on the forward
model H and dimension L. A qualitative discussion
regarding these issues is given at the end of the next section.
[6] An important aspect of the optimal estimation method

resides in the computation of error covariance matrix of the
state vector. Our basic assumption is that of Gaussian error
statistics. When these errors are small, this is a valid
assumption and a tangent linear model can be applied to
solve the system. When dealing with nonlinear forward
models with potentially large measurement and/or model
parameter errors, however, the state vector errors are no
longer symmetric with respect to the mean. Thus the error
statistics should only be seen as an estimate. Without
entering details [see Austin and Stephens, 2001], the errors
of our retrieved state vector can be evaluated using the error
covariance matrix S, written as

S�1 ¼ @H

@x

� �T

R�1 @H

@x

� �
; ð5Þ

which is just the A matrix at full dimension, since we
neglected the a priori error covariance matrix from our cost
function definition. The diagonal elements of S are
variances of the state vector and thus give a measure of
the uncertainty in the retrieval; off-diagonal elements are
cross-correlation errors between components. For the
purpose of estimating the above errors, the observation
error covariance matrix R contains both measurement errors
as well as errors due to uncertainty in forward model
parameters b. All these errors are assumed to be
uncorrelated. More details about the evaluation of errors
in the retrieval are given below.

3. Formulating the Lidar-Radar Retrieval
Problem

[7] This section describes how the general retrieval
method presented above is applied to lidar and radar
measurements to infer cloud optical and microphysical
parameters. The first stage in the application is to define
the forward model through analytical expressions relating
the state vector (i.e., physical variables) to the measured
vector (i.e., measured quantities). Since the measurements
pertain to a cloud composed of complex particles, we
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begin by defining a characteristic function describing the
cloud microphysical properties. Then, using specific princi-
ples of radiative transfer theory, we define a relationship
between the state vector and each of the measured fields. The
ensemble of all these equations, valid within some specific
range of state vector space, comprise our forward model. This
section begins with an introduction of our microphysical
approximations, then defines the lidar and radar model, and
closes with a discussion of sensitivity and limitations.

3.1. Microphysical Model

[8] In situ microphysical observations of cirrus clouds
reveal that ice particles display a wide variety of complex
shapes and dimensions with a strong dependence on dy-
namical and thermodynamical factors [Heymsfield et al.,
2002a]. However, despite this increased complexity, for
radiative purposes we can rely on averaged particle proper-
ties which were shown to be more suitable for an analytical
description. Following examples set by previous studies
[Verlinde et al., 1990; Matrosov et al., 2003] we assume a
fixed form of the size distribution, described by a number of
parameters characterizing its shape. In this case we assume
a Gamma size distribution for the cloud particles with
diameter D:

n Dð Þ ¼ N0

1

G nð Þ
D

D0

� �n�1
1

D0

exp � D

D0

� �
: ð6Þ

Both the characteristic diameter D0 (mm) and particle
concentration N0 (number per liter) are functions of position
in the cloud. Given the characteristics of our observing
system, we assume that the width parameter n is a constant
throughout the cloud (i.e., a forward model parameter). In
the above representation, diameter D represents the
maximum dimension of a particle as measured by an
imaging probe. This defines what is referred to as an
equivalent sphere. Of relevance to remote sensing observing
systems, are the means of projected area, volume and mass
of ice cloud particles. Since these quantities must be derived
from the above form of distribution, in the case of
nonspherical particles, we must also define some area-,
volume-, and mass-diameter relationships. Empirical fits to
measured data, exemplified throughout the literature [e.g.,
Brown and Francis, 1995; Francis et al., 1998; Mitchell et
al., 1996], approximate these relationships as power laws of
the form

X Dð Þ ¼ gX D fX ; ð7Þ

where X is the variable of interest (area, volume, mass,
density, etc.) and gX and fX are cloud-averaged fit
coefficients. The mean values of X can then be expressed as

hX i ¼
Z 1

0

X Dð Þ n Dð Þ dD ¼ G nþ fXð Þ
G nð Þ N0 X D0ð Þ: ð8Þ

Heymsfield et al. [2002b] demonstrate an application of such
averaged properties. Their fit coefficients show a large range
of variation over the multitude of observed cirrus clouds. In
order to correctly estimate any of the above mean values,
parameters n, fX, and gX must be known. These coefficients
are usually habit- and temperature-dependent, but for the
purpose of this study they are consider fixed; their mean

values are adapted from the work of Heymsfield et al.
[2004a, 2004b]. An important simplification to the above
formulation arises when we considered all ice particles of a
particular given shape, in which case the fit coefficients gX
and fX become universal. For spheres, the cross sectional
area is given by gA = p/4 and fA = 2, and volume is given by
gV = p/6 and fV = 3. The introduction of a spherical shape
assumption is not arbitrary. Most of the radiative transfer
(RT) calculations are made under this simplified assumption
since we can always consider an ‘‘equivalent’’ medium with
such properties. Ice crystal mass can be treated in a similar
way, leading to the concept of ice crystal effective density
[e.g., Heymsfield et al., 2004a]. Thus the diameter D(s) of an
‘‘equivalent solid sphere,’’with fixed density ri=918 kgm

�3,
having the same mass or ice water content (IWC) as a
complex geometry ice crystal with maximum dimensionD, is
defined as

D sð Þ ¼ r
ri

� �1=3

D; ð9Þ

where r is the ice particle effective density. We note that the
ratio between the effective and solid ice densities defines the
ice fraction. Following the arguments presented above, we
construct our forward models based on the assumption of
equivalent spheres of maximum diameter, while the non-
spherical effects are expressed by values of coefficients gX
and fX.
[9] In the following subsections we introduce our forward

models and define the state and measurement vectors.
Whenever necessary, information regarding the above mi-
crophysical description is applied.

3.2. Lidar Model

[10] For the lidar system, the attenuated backscatter at
some level z can be expressed as [Weitkamp, 1999;
Mitrescu, 2005]

b0 zð Þ ¼ S�1 C bext zð Þ exp �2

Z z

0

bext z
0ð Þdz0

� �
; ð10Þ

where S is the lidar extinction-to-backscatter ratio (in sr), C
is a factor describing the multiple scattering (MS) contribu-
tion, and bext is the extinction coefficient. The integral term
describes the two-way attenuation of the lidar beam due
to extinction processes. We note that molecular back-
scatter/attenuation is also taken into account, but for
clarity this term is omitted from the lidar equation. Since
the measured attenuated backscatter signal is originating
from a finite conical atmospheric volume defined by the
lidar field of view (FOV) and vertical resolution dz (in
km), we integrate the above equation within z ± dz/2
finite layer limits to obtain

b0 ið Þ km�1sr�1
� �

¼ C ið Þ
2 S dz

1� e�2 bext ið Þ dz
h i

� e�2�t ið Þ; ð11Þ

with

t ið Þ ¼
Xi�1

k¼1

bext kð Þ
" #

� dz: ð12Þ
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Here t(i) is the cloud optical depth to level i, which
increases with lidar penetration depth; therefore the above
definition is valid for both upward and downward looking
lidars. S, C, and bext are finite layer mean values, while
neglecting absorption processes; this is a valid assumption
at lidar wavelengths. For our lidar model description,
the lidar ratio S (in sr), considered constant throughout
the vertical cloud profile, is determined according to the
technique described by McGill et al. [2003].
[11] As introduced above, given the divergence of the

lidar’s FOV and the distance between lidar and target, we
must account for MS effects. However, for lidar FOV’s
sufficiently smaller than the angular width of the forward
scatter peaks of the probed scatterers and close ranges
values, the MS effects can be neglected [Eloranta, 1998].
Although there are many MS models to chose from [e.g.,
Eloranta, 1998; Bissonnette, 1988], all of them require a
priori knowledge about cloud vertical structure, some of
which cannot be retrieved within the present formulation.
We refer here to the ice particles’ scattering phase function.
The lidar ratio S, a model parameter here, only gives
information about the value of the phase function at
backward scattering angles and not near forward angles as
required by the MS models. One approach to solving this
problem is to approximate the phase function at forward
angles with that of a Gaussian function whose parameters
are determined from the knowledge of particle effective
diameter [Eloranta, 1998]. However, as shown later, this
parameter cannot be retrieved without the addition of the
radar system. Thus when lidar is to be used alone, assump-
tions about this model parameter must be made. For our
purposes, we consider that the effective radius is fixed to
20 mm, a value that is typical for radiative calculations of
thin cirrus clouds. Thus MS effects are estimated as follows:

C ið Þ ¼
X
m¼1

Pm ið Þ
P1 ið Þ : ð13Þ

Here Pm represents the contribution to the backscatter signal
from the mth order of scatter [Eloranta, 1998], which is a
function of the cloud optical and microphysical properties,
lidar FOV, and distance to target. The summation should be
performed over as many scatter orders as needed for
convergence. However, given the increased computational
burden required by higher orders of scattering, most of the
models stop at third-order scatter, which is a good
approximation at low cloud optical depths. In order to
avoid such a computational burden for our application,
when iteratively converging toward a solution we initially
estimate C by using a simple parameterization as proposed
by Mitrescu [2005]. It is only at the last two iteration steps
(i.e., when close to solution), that MS effects are evaluated
using (13). At this point, MS contribution is evaluated up to
fourth order of scatter. This approach clearly speeds up the
convergence process, without losing accuracy when eval-
uating MS effects.
[12] When only lidar attenuated backscatter and informa-

tion about the lidar ratio are available, as expressed by
(11)–(13), the state vector is reduced in both dimension and
information content. However, key cloud optical properties,
such as the profile of the extinction coefficient, can still be
inferred from such measurements. We can thus define the

measurement vector and the state vector associated with
what we term a ‘‘b model’’ (that only uses information from
the lidar system) in the form

y ¼ ln b0 1ð Þ; ln b0 2ð Þ; ::; ln b0 nð Þ½ � ð14Þ

x ¼ bext 1ð Þ; bext 2ð Þ; ::; bext nð Þ½ �: ð15Þ

We point out that the form of the b model requires no
specification of the particle size distribution (with the
exception of MS effects).
[13] In order to complete our lidar model, we note that at

the nonabsorbing lidarwavelengths, the extinction efficiency,
which equals the scattering efficiency, approaches the value
of two [Stephens, 1994]. Use of the general expression (8)
for defining the cross sectional area yields

bsca;ext ið Þ km�1
� �

¼ 2gA
G nþ fAð Þ
G nð Þ N0 ið Þ D0

fA ið Þ; ð16Þ

where gA and fA are fitting coefficients describing cross
sectional area as a function of diameter for our nonspherical
ice particles. As mentioned above, while smaller ice
particles can be considered spheres, larger ice particles
display a highly irregular shape; we thus expect gA to be less
then p/4, while fA is less than two. In anticipation of our
case study, where small ice crystals were dominant, we
choose the following values: gA = 0.55 and fA = 1.9
[Heymsfield et al., 2004a, 2004b]. We note that it is at this
point that nonspherical effects are revealed, underlying the
idea that these effects are defined and characterized at the
microphysical level. Cloud optical properties (extinction
coefficient, optical depth, lidar ratio), as determined by the
lidar system alone, although influenced by nonsphericity,
cannot reveal such a structure in the absence of an explicit
formulation. This is clearly explained by the above form of
the state vector (15).

3.3. Radar Model

[14] For Rayleigh scattering, the backscatter cross section
is proportional to the square of the product between the
scalar average volume polarizability and the volume (ex-
cluding hollow regions) of the scatterer [Donovan and van
Lammeren, 2001; Heymsfield et al., 2002a]. Thus the radar
reflectivity can be expressed as

ZR ið Þ mm6m�3
� �

¼ gZ
G nþ fZð Þ
G nð Þ N0 ið Þ D0

fZ ið Þ; ð17Þ

where gZ and fZ are fit coefficients describing ice crystal
nonspherical effects, and subscript R indicates Rayleigh
approximation. Similar to our discussion of the extinction
coefficient, gZ is less than 1000, while fZ is less than six.
As mentioned above, in anticipation of a collection of ice
crystals dominated by relatively small ice crystals, we
choose gZ = 350 and fZ = 5.2 [Heymsfield et al., 2004a,
2004b]. The values for these coefficients are due to
values of fit coefficients of both cross sectional area and
effective density, describing ice crystal nonspherical
effects.
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[15] Seeking a formulation equivalent to that of Donovan
and van Lammeren [2001], we rewrite (17) in terms of (16)
to yield (in dBZ units)

ZR ið Þ dBZ½ � ¼ 10 � log10
gZ

2 gA

G nþ fZð Þ
G nþ fAð Þ

�
bext ið Þ D0

fZ�fA ið Þ
�
: ð18Þ

[16] However, in order to accurately compute radar
reflectivities for larger ice crystals, state-of-the-art models
should be used. Using Discrete-Dipole Approximation
(DDA) calculations on various ice crystal shapes, Donovan
et al. [2005] showed that for randomly oriented small ice
crystals, the differences between Mie and DDA calculations
are negligible and do not depend on the choice of the ice
crystal equivalent size representation. Since DDA estima-
tions are beyond the scope of the present paper, based on the
above findings, we evaluate our corrections using Mie
theory [Bohren and Huffman, 1983]. These calculations
are specifically designed for collections of Gamma distrib-
uted ice crystals with characteristic maximum diameters less
than 200 mm. We estimate the expected differences between
Rayleigh and Mie radar reflectivities by assuming a similar
Gamma distribution of equivalent solid ice spheres at
�20	C, with n = 2 [Dowling and Radke, 1990], thus
conserving individual ice crystal mass. Then, using the
expression for mass of the form (7), valid for our crystal
size ranges, we simply express this correction in terms of
D0. From Figure 1 we notice that these differences become
more accentuated for larger particles, with corrections larger
than 2 dBZ when characteristic diameter D0 approaches
0.2 mm (solid line). Thus in order to account for Mie
effects in our calculations, Rayleigh reflectivities (18)
must be adjusted by the following term (in dBZ):

M ¼ 100 � D2
0 � 0:4þ D0ð Þ; ð19Þ

where D0 is expressed in mm (dash line in the figure). In
conclusion, the formulation of our radar model describing
ice particles can be expressed as [Heymsfield et al., 2002a]

ZM ið Þ ¼ ZR ið Þ � 7:2�M ið Þ; ð20Þ

where index M indicates that Mie effects are accounted for,
factor 7.2 is due to differences between ice and water
dielectric constants, and it is assumed that attenuation due to
water vapor is negligible. We acknowledge that the final
estimate of the radar reflectivity is not entirely accurate
since the fit coefficients gZ and fZ used are in fact
temperature-, size-, and habit-dependent. Since such an
explicit dependence is beyond the scope of this work, we
consider all fit coefficients as stated and account for their
uncertainty in the observation error covariance matrix.
[17] From (17)–(20), we note that contrary to the lidar

model, the formulation of the radar model requires knowl-
edge about the microphysical structure. Therefore this
structure (namely N0 and D0) cannot be retrieved at each
level using this formulation. However, by adding informa-
tion from the lidar system, such a task is possible.

3.4. Forward Model: Z ���� B Algorithm

[18] The lidar and radar backscatter ice particles proper-
ties expressed by (11)–(13), (16), and (18)–(20), constitute
what we call the ‘‘Z � b model’’ as the forward model of the
lidar-radar observing system. In order to profile cloud
microphysical parameters, lidar and radar measurements
are required at each cloud level. However, in the case of
real measurements, such a perfect overlap is rarely
achieved. For a down-looking observing system, we expect
lidar to measure the top thin cloud layers that are missed by
radar. As we will see later, this is often the case with thin
cirrus that go undetected by the radar system but are
observed by the lidar system. For lower, denser cloud
layers, the lidar is attenuated, while radar signal gains in
strength. As mentioned above, lidar system alone can
provide information about cloud optical properties. The
addition of radar observation enables the determination of
the microphysical structure in terms of N0 and D0 in regions
of lidar/radar overlap. Thus the measured and state vector
can be defined as follows:

y ¼ ln b0 1ð Þ; ln b0 2ð Þ; ::; ln b0 nð Þ; Z 1ð Þ;Z 2ð Þ; ::; Z nð Þ½ � ð21Þ

x nð Þ ¼ bext 1ð Þ; bext 2ð Þ; ::; bext nð Þ;D0 1ð Þ;D0 2ð Þ; ::;D0 nð Þ½ �; ð22Þ

Figure 1. Differences between Rayleigh and Mie regimes for a 94 GHz radar plotted as a function of
characteristic diameter D0: exact calculations (solid line) and empirical fit (dashed line).
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where lidar and radar layers are identified by their indexes.
Here we consider all n lidar layers, some of which are
overlapped by radar. Therefore when radar signal is below
the minimum detectable level, we default to the b model and
set the characteristic diameter to a prespecified value (i.e.,
D0 = 10 mm).
[19] Solving for the above form of the state vector follows

the steps described in previous section. For the overlap
region, once profiles of N0 and D0 are retrieved, profiles of
ice water content (IWC) are obtained by simply integrating
the individual mass particle over the particle size distribu-
tion. Using the mass-diameter relationship in the form (7),
for the particle size distribution considered here, we can
estimate the IWC as

IWC ið Þ mg m�3
� �

¼ gm
G nþ fmð Þ

G nð Þ N0 ið Þ Dfm
0 ið Þ: ð23Þ

As before, this expression accounts for nonspherical effects.
Here, we set the values of the coefficients to gm = 55 and
fm = 2.6, which is valid for ice crystals with diameter less
than 200 mm [Heymsfield et al., 2004b]. From the above
equation, we can also estimate the ice water path (IWP) for
the overlap region, as

IWP g m�2
� �

¼
Xn
i¼1

IWC ið Þ dz: ð24Þ

[20] We thus conclude our lidar-radar forward model
formulation and the definition of derived quantities that
characterize both optical and microphysical properties of ice
cirrus cloud, with a full description of ice particle nonspher-
ical effects.

3.5. Initial Guess

[21] The approach described in section 2 can be used as a
general method for solving systems of nonlinear equations
when solutions for such systems exist. However, the num-
ber of iterations required for convergence to the solution
depends on the initial guess of the state vector. In order to
speed up the iterative process, the initial guess must be as
close to the solution as possible. For this we can employ
various techniques. A common procedure is to simplify the
system of equations to a level that permits analytic solu-
tions, later used as the initial guess x0.
[22] For the lidar model, when C is known, an analytical

solution for the extinction coefficient is possible. From (11)
we deduce

b?ext ið Þ ¼ � 1

2 dz
� ln 1� 2 S dz b0 ið Þ e2 t ið Þ

C ið Þ

� �
: ð25Þ

Although in an analytical form, the above equation is
subject to the a priori knowledge of MS effects. A two step
procedure is useful: first, we evaluate (25) by setting C = 1.
Then, using the aforementioned parameterization, we
evaluate the C term; further use of (25) yields an estimate
of the extinction coefficient and an update of the optical
depth is possible. It is clear that this procedure cannot yield
the true solution; we expect a biased estimation at deeper
cloud levels, where MS effects become important.

[23] When adding radar information to the lidar system,
an analytical solution is again possible. From (16), (18), and
(25) we can estimate characteristic diameter,

D?
0 ið Þ ¼ 2 gA

gZ

G nþ fAð Þ
G nþ fZð Þ

10 ZM ið Þ½ �=10

b?ext ið Þ

 �1= fZ�fAð Þ

; ð26Þ

and particle number concentration,

N?
0 ið Þ ¼ 1

2 gA

G nð Þ
G nþ fAð Þ b?ext ið Þ D? ið Þ½ ��fA : ð27Þ

From the above set of equations (26) and (27), we note the
nonlinear dependence on the value of the width parameter n
and fit coefficients fA,Z. This nonlinearity may be respon-
sible for higher errors of our retrieved variables, since errors
computed by the optimal estimation method (5) assume that
an approximation of a tangent linear model is valid
throughout the range of variability of a given variable or
parameter. Therefore we can only have an estimate of the
errors and not their exact values. Moreover, uncertainty of
model parameters can also lead to biased results. It is thus
desirable that their values be as accurate as possible.
[24] We note that the above expressions (25)–(27), al-

though not the exact solutions to our observing system
(hence the asterisk superscript), are useful when dealing
with possible multiple solutions, since we can choose the
most appropriate solution. It also eliminates the need for an
a priori estimate and all the complicated algebra that
follows. Also clear from the above approximation is that
the analytical solution is obtained iteratively: we first
determine bext, which requires additional iterative calcula-
tions involving cloud optical depth, then D0 and N0. This
supports our proposed algorithm where we iterate toward
solution only for some of the state vector components at a
time. We thus gain speed and accuracy without losing the
generality offered by the optimal estimation formulation.
Regarding our discussion in the previous section, given the
form of the forward model (lidar system in particular) and
the dimensions of the matrices involved in calculations of
deep cloud profiles (with more than 100 vertical points
possible), we choose sets of M = 10 components of the state
vector when employing the optimal estimation method.
Other sets were tested, but for this particular problem,
convergence was always obtained, which is a desirable
way of improving the optimal estimation method when
applied to lidar data [Stephens et al., 2001].
[25] A schematic of the algorithm implementation using

lidar and radar data is presented in Figure 2. Here we make
use of our forward models, by properly identifying state and
measurement vectors at each step. Various other measure-
ments can be added to this schematic, provided that their
formulations further detail the physical structure of the state
vector. When such detail is achieved, some model param-
eters can be evaluated. Such is the case with the lidar system
where MS effects are properly evaluated only after the
addition of radar data, when information about the dimen-
sions of the scattering particles becomes available. At the
end of the cycle, the cost function is evaluated and tested
against a prespecified threshold � and a decision is made. In
our case, � is just the value of the cost function evaluated at
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a previous iteration. We thus ensure that the solution is that
which minimizes the proposed form of the cost function.

3.6. Width Parameter Dependencies

[26] In this subsection we offer an analysis of the depen-
dence of our state vector components on the width param-
eter n. This is an important parameter describing the particle
size distribution and is responsible for the nonlinear re-
sponse for our lidar-radar model. In order to keep our
analysis as simple as possible, we neglect both Mie and
MS effects in our discussion. Then, from (23), (26), and
(27) we can infer the dependence of the retrieved parameters
with respect to n. Figure 3 shows the relative variation of
the above variables with respect to n, when all fit parameters
are set to values corresponding to solid spheres; a similar
behavior is expected for nonspherical particles. For illustra-
tion purposes, all variables are normalized to their respec-
tive values when n = 2. We infer that N0 shows the greatest
sensitivity with respect to n, which becomes more accentu-
ated at smaller values of n, while IWC and IWP, respec-
tively, only vary within 10% for the entire range of values of
simulated width parameters. While both N0 and D0 decrease
when n increases, the opposite trend is visible for IWC and
IWP. The conclusion of such analysis is that IWC and IWP
will not be greatly influenced by the choice of the width
parameter, thus making them reliable when comparing
against measured data. The opposite is true for both N0

and D0. We can thus expect large biases when comparing
against measured data. Only additional information re-
garding the particle size distribution can alleviate this
problem.

4. Error Analysis

[27] In this section we offer a discussion of the errors of
the state vector and derived quantities. The basic assump-
tion in the formulation of the cost function (1) is that model
and observation errors are Gaussian in nature and uncorre-

lated. In the following section we will shed some light on
errors due to possibility of biased model parameters. Since
the level of errors is strongly dependent on both the degree
of uncertainty of forward model input (i.e., measurements
and model parameters) as well as their absolute values, we
limit our discussion to relevant cases. Whenever necessary,
estimates of error levels will be made to support our
conclusions.
[28] We begin our error analysis by identifying the vector

of model parameters as

b ¼ n; S; fA; gA; fZ ; gZ ;C;D; dz; bRayl
� �

ð28Þ

where we identify specific lidar and radar parameters
introduced above as well as the distance D from lidar to
target, and lidar Rayleigh backscatter bRayl. It is clear that
this is a general representation; for example the lidar model
does not explicitly depend on parameter fZ. If B is the model
parameter error covariance matrix and Y is the measurement
error covariance matrix, then the observation error covar-
iance matrix is

R ¼ Yþ @H

@b

� �T

B
@H

@b

� �
: ð29Þ

Inspection of (5) and (29) shows that errors in the model
parameters and measurements can have different contribu-
tions to errors of state vector components, depending on a
multitude of factors. These factors are due to evaluation of
(5) involving estimations of several partial derivatives of the
forward model H with respect to either state vector or model
parameters. Given the complexity of our forward model,
general conclusions regarding the propagation of errors
cannot be drawn. However, we identify the following model
parameters as main sources of errors: S, n, fA, and fZ. To
simplify our discussion, we assume that only one parameter
at the time is uncertain, and thus evaluate the level of
uncertainty that it propagates into the retrieved state vector.

Figure 3. Normalized functional dependence of retrieved
variables with respect to n. All fit coefficients are those for
solid spheres. See text for details.

Figure 2. Schematic of the proposed algorithm. See text
for details.
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As a practical example, we choose the radar model. Using
(18) we deduce that a DfZ uncertainty induces an uncertainty

DZ � 10 log10 D0 þ 0:43
1

G nþ fZð Þ
@G nþ fZð Þ

@fZ

� �
DfZ ð30Þ

in the evaluation of the reflectivity field. Assuming a 10%
error in fZ, the above equation yields a value of ±3.3 dBZ
when D0 = 0.03 mm and all other parameters have defined
values. When D0 = 0.1 mm, errors are reduced to �2.2 dBZ.
Beside the change of sign in the above uncertainty, which is
important for evaluating cross-correlation errors, we note
that its level is greater than measurement error of ±1 dBZ. In
a similar way we can calculate that a 10% uncertainty in gZ
only yields ±1 dBZ, while a 10% error in n is responsible
for a ±3 dBZ reflectivity error. The same exercise can be
applied to the lidar equation. Given its similarity to the radar
equation we expect the same behavior. We continue by
investigating errors in D0 due to errors in Z, expressed as

DD0

D0

¼ DZ

10 fZ
: ð31Þ

Thus a 3 dBZ reflectivity error is associated with a 7% error
in characteristic diameter. For particle number concentra-
tion, the error can reach 30%. However, exact calculations
must account for all possible correlations, while considering
contributions from all components of the observation error
covariance matrix (29).
[29] Beside the state vector components, for which we

have error estimates, we can also compute errors for any
derived quantity. We refer here to the optical depth, or the
ice water content, expressed simply as

dV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@V

@x

� �T

S
@V

@x

� �
þ @V

@b0

� �T

B0 @V

@b0

� �s
; ð32Þ

where V is the functional expression of our derived quantity
in terms of the state vector x and some additional
parameters b0. Like before, B0 is the error covariance matrix
associated with these additional parameters. As an example,
it can be shown that a 5% error in exponent fm is responsible
for a 40% error in computed IWC when D0 = 0.02 mm, that
reduces to 25% when D0 = 0.1 mm. We thus expect very
large errors of the derived quantities.
[30] We end our error analysis by noting that the lidar

forward model, given the assumption of a constant S, limits
the retrieved optical depth to values around three. This can
be easily demonstrated by integrating the lidar equation to
yield

S ¼ 1� exp �2tð Þ½ �
Z H

0

b0dz
� ��1

: ð33Þ

We see that when t = 3, S must be known with 4 decimals
precision; a value of t = 4 requires 5 decimals precision,
while t = 2 only requires 3 decimals precision. Here we
make the approximation that the denominator does not vary
much within these limits of t, which is a relative good
approximation for this kind of evaluation. Practical
examples on the importance of S on retrieval can be found

in the work of Stephens et al. [2001]. We must also mention
that the addition of MS effects slightly increases the upper
retrievable limit of the optical depth, thus the importance of
these effects when penetrating thicker clouds. Again, as
mentioned before, the computed errors are no longer
symmetric when uncertainties in S (or t) becomes large.
Thus as lidar penetrates deeper into the cloud, the errors of
the retrieved cloud optical properties become larger and
larger, due to the two-way attenuation factor via the
uncertainties in S. In fact, for optical depths larger than
about two, from the analysis above, uncertainties in S are
the leading source of errors in our retrieved variables. It is
also an indication that the lidar system is more sensitive to
errors than the radar system (which in this case does not
require a two-way attenuation correction factor). However,
in principle, the level of errors can be lowered if additional
information is available (i.e., knowledge about lidar ratio
vertical profile and particle size distribution, independent
optical depth and/or radiometric measurements, better
knowledge about fit parameters, etc.).
[31] The purpose of the above exercises was to demon-

strate that for nonlinear systems, the propagation of errors is
highly dependent on both the vector state and specific
model parameters. Thus general conclusions regarding the
error covariance matrix cannot be easily drawn. Of concern
here are also errors due to biases, which in a real case
scenario go undetected. Depending on the biased variable,
these errors can be larger than those associated with
measurements errors. Thus the forward model needs to be
reformulated in order to compensate for such errors. This
can be done only by using experimentally derived forward
model parameters, that are specific to the observed cloud
system, with emphasis on any relevant vertical description.
Owing to its universality, the optimal estimation technique
is ideal for such a setting.

5. Application to CRYSTAL-FACE Data

[32] The Cirrus Regional Study of Tropical Anvils and
Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-
FACE) campaign took place in southern Florida in the
summer of 2002. During this campaign, measurements of
convection, anvils and other tropical cirrus clouds were
obtained with a combination of active and passive sensors
aboard six research aircraft based in Key West and at two
ground sites in southern Florida. The following subsections
briefly describe the main characteristics of this observing
system. Direct application of the proposed algorithm and
comparison against in situ data collected during the flight of
26 July 2002 of the CRYSTAL-FACE experiment is pre-
sented. A following paper will present results obtained from
analysis of other flight days and will attempt to compare the
retrievals to other forms of data.

5.1. Remote Sensing of Cirrus: Lidar-Radar
Observing System

[33] Cloud data from two active instruments aboard the
ER-2 high-altitude research aircraft were used in this study.
Lidar data were obtained from the Cloud Physics Lidar
(CPL) that also flew aboard the ER-2 during CRYSTAL-
FACE (http://cpl.gsfc.nasa.gov). The CPL is a pulsed lidar
system that simultaneously transmits at 355, 532, and
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1064 nm; only the 532 nm visible channel was used in
this study. The lidar’s full angle FOV is 100 mrad, thus
multiple scattering effects are considerably reduced, but
cannot entirely be neglected. During CRYSTAL-FACE,
the CPL was able to observe many cases of thin to
subvisible cirrus that contained particles too small to be
observed by the cloud radar. The vertical resolution of the
processed data is approximately 30 m vertical with a
temporal resolution of 1 s. The radar data are from the 94GHZ
Cloud Radar System (CRS, http://meso-a.gsfc.nasa.gov/912/
radar [Li et al., 2004]). The CRS is a W-band Doppler radar
with a peak transmitting power of 1.7 kW and a minimum
detectable signal of approximately�35 dBZ at 15 km altitude
and �20 dBZ at the surface. Although this is sufficient to
observe a large distribution of cirrus, as shown by McGill et
al. [2002], the system misses a considerable fraction of
optically thin cirrus. The raw radar data has a vertical
resolution of 37.5 m and a temporal resolution of

approximately 0.5 s, and the data has been averaged with
a 5 � 5 (150 m � 2 s) moving window.
[34] For processing by the current retrieval algorithm, the

attenuated backscatter from the lidar was matched, both
spatially and temporally, to the radar reflectivity. This
required regridding of both data sets. The radar data were
regridded to the time resolution of the lidar (1.3 s) and the
lidar data were regridded to the height resolution of the
radar (37.5 m). In addition, both radar and lidar data were
processed by a clutter removal algorithm that removed
noncloud returns by comparing each data pixel to all
surrounding pixels and removing those pixels that fell
below a chosen noise threshold.

5.2. 26 July Case Study Description

[35] On 26 July 2002, the ER-2 high-altitude research
aircraft flew a flight track from Key West to just off the
coast of Nicaragua. This case study is concerned with the
return flight leg toward the north-northwest, when the ER-2
flew over a cirrus shield located off the Nicaraguan coast.
This cirrus was also being sampled in situ by the lower
flying WB-57 aircraft. Ice water contents determined by the
Harvard water vapor instrument through much of this cloud
are nearly coincident with radar and lidar data measured by
instruments on the ER-2. The ER-2 maintained a nearly
constant altitude of approximately 20 km during this leg.
Figure 4 shows the flight track superimposed on the visible
GOES-8 satellite image.
[36] The cirrus shield that was sampled between approx-

imately 18:10 and 19:10 UTC was associated with active
convection over Nicaragua. This case study focuses on a
6 min window of observations that were collected late in the
period, during which time the cloud layer was approximately
3.5 km thick. Nadir radar reflectivity, which has been pro-
cessed to remove clutter as described earlier, and lidar
attenuated backscatter for this flight leg are shown in
Figure 5. The ER-2 plane maintained an airspeed of approx-
imately 205 m/s during this case study, thus 1 min of time
represents a distance of just over 12 km.

Figure 4. GOES-8 visible spectra image. ER-2 flight track
is superimposed.

Figure 5. (a) CRS 94 GHz radar data and (b) CPL 532 nm lidar data on 26 July 2002.
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[37] Although fairly extensive in vertical extent, the cirrus
were optically thin as determined by lidar observations
(with retrieved optical depth between 0.2 to 1.5), with cloud
tops located near the tropopause level. The complementary
nature of the lidar and radar observations are apparent in
Figure 5. The radar observes only that portion of cloud
containing the largest ice crystals, near cloud base. Detected
radar reflectivities in this case vary from approximately �30
to �17 dBZ. The lidar observes nearly the entire cirrus layer
in this observation window, but tends to attenuate quickly in
thicker clouds. As previously mentioned, lidar ratio S was
also estimated using GLAS algorithm. The values of S used
in this case study are represented in Figure 6 in the form of a
probability distribution function (PDF). From the figure we
note that S ranges between 7 and 40 sr with a sharp peak
around 22 sr, thus its importance on the retrieval as
explained above.
[38] That portion of the cirrus with overlapping radar and

lidar observations is the focus of this case study. It was one
of few cases during the entire CRYSTAL-FACE campaign
where radar and lidar data were available coincidentally
with sufficiently nearby in situ observations within the
overlap region.

5.3. In Situ Measurements of Cirrus

[39] During the time segment selected for algorithm
validation, the ER-2 and WB-57 were vertically stacked
to within an offset of approximately 3 km horizontally
and 1 min in time. The WB-57 flew underneath the ER-2 and
through the cloud that was observed by the radar and lidar.
[40] Ice water content data for the flight were obtained by

the Harvard Total Water Instrument (TWI) onboard the WB-
57 aircraft [Weinstock et al., 1994]. The TWI collects ice
particles into an inlet and funnels them through a heated
chamber whereby they undergo a phase change and are
transformed into vapor. The water vapor content of this
moistened air above that of the ambient surroundings is
therefore a measure of the IWC of the air that is sampled.
Ice water volume mixing ratio data were obtained at 10 s

intervals, and were converted to IWC using measured
pressure and temperature for comparison with the retrieval.
[41] In situ observations of the size spectra were provided

by the SPP-100 scattering spectrometer (SPP), also mounted
on the WB-57. The SPP measures the concentration of ice
particles in 19 bins with sizes between 2 and 53.9 mm by
applying Mie theory to the light that is forward scattered by
cloud particles. Forward scattering probes are known to
have a number of biases, including overestimation of
number concentration due to sampling of light scattered
by particles larger than the probe is designed to measure
[e.g., Heymsfield and McFarquhar, 1996]. However, com-
posite size spectra derived from the CAPS (Cloud Aerosol
and Precipitation Spectrometer), CPI (Cloud Particle Imager)
and SPP-100 on the WB-57 indicate that the ratio of the
concentrations of particles greater than 60 mm in size to those
less than 60 mmwas less than 2% during the entire case study
period on 26 July [Garrett et al., 2003]. We can conclude that
the cirrus cloud under investigation was primarily composed
of relatively small ice crystals, validating our assumptions. In
anticipation of the discussion of the retrieval results, we
briefly present the methodology used for such a comparison.
The SPP data was used to calculate the number concentration
and characteristic diameter of an equivalent Gamma particle
size distribution with n = 2 (as it is assumed by the lidar-radar
model):

D
SPPð Þ
0 ¼ 1

4
� hD

3i
hD2i ; ð34Þ

where the means are calculated from the measured particle
size distributions. We thus establish a common basis for
comparison against lidar-radar retrieved characteristic
diameter and particle number concentration. More retrieval
results are presented in the following subsection.

5.4. Retrieval Results

[42] In areas where radar was not sensitive enough to
observe thin cirrus, lidar observations alone was used to
retrieve the vertical profile of extinction coefficient. Profile
of the extinction coefficient for the case study considered
here is presented in Figure 7a. From the figure we note that
the extinction coefficient is a relatively smooth field with
some sharp variations in regions where radar signal was
measurable, indicating possible enhanced microphysical
processes. The mean extinction coefficient is around
0.3 km�1, reaching up to values around 2 km�1 in the
overlap areas.
[43] By adding radar information to the lidar observing

system, we are able to infer vertical profiles of D0, N0, and
IWC via the Z � b algorithm described above. The results
of this algorithm applied to the CRYSTAL-FACE data are
shown in Figures 7b, 7c, and 7d. For the overlap regions,
the retrieved values of D0 ranges between 0.005 and 0.1 mm,
indication of relatively small ice crystals. The mean value is
centered at about 11 mm, which yields an effective ice crystal
radius of about 22 mm. This is in support of our assumption
regarding the size of the ice particles used in the estimation of
MS effects. The particle number concentration N0 shows a
large domain of variation with retrieved values of up to
104 particles per liter. While smaller values are naturally
detected at cloud boundaries, there are regions in cloud
displaying large vertical variations of this parameter,

Figure 6. Probability distribution function of lidar ratio S
on 26 July 2002.
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underlying once more the importance of vertical profiling
of clouds. Although not visible from these plots, there is
a relatively close correlation between these two micro-
physical parameters. Finally, the computed IWC varies
between 0.1 and 10 mg m�3, displaying a pattern that is
closely related to the radar reflectivity. These correlations
will be studied further below.
[44] Owing to uncertainties in both measurements and

model parameters, the retrieved quantities are subject to
errors. The relative errors as calculated by the optimal
estimation method, are shown in Figure 8. From the figure,
we see that errors in all fields increase dramatically at the far
end of the cloud, where the lidar signal becomes uncertain,
due to beam attenuation. At these locations, errors can
exceed 100% in all retrieved fields. Of the retrieved
variables, N0 shows the largest errors while D0 and bext
display only a relatively small degree of uncertainty. In the

case of IWC, the dramatic increase in errors at the far end of
the cloud is partly due to the fact that this is a derived
quantity, influenced by the large uncertainties in N0 field.
The main source of errors comes from uncertainties of the
model parameters, amplified by the two-way transmittance
term in the lidar model. Moreover, all these errors may be
subject to bias errors, but this is a problem yet to be solved.
However, for optically thin regions of the cloud, the errors
are within reasonable limits, not exceeding 10% of the
retrieved field. We conclude that overall, the retrievals are
satisfactory from this point of view and hope that additional
measurements and improved information about model
parameters will further lower the level of these errors.
[45] We now extend the discussion started in the previous

subsection by comparing our retrieved variables against the
in situ measurements. The values of retrieved variables are
considered to be coincidental with measurements if they are

Figure 7. Time-height plots of retrieved (a) extinction coefficient bext, (b) characteristic diameter D0,
(c) particle number concentration N0, and (d) IWC. Superimposed is the WB-57 flight altitude for
these colocated observations.
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within one range gate of the reported WB-57 altitude. We
begin by investigating a particular event, then analyze the
entire cloud penetration.
[46] The particular case focuses on the SPP data mea-

sured at 19:00:24 UTC. Figure 9 shows the number con-
centration as measured by the SPP probe (solid lines) and
the associated Gamma distribution deduced as explained in
the previous subsection (dots), where D0

(SPP) = 6.8 mm,
and N0

(SPP) = 212 particles per liter. We can clearly see
that the assumption of a Gamma particle size distribution
with n = 2 is not the best choice in modeling the
observed particle size distribution. In fact, a better choice
for this particular case would be achieved for n = 1.8.
However, in comparing the retrievals results against
measured data, we must also acknowledge the differences
between the sizes of the sampling volumes. Moreover, the
choice of a Gamma particle size distribution is convenient
in the description of the lidar-radar model. With the

dashed line, we represent the Gamma particle size distribu-
tion as retrieved from the lidar-radar data, with the choice of
fit parameters as explained before. The retrieved microphys-
ical parameters for this case are: D0 = 13.2 mm and respec-
tively N0 = 123 particles per liter. The above values, as
determined by the lidar-radar system, are such that the
associated Gamma distribution closely matches the measured
distribution of larger particles, as can be seen from the figure.
We refer here to particles with characteristic diameter around
and larger than 15 mm. This is indeed true since these particles
contribute more to the radar signal than the smaller particles,
which further explains the longer tail of the retrieved Gamma
distribution. However, since the SPP probe indicates smaller
ice crystals, using the above arguments we can determine an
equivalent Gamma particle size distribution valid for solid ice
spheres (i.e., smaller ice crystals). By simply using (17) with
fit parameters adjusted for solid ice spheres, we deduce that
the characteristic diameter of such an equivalent distribution

Figure 8. Time-height plots of relative errors of retrieved (a) extinction coefficient bext, (b) characteristic
diameter D0, (c) particle number concentration N0, and (d) IWC.
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of solid ice spheres is related to the one assuming nonspher-
ical effects as

D
sð Þ
0 ¼ 0:67 D0:87

0 : ð35Þ

The above equation is nothing more than the application of
the definition of equivalent spheres (9). Recasting the
problem in this way, the Gamma particle size distribution of
the equivalent solid ice spheres is represented with dash-
dotted line. This new form of distribution is closer to the

one deduced from the measurements, and correctly accounts
for density effects applied in the description of the lidar-
radar observing system. The conclusion of this exercise is
that small particles are not retrieved correctly by the lidar-
radar system. This is probably due to the fact that both
bimodal and density effects cannot be entirely captured by
the definition of a single Gamma particle size distribution,
nor by the assignment of fixed values for the fit parameters.
The IWC is largely unaffected by this problem since it has
been shown to display very little sensitivity to the
specification of n; in fact we can consider the retrieval of
IWC as an interpolation problem since its exponent is
somewhere between the exponents of the lidar and radar
systems. Conversely the retrieval of number concentration
and characteristic diameter can be seen as an extrapolation
problem, and is thus prone to larger sensitivities to the
distribution width n. We thus expect a better evaluation of
this microphysical parameter.
[47] Figure 10 shows a comparison over the entire cloud

penetration, where symbols represent measurements and
lines retrieved variables. The IWC, as measured by the
TWI instrument, slowly varies between 1 and 4 mg m�3,
with the retrieved IWC values in close range, although
showing a more dynamic variation from one point to
another. A similar behavior is observed for both N0 and
D0, displayed in panels (b) and respectively (c) of the figure.
As mentioned in the previous section, since small ice
crystals dominate this top portion of the cloud, they are
not properly retrieved by the lidar-radar algorithm that
implicitly assumes larger ice crystals. The corrected D0

(s)

values are represented by the thin line and closely match the
observed values. Overall, these results demonstrate the
validity of our forward lidar-radar model, but also shows
its limitations in detecting smaller ice crystals.
[48] For completeness, we also present the calculated

values of cloud optical depth (t), as seen by lidar, and ice

Figure 9. Particle size distribution from SPP probe (solid
line), equivalent Gamma distribution (dotted line), retrieved
Gamma distribution (dashed line), and retrieved Gamma
distribution with correction for small particles (dash-dotted
line).

Figure 10. Observed and retrieved values of (a) IWC, (b) total particle number concentration, and
(c) particle effective diameter. Solid lines show retrieved values, and asterisks show observations. The thin
line in Figure 10c represents values of D0

(s) of equivalent solid ice spheres. See text for details.
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water path (IWP), valid only for the lidar-radar overlap
region (see Figure 11). We note that the cirrus cloud is
relatively thin and thus penetrated by lidar, with optical
depth ranging from 0.2 to around 1.8. When radar signal is
measurable, the IWP tops around 10 g m�2, then, as radar
signal fades out, it drops to values around 2 g m�2,
indication of a very thin cirrus cloud layer.

6. Validating Empirical Relationships

[49] We now shift focus on the possible correlations
between various model variables as a possible way of
validating results and/or improving model parameterization.
[50] Of interest is the relationship between the radar

reflectivity Z and the ice water content IWC. In literature
such a relationship is written as [e.g., Brown et al., 1995]

log10 IWC mg m�3
� �

¼ c � Z dBZ½ � þ d; ð36Þ

which is plotted in Figure 12a. The retrieval algorithm
yields mean values of 0.073 and 2.24 for coefficients c and
d respectively. Here we have filter out retrieved values of
IWC with errors larger than 30%, occurring mostly at the far

end of the cloud, for reasons explained before. These fit
coefficients are within the previously reported values [e.g.,
Brown et al., 1995], thus further validating our results.
However, the above relationship displays a relatively large
variability, with values of IWC varying within one order of
magnitude at a fixed value of Z. It must kept in mind that
IWC is computed based on retrieved values of N0 and D0,
using an effective ice density, which probably is not valid
over the entire ranges of observed particle sizes.
[51] If a relationship in the form of (36) is consider valid,

then, from (23) and (18), we can speculate that a relation-
ship between N0 and D0 is relevant. We must mention that
such a relationship was also observed by Heymsfield et al.
[2002a]. Thus we can write that

N0 L�1
� �

¼ 10B � DA
0 mm½ �; ð37Þ

where A and B are empirical coefficients to be determined
from the analysis of our lidar-radar system. As with (36),
the above equation, if realistic, represents a property valid
over several interacting cloud layers. We suggest that
exponent A may indicate ice crystals growth regimes. For
example, negative values of A are expected in regimes

Figure 11. Calculated (a) optical depth t and (b) IWP. Associated errors are with shaded lines.

Figure 12. Scatterplots of (a) IWC versus Z and (b) N0 versus D0. Mean values and analytical fits
(dotted lines) are also represented. See text for details.
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where aggregation (fragmentation) processes occur, when
two or more crystals combine to form a larger crystal (or the
reverse), yielding a negative correlation between N0 and D0.
In contrast, a positive value of A suggests a positive
correlation between N0 and D0, as might occur in vapor
deposition/sublimation processes sustained by an advective
transport. The scatter plot of N0 and D0 deduced from the
Z � b model, presented on panel (b) of the figure, shows a
strong correlation between these two microphysical param-
eters, suggesting that the proposed parameterization (37)
may be valid. For the case studied, the mean values of the
coefficients A and B are �3.64 and 6.58 respectively. There
is also strong evidence that coefficients A and B are linearly
related supporting the idea that these coefficients describe
specific microphysical processes. However, our findings are
still preliminary and should also be tested against cloud
models. We also note that A and B coefficients may depend
on D0 (or N0) as well as cloud and thus be applicable within
a given range. We mention again that D0 and N0 retrieved
by this algorithm are related to the lidar-radar system itself,
thus only partially matching the corresponding ice cloud
microphysical properties, as explained in a previous
subsection. With these problems aside, it may be possible
to use the above parameterization together with a single
radar or lidar measurement to infer both N0 and D0, thus
avoiding other constraints that must be imposed on either
one of them [e.g., Benedetti et al., 2003].

7. Summary and Conclusions

[52] A method for retrieving ice cloud optical and micro-
physical property profiles from millimeter cloud radar and
lidar backscatter observations is introduced. We refer to this
retrieval scheme as the Z � b algorithm and also introduce a
variant of it, the b algorithm, that only uses lidar informa-
tion. The lidar-radar models developed here account for the
complex nature of cirrus clouds; in particular, nonspherical
effects due to ice crystals in cirrus clouds are parameterized
through the use of area-, volume- and mass-diameter
empirical relationships. Moreover, the lidar model estimates
multiple scatter contributions, while the radar model
accounts for Mie effects.
[53] The retrieval of cirrus cloud optical and microphys-

ical properties follows a scheme that is framed within the
optimal estimation method. A modification to this method is
provided to deal with large systems of high dimensionality.
This modification greatly speeds up the iteration to solution
and improves the accuracy of the final solution. It was also
found that due to the different sensitivities of the radar and
lidar observing systems, it is almost impossible to run the
algorithm on both types of data at once. The best approach
is to process the lidar data first, obtain an estimated
extinction coefficient profile (and cloud optical depth) that
later is resolved in terms of profiles of characteristic
diameter D0 and number concentration N0 by adding radar
information. For the overlap region, estimates of IWC and
IWP can also be provided given the values of the above two
microphysical parameters.
[54] Analysis of the lidar-radar model mathematical

formulation along with results obtained from its direct
application to real aircraft data collected during the
CRYSTAL-FACE experiment, demonstrated the following.

[55] 1. The initial analysis of sensitivities and errors of the
lidar-radar system indicates that IWC and D0 are most
reliably retrieved, whereas N0 is the least reliable informa-
tion derived from the retrievals. The latter was traced to the
assumption of fixed values of size distribution width param-
eter and lidar ratio, that is, N0 is most sensitive to unretrieved
microphysical assumptions. These sensitivities increase con-
siderably at high cloud optical depths, when nonlinear
effects become dominant. Future work should also consider
an adequate treatment for bias corrections, associated with
forward model parameters uncertainty, as tests have shown
that this type of error can lead to large biases and errors in the
retrieved fields. However, a compensation effect is observed,
since for this observing system, some of the state vector
components are somewhat correlated.
[56] 2. The application of the lidar-radar model to mea-

sured data collected during CRYSTAL-FACE experiment,
underscores once more the need of better knowledge about
model parameters, with a special interest in the fit coefficients
that describe the nonspherical effects of ice crystal particles.
Owing to the large variability in the values of these coef-
ficients, large retrieval errors (and biases) are expected. For
the case study examined, we set these coefficients to values
that provide a reasonable balance between small and large
particles, responsible for spherical and nonspherical effects.
Future work should seek appropriate parameterization of
these fit coefficients, thus providing more reliable retrievals
for a large variety of cirrus cloud scenarios. Owing to the
generality of the proposed retrieval algorithm, such imple-
mentations require minimal changes to the existing code.
[57] 3. Vertical profiles of N0, D0, and IWC deduced

using CRYSTAL-FACE data show a complex, layered
structure of the cirrus cloud microphysics. A weakness of
the lidar-radar observing system is the low probability of
having simultaneous, overlapping lidar and radar measure-
ments. In practice only small portions of clouds were
observed by the both systems. Lack of in situ measurements
in these overlap regions lidar/radar observations made it
almost impossible to assess the performance of the retrievals
and statistical approaches for validation are required. How-
ever, the comparison of the retrievals against measured data
showed that the lidar-radar system is inefficient in detecting
small ice crystals, but is geared instead toward cloud
averaged microphysical parameters. As above, better choice
of the fit parameters along with a bimodal description of the
particle size distribution may solve this problem.
[58] 4. The investigation of empirical relationships be-

tween various cloud parameters indicates a distinct relation-
ship between N0 and D0 that might offer insight into the
nature of the microphysical processes taking place in cirrus.
However, these results are preliminary and detailed in situ
measurements of this effect are required. The IWC-Z rela-
tionship derived in this particular case further confirms
similar previously reported behavior, thus validating the
method.
[59] The lidar-radar observing system described in this

paper holds particular relevance to the Earth Observing
System (EOS) CloudSat [Stephens et al., 2002b] and
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations satellite missions (http://www-calipso.larc.
nasa.gov), scheduled for launch in Spring 2005. Flying in
tight formation (separated by 15–60 s and lidar/radar
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footprint congruency of less than 2 km with a goal of 50%
footprint overlap) behind EOS-Aqua as part of the so-called
A-Train constellation, the collective observing system will
provide unprecedented opportunities to examine the de-
tailed vertical properties (critical to describing the vertical
distribution of atmospheric heating/cooling) of cloud sys-
tems globally. From the perspective of computational bur-
den, the hybrid retrieval technique outlined in this paper is
well suited (through its reduction of state vector dimension-
ality) to addressing the large data volumes associated with
these global observations. Lessons learned from the A-Train
research satellite constellation and its synergy of lidar, radar,
and passive radiometer systems will augment dramatically
our current understanding of clouds and cloud processes
while forging a pathway toward the eventual operational use
of these systems on future platforms.
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