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[1] To move toward spaceborne weather radars that can be deployed routinely as part of
an instrument set consisting of passive and active sensors requires the development of
smaller, lighter-weight radars. At the same time, the addition of a second frequency and an
upgrade to Doppler capability are essential to retrieve information on the drop size
distribution (DSD), vertical air motion, and storm dynamics. One approach to the problem
is to use a single broadband transmitter-receiver and antenna where two narrowband
frequencies are spaced apart by 7–10%. Use of Ka-band frequencies (26.5–40 GHz)
provides adequate spatial resolution with a relatively small antenna. Moreover, the
differential reflectivity and mean Doppler signals in this band are directly related to the
median mass diameter of the snow and raindrop size distributions. We present in the paper
theoretical calculations of the differential reflectivity and Doppler for several frequency
pairs including those proposed for the Global Precipitation Mission (GPM) at 13.6 and
35 GHz. Measurements from a zenith-directed radar operated at 9.1 and 10 GHz are used
to investigate the qualitative characteristics of the differential signals. Disdrometer data
taken at the surface, just below the radar, show that the differential signals are related to
characteristics of the raindrop size distribution. The stability of the DSD estimation
procedure is tested using a simulation. The results indicate that reasonably stable estimates
of the particle size distribution are feasible with a [31.5 GHz, 35 GHz] combination as long
as a large number of independent samples are obtained. INDEX TERMS: 0360 Atmospheric
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1. Introduction and Background

[2] The Precipitation Radar (PR) aboard the Tropical
Rain Measuring Mission (TRMM) satellite has performed
nearly flawlessly since its launch in December 1997
[Kozu et al., 2001]. The PR is the first weather radar to
be flown in space and the question arises as to the design
of the next-generation weather radar. This question has
been answered, in part, by the proposed radar for the
successor to TRMM, the Global Precipitation Mission

(GPM). The tentative plan for the GPM radar is to employ
dual-frequencies at 13.6 GHz and 35 GHz, with phased-
array antennas that scan cross-track with beam widths
matched at the two frequencies. This dual-frequency
precipitation radar, DPR, should provide more detailed
information on the drop size distribution and phase state
of the hydrometeors (liquid, frozen, and mixed-phase)
than does the present single-frequency 13.8 GHz PR. The
DPR should also provide an increase in the dynamic
range of observable rain rates and better accuracy in the
estimates of rain rate and liquid and ice water contents. In
this paper we focus on an alternative design strategy that
makes use of the differential-frequency concept. The
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essence of the idea is to reduce the spacing between the
two frequencies so that a single antenna and the same
radio-frequency subsystem can be used for both frequen-
cies. The resulting reduction in size and mass suggests the
possibility of weather radars aboard smaller satellites or
as an add-on instrument to weather-related satellites that
are presently equipped with only passive radiometers.
[3] We begin by presenting theoretical calculations of

the differential reflectivity and mean Doppler for several
differential frequency combinations. These results are then
compared with the same quantities using the DPR fre-
quencies of 13.6 and 35 GHz. We next present results
measured from a ground-based zenith-looking radar oper-
ating at [9.1, 10 GHz]. Raindrop size distributions from a
disdrometer located near the radar are used to estimate the
expected differential signals to check the validity of the
theory and to test whether differential signals can be
measured down toX-band frequencies. In the final section,
we present integral equations that offer a means of retriev-
ing two parameters of the drop size distribution at each
range gate along the radar beam.Using these equations and
measured drop size distributions as truth, simulations are
carried out for several frequency pairs including those of
the DPR. The simulations suggest that frequencies at Ka-
band using a 10% bandwidth can give useful information
on the raindrop size distribution if a sufficient number of
independent samples can be measured.

2. Theoretical Calculations

[4] We define the differential-frequency radar reflec-
tivity, dZe(f1, f2), by [Meneghini et al., 2001]

dZe f1; f2ð Þ ¼ dBZe f1ð Þ � dBZe f2ð Þ ð1Þ

where f1 < f2 so that dZe is always taken as the difference
between dBZe at the lower frequency to that at the higher
frequency. The equivalent reflectivity factor at frequency
f is given by dBZe(f ) = 10 log10 Ze(f ) where

Ze fð Þ ¼ c4= f 4p5 Kwj j2
h i Z

sb f ;Dð ÞN Dð ÞdD ð2Þ

where c is the speed of light, sb(f, D) is the back-
scattering cross section (mm2) of a spherical particle of
diameter D at frequency f and N(D) is the drop size
distribution, DSD, (mm�1 m�3). Taking the units of l =
c/f and dD to be mm gives the equivalent reflectivity
factor in the standard units of mm6 m�3. By convention,
the dielectric factor of water, jKwj2, is taken to be 0.93.
We assume that N(D) can be approximated by a gamma
distribution [Ulbrich, 1983]

N Dð Þ ¼ N0D
m exp � 3:67þ mð ÞD=D0½ � ð3Þ

The unknown parameters of the size distribution are (N0,
D0, m). Dual-wavelength radar data provide only two

Figure 1. D0 versus dZe[9.1, 10 GHz] for 3 values of m along with cubic fits to the lower and upper
branches (X).
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measurements at each range gate. To account for the third
unknown, the ‘‘shape’’ parameter m is either fixed or a
m-L (where LD0 = 3.67 + m) relationship is employed
[Zhang et al., 2001]. We can define a differential mean
Doppler velocity, dv, in a similar way to dZe:

dv f1; f2ð Þ ¼ hv f1ð Þi � hv f2ð Þi ð4Þ

where dv(f1, f2) is independent of air motion or platform
motion. In the absence of air or platform motion, the
Doppler velocity for a near-zenith or near-nadir, narrow
beam pattern can be written as a function of the terminal
velocity of the drops, vt, weighted by sb(f, D) N(D)
[Atlas, 1964; Doviak and Zrnic, 1993]:

hv fð Þi ¼
Z
D

sb f ;Dð ÞN Dð Þvt Dð ÞdD=
Z
D

sb f ;Dð ÞN Dð ÞdD

ð5Þ

[5] Shown in Figure 1 are graphs D0 versus dZe for the
frequency pair [9.1, 10 GHz] for values of m = 1, 6, and 9.
Note that dZe is independent of the N0 parameter of the
size distribution. The temperature of the raindrops is
taken to be 20 C. As expected, as the median mass
diameter decreases, Rayleigh scattering predominates. In
this limit the Ze at both frequencies is equal to the sixth
moment of the drop size distribution so that dZe tends to
zero for small D0. Also shown in the figure are the results
of cubic fits to the ‘‘upper’’ and ‘‘lower’’ branches of the
form D0 = c0 + c1 dZe + c2 (dZe)

2 + c3 (dZe)
3, and

represented by the X’s. These curve-fits alone do not
provide a D0 estimate, however, unless we know which
branch to select. Moreover, for m = 1, the estimation of
D0 from dZe is ambiguous not only for dZe > 0 but for dZe

< �0.3 dB as well and an additional selection rule is
needed. One other problem is that the magnitude of dZe is
less than 0.6 dB over the full range of D0 which implies
that a large number of independent samples are needed
for the differential signal to be distinguishable from
inherent fluctuations in the measurement. These issues
will be taken up in section 4. It is worth noting that in
snow the ambiguity of estimating D0 from dZe is absent
because D0 is a monotonically increasing function of dZe

for all frequency pairs in the microwave and millimeter-
wave range [Matrosov, 1992; Meneghini et al., 1992].
[6] It is instructive to compare curves of D0 versus dZe

for other frequency combinations. Such plots are shown in
the top panel of Figure 2 for the DPR frequencies of [13.6,
35 GHz] and in the bottom panel for the [31.5, 35 GHz]
pair. In contrast to the [9.1, 10 GHz] curves, dZe for these
cases is negative at small D0 changing to positive values at
larger D0. From Figure 1, we see that the magnitude of
dZe[9.1, 10 GHz] is typically about a factor of 3 smaller
than dZe[31.5, 35 GHz] and about an order of magnitude
smaller than dZe[13.6, 35 GHz]. Although the DPR fre-

quency pair provides a larger differential reflectivity signal
than that at [31.5, 35 GHz], the ambiguity problem is more
severe. In the case of m = 6, for example, the estimate of D0

from dZe[13.6, 35GHz] is ambiguous for D0 less than 1.63
mm whereas two solutions of D0 exist for the [31.5, 35
GHz] combination when D0 less than 1.14 mm.
[7] Similar sets of plots can be generated for D0 versus

dv. These are shown in Figure 3 for the frequency pairs
[9.1, 10 GHz] (top) and [13.6, 35 GHz] (bottom). For the
[9.1, 10 GHz] combination cubic fits of D0 versus dv for
the lower and upper branches are represented by the ‘‘X’’
data points. As can be seen from the results, the jdv[9.1,
10 GHz]j values, ranging from 0 to about 10 cm/s, are
about an order of magnitude smaller than jdv[13.6, 35
GHz]j and about 2 orders of magnitude smaller than
typical mean Doppler velocities.

3. Experimental Data

[8] Differential frequency measurements were made
using the ER-2 Doppler radar (EDOP) in a ground-

Figure 2. Same as bottom plot of Figure 1 but for the
frequency pairs (13.6, 35 GHz) top and (31.5, 35 GHz)
bottom. T = 20 C.
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based, zenith-looking configuration [Heymsfield et al.,
1996]. To modify the EDOP for differential measure-
ments, the local oscillator (LO) at 9.6 GHz was discon-
nected and replaced with two synthesized HP-83640
sweep generators. These oscillators were used both to
generate the transmit pulse and to mix the received
signals down to the intermediate frequency (IF). The
LO frequencies were chosen to produce transmit fre-
quencies of 9.1 and 10 GHz, a separation that was found
to be the practical limit based on the performance
characteristics of the EDOP traveling wave tube ampli-
fier (TWTA). Generation, transmission, and reception of
the two frequencies were done simultaneously [Bidwell
et al., 2000].
[9] On 27 March 2000, an impact disdrometer and

optical rain gauge were placed next to the zenith-directed
antenna. Approximately 3 hours of data were collected.
Because the modified radar was uncalibrated, the radar
return powers were converted into radar reflectivities by

additive constants (one per frequency) using the drop
size distribution data near the beginning of the measure-
ment period. Height versus time plots of Zme(9.1 GHz)
and dZme[9.1, 10 GHz] are shown in the top and center
panels of Figure 4. (As discussed in section 4, the
subscript ‘‘m’’ is used to signify the fact that the radar
reflectivity factors are measured quantities, without
attenuation correction.) Note that the Zme(9.1 GHz) data
extend to higher altitudes than do the dZme[9.1, 10 GHz]
data; this arises from the facts that dZme[9.1, 10 GHz] is
calculated only when both radar reflectivities are above
the noise level and that the sensitivity of the Zme(10
GHz) data set is lower than that at Zme(9.1 GHz).
Displayed in the bottom panel are selected vertical
profiles of dZme. Corresponding plots of hv(9.1 GHz)i
and dv[9.1, 10 GHz] are shown in Figure 5. Although the
data in Figures 4 and 5 include a convective cell, the rain
on this day was primarily stratiform with a bright-band
(melting layer) signature at a height of about 2.2 km. To

Figure 4. Height versus time plots of Zme(9.1 GHz)
(top), dZme[9.1, 10 GHz] (center) and height profiles of
dZme[9.1, 10 GHz] (bottom) over a 4 min segment of
data. See color version of this figure at back of this issue.

Figure 3. Top: D0 versus dv[9.1, 10 GHz] for 3 values
of m along with cubic fits to the lower and upper
branches. Bottom: D0 versus dv[13.6, 35 GHz] for 3
values of m. T = 20 C.
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understand the behavior of dZme at X-band frequencies
recall that in rain, dZe is negative for most D0 values (see
Figure 1) with larger D0 values usually associated with
larger values of jdZej. As the signals propagate into the
rain the measured differential reflectivity, dZme, becomes
progressively less negative because attenuation at the
higher frequency is larger than that at the lower. In dry
snow, dZe is always positive so that a change of sign of
dZme occurs as the signal transits the melting layer.
[10] Somewhat similar characteristics can be seen in

the differential mean Doppler results pictured in the
center and lower panels of Figure 5. In contrast to dZme,
dv is insensitive to differential attenuation. Moreover, a
comparison of the theoretical curves in Figures 1 and 3
shows that the dependencies of dZe and dv on D0 differ,
particularly at large D0. In the snow layer, dv is approx-
imately zero whereas dZe attains relatively large positive
values.

[11] To test the measurement concept, it is important to
show the relation between the differential signals and the
drop size distributions. To do this, we have used the
disdrometer data and Mie theory to calculate the
expected values of Ze, dZe, hvi and dv. An example of
comparisons between the disdrometer-derived Ze (top
panel) and dZe (bottom panel) and the corresponding
EDOP measurements is shown in Figure 6. A 60-s shift
of the EDOP data was introduced to account for the fact
that the EDOP data were taken at a 400m height.
Because the data analyzed are taken near the radar, the
attenuation can be neglected so that dZe = dZme and Ze =
Zme. A second set of comparisons is shown in Figure 7
where the top plot shows a time sequence of measured
hv(9.1 GHz)i (X) along with the disdrometer-derived
values (solid line). In the lower panel of Figure 7 are
shown measurements of dv (X) values along with the
disdrometer-derived values (solid line). Although the
EDOP estimates of dZe are noisy, the correlation between
these and DSD-derived estimates is relatively good. This
is encouraging in the sense that the [9.1, 10 GHz]
combination is far from optimum, suggesting that sets
of frequencies at Ka-band, separated by 7% to 10%,
should yield more stable estimates of dZe. On the other
hand, comparisons between the theoretical and experi-
mental values of dv in Figure 7, while showing some
degree of correlation, are poor and radar data at higher
frequencies with a greater frequency separation may be
required to demonstrate the correspondence between
theory and experimental data.

4. DSD Estimation Using Differential

Frequencies

[12] The EDOPmeasurements discussed in the previous
section indicate that measurements of dZe and dv are
possible at X-band and that dZe, and to a lesser extent
dv, are associated with properties of the raindrop size
distribution. Nevertheless, as noted in section 2, there
are a number of issues that must be addressed before we
can show the feasibility of measuring vertical profiles of
the drop size distribution, rain rate and liquid water
content. The chief problems include the double-valued
nature of the D0 versus dZe (and D0 versus dv) curves for
rain and the fact that the parameter m of the drop size
distribution can not be solved directly but must be either
fixed or related to the parameter D0 or L. Moreover, the
differential signal levels are small, requiring a large
number of independent samples to reduce the signal
fluctuations to an acceptable level. One other problem
associated with dZe, though not with dv, is the influence of
attenuation. According to (1), dZe is a difference in dB of
the effective radar reflectivity factors, Ze(f1) and Ze(f2).
But it is the apparent or measured radar reflectivity,

Figure 5. Height versus time plots of the mean Doppler
velocity, hv(9.1 GHz)i (top), dv[9.1, 10 GHz] (center)
and height profiles of dv[9.1, 10 GHz] (bottom) over
same 4 min segment of data as in Figure 4. See color
version of this figure at back of this issue.
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Zme(f ), and not Ze(f ), that is directly related to the radar
return power. In particular, Zme(f ) and Ze(f ) are related by:

Zme f ; rð Þ ¼ Ze f ; rð Þ exp �0:2 ln 10

Z r

0

k f ; sð Þds

2
4

3
5 ð6Þ

where r is the radar range. The specific attenuation, k
(dB/km), can be written in the form:

k fð Þ ¼ N0Ie f ;D0ð Þ ð7Þ

where Ie(f, D0) is a function of the extinction cross
section, se(f, D) (mm2) integrated over the ‘‘normalized’’
DSD—that is, the DSD without the N0 coefficient:

Ie f ;D0ð Þ ¼ ck

Z
se f ;Dð ÞDm exp � 3:67þ mð ÞD=D0

� 	
dD

ð8Þ

where ck = 4.343 � 10�3. Integral or differential
equations for the DSD parameters N0(r) and D0(r) can
be derived in several ways [Meneghini et al., 1992;
Iguchi and Meneghini, 1995]. A particularly simple way
to obtain them is to express 10 log10{Z(f1, r)/Z(f2, r)} and
10 log10[Z(f1, r)] in terms of parameters of DSD and the
measured reflectivity factors. To simplify the equations,
we introduce the following notation:

Ib f ;D0ð Þ ¼ 10 log10 Ze f ;D0;N0ð Þ � 10 log10 N0 ð9Þ

¼ 10 log10 c4= f 4p5 Kwj j2
h in

�
Z

sb f ;Dð ÞDm exp � 3:67þ mð ÞD=D0½ �dD
o

ð10Þ

[13] The initial-value equations can be written in the
form:

dIb f ;D0 rð Þ½ � ¼ dZme f ; rð Þ þ 2

Z r

0

N0 sð ÞdIe f ;D0 sð Þ½ �ds

ð11aÞ

Figure 6. Comparisons of EDOP measurements (X)
and disdrometer-derived (solid lines) values of Zme(9.1
GHz) (top) and dZme[9.1, 10 GHz] (bottom).

Figure 7. Comparisons of EDOP measurements (X)
and disdrometer-derived (solid lines) values of hv(9.1
GHz)i (top) and dv[9.1, 10 GHz] (bottom).
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dBN0 rð Þ ¼ dBZme f 1; rð Þ � Ib f 1;D0 rð Þ½ � þ 2

�
Z r

0

N0 sð ÞIe f 1;D0 sð Þ½ �ds ð11bÞ

where dBN0 = 10 log10N0. A final-value form of the
equations is appropriate to cases where independent
estimates of the path-integrated attenuation, PIA, are
available at both frequencies. In this case, the equations
can be written:

dIb f ;D0 rð Þ½ � ¼ dZme f ; rð Þ þ 2 dAn fð Þ � 2

�
Zrn

r

N0 sð ÞdIe f ;D0 sð Þ½ �ds ð12aÞ

dBN0 rð Þ ¼ dBZme f 1; rð Þ � Ib f 1;D0 rð Þ½ � þ 2 An f1ð Þ � 2

�
Zrn

r

N0 sð ÞIe f ;D0 sð Þ½ �ds ð12bÞ

where dIb = Ib(f1) � Ib(f2), dIe = Ie(f1) � Ie(f2) and where
dZme(f, r)  10 log10Zme(f1, r) � 10 log10Zme(f2, r). In all
cases, f1 < f2. Note that An(f1) is an independent estimate
of the PIA at frequency f1 and dAn(f ) is an independent
estimate of the differential PIA. Defining the path to run
from radar range 0 to rn, these quantities can be written in
the form:

An f1ð Þ ¼
Zrn

0

k f1; sð Þds ð13Þ

dAn fð Þ ¼
Zrn

0

k f1; sð Þ � k f2; sð Þ½ �ds ð14Þ

Equations (11a), (11b), (12a), and (12b) are coupled
Volterra integral equations for the unknown parameters
of the drop size distributions N0(r) and D0(r) (0 < r < rn)
in terms of the measured quantities dZme(f, r) and
dBZme(f1, r). For the final value equations (12a) and
(12b), we also require the path-integrated quantities
dAn(f ) and An(f1). The physical meaning of the
equations becomes clear by recognizing that dIb[f,
D0(r)] = dZe[f, D0(r)] and that (11a) and (12a) are of
the form dZe = dZme + {differential attenuation correction
terms} where the differential attenuation is expressed in
terms of the N0(r) and D0(r) at prior or subsequent
ranges. In the initial-value form, the attenuation correc-
tion begins at the gate closest to the radar and proceeds
outward. In the final value form, the correction terms are
subtracted from the PIA so that the attenuation to range r
is given as the path attenuation [0, rn] minus the
attenuation in the interval [r, rn].

[14] The equations can be solved numerically either by
using a trapezoidal [Press et al., 1992] or rectangular rule
for the integrals; for the results presented a rectangular
approximation is used. The final value formulation
reduces to an iteration starting at the final range gate
proceeding back toward the radar whereas the initial-
value solution is found by iterating outward from the first
gate. It should be noted, however, that the solution to
(11a) or (12a) yields dIb[f, D0(r)] = dZe[f, D0(r)] rather
than the desired D0(r). To obtain D0 from dZe requires
use of curves of the type shown in Figures 1 and 2. Once
D0 is estimated, N0 can be found from (11b) or (12b).
[15] We use a simple simulation to check the perform-

ance of the above equations for several pairs of radar
frequencies. Starting with 30-second averaged drop size
distributions from an impact disdrometer, we fit to each
distribution a gamma function with a best fit value of m.
A temporal sequence of 32 such drop size distributions is
then used to represent a particular range profile of the
true raindrop size distributions for a 4 km path consisting
of 32 range gates each of 0.125 km. Using these sets of
raindrop size distributions, the measured reflectivity
factors, Zme(ri), i = 1,.., 32 for various pairs of frequen-
cies are generated using (2) and (6)–(8). The Zme(ri) are
next randomized using the fact that 10 log10Zme(ri) is
approximately normal with a mean equal to the true
value and a standard deviation equal to 5.57/

p
n (dB)

(logarithmic detection), where n is the number of inde-
pendent radar samples [Marshall and Hitschfeld, 1953].
In the retrieval we assume that m is fixed at 6 and that the
upper branch of the D0(r) � dZe solution is chosen.
Although there are several ways to estimate the quanti-
ties dAn(f ) and An(f1) in the final-value solution, (which
include the surface reference technique as well as a
radiometer-derived PIA), we consider in this paper the
standard dual-frequency method that estimates dAn(f ) by
a difference of differences [Eccles and Mueller, 1971]:

2 dAn fð Þ ¼ dBZm f1; r1ð Þ � dBZm f1; rnð Þ½ � � dBZm f2; r1ð Þ½

�dBZm f2; rnð Þ� ð15Þ

[16] Having obtained dAn(f ), An(f1) is found by a
linear regression An(f1) = a + b*dAn(f ) based on sets
of measured drop size distributions. The two sources of
error in the dAn(f ) estimate given by (15) arise from the
variability in the individual quantities because of the
finite number of samples and from non-Rayleigh scatter-
ing effects. This second source of error can be under-
stood by noting that in the absence of sampling errors,
(15) can be written as 2 dAn(f ) = [2 dAn(f )]true � E
where the error term, E, is equal to [dBZe(f1, r1) �
dBZe(f1, rn)] � [dBZe(f2, r1) � dBZe(f2, rn)]. This error is
zero if the scatterers are Rayleigh at both frequencies and
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at both ranges. However, since the basic method itself
relies on non-Rayleigh scattering the error is generally
nonzero for the frequencies of interest. Nevertheless, for
the 4-km path selected in the simulation, the differential
path attenuation is usually much larger than the non-
Rayleigh scattering component and the estimate given by
(15) is often sufficiently accurate. It is important to note
in addition that the solution to (12a) and (12b) is fairly
robust so that modest errors in the final values usually do
not lead to divergence.
[17] A detailed analysis of the solutions to (11a), (11b),

(12a), and (12b) is beyond the scope of the paper. Our
purpose here is to describe the general behavior of the
results and illustrate typical features. Shown in Figure 8
is an example of a D0 estimation using the final-value
equations (top) and initial-value equations (bottom).
Corresponding plots of rain rate and number concen-
tration, Nt, were generated but not shown. In each plot,
the true range-profile of D0 is represented by the solid
line while the estimates derived from the [31.5, 35 GHz]
and [13.6, 35 GHz] frequency pairs are represented by
the ‘‘X’’ and ‘‘+’’ symbols, respectively. This example is
typical in that the final-value solution is more stable than

the initial-value solution even when the quantities dAn(f )
and An(f ) are not exact but determined by the procedure
described above. In this particular example, the initial-
value problem diverges in the sense that for the dZe

obtained there is no corresponding solution of D0. Also
typical is the fact that the accuracy of the [31.5, 35 GHz]
combination is comparable to that of the [13.6, 35 GHz]
pair. This is the case, however, only when the number of
independent samples, n, is greater than about 2000. For
n < 1000 the [31.5, 35 GHz] data yield D0 estimates that
often exhibit large errors. Moreover, the solution often
diverges for both the final-value and initial-value equa-
tions. Divergence in the solution becomes more common
as the errors in dAn(f ) and An(f1) increase and when the
difference increases between the assumed value of m (=6)
and the best fit values of m used in the true DSD profile.
[18] A second example of a D0-retrieval is shown in

Figure 9. For this case, we take the number of independ-
ent samples to be infinite, the m value to be equal to the
true value, and the final values for the PIA to be exact.
The only remaining error source, apart from the approx-
imations used in transforming the integral equation to a
matrix equation, is the ambiguity in estimating D0 from

Figure 8. Retrievals of D0 from simulated radar data generated for the frequency pairs (13.6, 35
GHz) (+) and (31.5, 35 GHz) (X). The true D0 profile is given by the solid lines. Top: final-value
solution; bottom: initial value solution.
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dZe. Since the upper branch of the solution is always
selected, an error occurs if D0 falls below about 1.1 mm
(m = 6) in the case of the [13.6, 35 GHz] pair and below
about 0.8 mm (m = 6) in the case of the [31.5, 35 GHz]
pair. For example, in the range from about 1.2 to 1.8 km
the [31.5, 35 GHz] radar data can be used to recover
accurate estimates of D0 while the [13.6, 35 GHz] data
lead to overestimation. Over the first kilometer of the
path, where D0 is less than 0.7 mm, both pairs of radar
data yield large overestimates of D0. This ambiguity can
be resolved to some extent by using Ze along with dZe. In
particular, numerical calculations with measured drop
size distributions suggest that the upper branch of the D0-
dZe[13.6, 35 GHz] curve should be used if Ze(13.6 GHz)
> 17 dB and conversely. Similar considerations apply to
the [31.5, 35 GHz] combination.

5. Summary and Conclusions

[19] By the use of a broadband antenna and power
amplifier, it is possible to measure differential-frequency
data using a radar that is not much larger or more complex
than its single-frequency counterpart. Theoretical calcu-
lations indicate that differential Doppler and differential
reflectivity data can be measured if a sufficient number of

independent samples can be collected. Frequencies at Ka-
band with a separation on the order of 7% to 10% are
attractive in that a modest antenna size (less than 1 m
diameter) from low-Earth orbit can achieve a TRMM-type
resolution of 4 km at the surface. Moreover, at these
frequencies, the differential signals are relatively strong
and closely related to the median mass diameter of the
particle size distributions. Data measured at 9.1 GHz and
10 GHz by the EDOP radar in a zenith-viewing mode
suggest that the differential velocity and reflectivity sig-
nals can be measured even at X-band frequencies and that
the dZe (and to a lesser extent the dv) signature is closely
related to characteristics of the drop size distribution.
While this is encouraging, it remains to be shown that
the differential-frequency approach can estimate accu-
rately the drop size distribution. To investigate this ques-
tion, integral equations for the solution of the DSD
parameters were presented in initial- and final-value
forms. Simulated radar data from the [13.6, 35 GHz]
and [31.5, 35 GHz] frequency pairs lead to reasonably
good retrievals of D0 if the final-value forms of the
equations are used. A partial resolution of the ambiguities
in m and in the retrieval of D0 from dZe appears possible
with some refinements in the algorithm. The greatest
drawback of the differential reflectivity approach is the

Figure 9. Same notation as in Figure 8 for a different D0 input profile. All errors except the D0-
dZe ambiguity error have been set to zero.
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need for large numbers of independent samples: simula-
tions indicate unacceptably high errors in the estimates
when this number falls below about 1000. Pulse compres-
sion, frequency agility and ‘‘whitening’’ [Koivunen and
Kostinski, 1999] methods can be used to increase the
number of independent samples. Nevertheless, the differ-
ential-frequency mode for airborne or spaceborne weather
radar is best suited to nonscanning applications where
there is usually sufficient time to acquire large numbers of
samples.
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Figure 4. Height versus time plots of Zme(9.1 GHz)
(top), dZme[9.1, 10 GHz] (center) and height profiles of
dZme[9.1, 10 GHz] (bottom) over a 4 min segment of
data.

Figure 5. Height versus time plots of the mean Doppler
velocity, hv(9.1 GHz)i (top), dv[9.1, 10 GHz] (center)
and height profiles of dv[9.1, 10 GHz] (bottom) over
same 4 min segment of data as in Figure 4.
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